WO2020036135A1 - Human norovirus-like particle and use thereof - Google Patents

Human norovirus-like particle and use thereof Download PDF

Info

Publication number
WO2020036135A1
WO2020036135A1 PCT/JP2019/031571 JP2019031571W WO2020036135A1 WO 2020036135 A1 WO2020036135 A1 WO 2020036135A1 JP 2019031571 W JP2019031571 W JP 2019031571W WO 2020036135 A1 WO2020036135 A1 WO 2020036135A1
Authority
WO
WIPO (PCT)
Prior art keywords
gii
antibody
hunov
protein
antigen
Prior art date
Application number
PCT/JP2019/031571
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 佐藤
義和 幸
宏 清野
Original Assignee
国立大学法人東京大学
一般財団法人阪大微生物病研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 一般財団法人阪大微生物病研究会 filed Critical 国立大学法人東京大学
Priority to JP2020537449A priority Critical patent/JPWO2020036135A1/en
Publication of WO2020036135A1 publication Critical patent/WO2020036135A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses

Definitions

  • the present invention relates to human norovirus-like particles and uses thereof.
  • Human norovirus is a pathogenic virus that invades cells of the upper small intestine from the duodenum and causes nonbacterial acute gastroenteritis, and belongs to the non-enveloped Calicivirus family.
  • the HuNoV genome is a single-stranded plus-sense RNA of about 7.7 kb.
  • a viral protein called VPg is covalently linked to the 5 'end of the genome and the 3' end is polyadenylated.
  • ORF1, VP1 and VP2 which code for non-structural protein, structural protein 1 and structural protein 2, respectively.
  • HuNoV constructs a truncated icosahedral structure with 90 (by 180 molecules) VP1 dimers.
  • Each VP1 monomer is divided into two domains, a shell domain (S domain) and a protruding domain (P domain), of which the P domain is further divided into P1 and P2 subdomains.
  • P2 recognizes blood group antigens that function as receptors and host infectious agents during infection. Mutations in the P2 subdomain cause changes in binding to blood group antigens (Non-Patent Document 1).
  • HuNoV is classified into three gene groups (GI, GII and GIV) based on the genome sequence, and it is said that there are at least 25 genotypes. Although it is a norovirus that shows high diversity, in recent years, only a small number of strains such as GII, particularly genotype 4 (GII.4) have been responsible for the spread of infection (Non-Patent Document 1). About 20 million HuNoV infections are transmitted annually in the U.S., and about 70,000 are hospitalized. In Japan, there is no clear data, but about 1 to 20,000 inpatients and more than 7 million infections Are estimated to occur every year.
  • VLPs virus like particle
  • GII.4 is the main genotype in the HuNoV outbreak, but recently other genotypes, especially GII.2, GII.3, GII.6 and GII.17, have become more influential (non-patented).
  • References 3-6 Therefore, there is a need for the development of viral therapeutics such as cross-reactive antibodies that inhibit viral infection of several genotypes. However, at present, there is no antibody that inhibits viral infection of multiple genotypes or a single vaccine antigen that can induce it.
  • an object of the present invention is to provide an antigen for producing an antibody that suppresses multiple types of HuNoV infection, use thereof, and an antibody that suppresses multiple types of HuNoV infection.
  • the present inventors have generated antibodies against GII.4 VLP, GII.3 VLP, and GII.17 VLP, and used a line of intestinal epithelial cells derived from iPS cells (iPSCs) to generate several genes for HuNoV. The type was tested to determine whether it inhibited its infection (HuNoV invasion into and / or replication within intestinal epithelial cells). As a result, an antibody prepared using VLPs formed by self-aggregation of the VP1 protein of GII.4 as an antigen was able to suppress the replication of GII.4, but suppressed the replication of HuNoV of other genotypes. Did not.
  • Antibodies prepared using VLPs formed by self-aggregation of the VP1 protein of GII.3 as antigens were able to suppress the replication of GII.3, but inhibited the replication of HuNoV of other genotypes. Did not.
  • an antibody prepared using VLPs formed by self-aggregation of the VP1 protein of GII.17 as antigens not only suppresses GII.17 replication but also effectively suppresses GII.4 replication.
  • the present invention provides an antigen suitable for the purpose of producing an antibody that inhibits HuNoV infection of a plurality of different genotypes (particularly, GII.4 HuNoV and GII.17 HuNoV), and an antigen produced using the antibody. And the like.
  • the present invention includes the following (1) to (10).
  • a method for producing an antibody comprising: (2) The method for producing an antibody according to (1) above, wherein the full length of the VP1 protein of GII.17 HuNoV comprises the amino acid sequence represented by SEQ ID NO: 3.
  • the antibody or the functional fragment thereof according to the above (4) or (5), wherein the plurality of different genotypes are GII.4 and GII.17.
  • a pharmaceutical composition comprising the antibody or the functional fragment thereof according to any of (4) to (6).
  • a vaccine for suppressing infection of HuNoV of a plurality of different genotypes which contains the full length or part of GII.17 HuNoV VP1 protein as an antigen.
  • the vaccine according to the above (8), wherein the full length of the VP1 protein of GII.17 HuNoV comprises the amino acid sequence represented by SEQ ID NO: 3.
  • the vaccine according to (8) or (9), wherein the plurality of different genotypes are GII.4 and GII.17.
  • the present invention provides an antigen for producing an antibody that suppresses the replication of HuNoV of a plurality of different genotypes (for example, GII.4 and GII.17).
  • the present invention also provides an antibody against the above antigen.
  • the antibody can suppress HuNoV infection of a plurality of different genotypes (eg, GII.4 and GII.17), and can provide an effective treatment for HuNoV infection.
  • A is the genomic copy number of GII.4 HuNoV (strain 17-231) cultured after pretreatment with anti-GII.4 VLP polyclonal antibody
  • B is GII. 3 shows the results of measuring the genome copy number of GII.17 and GII.6 HuNoV. Measurements were taken at 3 hours (open) and 72 hours (black) after infection.
  • As a control IgG an unimmunized rabbit-derived IgG was used. Each value is a representative value of three independent experiments and is shown as a mean value ⁇ standard deviation (SD). Effect of anti-GII.3 VLP polyclonal antibody on HuNoV replication.
  • A is the genomic copy number of GII.3 HuNoV cultured after pretreatment with an anti-GII.3 VLP polyclonal antibody
  • B is GII.4 (17B93 strain), which was pretreated and cultured with an anti-GII.3 VLP polyclonal antibody
  • It is the result of measuring the genome copy number of GII.17 and GII.6 HuNoV. Measurements were taken at 3 hours (open) and 72 hours (black) after infection.
  • As a control IgG an unimmunized rabbit-derived IgG was used. Each value is a representative value of three independent experiments and is shown as a mean value ⁇ standard deviation (SD). Effect of anti-GII.17 VLP polyclonal antibody on HuNoV replication.
  • A shows the genomic copy number of GII.17 HuNoV cultured after pretreatment with anti-GII.17 VLP polyclonal antibody
  • B shows GII.4 (strain 17-231) cultured after pretreatment with anti-GII.17 VLP polyclonal antibody. And 17B93 strain), and the results of measuring the genome copy number of GII.3 and GII.6 HuNoV. Measurements were taken at 3 hours (open) and 72 hours (black) after infection.
  • As a control IgG an unimmunized rabbit-derived IgG was used. Each value is representative of three independent experiments and is shown as the mean ⁇ SD.
  • a first embodiment of the present invention relates to a method for producing an antibody that inhibits infection of a plurality of different genotypes of HuNoV into intestinal epithelial cells, the method comprising: This is a method for producing an antibody, including immunization as an antigen.
  • the antibody production method according to the first embodiment shows cross-reactivity with HuNoV of different genotypes and inhibits their infection (or A method for producing an antibody that suppresses the VP1 protein, wherein the full length or a part of the VP1 protein of GII.17 HuNoV is used as an antigen.
  • the genotype of HuNoV that the antibody produced by the antibody production method of the present invention inhibits infection is preferably GII.4 or GII.17 belonging to the GII genogroup.
  • the VP1 protein of the antigen GII.17 HuNoV may be its full length, or may be a partial region having antigenicity. It is a protein represented by SEQ ID NO: 3.
  • the antigenic region can be easily selected by preparing a part of the VP1 protein of GII.17 HuNoV and using it as an immunogen to confirm the neutralizing ability of the antibody (the ability to suppress the replication of HuNoV) can do.
  • “GII.17 HuNoV VP1 protein” refers to a protein including the amino acid sequence represented by SEQ ID NO: 3 as well as the amino acid sequence represented by SEQ ID NO: 3 And a protein comprising an amino acid sequence substantially identical to
  • the term "protein containing substantially the same amino acid sequence” refers to the amino acid sequence represented by SEQ ID NO: 3 by about 60% or more, preferably about 70% or more, more preferably about 80%, 81%, 82% or more.
  • the antibody against the protein comprises an amino acid sequence having about 99% amino acid identity and is capable of infecting intestinal epithelial cells with HuNoVs (eg, GII.4 and GII.17) of multiple different genotypes.
  • HuNoVs eg, GII.4 and GII.17
  • a protein containing an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3 refers to one or several (preferably about 1 to 30, more preferably Is composed of an amino acid sequence in which about 1 to 10, more preferably 1 to 5) amino acids have been deleted, substituted, inserted or added, and an antibody against the protein is intestinal tract of HuNoV of a plurality of different genotypes.
  • the VP1 protein of GII.17 HuNoV is obtained by obtaining a nucleic acid (for example, SEQ ID NO: 4 or the like) encoding this protein from a cDNA library or the like, incorporating the nucleic acid into an appropriate expression vector, and transforming an appropriate host cell with the expression vector. It can be prepared by transforming or transfecting, culturing this in an appropriate medium, expressing and purifying the VP1 protein.
  • a nucleic acid for example, SEQ ID NO: 4 or the like
  • Examples of host cells for expressing the VP1 protein include bacterial cells (eg, Escherichia coli B strain , E. coli Kl2 strain, Corynebacterium ammoniagenes , C. glutamicum , Serratia liquefaciens , Streptomyces lividans , Pseudomonas putida, etc.); molds (eg, Penicillium ) camembertii , Acremonium chrysogenum, etc.), animal cells, plant cells, baculovirus / insect cells or yeast cells (eg, Saccharomyces cerevisiae and Pichia pastoris ) can be used and expressed in these cells.
  • bacterial cells eg, Escherichia coli B strain , E. coli Kl2 strain, Corynebacterium ammoniagenes , C. glutamicum , Serratia liquefaciens , Streptomyces lividans , Pse
  • an expression vector for expressing the VP1 protein a vector suitable for various host cells can be used.
  • expression vectors include, for example, pBR322, pBR325, pUC118, pET etc. (Escherichia coli host), pEGF-C, pEGF-N etc. (animal cell host), pVL1392, pVL1393 etc. (insect cell host, baculovirus vector), pG -1, Yep13 or pPICZ (yeast cell host) can be used.
  • These expression vectors have a replication origin, a selection marker, and a promoter suitable for each vector, and may include an enhancer, a transcription assembly sequence (terminator), a ribosome binding site, a polyadenylation signal, and the like, if necessary. You may have. Furthermore, in order to facilitate purification of the expressed polypeptide, a base sequence for expressing by fusion of a FLAG tag, a His tag, an HA tag, a GST tag and the like may be inserted into the expression vector. Preparation of the expression vector can be carried out by a method known to those skilled in the art, and can also be carried out using a commercially available kit or the like as appropriate.
  • the cells or cultured cells are collected by a known method, suspended in an appropriate buffer, and subjected to ultrasonic wave, lysozyme and / or lysozyme.
  • a soluble extract is obtained by centrifugation or filtration.
  • it is desirable to obtain the VP1 protein expressed in the culture supernatant by collecting the supernatant. From the obtained extract or culture supernatant, a desired protein can be obtained by appropriately combining known separation and purification methods.
  • Known separation and purification methods include methods using solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, methods using mainly differences in molecular weight such as SDS-PAGE, and ionization.
  • a method using a charge difference such as exchange chromatography, a method using a specific affinity such as affinity chromatography (for example, when a polypeptide is expressed together with a GST tag, a resin in which glutathione is bound to a carrier is used.
  • affinity chromatography for example, when a polypeptide is expressed together with a GST tag, a resin in which glutathione is bound to a carrier is used.
  • affinity chromatography for example, when a polypeptide is expressed together with a GST tag, a resin in which glutathione is bound to a carrier is used.
  • affinity chromatography for example, when a polypeptide is expressed together with a GST tag, a resin in which glutathione is bound to a carrier is used.
  • the antibody produced in the first embodiment is not particularly limited, and may be, for example, a monoclonal antibody, a polyclonal antibody, a nanoantibody, or the like.
  • an antigen can be used for an immunized animal (for example, but not limited to, rabbit, goat, sheep, chicken, guinea pig, mouse, rat or pig).
  • an adjuvant mixture can be prepared.
  • the antigen and / or adjuvant is injected multiple times into the immunized animal subcutaneously or intraperitoneally.
  • Adjuvants include, but are not limited to, for example, complete Freund and monophosphoryl lipid A synthesis-trehalose dicorynomycolate (MPL-TMD).
  • MPL-TMD monophosphoryl lipid A synthesis-trehalose dicorynomycolate
  • serum containing an antibody against VP1 is prepared from the immunized animal, and the desired antibody can be purified by a conventional method (for example, a method using rProtein A-Sepharose).
  • the term “monoclonal” refers to a property of an antibody obtained from a substantially homogeneous population of antibodies, and the antibody is produced by a specific method (eg, a hybridoma method). It does not mean to be done.
  • a method for producing a monoclonal antibody include a hybridoma method (Kohler and Milstein, Nature 256 495 1975) or a recombinant method (US Pat. No. 4,816,567).
  • the monoclonal antibody according to the present invention may be isolated from a phage antibody library (Clackson et al., Nature 352 624-628 1991; Marks et al., J. Mol. Biol. 222 581-597 1991).
  • the preparation method includes, for example, the following four steps: (i) immunizing the VP1 protein of GII.17 HuNoV or a part thereof; Immunize animals, (ii) collect lymphocytes secreting (or potentially secreting) monoclonal antibodies, (iii) fuse lymphocytes with immortalized cells, (iv) secrete desired monoclonal antibodies Select cells.
  • the immunized animal for example, mouse, rat, guinea pig, hamster and the like can be selected.
  • lymphocytes obtained from the host animal are fused with an immortalized cell line using a fusion agent such as polyethylene glycol to establish hybridoma cells.
  • a fusion agent such as polyethylene glycol
  • the fused cells for example, rat or mouse myeloma cell lines are used.
  • the cells are grown in a suitable medium containing unfused lymphocytes and one or more substrates that inhibit the growth or survival of the immortalized cell line.
  • the usual technique uses parental cells that lack the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT or HPRT).
  • hypoxanthine, aminopterin and thymidine inhibit the growth of HGPRT-deficient cells and are added to a medium that allows hybridoma growth (HAT medium).
  • HAT medium a medium that allows hybridoma growth
  • a hybridoma producing a desired antibody is selected, and the desired monoclonal antibody can be obtained from a medium in which the selected hybridoma grows according to a conventional method.
  • the hybridoma thus prepared can be cultured in vitro or in vivo in ascites of mice, rats, guinea pigs, hamsters, etc., and the target antibody can be prepared from the culture supernatant or ascites.
  • a nanoantibody is a polypeptide comprising a variable domain of the heavy chain of an antibody (VHH).
  • VHH antibody
  • antibodies such as humans are composed of heavy chains and light chains.
  • Camelid animals such as llamas, alpacas and camels produce single-chain antibodies consisting only of heavy chains (heavy chain antibodies).
  • a heavy chain antibody can recognize a target antigen and bind to the antigen, similarly to a normal heavy and light chain antibody.
  • the variable region of a heavy chain antibody is the smallest unit that has binding affinity for an antigen, and this variable region fragment is called a "nanoantibody.”
  • Nanoantibodies have high heat resistance, digestion resistance, and room temperature stability, and can be easily prepared in large quantities by genetic engineering techniques. Nanoantibodies can be prepared, for example, as follows.
  • a camelid animal is immunized with an antigen, the presence or absence of the target antibody is detected from the collected serum, and cDNA is prepared from RNA derived from peripheral blood lymphocytes of the immunized animal in which the desired antibody titer has been detected.
  • a VHH-encoding DNA fragment is amplified from the obtained cDNA and inserted into a phagemid to prepare a VHH phagemid library.
  • a desired nanoantibody can be prepared from the prepared VHH phagemid library through several screenings.
  • a second embodiment of the present invention relates to an antibody that binds to the VP1 protein of GII.17 HuNoV, wherein the antibody inhibits infection of multiple different genotypes of HuNoV into intestinal epithelial cells (hereinafter referred to as “the antibody of the present invention Or a functional fragment thereof.
  • the antibody of the present invention is not particularly limited, and may be, for example, a monoclonal antibody, a polyclonal antibody, or a nanoantibody.
  • the antibody of the present invention may be a recombinant antibody.
  • the recombinant antibody is not particularly limited, and includes, for example, chimeric antibodies (for example, humanized antibodies and human antibodies).
  • a chimeric antibody is an antibody in which a variable region and a constant region derived from different animal species are linked, for example, an antibody in which the variable region of a mouse-derived antibody is linked to a human-derived constant region.
  • Such linked antibodies can easily be constructed by genetic recombination techniques well known to those skilled in the art.
  • the genotype of HuNoV that the antibody of the present invention inhibits infection is preferably GII.4 and GII.17.
  • a functional fragment of the antibody of the present invention is a partial region of the antibody of the present invention, which means an antibody fragment that binds to HuNoV VPL and inhibits its infection or proliferation in intestinal epithelial cells, for example, Fab, Fab ', F (ab') 2, Fv (variable fragment of antibody), single chain antibody (heavy chain, light chain, heavy chain variable region, light chain variable region, nano antibody, etc.), scFv (single chain) Fv), diabody (scFv dimer), dsFv (disulfide-stabilized ⁇ Fv), and peptides containing at least a part of the CDR of the antibody of the present invention.
  • Fab is an antibody fragment having antigen-binding activity in which about half of the N-terminal side of the heavy chain and the entire light chain are bound by disulfide bonds, among fragments obtained by treating an antibody molecule with the protease, papain.
  • Fab is prepared by treating the antibody molecule with papain to obtain a fragment, for example, constructing an appropriate expression vector into which DNA encoding Fab is inserted, and inserting it into an appropriate host cell (for example, CHO cell or the like). After introduction into mammalian cells, yeast cells, insect cells, and the like), and then expressing Fab in the cells.
  • F (ab ') 2 is an antibody fragment having an antigen-binding activity, which is a little larger than a fragment obtained by treating an antibody molecule with the protease pepsin, wherein the Fab is bound via a disulfide bond in the hinge region. It is.
  • F (ab ') 2 can be prepared by treating the antibody molecule with pepsin to obtain a fragment, or by linking the Fab to a thioether bond or a disulfide bond. can do.
  • Fab' is an antibody fragment having antigen-binding activity, which is obtained by cleaving a disulfide bond in the hinge region of F (ab ') 2.
  • scFv is a VH-linker-VL or VL-linker-VH polypeptide in which one heavy chain variable region (VH) and one light chain variable region (VL) are linked using an appropriate peptide linker. And an antibody fragment having an antigen-binding activity.
  • the scFv can be prepared by obtaining cDNAs encoding the heavy chain variable region and the light chain variable region of the antibody, and using a genetic engineering technique.
  • Diabody is an antibody fragment obtained by dimerizing scFv and has a bivalent antigen-binding activity.
  • the divalent antigen-binding activities may be the same antigen-binding activity or one may be a different antigen-binding activity.
  • the diabody obtains cDNAs encoding the heavy chain variable region and light chain variable region of the antibody, constructs a cDNA expressing the scFv in which the heavy chain variable region and the light chain variable region are linked by a peptide linker, and performs genetic engineering. It can be produced by a technique.
  • DsFv refers to a polypeptide in which one amino acid residue in each of the heavy chain variable region and the light chain variable region has been substituted with a cysteine residue, which is linked via a disulfide bond between the cysteine residues.
  • the amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody.
  • dsFv can be prepared by obtaining cDNAs encoding the heavy chain variable region and the light chain variable region of an antibody, constructing a DNA encoding the dsFv, and performing genetic engineering techniques.
  • the peptide containing the CDR is configured to include at least one region or more of the heavy chain or light chain CDRs (CDR1 to 3). Peptides containing multiple CDRs can be linked directly or via a suitable peptide linker.
  • a DNA encoding the heavy chain or light chain CDR of the antibody is constructed and inserted into an expression vector.
  • the type of the vector is not particularly limited, and may be appropriately selected depending on the type of the host cell to be subsequently introduced. These can be produced by introducing them into an appropriate host cell (eg, a mammalian cell such as a CHO cell, a yeast cell, an insect cell, etc.) in order to express them as an antibody.
  • an appropriate host cell eg, a mammalian cell such as a CHO cell, a yeast cell, an insect cell, etc.
  • the peptide containing CDR can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the
  • the third embodiment of the present invention is a medicine containing the antibody of the present invention or a functional fragment thereof (hereinafter, also referred to as “the medicine of the present invention”).
  • the medicament of the present invention has a pharmacological effect as a prophylactic and / or therapeutic agent for infections caused by HuNoV.
  • the medicament of the present invention may be in a form in which the antibody of the present invention as an active ingredient or the functional fragment thereof itself is administered, but generally, in addition to the antibody of the present invention as an active ingredient or the functional fragment thereof, Alternatively, it is desirable to administer in the form of a pharmaceutical composition containing two or more pharmaceutical additives (hereinafter also referred to as “the pharmaceutical composition of the present invention”). Further, the pharmaceutical composition according to the embodiment of the present invention may further contain other known drugs.
  • the medicament or the pharmaceutical composition according to the embodiment of the present invention is not particularly limited, and may be in the form of a tablet, capsule, granule, powder, syrup, suspension, suppository, ointment, cream, gel. Preparations, patches, inhalants or injections. These preparations are prepared according to a conventional method. In the case of liquid preparations, they may be dissolved or suspended in water or another suitable solvent at the time of use. Tablets and granules may be coated by a known method. In the case of an injection, the antibody of the present invention or a functional fragment thereof is prepared by dissolving the same in water, but may be dissolved in a physiological saline solution or a glucose solution if necessary, An agent may be added.
  • Formulations for oral or parenteral administration are provided in any formulation form.
  • Formulation forms include, for example, oral administration agents in the form of granules, fine granules, powders, hard capsules, soft capsules, syrups, emulsions, suspensions or solutions, intravenous administration, intramuscular It can be prepared in the form of injections, drops, transdermal absorbents, transmucosal absorbents, nasal drops, inhalants or suppositories for administration or subcutaneous administration. Injections, drops, and the like can be prepared as a powdery dosage form such as a lyophilized form, and dissolved in an appropriate aqueous medium such as physiological saline before use.
  • the type of the pharmaceutical additive used in the production of the medicament or the pharmaceutical composition according to the embodiment of the present invention, the ratio of the pharmaceutical additive to the active ingredient, or the method of producing the medicament or the pharmaceutical composition depends on the form. Thus, a person skilled in the art can select as appropriate. Inorganic or organic substances, or solid or liquid substances can be used as pharmaceutical additives. Generally, for example, 0.1% to 99.9% by weight, 1% to 1% by weight based on the weight of the active ingredient. 95.0% by weight, or between 1% and 90.0% by weight.
  • lactose glucose, mannitol, dextrin, cyclodextrin, starch, sucrose, magnesium aluminate metasilicate, synthetic aluminum silicate, sodium carboxymethylcellulose, hydroxypropyl starch, carboxymethylcellulose calcium as examples of pharmaceutical additives , Ion exchange resins, methylcellulose, gelatin, gum arabic, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, light anhydrous silicic acid, magnesium stearate, talc, tragacanth, bentonite, veegum, titanium oxide, sorbitan fatty acid ester, Sodium lauryl sulfate, glycerin, fatty acid glycerin ester, purified lanolin, glycerogelatin, polysodium Bate, macrogol, vegetable oils, waxes, liquid paraffin, white petrolatum, fluorocarbons, nonionic surfactants
  • the active ingredient and excipient components for example, lactose, starch, microcrystalline cellulose, calcium lactate or silicic acid anhydride and the like, or a powder, or A binder such as sucrose, hydroxypropylcellulose or polyvinylpyrrolidone, a disintegrant such as carboxymethylcellulose or calcium carboxymethylcellulose are added, and the mixture is granulated by wet or dry granulation to give granules.
  • these powders and granules may be compressed as they are or by adding a lubricant such as magnesium stearate or talc.
  • granules or tablets are coated with an enteric base such as hydroxypropylmethylcellulose phthalate or methacrylic acid-methyl methacrylate polymer to form an enteric coated preparation, or coated with ethyl cellulose, carnauba wax or hardened oil to obtain a sustained release preparation. You can also.
  • an enteric base such as hydroxypropylmethylcellulose phthalate or methacrylic acid-methyl methacrylate polymer
  • enteric coated preparation or coated with ethyl cellulose, carnauba wax or hardened oil to obtain a sustained release preparation.
  • To produce capsules powders or granules are filled in hard capsules, or the active ingredient is used as it is, or is dissolved in glycerin, polyethylene glycol, sesame oil or olive oil, and then coated with gelatin to form soft capsules. be able to.
  • the active ingredient may be used as necessary, such as hydrochloric acid, sodium hydroxide, lactose, lactic acid, sodium, a pH adjuster such as sodium monohydrogen phosphate or sodium dihydrogen phosphate, sodium chloride or glucose, etc. Dissolve in distilled water for injection together with an isotonic agent, and aseptically filter and fill into ampoules, or add mannitol, dextrin, cyclodextrin or gelatin, and freeze-dry in vacuo to obtain a working-soluble injection. Is also good.
  • reticin, polysorbate 80, polyoxyethylene hydrogenated castor oil or the like may be added to the active ingredient and emulsified in water to prepare an injection emulsion.
  • the active ingredient is dissolved by humidification together with a suppository base such as cocoa butter, fatty acid tri-, di- and monoglycerides or polyethylene glycol, and then poured into a mold and cooled, or the active ingredient is cooled. After dissolving in polyethylene glycol or soybean oil or the like, it may be coated with a gelatin film.
  • a suppository base such as cocoa butter, fatty acid tri-, di- and monoglycerides or polyethylene glycol
  • the dose and the number of times of administration of the medicament or the pharmaceutical composition according to the embodiment of the present invention are not particularly limited, and the purpose of preventing and / or treating the deterioration and progression of the target disease, the type of the disease, the weight and age of the patient, and the like Can be appropriately selected by the judgment of the doctor or pharmacist according to the conditions of In general, the daily dose for oral administration in adults is about 0.01 to 1,000 mg (weight of active ingredient), and it can be administered once or several times a day or every few days . When used as an injection, it is desirable to continuously or intermittently administer a daily dose of 0.001 to 100 mg (weight of the active ingredient) to an adult.
  • the medicament or the pharmaceutical composition according to the embodiment of the present invention is prepared as a sustained-release preparation such as an implant and a delivery system encapsulated in microcapsules using a carrier capable of preventing immediate removal from the body.
  • a carrier capable of preventing immediate removal from the body.
  • biodegradable and biocompatible polymers such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acids can be used. Such materials can be easily prepared by those skilled in the art.
  • a suspension of liposomes can be used as a pharmaceutically acceptable carrier.
  • Liposomes are prepared through a filter of appropriate pore size to a size suitable for use as a lipid composition comprising, but not limited to, phosphatidylcholine, cholesterol and PEG-derived phosphatidylethanol (PEG-PE). Can be purified by
  • the medicament or the pharmaceutical composition according to the embodiment of the present invention may be provided in the form of a kit together with instructions such as an administration method.
  • the medicament or the pharmaceutical composition contained in the kit is manufactured from a material that maintains the activity of the active ingredient effectively for a long period of time, does not cause the agent or the like to adsorb to the inside of the container, and does not alter the components. Supplied by container.
  • a sealed glass ampoule may include a buffer or the like encapsulated in the presence of a neutral, non-reactive gas such as nitrogen gas.
  • the kit may be accompanied by instructions for use. Instructions for use of the kit may be printed on paper or the like, or may be stored and supplied on an electromagnetically readable medium such as a CD-ROM or DVD-ROM.
  • a fourth embodiment of the present invention provides a vaccine for suppressing infection of a plurality of different genotypes of HuNoV, which contains the full length or a part of the VP1 protein of GII.17 HuNoV as an antigen (hereinafter referred to as “the vaccine of the present invention”). ").
  • the vaccine of the present invention may comprise one or more adjuvants, such as complete Freund's or incomplete Freund's adjuvant, cholera toxin, heat-labile Escherichia coli toxin, aluminum hydroxide, potassium alum, saponin or a derivative thereof, muramyl dipeptide, mineral oil or Vegetable oils, novasomes or non-ionic block copolymers, DEAE dextran and the like can be included.
  • adjuvants such as complete Freund's or incomplete Freund's adjuvant, cholera toxin, heat-labile Escherichia coli toxin, aluminum hydroxide, potassium alum, saponin or a derivative thereof
  • a pharmaceutically acceptable carrier must be a compound that does not adversely affect the health of the animal being vaccinated.
  • a pharmaceutically acceptable carrier is, for example, sterile water or a buffer.
  • the vaccine of the present invention can be administered by a conventional active immunization method, and may be administered by injection, orally, or by a transmucosal method such as nasal.
  • the vaccine preparation of the present invention can be administered in a single dose by a method suitable for the dosage form in an amount effective for preventing or treating HuNoV infection (an amount sufficient to induce immunity in animals against HuNoV challenge). Or it can be administered multiple times.
  • the vaccine can be administered intradermally, subcutaneously, intramuscularly, intraperitoneally, intravenously, orally, or mucosally, such as intranasally or sublingually.
  • the vaccine preparation of the present invention can be used by mixing with other antigen components.
  • the dose and frequency of administration of the vaccine preparation may vary depending on the administration subject, but protective immunity can be induced by administering the vaccine containing several tens of ⁇ g of the antigen once every several weeks, once every several weeks.
  • a fifth embodiment of the present invention comprises administering to a patient a medicament or pharmaceutical composition of the present invention or a vaccine of the present invention, wherein a plurality of different genotypes of HuNoV (eg, GII.4 and GII.17).
  • ⁇ treatment '' refers to preventing or alleviating the progress and worsening of the disease state in a patient already infected with HuNoV, and thereby preventing or alleviating the progress and worsening of HuNoV infection. Is the action to be taken.
  • ⁇ prevention '' means, for a patient who may be infected with HuNoV, preventing the infection in advance, and thereby a treatment aimed at preventing the onset of HuNoV infection in advance. .
  • VLP VLP and polyclonal antibody against VLP
  • the virus was roughly purified from stool containing HuNoV donated by Osaka National Institute of Health and Safety, and a virus genome was prepared therefrom. Primers were set outside the VP1 ORFs of GII.4, GII.3 and GII.17 on the prepared genome, each ORF region was amplified by PCR, and the nucleotide sequence of the amplified product was determined. The ORF of each VP1 was cloned into pFastBac Dual Expression Vector (Invitrogen).
  • the amino acid sequence of GII.4 VP1 and the nucleic acid sequence encoding the same are shown in SEQ ID NOS: 1 and 2, respectively, and the amino acid sequence of GII.17 VP1 and the nucleic acid sequence encoding the same are shown in SEQ ID NOs: 3 and 4, respectively.
  • the amino acid sequence of GII.3 VP1 and the nucleic acid sequence encoding it are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively. After confirming that the sequence was correct, each construct was used for producing a recombinant baculovirus of the Bac-to-Bac expression system (Invitrogen).
  • High Five cells (Invitrogen) were infected with each recombinant baculovirus at a MOI (multiplicity of infection) of 7 pfu (plaque-forming units) / cell.
  • MOI multiple of infection
  • the culture supernatant was collected and centrifuged at 20,000 g for 1 hour.
  • the obtained supernatant was ultracentrifuged at 100,000 g for 2 hours, and the precipitated VLP was suspended in PBS.
  • the concentrated VLPs were layered on a 10% -60% sucrose density gradient and purified by ultracentrifugation at 100,000 g for 1 hour.
  • VLPs passed through the sucrose density gradient were dialyzed three times against 2 L of PBS to remove sucrose in the sample.
  • VLP was concentrated with AmiconUltra 30-kDa centrifugal filter (Millipore).
  • VLP GII.4, GII.3 or GII.17
  • complete Freund's adjuvant 100-200 ⁇ g
  • each rabbit received a booster injection with 100-200 ⁇ g of VLP mixed with incomplete Freund's adjuvant.
  • rabbits were bled for serum preparation.
  • the IgG fraction of the serum was purified by rProtein A-Sepharrose Fast flow (GE Healthcare) and then dialyzed 3 times against 2 L of PBS.
  • the obtained cell suspension was added to a 5-fold volume of 10% calf serum / basic medium [Advanced DMEM / F12 (Gibco) in 10 mM HEPES (pH 7.3, Gibco), 2 mM Glutamax (Gibco) and 100 units / mL Penicillin plus 100 ⁇ g / mL streptmycin (Gibco) was added], and the mixture was centrifuged at 440 g for 5 minutes to collect the cells.
  • the collected intestinal epithelial cells were cultured on ice on a 20% organoid culture medium supplemented with 10 ⁇ M Y-27632 [a medium obtained by adding the following to a basic medium.
  • an organoid culture medium (+10 ⁇ M Y-27632) was added to each well.
  • the average passage ratio was 1:16 or 3 ⁇ 10 4 / well.
  • the medium was replaced with a fresh organoid medium every 2-3 days. Passaging was performed every 5-7 days.
  • intestinal epithelial cells that had been removed from the wells and suspended in 100 ⁇ L of an organoid culture medium (+10 ⁇ M Y-27632) in a 2.5% Matrigel-coated 96-well plate or Transwells (Corning3470) were used for 2 ⁇ 10 5 Seeded at a cell density of 4 / well.
  • an organoid culture medium (+10 ⁇ M Y-27632) in a 2.5% Matrigel-coated 96-well plate or Transwells (Corning3470) were used for 2 ⁇ 10 5 Seeded at a cell density of 4 / well.
  • 600 ⁇ L of an organoid culture medium was added to the lower well. After culturing in a 5% CO 2 incubator at 37 ° C. for 2 days, the medium was used as a differentiation medium [a medium obtained by adding the following to a basic medium.
  • RN CM 12.5% RN CM (Takahashi et al., Stem Cell Reports 10: 314-328 2018), 1 ⁇ B-27, 50 ng / mL mouse EGF and 500 nM A83-01].
  • the medium was replaced with a differentiation medium with or without 0.03% porcine bile (Sigma). Thereafter, the cells cultured for 2 days were used for HuNoV infection.
  • the cells were washed twice with 150 ⁇ L of the basal medium.
  • a differentiation medium containing or not containing 0.03% bile was added to 100 ⁇ L cells, and pipetted twice, and then collected as a control sample.
  • 100 ⁇ L of differentiation medium with or without 0.03% bile was added to each well and then cultured in 5% CO 2 for 72 hours.
  • GII.4 Antibody prepared using VLP as an antigen Compared with VLP used as an antigen, VP1 of the virus strain (17-231) contained a single amino acid mutation (D235E) in the P1 domain.
  • Incubation of .4 HuNoV with anti-GII.4 VLP antibody completely inhibited its replication in intestinal epithelial cells (FIG. 1A).
  • FIG. 1A Incubation of .4 HuNoV with anti-GII.4 VLP antibody completely inhibited its replication in intestinal epithelial cells (FIG. 1A).
  • FIG. 1A intestinal epithelial cells
  • the anti-GII.4 VLP polyclonal antibody prepared here was unable to inhibit the replication of GII.3, GII.6 and GII.17 HuNoV (FIG. 1B). This result suggests that GII.4 VLP cannot be used as an antigen to induce neutralizing antibodies that inhibit the replication of other genotypes of HuNoV.
  • Antibody prepared using GII.17 VLP as an antigen Pretreatment of GII.17 HuNoV with an anti-GII.17 VLP antibody inhibited the replication of GII.17 HuNoV in intestinal epithelial cells (FIG. 3A). Next, when the effect of the anti-GII.17 VLP antibody on the replication of HuNoV of a genotype other than GII.17 was examined, the anti-GII.17 VLP antibody also inhibited the replication of GII.4 HuNoV (FIG. 3B).
  • GII.17 VLP is highly likely to inhibit the infection of HuNoV of other genotypes classified as GII and has the ability as a multivalent vaccine antigen.
  • the present invention provides an antigen suitable for the purpose of preparing an antibody that inhibits HuNoV infection of a plurality of different genotypes, and the antibody. Therefore, the present invention is expected to be used in the medical field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention addresses the problem of providing an antigen for generating an antibody for inhibiting infection of multiple types of HuNov, a use thereof, and an antibody for inhibiting infection of multiple types of HuNov. Specifically, the present invention provides: a method for producing an antibody for inhibiting infection of different genotypes of human norovirus (HuNoV) to intestinal epithelial cells, comprising immunization using the full length or a part of VP1 protein of GII.17 HuNoV as an antigen; and an antibody for inhibiting infection of a plurality of different genotypes of HuNoV to intestinal epithelial cells.

Description

ヒトノロウイルス様粒子およびその使用Human norovirus-like particles and uses thereof
 本発明は、ヒトノロウイルス様粒子およびその使用に関する。 The present invention relates to human norovirus-like particles and uses thereof.
 ヒトノロウイルス(human norovirus:HuNoV)は、十二指腸から小腸上部の細胞に侵入し、非細菌性急性胃腸炎を引き起こす病原性ウイルスで、エンベロープを持たないカリシウイルス科に属する。
 HuNoVのゲノムは、約7.7kbの一本鎖プラスセンスRNAである。VPgと呼ばれるウイルスタンパク質がゲノムの5’末端に共有結合しており、3'末端はポリアデニル化されている。ゲノムには、ORF1、VP1およびVP2の3つのタンパク質のコード領域が存在しており、各々、非構造タンパク質、構造タンパク質1および構造タンパク質2をコードしている。構造学的解析から、HuNoVは(180分子による)90個のVP1ダイマーによって切頂二十面体の構造を構築していることが明らかとなっている。各VP1モノマーは、shellドメイン(Sドメイン)とprotrudingドメイン(Pドメイン)の2つのドメインに分けられ、このうちPドメインは、さらにP1およびP2のサブドメインに分けられる。P2は、感染の際のレセプターおよび宿主感染性因子として機能する血液型抗原を認識する。P2サブドメインにおける突然変異によって、血液型抗原との結合に変化が生じる(非特許文献1)。
Human norovirus (HuNoV) is a pathogenic virus that invades cells of the upper small intestine from the duodenum and causes nonbacterial acute gastroenteritis, and belongs to the non-enveloped Calicivirus family.
The HuNoV genome is a single-stranded plus-sense RNA of about 7.7 kb. A viral protein called VPg is covalently linked to the 5 'end of the genome and the 3' end is polyadenylated. In the genome, there are three protein coding regions, ORF1, VP1 and VP2, which code for non-structural protein, structural protein 1 and structural protein 2, respectively. Structural analysis reveals that HuNoV constructs a truncated icosahedral structure with 90 (by 180 molecules) VP1 dimers. Each VP1 monomer is divided into two domains, a shell domain (S domain) and a protruding domain (P domain), of which the P domain is further divided into P1 and P2 subdomains. P2 recognizes blood group antigens that function as receptors and host infectious agents during infection. Mutations in the P2 subdomain cause changes in binding to blood group antigens (Non-Patent Document 1).
 HuNoVは、ゲノム配列に基づいて3つの遺伝子群(GI、GIIおよびGIV)に分類され、少なくとも25種の遺伝子型が存在するとされている。高い多様性を示すノロウイルスであるが、ここ数年では、GII、特に遺伝子型4(GII.4)などの少数の系統のみが感染流行の原因となっている(非特許文献1)。
 HuNoV感染症は、米国では毎年約2,000万人が感染、約7万人が入院しており、日本には明確なデータはないが1~2万人程度の入院患者と700万人以上の感染者が毎年発生していると推測される。HuNoV感染症の大半は軽快するが、小児と老人では死亡例も見られる等、重症化するとともに、幼稚園、老人ホーム等の施設でアウトブレイク化するケースが多く、通院患者・入院患者数は相当規模に達し、社会保険システムに対する負担は大きい。
HuNoV is classified into three gene groups (GI, GII and GIV) based on the genome sequence, and it is said that there are at least 25 genotypes. Although it is a norovirus that shows high diversity, in recent years, only a small number of strains such as GII, particularly genotype 4 (GII.4) have been responsible for the spread of infection (Non-Patent Document 1).
About 20 million HuNoV infections are transmitted annually in the U.S., and about 70,000 are hospitalized. In Japan, there is no clear data, but about 1 to 20,000 inpatients and more than 7 million infections Are estimated to occur every year. Most of HuNoV infections have been relieved, but some children and the elderly have died.Severe cases have occurred, and outbreaks have often occurred in facilities such as kindergartens and nursing homes, and the number of outpatients and inpatients is considerable. And the burden on the social insurance system is large.
 これまでに、GII.4 ウイルス様粒子(virus like particle:VLP)を含むいくつかのHuNoVワクチン候補が開発され、前臨床試験および臨床試験に進んでいる。VLPは感染能力のある生きたウイルスとほぼ同じ外殻構造と抗原性を有するため、良好なワクチン抗原候補と考えられている(非特許文献2)。GII.4はHuNoVの流行における主たる遺伝子型であるが、最近、他の遺伝子型、特に、GII.2、GII.3、GII.6およびGII.17がより影響力を増している(非特許文献3~6)。従って、いくつかの遺伝子型のウイルス感染を阻害する交差反応性抗体などのウイルス治療薬の開発が求められている。
 しかしながら、現在のところ、複数の遺伝子型のウイルス感染を阻害するような抗体やそれを誘導しうる単独のワクチン抗原は存在しない。
To date, several HuNoV vaccine candidates, including the GII.4 virus like particle (VLP), have been developed and are undergoing preclinical and clinical trials. VLPs are considered to be good vaccine antigen candidates because they have almost the same outer shell structure and antigenicity as live infectious viruses (Non-Patent Document 2). GII.4 is the main genotype in the HuNoV outbreak, but recently other genotypes, especially GII.2, GII.3, GII.6 and GII.17, have become more influential (non-patented). References 3-6). Therefore, there is a need for the development of viral therapeutics such as cross-reactive antibodies that inhibit viral infection of several genotypes.
However, at present, there is no antibody that inhibits viral infection of multiple genotypes or a single vaccine antigen that can induce it.
 上記事情に鑑み、本発明は、HuNoVの複数の型の感染を抑制する抗体を作製するための抗原、その使用およびHuNoVの複数の型の感染を抑制する抗体の提供を解決課題とする。 In view of the above circumstances, an object of the present invention is to provide an antigen for producing an antibody that suppresses multiple types of HuNoV infection, use thereof, and an antibody that suppresses multiple types of HuNoV infection.
 本発明者らは、GII.4 VLP、GII.3 VLP、およびGII.17 VLPに対する抗体を作製し、iPS細胞(iPSC)から誘導した腸管上皮細胞の系を用いて、HuNoVのいくつかの遺伝子型についてその感染(HuNoVの腸管上皮細胞への侵入および/または腸管上皮細胞内での複製)を阻害するかどうかを検討した。
 その結果、GII.4のVP1タンパク質が自己凝集してできたVLPを抗原として作製した抗体は、GII.4の複製は抑制することができたが、それ以外の遺伝子型のHuNoVの複製は抑制しなかった。また、GII.3のVP1タンパク質が自己凝集してできたVLPを抗原として作製した抗体は、GII.3の複製は抑制することができたが、それ以外の遺伝子型のHuNoVの複製は抑制しなかった。
 これらに対し、GII.17のVP1タンパク質が自己凝集してできたVLPを抗原として作製した抗体は、GII.17の複製を抑制するだけではなく、GII.4の複製も効果的に抑制することが分かった。
 以上の知見に基づき、本発明は、複数の異なる遺伝子型(特に、GII.4 HuNoVおよびGII.17 HuNoV)のHuNoV感染を阻害する抗体を作製する目的に適した抗原および当該抗体を用いて作製される抗体等を提供するものである。
The present inventors have generated antibodies against GII.4 VLP, GII.3 VLP, and GII.17 VLP, and used a line of intestinal epithelial cells derived from iPS cells (iPSCs) to generate several genes for HuNoV. The type was tested to determine whether it inhibited its infection (HuNoV invasion into and / or replication within intestinal epithelial cells).
As a result, an antibody prepared using VLPs formed by self-aggregation of the VP1 protein of GII.4 as an antigen was able to suppress the replication of GII.4, but suppressed the replication of HuNoV of other genotypes. Did not. Antibodies prepared using VLPs formed by self-aggregation of the VP1 protein of GII.3 as antigens were able to suppress the replication of GII.3, but inhibited the replication of HuNoV of other genotypes. Did not.
In contrast, an antibody prepared using VLPs formed by self-aggregation of the VP1 protein of GII.17 as antigens not only suppresses GII.17 replication but also effectively suppresses GII.4 replication. I understood.
Based on the above findings, the present invention provides an antigen suitable for the purpose of producing an antibody that inhibits HuNoV infection of a plurality of different genotypes (particularly, GII.4 HuNoV and GII.17 HuNoV), and an antigen produced using the antibody. And the like.
 より具体的には、本発明は以下の(1)~(10)である。
(1)複数の異なる遺伝子型のヒトノロウイルス(HuNoV)の腸管上皮細胞への感染を阻害する抗体を作製する方法であって、GII.17 HuNoVのVP1タンパク質の全長またはその一部を抗原として免疫することを含む、抗体の作製方法。
(2)前記GII.17 HuNoVのVP1タンパク質の全長が配列番号3で表されるアミノ酸配列からなることを特徴とする上記(1)に記載の抗体の作製方法。
(3)前記複数の異なる遺伝子型が、GII.4およびGII.17であることを特徴とする、上記(1)または(2)に記載の抗体の作製方法。
(4)GII.17 HuNoVのVP1タンパク質に結合する抗体であって、複数の異なる遺伝子型のHuNoVの腸管上皮細胞への感染を阻害する抗体またはその機能的断片。
(5)前記GII.17 HuNoVのVP1タンパク質の全長が配列番号3で表されるアミノ酸配列からなることを特徴とする上記(4)に記載の抗体またはその機能的断片。
(6)前記複数の異なる遺伝子型が、GII.4およびGII.17であることを特徴とする、上記(4)または(5)に記載の抗体またはその機能的断片。
(7)上記(4)ないし(6)のいずれかに記載の抗体またはその機能的断片を含有する、医薬組成物。
(8)GII.17 HuNoVのVP1タンパク質の全長またはその一部を抗原として含み、複数の異なる遺伝子型のHuNoVの感染を抑制するためのワクチン。
(9)前記GII.17 HuNoVのVP1タンパク質の全長が配列番号3で表されるアミノ酸配列からなることを特徴とする上記(8)に記載のワクチン。
(10)前記複数の異なる遺伝子型が、GII.4およびGII.17であることを特徴とする、上記(8)または(9)に記載のワクチン。
More specifically, the present invention includes the following (1) to (10).
(1) A method for producing an antibody that inhibits infection of human norovirus (HuNoV) of a plurality of different genotypes into intestinal epithelial cells, comprising immunizing with the full length or a part of the VP1 protein of GII.17 HuNoV as an antigen. A method for producing an antibody, comprising:
(2) The method for producing an antibody according to (1) above, wherein the full length of the VP1 protein of GII.17 HuNoV comprises the amino acid sequence represented by SEQ ID NO: 3.
(3) The method for producing an antibody according to the above (1) or (2), wherein the plurality of different genotypes are GII.4 and GII.17.
(4) An antibody that binds to the VP1 protein of GII.17 HuNoV, and inhibits infection of multiple different genotypes of HuNoV into intestinal epithelial cells or a functional fragment thereof.
(5) The antibody or the functional fragment thereof according to (4), wherein the full length of the VP1 protein of GII.17 HuNoV comprises the amino acid sequence represented by SEQ ID NO: 3.
(6) The antibody or the functional fragment thereof according to the above (4) or (5), wherein the plurality of different genotypes are GII.4 and GII.17.
(7) A pharmaceutical composition comprising the antibody or the functional fragment thereof according to any of (4) to (6).
(8) A vaccine for suppressing infection of HuNoV of a plurality of different genotypes, which contains the full length or part of GII.17 HuNoV VP1 protein as an antigen.
(9) The vaccine according to the above (8), wherein the full length of the VP1 protein of GII.17 HuNoV comprises the amino acid sequence represented by SEQ ID NO: 3.
(10) The vaccine according to (8) or (9), wherein the plurality of different genotypes are GII.4 and GII.17.
 本発明は、複数の異なる遺伝子型(例えば、GII.4およびGII.17)のHuNoVの複製を抑制する抗体を作製するための抗原を提供するものである。 The present invention provides an antigen for producing an antibody that suppresses the replication of HuNoV of a plurality of different genotypes (for example, GII.4 and GII.17).
 本発明は、上記抗原に対する抗体も提供する。当該抗体は、複数の異なる遺伝子型(例えば、GII.4およびGII.17)のHuNoVの感染を抑制することが可能で、HuNoV感染症の効果的な治療を提供することができる。 The present invention also provides an antibody against the above antigen. The antibody can suppress HuNoV infection of a plurality of different genotypes (eg, GII.4 and GII.17), and can provide an effective treatment for HuNoV infection.
抗GII.4 VLPポリクローナル抗体のHuNoV複製に対する影響。Aは抗GII.4 VLPポリクローナル抗体で前処理した後に培養したGII.4 HuNoV(17-231株)のゲノムコピー数を、Bは抗GII.4 VLPポリクローナル抗体で前処理し後に培養したGII.3、GII.17およびGII.6 HuNoVのゲノムコピー数を測定した結果である。感染後3時間(白抜き)および72時間(黒)の時点で測定した。コントロールIgGとして、免疫していないウサギ由来のIgGを用いた。各値は、3回の独立した実験の代表値で、平均値±標準偏差(SD)で示す。Effect of anti-GII.4 VLP polyclonal antibody on HuNoV replication. A is the genomic copy number of GII.4 HuNoV (strain 17-231) cultured after pretreatment with anti-GII.4 VLP polyclonal antibody, B is GII. 3 shows the results of measuring the genome copy number of GII.17 and GII.6 HuNoV. Measurements were taken at 3 hours (open) and 72 hours (black) after infection. As a control IgG, an unimmunized rabbit-derived IgG was used. Each value is a representative value of three independent experiments and is shown as a mean value ± standard deviation (SD). 抗GII.3 VLPポリクローナル抗体のHuNoV複製に対する影響。Aは抗GII.3 VLPポリクローナル抗体で前処理した後に培養したGII.3 HuNoVのゲノムコピー数を、Bは抗GII.3 VLPポリクローナル抗体で前処理し後に培養したGII.4(17B93株)、GII.17およびGII.6 HuNoVのゲノムコピー数を測定した結果である。感染後3時間(白抜き)および72時間(黒)の時点で測定した。コントロールIgGとして、免疫していないウサギ由来のIgGを用いた。各値は、3回の独立した実験の代表値で、平均値±標準偏差(SD)で示す。Effect of anti-GII.3 VLP polyclonal antibody on HuNoV replication. A is the genomic copy number of GII.3 HuNoV cultured after pretreatment with an anti-GII.3 VLP polyclonal antibody, B is GII.4 (17B93 strain), which was pretreated and cultured with an anti-GII.3 VLP polyclonal antibody, It is the result of measuring the genome copy number of GII.17 and GII.6 HuNoV. Measurements were taken at 3 hours (open) and 72 hours (black) after infection. As a control IgG, an unimmunized rabbit-derived IgG was used. Each value is a representative value of three independent experiments and is shown as a mean value ± standard deviation (SD). 抗GII.17 VLPポリクローナル抗体のHuNoV複製に対する影響。Aは抗GII.17 VLPポリクローナル抗体で前処理した後に培養したGII.17 HuNoVのゲノムコピー数を、Bは抗GII.17 VLPポリクローナル抗体で前処理し後に培養したGII.4(17-231株および17B93株)、GII.3およびGII.6 HuNoVのゲノムコピー数を測定した結果である。感染後3時間(白抜き)および72時間(黒)の時点で測定した。コントロールIgGとして、免疫していないウサギ由来のIgGを用いた。各値は、3回の独立した実験の代表値で、平均値±SDで示す。Effect of anti-GII.17 VLP polyclonal antibody on HuNoV replication. A shows the genomic copy number of GII.17 HuNoV cultured after pretreatment with anti-GII.17 VLP polyclonal antibody, and B shows GII.4 (strain 17-231) cultured after pretreatment with anti-GII.17 VLP polyclonal antibody. And 17B93 strain), and the results of measuring the genome copy number of GII.3 and GII.6 HuNoV. Measurements were taken at 3 hours (open) and 72 hours (black) after infection. As a control IgG, an unimmunized rabbit-derived IgG was used. Each value is representative of three independent experiments and is shown as the mean ± SD.
 本発明の第1の実施形態は、複数の異なる遺伝子型のHuNoVの腸管上皮細胞への感染を阻害する抗体を作製する方法であって、GII.17 HuNoVのVP1タンパク質の全長またはその一部を抗原として免疫することを含む、抗体作製方法である。
 第1の実施形態にかかる抗体作製方法(以下「本発明の抗体作製方法」とも記載する)は、異なる遺伝子型のHuNoVに対して、交差反応性を示し、かつ、それらの感染を阻害(または抑制)する抗体の作製方法であり、抗原として、GII.17 HuNoVのVP1タンパク質の全長またはその一部を使用することを特徴とする。本発明の抗体作製方法で作製される抗体が、感染を阻害するHuNoVの遺伝子型は、好ましくは、GIIジェノグループに属する、GII.4およびGII.17である。
 本発明の全ての実施形態において、抗原であるGII.17 HuNoVのVP1タンパク質は、その全長であっても、抗原性のある一部の領域であってもよく、全長のアミノ酸配列は、例えば、配列番号3で示されるタンパク質である。抗原性のある領域は、GII.17 HuNoVのVP1タンパク質の一部分を作製し、それを免疫原として用いた抗体の中和能力(HuNoVの複製を抑制する能力)を確認することで、容易に選択することができる。
A first embodiment of the present invention relates to a method for producing an antibody that inhibits infection of a plurality of different genotypes of HuNoV into intestinal epithelial cells, the method comprising: This is a method for producing an antibody, including immunization as an antigen.
The antibody production method according to the first embodiment (hereinafter also referred to as “the antibody production method of the present invention”) shows cross-reactivity with HuNoV of different genotypes and inhibits their infection (or A method for producing an antibody that suppresses the VP1 protein, wherein the full length or a part of the VP1 protein of GII.17 HuNoV is used as an antigen. The genotype of HuNoV that the antibody produced by the antibody production method of the present invention inhibits infection is preferably GII.4 or GII.17 belonging to the GII genogroup.
In all embodiments of the present invention, the VP1 protein of the antigen GII.17 HuNoV may be its full length, or may be a partial region having antigenicity. It is a protein represented by SEQ ID NO: 3. The antigenic region can be easily selected by preparing a part of the VP1 protein of GII.17 HuNoV and using it as an immunogen to confirm the neutralizing ability of the antibody (the ability to suppress the replication of HuNoV) can do.
 また、本発明の全ての実施形態において、「GII.17 HuNoVのVP1タンパク質」とは、その全長が配列番号3で表されるアミノ酸配列を含むタンパク質の他、配列番号3で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質である。
 ここで、「実質的に同一のアミノ酸配列を含むタンパク質」とは、配列番号3で表わされるアミノ酸配列と約60%以上、好ましくは約70%以上、より好ましくは約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%のアミノ酸同一性を有するアミノ酸配列を含み、かつ、当該タンパク質に対する抗体が、複数の異なる遺伝子型のHuNoV(例えば、GII.4およびGII.17)の腸管上皮細胞への感染を阻害する能力を有する、タンパク質である。
In all the embodiments of the present invention, “GII.17 HuNoV VP1 protein” refers to a protein including the amino acid sequence represented by SEQ ID NO: 3 as well as the amino acid sequence represented by SEQ ID NO: 3 And a protein comprising an amino acid sequence substantially identical to
Here, the term "protein containing substantially the same amino acid sequence" refers to the amino acid sequence represented by SEQ ID NO: 3 by about 60% or more, preferably about 70% or more, more preferably about 80%, 81%, 82% or more. %, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, Most preferably, the antibody against the protein comprises an amino acid sequence having about 99% amino acid identity and is capable of infecting intestinal epithelial cells with HuNoVs (eg, GII.4 and GII.17) of multiple different genotypes. Is a protein that has the ability to inhibit
 あるいは、配列番号3で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質とは、配列番号3で表わされるアミノ酸配列中の1または数個(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは1~5個)のアミノ酸が欠失、置換、挿入若しくは付加されたアミノ酸配列からなり、かつ、当該タンパク質に対する抗体が、複数の異なる遺伝子型のHuNoVの腸管上皮細胞への感染を阻害する能力を有する、タンパク質である。 Alternatively, a protein containing an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3 refers to one or several (preferably about 1 to 30, more preferably Is composed of an amino acid sequence in which about 1 to 10, more preferably 1 to 5) amino acids have been deleted, substituted, inserted or added, and an antibody against the protein is intestinal tract of HuNoV of a plurality of different genotypes. A protein that has the ability to inhibit infection of epithelial cells.
 GII.17 HuNoVのVP1タンパク質は、このタンパク質をコードする核酸(例えば、配列番号4など)をcDNAライブラリーなどから取得し、適当な発現用ベクターに組込み、該発現ベクターによって適当な宿主細胞を形質転換または形質移入し、これを適当な培地中で培養し、VP1タンパク質を発現させ、精製することで調製することができる。 The VP1 protein of GII.17 HuNoV is obtained by obtaining a nucleic acid (for example, SEQ ID NO: 4 or the like) encoding this protein from a cDNA library or the like, incorporating the nucleic acid into an appropriate expression vector, and transforming an appropriate host cell with the expression vector. It can be prepared by transforming or transfecting, culturing this in an appropriate medium, expressing and purifying the VP1 protein.
 VP1タンパク質発現用の宿主細胞としては、例えば、細菌細胞(例えば、Escherichia coli B strainE. coli Kl2 strain, Corynebacterium ammoniagenesC. glutamicumSerratia liquefaciensStreptomyces lividansPseudomonas putidaなど); カビ( 例えば Penicillium camembertii, Acremonium chrysogenumなど)、動物細胞、植物細胞、バキュロウイルス/昆虫細胞または酵母細胞(例えばSaccharomyces cerevisiae およびPichia pastorisなど)を使用し、これらの細胞内で発現させることができる。 Examples of host cells for expressing the VP1 protein include bacterial cells (eg, Escherichia coli B strain , E. coli Kl2 strain, Corynebacterium ammoniagenes , C. glutamicum , Serratia liquefaciens , Streptomyces lividans , Pseudomonas putida, etc.); molds (eg, Penicillium ) camembertii , Acremonium chrysogenum, etc.), animal cells, plant cells, baculovirus / insect cells or yeast cells (eg, Saccharomyces cerevisiae and Pichia pastoris ) can be used and expressed in these cells.
 VP1タンパク質を発現させるための発現用ベクターは、各種宿主細胞に適したベクターを用いることができる。発現用ベクターとしては、例えば、pBR322、pBR325、pUC118、pETなど(大腸菌宿主)、pEGF-C、pEGF-Nなど(動物細胞宿主)、pVL1392、pVL1393など(昆虫細胞宿主、バキュロウイルスベクター)、pG-1、Yep13またはpPICZなど(酵母細胞宿主)を使用することができる。これらの発現ベクターは、各々のベクターに適した、複製開始点、選択マーカーおよびプロモーターを有しており、必要に応じて、エンハンサー、転写集結配列(ターミネーター)、リボソーム結合部位およびポリアデニル化シグナル等を有していてもよい。さらに、発現ベクターには、発現したポリペプチドの精製を容易にするため、FLAGタグ、Hisタグ、HAタグおよびGSTタグなどを融合させて発現させるための塩基配列が挿入されていてもよい。
 発現用ベクターの作製は、当業者に公知の手法により実施することができ、適宜、市販のキットなどを使用して行うこともできる。
As an expression vector for expressing the VP1 protein, a vector suitable for various host cells can be used. Examples of expression vectors include, for example, pBR322, pBR325, pUC118, pET etc. (Escherichia coli host), pEGF-C, pEGF-N etc. (animal cell host), pVL1392, pVL1393 etc. (insect cell host, baculovirus vector), pG -1, Yep13 or pPICZ (yeast cell host) can be used. These expression vectors have a replication origin, a selection marker, and a promoter suitable for each vector, and may include an enhancer, a transcription assembly sequence (terminator), a ribosome binding site, a polyadenylation signal, and the like, if necessary. You may have. Furthermore, in order to facilitate purification of the expressed polypeptide, a base sequence for expressing by fusion of a FLAG tag, a His tag, an HA tag, a GST tag and the like may be inserted into the expression vector.
Preparation of the expression vector can be carried out by a method known to those skilled in the art, and can also be carried out using a commercially available kit or the like as appropriate.
 発現させたVP1タンパク質を培養菌体または培養細胞から抽出する際には、培養後、公知の方法で菌体または培養細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体または細胞を破壊したのち、遠心分離や濾過により、可溶性抽出液を取得する。特に、培養細胞を宿主として用いる場合は、培養上清中に発現させたVP1タンパク質を、上清を回収する事により取得する方が望ましい。得られた抽出液または培養上清から、公知の分離・精製法を適切に組み合わせて目的のタンパク質を取得することができる。公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、SDS-PAGE等の主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの電荷の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法(例えば、GSTタグと共にポリペプチドを発現させた場合にはグルタチオンを担体に結合させた樹脂を、Hisタグと共にポリペプチドを発現させた場合にはNi-NTA樹脂やCoベースの樹脂を、HAタグと共にポリペプチドを発現させた場合には抗HA抗体樹脂を、FLAGタグと共にポリペプチドを発現させた場合には、抗FLAG抗体結合樹脂などを使用する方法)、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法または等電点電気泳動法などの等電点の差を利用する方法などが用いられる。 When extracting the expressed VP1 protein from cultured cells or cultured cells, after culturing, the cells or cultured cells are collected by a known method, suspended in an appropriate buffer, and subjected to ultrasonic wave, lysozyme and / or lysozyme. Alternatively, after the cells or cells are destroyed by freeze-thawing or the like, a soluble extract is obtained by centrifugation or filtration. In particular, when using cultured cells as a host, it is desirable to obtain the VP1 protein expressed in the culture supernatant by collecting the supernatant. From the obtained extract or culture supernatant, a desired protein can be obtained by appropriately combining known separation and purification methods. Known separation and purification methods include methods using solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, methods using mainly differences in molecular weight such as SDS-PAGE, and ionization. A method using a charge difference such as exchange chromatography, a method using a specific affinity such as affinity chromatography (for example, when a polypeptide is expressed together with a GST tag, a resin in which glutathione is bound to a carrier is used. When expressing the polypeptide with the His tag, Ni-NTA resin or Co-based resin, when expressing the polypeptide with the HA tag, expressing the anti-HA antibody resin, expressing the polypeptide with the FLAG tag. In this case, a method using an anti-FLAG antibody binding resin, etc.), a method utilizing the difference in hydrophobicity such as reversed-phase high performance liquid chromatography, or isoelectric focusing method A method utilizing the difference between the electric points is used.
 第1の実施形態で作製される抗体は、特に限定されず、例えば、モノクローナル抗体、ポリクローナル抗体またはナノ抗体などであってもよい。
 第1の実施形態で作製される抗体がポリクローナル抗体の場合、例えば、免疫動物(限定はしないが、例えば、ウサギ、ヤギ、ヒツジ、ニワトリ、モルモット、マウス、ラットまたはブタなど)に対して、抗原およびアジュバントの混合物をインジェクトすることにより調製することができる。通常は、抗原および/またはアジュバントを免疫動物の皮下または腹腔内へ複数回インジェクトする。アジュバントとして、限定はしないが、例えば、完全フロイントおよびモノホスホリル脂質A合成-トレハロースジコリノミコレート(MPL-TMD)が含まれる。抗原の免疫後、VP1に対する抗体を含む血清を免疫動物から調製し、常法により(例えば、rProteinA-Sepharoseなどを用いる方法など)目的の抗体を精製することができる。
The antibody produced in the first embodiment is not particularly limited, and may be, for example, a monoclonal antibody, a polyclonal antibody, a nanoantibody, or the like.
When the antibody produced in the first embodiment is a polyclonal antibody, for example, an antigen can be used for an immunized animal (for example, but not limited to, rabbit, goat, sheep, chicken, guinea pig, mouse, rat or pig). And an adjuvant mixture can be prepared. Usually, the antigen and / or adjuvant is injected multiple times into the immunized animal subcutaneously or intraperitoneally. Adjuvants include, but are not limited to, for example, complete Freund and monophosphoryl lipid A synthesis-trehalose dicorynomycolate (MPL-TMD). After immunization with the antigen, serum containing an antibody against VP1 is prepared from the immunized animal, and the desired antibody can be purified by a conventional method (for example, a method using rProtein A-Sepharose).
 第1の実施形態で作製される抗体がモノクローナル抗体の場合、以下のようにして作製することができる。
 なお、本明細書において、「モノクローナル」とは、実質的に均一な抗体の集団から得られた抗体の特性を示唆するものであって、抗体が特定の方法(例えば、ハイブリドーマ法など)により作製されることを意味するものではない。
 モノクローナル抗体の作製方法としては、例えば、ハイブリドーマ法(Kohler and Milstein, Nature 256 495 1975)、または、組換え法(米国特許第4,816,567号)などを挙げることができる。また、本発明にかかるモノクローナル抗体は、ファージ抗体ライブラリーから単離してもよい(Clackson et al., Nature 352 624-628 1991;Marks et al., J.Mol.Biol. 222 581-597 1991)。より具体的に説明すると、ハイブリドーマ法を用いて調製する場合、その調製方法には、例えば、以下に示す4つの工程が含まれる:(i)GII.17 HuNoVのVP1タンパク質またはその一部を免疫動物に免疫する、(ii)モノクローナル抗体分泌性(または潜在的に分泌性)のリンパ球を回収する、(iii)リンパ球を不死化細胞に融合させる、(iv)所望のモノクローナル抗体を分泌する細胞を選択する。免疫動物としては、例えば、マウス、ラット、モルモット、ハムスターなどが選択可能である。免疫後、宿主動物から得られたリンパ球はハイブリドーマ細胞を樹立するために、ポリエチレングリコールなどの融合剤を用いて不死化細胞株と融合する。融合細胞としては、例えば、ラットもしくはマウスのミエローマ細胞株が使用される。細胞融合を行った後、融合しなかったリンパ球および不死化細胞株の成長または生存を阻害する1または複数の基質を含む適切な培地中で細胞を生育させる。通常の技術では、酵素のヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ(HGPRTまたはHPRT)を欠く親細胞を使用する。この場合、ヒポキサンチン、アミノプテリンおよびチミジンがHGPRT欠損細胞の成長を阻害し、ハイブリドーマの成長を許容する培地(HAT培地)に添加される。このようにして得られたハイブリドーマから、所望の抗体を産生するハイブリドーマを選択し、選択したハイブリドーマが生育する培地から、常法に従い、目的のモノクローナル抗体を取得することができる。
 このようにして調製したハイブリドーマをインビトロ培養し、あるいは、マウス、ラット、モルモット、ハムスターなどの腹水中でインビボ培養し、目的の抗体を培養上清、あるいは、腹水から調製することができる。
When the antibody produced in the first embodiment is a monoclonal antibody, it can be produced as follows.
As used herein, the term “monoclonal” refers to a property of an antibody obtained from a substantially homogeneous population of antibodies, and the antibody is produced by a specific method (eg, a hybridoma method). It does not mean to be done.
Examples of a method for producing a monoclonal antibody include a hybridoma method (Kohler and Milstein, Nature 256 495 1975) or a recombinant method (US Pat. No. 4,816,567). Moreover, the monoclonal antibody according to the present invention may be isolated from a phage antibody library (Clackson et al., Nature 352 624-628 1991; Marks et al., J. Mol. Biol. 222 581-597 1991). . More specifically, when prepared using the hybridoma method, the preparation method includes, for example, the following four steps: (i) immunizing the VP1 protein of GII.17 HuNoV or a part thereof; Immunize animals, (ii) collect lymphocytes secreting (or potentially secreting) monoclonal antibodies, (iii) fuse lymphocytes with immortalized cells, (iv) secrete desired monoclonal antibodies Select cells. As the immunized animal, for example, mouse, rat, guinea pig, hamster and the like can be selected. After immunization, lymphocytes obtained from the host animal are fused with an immortalized cell line using a fusion agent such as polyethylene glycol to establish hybridoma cells. As the fused cells, for example, rat or mouse myeloma cell lines are used. After performing the cell fusion, the cells are grown in a suitable medium containing unfused lymphocytes and one or more substrates that inhibit the growth or survival of the immortalized cell line. The usual technique uses parental cells that lack the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT or HPRT). In this case, hypoxanthine, aminopterin and thymidine inhibit the growth of HGPRT-deficient cells and are added to a medium that allows hybridoma growth (HAT medium). From the hybridomas thus obtained, a hybridoma producing a desired antibody is selected, and the desired monoclonal antibody can be obtained from a medium in which the selected hybridoma grows according to a conventional method.
The hybridoma thus prepared can be cultured in vitro or in vivo in ascites of mice, rats, guinea pigs, hamsters, etc., and the target antibody can be prepared from the culture supernatant or ascites.
 ナノ抗体とは、抗体重鎖の可変領域(variable domain of the heavy chain of heavy chain antibody;VHH)からなるポリペプチドのことである。通常ヒトなどの抗体は重鎖と軽鎖から構成されているが、ラマ、アルパカおよびラクダなどのラクダ科の動物では、重鎖のみからなる1本鎖抗体(重鎖抗体)を産生する。重鎖抗体は、通常の重鎖および軽鎖からなる抗体と同様に、標的抗原を認識し、抗原に結合することができる。重鎖抗体の可変領域は、抗原への結合親和性を有する最小単位であり、この可変領域断片は「ナノ抗体」と呼ばれている。ナノ抗体は、高耐熱性、消化耐性、常温安定性があり、遺伝子工学的手法により容易に大量に調製することが可能である。
 ナノ抗体は、例えば、以下のようにして作製することができる。ラクダ科の動物に抗原を免疫し、採取した血清から目的の抗体の有無を検出し、所望の抗体価が検出された免疫動物の末梢血リンパ球由来のRNAからcDNAを作製する。得られたcDNAからVHHをコードするDNA断片を増幅して、これを、ファージミドに挿入して、VHHファージミドライブラリを調製する。作製したVHHファージミドライブラリから数回のスクリーニングを経て、所望のナノ抗体を作製することができる。
A nanoantibody is a polypeptide comprising a variable domain of the heavy chain of an antibody (VHH). Usually, antibodies such as humans are composed of heavy chains and light chains. Camelid animals such as llamas, alpacas and camels produce single-chain antibodies consisting only of heavy chains (heavy chain antibodies). A heavy chain antibody can recognize a target antigen and bind to the antigen, similarly to a normal heavy and light chain antibody. The variable region of a heavy chain antibody is the smallest unit that has binding affinity for an antigen, and this variable region fragment is called a "nanoantibody." Nanoantibodies have high heat resistance, digestion resistance, and room temperature stability, and can be easily prepared in large quantities by genetic engineering techniques.
Nanoantibodies can be prepared, for example, as follows. A camelid animal is immunized with an antigen, the presence or absence of the target antibody is detected from the collected serum, and cDNA is prepared from RNA derived from peripheral blood lymphocytes of the immunized animal in which the desired antibody titer has been detected. A VHH-encoding DNA fragment is amplified from the obtained cDNA and inserted into a phagemid to prepare a VHH phagemid library. A desired nanoantibody can be prepared from the prepared VHH phagemid library through several screenings.
 本発明の第2の実施形態は、GII.17 HuNoVのVP1タンパク質に結合する抗体であって、複数の異なる遺伝子型のHuNoVの腸管上皮細胞への感染を阻害する抗体(以下「本発明の抗体」とも記載する)またはその機能的断片である。
 前述のとおり、本発明の抗体は、特に限定されず、例えば、モノクローナル抗体、ポリクローナル抗体またはナノ抗体であってもよい。さらに、本発明の抗体は、遺伝子組換え抗体であってもよい。遺伝子組換え抗体としては、特に限定はされないが、例えば、キメラ抗体(例えば、ヒト型化抗体およびヒト抗体)等が挙げられる。ここで、キメラ抗体とは、異なる動物種由来の可変領域と定常領域を連結した抗体、例えば、マウス由来抗体の可変領域をヒト由来の定常領域に連結した抗体であり、キメラを作製する場合、そのように連結した抗体が得られるよう、当業者に周知の遺伝子組換え技術によって容易に構築できる。
 また、本発明の抗体が、感染を阻害するHuNoVの遺伝子型は、好ましくは、GII.4およびGII.17である。
A second embodiment of the present invention relates to an antibody that binds to the VP1 protein of GII.17 HuNoV, wherein the antibody inhibits infection of multiple different genotypes of HuNoV into intestinal epithelial cells (hereinafter referred to as “the antibody of the present invention Or a functional fragment thereof.
As described above, the antibody of the present invention is not particularly limited, and may be, for example, a monoclonal antibody, a polyclonal antibody, or a nanoantibody. Further, the antibody of the present invention may be a recombinant antibody. The recombinant antibody is not particularly limited, and includes, for example, chimeric antibodies (for example, humanized antibodies and human antibodies). Here, a chimeric antibody is an antibody in which a variable region and a constant region derived from different animal species are linked, for example, an antibody in which the variable region of a mouse-derived antibody is linked to a human-derived constant region. Such linked antibodies can easily be constructed by genetic recombination techniques well known to those skilled in the art.
In addition, the genotype of HuNoV that the antibody of the present invention inhibits infection is preferably GII.4 and GII.17.
 本発明の抗体の機能的断片とは、本発明の抗体の一部分の領域であって、HuNoVのVPLに結合し、その腸管上皮細胞への感染または増殖を阻害する抗体断片を意味し、例えば、Fab、Fab’、F(ab’)2、Fv(variable fragment of antibody)、一本鎖抗体(重鎖、軽鎖、重鎖可変領域、軽鎖可変領域およびナノ抗体等)、scFv(single chain Fv)、diabody(scFv二量体)、dsFv(disulfide-stabilized Fv)、ならびに、本発明の抗体のCDRを少なくとも一部に含むペプチド等が挙げられる。 A functional fragment of the antibody of the present invention is a partial region of the antibody of the present invention, which means an antibody fragment that binds to HuNoV VPL and inhibits its infection or proliferation in intestinal epithelial cells, for example, Fab, Fab ', F (ab') 2, Fv (variable fragment of antibody), single chain antibody (heavy chain, light chain, heavy chain variable region, light chain variable region, nano antibody, etc.), scFv (single chain) Fv), diabody (scFv dimer), dsFv (disulfide-stabilized ΔFv), and peptides containing at least a part of the CDR of the antibody of the present invention.
 Fabは、抗体分子をタンパク質分解酵素パパインで処理して得られる断片のうち、重鎖のN末端側約半分と軽鎖全体とがジスルフィド結合で結合した、抗原結合活性を有する抗体断片である。Fabの作製は、抗体分子をパパインで処理して断片を取得する他、例えば、FabをコードするDNAを挿入した適当な発現ベクターを構築し、これを適当な宿主細胞(例えば、CHO細胞などの哺乳類細胞、酵母細胞、昆虫細胞など)に導入後、細胞内でFabを発現させることで実施することができる。 Fab is an antibody fragment having antigen-binding activity in which about half of the N-terminal side of the heavy chain and the entire light chain are bound by disulfide bonds, among fragments obtained by treating an antibody molecule with the protease, papain. Fab is prepared by treating the antibody molecule with papain to obtain a fragment, for example, constructing an appropriate expression vector into which DNA encoding Fab is inserted, and inserting it into an appropriate host cell (for example, CHO cell or the like). After introduction into mammalian cells, yeast cells, insect cells, and the like), and then expressing Fab in the cells.
 F(ab’)2は、抗体分子をタンパク質分解酵素ペプシンで処理して得られる断片のうち、Fabがヒンジ領域のジスルフィド結合を介して結合されたものよりやや大きい、抗原結合活性を有する抗体断片である。F(ab’)2は、抗体分子ペプシンで処理して断片を取得する他、Fabをチオエーテル結合あるいはジスルフィド結合させて作製することも可能で、さらに、Fabと同様に遺伝子工学的手法によっても作製することができる。 F (ab ') 2 is an antibody fragment having an antigen-binding activity, which is a little larger than a fragment obtained by treating an antibody molecule with the protease pepsin, wherein the Fab is bound via a disulfide bond in the hinge region. It is. F (ab ') 2 can be prepared by treating the antibody molecule with pepsin to obtain a fragment, or by linking the Fab to a thioether bond or a disulfide bond. can do.
 Fab’は、上記F(ab’)2のヒンジ領域のジスルフィド結合を切断した、抗原結合活性を有する抗体断片である。Fab’も、Fab等と同様に遺伝子工学的な手法により作製することができる。 'Fab' is an antibody fragment having antigen-binding activity, which is obtained by cleaving a disulfide bond in the hinge region of F (ab ') 2. Fab 'can also be produced by a genetic engineering technique in the same manner as Fab and the like.
 scFvは、1本の重鎖可変領域(VH)と1本の軽鎖可変領域(VL)とを適当なペプチドリンカーを用いて連結した、VH-リンカー-VLないしはVL-リンカー-VHポリペプチドであって、抗原結合活性を有する抗体断片である。scFvは、抗体の重鎖可変領域および軽鎖可変領域をコードするcDNAを取得し、遺伝子工学的手法により作製することができる。 scFv is a VH-linker-VL or VL-linker-VH polypeptide in which one heavy chain variable region (VH) and one light chain variable region (VL) are linked using an appropriate peptide linker. And an antibody fragment having an antigen-binding activity. The scFv can be prepared by obtaining cDNAs encoding the heavy chain variable region and the light chain variable region of the antibody, and using a genetic engineering technique.
 diabodyは、scFvが二量体化した抗体断片で、2価の抗原結合活性を有する抗体断片である。2価の抗原結合活性は、同一抗原結合活性であっても、または、一方が異なる抗原結合活性であってもよい。diabodyは、抗体の重鎖可変領域および軽鎖可変領域をコードするcDNAを取得し、重鎖可変領域と軽鎖可変領域をペプチドリンカーで結合したscFvを発現するcDNAを構築して、遺伝子工学的手法により作製することができる。 Diabody is an antibody fragment obtained by dimerizing scFv and has a bivalent antigen-binding activity. The divalent antigen-binding activities may be the same antigen-binding activity or one may be a different antigen-binding activity. The diabody obtains cDNAs encoding the heavy chain variable region and light chain variable region of the antibody, constructs a cDNA expressing the scFv in which the heavy chain variable region and the light chain variable region are linked by a peptide linker, and performs genetic engineering. It can be produced by a technique.
 dsFvは、重鎖可変領域及び軽鎖可変領域中のそれぞれ1アミノ酸残基をシステイン残基に置換したポリペプチドを、該システイン残基間のジスルフィド結合を介して結合させたものをいう。システイン残基に置換するアミノ酸残基は、抗体の立体構造予測に基づいて選択することができる。dsFvは、抗体の重鎖可変領域および軽鎖可変領域をコードするcDNAを取得し、dsFvをコードするDNAを構築して遺伝子工学的手法により作製することができる。 DsFv refers to a polypeptide in which one amino acid residue in each of the heavy chain variable region and the light chain variable region has been substituted with a cysteine residue, which is linked via a disulfide bond between the cysteine residues. The amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody. dsFv can be prepared by obtaining cDNAs encoding the heavy chain variable region and the light chain variable region of an antibody, constructing a DNA encoding the dsFv, and performing genetic engineering techniques.
 CDRを含むペプチドは、重鎖または軽鎖のCDR(CDR1~3)の少なくとも1領域以上を含むように構成される。複数のCDRを含むペプチドは、直接または適当なペプチドリンカーを介して結合させることができる。CDRを含むペプチドは、抗体の重鎖または軽鎖のCDRをコードするDNAを構築し、発現ベクターに挿入する。ベクターの種類としては特に限定はなく、その後に導入される宿主細胞の種類等によって適宜選択すればよい。これらを抗体として発現させるために適当な宿主細胞(例えば、CHO細胞などの哺乳類細胞、酵母細胞、昆虫細胞など)に導入し製造することができる。また、CDRを含むペプチドは、Fmoc法(フルオレニルメチルオキシカルボニル法)およびtBoc法(t-ブチルオキシカルボニル法)等の化学合成法によって製造することもできる。 The peptide containing the CDR is configured to include at least one region or more of the heavy chain or light chain CDRs (CDR1 to 3). Peptides containing multiple CDRs can be linked directly or via a suitable peptide linker. For the peptide containing the CDR, a DNA encoding the heavy chain or light chain CDR of the antibody is constructed and inserted into an expression vector. The type of the vector is not particularly limited, and may be appropriately selected depending on the type of the host cell to be subsequently introduced. These can be produced by introducing them into an appropriate host cell (eg, a mammalian cell such as a CHO cell, a yeast cell, an insect cell, etc.) in order to express them as an antibody. Further, the peptide containing CDR can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
 本発明の第3の実施形態は、本発明の抗体またはその機能的断片を含む医薬(以下「本発明の医薬」とも記載する)である。本発明の医薬は、HuNoVによる感染症の予防薬および/または治療薬としての薬効を有する。本発明の医薬は、有効成分である本発明の抗体またはその機能的断片自体を投与する形態でもよいが、一般的には、有効成分である本発明の抗体またはその機能的断片の他、1または2以上の製剤用添加物を含む医薬組成物(以下「本発明の医薬組成物」とも記載する)の形態で投与することが望ましい。また、本発明の実施形態にかかる医薬組成物中には、公知の他の薬剤を併せて配合してもよい。 第 The third embodiment of the present invention is a medicine containing the antibody of the present invention or a functional fragment thereof (hereinafter, also referred to as “the medicine of the present invention”). The medicament of the present invention has a pharmacological effect as a prophylactic and / or therapeutic agent for infections caused by HuNoV. The medicament of the present invention may be in a form in which the antibody of the present invention as an active ingredient or the functional fragment thereof itself is administered, but generally, in addition to the antibody of the present invention as an active ingredient or the functional fragment thereof, Alternatively, it is desirable to administer in the form of a pharmaceutical composition containing two or more pharmaceutical additives (hereinafter also referred to as “the pharmaceutical composition of the present invention”). Further, the pharmaceutical composition according to the embodiment of the present invention may further contain other known drugs.
 本発明の実施形態にかかる医薬または医薬組成物は、特に限定されず、剤型としては、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、懸濁剤、座剤、軟膏、クリーム剤、ゲル剤、貼付剤、吸入剤または注射剤等が挙げられる。これらの製剤は常法に従って調製される。なお、液体製剤にあっては、用時、水または他の適当な溶媒に溶解または懸濁するものであってもよい。また、錠剤、顆粒剤は周知の方法でコーティングしてもよい。注射剤の場合には、本発明の抗体またはその機能的断片を水に溶解させて調製されるが、必要に応じて生理食塩水あるいはブドウ糖溶液に溶解させてもよく、また、緩衝剤や保存剤を添加してもよい。 The medicament or the pharmaceutical composition according to the embodiment of the present invention is not particularly limited, and may be in the form of a tablet, capsule, granule, powder, syrup, suspension, suppository, ointment, cream, gel. Preparations, patches, inhalants or injections. These preparations are prepared according to a conventional method. In the case of liquid preparations, they may be dissolved or suspended in water or another suitable solvent at the time of use. Tablets and granules may be coated by a known method. In the case of an injection, the antibody of the present invention or a functional fragment thereof is prepared by dissolving the same in water, but may be dissolved in a physiological saline solution or a glucose solution if necessary, An agent may be added.
 経口投与用または非経口投与用の製剤は、任意の製剤形態で提供される。製剤形態としては、例えば、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、シロップ剤、乳剤、懸濁剤もしくは液剤等の形態の経口投与用剤、静脈内投与用、筋肉内投与用もしくは皮下投与用などの注射剤、点滴剤、経皮吸収剤、経粘膜吸収剤、点鼻剤、吸入剤または坐剤などの形態として調製することができる。注射剤や点滴剤などは、凍結乾燥形態などの粉末状の剤形として調製し、用時に生理食塩水などの適宜の水性媒体に溶解して用いることもできる。 製 剤 Formulations for oral or parenteral administration are provided in any formulation form. Formulation forms include, for example, oral administration agents in the form of granules, fine granules, powders, hard capsules, soft capsules, syrups, emulsions, suspensions or solutions, intravenous administration, intramuscular It can be prepared in the form of injections, drops, transdermal absorbents, transmucosal absorbents, nasal drops, inhalants or suppositories for administration or subcutaneous administration. Injections, drops, and the like can be prepared as a powdery dosage form such as a lyophilized form, and dissolved in an appropriate aqueous medium such as physiological saline before use.
 本発明の実施形態にかかる医薬または医薬組成物の製造に用いられる製剤用添加物の種類、有効成分に対する製剤用添加物の割合、あるいは、医薬または医薬組成物の製造方法は、その形態に応じて当業者が適宜選択することが可能である。製剤用添加物としては無機または有機物質、あるいは、固体または液体の物質を用いることができ、一般的には、有効成分重量に対して、例えば、0.1重量%~99.9重量%、1重量%~95.0重量%、または1重量%~90.0重量%の間で配合することができる。具体的には、製剤用添加物の例として乳糖、ブドウ糖、マンニット、デキストリン、シクロデキストリン、デンプン、蔗糖、メタケイ酸アルミン酸マグネシウム、合成ケイ酸アルミニウム、カルボキシメチルセルロースナトリウム、ヒドロキシプロピルデンプン、カルボキシメチルセルロースカルシウム、イオン交換樹脂、メチルセルロース、ゼラチン、アラビアゴム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、軽質無水ケイ酸、ステアリン酸マグネシウム、タルク、トラガント、ベントナイト、ビーガム、酸化チタン、ソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、グリセリン、脂肪酸グリセリンエステル、精製ラノリン、グリセロゼラチン、ポリソルベート、マクロゴール、植物油、ロウ、流動パラフィン、白色ワセリン、フルオロカーボン、非イオン性界面活性剤、プロピレングルコールまたは水等が挙げられる。 The type of the pharmaceutical additive used in the production of the medicament or the pharmaceutical composition according to the embodiment of the present invention, the ratio of the pharmaceutical additive to the active ingredient, or the method of producing the medicament or the pharmaceutical composition depends on the form. Thus, a person skilled in the art can select as appropriate. Inorganic or organic substances, or solid or liquid substances can be used as pharmaceutical additives. Generally, for example, 0.1% to 99.9% by weight, 1% to 1% by weight based on the weight of the active ingredient. 95.0% by weight, or between 1% and 90.0% by weight. Specifically, lactose, glucose, mannitol, dextrin, cyclodextrin, starch, sucrose, magnesium aluminate metasilicate, synthetic aluminum silicate, sodium carboxymethylcellulose, hydroxypropyl starch, carboxymethylcellulose calcium as examples of pharmaceutical additives , Ion exchange resins, methylcellulose, gelatin, gum arabic, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, light anhydrous silicic acid, magnesium stearate, talc, tragacanth, bentonite, veegum, titanium oxide, sorbitan fatty acid ester, Sodium lauryl sulfate, glycerin, fatty acid glycerin ester, purified lanolin, glycerogelatin, polysodium Bate, macrogol, vegetable oils, waxes, liquid paraffin, white petrolatum, fluorocarbons, nonionic surfactants, propylene glycol or water and the like.
 経口投与用の固形製剤を製造するには、有効成分と賦形剤成分、例えば、乳糖、澱粉、結晶セルロース、乳酸カルシウムまたは無水ケイ酸などと混合して散剤とするか、さらに必要に応じて白糖、ヒドロキシプロピルセルロースまたはポリビニルピロリドンなどの結合剤、カルボキシメチルセルロースまたはカルボキシメチルセルロースカルシウムなどの崩壊剤などを加えて湿式または乾式造粒して顆粒剤とする。錠剤を製造するには、これらの散剤及び顆粒剤をそのまま、あるいは、ステアリン酸マグネシウムまたはタルクなどの滑沢剤を加えて打錠すればよい。これらの顆粒または錠剤は、ヒドロキシプロピルメチルセルロースフタレート、メタクリル酸-メタクリル酸メチルポリマーなどの腸溶剤基剤で被覆して腸溶剤製剤、あるいはエチルセルロース、カルナウバロウまたは硬化油などで被覆して持続性製剤とすることもできる。また、カプセル剤を製造するには、散剤または顆粒剤を硬カプセルに充填するか、有効成分をそのまま、あるいは、グリセリン、ポリエチレングリコール、ゴマ油またはオリーブ油などに溶解した後にゼラチンで被覆し軟カプセルとすることができる。 To produce a solid preparation for oral administration, the active ingredient and excipient components, for example, lactose, starch, microcrystalline cellulose, calcium lactate or silicic acid anhydride and the like, or a powder, or A binder such as sucrose, hydroxypropylcellulose or polyvinylpyrrolidone, a disintegrant such as carboxymethylcellulose or calcium carboxymethylcellulose are added, and the mixture is granulated by wet or dry granulation to give granules. In order to produce tablets, these powders and granules may be compressed as they are or by adding a lubricant such as magnesium stearate or talc. These granules or tablets are coated with an enteric base such as hydroxypropylmethylcellulose phthalate or methacrylic acid-methyl methacrylate polymer to form an enteric coated preparation, or coated with ethyl cellulose, carnauba wax or hardened oil to obtain a sustained release preparation. You can also. To produce capsules, powders or granules are filled in hard capsules, or the active ingredient is used as it is, or is dissolved in glycerin, polyethylene glycol, sesame oil or olive oil, and then coated with gelatin to form soft capsules. be able to.
 注射剤を製造するには、有効成分を必要に応じて、塩酸、水酸化ナトリウム、乳糖、乳酸、ナトリウム、リン酸一水素ナトリウムまたはリン酸二水素ナトリウムなどのpH調整剤、塩化ナトリウムまたはブドウ糖などの等張化剤と共に注射用蒸留水に溶解し、無菌濾過してアンプルに充填するか、さらに、マンニトール、デキストリン、シクロデキストリンまたはゼラチンなどを加えて真空凍結乾燥し、用事溶解型の注射剤としてもよい。また、有効成分にレチシン、ポリソルベート80またはポリオキシエチレン硬化ヒマシ油などを加えて水中で乳化させ、注射剤用乳剤とすることもできる。 In order to manufacture an injection, the active ingredient may be used as necessary, such as hydrochloric acid, sodium hydroxide, lactose, lactic acid, sodium, a pH adjuster such as sodium monohydrogen phosphate or sodium dihydrogen phosphate, sodium chloride or glucose, etc. Dissolve in distilled water for injection together with an isotonic agent, and aseptically filter and fill into ampoules, or add mannitol, dextrin, cyclodextrin or gelatin, and freeze-dry in vacuo to obtain a working-soluble injection. Is also good. In addition, reticin, polysorbate 80, polyoxyethylene hydrogenated castor oil or the like may be added to the active ingredient and emulsified in water to prepare an injection emulsion.
 直腸投与剤を製造するには、有効成分をカカオ脂、脂肪酸のトリ、ジおよびモノグリセリドまたはポリエチレングリコールなどの座剤用基材と共に加湿して溶解し、型に流し込んで冷却するか、有効成分をポリエチレングリコールまたは大豆油などに溶解した後、ゼラチン膜で被覆すればよい。 In order to manufacture a rectal preparation, the active ingredient is dissolved by humidification together with a suppository base such as cocoa butter, fatty acid tri-, di- and monoglycerides or polyethylene glycol, and then poured into a mold and cooled, or the active ingredient is cooled. After dissolving in polyethylene glycol or soybean oil or the like, it may be coated with a gelatin film.
 本発明の実施形態にかかる医薬または医薬組成物の投与量および投与回数は特に限定されず、治療対象疾患の悪化・進展の防止および/または治療の目的、疾患の種類、患者の体重や年齢などの条件に応じて、医師または薬剤師の判断により適宜選択することが可能である。
 一般的には、経口投与における成人1日あたりの投与量は0.01~1,000 mg(有効成分重量)程度であり、1日1回または数回に分けて、あるいは数日ごとに投与することができる。注射剤として用いる場合には、成人に対して1日量0.001~100mg(有効成分重量)を連続投与または間欠投与することが望ましい。
The dose and the number of times of administration of the medicament or the pharmaceutical composition according to the embodiment of the present invention are not particularly limited, and the purpose of preventing and / or treating the deterioration and progression of the target disease, the type of the disease, the weight and age of the patient, and the like Can be appropriately selected by the judgment of the doctor or pharmacist according to the conditions of
In general, the daily dose for oral administration in adults is about 0.01 to 1,000 mg (weight of active ingredient), and it can be administered once or several times a day or every few days . When used as an injection, it is desirable to continuously or intermittently administer a daily dose of 0.001 to 100 mg (weight of the active ingredient) to an adult.
 本発明の実施形態にかかる医薬または医薬組成物は、植込錠およびマイクロカプセルに封入された送達システムなどの徐放性製剤として、体内から即時に除去されることを防ぎ得る担体を用いて調製することができる。そのような担体として、エチレンビニル酢酸塩、ポリ酸無水物、ポリグリコール酸、コラーゲン、ポリオルトエステルおよびポリ乳酸などの、生物分解性および生物適合性ポリマーを用いることができる。このような材料は、当業者によって容易に調製することができる。また、リポソームの懸濁液も薬学上許容される担体として使用することができる。リポソームは、限定はしないが、ホスファチジルコリン、コレステロールおよびPEG誘導ホスファチジルエタノール(PEG-PE)を含む脂質組成物として、使用に適するサイズになるように、適当なポアサイズのフィルターを通して調製され、逆相蒸発法によって精製することができる。 The medicament or the pharmaceutical composition according to the embodiment of the present invention is prepared as a sustained-release preparation such as an implant and a delivery system encapsulated in microcapsules using a carrier capable of preventing immediate removal from the body. can do. As such carriers, biodegradable and biocompatible polymers such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acids can be used. Such materials can be easily prepared by those skilled in the art. Also, a suspension of liposomes can be used as a pharmaceutically acceptable carrier. Liposomes are prepared through a filter of appropriate pore size to a size suitable for use as a lipid composition comprising, but not limited to, phosphatidylcholine, cholesterol and PEG-derived phosphatidylethanol (PEG-PE). Can be purified by
 本発明の実施形態にかかる医薬または医薬組成物は、投与方法等の説明書と共にキットの形態で提供してもよい。キット中に含まれる医薬または医薬組成物は、有効成分の活性を長期間有効に持続し、剤等が容器内側に吸着することなく、また、構成成分を変質させることのない材質で製造された容器により供給される。例えば、封着されたガラスアンプルは、窒素ガスのような中性で不反応性を示すガスの存在下で封入されたバッファーなどを含んでもよい。
 また、キットには使用説明書が添付されてもよい。本キットの使用説明は、紙などに印刷されたものであっても、CD-ROMまたはDVD-ROMなどの電磁的に読み取り可能な媒体に保存され、供給されてもよい。
The medicament or the pharmaceutical composition according to the embodiment of the present invention may be provided in the form of a kit together with instructions such as an administration method. The medicament or the pharmaceutical composition contained in the kit is manufactured from a material that maintains the activity of the active ingredient effectively for a long period of time, does not cause the agent or the like to adsorb to the inside of the container, and does not alter the components. Supplied by container. For example, a sealed glass ampoule may include a buffer or the like encapsulated in the presence of a neutral, non-reactive gas such as nitrogen gas.
The kit may be accompanied by instructions for use. Instructions for use of the kit may be printed on paper or the like, or may be stored and supplied on an electromagnetically readable medium such as a CD-ROM or DVD-ROM.
 本発明の第4の実施形態は、GII.17 HuNoVのVP1タンパク質の全長またはその一部を抗原として含み、複数の異なる遺伝子型のHuNoVの感染を抑制するためのワクチン(以下「本発明のワクチン」とも記載する)である。
 本発明のワクチンは、1または複数種類のアジュバント、例えば、完全フロイントもしくは不完全フロイントアジュバント、コレラトキシン、易熱性大腸菌毒素、水酸化アルミニウム、カリウムミョウバン、サポニンもしくはその誘導体、ムラミルジペプチド、鉱物油または植物油、ノバソームまたは非イオン性ブロック共重合体、DEAEデキストラン等を含むことができる。また、医薬上許容される担体を含んでいてもよい。医薬上許容される担体は、ワクチン接種される動物の健康に悪影響を及ぼさない化合物であることが必要である。医薬上許容される担体は、例えば、無菌水またはバッファーである。
 本発明のワクチンは、通常の能動免疫法で投与することができ、注射により投与しても、経口、または経鼻などの経粘膜方法で投与してもよい。また、本発明のワクチン製剤は、HuNoV感染の予防または治療に対して、有効な量(HuNoVによる攻撃に対し、動物において免疫を誘導するに足りる量)で、剤形に適合した方法による単回または複数回投与することができる。ワクチンは、皮内、皮下、筋肉内、腹腔内、静脈内、経口的に、または、粘膜(鼻腔内または舌下など)に投与することができる。また、本発明のワクチン製剤は、他の抗原成分と混合して用いることもできる。
 ワクチン製剤の投与量、投与回数は投与対象により変わり得るが、抗原を数10μg 含むワクチンを1週間から数週間に一度の頻度で、数回投与することによりに防御免疫を誘導し得る。
A fourth embodiment of the present invention provides a vaccine for suppressing infection of a plurality of different genotypes of HuNoV, which contains the full length or a part of the VP1 protein of GII.17 HuNoV as an antigen (hereinafter referred to as “the vaccine of the present invention”). ").
The vaccine of the present invention may comprise one or more adjuvants, such as complete Freund's or incomplete Freund's adjuvant, cholera toxin, heat-labile Escherichia coli toxin, aluminum hydroxide, potassium alum, saponin or a derivative thereof, muramyl dipeptide, mineral oil or Vegetable oils, novasomes or non-ionic block copolymers, DEAE dextran and the like can be included. It may also contain a pharmaceutically acceptable carrier. A pharmaceutically acceptable carrier must be a compound that does not adversely affect the health of the animal being vaccinated. A pharmaceutically acceptable carrier is, for example, sterile water or a buffer.
The vaccine of the present invention can be administered by a conventional active immunization method, and may be administered by injection, orally, or by a transmucosal method such as nasal. In addition, the vaccine preparation of the present invention can be administered in a single dose by a method suitable for the dosage form in an amount effective for preventing or treating HuNoV infection (an amount sufficient to induce immunity in animals against HuNoV challenge). Or it can be administered multiple times. The vaccine can be administered intradermally, subcutaneously, intramuscularly, intraperitoneally, intravenously, orally, or mucosally, such as intranasally or sublingually. In addition, the vaccine preparation of the present invention can be used by mixing with other antigen components.
The dose and frequency of administration of the vaccine preparation may vary depending on the administration subject, but protective immunity can be induced by administering the vaccine containing several tens of μg of the antigen once every several weeks, once every several weeks.
 本発明の第5の実施形態は、本発明の医薬もしくは医薬組成物または本発明のワクチンを患者に投与することを含む、複数の異なる遺伝子型のHuNoV(例えば、GII.4およびGII.17)による感染症の予防および/または治療方法である。
 ここで「治療」とは、すでにHuNoVに感染した患者において、その病態の進行および悪化を阻止または緩和することを意味し、これによってHuNoV感染症の進行および悪化を阻止または緩和することを目的とする処置のことである。
 また、「予防」とは、HuNoVに感染するおそれがある患者について、その感染を予め阻止することを意味し、これによってHuNoV感染症の発症を予め阻止することを目的とする処置のことである。
A fifth embodiment of the present invention comprises administering to a patient a medicament or pharmaceutical composition of the present invention or a vaccine of the present invention, wherein a plurality of different genotypes of HuNoV (eg, GII.4 and GII.17). For preventing and / or treating infectious diseases.
Here, `` treatment '' refers to preventing or alleviating the progress and worsening of the disease state in a patient already infected with HuNoV, and thereby preventing or alleviating the progress and worsening of HuNoV infection. Is the action to be taken.
In addition, `` prevention '' means, for a patient who may be infected with HuNoV, preventing the infection in advance, and thereby a treatment aimed at preventing the onset of HuNoV infection in advance. .
 本明細書において引用されたすべての文献の開示内容は、参照により、その全体が本明細書の一部として取り込まれる。また、本明細書が英文に翻訳された場合であって、単数形の「a」、「an」、および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものを含むものとする。
 以下に実施例を示してさらに本発明の説明を行うが、実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
The disclosures of all documents cited herein are hereby incorporated by reference in their entirety. Also, when the specification is translated into English and the singular forms “a”, “an”, and “the” are included, the context does not clearly indicate otherwise. As long as it is not limited to one, it includes a plurality.
Hereinafter, the present invention will be further described with reference to examples. However, the examples are merely examples of the embodiments of the present invention, and do not limit the scope of the present invention.
材料と方法
1.VLPおよびVLPに対するポリクローナル抗体の調製
 地方独立行政法人大阪健康安全基盤研究所から分与されたHuNoVを含む糞便からウイルスを粗精製し、そこからウイルスゲノムを調製した。調製したゲノム上のGII.4、GII.3およびGII.17のVP1 ORFの外側にプライマーを設定して各ORF領域をPCRで増幅し、その増幅産物のヌクレオチド配列を決定した。各VP1のORFは、pFastBac Dual Expression Vector(Invitrogen)にクローニングした。GII.4 VP1のアミノ酸配列およびこれをコードする核酸配列を各々配列番号1および配列番号2に、GII.17 VP1のアミノ酸配列およびこれをコードする核酸配列を各々配列番号3および配列番号4に、GII.3 VP1のアミノ酸配列およびこれをコードする核酸配列を各々配列番号5および配列番号6に示す。
 各コンストラクトは、その配列が正しいことを確認した後、Bac-to-Bac expression system(Invitrogen)の組換バキュロウイルスの作製に使用した。High Five細胞(Invitrogen)に対して各組換バキュロウイルスをMOI(multiplicity of infection)、7 pfu(plaque-forming units)/細胞で感染させた。感染から6日後、培養上清を回収し、20,000gで1時間遠心した。得られた上清を100,000gで2時間超遠心し、沈殿したVLPをPBSに懸濁した。濃縮したVLPは、10%-60%スクロース密度勾配に重層し、100,000gで1時間超遠心を行い、精製した。スクロース密度勾配を通したVLPを2 LのPBSに対して3回透析し、サンプル中のスクロースを除去した。VLPはAmiconUltra 30-kDa centrifugal filter (Millipore)で濃縮した。
 抗HuNoVポリクローナル抗体を調製するために、100-200 μgのVLP(GII.4、GII.3またはGII.17)を完全フロイントアジュバントと混合して2匹のウサギに免疫した。3週間後、各ウサギに対して不完全フロイントアジュバントと混合した100-200 μgのVLPでブースター注射を行った。さらに2週間後、血清を調製するためのウサギから採血した。血清のIgG画分をrProtein A-Sepharrose Fast flow(GE Healthcare)で精製し、その後2 LのPBSに対して3回透析した。
Materials and methods Preparation of VLP and polyclonal antibody against VLP The virus was roughly purified from stool containing HuNoV donated by Osaka National Institute of Health and Safety, and a virus genome was prepared therefrom. Primers were set outside the VP1 ORFs of GII.4, GII.3 and GII.17 on the prepared genome, each ORF region was amplified by PCR, and the nucleotide sequence of the amplified product was determined. The ORF of each VP1 was cloned into pFastBac Dual Expression Vector (Invitrogen). The amino acid sequence of GII.4 VP1 and the nucleic acid sequence encoding the same are shown in SEQ ID NOS: 1 and 2, respectively, and the amino acid sequence of GII.17 VP1 and the nucleic acid sequence encoding the same are shown in SEQ ID NOs: 3 and 4, respectively. The amino acid sequence of GII.3 VP1 and the nucleic acid sequence encoding it are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively.
After confirming that the sequence was correct, each construct was used for producing a recombinant baculovirus of the Bac-to-Bac expression system (Invitrogen). High Five cells (Invitrogen) were infected with each recombinant baculovirus at a MOI (multiplicity of infection) of 7 pfu (plaque-forming units) / cell. Six days after infection, the culture supernatant was collected and centrifuged at 20,000 g for 1 hour. The obtained supernatant was ultracentrifuged at 100,000 g for 2 hours, and the precipitated VLP was suspended in PBS. The concentrated VLPs were layered on a 10% -60% sucrose density gradient and purified by ultracentrifugation at 100,000 g for 1 hour. VLPs passed through the sucrose density gradient were dialyzed three times against 2 L of PBS to remove sucrose in the sample. VLP was concentrated with AmiconUltra 30-kDa centrifugal filter (Millipore).
To prepare anti-HuNoV polyclonal antibodies, two rabbits were immunized with 100-200 μg of VLP (GII.4, GII.3 or GII.17) mixed with complete Freund's adjuvant. Three weeks later, each rabbit received a booster injection with 100-200 μg of VLP mixed with incomplete Freund's adjuvant. Two more weeks later, rabbits were bled for serum preparation. The IgG fraction of the serum was purified by rProtein A-Sepharrose Fast flow (GE Healthcare) and then dialyzed 3 times against 2 L of PBS.
2.オルガノイドまたは単層化細胞としての腸管上皮細胞の培養
 腸管上皮細胞の誘導には、国立大学法人東京大学医科学研究所・ステムセルバンクから入手したヒトiPS細胞株、TkDN4-M株(Oct3/4、Sox2、Klf4を導入;Takayamaら, J. Exp. Med., 207:2817-2830 2010)を使用した。細胞は、TCプロテクター(DSファーマバイオメディカル社)に懸濁し、-80℃で保存していたものを融解し、復元培養して用いた。
 ヒトiPS細胞からの腸管上皮細胞の誘導は、Takahashiら, Stem Cell Reports 10:314-328 2018に記載の方法に従って行った。
2. Cultivation of intestinal epithelial cells as organoids or monolayered cells To induce intestinal epithelial cells, human iPS cell lines obtained from the University of Tokyo Institute of Medical Science / Stem Cell Bank, TkDN4-M strain (Oct3 / 4, Sox2 and Klf4 were introduced; Takayama et al., J. Exp. Med., 207: 2817-2830 2010) were used. The cells were suspended in a TC protector (DS Pharma Biomedical), stored at -80 ° C, thawed, reconstituted, and used.
Induction of intestinal epithelial cells from human iPS cells was performed according to the method described in Takahashi et al., Stem Cell Reports 10: 314-328 2018.
 Matrigel(Corning)で培養したオルガノイドはPBSで洗浄し、ROCK inhibitor Y-27632(10 μM、Wako)を添加したTrypLE Express(Gibco)中、37℃で5分間インキュベートした。Matrigelとオルガノイドを分離するために、細胞懸濁液をマイクロピペットでピペッティングして細胞塊を破壊し、その後、ナイロンメッシュに通した。得られた細胞懸濁液に、5倍量の10%仔ウシ血清/基本培地[Advanced DMEM/F12(Gibco)に10 mM HEPES(pH 7.3, Gibco)、2 mM Glutamax(Gibco)および100 units/mL Penicillin plus 100 μg/mL streptmycin(Gibco)を添加したもの]を加えた後、440gで5分間遠心を行い、細胞を回収した。回収した腸管上皮細胞は、氷上にて、10 μM Y-27632を加えた20 %のオルガノイド培養用培地[基本培地に次のものを添加した培地。25% WRN(mouse Wnt3a、human R-spondin1、human Noggin)CM(conditioned medium)(Takahashiら, Stem Cell Reports 10:314-328 2018)、1× B-27 (Gibco)、50 ng/mL mouse EGF(Peprotech)、50 ng/mL human HGF(R&D systems)、10 μM SB202190(Sigma)および500 nM A83-01(TGF-β receptor inhibitor, Tocris)]を含むMatrigelに懸濁した。得られた細胞懸濁液は、24-wellプレートに分注し、5 % CO2インキュベーターにて、37℃、10分間インキュベートした。次に、500 μLのオルガノイド培養用培地(+10 μM Y-27632)を各ウェルに添加した。平均の継代比は、1:16または3×104/ウェルであった。培地は、2~3日毎に新しいオルガノイド培地に交換した。継代は、5~7日毎に行った。 Organoids cultured on Matrigel (Corning) were washed with PBS and incubated at 37 ° C. for 5 minutes in TrypLE Express (Gibco) supplemented with ROCK inhibitor Y-27632 (10 μM, Wako). To separate Matrigel and organoids, the cell suspension was pipetted with a micropipette to break up cell clumps and then passed through a nylon mesh. The obtained cell suspension was added to a 5-fold volume of 10% calf serum / basic medium [Advanced DMEM / F12 (Gibco) in 10 mM HEPES (pH 7.3, Gibco), 2 mM Glutamax (Gibco) and 100 units / mL Penicillin plus 100 μg / mL streptmycin (Gibco) was added], and the mixture was centrifuged at 440 g for 5 minutes to collect the cells. The collected intestinal epithelial cells were cultured on ice on a 20% organoid culture medium supplemented with 10 μM Y-27632 [a medium obtained by adding the following to a basic medium. 25% WRN (mouse Wnt3a, human R-spondin1, human Noggin) CM (conditioned medium) (Takahashi et al., Stem Cell Reports 10: 314-328 2018), 1 × B-27 (Gibco), 50 ng / mL mouse EGF (Peprotech), 50 ng / mL human HGF (R & D systems), 10 μM SB202190 (Sigma) and 500 nM A83-01 (TGF-β receptor inhibitor, Tocris)]. The obtained cell suspension was dispensed into a 24-well plate and incubated at 37 ° C. for 10 minutes in a 5% CO 2 incubator. Next, 500 μL of an organoid culture medium (+10 μM Y-27632) was added to each well. The average passage ratio was 1:16 or 3 × 10 4 / well. The medium was replaced with a fresh organoid medium every 2-3 days. Passaging was performed every 5-7 days.
 HuNoVを感染させる場合は、2.5 % Matrigelコート96-wellプレートまたはTranswells(Corning3470)に、ウェルから剥がしてオルガノイド培養用培地(+10 μM Y-27632)100 μLで懸濁した腸管上皮細胞を2×104/wellの細胞密度で播種した。なお、Transwellsでの培養においては、600 μLのオルガノイド培養用培地を下のウェルに加えた。37℃の5% CO2インキュベーターで2日間培養した後、培地を分化用培地[基本培地に次のものを添加した培地。12.5% RN CM(Takahashiら, Stem Cell Reports 10:314-328 2018)、1× B-27、50 ng/mL mouse EGFおよび500 nM A83-01]に交換した。さらに、2日間培養した後、培地を0.03%のブタ胆汁(Sigma)添加または非添加の分化用培地に交換した。その後、2日間培養した細胞をHuNoVの感染に使用した。 To infect HuNoV, intestinal epithelial cells that had been removed from the wells and suspended in 100 μL of an organoid culture medium (+10 μM Y-27632) in a 2.5% Matrigel-coated 96-well plate or Transwells (Corning3470) were used for 2 × 10 5 Seeded at a cell density of 4 / well. In the culture in Transwells, 600 μL of an organoid culture medium was added to the lower well. After culturing in a 5% CO 2 incubator at 37 ° C. for 2 days, the medium was used as a differentiation medium [a medium obtained by adding the following to a basic medium. 12.5% RN CM (Takahashi et al., Stem Cell Reports 10: 314-328 2018), 1 × B-27, 50 ng / mL mouse EGF and 500 nM A83-01]. After further culturing for two days, the medium was replaced with a differentiation medium with or without 0.03% porcine bile (Sigma). Thereafter, the cells cultured for 2 days were used for HuNoV infection.
3.HuNoVの調製と腸管上皮細胞への感染
 HuNoVに感染した患者の糞便を10%(w/v)になるようにPBSに懸濁した。懸濁液は12,000gで30分間遠心し、得られた上清を0.45μmのフィルターおよび0.22μmのフィルターに通した。フィルターを通したサンプルを分注して-80℃で保存した。感染実験を行う直前に、ウイルス溶液を基本培地で1 mLあたり2×107ゲノムコピーになるまで希釈した。調製した腸管上皮細胞にその100 μL(2×106ゲノムコピー)を感染させ、5%CO2インキュベーター中で3時間インキュベートした。添加したウイルス溶液を除去した後、150 μLの基本培地で、細胞を2回洗浄した。0.03%胆汁を含むまたは含まない分化用培地を100 μL細胞に添加し、2回程度ピペッティングした後、対照サンプルとして回収した。さらに、0.03%胆汁を含むまたは含まない分化培地の100μLを各ウェルに添加し、その後、5%CO2中で72時間培養した。
 阻害実験については、細胞に感染させる前に、希釈したウイルス溶液を100 ngの抗VLP(GII.4、GII.3、またはGII.17)抗体または非免疫ウサギIgG(コントロールIgG)と混合して、37℃で90分間インキュベートした。
3. Preparation of HuNoV and Infection of Intestinal Epithelial Cells Stool of a patient infected with HuNoV was suspended in PBS to 10% (w / v). The suspension was centrifuged at 12,000 g for 30 minutes, and the obtained supernatant was passed through a 0.45 μm filter and a 0.22 μm filter. The filtered sample was aliquoted and stored at -80 ° C. Immediately before performing the infection experiments, the virus solution was diluted in basic medium to 2 × 10 7 genome copies per mL. The prepared intestinal epithelial cells were infected with 100 μL thereof (2 × 10 6 genomic copies) and incubated in a 5% CO 2 incubator for 3 hours. After removing the added virus solution, the cells were washed twice with 150 μL of the basal medium. A differentiation medium containing or not containing 0.03% bile was added to 100 μL cells, and pipetted twice, and then collected as a control sample. In addition, 100 μL of differentiation medium with or without 0.03% bile was added to each well and then cultured in 5% CO 2 for 72 hours.
For inhibition experiments, dilute the virus solution with 100 ng of anti-VLP (GII.4, GII.3, or GII.17) antibody or non-immune rabbit IgG (control IgG) before infecting cells. And incubated at 37 ° C. for 90 minutes.
4.ウイルスゲノムコピーの定量
 PureLink Viral RNA/DNA Mini Kit(Invitrogen)を使用して、希釈したウイルス溶液、感染後3時間および72時間に回収したサンプルからRNAを調製した。RT-qPCRはqPCR(GI/GII)Typing Kit(TakaRa)およびLightCycler 480 System(Roche)を用いて実施した。
4. Quantification of viral genome copies RNA was prepared from diluted virus solutions and samples collected at 3 and 72 hours post-infection using the PureLink Viral RNA / DNA Mini Kit (Invitrogen). RT-qPCR was performed using qPCR (GI / GII) Typing Kit (TakaRa) and LightCycler 480 System (Roche).
 結果
1.GII.4 VLPを抗原にして作製した抗体
 抗原として用いたVLPと比較して、ウイルス株(17-231)のVP1には、P1ドメインに1アミノ酸変異(D235E)が存在していたが、GII.4 HuNoVを抗GII.4 VLP抗体と共にインキュベートすると、腸管上皮細胞内でのその複製が完全に阻害された(図1A)。
 次に、この抗GII.4 VLPポリクローナル抗体が、GIIの他の遺伝子型のウイルスの複製を阻害するかどうか検討した。その結果、ここで作製した抗GII.4 VLPポリクローナル抗体は、GII.3、GII.6およびGII.17型HuNoVの複製を阻害できなかった(図1B)。この結果は、GII.4 VLPを抗原としても、他の遺伝子型の HuNoVの複製を阻害する中和抗体を誘導することができないことを示唆している。
Result 1. GII.4 Antibody prepared using VLP as an antigen Compared with VLP used as an antigen, VP1 of the virus strain (17-231) contained a single amino acid mutation (D235E) in the P1 domain. Incubation of .4 HuNoV with anti-GII.4 VLP antibody completely inhibited its replication in intestinal epithelial cells (FIG. 1A).
Next, it was examined whether this anti-GII.4 VLP polyclonal antibody inhibits the replication of viruses of other GII genotypes. As a result, the anti-GII.4 VLP polyclonal antibody prepared here was unable to inhibit the replication of GII.3, GII.6 and GII.17 HuNoV (FIG. 1B). This result suggests that GII.4 VLP cannot be used as an antigen to induce neutralizing antibodies that inhibit the replication of other genotypes of HuNoV.
 GII.3 HuNoVを抗GII.3 VLP抗体と共にインキュベートすると、腸管上皮細胞内でのその複製が完全に阻害された(図2A)。
 次に、この抗GII.3 VLPポリクローナル抗体が、GIIの他の遺伝子型のウイルスの複製を阻害するかどうか検討した。その結果、ここで作製した抗GII.3 VLPポリクローナル抗体は、GII.4、GII.17およびGII.6型HuNoVの複製を阻害できなかった(図2B)。この結果は、GII.3 VLPを抗原としても、他の遺伝子型の HuNoVの複製を阻害する中和抗体を誘導することができないことを示唆している。
Incubation of GII.3 HuNoV with an anti-GII.3 VLP antibody completely inhibited its replication in intestinal epithelial cells (FIG. 2A).
Next, it was examined whether this anti-GII.3 VLP polyclonal antibody inhibits the replication of viruses of other genotypes of GII. As a result, the anti-GII.3 VLP polyclonal antibody produced here was unable to inhibit the replication of GII.4, GII.17 and GII.6 HuNoV (FIG. 2B). This result suggests that GII.3 VLP cannot be used as an antigen to induce a neutralizing antibody that inhibits replication of other genotypes of HuNoV.
2.GII.17 VLPを抗原にして作製した抗体
 GII.17 HuNoVを抗GII.17 VLP抗体で前処理すると、腸管上皮細胞内でのGII.17 HuNoVの複製が阻害された(図3A)。
 次に、抗GII.17 VLP抗体のGII.17以外の遺伝子型のHuNoVの複製に対する影響を検討したところ、抗GII.17 VLP抗体はGII.4 HuNoVの複製も阻害した(図3B)。
2. Antibody prepared using GII.17 VLP as an antigen Pretreatment of GII.17 HuNoV with an anti-GII.17 VLP antibody inhibited the replication of GII.17 HuNoV in intestinal epithelial cells (FIG. 3A).
Next, when the effect of the anti-GII.17 VLP antibody on the replication of HuNoV of a genotype other than GII.17 was examined, the anti-GII.17 VLP antibody also inhibited the replication of GII.4 HuNoV (FIG. 3B).
 以上の結果から、GII.17 VLPは、GIIに分類される他の遺伝子型のHuNoVの感染を阻害する可能性が高く、多価ワクチン抗原としての能力を備えていることが示唆された。 The above results suggest that GII.17 VLP is highly likely to inhibit the infection of HuNoV of other genotypes classified as GII and has the ability as a multivalent vaccine antigen.
 本発明は、複数の異なる遺伝子型のHuNoV感染を阻害する抗体を作製する目的に適した抗原および当該抗体を提供するものである。従って、本発明は、医療分野における利用が期待される。 The present invention provides an antigen suitable for the purpose of preparing an antibody that inhibits HuNoV infection of a plurality of different genotypes, and the antibody. Therefore, the present invention is expected to be used in the medical field.

Claims (10)

  1.  複数の異なる遺伝子型のヒトノロウイルス(HuNoV)の腸管上皮細胞への感染を阻害する抗体を作製する方法であって、GII.17 HuNoVのVP1タンパク質の全長またはその一部を抗原として免疫することを含む、抗体の作製方法。 A method for producing an antibody that inhibits infection of intestinal epithelial cells with a plurality of different genotypes of human norovirus (HuNoV), comprising immunizing the full length or a part of VP1 protein of GII.17.HuNoV as an antigen. A method for producing an antibody.
  2.  前記GII.17 HuNoVのVP1タンパク質の全長が配列番号3で表されるアミノ酸配列からなることを特徴とする請求項1に記載の抗体の作製方法。 The method for producing an antibody according to claim 1, wherein the full length of the VP1 protein of {GII.17} HuNoV comprises the amino acid sequence represented by SEQ ID NO: 3.
  3.  前記複数の異なる遺伝子型が、GII.4およびGII.17であることを特徴とする、請求項1または2に記載の抗体の作製方法。 (3) The method for producing an antibody according to (1) or (2), wherein the plurality of different genotypes are GII.4 and GII.17.
  4.  GII.17 HuNoVのVP1タンパク質に結合する抗体であって、複数の異なる遺伝子型のHuNoVの腸管上皮細胞への感染を阻害する抗体またはその機能的断片。 {GII.17} An antibody that binds to the VP1 protein of HuNoV, which inhibits infection of multiple different genotypes of HuNoV into intestinal epithelial cells, or a functional fragment thereof.
  5.  前記GII.17 HuNoVのVP1タンパク質の全長が配列番号3で表されるアミノ酸配列からなることを特徴とする請求項4に記載の抗体またはその機能的断片。 The antibody or the functional fragment thereof according to claim 4, wherein the full length of the VP1 protein of {GII.17} HuNoV comprises the amino acid sequence represented by SEQ ID NO: 3.
  6.  前記複数の異なる遺伝子型が、GII.4およびGII.17であることを特徴とする、請求項4または5に記載の抗体またはその機能的断片。 (6) The antibody or the functional fragment thereof according to (4) or (5), wherein the plurality of different genotypes are GII.4 and GII.17.
  7.  請求項4ないし6のいずれかに記載の抗体またはその機能的断片を含有する、医薬組成物。 [4] A pharmaceutical composition comprising the antibody or the functional fragment thereof according to any one of claims 4 to 6.
  8.  GII.17 HuNoVのVP1タンパク質の全長またはその一部を抗原として含み、複数の異なる遺伝子型のHuNoVの感染を抑制するためのワクチン。 {GII.17} A vaccine for suppressing infection of multiple different genotypes of HuNoV, which contains the full length or a part of the VP1 protein of HuNoV as an antigen.
  9.  前記GII.17 HuNoVのVP1タンパク質の全長が配列番号3で表されるアミノ酸配列からなることを特徴とする請求項8に記載のワクチン。 The vaccine according to claim 8, wherein the full length of the VP1 protein of {GII.17} HuNoV comprises the amino acid sequence represented by SEQ ID NO: 3.
  10.  前記複数の異なる遺伝子型が、GII.4およびGII.17であることを特徴とする、請求項8または9に記載のワクチン。 ワ ク チ ン The vaccine according to claim 8 or 9, wherein the plurality of different genotypes are GII.4 and GII.17.
PCT/JP2019/031571 2018-08-13 2019-08-09 Human norovirus-like particle and use thereof WO2020036135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020537449A JPWO2020036135A1 (en) 2018-08-13 2019-08-09 Human norovirus-like particles and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-152166 2018-08-13
JP2018152166 2018-08-13

Publications (1)

Publication Number Publication Date
WO2020036135A1 true WO2020036135A1 (en) 2020-02-20

Family

ID=69524800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031571 WO2020036135A1 (en) 2018-08-13 2019-08-09 Human norovirus-like particle and use thereof

Country Status (2)

Country Link
JP (1) JPWO2020036135A1 (en)
WO (1) WO2020036135A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244860A1 (en) * 2021-05-20 2022-11-24 デンカ株式会社 Anti-norovirus antibody

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070260A1 (en) * 2009-09-09 2011-03-24 Baric Ralph S Multivalent Immunogenic Compositions Against Noroviruses and Methods of Use
US20160102136A1 (en) * 2013-05-09 2016-04-14 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Single-domain vhh antibodies directed to norovirus gi.1 and gii.4 and their use
WO2018181866A1 (en) * 2017-03-31 2018-10-04 国立大学法人東京大学 Norovirus antibody
JP2019149996A (en) * 2018-03-06 2019-09-12 株式会社イーダブルニュートリション・ジャパン Norovirus inactivation method for shellfish

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070260A1 (en) * 2009-09-09 2011-03-24 Baric Ralph S Multivalent Immunogenic Compositions Against Noroviruses and Methods of Use
US20160102136A1 (en) * 2013-05-09 2016-04-14 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Single-domain vhh antibodies directed to norovirus gi.1 and gii.4 and their use
WO2018181866A1 (en) * 2017-03-31 2018-10-04 国立大学法人東京大学 Norovirus antibody
JP2019149996A (en) * 2018-03-06 2019-09-12 株式会社イーダブルニュートリション・ジャパン Norovirus inactivation method for shellfish

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244860A1 (en) * 2021-05-20 2022-11-24 デンカ株式会社 Anti-norovirus antibody

Also Published As

Publication number Publication date
JPWO2020036135A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022262142A1 (en) Recombinant sars-cov-2 rbd tripolymer protein vaccine capable of generating broad-spectrum cross-neutralization activity, preparation method therefor, and application thereof
do Carmo Caldeira et al. Immunogenic display of diverse peptides, including a broadly cross-type neutralizing human papillomavirus L2 epitope, on virus-like particles of the RNA bacteriophage PP7
CN100506999C (en) Optimized expression of HPV 31 L1 in yeast
US8512703B2 (en) Idiotypic vaccine
US20230117167A1 (en) DEOPTIMIZED SARS-CoV-2 AND METHODS AND USES THEREOF
TWI688652B (en) Viral particles as immunogens against enterovirus infection and production thereof
Harmsen et al. Passive immunization of guinea pigs with llama single-domain antibody fragments against foot-and-mouth disease
RU2764740C1 (en) Bispecific antibody against rabies virus and its application
JP6942309B2 (en) Flavivir virus-like particles
JP2008532559A (en) Treatment and prevention of viral infection or improvement of treatment and prevention
US20210401983A1 (en) Arthrogenic alphavirus vaccine
WO2023138334A1 (en) Recombinant novel coronavirus protein vaccine, and preparation method and use thereof
Saied et al. Bovine-derived antibodies and camelid-derived nanobodies as biotherapeutic weapons against SARS-CoV-2 and its variants: a review article
WO2016173559A1 (en) Preparation and use of murine monoclonal antibody against gi.1 norovirus
US11530254B2 (en) Norovirus antibody
KR20220009960A (en) Recombinant Classical Swine Fever Virus
WO2020036135A1 (en) Human norovirus-like particle and use thereof
Xiang et al. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses
BRPI0924072B1 (en) HERPES SIMPLES ANTIVIRUS ANTIBODIES, ITS METHOD OF PRODUCTION, USE OF THE SAME, NUCLEIC ACID, VECTOR, HOST CELL, METHOD OF PRODUCTION OF SUCH CELL, AS WELL AS PHARMACEUTICAL COMPOSITION
Almendárez-Rodriguez et al. Production and characterization of chimeric SARS-CoV-2 antigens based on the capsid protein of cowpea chlorotic mottle virus
WO2023138333A1 (en) Recombinant sars-cov-2 protein vaccine, and preparation method therefor and use thereof
KR20150135231A (en) Human Antibody Specific To Human Metapneumovirus, or Antigen-Binding Fragment Thereof
WO2023182244A1 (en) Human norovirus gii.2-specific antibody
WO2024085207A1 (en) Equine antiserum against betacoronavirus
US20240067706A1 (en) Fully human broad-spectrum neutralizing antibody 76e1 against coronavirus, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850176

Country of ref document: EP

Kind code of ref document: A1