WO2020036073A1 - Silicone resin emulsion composition, method for producing same, coating agent and coated article - Google Patents

Silicone resin emulsion composition, method for producing same, coating agent and coated article Download PDF

Info

Publication number
WO2020036073A1
WO2020036073A1 PCT/JP2019/030315 JP2019030315W WO2020036073A1 WO 2020036073 A1 WO2020036073 A1 WO 2020036073A1 JP 2019030315 W JP2019030315 W JP 2019030315W WO 2020036073 A1 WO2020036073 A1 WO 2020036073A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
emulsion composition
mass
resin emulsion
group
Prior art date
Application number
PCT/JP2019/030315
Other languages
French (fr)
Japanese (ja)
Inventor
一幸 竹脇
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2020036073A1 publication Critical patent/WO2020036073A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Definitions

  • the present invention relates to a silicone resin emulsion composition suitably used as an exterior paint for building materials and the like, a method for producing the same, a coating agent, and a coated article having a cured film made of these.
  • the “silicone resin emulsion composition” may be referred to as a “composition”.
  • Silicone resins obtained by hydrolyzing and condensing silane compounds are attracting attention in the field of paints and coating agents because they can form films having high hardness and excellent weather resistance, water resistance, heat resistance and water repellency.
  • silicone resins are often used after being diluted with various organic solvents, but in recent years, from the viewpoint of measures against environmental pollution and ensuring a safe working environment, organic solvents, especially toluene, xylene, ethylbenzene, etc. It is important to develop a TX-free paint that does not use a specific VOC (volatile organic compound: Volatile Organic Compounds). Further, organic solvents such as toluene and xylene have high volatility, and thus have a problem that defects such as cracks and uneven coating are likely to occur in a coating film in a drying step.
  • VOC volatile organic compound
  • Environmentally friendly glycol ether is a TX-free solvent whose usage has been increasing in recent years because it has a small burden on people and nature and is easy to handle. In addition, it has the advantage that the boiling point is high and the adverse effect on the human body due to exposure to the solvent gas is small. Furthermore, since it is low in volatility, it is excellent in workability and hardly generates defects such as cracks and uneven coating in a coating film, and thus is suitable as a solvent for coating materials.
  • Patent Document 1 JP-T-2008-53007 discloses an example of a low VOC aqueous latex paint using a low-polymerized ethylene glycol derivative as a solvent.
  • the low-polymerized ethylene glycol derivative functions as both a film-forming solvent and a freeze-thaw stabilizer, and is said to provide a coating film having excellent scratch resistance.
  • Emulsion compositions using water as the dispersion medium have also been developed.
  • all of the currently established formulations of silicone resin emulsions have drawbacks.
  • an aqueous solution obtained by hydrolyzing an alkoxysilane compound in water can maintain stability only under a low concentration of about several percent or under limited conditions such as a narrow pH range, and a large amount of alcohol is by-produced.
  • the method of emulsifying a liquid silicone resin to obtain an emulsion is limited to low molecular weight substances since the silicone resin needs to be in a liquid state, and in order to obtain a cured film after drying, harmful substances such as organic tin are used.
  • harmful substances such as organic tin are used.
  • a combined use of a metal catalyst and a high-temperature and long-time heating step are required.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-138059 discloses an organosilicone resin emulsion composition in which a silicone resin is converted into a solution using a water-miscible organic solvent having an SP value of 8.0 to 11.0, and the solution is emulsified. It has been reported.
  • Patent Document 3 Patent No. 4775543 discloses an organosilicone resin emulsion composition obtained by emulsifying a solution using a water-miscible organic solvent selected from butyl cellosolve, butyl cellosolve acetate, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate. Have been.
  • a water-miscible organic solvent selected from butyl cellosolve, butyl cellosolve acetate, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate.
  • butyl cellosolve acetate used as a water-miscible organic solvent a solvent having an ester bond such as propylene glycol monomethyl ether acetate is hydrolyzed in the emulsion composition, the acid is generated with time, the emulsion composition by the generation. There was a problem of acidification.
  • ethylene glycol monoalkyl ethers such as butyl cellosolve have been widely used as solvents for paints, but recently there has been a problem that their use has been avoided due to concerns about toxicity.
  • the present invention has been made in view of the above circumstances, compared to the conventional silicone resin emulsion, silicone resin emulsion composition with reduced environmental problems, its production method, and coating properties, crack resistance, It is an object of the present invention to provide a coated article having a cured film having excellent hardness.
  • a silicone resin emulsion composition containing the following components (A) to (D) and substantially no organic solvent other than the component (B).
  • A) Silicone resin having a structure represented by the following average formula (I): 100 parts by mass (Wherein, R 1 independently represents a hydrogen atom, or an alkyl group, an aralkyl group or an aryl group having 1 to 8 carbon atoms which may be substituted by a halogen atom, and R 2 represents a hydrogen atom, a methyl group, Represents an ethyl group, an n-propyl group or an i-propyl group, wherein a, b, c, and d are respectively 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, a + b + c + d 1 and e is a number that satisfies 0 ⁇ e ⁇ 4.
  • n is 2 or more. In the case where R 3 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, n represents an integer of 1 or more, provided that R 4 and R 5 are not hydrogen atoms at the same time.
  • C emulsifier: 1 to 50 parts by mass
  • D water: 25 to 2,000 parts by mass 2.
  • a coating agent comprising the silicone resin emulsion composition according to 1 or 2. 4.
  • (I) A silane compound having a hydrolyzable group is hydrolyzed and condensed in a solvent represented by the above general formula (II) to form (A) a structure represented by the above average formula (I) Obtaining a mixed solution containing a silicone resin and (B) a solvent represented by the general formula (II);
  • the present invention it is possible to obtain a silicone resin emulsion which forms a cured film having a small environmental load and excellent coating properties, crack resistance and hardness, a method for producing the same, and a coated article.
  • the component (A) of the present invention is a silicone resin having a structure represented by the following average formula (I).
  • R 1 independently represents a hydrogen atom or an alkyl group, an aralkyl group or an aryl group having 1 to 8 carbon atoms which may be substituted by a halogen atom
  • R 2 represents a hydrogen atom, methyl Group, ethyl group, n-propyl group or i-propyl group.
  • the above a is a number that satisfies 0 ⁇ a ⁇ 1, but preferably 0 ⁇ a ⁇ 0.3 from the viewpoint of the crack suppression effect of the obtained cured product (cured film).
  • the above b is a number satisfying 0 ⁇ b ⁇ 1, but from the viewpoint of the scratch resistance of the obtained cured product (cured coating), 0.2 ⁇ b ⁇ 1 is preferable.
  • the above c is a number satisfying 0 ⁇ c ⁇ 1, but from the viewpoint of the curability of the composition and the hardness of the obtained cured product (cured film), 0 ⁇ c ⁇ 0.5 is preferable.
  • the above d is a number that satisfies 0 ⁇ d ⁇ 1, but from the viewpoint of the curability of the composition and the hardness of the obtained cured product (cured coating), 0 ⁇ d ⁇ 0.4 is preferable.
  • the above e is a number that satisfies 0 ⁇ e ⁇ 4, but from the viewpoint that it is effective for suppressing the condensation reaction by the condensable functional group and the crack resistance, water resistance, and weather resistance of the obtained cured product.
  • E are preferably numbers satisfying 0 ⁇ e ⁇ 3.
  • the silicone resin (A) of the present invention may be a single composition or a mixture of a plurality of silicone resins having different compositions.
  • the weight average molecular weight of the silicone resin (A) of the present invention is preferably from 1,000 to 500,000, more preferably from 2,000 to 300,000 in terms of weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC). If the weight average molecular weight is less than 1,000, condensation does not proceed sufficiently, the storage stability of the silicone resin may be low, and there is a possibility that the final emulsion composition may change with time. Further, when the condensation reaction proceeds with time, crack resistance of the cured film (coating film) may be reduced. If the molecular weight is more than 500,000, the silicone resin compound becomes insoluble in the solvent, and there is a possibility that solid foreign matter or uneven coating may occur on the cured film.
  • GPC gel permeation chromatography
  • the silicone resin (A) of the present invention can be produced according to a general method for producing a silicone resin.
  • the organopolysiloxane of the present invention can be obtained by hydrolytic condensation of a silane compound having a hydrolyzable group.
  • the type of the hydrolyzable group is chloro or alkoxy, and one, two, three or four hydrolyzable groups are contained, and Any hydrolyzable silane having an organic substituent satisfying the above can be used.
  • methoxysilane or ethoxysilane from the viewpoint of operability, easy removal of by-products, and availability of raw materials.
  • methoxysilane or ethoxysilane from the viewpoint of operability, easy removal of by-products, and availability of raw materials.
  • One or a mixture of two or more of these silane compounds may be used.
  • a hydrolysis catalyst When performing the hydrolysis, a hydrolysis catalyst may be used.
  • a conventionally known catalyst can be used, and it is preferable to use a catalyst whose aqueous solution shows an acidity of pH 2 to 7.
  • Particularly preferred are acidic hydrogen halides, sulfonic acids, carboxylic acids, acidic or weakly acidic inorganic salts, and solid acids such as ion exchange resins.
  • Examples include hydrogen fluoride, hydrochloric acid, nitric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, formic acid, acetic acid, maleic acid, benzoic acid, lactic acid, phosphoric acid and cation exchange resins having sulfonic or carboxylic acid groups on the surface And the like.
  • the amount of the hydrolysis catalyst to be used is not particularly limited. However, considering that the reaction proceeds promptly and that the catalyst can be easily removed after the reaction, 0.0002 to 1 mol of the hydrolyzable silane is used. A range of 0.5 mole is preferred.
  • the ratio of the amount of the hydrolyzable silane to the amount of water required for the hydrolysis and condensation reaction is not particularly limited, but the reaction is sufficiently advanced by preventing the deactivation of the catalyst, and the amount of water after the reaction is reduced. In consideration of easiness, a ratio of 0.1 to 10 mol of water to 1 mol of the hydrolyzable silane is preferable.
  • the hydrolysis / condensation reaction temperature is not particularly limited, but is preferably ⁇ 10 to 150 ° C. in consideration of improving the reaction rate and preventing decomposition of the organic functional group of the hydrolyzable silane.
  • a solvent represented by the following (B) general formula (II) may be used, or an organic solvent other than the (B) solvent may be used.
  • organic solvent other than the (B) solvent include methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, toluene, xylene and the like.
  • the solvent other than the component (B) is substantially replaced by, for example, replacing the solvent represented by the general formula (II) with a solvent such as a stripping step. Not included.
  • Component (B) The component (B) of the present invention is a solvent represented by the following general formula (II), and the glycol ether solvent can be used alone or in an appropriate combination of two or more.
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms, and a monovalent saturated hydrocarbon having 1 to 6 carbon atoms. Groups are preferred.
  • R 3 is a hydrogen atom
  • n represents an integer of 2 or more
  • R 3 is a monovalent hydrocarbon group having 1 to 8 carbon atoms
  • n represents an integer of 1 or more.
  • R 4 and R 5 are not hydrogen atoms at the same time.
  • the upper limit of n is not particularly limited, but may be 10 or less.
  • Examples of the solvent represented by the general formula (II) include polyethylene glycol monomethyl ether such as diethylene glycol monomethyl ether and triethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, and diethylene glycol monoisobutyl.
  • polyethylene glycol monomethyl ether such as diethylene glycol monomethyl ether and triethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, and diethylene glycol monoisobutyl.
  • Ethylene glycol monoalkyl ethers such as butyl cellosolve, which are widely used in paints and coating agents, are not preferred because of the recent problem that their use is evaded due to concerns about toxicity.
  • Solvents having an ester bond such as butyl cellosolve acetate and propylene glycol monomethyl ether acetate react with water in the system when they are formed into an emulsion composition, hydrolyze, and acidify the emulsion composition by generating an acid. It is not preferable because it will be done.
  • TX solvents such as toluene and xylene are not preferred in the above-mentioned points.
  • organic solvents other than the component (B) are not substantially contained. This is true not only when no organic solvent other than the component (B) is contained, but also when substantially no organic solvent other than the component (B) is contained.
  • a small amount of an organic solvent other than the component (B) may be contained in the composition in an amount of 3% by mass or less, preferably 2% by mass or less, more preferably 1% by mass or less.
  • the amount of alcohols generated from the alkoxy residue of the component (A), the residue of the solvent used in the synthesis of the component (A), and the like are small enough to have no effect on stability and have no environmental problem. If so, it may be included.
  • the amount of the component (B) is 2 to 100 parts by mass, preferably 3 to 80 parts by mass, more preferably 5 to 50 parts by mass, per 100 parts by mass of the component (A).
  • the amount of the component (B) is less than 2 parts by mass, the viscosity of the silicone resin solution is high, and it is difficult to form an emulsion. Is undesirable from the point of volatilization.
  • the viscosity of the silicone resin solution (A) diluted with the component (B) is preferably from 10 to 100,000 mPa ⁇ s at 25 ° C., more preferably from 100 to 50,000 mPa ⁇ s.
  • the viscosity can be measured by a rotational viscometer, and the concentration of the organosilicone resin (A) in the solution can be 75% by mass.
  • the emulsifier which is the component (C) of the present invention, is not particularly limited as long as it can emulsify and disperse the silicone resin solution in water, and may be used alone or in combination of two or more.
  • the emulsifier include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene fatty acid ester; alkyl sulfates, alkyl benzene sulfonates, and alkyl sulfosuccinates.
  • Anionic surfactants such as acid salts, alkyl phosphates, polyoxyethylene alkyl ether sulfates, and polyoxyethylene alkyl phenyl ether sulfates; Cationic surfactants such as quaternary ammonium salts and alkylamine acetates; Examples include amphoteric surfactants such as betaine and alkylimidazoline.
  • nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene propylene alkyl ether are preferable from the viewpoint of stability.
  • specific examples of these include polyoxyethylene octyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene propylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene propylene lauryl ether, polyoxyethylene tridecyl Ether, polyoxyethylene propylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, and the like.
  • the amount of component (C) is 1 to 50 parts by mass, preferably 2 to 30 parts by mass, more preferably 3 to 20 parts by mass, per 100 parts by mass of component (A). If the amount of the component (C) is less than 1 part by mass, it is difficult to form an emulsion, and if it exceeds 50 parts by mass, the hardness, water resistance, heat resistance, water repellency, transparency, and adhesion to the substrate of the coating film are obtained. There is a concern that the properties will be reduced.
  • the component (D) of the present invention is water, and is not particularly limited, such as purified water.
  • the silicone resin emulsion composition can be prepared by mixing the above-mentioned components (A) to (C) with water and emulsifying and dispersing according to a conventional method.
  • the content of water as the component (D) is 25 to 2,000 parts by mass, preferably 50 to 1,000 parts by mass, per 100 parts by mass of the component (A).
  • additives can be added to the silicone resin emulsion composition of the present invention, if necessary, as long as the object of the present invention is not impaired.
  • the additive include a pH adjuster, a thickener, a preservative, a rust inhibitor, an antioxidant, an ultraviolet absorber, and the like.
  • Each of the additives may be used alone or in appropriate combination of two or more kinds. Can be used.
  • the average particle size of the emulsion in the silicone resin emulsion composition of the present invention is preferably from 50 to 1,000 nm, more preferably from 100 to 800 nm.
  • the average particle diameter is a volume average particle diameter (cumulative average diameter D50) by a laser diffraction scattering method, and is, for example, a dynamic light scattering particle diameter distribution measuring device N4 Plus submicron Particle manufactured by Beckman Coulter, Inc. It can be measured by a Size Analyzer.
  • silicone resin emulsion composition In order to obtain the silicone resin emulsion composition of the present invention, predetermined amounts of the above components (A) to (D) are mixed, and the mixture is stirred by a mixer / disperser such as a homomixer, a homodisper, a homogenizer, and a colloid mill. And preferably emulsified, preferably uniformly stirred to emulsify. In particular, after a predetermined amount of the components (A) to (C) is mixed and preferably dispersed uniformly, a part of the predetermined amount of the component (D) is added, and the mixture is stirred and emulsified. A more preferred method is to add the remaining components and mix and stir to prepare a silicone resin emulsion composition.
  • a mixer / disperser such as a homomixer, a homodisper, a homogenizer, and a colloid mill.
  • emulsified preferably uniformly stirred to emulsify.
  • a silane compound having a hydrolyzable group is hydrolyzed and condensed in a solvent represented by (B) a general formula (II), and (A) a silicone having a structure represented by an average formula (I)
  • a step of obtaining a mixed solution containing the resin and (B) the solvent represented by the general formula (II), (II) A step of mixing the mixture obtained in (I), (C) an emulsifier, and (D) water, and stirring and emulsifying the mixture.
  • the solvent represented by the general formula (II) May contain an organic solvent other than the component (B) in a range that does not substantially contain an organic solvent other than the component (B) in the obtained silicone resin emulsion composition.
  • (II) can also be the following steps.
  • (II-1) a step of mixing the mixture obtained in (I), (C) an emulsifier, and part of (D) water, and stirring and emulsifying the mixture.
  • (II-2) Step of adding remaining water (D) to the emulsion obtained in (II-1) and mixing / stirring
  • the blending amount and the like are the same as above.
  • the silicone resin emulsion composition of the present invention can form a cured film by drying at room temperature and under heating conditions. However, in order to accelerate the curing rate or obtain excellent film properties, the silicone resin emulsion composition When the product is used, a condensation curing catalyst may be added to obtain a condensation reaction curable composition.
  • condensation curing catalyst conventionally known ones can be used.
  • lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium methylate, sodium acetate, sodium formate, n-hexylamine, tributylamine, diazabicycloun Basic compounds such as decene; tetraisopropyl titanate, tetrabutyl titanate, aluminum triisobutoxide, aluminum triisopropoxide, aluminum acetylacetonate, aluminum perchlorate, aluminum chloride, cobalt octylate, cobalt acetylacetonate, zinc Octylate, zinc acetylacetonate, iron octylate, iron acetylacetonate, tin acetylacetonate, dibutyltin dioctylate, dibutyltin dilaurate, dibutyltin Metal-containing compounds such as oxides; acidic compounds such as p-toluen
  • composition of the present invention can be suitably used as a coating agent, particularly as an outer wall paint, but can also be applied to other uses.
  • a coating agent particularly as an outer wall paint
  • the composition of the present invention is applied and cured to form a coating
  • a coated article can be obtained having a cured coating of a coating formed on at least one side, directly or via one or more other layers.
  • the substrate is not particularly limited, and examples thereof include transparent or opaque substrates such as metals, ceramic inorganic materials, glass, wood, paper products, and plastics.
  • the base material is metal
  • the base material is inorganic material
  • for surface protection coating or surface treatment of mortar, concrete or cement exterior wall material, ceramic panel, ALC board, sizing board, gypsum board, brick, glass, ceramic, artificial marble, etc. Can be applied as a paint.
  • the method of applying the coating agent to the substrate may be appropriately selected from known methods, and examples thereof include flow coating, spin coating, bar coater, wire bar, brush coating, spraying, dipping, roll coating, curtain coating, and knife.
  • Various coating methods such as coating can be used.
  • the amount of coating is not particularly limited, but is usually preferably an amount such that the thickness of the cured film after drying is 0.1 to 1,000 ⁇ m, and more preferably 1 to 100 ⁇ m.
  • Examples of the method for curing the composition include room temperature curing and heat curing.
  • the heating temperature is not particularly limited, but is preferably in the range of 100 to 300 ° C, more preferably in the range of 150 to 250 ° C.
  • the present invention will be specifically described with reference to Synthesis Examples, Comparative Synthesis Examples, Examples, and Comparative Examples, but the present invention is not limited to the following Examples.
  • “parts” represents “parts by mass”
  • “%” represents “% by mass”.
  • the weight average molecular weight is a value measured using GPC (gel permeation chromatography, HLC-8220 manufactured by Tosoh Corporation) using tetrahydrofuran (THF) as a developing solvent.
  • GPC gel permeation chromatography, HLC-8220 manufactured by Tosoh Corporation
  • THF tetrahydrofuran
  • Magnesium / aluminum / hydroxide / carbonate / hydrate 50.5 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. Volatile components such as methanol were distilled off under reduced pressure, and pressure filtration was performed.
  • Magnesium aluminum hydroxide carbonate hydrate 45.3 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and neutralized by stirring for 2 hours. Volatile components such as methanol were distilled off under reduced pressure, and pressure filtration was performed.
  • Magnesium / aluminum / hydroxide / carbonate / hydrate 42.9 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. After filtration, volatile components such as methanol and toluene were removed by distillation under reduced pressure, and 367.4 g of diethylene glycol diethyl ether (manufactured by Nippon Emulsifier Co., Ltd.) was added, followed by purification by pressure filtration.
  • Kyoward 500SH manufactured by Kyowa Chemical Industry Co., Ltd.
  • Magnesium / aluminum / hydroxide / carbonate / hydrate 42.9 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. After filtration, volatile components such as methanol and toluene were removed by distillation under reduced pressure, and 367.4 g of methyl ethyl ketone (MEK) was added, followed by purification by pressure filtration.
  • Kyoward 500SH manufactured by Kyowa Chemical Industry Co., Ltd.
  • Magnesium / aluminum / hydroxide / carbonate / hydrate 42.9 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. After filtration, volatile components such as methanol and toluene were removed by distillation under reduced pressure, and 367.4 g of ethyl acetate was added, followed by purification by pressure filtration.
  • the silicone resin emulsion compositions of Examples 2-1 to 2-7 were different from the silicone resin emulsion compositions of Comparative Examples 2-1 to 2-4 in terms of cured coating appearance, adhesion, coating hardness, and environmental load. , which indicates the superiority of the silicone resin emulsion composition of the present invention.

Abstract

(A) 100 parts by mass of a silicone resin that has a structure represented by average formula (I) (SiO4/2)a(R1SiO3/2)b(R1 2SiO2/2)c(R1 3SiO1/2)d(R2O1/2)e (B) 2-100 parts by mass of a solvent represented by general formula (II) (C) 1-50 parts by mass of an emulsifying agent (D) 25-2,000 parts by mass of water

Description

シリコーンレジンエマルション組成物、その製造方法、コーティング剤及び被覆物品Silicone resin emulsion composition, production method thereof, coating agent and coated article
 本発明は、建材等の外装用塗料等として好適に用いられるシリコーンレジンエマルション組成物、その製造方法及びコーティング剤及びこれらからなる硬化被膜を有する被覆物品に関する。以下、「シリコーンレジンエマルション組成物」を「組成物」と記載する場合がある。 {Circle over (1)} The present invention relates to a silicone resin emulsion composition suitably used as an exterior paint for building materials and the like, a method for producing the same, a coating agent, and a coated article having a cured film made of these. Hereinafter, the “silicone resin emulsion composition” may be referred to as a “composition”.
 シラン化合物を加水分解、縮合して得られるシリコーンレジンは、高硬度で耐候性、耐水性、耐熱性、撥水性に優れた被膜を形成できるため、塗料又はコーティング剤の分野において注目されている。 シ リ コ ー ン Silicone resins obtained by hydrolyzing and condensing silane compounds are attracting attention in the field of paints and coating agents because they can form films having high hardness and excellent weather resistance, water resistance, heat resistance and water repellency.
 この分野では、シリコーンレジンは種々の有機溶剤で希釈されて使用されることが多いが、近年、環境汚染対策及び安全な作業環境の確保の観点から、有機溶剤、特にトルエン、キシレン、エチルベンゼン等の特定VOC(揮発性有機化合物:Volatile Organic Compounds)を使用しないTXフリー塗料の開発が重要になっている。また、トルエン、キシレン等の有機溶剤は揮発性が高く、乾燥工程において塗膜にクラックや、塗りムラ等の欠陥を生じやすい問題を有している。 In this field, silicone resins are often used after being diluted with various organic solvents, but in recent years, from the viewpoint of measures against environmental pollution and ensuring a safe working environment, organic solvents, especially toluene, xylene, ethylbenzene, etc. It is important to develop a TX-free paint that does not use a specific VOC (volatile organic compound: Volatile Organic Compounds). Further, organic solvents such as toluene and xylene have high volatility, and thus have a problem that defects such as cracks and uneven coating are likely to occur in a coating film in a drying step.
 環境配慮型グリコールエーテルは人や自然への負荷が小さく、取扱いも容易であることから、近年使用量が増加傾向にあるTXフリー溶剤である。また、沸点が高く、溶剤ガスの曝露による人体への悪影響も少ないという利点を有する。さらに、揮発性が低いため作業性に優れ、塗膜にクラックや塗りムラ等の欠陥が発生しにくいため、塗料用の溶剤として好適である。 Environmentally friendly glycol ether is a TX-free solvent whose usage has been increasing in recent years because it has a small burden on people and nature and is easy to handle. In addition, it has the advantage that the boiling point is high and the adverse effect on the human body due to exposure to the solvent gas is small. Furthermore, since it is low in volatility, it is excellent in workability and hardly generates defects such as cracks and uneven coating in a coating film, and thus is suitable as a solvent for coating materials.
 特許文献1:特表2008-537007号公報では、低重合エチレングリコール誘導体を溶剤にした低VOCの水性ラテックス塗料の例が開示されている。低重合エチレングリコール誘導体は造膜溶剤及び凍解安定剤の双方として機能しており、耐擦傷性に優れた塗膜が得られるとされている。 Patent Document 1: JP-T-2008-53007 discloses an example of a low VOC aqueous latex paint using a low-polymerized ethylene glycol derivative as a solvent. The low-polymerized ethylene glycol derivative functions as both a film-forming solvent and a freeze-thaw stabilizer, and is said to provide a coating film having excellent scratch resistance.
 また、分散媒に水を用いたエマルション組成物も開発されている。しかしながら、現在確立されているシリコーンレジンエマルションの製造処方はいずれも欠点を有している。 Emulsion compositions using water as the dispersion medium have also been developed. However, all of the currently established formulations of silicone resin emulsions have drawbacks.
 例えば、アルコキシシラン化合物を水中で加水分解させた水溶液は、数%程度の低濃度や、狭いpH範囲等の限られた条件でしか安定性を保てず、また多量のアルコールが副生するため、他のエマルションと混合した際に系が不安定になる問題を抱えている。 For example, an aqueous solution obtained by hydrolyzing an alkoxysilane compound in water can maintain stability only under a low concentration of about several percent or under limited conditions such as a narrow pH range, and a large amount of alcohol is by-produced. However, there is a problem that the system becomes unstable when mixed with other emulsions.
 また、液状のシリコーンレジンを乳化してエマルションを得る方法は、シリコーンレジンが液状である必要があることから、低分子量物に限定され、乾燥後に硬化被膜を得るためには有機スズ等の有害な金属触媒の併用や高温・長時間の加熱工程が必要になる問題を抱えている。 In addition, the method of emulsifying a liquid silicone resin to obtain an emulsion is limited to low molecular weight substances since the silicone resin needs to be in a liquid state, and in order to obtain a cured film after drying, harmful substances such as organic tin are used. There is a problem that a combined use of a metal catalyst and a high-temperature and long-time heating step are required.
 一方で、常温固体のシリコーンレジンを、そのままエマルション化することは困難なため、前述の環境配慮型グリコールエーテル等にシリコーンレジンを溶解させた溶液を調製し、それをエマルション化した組成物も報告されている。 On the other hand, since it is difficult to form an emulsion of a normal-temperature solid silicone resin as it is, a solution prepared by dissolving the silicone resin in the above-mentioned environment-friendly glycol ether or the like and then emulsifying the solution has been reported. ing.
 特許文献2:特開2008-138059号公報では、シリコーンレジンをSP値が8.0~11.0の水混和性有機溶剤を用いて溶液化し、それをエマルション化したオルガノシリコーンレジンエマルション組成物が報告されている。 Patent Document 2: Japanese Patent Application Laid-Open No. 2008-138059 discloses an organosilicone resin emulsion composition in which a silicone resin is converted into a solution using a water-miscible organic solvent having an SP value of 8.0 to 11.0, and the solution is emulsified. It has been reported.
 特許文献3:特許第4775543号公報では、ブチルセロソルブ、ブチルセロソルブアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートから選ばれる水混和性有機溶剤を用いた溶液をエマルション化したオルガノシリコーンレジンエマルション組成物が報告されている。 Patent Document 3: Patent No. 4775543 discloses an organosilicone resin emulsion composition obtained by emulsifying a solution using a water-miscible organic solvent selected from butyl cellosolve, butyl cellosolve acetate, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate. Have been.
 しかしながら、これらの公報では、トルエン又はキシレン中で合成されたシリコーンレジン溶液を用い、高沸点の水混和性有機溶剤への溶剤置換を行っており、最終製品であるシリコーンレジンエマルション組成物には有意量のトルエン、キシレンが残存してしまう問題があった。 However, these publications use a silicone resin solution synthesized in toluene or xylene, and perform solvent replacement with a high-boiling water-miscible organic solvent, which is significant for the final silicone resin emulsion composition. There was a problem that an amount of toluene and xylene remained.
 また、水混和性有機溶剤として用いられているブチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル結合を有する溶剤は、エマルション組成物中で加水分解し、経時で酸が発生することでエマルション組成物を酸性化させてしまうという問題があった。 Further, butyl cellosolve acetate used as a water-miscible organic solvent, a solvent having an ester bond such as propylene glycol monomethyl ether acetate is hydrolyzed in the emulsion composition, the acid is generated with time, the emulsion composition by the generation. There was a problem of acidification.
 さらに、ブチルセロソルブ等のエチレングリコールモノアルキルエーテル類は、塗料用の溶剤として広く用いられてきたが、近年では毒性の懸念から使用が忌避されている問題があった。 Furthermore, ethylene glycol monoalkyl ethers such as butyl cellosolve have been widely used as solvents for paints, but recently there has been a problem that their use has been avoided due to concerns about toxicity.
特表2008-537007号公報JP 2008-53007 A 特開2008-138059号公報JP 2008-138059 A 特許第4775543号公報Japanese Patent No. 4775543
 本発明は、上記事情に鑑みてなされたものであり、従来のシリコーンレジンエマルションに比べ、環境上の問題が低減されたシリコーンレジンエマルション組成物、その製造方法、及び塗工性、耐クラック性、硬度に優れた硬化被膜を形成した被覆物品を提供することを目的とする。 The present invention has been made in view of the above circumstances, compared to the conventional silicone resin emulsion, silicone resin emulsion composition with reduced environmental problems, its production method, and coating properties, crack resistance, It is an object of the present invention to provide a coated article having a cured film having excellent hardness.
 本発明者は、上記目的を達成するため鋭意検討した結果、(A)特定のシリコーンレジン、(B)一般式(II)で表される溶剤(いわゆるグリコールエーテル溶剤)、(C)乳化剤及び(D)水を、それぞれ特定量で含有するシリコーンレジンエマルション組成物とすることで、上記課題が解決できることを知見し、本発明をなすに至ったものである。 As a result of intensive studies to achieve the above object, the present inventors have found that (A) a specific silicone resin, (B) a solvent represented by the general formula (II) (a so-called glycol ether solvent), (C) an emulsifier, and D) It has been found that the above problems can be solved by forming a silicone resin emulsion composition containing water in a specific amount, and the present invention has been accomplished.
 従って、本発明は下記を提供する。
1.下記(A)~(D)成分を含有し、(B)成分以外の有機溶剤を実質的に含有しないシリコーンレジンエマルション組成物。
(A)下記平均式(I)で表される構造を有するシリコーンレジン:100質量部
Figure JPOXMLDOC01-appb-C000003
(式中、R1は独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素原子数1~8のアルキル基、アラルキル基もしくはアリール基を表し、R2は水素原子、メチル基、エチル基、n-プロピル基又はi-プロピル基を表す。a、b、c、dはそれぞれ、0≦a<1、0<b≦1、0≦c<1、0≦d<1、a+b+c+d=1を満たし、eは0<e≦4を満たす数である。)
(B)下記一般式(II)で表される溶剤:2~100質量部
Figure JPOXMLDOC01-appb-C000004
(式中、R3、R4、R5はそれぞれ独立に、水素原子、又は炭素原子数1~8の1価炭化水素基を表す。R3が水素原子の場合は、nは2以上の整数を表し、R3が炭素原子数1~8の1価炭化水素基の場合は、nは1以上の整数を表す。但し、R4とR5が同時に水素原子であることはない。)
(C)乳化剤:1~50質量部
(D)水:25~2,000質量部
2.(B)成分が、ジエチレングリコールジエチルエーテル又はジプロピレングリコールジメチルエーテルである、1記載のシリコーンレジンエマルション組成物。
3.1又は2記載のシリコーンレジンエマルション組成物からなるコーティング剤。
4.基材と、基材の少なくとも一面に、直接又は1つ以上の他の層を介して形成された3記載のコーティング剤の硬化被膜とを有する被覆物品。
5.下記工程を含む1又は2記載のシリコーンレジンエマルション組成物を製造する製造方法。
 (I)加水分解性基を有するシラン化合物を、(B)上記一般式(II)で表される溶剤中で加水分解縮合させて、(A)上記平均式(I)で表される構造を有するシリコーンレジン及び(B)上記一般式(II)で表される溶剤を含む混合液を得る工程、
(II)(I)で得られた混合液と、(C)乳化剤と、(D)水とを混合し、撹拌して乳化する工程。
Accordingly, the present invention provides:
1. A silicone resin emulsion composition containing the following components (A) to (D) and substantially no organic solvent other than the component (B).
(A) Silicone resin having a structure represented by the following average formula (I): 100 parts by mass
Figure JPOXMLDOC01-appb-C000003
(Wherein, R 1 independently represents a hydrogen atom, or an alkyl group, an aralkyl group or an aryl group having 1 to 8 carbon atoms which may be substituted by a halogen atom, and R 2 represents a hydrogen atom, a methyl group, Represents an ethyl group, an n-propyl group or an i-propyl group, wherein a, b, c, and d are respectively 0 ≦ a <1, 0 <b ≦ 1, 0 ≦ c <1, 0 ≦ d <1, a + b + c + d = 1 and e is a number that satisfies 0 <e ≦ 4.)
(B) a solvent represented by the following general formula (II): 2 to 100 parts by mass
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms. When R 3 is a hydrogen atom, n is 2 or more. In the case where R 3 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, n represents an integer of 1 or more, provided that R 4 and R 5 are not hydrogen atoms at the same time.)
(C) emulsifier: 1 to 50 parts by mass (D) water: 25 to 2,000 parts by mass 2. The silicone resin emulsion composition according to 1, wherein the component (B) is diethylene glycol diethyl ether or dipropylene glycol dimethyl ether.
3. A coating agent comprising the silicone resin emulsion composition according to 1 or 2.
4. A coated article having a substrate and a cured coating of the coating agent according to 3, which is formed on at least one surface of the substrate directly or via one or more other layers.
5. 3. A method for producing the silicone resin emulsion composition according to 1 or 2, comprising the following steps.
(I) A silane compound having a hydrolyzable group is hydrolyzed and condensed in a solvent represented by the above general formula (II) to form (A) a structure represented by the above average formula (I) Obtaining a mixed solution containing a silicone resin and (B) a solvent represented by the general formula (II);
(II) A step of mixing the mixture obtained in (I), (C) an emulsifier, and (D) water and stirring to emulsify.
 本発明によれば、環境負荷が小さく、塗工性、耐クラック性、硬度に優れた硬化被膜を形成するシリコーンレジンエマルション、その製造方法及び被覆物品を得ることができる。 According to the present invention, it is possible to obtain a silicone resin emulsion which forms a cured film having a small environmental load and excellent coating properties, crack resistance and hardness, a method for producing the same, and a coated article.
 以下、本発明について詳細に説明する。
[(A)成分]
 本発明の(A)成分は、下記平均式(I)で表される構造を有するシリコーンレジンである。
Figure JPOXMLDOC01-appb-C000005
Hereinafter, the present invention will be described in detail.
[(A) component]
The component (A) of the present invention is a silicone resin having a structure represented by the following average formula (I).
Figure JPOXMLDOC01-appb-C000005
 式(I)において、R1は独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素原子数1~8のアルキル基、アラルキル基もしくはアリール基を表し、R2は水素原子、メチル基、エチル基、n-プロピル基又はi-プロピル基を表す。a、b、c、dはそれぞれ、0≦a<1、0<b≦1、0≦c<1、0≦d<1、a+b+c+d=1を満たし、eは0<e≦4を満たす数である。 In the formula (I), R 1 independently represents a hydrogen atom or an alkyl group, an aralkyl group or an aryl group having 1 to 8 carbon atoms which may be substituted by a halogen atom, and R 2 represents a hydrogen atom, methyl Group, ethyl group, n-propyl group or i-propyl group. a, b, c, and d satisfy 0 ≦ a <1, 0 <b ≦ 1, 0 ≦ c <1, 0 ≦ d <1, a + b + c + d = 1, and e satisfies 0 <e ≦ 4. It is.
 上記aは0≦a<1を満たす数であるが、得られる硬化物(硬化被膜)のクラック抑制効果の観点から、0≦a<0.3が好ましい。
 上記bは0<b≦1を満たす数であるが、得られる硬化物(硬化被膜)の耐擦傷性の観点から、0.2≦b<1が好ましい。
 上記cは0≦c<1を満たす数であるが、組成物の硬化性、得られる硬化物(硬化被膜)の硬度の観点から、0≦c<0.5が好ましい。
 上記dは0≦d<1を満たす数であるが、組成物の硬化性、得られる硬化物(硬化被膜)の硬度の観点から、0≦d<0.4が好ましい。
 上記eは0<e≦4を満たす数であるが、縮合性官能基による縮合反応の抑制に効果的であることや、得られる硬化物の耐クラック性、耐水性、及び耐候性の観点から、eは0<e≦3を満たす数が好ましい。
The above a is a number that satisfies 0 ≦ a <1, but preferably 0 ≦ a <0.3 from the viewpoint of the crack suppression effect of the obtained cured product (cured film).
The above b is a number satisfying 0 <b ≦ 1, but from the viewpoint of the scratch resistance of the obtained cured product (cured coating), 0.2 ≦ b <1 is preferable.
The above c is a number satisfying 0 ≦ c <1, but from the viewpoint of the curability of the composition and the hardness of the obtained cured product (cured film), 0 ≦ c <0.5 is preferable.
The above d is a number that satisfies 0 ≦ d <1, but from the viewpoint of the curability of the composition and the hardness of the obtained cured product (cured coating), 0 ≦ d <0.4 is preferable.
The above e is a number that satisfies 0 <e ≦ 4, but from the viewpoint that it is effective for suppressing the condensation reaction by the condensable functional group and the crack resistance, water resistance, and weather resistance of the obtained cured product. , E are preferably numbers satisfying 0 <e ≦ 3.
 本発明の(A)シリコーンレジンは、単一の組成でも、組成の異なる複数のシリコーンレジンの混合物であってもよい。 The silicone resin (A) of the present invention may be a single composition or a mixture of a plurality of silicone resins having different compositions.
 本発明の(A)シリコーンレジンの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量で1,000~500,000が好ましく、2,000~300,000がより好ましい。重量平均分子量が1,000未満では縮合が十分に進んでおらず、シリコーンレジンの保存性が低くなる可能性があり、また最終エマルション組成物中で経時変化を起こす可能性がある。また経時で縮合反応が進んだ場合には、硬化被膜(塗膜)の耐クラック性が低下する可能性がある。500,000超の高分子量体では、シリコーンレジン化合物が溶剤に不溶となり、硬化被膜に固体異物や塗りムラが発生するおそれがある。 (The weight average molecular weight of the silicone resin (A) of the present invention is preferably from 1,000 to 500,000, more preferably from 2,000 to 300,000 in terms of weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC). If the weight average molecular weight is less than 1,000, condensation does not proceed sufficiently, the storage stability of the silicone resin may be low, and there is a possibility that the final emulsion composition may change with time. Further, when the condensation reaction proceeds with time, crack resistance of the cured film (coating film) may be reduced. If the molecular weight is more than 500,000, the silicone resin compound becomes insoluble in the solvent, and there is a possibility that solid foreign matter or uneven coating may occur on the cured film.
 本発明の(A)シリコーンレジンは、一般的なシリコーンレジンの製造方法に従って製造することができる。例えば、加水分解性基を有するシラン化合物を加水分解縮合させて本発明のオルガノポリシロキサンを得ることができる。 (A) The silicone resin (A) of the present invention can be produced according to a general method for producing a silicone resin. For example, the organopolysiloxane of the present invention can be obtained by hydrolytic condensation of a silane compound having a hydrolyzable group.
 (A)成分のシリコーンレジンを製造するための原料としては、加水分解性基の種類がクロル又はアルコキシであり、加水分解性基を1個、2個、3個又は4個含有し、上記条件を満たす有機置換基を有する加水分解性シランであれば、いかなるものでも使用可能である。具体的には、テトラクロルシラン、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、メチルトリクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジイソプロポキシシラン、トリメチルクロルシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルイソプロポキシシラン、エチルトリクロルシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリクロルシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリクロルシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリクロルシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、フェニルトリクロルシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、シクロヘキシルトリクロルシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、プロピルメチルジクロルシラン、プロピルメチルジメトキシシラン、プロピルメチルジエトキシシラン、ヘキシルメチルジクロルシラン、ヘキシルメチルジメトキシシラン、ヘキシルメチルジエトキシシラン、フェニルメチルジクロルシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、ジフェニルジクロルシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジメチルフェニルクロルシラン、ジメチルフェニルメトキシシラン、ジメチルフェニルエトキシシラン、及びこれらの部分加水分解物等が使用可能なシラン化合物として挙げられるが、使用可能な有機ケイ素化合物はこれに限定されるものではない。 As a raw material for producing the silicone resin of the component (A), the type of the hydrolyzable group is chloro or alkoxy, and one, two, three or four hydrolyzable groups are contained, and Any hydrolyzable silane having an organic substituent satisfying the above can be used. Specifically, tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrichlorosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltributoxysilane , Dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiisopropoxysilane, trimethylchlorosilane, trimethylmethoxysilane, trimethylethoxysilane, trimethylisopropoxysilane, ethyltrichlorosilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrichlorosilane , Propyltrimethoxysilane, propyltriethoxysilane, butyltrichlorosilane, butyltrimethoxysilane, butyl Liethoxysilane, hexyltrichlorosilane, hexyltrimethoxysilane, hexyltriethoxysilane, phenyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, cyclohexyltrichlorosilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, propylmethyldichloro Silane, propylmethyldimethoxysilane, propylmethyldiethoxysilane, hexylmethyldichlorosilane, hexylmethyldimethoxysilane, hexylmethyldiethoxysilane, phenylmethyldichlorosilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, diphenyldichloro Silane, diphenyldimethoxysilane, diphenyldiethoxysilane, dimethylphenylc Rushiran, dimethylphenyl silane, dimethyl phenyl ethoxy silane, and the like of these partial hydrolysis products thereof as the silane compound usable organosilicon compounds which can be used are not limited thereto.
 操作性、副生物の留去のしやすさ、及び原料の入手の容易さから、メトキシシラン又はエトキシシランを使用するのがより好ましい。これらのシラン化合物の1種又は2種以上の混合物を使用してもよい。 メ ト キ シ It is more preferable to use methoxysilane or ethoxysilane from the viewpoint of operability, easy removal of by-products, and availability of raw materials. One or a mixture of two or more of these silane compounds may be used.
 加水分解を実施するに際し、加水分解触媒を使用してもよい。加水分解触媒としては、従来公知の触媒を使用することができ、その水溶液がpH2~7の酸性を示すものを使用するのがよい。特に酸性のハロゲン化水素、スルホン酸、カルボン酸、酸性又は弱酸性の無機塩、イオン交換樹脂等の固体酸等が好ましい。例としてはフッ化水素、塩酸、硝酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸、ギ酸、酢酸、マレイン酸、安息香酸、乳酸、燐酸及び表面にスルホン酸又はカルボン酸基を有するカチオン交換樹脂等が挙げられる。 When performing the hydrolysis, a hydrolysis catalyst may be used. As the hydrolysis catalyst, a conventionally known catalyst can be used, and it is preferable to use a catalyst whose aqueous solution shows an acidity of pH 2 to 7. Particularly preferred are acidic hydrogen halides, sulfonic acids, carboxylic acids, acidic or weakly acidic inorganic salts, and solid acids such as ion exchange resins. Examples include hydrogen fluoride, hydrochloric acid, nitric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, formic acid, acetic acid, maleic acid, benzoic acid, lactic acid, phosphoric acid and cation exchange resins having sulfonic or carboxylic acid groups on the surface And the like.
 加水分解触媒の使用量は特に限定されるものではないが、反応を速やかに進行させるとともに、反応後の触媒の除去の容易性を考慮すると、加水分解性シラン1モルに対して0.0002~0.5モルの範囲が好ましい。 The amount of the hydrolysis catalyst to be used is not particularly limited. However, considering that the reaction proceeds promptly and that the catalyst can be easily removed after the reaction, 0.0002 to 1 mol of the hydrolyzable silane is used. A range of 0.5 mole is preferred.
 加水分解性シランと、加水分解縮合反応に要する水との量比は、特に限定されるものではないが、触媒の失活を防いで反応を十分に進行させるとともに、反応後の水の除去の容易性を考慮すると、加水分解性シラン1モルに対し、水0.1~10モルの割合が好ましい。 The ratio of the amount of the hydrolyzable silane to the amount of water required for the hydrolysis and condensation reaction is not particularly limited, but the reaction is sufficiently advanced by preventing the deactivation of the catalyst, and the amount of water after the reaction is reduced. In consideration of easiness, a ratio of 0.1 to 10 mol of water to 1 mol of the hydrolyzable silane is preferable.
 加水分解縮合反応温度は、特に限定されるものではないが、反応率を向上させるとともに、加水分解性シランが有する有機官能基の分解を防止することを考慮すると、-10~150℃が好ましい。 The hydrolysis / condensation reaction temperature is not particularly limited, but is preferably −10 to 150 ° C. in consideration of improving the reaction rate and preventing decomposition of the organic functional group of the hydrolyzable silane.
 なお、加水分解縮合反応の際には、後述する(B)一般式(II)で表される溶剤を使用してもよく、(B)溶剤以外の有機溶媒を使用してもよく、有機溶媒の具体例としては、メタノール、エタノール、プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、トルエン、キシレン等が挙げられる。(B)溶剤以外の有機溶媒を使用した場合は、ストリップ工程等の処理により、(B)一般式(II)で表される溶剤に置換する等により、(B)成分以外の溶剤を実質的に含まないようにする。 In the hydrolysis-condensation reaction, a solvent represented by the following (B) general formula (II) may be used, or an organic solvent other than the (B) solvent may be used. Specific examples include methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, toluene, xylene and the like. When an organic solvent other than the solvent (B) is used, the solvent other than the component (B) is substantially replaced by, for example, replacing the solvent represented by the general formula (II) with a solvent such as a stripping step. Not included.
 加水分解縮合反応後、中和するに十分な量の合成ヒドロタルサイト等を添加して中和した後、ろ過を行ってもよい。 After the hydrolysis-condensation reaction, a sufficient amount of synthetic hydrotalcite or the like sufficient for neutralization may be added for neutralization, followed by filtration.
[(B)成分]
 本発明(B)成分は下記一般式(II)で表される溶剤であり、このグリコールエーテル溶剤は1種単独で又は2種以上を適宜組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000006
[Component (B)]
The component (B) of the present invention is a solvent represented by the following general formula (II), and the glycol ether solvent can be used alone or in an appropriate combination of two or more.
Figure JPOXMLDOC01-appb-C000006
 式(II)において、R3、R4、R5はそれぞれ独立に、水素原子、又は炭素原子数1~8の1価炭化水素基を表し、炭素原子数1~6の1価飽和炭化水素基が好ましい。R3が水素原子の場合は、nは2以上の整数を表し、R3が炭素原子数1~8の1価炭化水素基の場合は、nは1以上の整数を表す。但し、R4とR5が同時に水素原子であることはない。nの上限は特に限定されないが、10以下とすることもできる。 In the formula (II), R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms, and a monovalent saturated hydrocarbon having 1 to 6 carbon atoms. Groups are preferred. When R 3 is a hydrogen atom, n represents an integer of 2 or more, and when R 3 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, n represents an integer of 1 or more. However, R 4 and R 5 are not hydrogen atoms at the same time. The upper limit of n is not particularly limited, but may be 10 or less.
 上記一般式(II)で表される溶剤としては、例えば、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル等のポリエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノベンジルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル等が挙げられる。中でも、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテルが好ましい。 Examples of the solvent represented by the general formula (II) include polyethylene glycol monomethyl ether such as diethylene glycol monomethyl ether and triethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, and diethylene glycol monoisobutyl. Ether, diethylene glycol monohexyl ether, diethylene glycol mono-2-ethylhexyl ether, diethylene glycol monophenyl ether, diethylene glycol monobenzyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene Recohol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monobutyl ether, propylene glycol monophenyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl Ether, diethylene glycol dibutyl ether, dipropylene glycol dimethyl ether and the like. Among them, diethylene glycol diethyl ether and dipropylene glycol dimethyl ether are preferred.
 塗料及びコーティング剤用途で広く用いられているブチルセロソルブ等のエチレングリコールモノアルキルエーテル類は、近年では毒性の懸念から使用が忌避されている問題があるため好ましくない。また、ブチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル結合を有する溶剤は、エマルション組成物にした際に系中の水と反応して加水分解し、酸を発生させることでエマルション組成物を酸性化させてしまうため好ましくない。さらに、トルエン、キシレン等のTX溶剤は、上述した点で好ましくない。 (4) Ethylene glycol monoalkyl ethers such as butyl cellosolve, which are widely used in paints and coating agents, are not preferred because of the recent problem that their use is evaded due to concerns about toxicity. Solvents having an ester bond such as butyl cellosolve acetate and propylene glycol monomethyl ether acetate react with water in the system when they are formed into an emulsion composition, hydrolyze, and acidify the emulsion composition by generating an acid. It is not preferable because it will be done. Further, TX solvents such as toluene and xylene are not preferred in the above-mentioned points.
 なお、本発明においては、(B)成分以外の有機溶剤を実質的に含有しない。これは、(B)成分以外の有機溶剤を全く含まない場合はもちろんのこと、実質的に(B)成分以外の有機溶剤を含有しない場合、すなわち、安定性に影響がなく、環境上問題の無い程度の微量の(B)成分以外の有機溶剤が、組成物中3質量%以下、好ましくは2質量%以下、より好ましくは1質量%以下程度含まれていてもよい。具体的には、(A)成分のアルコキシ残基から生じるアルコール類や、(A)成分の合成時に使用された溶剤の残渣等は、安定性に影響が無く、環境上問題の無い程度の微量であれば含まれていてもよい。 In the present invention, organic solvents other than the component (B) are not substantially contained. This is true not only when no organic solvent other than the component (B) is contained, but also when substantially no organic solvent other than the component (B) is contained. A small amount of an organic solvent other than the component (B) may be contained in the composition in an amount of 3% by mass or less, preferably 2% by mass or less, more preferably 1% by mass or less. Specifically, the amount of alcohols generated from the alkoxy residue of the component (A), the residue of the solvent used in the synthesis of the component (A), and the like are small enough to have no effect on stability and have no environmental problem. If so, it may be included.
 (B)成分の配合量は、(A)成分100質量部に対して2~100質量部であり、3~80質量部が好ましく、5~50質量部がより好ましい。(B)成分の配合量が2質量部未満だと、シリコーンレジン溶液の粘度が高く、エマルション化が困難であり、100質量部を超えても特性上の問題はないが、使用時における環境への揮散の点から望ましくない。 配合 The amount of the component (B) is 2 to 100 parts by mass, preferably 3 to 80 parts by mass, more preferably 5 to 50 parts by mass, per 100 parts by mass of the component (A). When the amount of the component (B) is less than 2 parts by mass, the viscosity of the silicone resin solution is high, and it is difficult to form an emulsion. Is undesirable from the point of volatilization.
 なお、(B)成分により希釈された(A)シリコーンレジン溶液の粘度は、25℃において10~100,000mPa・sが好ましく、100~50,000mPa・sがより好ましい。なお、粘度は回転粘度計により測定することができ、上記溶液中の(A)オルガノシリコーンレジンの濃度は75質量%とすることができる。 The viscosity of the silicone resin solution (A) diluted with the component (B) is preferably from 10 to 100,000 mPa · s at 25 ° C., more preferably from 100 to 50,000 mPa · s. The viscosity can be measured by a rotational viscometer, and the concentration of the organosilicone resin (A) in the solution can be 75% by mass.
[(C)成分]
 本発明の(C)成分である乳化剤は、上記シリコーンレジン溶液を水中に乳化分散できるものであれば特に制限はなく、1種単独で又は2種以上を適宜組み合わせて用いることができる。乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル等のノニオン系界面活性剤;アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル燐酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等のアニオン系界面活性剤;第4級アンモニウム塩、アルキルアミン酢酸塩等のカチオン系界面活性剤;アルキルベタイン、アルキルイミダゾリン等の両性界面活性剤等を挙げることができる。
[(C) component]
The emulsifier, which is the component (C) of the present invention, is not particularly limited as long as it can emulsify and disperse the silicone resin solution in water, and may be used alone or in combination of two or more. Examples of the emulsifier include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene fatty acid ester; alkyl sulfates, alkyl benzene sulfonates, and alkyl sulfosuccinates. Anionic surfactants such as acid salts, alkyl phosphates, polyoxyethylene alkyl ether sulfates, and polyoxyethylene alkyl phenyl ether sulfates; Cationic surfactants such as quaternary ammonium salts and alkylamine acetates; Examples include amphoteric surfactants such as betaine and alkylimidazoline.
 中でも、安定性の面から、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンプロピレンアルキルエーテルのようなノニオン系界面活性剤が好ましい。
 これらの具体例としては、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンプロピレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンプロピレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンプロピレントリデシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル等が挙げられる。
Among them, nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene propylene alkyl ether are preferable from the viewpoint of stability.
Specific examples of these include polyoxyethylene octyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene propylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene propylene lauryl ether, polyoxyethylene tridecyl Ether, polyoxyethylene propylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, and the like.
 (C)成分の配合量としては、(A)成分100質量部に対して1~50質量部であり、2~30質量部が好ましく、3~20質量部がより好ましい。(C)成分の配合量が、1質量部未満だとエマルション化が困難であり、50質量部を超えると、被膜の硬度や耐水性、耐熱性、撥水性、透明性、基材との密着性が低下してしまう懸念がある。 The amount of component (C) is 1 to 50 parts by mass, preferably 2 to 30 parts by mass, more preferably 3 to 20 parts by mass, per 100 parts by mass of component (A). If the amount of the component (C) is less than 1 part by mass, it is difficult to form an emulsion, and if it exceeds 50 parts by mass, the hardness, water resistance, heat resistance, water repellency, transparency, and adhesion to the substrate of the coating film are obtained. There is a concern that the properties will be reduced.
[(D)成分]
 本発明の(D)成分は水であり、精製水等特に限定されるものではない。上述した(A)~(C)成分と水とを混合し、常法に準じて乳化分散させることにより、シリコーンレジンエマルション組成物を調製することができる。この場合、(D)成分の水の含有量は(A)成分100質量部に対して25~2,000質量部であり、50~1,000質量部が好ましい。
[(D) component]
The component (D) of the present invention is water, and is not particularly limited, such as purified water. The silicone resin emulsion composition can be prepared by mixing the above-mentioned components (A) to (C) with water and emulsifying and dispersing according to a conventional method. In this case, the content of water as the component (D) is 25 to 2,000 parts by mass, preferably 50 to 1,000 parts by mass, per 100 parts by mass of the component (A).
[任意成分]
 本発明のシリコーンレジンエマルション組成物には、上記(A)~(D)成分以外に、必要に応じて、本発明の目的を損なわない範囲で種々の添加剤を配合することができる。添加剤としては、例えば、pH調整剤や、増粘剤、防腐剤、防錆剤、酸化防止剤、紫外線吸収剤等が挙げられ、それぞれ1種単独で又は2種以上を適宜組み合わせて、適量用いることができる。
[Optional component]
In addition to the components (A) to (D), various additives can be added to the silicone resin emulsion composition of the present invention, if necessary, as long as the object of the present invention is not impaired. Examples of the additive include a pH adjuster, a thickener, a preservative, a rust inhibitor, an antioxidant, an ultraviolet absorber, and the like. Each of the additives may be used alone or in appropriate combination of two or more kinds. Can be used.
[シリコーンレジンエマルション組成物]
 本発明のシリコーンレジンエマルション組成物中のエマルションの平均粒子径は、50~1,000nmが好ましく、100~800nmがより好ましい。本発明において、平均粒子径は、レーザー回折散乱法による体積平均粒径(累積平均径D50)であり、例えば、ベックマン・コールター株式会社製、動的光散乱法粒子径分布測定装置N4 Plus submicron Particle Size Analyzerにより測定することができる。
[Silicone resin emulsion composition]
The average particle size of the emulsion in the silicone resin emulsion composition of the present invention is preferably from 50 to 1,000 nm, more preferably from 100 to 800 nm. In the present invention, the average particle diameter is a volume average particle diameter (cumulative average diameter D50) by a laser diffraction scattering method, and is, for example, a dynamic light scattering particle diameter distribution measuring device N4 Plus submicron Particle manufactured by Beckman Coulter, Inc. It can be measured by a Size Analyzer.
[シリコーンレジンエマルション組成物の製造方法]
 本発明のシリコーンレジンエマルション組成物を得るためには、上記(A)~(D)成分の所定量を混合し、ホモミキサー、ホモディスパー、ホモジナイザー、コロイドミル等の混合・分散機により、撹拌して乳化、好ましくは均一に撹拌して乳化することにより調製することができる。特に、(A)~(C)成分の所定量を混合し、好ましくは均一に分散させた後、(D)成分の所定量の一部を添加し、撹拌して乳化を行った後に(D)成分の残部を加えて、混合・撹拌してシリコーンレジンエマルション組成物を調製する方法がより好ましい。
[Method for producing silicone resin emulsion composition]
In order to obtain the silicone resin emulsion composition of the present invention, predetermined amounts of the above components (A) to (D) are mixed, and the mixture is stirred by a mixer / disperser such as a homomixer, a homodisper, a homogenizer, and a colloid mill. And preferably emulsified, preferably uniformly stirred to emulsify. In particular, after a predetermined amount of the components (A) to (C) is mixed and preferably dispersed uniformly, a part of the predetermined amount of the component (D) is added, and the mixture is stirred and emulsified. A more preferred method is to add the remaining components and mix and stir to prepare a silicone resin emulsion composition.
 (A)成分の製造時、加水分解縮合の際に(B)一般式(II)で表される溶剤を使用した場合は、例えば下記の工程を有するものが好ましい。 製造 In the case of using the solvent represented by the general formula (II) (B) during the hydrolysis-condensation during the production of the component (A), for example, a solvent having the following steps is preferable.
 (I)加水分解性基を有するシラン化合物を、(B)一般式(II)で表される溶剤中で加水分解縮合させて、(A)平均式(I)で表される構造を有するシリコーンレジン及び(B)上記一般式(II)で表される溶剤を含む混合液を得る工程、
(II)(I)で得られた混合液と、(C)乳化剤と、(D)水とを混合し、撹拌して乳化する工程
 なお、上記一般式(II)で表される溶剤中には、得られたシリコーンレジンエマルション組成物中に(B)成分以外の有機溶剤を実質的に含有しない範囲で、(B)成分以外の有機溶剤を含んでいてもよい。
(I) a silane compound having a hydrolyzable group is hydrolyzed and condensed in a solvent represented by (B) a general formula (II), and (A) a silicone having a structure represented by an average formula (I) A step of obtaining a mixed solution containing the resin and (B) the solvent represented by the general formula (II),
(II) A step of mixing the mixture obtained in (I), (C) an emulsifier, and (D) water, and stirring and emulsifying the mixture. In the solvent represented by the general formula (II), May contain an organic solvent other than the component (B) in a range that does not substantially contain an organic solvent other than the component (B) in the obtained silicone resin emulsion composition.
 なお、上記(II)は下記工程とすることもできる。
(II-1)(I)で得られた混合液と、(C)乳化剤と、一部の(D)水とを混合し、撹拌して乳化する工程、
(II-2)(II-1)で得られた乳化物に、残部の(D)水を加えて混合・撹拌する工程
 なお、上記製造方法において、配合量等は上記と同じである。
In addition, the above (II) can also be the following steps.
(II-1) a step of mixing the mixture obtained in (I), (C) an emulsifier, and part of (D) water, and stirring and emulsifying the mixture.
(II-2) Step of adding remaining water (D) to the emulsion obtained in (II-1) and mixing / stirring In the above production method, the blending amount and the like are the same as above.
[硬化性組成物]
 本発明のシリコーンレジンエマルション組成物は、室温及び加熱条件下で乾燥により、硬化被膜を形成することができるが、硬化速度を加速するため、又は優れた被膜特性を得るために、シリコーンレジンエマルション組成物使用時に、縮合硬化触媒を添加し、縮合反応硬化性組成物としてもよい。
[Curable composition]
The silicone resin emulsion composition of the present invention can form a cured film by drying at room temperature and under heating conditions. However, in order to accelerate the curing rate or obtain excellent film properties, the silicone resin emulsion composition When the product is used, a condensation curing catalyst may be added to obtain a condensation reaction curable composition.
 縮合硬化触媒としては従来公知のものが使用可能で、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、酢酸ナトリウム、ギ酸ナトリウム、n-ヘキシルアミン、トリブチルアミン、ジアザビシクロウンデセン等の塩基性化合物類;テトライソプロピルチタネート、テトラブチルチタネート、アルミニウムトリイソブトキシド、アルミニウムトリイソプロポキシド、アルミニウムアセチルアセトナート、過塩素酸アルミニウム、塩化アルミニウム、コバルトオクチレート、コバルトアセチルアセトナート、亜鉛オクチレート、亜鉛アセチルアセトナート、鉄オクチレート、鉄アセチルアセトナート、スズアセチルアセトナート、ジブチルスズジオクチレート、ジブチルスズジラウレート、ジブチルスズオキサイド等の含金属化合物類;p-トルエンスルホン酸、トリクロル酢酸等の酸性化合物類;フッ化カリウム、フッ化ナトリウム、テトラメチルアンモニウムフルオライド、六フッ化ケイ酸ソーダ等の含フッ素化合物等が挙げられる。これらの縮合硬化触媒は、(A)成分のシリコーンレジン100質量部に対して、0.01~10質量部使用するのがよい。 As the condensation curing catalyst, conventionally known ones can be used. For example, lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium methylate, sodium acetate, sodium formate, n-hexylamine, tributylamine, diazabicycloun Basic compounds such as decene; tetraisopropyl titanate, tetrabutyl titanate, aluminum triisobutoxide, aluminum triisopropoxide, aluminum acetylacetonate, aluminum perchlorate, aluminum chloride, cobalt octylate, cobalt acetylacetonate, zinc Octylate, zinc acetylacetonate, iron octylate, iron acetylacetonate, tin acetylacetonate, dibutyltin dioctylate, dibutyltin dilaurate, dibutyltin Metal-containing compounds such as oxides; acidic compounds such as p-toluenesulfonic acid and trichloroacetic acid; and fluorine-containing compounds such as potassium fluoride, sodium fluoride, tetramethylammonium fluoride, and sodium hexafluorosilicate. Can be These condensation curing catalysts are preferably used in an amount of 0.01 to 10 parts by mass based on 100 parts by mass of the silicone resin (A).
[コーティング剤及び被覆物品]
 上述した本発明の組成物は、コーティング剤、特に外壁塗料用途として好適に使用可能であるが、その他の用途にも適用可能である。例えば、基材の少なくとも一面、又は一方の面に、直接又は1つ以上の他の層を介して、本発明の組成物を塗布し、それを硬化させることにより被膜を形成させ、基材の少なくとも一面に、直接又は1つ以上の他の層を介して形成されたコーティング剤の硬化被膜を有する被覆物品を得ることができる。
[Coating agent and coated article]
The above-described composition of the present invention can be suitably used as a coating agent, particularly as an outer wall paint, but can also be applied to other uses. For example, at least one surface of a substrate, or one surface, directly or via one or more other layers, the composition of the present invention is applied and cured to form a coating, A coated article can be obtained having a cured coating of a coating formed on at least one side, directly or via one or more other layers.
 上記基材としては、特に限定されるものではないが、金属、セラミック系無機材料、ガラス、木材、紙製品、プラスチック等の透明又は不透明な基材が挙げられる。 The substrate is not particularly limited, and examples thereof include transparent or opaque substrates such as metals, ceramic inorganic materials, glass, wood, paper products, and plastics.
 基材が金属の場合、鉄、ステンレス製建築構造材もしくはアルミサッシ建材等の表面保護、防食処理コーティング等の下地処理、又は自動車もしくは電化製品用の電着塗装用コーティング等に好適に使用することができる。 When the base material is metal, it should be suitably used for surface protection of iron, stainless steel building structure materials, aluminum sash building materials, etc., base treatment such as anticorrosion coating, or coating for electrodeposition coating for automobiles or electric appliances. Can be.
 基材が無機材料の場合、モルタル、コンクリートもしくはセメント製の外装用壁材、窯業パネル、ALC板、サイジングボード、石膏ボード、レンガ、ガラス、陶磁器、人工大理石等の表面保護コーティング、又は表面処理用塗料として適用することができる。 When the base material is inorganic material, for surface protection coating or surface treatment of mortar, concrete or cement exterior wall material, ceramic panel, ALC board, sizing board, gypsum board, brick, glass, ceramic, artificial marble, etc. Can be applied as a paint.
 コーティング剤の基材への塗布方法としては、公知の手法から適宜選択すればよく、例えば、フローコート、スピンコート、バーコーター、ワイヤーバー、刷毛塗り、スプレー、浸漬、ロールコート、カーテンコート、ナイフコート等の各種塗布方法を用いることができる。 The method of applying the coating agent to the substrate may be appropriately selected from known methods, and examples thereof include flow coating, spin coating, bar coater, wire bar, brush coating, spraying, dipping, roll coating, curtain coating, and knife. Various coating methods such as coating can be used.
 塗布量は特に制限されないが、通常は乾燥後の硬化被膜の厚さが0.1~1,000μmとなる量が好ましく、1~100μmとなる量であることが好ましい。 (4) The amount of coating is not particularly limited, but is usually preferably an amount such that the thickness of the cured film after drying is 0.1 to 1,000 μm, and more preferably 1 to 100 μm.
 組成物を硬化させるための方法としては、常温硬化及び加熱硬化等が挙げられる。加熱温度は特に制限されないが、100~300℃の範囲が好ましく、150~250℃の範囲がより好ましい。 (5) Examples of the method for curing the composition include room temperature curing and heat curing. The heating temperature is not particularly limited, but is preferably in the range of 100 to 300 ° C, more preferably in the range of 150 to 250 ° C.
 以下、合成例、比較合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において、「部」は「質量部」、「%」は「質量%」を表す。
 なお、下記において、重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー、HLC-8220 東ソー(株)製)を用いてテトラヒドロフラン(THF)を展開溶媒として測定した値である。また平均式(I)におけるa~eの値は、1H-NMR及び29Si-NMR測定の結果から算出した。
Hereinafter, the present invention will be specifically described with reference to Synthesis Examples, Comparative Synthesis Examples, Examples, and Comparative Examples, but the present invention is not limited to the following Examples. In the following examples, “parts” represents “parts by mass”, and “%” represents “% by mass”.
In the following, the weight average molecular weight is a value measured using GPC (gel permeation chromatography, HLC-8220 manufactured by Tosoh Corporation) using tetrahydrofuran (THF) as a developing solvent. The values of a to e in the average formula (I) were calculated from the results of 1 H-NMR and 29 Si-NMR measurements.
[1](B)溶剤を含有するシリコーンレジン化合物の合成(シリコーンレジン溶液の調製)
[合成例1-1]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)953.4g(7.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)594.9g(3.0mol)、メタンスルホン酸8.6g、ジエチレングリコールジエチルエーテル(日本乳化剤(株)製)367.4gを反応器中に配合し、均一になったところでイオン交換水324.0gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)42.9gを投入し、2時間撹拌して中和した。減圧下にてメタノール等の揮発成分を留去し、加圧濾過を行った。
[1] Synthesis of Silicone Resin Compound Containing (B) Solvent (Preparation of Silicone Resin Solution)
[Synthesis Example 1-1]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 953.4 g (7.0 mol), Phenyltrimethoxysilane: KBM-103 (Shin-Etsu Chemical Co., Ltd.) 594.9 g (3.0 mol) ), 8.6 g of methanesulfonic acid and 367.4 g of diethylene glycol diethyl ether (manufactured by Nippon Emulsifier Co., Ltd.) in a reactor. When the mixture became homogeneous, 324.0 g of ion-exchanged water was added. Stirred for hours. Magnesium / aluminum / hydroxide / carbonate / hydrate: 42.9 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. Volatile components such as methanol were distilled off under reduced pressure, and pressure filtration was performed.
[合成例1-2]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)272.4g(2.0mol)、ジメチルジメトキシシラン:KBM-22(信越化学工業(株)製)480.8g(4.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)793.2g(4.0mol)、メタンスルホン酸9.5g、ジエチレングリコールジエチルエーテル(日本乳化剤(株)製)406.1gを反応器中に配合し、均一になったところでイオン交換水280.8gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)47.4gを投入し、2時間撹拌して中和した。減圧下にてメタノール等の揮発成分を留去し、加圧濾過を行った。
[Synthesis Example 1-2]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 272.4 g (2.0 mol), Dimethyldimethoxysilane: KBM-22 (Shin-Etsu Chemical Co., Ltd.) 480.8 g (4.0 mol) Phenyltrimethoxysilane: 793.2 g (4.0 mol) of KBM-103 (Shin-Etsu Chemical Co., Ltd.), 9.5 g of methanesulfonic acid, and 406.1 g of diethylene glycol diethyl ether (Nippon Emulsifier Co., Ltd.) The mixture was blended in a vessel, and when it became uniform, 280.8 g of ion-exchanged water was added, followed by stirring at 70 ° C. for 2 hours. Magnesium aluminum hydroxide carbonate hydrate: 47.4 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and neutralized by stirring for 2 hours. Volatile components such as methanol were distilled off under reduced pressure, and pressure filtration was performed.
[合成例1-3]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)408.6g(3.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)793.2g(4.0mol)、ジフェニルジメトキシシラン:KBM-202(信越化学工業(株)製)733.2g(3.0mol)、メタンスルホン酸13.1g、ジエチレングリコールジエチルエーテル(日本乳化剤(株)製)562.8gを反応器中に配合し、均一になったところでイオン交換水291.6gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)65.7gを投入し、2時間撹拌して中和した。減圧下にてメタノール等の揮発成分を留去し、加圧濾過を行った。
[Synthesis Example 1-3]
Methyltrimethoxysilane: 408.6 g (3.0 mol) of KBM-13 (Shin-Etsu Chemical Co., Ltd.), 793.2 g (4.0 mol) of phenyltrimethoxysilane: KBM-103 (Shin-Etsu Chemical Co., Ltd.) ), Diphenyldimethoxysilane: 733.2 g (3.0 mol) of KBM-202 (manufactured by Shin-Etsu Chemical Co., Ltd.), 13.1 g of methanesulfonic acid, and 562.8 g of diethylene glycol diethyl ether (manufactured by Nippon Emulsifier Co., Ltd.) The mixture was blended in a vessel, and when it became uniform, 291.6 g of ion-exchanged water was added, followed by stirring at 70 ° C. for 2 hours. Magnesium aluminum hydroxide carbonate hydrate: 65.7 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and neutralized by stirring for 2 hours. Volatile components such as methanol were distilled off under reduced pressure, and pressure filtration was performed.
[合成例1-4]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)408.6g(3.0mol)、ジメチルジメトキシシラン:KBM-22(信越化学工業(株)製)360.6g(3.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)594.9g(3.0mol)、ジフェニルジメトキシシラン:KBM-202(信越化学工業(株)製)244.4g(1.0mol)、メタンスルホン酸10.1g、ジエチレングリコールジエチルエーテル(日本乳化剤(株)製)432.7gを反応器中に配合し、均一になったところでイオン交換水280.8gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)50.5gを投入し、2時間撹拌して中和した。減圧下にてメタノール等の揮発成分を留去し、加圧濾過を行った。
[Synthesis Example 1-4]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 408.6 g (3.0 mol), Dimethyldimethoxysilane: KBM-22 (Shin-Etsu Chemical Co., Ltd.) 360.6 g (3.0 mol) Phenyltrimethoxysilane: KBM-103 (Shin-Etsu Chemical Co., Ltd.) 594.9 g (3.0 mol), diphenyldimethoxysilane: KBM-202 (Shin-Etsu Chemical Co., Ltd.) 244.4 g (1.0 mol) ), 10.1 g of methanesulfonic acid and 432.7 g of diethylene glycol diethyl ether (manufactured by Nippon Emulsifier Co., Ltd.) in a reactor. When the mixture became homogeneous, 280.8 g of ion-exchanged water was added. Stirred for hours. Magnesium / aluminum / hydroxide / carbonate / hydrate: 50.5 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. Volatile components such as methanol were distilled off under reduced pressure, and pressure filtration was performed.
[合成例1-5]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)953.4g(7.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)594.9g(3.0mol)、メタンスルホン酸8.6g、ジプロピレングリコールジメチルエーテル(日本乳化剤(株)製)367.4gを反応器中に配合し、均一になったところでイオン交換水324.0gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)50.5gを投入し、2時間撹拌して中和した。減圧下にてメタノール等の揮発成分を留去し、加圧濾過を行った。
[Synthesis Example 1-5]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 953.4 g (7.0 mol), Phenyltrimethoxysilane: KBM-103 (Shin-Etsu Chemical Co., Ltd.) 594.9 g (3.0 mol) ), 8.6 g of methanesulfonic acid and 367.4 g of dipropylene glycol dimethyl ether (manufactured by Nippon Emulsifier Co., Ltd.) in a reactor. When the mixture became homogeneous, 324.0 g of ion-exchanged water was added. Stir for 2 hours. Magnesium / aluminum / hydroxide / carbonate / hydrate: 50.5 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. Volatile components such as methanol were distilled off under reduced pressure, and pressure filtration was performed.
[合成例1-6]
 テトラメトキシシラン76.1g(0.5mol)、メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)953.4g(7.0mol)、ヘキサメチルジシロキサン405.9g(2.5mol)、メタンスルホン酸9.1g、ジプロピレングリコールジメチルエーテル(日本乳化剤(株)製)388.2gを反応器中に配合し、均一になったところでイオン交換水248.4gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)45.3gを投入し、2時間撹拌して中和した。減圧下にてメタノール等の揮発成分を留去し、加圧濾過を行った。
[Synthesis Example 1-6]
76.1 g (0.5 mol) of tetramethoxysilane, 953.4 g (7.0 mol) of KBM-13 (manufactured by Shin-Etsu Chemical Co., Ltd.), and 405.9 g (2.5 mol) of hexamethyldisiloxane , 9.1 g of methanesulfonic acid and 388.2 g of dipropylene glycol dimethyl ether (manufactured by Nippon Emulsifier Co., Ltd.) in a reactor. When the mixture became homogeneous, 248.4 g of ion-exchanged water was added. Stirred for hours. Magnesium aluminum hydroxide carbonate hydrate: 45.3 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and neutralized by stirring for 2 hours. Volatile components such as methanol were distilled off under reduced pressure, and pressure filtration was performed.
[合成例1-7]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)953.4g(7.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)594.9g(3.0mol)、メタンスルホン酸8.6g、トルエン367.4gを反応器中に配合し、均一になったところでイオン交換水324.0gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)42.9gを投入し、2時間撹拌して中和した。濾過後、減圧留去によりメタノール等の揮発成分及びトルエンを除去し、ジエチレングリコールジエチルエーテル(日本乳化剤(株)製)367.4gを加えた後に、加圧濾過にて精製した。
[Synthesis Example 1-7]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 953.4 g (7.0 mol), Phenyltrimethoxysilane: KBM-103 (Shin-Etsu Chemical Co., Ltd.) 594.9 g (3.0 mol) ), 8.6 g of methanesulfonic acid and 367.4 g of toluene were blended in a reactor. When the mixture became homogeneous, 324.0 g of ion-exchanged water was added, followed by stirring at 70 ° C. for 2 hours. Magnesium / aluminum / hydroxide / carbonate / hydrate: 42.9 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. After filtration, volatile components such as methanol and toluene were removed by distillation under reduced pressure, and 367.4 g of diethylene glycol diethyl ether (manufactured by Nippon Emulsifier Co., Ltd.) was added, followed by purification by pressure filtration.
 合成例で得られた反応物の粘度、不揮発分(%)、得られたシリコーン化合物の重量平均分子量、平均式(I)におけるa~eの値を下記表1,2に示す。 粘度 The viscosity and nonvolatile content (%) of the reaction product obtained in the synthesis example, the weight average molecular weight of the obtained silicone compound, and the values of a to e in the average formula (I) are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[2]合成例1-1~1-7を用いたエマルション組成物の調製
[実施例2-1~2-7]
 実施例1-1~1-7で得られたシリコーンレジン溶液60部、乳化剤としてポリオキシアルキレンデシルエーテル(「ノイゲンXL-40」商品名:第一工業製薬社製、HLB=10.5)2.5部、「ノイゲンXL-400D」(商品名:第一工業製薬社製、ポリオキシアルキレンデシルエーテル、HLB=18.4の65%水溶液)3.5部及び脱イオン水34.0部を、ホモディスパーを用いて乳化分散し、シリコーンレジンエマルション組成物(実施例2-1~2-7)を得た。
[2] Preparation of emulsion composition using Synthesis Examples 1-1 to 1-7 [Examples 2-1 to 2-7]
60 parts of the silicone resin solution obtained in Examples 1-1 to 1-7, and polyoxyalkylene decyl ether ("Neugen XL-40" (trade name, manufactured by Daiichi Kogyo Seiyaku Co., HLB = 10.5)) as an emulsifier 2 3.5 parts of Neugen XL-400D (trade name: polyoxyalkylene decyl ether, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., 65% aqueous solution of HLB = 18.4) and 34.0 parts of deionized water. The mixture was emulsified and dispersed using a homodisper to obtain a silicone resin emulsion composition (Examples 2-1 to 2-7).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[3](B)溶剤を含有しないシリコーンレジン化合物の合成(シリコーンレジン溶液の調製)
[比較合成例1-1]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)953.4g(7.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)594.9g(3.0mol)、メタンスルホン酸8.6g、トルエン367.4gを反応器中に配合し、均一になったところでイオン交換水324.0gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)42.9gを投入し、2時間撹拌して中和した。濾過後、水洗工程によってメタノール等の揮発成分を除去し、加圧濾過にて精製した。
[3] (B) Synthesis of Solvent-Free Silicone Resin Compound (Preparation of Silicone Resin Solution)
[Comparative Synthesis Example 1-1]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 953.4 g (7.0 mol), Phenyltrimethoxysilane: KBM-103 (Shin-Etsu Chemical Co., Ltd.) 594.9 g (3.0 mol) ), 8.6 g of methanesulfonic acid and 367.4 g of toluene were blended in a reactor. When the mixture became homogeneous, 324.0 g of ion-exchanged water was added, followed by stirring at 70 ° C. for 2 hours. Magnesium / aluminum / hydroxide / carbonate / hydrate: 42.9 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. After filtration, volatile components such as methanol were removed by a water washing step, and purification was performed by pressure filtration.
[比較合成例1-2]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)272.4g(2.0mol)、ジメチルジメトキシシラン:KBM-22(信越化学工業(株)製)480.8g(4.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)793.2g(4.0mol)、メタンスルホン酸9.5g、トルエン406.1gを反応器中に配合し、均一になったところでイオン交換水280.8gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)47.4gを投入し、2時間撹拌して中和した。濾過後、水洗工程によってメタノール等の揮発成分を除去し、加圧濾過にて精製した。
[Comparative Synthesis Example 1-2]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 272.4 g (2.0 mol), Dimethyldimethoxysilane: KBM-22 (Shin-Etsu Chemical Co., Ltd.) 480.8 g (4.0 mol) Phenyltrimethoxysilane: 793.2 g (4.0 mol) of KBM-103 (manufactured by Shin-Etsu Chemical Co., Ltd.), 9.5 g of methanesulfonic acid, and 406.1 g of toluene were mixed in a reactor to obtain a uniform mixture. Meanwhile, 280.8 g of ion-exchanged water was added, and the mixture was stirred at 70 ° C. for 2 hours. Magnesium aluminum hydroxide carbonate hydrate: 47.4 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and neutralized by stirring for 2 hours. After filtration, volatile components such as methanol were removed by a water washing step, and purification was performed by pressure filtration.
[比較合成例1-3]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)953.4g(7.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)594.9g(3.0mol)、メタンスルホン酸8.6g、トルエン367.4gを反応器中に配合し、均一になったところでイオン交換水324.0gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)42.9gを投入し、2時間撹拌して中和した。濾過後、減圧留去によりメタノール等の揮発成分及びトルエンを除去し、メチルエチルケトン(MEK)367.4gを加えた後に、加圧濾過にて精製した。
[Comparative Synthesis Example 1-3]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 953.4 g (7.0 mol), Phenyltrimethoxysilane: KBM-103 (Shin-Etsu Chemical Co., Ltd.) 594.9 g (3.0 mol) ), 8.6 g of methanesulfonic acid and 367.4 g of toluene were blended in a reactor. When the mixture became homogeneous, 324.0 g of ion-exchanged water was added, followed by stirring at 70 ° C. for 2 hours. Magnesium / aluminum / hydroxide / carbonate / hydrate: 42.9 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. After filtration, volatile components such as methanol and toluene were removed by distillation under reduced pressure, and 367.4 g of methyl ethyl ketone (MEK) was added, followed by purification by pressure filtration.
[比較合成例1-4]
 メチルトリメトキシシラン:KBM-13(信越化学工業(株)製)953.4g(7.0mol)、フェニルトリメトキシシラン:KBM-103(信越化学工業(株)製)594.9g(3.0mol)、メタンスルホン酸8.6g、トルエン367.4gを反応器中に配合し、均一になったところでイオン交換水324.0gを添加し、70℃で2時間撹拌した。マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート:キョーワード500SH(協和化学工業(株)製)42.9gを投入し、2時間撹拌して中和した。濾過後、減圧留去によりメタノール等の揮発成分及びトルエンを除去し、酢酸エチル367.4gを加えた後に、加圧濾過にて精製した。
[Comparative Synthesis Example 1-4]
Methyltrimethoxysilane: KBM-13 (Shin-Etsu Chemical Co., Ltd.) 953.4 g (7.0 mol), Phenyltrimethoxysilane: KBM-103 (Shin-Etsu Chemical Co., Ltd.) 594.9 g (3.0 mol) ), 8.6 g of methanesulfonic acid and 367.4 g of toluene were blended in a reactor. When the mixture became homogeneous, 324.0 g of ion-exchanged water was added, followed by stirring at 70 ° C. for 2 hours. Magnesium / aluminum / hydroxide / carbonate / hydrate: 42.9 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) was charged and stirred for 2 hours to neutralize. After filtration, volatile components such as methanol and toluene were removed by distillation under reduced pressure, and 367.4 g of ethyl acetate was added, followed by purification by pressure filtration.
 比較合成例で得られた反応物の粘度、不揮発分(%)、得られたシリコーンレジン化合物の重量平均分子量、平均式(I)におけるa~eの値を下記表4に示す。 粘度 The viscosity and non-volatile content (%) of the reaction product obtained in the comparative synthesis example, the weight average molecular weight of the obtained silicone resin compound, and the values of a to e in the average formula (I) are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[4]比較合成例1-1~1-4を用いたエマルション組成物の調製
[比較例2-1~2-4]
 比較合成例1-1~1-4で得られたシリコーンレジン溶液60質量部、乳化剤として「ノイゲンXL-40」(商品名:第一工業製薬社製、ポリオキシアルキレンデシルエーテル、HLB=10.5)2.5質量部、「ノイゲンXL-400D」(商品名:第一工業製薬社製、ポリオキシアルキレンデシルエーテル、HLB=18.4の65%水溶液)3.5質量部及び脱イオン水34質量部を、ホモディスパーを用いて乳化分散し、シリコーンレジンエマルション組成物(比較例2-1~2-4)を得た。
[4] Preparation of emulsion composition using Comparative Synthesis Examples 1-1 to 1-4 [Comparative Examples 2-1 to 2-4]
60 parts by mass of the silicone resin solution obtained in Comparative Synthesis Examples 1-1 to 1-4, and "Neugen XL-40" (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., polyoxyalkylene decyl ether, HLB = 10. 5) 2.5 parts by mass, 3.5 parts by mass of “Neugen XL-400D” (trade name: polyoxyalkylene decyl ether, 65% aqueous solution of HLB = 18.4, manufactured by Daiichi Kogyo Seiyaku) and deionized water 34 parts by mass were emulsified and dispersed using a homodisper to obtain silicone resin emulsion compositions (Comparative Examples 2-1 to 2-4).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[5]被覆物品の性能評価
 上記実施例2-1~2-6で調製したシリコーンレジンエマルション組成物及び上記比較例2-1~2-4で調製したシリコーンレジンエマルション組成物を、表面が清浄な磨き鋼板にワイヤーバーを用いて硬化後の膜厚が約10μmになるように塗工し、150℃の乾燥機で1時間加熱して硬化させた。
 得られた被覆物品について目視での硬化被膜(塗膜)外観の評価と密着性を測定した。結果を下記表6,7に示す。
[5] Performance Evaluation of Coated Article The silicone resin emulsion compositions prepared in Examples 2-1 to 2-6 and the silicone resin emulsion compositions prepared in Comparative Examples 2-1 to 2-4 were cleaned. A polished steel plate was coated using a wire bar so that the film thickness after curing was about 10 μm, and was cured by heating at 150 ° C. for 1 hour.
About the obtained coated article, the evaluation of the appearance of the cured coating film (coating film) and the adhesion were measured visually. The results are shown in Tables 6 and 7 below.
(1)硬化被膜外観
 目視にて、塗膜表面が均一でクラックがないものをOK、硬化時にクラックが発生したものをNGとした。
(2)密着性試験
 JIS K5600-5-6に準じて25マスによるクロスカット試験を行った。(剥離せずに残ったマスの数)/25として表した。
(3)被膜硬度
 JIS K5600に準じて引っかき硬度(鉛筆法)の測定を行った。
(4)TX溶剤の有無
 以下の基準にて○~×の3段階で評価を行った。
 ・合成時にTX溶剤不使用 かつ最終製品にTX溶剤不含有   :○
 ・合成時にTX溶剤使用  かつ最終製品にTX溶剤不含有   :△
 ・合成時にTX溶剤使用  かつ最終製品にTX溶剤含有    :×
(1) Appearance of Cured Coating Visually, a coating having a uniform coating surface and no cracks was evaluated as OK, and one having a crack during curing was evaluated as NG.
(2) Adhesion test A cross-cut test was performed using 25 squares according to JIS K5600-5-6. (Number of squares remaining without peeling) / 25.
(3) Coating hardness The scratch hardness (pencil method) was measured according to JIS K5600.
(4) Presence or absence of TX solvent Evaluation was made in three stages of ~ to × based on the following criteria.
-No TX solvent used during synthesis and no TX solvent contained in final product: ○
・ TX solvent used during synthesis and no TX solvent contained in final product:
・ TX solvent used during synthesis and TX solvent contained in final product: ×
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例2-1~2-7のシリコーンレジンエマルション組成物は、比較例2-1~2-4のシリコーンレジンエマルション組成物に対して、硬化被膜外観、密着性、被膜硬度及び環境負荷の面で優位性があり、本発明のシリコーンレジンエマルション組成物の優位性を示している。 The silicone resin emulsion compositions of Examples 2-1 to 2-7 were different from the silicone resin emulsion compositions of Comparative Examples 2-1 to 2-4 in terms of cured coating appearance, adhesion, coating hardness, and environmental load. , Which indicates the superiority of the silicone resin emulsion composition of the present invention.

Claims (5)

  1.  下記(A)~(D)成分を含有し、(B)成分以外の有機溶剤を実質的に含有しないシリコーンレジンエマルション組成物。
    (A)下記平均式(I)で表される構造を有するシリコーンレジン:100質量部
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は独立に、水素原子、又はハロゲン原子で置換されていてもよい炭素原子数1~8のアルキル基、アラルキル基もしくはアリール基を表し、R2は水素原子、メチル基、エチル基、n-プロピル基又はi-プロピル基を表す。a、b、c、dはそれぞれ、0≦a<1、0<b≦1、0≦c<1、0≦d<1、a+b+c+d=1を満たし、eは0<e≦4を満たす数である。)
    (B)下記一般式(II)で表される溶剤:2~100質量部
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3、R4、R5はそれぞれ独立に、水素原子、又は炭素原子数1~8の1価炭化水素基を表す。R3が水素原子の場合は、nは2以上の整数を表し、R3が炭素原子数1~8の1価炭化水素基の場合は、nは1以上の整数を表す。但し、R4とR5が同時に水素原子であることはない。)
    (C)乳化剤:1~50質量部
    (D)水:25~2,000質量部
    A silicone resin emulsion composition containing the following components (A) to (D) and substantially no organic solvent other than the component (B).
    (A) Silicone resin having a structure represented by the following average formula (I): 100 parts by mass
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 independently represents a hydrogen atom, or an alkyl group, an aralkyl group or an aryl group having 1 to 8 carbon atoms which may be substituted by a halogen atom, and R 2 represents a hydrogen atom, a methyl group, Represents an ethyl group, an n-propyl group or an i-propyl group, wherein a, b, c, and d are respectively 0 ≦ a <1, 0 <b ≦ 1, 0 ≦ c <1, 0 ≦ d <1, a + b + c + d = 1 and e is a number that satisfies 0 <e ≦ 4.)
    (B) a solvent represented by the following general formula (II): 2 to 100 parts by mass
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms. When R 3 is a hydrogen atom, n is 2 or more. In the case where R 3 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, n represents an integer of 1 or more, provided that R 4 and R 5 are not hydrogen atoms at the same time.)
    (C) emulsifier: 1 to 50 parts by mass (D) water: 25 to 2,000 parts by mass
  2.  (B)成分が、ジエチレングリコールジエチルエーテル又はジプロピレングリコールジメチルエーテルである、請求項1記載のシリコーンレジンエマルション組成物。 The silicone resin emulsion composition according to claim 1, wherein the component (B) is diethylene glycol diethyl ether or dipropylene glycol dimethyl ether.
  3.  請求項1又は2記載のシリコーンレジンエマルション組成物からなるコーティング剤。 A coating agent comprising the silicone resin emulsion composition according to claim 1 or 2.
  4.  基材と、基材の少なくとも一面に、直接又は1つ以上の他の層を介して形成された請求項3記載のコーティング剤の硬化被膜とを有する被覆物品。 (4) A coated article having a base material and a cured coating of the coating agent according to claim 3 formed directly or through one or more other layers on at least one surface of the base material.
  5.  下記工程を含む請求項1又は2記載のシリコーンレジンエマルション組成物を製造する製造方法。
     (I)加水分解性基を有するシラン化合物を、(B)上記一般式(II)で表される溶剤中で加水分解縮合させて、(A)上記平均式(I)で表される構造を有するシリコーンレジン及び(B)上記一般式(II)で表される溶剤を含む混合液を得る工程、
    (II)(I)で得られた混合液と、(C)乳化剤と、(D)水とを混合し、撹拌して乳化する工程。
    3. A method for producing the silicone resin emulsion composition according to claim 1, comprising the following steps.
    (I) A silane compound having a hydrolyzable group is hydrolyzed and condensed in a solvent represented by the above general formula (II) to form (A) a structure represented by the above average formula (I) Obtaining a mixed solution containing a silicone resin and (B) a solvent represented by the general formula (II);
    (II) A step of mixing the mixture obtained in (I), (C) an emulsifier, and (D) water and stirring to emulsify.
PCT/JP2019/030315 2018-08-17 2019-08-01 Silicone resin emulsion composition, method for producing same, coating agent and coated article WO2020036073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018153536 2018-08-17
JP2018-153536 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020036073A1 true WO2020036073A1 (en) 2020-02-20

Family

ID=69524773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030315 WO2020036073A1 (en) 2018-08-17 2019-08-01 Silicone resin emulsion composition, method for producing same, coating agent and coated article

Country Status (2)

Country Link
TW (1) TW202017977A (en)
WO (1) WO2020036073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115461412A (en) * 2020-04-22 2022-12-09 信越化学工业株式会社 Organopolysiloxane-containing composition, method for producing same, coating agent, and coated article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225629A (en) * 2005-01-24 2006-08-31 Shin Etsu Chem Co Ltd Organosilicone resin emulsion composition and article having formed film of the same composition
WO2018070352A1 (en) * 2016-10-12 2018-04-19 信越化学工業株式会社 Waterproof sheet made of silicone rubber, and waterproofing method
JP2018080223A (en) * 2016-11-14 2018-05-24 信越化学工業株式会社 Silicone resin-containing emulsion composition and cured coat-forming substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225629A (en) * 2005-01-24 2006-08-31 Shin Etsu Chem Co Ltd Organosilicone resin emulsion composition and article having formed film of the same composition
WO2018070352A1 (en) * 2016-10-12 2018-04-19 信越化学工業株式会社 Waterproof sheet made of silicone rubber, and waterproofing method
JP2018080223A (en) * 2016-11-14 2018-05-24 信越化学工業株式会社 Silicone resin-containing emulsion composition and cured coat-forming substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115461412A (en) * 2020-04-22 2022-12-09 信越化学工业株式会社 Organopolysiloxane-containing composition, method for producing same, coating agent, and coated article

Also Published As

Publication number Publication date
TW202017977A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
JP4775543B2 (en) Organosilicone resin emulsion composition and method for producing the same, and article formed with a film of the composition
WO1998026019A1 (en) Silicone emulsion coating composition and processes for the preparation thereof
KR101787129B1 (en) Silicone resin composition and protective coating method using silicone resin composition
JP2008133342A (en) Emulsion coating agent composition and article coated therewith
JP2014031413A (en) Method for producing silicone resin emulsion and silicone resin emulsion
JP2007231030A (en) Film-forming silicone emulsion composition
JP7136208B2 (en) Composition containing organopolysiloxane compound, method for producing same, coating agent and coated article
JPH10251516A (en) Silane oligomer composition
JP2009197158A (en) Film-forming organopolysiloxane emulsion composition
WO2020036073A1 (en) Silicone resin emulsion composition, method for producing same, coating agent and coated article
JP2009132850A (en) Film-forming organopolysiloxane emulsion composition, and feeling improver for use in fiber
JP6666827B2 (en) Silicone resin-containing emulsion composition and cured film-forming substrate
EP0326762A2 (en) Screen printable organosiloxane resin coating compositions
EP2342299A1 (en) Film forming silicone emulsions
JPH04117473A (en) Coating composition
JP5115739B2 (en) Film-forming organopolysiloxane, emulsion composition, and process for producing organopolysiloxane emulsion
JP2021143220A (en) Organopolysiloxane, coating composition, and coated article
JP3242442B2 (en) Composition for coating
JP7463821B2 (en) Method for producing composition containing organopolysiloxane, method for producing cured film, and method for producing coated article
JPH0649412A (en) Coating composition
JP2001181556A (en) Aqueous coating composition
JPH093402A (en) Coating composition
JP7120045B2 (en) Composition containing organopolysiloxane compound
JP2008138059A (en) Organosilicone resin emulsion composition and article with coated film of the composition formed thereon
JP2005068165A (en) Silicon-containing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP