WO2020035023A1 - 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法 - Google Patents

用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法 Download PDF

Info

Publication number
WO2020035023A1
WO2020035023A1 PCT/CN2019/100787 CN2019100787W WO2020035023A1 WO 2020035023 A1 WO2020035023 A1 WO 2020035023A1 CN 2019100787 W CN2019100787 W CN 2019100787W WO 2020035023 A1 WO2020035023 A1 WO 2020035023A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
receiving
transmitting
array arrangement
sparse
Prior art date
Application number
PCT/CN2019/100787
Other languages
English (en)
French (fr)
Inventor
赵自然
游�燕
刘文国
乔灵博
金颖康
马旭明
武剑
郑志敏
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811654211.1A external-priority patent/CN109799546A/zh
Priority claimed from CN201811654154.7A external-priority patent/CN109799545A/zh
Priority claimed from CN201811653893.4A external-priority patent/CN109782366A/zh
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to EP19817109.2A priority Critical patent/EP3647826A4/en
Priority to BR112020027061-0A priority patent/BR112020027061A2/pt
Priority to JP2020571671A priority patent/JP7181319B2/ja
Publication of WO2020035023A1 publication Critical patent/WO2020035023A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Definitions

  • Embodiments of the present disclosure relate to the field of human body security, and in particular, to a multi-reception antenna array and a human body security device and method for millimeter waves.
  • an embodiment of the present disclosure provides a sparse multiple transmission multiple reception array arrangement for active millimeter wave security inspection imaging, including a set of transmitting antennas for transmitting a millimeter wave and a receiver for receiving A group of receiving antennas with a wavelength of millimeter waves reflected by the human body and transmitted by a group of transmitting antennas;
  • the group of transmitting antennas includes a plurality of transmitting antennas arranged along a first row
  • the group of receiving antennas includes a plurality of receiving antennas arranged along a second row
  • the plurality of transmitting antennas in a first row of the multiple Multiple transmitting antennas are parallel to a plurality of receiving antennas in the second row of the group of receiving antennas
  • the group of transmitting antennas in the first row are spaced apart from the group of receiving antennas in the second row and are located on the same plane
  • At least one receiving antenna is arranged within an equal length range of the second row corresponding to the interval length between two adjacent transmitting antennas arranged along the first row so that the number of transmitting antennas is less than the number of receiving antennas.
  • a sparse multiple-transmit multiple-receiver array arrangement for active millimeter wave security inspection imaging includes a set of transmitting antennas for transmitting a millimeter wave and a set of transmitting antennas for receiving A set of receiving antennas with a wavelength of millimeter waves reflected by the human body;
  • the group of transmitting antennas includes a plurality of transmitting antennas arranged along a first row
  • the group of receiving antennas includes a plurality of receiving antennas arranged along a second row
  • the plurality of transmitting antennas in a first row of the multiple Multiple transmitting antennas are arranged parallel to the plurality of receiving antennas in the second row of the group of receiving antennas, and the group of transmitting antennas in the first row are spaced apart from the group of receiving antennas in the second row and are located on the same plane
  • the separation distance between two adjacent transmitting antennas arranged along the first row is not less than twice the wavelength of the radiation wave, and the separation distance between multiple receiving antennas arranged along the second row is not less than the radiation wave. Double the wavelength, so that the total number of transmitting antennas and receiving antennas is relative to the total number of cases where the transmitting antenna and receiving antenna are arranged in pairs, separated by a double wavelength of the radiation wave cut back;
  • the sparse multiple transmission multiple reception array arrangement includes: a plurality of sections, and an included angle is formed between two adjacent sections;
  • the set of transmitting antennas and the set of receiving antennas each include portions respectively arranged in the plurality of sections.
  • One aspect of the present disclosure is to provide a sparse multiple-receive multiple-array arrangement for active millimeter-wave security inspection imaging, including parallel-arranged multiple-row transmit antennas for transmitting millimeter waves and receiving wavelengths reflected by the human body.
  • the multi-row transmitting antenna is parallel to the multi-row receiving antenna; the multi-row transmitting antenna and the multi-row receiving antenna are spaced apart from each other;
  • one row of the plurality of rows of transmitting antennas and one row of the plurality of rows of receiving antennas form a sparse multiple-transmitting multiple-receiving array arrangement as described above.
  • a sparse multiple-transmission multiple-receiving array arrangement for active millimeter wave security inspection imaging includes a set of transmitting antennas for transmitting millimeter waves and a body for receiving by the group of transmitting antennas.
  • the group of transmitting antennas includes a plurality of transmitting antennas arranged along a first arc in an arc surface
  • the group of receiving antennas includes a plurality of receiving antennas arranged along a second arc in an arc surface
  • the group The plurality of transmitting antennas arranged along the first arc of the transmitting antennas are arranged parallel to the plurality of receiving antennas arranged along the second arc of the group of receiving antennas, and the group of transmitting antennas arranged along the first arc and along the second arc
  • the array of receiving antennas are arranged in an arc and are spaced apart and located on the same arc surface;
  • At least one receiving antenna is arranged within an equal arc length range of the second arc corresponding to an interval arc length between two adjacent transmitting antennas arranged along the first arc.
  • An aspect of the present disclosure provides a human body security inspection device, including the above-mentioned sparse multiple transmission multiple reception array arrangement.
  • An aspect of the present disclosure provides a human body security inspection method using the above-mentioned human body security inspection device.
  • FIG. 1 shows a schematic diagram of a one-dimensional single-transmit single-receive antenna array
  • FIG. 2 shows a schematic diagram of a one-dimensional multiple-transmit multiple-receive antenna array
  • FIG. 3 shows a working principle diagram of a multi-transmit antenna and a multi-receive antenna
  • FIG. 4 shows a schematic diagram of an arrangement of a sparse multiple-transmit multiple-receive array according to an embodiment of the present disclosure, in which the spacing between the transmitting antennas is 4 ⁇ ;
  • FIG. 5 shows a schematic diagram of a sparse multiple-transmit multiple-receive array arrangement according to an embodiment of the present disclosure, in which the spacing between the transmitting antennas is 4 ⁇ ;
  • 6A and 6B are schematic diagrams of a sparse multiple-transmit multiple-receive array arrangement according to an embodiment of the present disclosure, in which the distance between the transmitting antennas is 3 ⁇ ;
  • FIGS. 7A and 7B are schematic diagrams of a sparse multiple-transmit multiple-receive array arrangement according to an embodiment of the present disclosure, in which the spacing between the transmitting antennas is 2 ⁇ ;
  • 8A and 8B are schematic diagrams of a sparse multiple-transmit multiple-receive array arrangement according to an embodiment of the present disclosure, in which the distance between the transmitting antennas is 5 ⁇ ;
  • FIGS. 9A and 9B are schematic diagrams of a sparse multiple-transmit multiple-receive array arrangement according to an embodiment of the present disclosure, in which transmitting antennas are divided into multiple groups;
  • FIG. 10 shows a schematic diagram of a sparse multiple-transmit multiple-receive array arrangement according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a sparse multiple-transmit multiple-receive array arrangement according to an embodiment of the present disclosure
  • FIG. 12 shows a schematic diagram of a human security device according to an embodiment of the present disclosure
  • FIG. 13 shows a schematic diagram of a human security device according to an embodiment of the present disclosure
  • FIG. 14 illustrates a schematic diagram of a human security device according to an embodiment of the present disclosure
  • FIG. 15 illustrates a curved array according to the present disclosure
  • FIG. 16 illustrates a relationship between an arc length and a chord length of an arc array according to the present disclosure
  • 17A and 17B show a schematic front view and a top view, respectively, of a sparse multi-transmit and multi-receive array arrangement according to an embodiment of the present disclosure
  • FIG. 18 shows a schematic diagram of a human security device according to an embodiment of the present disclosure
  • FIG. 19 illustrates a schematic diagram of a human security device according to an embodiment of the present disclosure
  • FIG. 20 illustrates a schematic diagram of a human body security inspection device according to an embodiment of the present disclosure
  • FIG. 21 illustrates a schematic diagram of a human security device according to an embodiment of the present disclosure
  • FIG. 22 illustrates a schematic diagram of a human security device according to an embodiment of the present disclosure
  • FIG. 23 illustrates a schematic diagram of a human security device according to one embodiment of the present disclosure.
  • the millimeter wave human body security inspection equipment currently generally uses the principle of one-dimensional single-single-single-receiving or quasi-single-single-receiving-antenna array synthetic aperture imaging.
  • the triangle in FIG. 1 represents a transmitting and receiving antenna (transmitting antenna-receiving antenna) unit
  • T is a transmitting antenna
  • R is a receiving antenna
  • TR is a transmitting antenna-receiving antenna unit.
  • the actual transceiver antenna units are arranged at equal intervals.
  • the rear end of the transceiver antenna unit (not shown) is connected to the transceiver device through a high-speed switch.
  • the first transceiver antenna unit is connected to the transceiver through the switch.
  • the device combination completes one data acquisition, and switches to control the second transceiver antenna unit through the switch and the transceiver device to complete another data acquisition, and then sequentially controls the switch to switch from the first transceiver antenna unit to the Nth transceiver antenna unit. It can complete N sets of data acquisition and obtain data information of N equivalent units required for imaging.
  • the disadvantage of the one-dimensional array imaging method of integrated transmitting and receiving or separate antenna units is that a large number of antenna resources are required.
  • the receiving and transmitting integrated antenna array requires N antenna units, and the receiving and transmitting discrete antenna array requires 2N antennas.
  • Antenna unit the transmit and receive antenna utilization rate is very low;
  • the antenna unit array requires a large number of antenna units, and the antenna unit spacing needs to meet the Nyquist adoption theorem, that is, the antenna unit is spaced at half-wavelength.
  • the physical implementation is not difficult, but as the operating frequency increases, the implementation difficulty will gradually increase.
  • Nyquist's theorem refers to the number of samples required along the aperture to be determined by several factors, including wavelength, aperture size, target size, and distance to the target. If the phase shift from one sampling point to the next is less than ⁇ , then the Nyquist rule is satisfied. In the worst case, the target is very close to the aperture and the sampling point is close to the edge of the aperture. For the spatial sampling interval ⁇ x, the worst case will be that the phase shift does not exceed 2k ⁇ x. Therefore, the sampling rule can be expressed as:
  • 2 ⁇ / k is a wavelength.
  • the sampling interval typically used by imaging systems in applications is on the order of ⁇ / 2.
  • the corresponding wavelengths are 10mm and 4mm respectively.
  • the distance between the transmitting and receiving antennas is 5mm and 2mm, respectively.
  • the transmit and receive integrated antenna array requires 200 and 500 antenna units, respectively, and the transmit and receive separate antenna array requires 400 and 1000 antenna units. It can be seen that as the frequency increases, the antenna spacing becomes smaller, and the number of required antennas increases dramatically. The smaller antenna spacing makes it extremely difficult to design the antenna unit and array layout, and it also limits the performance of the transmitting and receiving antennas.
  • the increase in the number of antennas not only increases the hardware cost and the complexity of the system, but also increases the amount of data and the acquisition time becomes. Therefore, the application of the one-dimensional array shown in FIG. 1 in high-frequency millimeter-wave (50GHz-300GHz) human body imaging security is not feasible and has no engineering value.
  • Figure 2 shows a sparsely distributed multiple input multiple output antenna layout, where T is the transmitting antenna and R is the receiving antenna.
  • this antenna layout can reduce the number of antennas, it has disadvantages: for example, due to the equivalent phase
  • the distance between the center and the transmitting and receiving antenna is relatively large, and only a backward projection algorithm can be adopted.
  • the backward projection algorithm has a slow calculation speed and a long image reconstruction time.
  • Back projection originates from computer tomography, which is an accurate imaging algorithm based on time-domain signal processing. The basic idea is that for each imaging point in the imaging area, by calculating the delay between the point and the receiving and transmitting antennas, the contributions of all echoes to it are coherently superimposed to obtain the corresponding pixel value in the image.
  • the present disclosure proposes a sparse multiple-receive multiple-receiver array arrangement scheme.
  • the data acquisition speed and antenna unit utilization rate can be greatly improved; electrical scanning is fully realized along the array direction (That is, the antennas are controlled one by one by using a switch to control the antennas or the antennas are used to scan frequency one by one through a switch).
  • No mechanical scanning is needed to achieve fast scanning and improve imaging speed.
  • a reconstruction algorithm based on fast Fourier changes can be used. Significantly increase the speed of reconstruction; at the same time reduce the complexity of the hardware and improve the realizability of the project.
  • a sparse multiple-receive multiple-receiver array arrangement for active millimeter-wave imaging in which the equivalent unit spacing is set to be slightly greater than or equal to the operating frequency through single-station equivalent and electrical switch control. At half the wavelength, the equivalent unit is the equivalent phase center.
  • FIG. 3 shows a multiple-input multiple system components XY coordinate system set in the x-axis is provided for transmitting and receiving sparse combination with A t (x t, y t ) and A r (x r , Y r ) respectively indicate a pair of transmitting and receiving antennas and their position coordinates.
  • I For a point target in the target area, I represents a scattered point target located at I (x n , y n ).
  • the distance between I and the transmitting antenna At as R t, n the distance between I and the receiving antenna A r R r, n , R 0 is the vertical distance between the center of the target area and the linear array, that is, the imaging distance.
  • the echo signal after the point target is scattered can be expressed as
  • ⁇ (x, y) is the scattering coefficient of the human body
  • K ⁇ is the spatial frequency of the frequency step signal
  • j is an imaginary unit.
  • the echo signal of the target area is:
  • the equivalent position of the transmitted and received signals can be represented by the phase center of the antenna, which is the physical center of two independent antennas or apertures.
  • one transmitting antenna corresponds to multiple receiving antennas.
  • the receiving antenna unit and the transmitting antenna unit are not located at the same position.
  • Such a system in which the transmitting and receiving antennas are spatially separated can Using a virtual system simulation, in the virtual system, a virtual position is added between each group of transmitting and receiving antennas. This position is called the equivalent phase center.
  • the echo data collected by the transceiver antenna combination can be equivalent to the echo collected by the spontaneous and self-receiving antenna at the position where the equivalent phase center Ae (xe, ye) is located.
  • the equivalent echo signal can be expressed as:
  • FIG. 4 An embodiment is shown in FIG. 4.
  • the arrangement of the sparse multiple-transmit multiple-receive array in FIG. 4 can be specifically constructed by the following steps:
  • the imaging index parameters such as the operating frequency (wavelength ⁇ ), the length of the antenna array, that is, the antenna aperture Lap, etc .;
  • the actual antenna units are arranged according to the separation mode of transmitting and receiving, and the transmitting antennas / receiving antennas are respectively distributed according to two parallel lines with an interval of dtr;
  • the arrangement of the transmitting antenna units is designed, and the total number of transmitting antennas Nt is an arbitrary number, which is determined by the antenna aperture Lap; the distance between each transmitting antenna is M ⁇ (4 ⁇ in this embodiment);
  • the total number of receiving antennas is an arbitrary number Nr, and the receiving antennas are equally spaced and the spacing is ⁇ .
  • the sparse multiple-receive multiple-array arrangement for active millimeter wave security inspection imaging constructed according to the above steps includes a set of transmitting antennas for transmitting a millimeter wave and a set of receiving for receiving a millimeter wave reflected by a human body antenna.
  • the set of transmitting antennas includes a plurality of transmitting antennas arranged along a first row
  • the set of receiving antennas includes a plurality of receiving antennas arranged along a second row
  • the first row of the group of transmitting antennas The antennas are parallel to the set of receiving antennas in the second row, and the set of transmitting antennas in the first row are spaced apart from the set of receiving antennas in the second row and are located on the same plane; wherein two phases in the first row
  • the interval length between adjacent transmitting antennas corresponds to the arrangement of more than two receiving antennas in the second row, so that the number of receiving antennas can be reduced while ensuring the clarity of the image.
  • the number of transmitting antennas is less than the number of receiving antennas. As a result, the total number of components is reduced, thereby reducing manufacturing difficulty and cost.
  • multiple transmitting antennas in the first row transmit electromagnetic wave signals one by one / step from left to right (ie, starting from the transmitting antenna at one end), and the electromagnetic wave signals of each transmitting antenna are closest to it
  • 6 or 8 receiving antennas receive (to ensure that the interval between the equivalent phase centers is half wavelength).
  • all the transmitting antennas completed one line of scanning to complete one line of scanning.
  • multiple transmitting antennas in the first row simultaneously transmit electromagnetic signals of one frequency, and the signals transmitted by each transmitting antenna are encoded, and the signals received by the receiving antennas will require After decoding, the image is applied, and once the electromagnetic wave signal is transmitted and received, a one-dimensional scan is completed.
  • the multiple transmitting antennas in the first row transmit the electromagnetic wave signals one by one / step from left to right (ie, starting from the transmitting antenna at one end), and the electromagnetic wave signals of each transmitting antenna are closest to its e.g. Six or eight receiving antennas receive it, and the frequency of the electromagnetic wave signal emitted by the transmitting antenna gradually increases.
  • all the transmitting antennas completed one line of scanning to complete one line of scanning.
  • Multiple transmitting antennas in the first row transmit electromagnetic wave signals one by one from left to right. After completing a one-dimensional scan, the transmitting antennas in the first row are translated by a certain displacement in the lateral direction. Later, the electromagnetic wave signals are transmitted one by one again, and the frequency of the electromagnetic wave signals is different from the previous transmission.
  • the transmitting antenna and the receiving antenna can also have other working modes.
  • At least one transmit antenna is aligned with at least one receive antenna such that the line between the two is perpendicular to the direction of the row of the set of transmit antennas or the set of receive antennas; however, it should be known that Not necessary.
  • connection between any one of the transmitting antennas and any one of the receiving antennas makes a certain angle with the direction of the row of the group of transmitting antennas or the group of receiving antennas; this may be advantageous, may Effective use of the space between the transmitting antenna and the nearby receiving antenna will not cause the pair of transmitting antennas to be too close to the receiving antenna.
  • the plurality of transmitting antennas are spaced apart by a distance of 4 times the wavelength of the radiation wave.
  • the set of receiving antennas includes a plurality of receiving antennas, which are spaced apart by a distance of one wavelength of the radiation wave.
  • the number of transmitting antennas and receiving antennas is determined based on the length of the array or the so-called aperture, provided the above conditions are met.
  • Figure 4 shows an arrangement where the midpoint of the connection of a transmitting antenna of a group of transmitting antennas and a corresponding receiving antenna of a group of receiving antennas is regarded as the virtual equivalent of this pair of transmitting antennas-receiving antennas Phase center, the distance between adjacent equivalent phase centers is half of the wavelength of the radiation wave.
  • the transmitting antenna indicated by the square T and the receiving antenna indicated by the circle R are connected by dashed lines, the midpoints of T and R are indicated by triangles, and the positions of the triangles indicate virtual ones. Effective phase center.
  • a transmitting antenna can generally correspond to multiple receiving antennas.
  • a transmitting antenna can correspond to three, four, five, six, seven, or eight receiving antennas.
  • One, four, five, six, seven or eight receiving antennas receive and identify.
  • the signal of the transmitting antenna may also be received by other receiving antennas.
  • the signals of other receiving antennas are not considered in practical applications, that is, each transmitting antenna is paired with a fixed corresponding receiving antenna for measurement.
  • the distance between adjacent equivalent phase centers is about half of the wavelength of the radiation wave, which can meet the final composition of a clear image, such as adjacent
  • the distance between the equivalent phase centers is 0.3 to 0.7 times the wavelength of the radiation wave. In other words, when the distance between adjacent equivalent phase centers is more than half of the wavelength of the radiation wave, the image may not be clear.
  • the distance between the set of transmitting antennas in the first row and the set of receiving antennas in the second row may be arbitrary, but the set of transmitting antennas in the first row and the second row It is advantageous for the set of receiving antennas to be spaced as small as possible, because an excessive distance causes an equivalent phase center condition (the distance between adjacent equivalent phase centers to be half of the wavelength or close to half of the wavelength) is not established; however, In practical applications, too short a distance will cause difficulties in implementation, problems with crosstalk and spatial arrangement. In one embodiment, the distance between the set of transmitting antennas in the first row and the set of receiving antennas in the second row is less than 10% of the imaging distance.
  • the sparse multiple transmit multiple receive array arrangement further includes a controllable switch for controlling the set of transmitting antennas to sequentially transmit millimeter waves.
  • the sparse multiple-receive multiple-array arrangement is configured to complete the scan of a group of transmit antennas by sequentially transmitting radiation waves through the group of transmit antennas, and the multiple-receive multiple array arrangement is arranged along a row with the group of transmit antennas.
  • Orthogonal displacement of the direction gradually completes two-dimensional scanning of the human body; and Fourier transform-based synthetic aperture holography algorithm completes imaging.
  • FIG. 4 starting from the first transmitting antenna on the left, a radiation wave of the order of millimeters is emitted, and the receiving antenna receives a return signal, and then the second transmitting antenna transmits the radiation wave, and the operations are sequentially performed to complete a scan. Then, move a step distance up or down along the paper surface, repeat the above scan again, and gradually scan the human body.
  • the sparse multiple-receive-multiple-receive array arrangement is configured as a Fourier Transform-based synthetic aperture holographic algorithm to complete image reconstruction of the correct imaging area at one time, and the imaging formula is:
  • ⁇ (x, y) is the scattering coefficient of the human body
  • R 0 is the imaging distance
  • FT 2D is the two-dimensional Fourier transform. Is a two-dimensional inverse Fourier transform, j is an imaginary unit, k is a propagation constant, and k x and k y are space propagation constants, respectively;
  • K ⁇ is the spatial frequency of the frequency step signal.
  • multiple transmitting antennas sequentially emit radiation waves.
  • the first transmitting antenna When the first transmitting antenna is working, the first to fourth receiving antennas collect echo data; when the second transmitting antenna is working, the first to eighth receiving antennas collect echo data; when the third transmitting antenna is working, The fifth to twelfth receiving antennas collect echo data; in turn, each transmitting antenna corresponds to eight receiving antennas to collect data; until the last transmitting antenna, that is, the Ntth transmitting antenna, and the last four receiving antennas collect data.
  • the step size of the scan also needs to meet the theorem, that is, half-wavelength 0.5 ⁇ .
  • the collected echo data can be expressed as S (x t , y t ; x r , y r ; K ⁇ ).
  • the imaging algorithm is to invert the image of the target from the echo expression, that is, the scattering coefficient ⁇ (x, y) of the target.
  • the synthetic aperture holography algorithm based on Fourier transform does not need to perform the entire imaging area like the subsequent projection algorithm. Point-by-point reconstruction, but using the advantages of fast Fourier transform, reconstruction of the correct imaging area is completed at one time.
  • the imaging formula is:
  • R0 is the imaging distance
  • the transmitting antenna array and the receiving antenna array are misaligned.
  • the distance between the first antenna on the left of the transmitting antenna array and the first antenna on the left of the receiving antenna array is ⁇ .
  • the sparse multiple-receive multiple-receiver array arrangement proposed in the present disclosure is based on the single-station equivalent principle, that is, the array is designed through single-station equivalent and combined with control of the control switch, so that the resulting equivalent phase center (also called equivalent in this disclosure) Unit or equivalent antenna unit) satisfies the Nyquist sampling law, that is, the pitch of the equivalent antenna units finally formed by the transmitting and receiving antenna array is slightly greater than or equal to half the corresponding wavelength of the operating frequency.
  • the embodiments of the present disclosure are based on the above principles, considering that the high-frequency millimeter-wavelength is short, in order to take into account engineering feasibility, at the same time, the array thinning design and the array switch control technology are used to finally achieve the equivalent antenna unit distribution requirement for half-wavelength spacing.
  • a sparse multiple-transmit multiple-receive array layout method of the present disclosure will be described by taking an example of a design process of an array composed of 63 transmit antennas and 248 receive antennas. Those skilled in the art can arrange the sparse arrays according to the teachings of the present invention. .
  • the required number of equivalent units and intervals are determined, that is, the distribution of the equivalent virtual array is determined.
  • the interval of the equivalent array elements needs to be at most slightly greater than or equal to half of the operating wavelength.
  • the actual antenna units are arranged according to the separation mode of transmitting and receiving, and the transmitting antennas / receiving antennas are respectively distributed according to two parallel lines.
  • the linear distance can be any value, but as small as possible (it can be ⁇ , 1.5 ⁇ , 2 ⁇ , 3 ⁇ ). , 4 ⁇ , etc.), based on the actual design antenna unit size and array size design requirements, the array size of the present invention is 1m.
  • the total number of transmitting antennas is 63 (expandable to any other number, and the specific number is determined by factors such as imaging resolution and imaging range), and the distance between each transmitting antenna is 4 ⁇ .
  • the total number of receiving antennas is 248 (can be expanded to any other number, and the specific number is determined by factors such as imaging resolution and imaging range.
  • the distance between each receiving antenna is ⁇ .
  • the transmitting antenna array and the receiving antenna The first position of the array is shown in Figure 4.
  • the design of the first position of the transmitting antenna array and the receiving antenna array is misaligned.
  • the distance between the first antenna on the left of the transmitting antenna array and the first antenna on the left of the receiving antenna array is ⁇ (may be any other value, generally Take any value between [-5 ⁇ , 5 ⁇ ]).
  • the first transmitting antenna When working, the first transmitting antenna performs a difference on the first M / 2 (ie 4) receiving antennas; the second to Nt-1 transmitting antenna distributions correspond to the M (ie 8) receiving antennas; the first Nt transmitting antennas perform a difference on the last M / 2 (ie, 4) receiving antennas to obtain an equivalent unit distribution with an equal interval of 0.5 ⁇ , and finally an equivalent element distribution meeting the requirements of the Nyquist sampling law; Control, switch the transmitting antenna in turn to complete a data acquisition. Then, the synthetic aperture scan is performed in the orthogonal direction of the array to complete the scanning of the two-dimensional aperture. Finally, combined with the fast Fourier transform based synthetic aperture holographic algorithm, fast reconstruction can be achieved and imaging tests can be completed.
  • FIG. 6 shows another embodiment of the present disclosure.
  • the difference from the embodiment of FIG. 4 is that the distance between each transmitting antenna is 3 ⁇ , and the distance between each receiving antenna is ⁇ .
  • the first transmission The antenna is aligned with the first receiving antenna.
  • the first transmitting antenna and the first receiving antenna are staggered by ⁇ .
  • FIG. 7 shows another embodiment of the present disclosure.
  • the difference from the embodiment of FIG. 4 is that the distance between each transmitting antenna is 2 ⁇ , and the distance between each receiving antenna is ⁇ .
  • the first transmission The antenna is aligned with the first receiving antenna.
  • the first transmitting antenna and the first receiving antenna are staggered by ⁇ .
  • FIG. 8 shows another embodiment of the present disclosure.
  • the difference from the embodiment of FIG. 4 is that the distance between each transmitting antenna is 5 ⁇ , and the distance between each receiving antenna is ⁇ .
  • the first transmission The antenna is aligned with the first receiving antenna.
  • the first transmitting antenna and the first receiving antenna are staggered by ⁇ .
  • the first transmitting antenna performs a difference on the first five receiving antennas; the second to Nt-1 transmitting antenna distributions correspond to the 10 receiving antennas; and the Nt transmitting antenna performs the last five receiving antennas.
  • the difference is obtained to obtain an equivalent unit distribution with an equal interval of 0.5 ⁇ , and finally an equivalent element distribution that meets the requirements of the Nyquist sampling law is obtained.
  • the transmitting antennas are sequentially switched to complete a data acquisition.
  • the synthetic aperture scan is performed in the orthogonal direction of the array to complete the scanning of the two-dimensional aperture.
  • fast reconstruction can be achieved and imaging tests can be completed.
  • 51 transmitting antennas and 250 receiving antennas can be set to form a 1m array.
  • a sparse multiple-receive multiple-array arrangement for active millimeter-wave security inspection imaging includes parallel-arranged multiple-row transmit antennas for transmitting millimeter waves. And a plurality of parallel-arranged receiving antennas with a wavelength of millimeter waves for receiving reflected by the human body, so that the transmitting antenna can transmit a stronger signal, the receiving antenna can obtain a stronger signal, and the scanning accuracy is improved.
  • Each row of transmit antennas includes multiple transmit antennas, and each row of receive antennas includes multiple receive antennas.
  • the electromagnetic wave signal transmitted by the transmitting antenna can be encoded, so that the signal received by the receiving antenna that is intended to receive its signal can be identified and decoded for generating an image.
  • the multi-row transmitting antenna is parallel to the multi-row receiving antenna; the multi-row transmitting antenna and the multi-row receiving antenna are spaced apart from each other.
  • the one-row transmitting antenna of the multi-row transmitting antenna and the one-row receiving antenna of the multi-row receiving antenna constitute the aforementioned sparse multiple-transmit multiple-receiving array arrangement.
  • the plurality of transmitting antennas may be divided into multiple transmitting antenna groups, and the wavelengths of the radiation waves are doubled between the transmitting antennas in the same transmitting antenna group; The interval distance is not less than an integer multiple of the wavelength of the radiation wave.
  • FIG. 9A shows the arrangement of a transmitting antenna and a receiving antenna of this embodiment. In the figure, t indicates a transmitting antenna, and r indicates a receiving antenna.
  • t1 and t2 are close together and can be regarded as a group
  • t3 and t4 are close together and can be regarded as a group
  • the equivalent phase center of t1-r1 is adjacent to the equivalent phase center of t2-r2
  • the equivalent phase center of t2-r2 Adjacent to the equivalent phase center of t1-r2, that is, the equivalent phase centers of t1-r1, t1-r2 are not arranged adjacently, but the equivalent of t2-r1 is arranged between the two Phase center.
  • Such an arrangement needs to encode the signal of the transmitting antenna, and the receiving antenna decodes the received encoded signal of the preset transmitting antenna and then processes it.
  • the receiving antenna cannot or does not process signals from other transmitting antennas.
  • a signal fed back at an equivalent phase center spaced at intervals close to half the wavelength of the millimeter wave is used to construct a millimeter wave image.
  • multiple transmitting antennas can be divided into multiple transmitting antenna groups.
  • the interval between the transmitting antennas in the same transmitting antenna group is not less than an integer multiple of the wavelength of the radiation wave;
  • the interval distance is not less than an integer multiple of the wavelength of the radiation wave.
  • FIG. 9B illustrates one embodiment of the present disclosure. Observing FIG.
  • t1 and t2 two antennas (for example, t1 and t2) are in a group, t1 is at 1.5 times the millimeter wave wavelength of r1, the distance between t1 and t2 is 3 times the millimeter wave wavelength, and the distance between t2 and t3 It is 5 times the millimeter wave wavelength, and the distance between the transmitting antenna t and the receiving antenna r is 3 times the millimeter wave wavelength.
  • the distance between the transmitting antenna and the receiving antenna can be any value, as long as the receiving and transmitting antenna array can be placed. However, in order to make the receiving and transmitting antennas less coupled with each other, the distance between the transmitting antenna and the receiving antenna is generally less than 10% of the imaging distance. .
  • the equivalent phase centers of the transmitting antenna-receiving antenna groups are alternately arranged. It should be noted that before reconstructing the millimeter wave image, the order of the data of the receiving antenna needs to be adjusted to the correct order. In FIG. 9A, when the length of the array is 1 meter, 128 receiving antennas are required, and the number of transmitting antennas is 64. Taking an imaging distance of 0.35 m, the pitch of the transmitting and receiving antenna array is 3 millimeter wave wavelengths.
  • transmitting antenna t1 transmits and receiving antennas r1-r4 receive; then transmitting antenna t2 transmits and receiving antenna r1-r4 receives; then transmitting antenna t3 transmits and receiving antenna r1-r8 receives; then transmitting antenna t4 transmits and receives Antennas r1-r8 receive; according to this rule, transmitting antenna t67 transmits, receiving antenna r121-r128 receives; finally transmitting antenna t68 transmits, receiving antenna r121-r128 receives; a total of 504 equivalent phase center points are formed. Before reconstructing the image, the order of the equivalent phase centers needs to be adjusted, that is, they are arranged from left to right in space.
  • an interval distance between the plurality of transmitting antennas is greater than one wavelength of a radiating wave, and the plurality of receiving antennas are spaced at a distance greater than one wavelength of the radiating wave; and, the The total number of the plurality of transmitting antennas is different from the total number of the plurality of receiving antennas and is mutually prime.
  • one transmitting antenna corresponds to five receiving antennas
  • one receiving antenna can receive and identify the encoded signals of the four transmitting antennas
  • an equivalent phase center determined by one transmitting antenna and corresponding multiple receiving antennas The equivalent phase centers determined by adjacent transmitting antennas and corresponding receiving antennas are alternately arranged, and the equivalent phase centers are spaced 0.3 to 0.7 times the wavelength of the millimeter wave, and are generally 0.5 times.
  • the array structure in FIG. 10 is a periodic sparse coprime array.
  • the number of array elements in the array of the transmitting antenna and the array of the receiving antenna is coprime, and a quasi-single-station approximation is used.
  • the position of the transmitting and receiving arrays so as to obtain an equivalent uniform line array.
  • N 1 and N 2 are not equal, and N 1 and N 2 have no common divisors. Generally, Take N 2 > N 1 .
  • the length of a periodic array antenna is D, then the pitch of the transmitting antenna is D / N 1 , and the pitch of the receiving antenna is D / N 2 .
  • a transmitting antenna will correspond to 2N 2 equivalent phase centers, so the total number of equivalent phase centers in a period is 2N 1 N 2 .
  • the number of periodic array periods of the array is M, and the total number of equivalent phase centers is 2MN 1 N 2
  • the condition that the spacing dtr of the transmit and receive antenna array satisfies is the same as the array structure in the previous embodiment.
  • the sparse multiple-receive-multiple-receive array arrangement for active millimeter-wave security inspection imaging constructed according to the above embodiment includes a group of transmitting antennas for transmitting a millimeter wave and a group of wavelengths for receiving a millimeter wave reflected by a human body.
  • the group of transmitting antennas includes a plurality of transmitting antennas arranged in a first row
  • the group of receiving antennas includes a plurality of receiving antennas arranged in a second row
  • the plurality of transmitting antennas are arranged parallel to the plurality of receiving antennas in the second row of the group of receiving antennas, and the group of transmitting antennas in the first row are spaced apart from the group of receiving antennas in the second row and are located on the same plane;
  • the separation distance between two adjacent transmitting antennas arranged along the first row is not less than twice the wavelength of the radiation wave, and the separation distance between multiple receiving antennas arranged along the second row is not less than the radiation wave.
  • the wavelength is doubled, so that the total number of transmitting antennas and receiving antennas is arranged in a one-to-one transmitting antenna and receiving antenna group at a wavelength of one radiating wave relative to the transmitting antennas and receiving antennas. Under circumstances reduce the total number of spaced apart, thereby reducing the manufacturing cost and difficulty.
  • the sparse multiple transmit multiple receive array arrangement further includes a controllable switch for controlling the set of transmitting antennas to sequentially transmit millimeter waves.
  • the multiple transmitting antennas in the first row transmit the electromagnetic wave signals one by one from the left to the right (that is, starting from the transmitting antenna at one end), and the electromagnetic wave signals of each transmitting antenna are closest to it, for example, 6 Or 8 receiving antennas to receive (to ensure that the interval between the equivalent phase centers is half wavelength).
  • all the transmitting antennas completed one line of scanning to complete one line of scanning.
  • multiple transmitting antennas in the first row simultaneously transmit electromagnetic signals of one frequency, and the signals transmitted by each transmitting antenna are encoded, and the signals received by the receiving antennas will require After decoding, the image is applied, and once the electromagnetic wave signal is transmitted and received, a one-dimensional scan is completed.
  • the multiple transmitting antennas in the first row transmit the electromagnetic wave signals one by one / step from left to right (ie, starting from the transmitting antenna at one end), and the electromagnetic wave signals of each transmitting antenna are closest to its e.g. Six or eight receiving antennas receive it, and the frequency of the electromagnetic wave signal emitted by the transmitting antenna gradually increases.
  • all the transmitting antennas completed one line of scanning to complete one line of scanning.
  • a plurality of transmitting antennas in the first row transmit electromagnetic wave signals one by one from left to right. After completing a one-dimensional scan, the first row of transmitting antennas are in a lateral direction along the arrangement direction. After translating a certain displacement, the electromagnetic wave signals are transmitted one by one again, and the frequency of the electromagnetic wave signals is different from the previous transmission.
  • the transmitting antenna and the receiving antenna can also have other working modes. As described above with respect to the embodiments of FIGS. 4-8, details are not repeated here.
  • An embodiment of the present disclosure also discloses a sparse multiple transmission multiple reception array arrangement for active millimeter wave security inspection imaging, including a parallel array of multiple rows of transmitting antennas for transmitting a millimeter wave and a receiver for receiving reflections from the human body.
  • each row of transmitting antennas including multiple transmitting antennas, each row of receiving antennas including multiple receiving antennas; the multiple rows of transmitting antennas being parallel to the multiple rows of receiving antennas;
  • the multi-row transmitting antenna and the multi-row receiving antenna are spaced apart from each other; wherein the one-row transmitting antenna in the multi-row transmitting antenna and the one-row receiving antenna in the multi-row receiving antenna constitute a sparse multiple transmitting antenna as described above with reference to FIGS. 4-10.
  • Multi-receive array arrangement I won't repeat them here.
  • the sparse multiple-transmit multiple-receive array arrangement may include: a plurality of sections, an included angle formed between two adjacent sections; the set of transmitting antennas and the set of receiving antennas, respectively Including parts respectively arranged in the plurality of sections.
  • the sparse multiple-receiving multiple-receiver array arrangement since the sparse multiple-receiving multiple-receiver array arrangement includes a plurality of sections, and an angle is formed between the sections, the multiple sections can surround a semi-closed space, as shown in FIG.
  • multiple segments arranged in a sparse multiple-receiver array surround an object and can face different sides of the object.
  • the shape of the sparse multiple-receiver array arrangement is a polyline shape.
  • the sparse multiple-receiving multiple-receiver array arrangement having a plurality of sections and forming an angle between the sections can inspect the human body to be inspected from different angles, improving to a certain extent The imaging effect of the body side of the human body is achieved.
  • the sparse multiple-receiver array arrangement includes a first section arranged in a first vertical plane; and, a second section arranged in a second vertical plane, where the first The angle ⁇ 12 between the vertical plane and the second vertical plane is not zero; the set of transmitting antennas and the set of receiving antennas respectively include a portion arranged in the first section and a portion arranged in the second section .
  • the sparse multiple-receiving array arrangement including the first section and the second section constituting the included angle can measure the object from two directions.
  • ⁇ 12 may be any angle from 90 degrees to 180 degrees.
  • the sparse multiple-receiving multiple-array arrangement further includes a third section arranged in a third vertical plane, the third vertical plane being in contact with the first vertical plane and the second vertical plane.
  • the included angles are respectively ⁇ 13 and ⁇ 23 and are not zero, and the set of transmitting antennas and the set of receiving antennas each include a portion arranged in a third section.
  • This arrangement is shown in FIG. 11, where smaller dots indicate transmitting antennas and larger dots indicate receiving antennas.
  • the sparse multiple-receiver array arrangement includes the first section 1, the second section 2, and the third section 3 which constitute the included angle.
  • the sparse multiple-receiver array arrangement can measure the object from three directions .
  • ⁇ 13 and ⁇ 23 may be any angle from 90 degrees to 180 degrees.
  • the sparse multiple-transmission multiple-receiving array arrangement may further include a fourth section, a fifth section, and the like, and those skilled in the art may set the requirements based on the teachings of the present disclosure.
  • the arrangement of the transmitting antenna and the receiving antenna on each section of the sparse multiple-transmit multiple-receiving array arrangement may be arranged according to the manner of the above embodiments, and is not repeated here.
  • FIG. 12 shows a schematic diagram of a human body security inspection device.
  • the human body security inspection device includes a first sparse multiple transmission multiple reception array arrangement 100 and a second sparse multiple transmission multiple reception array arrangement 200, wherein the first sparse multiple transmission multiple reception array arrangement and the second sparse
  • the multiple transmission and multiple reception array arrangement is arranged oppositely so as to define an inspection space S for performing human body security inspection between the two.
  • the first sparse multiple-receive multiple-array arrangement 100 and the second sparse multiple-receive multiple-receive array arrangement are configured to be able to translate in a vertical direction in a vertical plane to perform scanning. For example, the first sparse multiple transmission and multiple reception array arrangement 100 is scanned from the top to the bottom in its vertical plane, and the second sparse multiple transmission and multiple reception array arrangement 200 is scanned from the bottom to the top in the vertical plane in which it is located.
  • the complete scattered field data is obtained, and then transmitted to the data processing unit, which is reconstructed using a holographic algorithm to form the image of the measured body. Finally, the image is transmitted to, for example, a display unit and displayed to an operator for observation.
  • a first guide rail device 104 may be provided on the first frame 101, and the first sparse multiple transmission multiple reception array arrangement 100 is slidably connected to the first guide rail device 104 so as to be able to move along the first guide device 104.
  • the first guide rail device 104 is moved to perform a first scan on the object to be measured (human body);
  • a second guide rail device 204 may be provided on the second frame 201, and the second sparse multiple transmission multiple reception array arrangement 200 is capable of sliding. It is connected to the second rail device 204 so as to be able to move along the second rail device 204 to perform a second scan on the object (human body) to be measured.
  • the first rail device 104 and the second rail device 204 may be parallel to each other.
  • the human body security inspection device may include a driving device 400 for driving the first sparse multiple-receiver array arrangement 100 to move along the first rail device 104 and / or driving the second sparse multiple-receiver array arrangement 200 along The second rail device 204 moves.
  • the human body security inspection device may further include a restraining device for restraining a kinematic relationship between the first sparse multiple-receiving multiple-receiving array arrangement 100 and the second sparse multiple-receiving multiple-receiving array arrangement 200 to make the first sparse multiple-receive multiple-array arrangement 200
  • the multiple-receiving array arrangement 100 and the second sparse multiple-receiving multiple-receiving array arrangement 200 can only move in opposite directions.
  • the constraint device restricts the positional relationship between the first sparse multiple-received multiple-received array arrangement 100 and the second sparse multiple-received multiple-received array arrangement 200 so that the first sparse multiple-received multiple-array arrangement 200
  • the arrangement 100 and the second sparse multiple-receive array arrangement 200 can only move at an equal rate.
  • the restraining device is a rigid connecting wire band 300 that connects the first sparse multiple-receiving multiple-receiving array arrangement 100 and the second sparse multiple-receiving multiple-receive array arrangement 200.
  • the first guide rail device 104 is provided with a first fixed pulley 103
  • the second guide rail device 204 is provided with a second fixed pulley 203
  • the connecting line belt passes from the first sparse multiple transmission multiple reception array arrangement 100 to the first
  • the fixed pulley 103 and the second fixed pulley 203 are connected to the second sparse multiple transmission multiple reception array arrangement 200.
  • the human body security inspection device includes a first frame 101, and the first sparse multiple transmission multiple reception array arrangement 100 is on the first frame 101 so as to be able to move up and down on the first frame 101.
  • the human body security inspection device includes a second frame 201, and the second sparse multiple transmission multiple reception array arrangement 200 is arranged on the second frame 201 so as to be able to move up and down on the second frame 201.
  • a first guide rail device 104 may be provided on the first frame 101, and the first sparse multiple transmission array arrangement 100 is slidably connected to the first guide rail device 104 so as to be able to move along the first guide rail device 104 to Perform a first scan of the object to be measured (human body);
  • a second rail device 204 may be provided on the second frame 201, and the second sparse multiple transmission multiple reception array arrangement 200 is connected to the second rail device 204 in a sliding manner. Thereby, it is possible to move along the second rail device 204 to perform a second scan on the object (human body) to be measured.
  • the driving device includes a first driving device 401 that directly drives the first sparse multiple-receiving multiple-receiving array arrangement 100, and the first sparse multiple-receiving multiple-receive array arrangement 100 is connected to the first rail device 104 through a first driving device.
  • the driving device includes a second driving device 402 that directly drives the second sparse multiple transmission and multiple reception array arrangement 200, and the second sparse multiple transmission and multiple reception array arrangement 200 is connected to the second rail device 204 through a second driving device.
  • the first sparse multiple-transmission multiple-receiver array arrangement 100 and the second sparse multiple-transmit multiple-receiver array arrangement 200 can be independently controlled, for example, the movement directions of the two can be the same or opposite, and the movement speeds can be the same or different.
  • restraining devices such as the first and second pulleys and the rigid connecting wire belt 300 are not provided.
  • the first sparse multiple-receive multiple-receive array arrangement 100 and the second sparse multiple-receive multiple-receive array arrangement 200 together, the first sparse multiple-receive multiple-receive array arrangement 100 and the second sparse multiple-receive multiple-array arrangement The time at which the array arrangement 200 emits millimeter waves is different.
  • the first sparse multiple-receive array arrangement 100 transmits millimeter waves from the lowest frequency to the highest frequency
  • the second sparse multiple-receive array arrangement 200 transmits millimeter waves from the highest frequency to the lowest frequency
  • the two sparse multiple transmission and multiple reception array arrangement 200 is from the lowest frequency to the highest frequency
  • the first sparse multiple transmission and multiple reception array arrangement 100 is from the highest frequency to the lowest frequency.
  • the first sparse multiple-transmit multiple-receiver array arrangement 100 and the second sparse multiple-transmit multiple-receiver array arrangement 200 can be scanned separately, and the scanning signals of both are used to form an image of a human body.
  • the human body security inspection device further includes a processor or a controller for controlling the driving device to perform a scanning operation, and also for processing the received millimeter wave signal to arrange the first sparse multiple transmission multiple reception array 100 and
  • the second sparse multiple-transmit multiple-receiver array arrangement of 200 millimeter-wave echo signals processes an image of a human body surface, and can also be used to receive externally inputted instructions and the like.
  • the human body security inspection device of the present disclosure When using the human body security inspection device of the present disclosure to perform a human body security inspection on a human body such as a passenger, the human body only needs to stay in the human body security inspection device, that is, between the first sparse multiple transmission multiple reception array arrangement 100 and the second sparse multiple transmission multiple reception array arrangement 200.
  • One sparse multiple-receiver array arrangement 100 and the second sparse multiple-receiver array arrangement 200 scan or scan one side of the human body at the same time, and then send the scanned signals to the processor or controller for image processing through the processor or controller Process the image of the human body to complete a convenient and quick inspection.
  • FIGS. 12-14 show three other embodiments of the present disclosure, which may be variants of the embodiment shown in FIGS. 12-14, respectively, in which the first sparse multiple-receiver array arrangement 100 and the second sparse multiple-receiver array arrangement 100
  • the receiving array arrangement 200 adopts the embodiment shown in FIG. 11, that is, a first sparse multiple transmitting and multiple receiving array arrangement 100 and a second sparse multiple transmitting and multiple receiving array arrangement 200 composed of a plurality of angled sections are used instead of FIG. 12.
  • the first sparse multiple transmission multiple reception array arrangement 100 and the second sparse multiple transmission multiple reception array arrangement 200 arranged along a straight line in -14.
  • the arrangement of the other aspects of the embodiment of Figs. 21-23 is similar to that of the embodiment shown in Figs. 12-14, and is not repeated here.
  • the transmitting antennas arranged along the first row and the receiving antennas arranged along the second row are set along the first arc and
  • the second arc arrangement is shown in Figs. 15, 17A and 17B; in other words, the transmitting antennas arranged along the first row and the receiving antennas arranged along the second row are arranged in one arc surface, the two rows are parallel, but the transmission The antenna and the receiving antenna are respectively arranged along an arc.
  • the following describes the implementation method of the transmitting antenna and the receiving antenna arranged along an arc.
  • is the opening angle corresponding to the arc
  • R is the radius of the arc
  • O ( ⁇ ) is a higher-order term.
  • the difference e can be expressed as,
  • FIG. 6A and FIG. 7 show that the transmitting antenna and the receiving antenna are arranged along a straight line. In fact, according to this embodiment, the transmitting antenna and the receiving antenna are arranged along an arc.
  • FIGS. 8A to 11 is modified in accordance with the present embodiment so that the transmitting antenna and the receiving antenna are arranged along an arc. The arrangement and operation of these transmitting antennas and receiving antennas are similar to the foregoing embodiments.
  • the TR pitch dtr can be any value.
  • the receiving and transmitting antenna array can be placed, which makes the mutual coupling small, and on the other hand, dtr / z0 ⁇ 10% is required, and z0 is the imaging distance.
  • the principle of imaging in an arc arrangement is similar to that of an array structure arranged in a straight line.
  • these transmitting antennas and receiving antennas are arranged along an arc.
  • the sparse array transceiver device of the present disclosure may be arranged in a straight line first, and then bent into an arc shape.
  • a human body security inspection device which includes one or more of the above-mentioned sparse multiple transmission multiple reception array arrangements.
  • FIG. 18 shows a schematic diagram of a human body security inspection device.
  • the human body security inspection device includes a first sparse multiple transmission multiple reception array arrangement 100 and a second sparse multiple transmission multiple reception array arrangement 200, wherein the first sparse multiple transmission multiple reception array arrangement and the second sparse
  • the multiple-receiving and multiple-receiving array arrangement is respectively arranged along the arc surface and is oppositely arranged so as to define an inspection space S for performing human body security inspection therebetween.
  • the first sparse multiple-receive multiple-array arrangement 100 and the second sparse multiple-receive multiple-receive array arrangement are configured to be able to translate in a vertical direction in a vertical plane to perform scanning. For example, the first sparse multiple transmission and multiple reception array arrangement 100 is scanned from the top to the bottom in its vertical plane, and the second sparse multiple transmission and multiple reception array arrangement 200 is scanned from the bottom to the top in the vertical plane in which it is located.
  • the complete scattered field data is obtained, and then transmitted to the data processing unit, which is reconstructed using a holographic algorithm to form the image of the measured body. Finally, the image is transmitted to, for example, a display unit and displayed to an operator for observation.
  • the human body security inspection device includes a first frame 101, and a first sparse multiple-receiving multiple-receiving array arrangement 100 arranged along an arc surface is on the first frame 101, so that it can be mounted on the first frame. 101 moves up and down.
  • the human body security inspection device includes a second frame 201, and a second sparse multiple transmission multiple reception array arrangement 200 arranged along an arc surface is arranged on the second frame 201 so as to be able to move up and down on the second frame 201.
  • a first rail device 104 may be provided on the first frame 101, and a first sparse multiple-receive multiple-receive array arrangement 100 arranged along an arc surface is connected to the slideable manner.
  • the first guide rail device 104 can thus be moved along the first guide rail device 104 to perform a first scan on the object (human body) to be measured;
  • a second guide rail device 204 can be provided on the second frame 201, and the first
  • the two-sparse multiple-receiving multiple-receiving array arrangement 200 is slidably connected to the second rail device 204 so as to be able to move along the second rail device 204 to perform a second scan on the object to be measured (human body).
  • the first rail device 104 and the second rail device 204 may be parallel to each other.
  • the human body security inspection device may include a driving device 400 for driving the first sparse multiple-receiver array arrangement 100 to move along the first rail device 104 and / or driving the second sparse multiple-receiver array arrangement 200 along The second rail device 204 moves.
  • the human body security inspection device may further include a restraining device for restraining a kinematic relationship between the first sparse multiple-receiving multiple-receiving array arrangement 100 and the second sparse multiple-receiving multiple-receiving array arrangement 200 to make the first sparse multiple-receive multiple-array arrangement 200
  • the multiple-receiving array arrangement 100 and the second sparse multiple-receiving multiple-receiving array arrangement 200 can only move in opposite directions.
  • the constraint device restricts the positional relationship between the first sparse multiple-received multiple-received array arrangement 100 and the second sparse multiple-received multiple-received array arrangement 200 so that the first sparse multiple-received multiple-array arrangement 200
  • the arrangement 100 and the second sparse multiple-receive array arrangement 200 can only move at an equal rate.
  • the restraining device is a rigid connecting wire band 300 that connects the first sparse multiple-receiving multiple-receiving array arrangement 100 and the second sparse multiple-receiving multiple-receive array arrangement 200.
  • the first guide rail device 104 is provided with a first fixed pulley 103
  • the second guide rail device 204 is provided with a second fixed pulley 203
  • the connecting line belt passes from the first sparse multiple transmission multiple reception array arrangement 100 to the first
  • the fixed pulley 103 and the second fixed pulley 203 are connected to the second sparse multiple transmission multiple reception array arrangement 200.
  • the human body security inspection device includes a first frame 101, and a first sparse multiple-receive-multiple-receive array arrangement 100 arranged along an arc surface is on the first frame 101 so that the first frame 101 Move up and down.
  • the human body security inspection device includes a second frame 201, and a second sparse multiple transmission multiple reception array arrangement 200 arranged along an arc surface is arranged on the second frame 201 so as to be able to move up and down on the second frame 201.
  • a first guide rail device 104 may be provided on the first frame 101, and the first sparse multiple transmission array arrangement 100 is slidably connected to the first guide rail device 104 so as to be able to move along the first guide rail device 104 to Perform a first scan of the object to be measured (human body);
  • a second rail device 204 may be provided on the second frame 201, and the second sparse multiple transmission multiple reception array arrangement 200 is connected to the second rail device 204 in a sliding manner. Thereby, it is possible to move along the second rail device 204 to perform a second scan on the object (human body) to be measured.
  • the driving device includes a first driving device 401 that directly drives the first sparse multiple-receiving multiple-receiving array arrangement 100, and the first sparse multiple-receiving multiple-receiving array arrangement 100 is connected to the first rail device 104 through the first driving device 401.
  • the driving device includes a second driving device 402 that directly drives the second sparse multiple transmission and multiple reception array arrangement 200, and the second sparse multiple transmission and multiple reception array arrangement 200 is connected to the second rail device 204 through a second driving device.
  • the first sparse multiple-transmission multiple-receiver array arrangement 100 and the second sparse multiple-transmit multiple-receiver array arrangement 200 can be independently controlled.
  • the movement directions of the two can be the same or opposite, and the movement speeds can be the same or different.
  • restraining devices such as the first and second pulleys and the rigid connecting wire belt 300 are not provided.
  • the first sparse multiple-receive multiple-receive array arrangement 100 and the second sparse multiple-receive multiple-receive array arrangement 200 together, the first sparse multiple-receive multiple-receive array arrangement 100 and the second sparse multiple-receive multiple-array arrangement The time at which the array arrangement 200 emits millimeter waves is different.
  • the first sparse multiple-receive array arrangement 100 transmits millimeter waves from the lowest frequency to the highest frequency
  • the second sparse multiple-receive array arrangement 200 transmits millimeter waves from the highest frequency to the lowest frequency
  • the two sparse multiple transmission and multiple reception array arrangement 200 is from the lowest frequency to the highest frequency
  • the first sparse multiple transmission and multiple reception array arrangement 100 is from the highest frequency to the lowest frequency.
  • the first sparse multiple-transmit multiple-receiver array arrangement 100 and the second sparse multiple-transmit multiple-receiver array arrangement 200 can be scanned separately, and the scanning signals of both are used to form an image of a human body.
  • the human body security inspection device further includes a processor or a controller for controlling the driving device to perform a scanning operation, and also for processing the received millimeter wave signal to arrange the first sparse multiple transmission multiple reception array 100 and
  • the second sparse multiple-transmit multiple-receiver array arrangement of 200 millimeter-wave echo signals processes an image of a human body surface, and can also be used to receive externally inputted instructions and the like.
  • the human body security inspection device of the present disclosure When using the human body security inspection device of the present disclosure to perform a human body security inspection on a human body such as a passenger, the human body only needs to stay in the human body security inspection device, that is, between the first sparse multiple transmission multiple reception array arrangement 100 and the second sparse multiple transmission multiple reception array arrangement 200.
  • One sparse multiple-receiver array arrangement 100 and the second sparse multiple-receiver array arrangement 200 scan or scan one side of the human body at the same time, and then send the scanned signals to the processor or controller for image processing through the processor or controller Process the image of the human body to complete a convenient and quick inspection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种用于主动式毫米波安检成像的稀疏多发多收阵列布置(100,200)、人体安检设备以及人体安检方法。多发多收阵列布置(100,200)包括用于发射波长为毫米波的一组发射天线(t)和用于接收被人体反射的波长为毫米波的一组接收天线(r)。发射天线(t)沿第一行排列,接收天线(r)沿第二行排列,第一行平行于第二行且间隔开,两个相邻的发射天线(t)之间对应地布置多于两个接收天线(r)。该布置可提高数据采集速度与天线单元利用率,同时降低硬件复杂度,提高工程实用性。

Description

用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法 技术领域
本公开的实施例涉及人体安检领域,特别涉及用于毫米波的包括多发多收天线阵列和人体安检设备和方法。
背景技术
当前国内外反恐形式日益严峻,恐怖分子利用隐匿方式随身携带枪支、刀具以及爆炸物、毒品等危险品对航天安全构成了极大的威胁。机场、火车站等特点场合的人体安检技术得到了各国交通运输管理部门的高度重视。
现有技术中已有基于主动式毫米波太赫兹人体成像技术。该技术工作原理是设备首先向人体辐射毫米波,然后通过探测器接收经过人体或可疑物散射后的毫米波,通过重建算法对人体进行成像。然而,计算量大,成像速度较慢。使用的发射毫米波和探测毫米波的天线多,设备复杂,制造难度大。
发明内容
根据本公开的一方面,本公开的实施例提供一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的一组发射天线和用于接收由所述一组发射天线发射的被人体反射的波长为毫米波的一组接收天线;
其中,所述一组发射天线包括沿第一行排列的多个发射天线,所述一组接收天线包括沿第二行排列的多个接收天线,所述一组发射天线的第一行的多个发射天线平行于所述一组接收天线的第二行的多个接收天线,且第一行所述一组发射天线与第二行所述一组接收天线间隔开,且位于同一平面;
其中,与沿第一行排列的两个相邻的发射天线之间的间隔长度对应的第二行的相等长度范围内布置至少一个接收天线使得发射天线的数量少 于接收天线的数量。
本公开的一个方面,一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的一组发射天线和用于接收由所述一组发射天线发射的被人体反射的波长为毫米波的一组接收天线;
其中,所述一组发射天线包括沿第一行排列的多个发射天线,所述一组接收天线包括沿第二行排列的多个接收天线,所述一组发射天线的第一行的多个发射天线平行于所述一组接收天线的第二行的多个接收天线排列,且第一行所述一组发射天线与第二行所述一组接收天线间隔开,且位于同一平面;
其中,沿第一行排列的两个相邻的发射天线之间的间隔距离不小于辐射波的波长的一倍,沿第二行排列的多个接收天线之间的间隔距离不小于辐射波的波长的一倍,使得发射天线和接收天线的总数量相对于发射天线和接收天线被布置成成对的发射天线和接收天线组合之间以一倍辐射波的波长间隔开的情形下的总数量减少;
其中,所述稀疏多发多收阵列布置包括:多个部段,相邻的两个部段之间形成夹角;
所述一组发射天线和所述一组接收天线分别包括分别布置在所述多个部段的部分。
本公开的一个方面,提供一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的平行排列的多行发射天线和用于接收被人体反射的波长为毫米波的平行排列的多行接收天线,每一行发射天线包括多个发射天线,每一行接收天线包括多个接收天线;
所述多行发射天线平行于所述多行接收天线;所述多行发射天线和所述多行接收天线彼此间隔开;
其中,多行发射天线中的一行发射天线与多行接收天线中的一行接收天线构成如上述的稀疏多发多收阵列布置。
本公开的一个方面,一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射毫米波的一组发射天线和用于接收由所述一组发射天线发射的被人体反射的毫米波的一组接收天线;
其中,所述一组发射天线包括在弧面内沿第一弧排列的多个发射天线,所述一组接收天线包括在弧面内沿第二弧排列的多个接收天线,所述一组发射天线的沿第一弧排列的多个发射天线平行于所述一组接收天线的沿第二弧排列的多个接收天线排列,且沿第一弧排列所述一组发射天线与沿第二弧排列所述一组接收天线间隔开,且位于同一弧面;
其中,与沿第一弧排列的两个相邻的发射天线之间的间隔弧长对应的第二弧的相等弧长范围内布置至少一个接收天线。
本公开的一方面提供一种人体安检设备,包括上述的稀疏多发多收阵列布置。
本公开的一方面提供一种使用上述的人体安检设备实施的人体安检方法。
附图说明
图1示出一种一维单发单收天线阵列的示意图;
图2示出一种一维多发多收天线阵列的示意图;
图3示出多发射天线-多接收天线工作原理图;
图4示出本公开的一个实施例的稀疏多发多收阵列布置的示意图,其中发射天线之间的间距为4λ;
图5示出本公开的一个实施例的稀疏多发多收阵列布置的示意图,其中发射天线之间的间距为4λ;
图6A、6B示出本公开的一个实施例的稀疏多发多收阵列布置的示意图,其中发射天线之间的间距为3λ;
图7A、7B示出本公开的一个实施例的稀疏多发多收阵列布置的示意图,其中发射天线之间的间距为2λ;
图8A、8B示出本公开的一个实施例的稀疏多发多收阵列布置的示意图,其中发射天线之间的间距为5λ;
图9A、9B示出根据本公开的一个实施例的稀疏多发多收阵列布置的示意图,其中发射天线分成多个组;
图10示出根据本公开的一个实施例的稀疏多发多收阵列布置的示意 图;
图11示出根据本公开的一个实施例的稀疏多发多收阵列布置的示意图;
图12示出根据本公开的一个实施例的人体安检设备的示意图;
图13示出根据本公开的一个实施例的人体安检设备的示意图;
图14示出根据本公开的一个实施例的人体安检设备的示意图;
图15示出根据本公开的弧形阵列;
图16示出根据本公开的弧形阵列的弧长与弦长的关系;
图17A、17B分别示出根据本公开的一个实施例的稀疏多发多收阵列布置的示意的正面图和俯视图;
图18示出根据本公开的一个实施例的人体安检设备的示意图;
图19示出根据本公开的一个实施例的人体安检设备的示意图;
图20示出根据本公开的一个实施例的人体安检设备的示意图;
图21示出根据本公开的一个实施例的人体安检设备的示意图;
图22示出根据本公开的一个实施例的人体安检设备的示意图;
图23示出根据本公开的一个实施例的人体安检设备的示意图。
具体实施方式
尽管本公开的容许各种修改和可替换的形式,但是它的具体的实施例通过例子的方式在附图中示出,并且将详细地在本文中描述。然而,应该理解,随附的附图和详细的描述不是为了将本公开的限制到公开的具体形式,而是相反,是为了覆盖落入由随附的权利要求限定的本公开的精神和范围中的所有的修改、等同形式和替换形式。附图是为了示意,因而不是按比例地绘制的。
在本说明书中使用了“上”、“下”、“左”、“右”等术语,并不是为了限定元件的绝对方位,而是为了描述元件在视图中的相对位置帮助理解;本说明书中“顶侧”和“底侧”是相对于一般情况下,物体正立的上侧和下侧的方位;“第一”、“第二”等也不是为了排序,而是为了区别不同部件。
下面参照附图描述根据本公开的多个实施例。
先介绍用于本公开的实施例的毫米波人体安检的一些基本的知识。主动式毫米波人体安检设备目前一般采用一维单发单收或者准单发单收天线阵列合成孔径成像原理。参照图1,在图1中三角形表示一个收发天线(发射天线-接收天线)单元,用T表示发射天线,R表示接收天线,TR表示发射天线-接收天线单元。在成像需要孔径长度方向上按照半波长间距原则,等间隔布置实际的收发天线单元,收发天线单元后端(未示出)通过高速开关与收发设备相连,第一个收发天线单元通过开关与收发设备组合完成一次数据采集,通过开关切换,控制第二个收发天线单元通过开关与收发设备组合,再完成一次数据采集,依次控制开关从第一个收发天线单元切换到第N个收发天线单元,可以完成N组数据采集,获取成像所需N个等效单元的数据信息。
收发一体或收发分置的天线单元一维阵列成像方式缺点是需要数量庞大的天线资源,为了实现N个天线单元的采样,收发一体天线阵列需要N个天线单元,收发分置天线阵列需要2N个天线单元,收发天线利用率很低;另外,由于天线单元阵列实现需要天线单元数较多,且天线单元间距需要满足奈奎斯特采用定理,即天线单元间隔半波长间距要求,当工作频率较低时,物理实现难度不大,但随着工作频率的提高,实现难度将逐步增加。
奈奎斯特采用定理指的是,沿孔径需要的采样数量由几种因素确定,包括波长、孔径尺寸、目标尺寸以及到目标的距离。如果从一个采样点至下一个采样点的相移小于π,则满足奈奎斯特法则。最坏的情况将会是,目标非常接近孔径并且采样点接近孔径的边缘。对于空间取样间隔Δx,最坏的情况将是相移不超过2kΔx。因此,取样法则可以表示为:
Δx<(λ/4)
其中,λ=2π/k是波长。
这个结果比通常的要求严格,因为目标(例如人体)通常距离孔径距离较近,天线波束宽度通常小于180度。基于此原因,应用的成像系统通常采用的取样间隔在λ/2的量级。
以工作频率24-30GHz和70-80GHz为例进行对比,对应波长分别为 10mm和4mm,要实现图1所示一维阵列,则要求收发天线间距为分别为5mm和2mm,假设天线孔径长度为1m时,收发一体天线阵列分别需要200和500个天线单元,收发分置天线阵列需要400和1000个天线单元。可以看到随着频率的增加天线间隔变小,所需天线数目急剧增加。天线间隔变小使得天线单元的设计以及阵列布局设计都存在极大的难度,同时还会限制收发天线性能。天线数目的增加,不仅增加了硬件成本,增加了系统的复杂度,而且数据量增加,采集时间变成。因此,图1所示一维阵列在高频毫米波(50GHz-300GHz)人体成像安检方面应用实现的可行性不高,不具备工程实现价值。
图2示出一种稀疏分布多输入多输出的天线布局方式,其中T表示发射天线,R表示接收天线,这种天线布局方式虽然可以降低天线的数目,但是有缺点:例如,由于等效相位中心与收发天线距离较大,只能采用后向投影算法,而后向投影算法计算速度慢,图像重建时间长。后向投影起源于计算机断层扫描技术是一种基于时域信号处理的精确的成像算法。其基本思想是对成像区域内每一成像点,通过计算该点到收、发天线之间的延时,将所有回波对它的贡献相干叠加从而得到该点在图像中对应的像素值,这样对整个成像区域逐点地进行相干叠加处理,即可获得成像区域的图像。这种算法最大的缺点是需要对整个成像区间每一个点重建,重建速度慢,耗时长;此外,两端的接收天线是密集分布的,间隔需满足奈奎斯特采用定理。如170GHz-260GHz频段,典型的发射天线和接收天线口径为10.8mm,而中心频率对应的半波长为1.36mm。显然,这种天线排布方式是不适合的。一种解决方法就是稀疏接收天线,使得等效相位中心间隔比半波长大,但是天线采样不足会导致重建图像的伪影严重。
为解决上述不足,本公开提出一种稀疏多发多收阵列布置方案,通过多发多收阵列稀疏化设计与控制技术,可大幅提高数据采集速度与天线单元利用率;沿阵列方向完全地实现电扫描(即通过开关控制天线的一个接一个天线工作或通过开关控制天线逐个使用频率扫描),无需机械扫描,可以实现快速扫描,提高成像速度;而且可以采用基于快速傅里叶变化的重建算法,进而显著提高重建速度;同时降低硬件复杂度,提高工程可实 现性。
根据本公开的实施例,提供一种用于主动式毫米波成像的稀疏多发多收阵列布置,其中通过单站等效与电开关控制,等效单元间距被设置为略大于或者等于工作频率对应波长的一半,所述等效单元为等效相位中心。
为了方便解释,参照图3示出了一种多发多收系统,构件X-Y坐标系统,设定在x轴上设置稀疏进行收发组合,用A t(x t,y t)和A r(x r,y r)分别表示一对收发组合的发射天线和接收天线及其所在的位置坐标。
对于目标区域内的一个点目标,I表示位于I(x n,y n)处的散射的点目标,定义I与发射天线At的距离为R t,n,I与接收天线A r间的距离为R r,n,R 0为目标区域中心与直线阵列之间的垂直距离,也即成像距离。
Figure PCTCN2019100787-appb-000001
Figure PCTCN2019100787-appb-000002
经过点目标散射后的回波信号可以表示为
S n(x t,y t;x r,y r;K ω)=σ(x n,y n)exp[-jK ω(R t,n+R r,n)]
其中,σ(x,y)是人体的散射系数,K ω为频率步进信号的空间频率,j为虚数单位。
对于收发组合A tA r接收到目标区域的回波信号为:
Figure PCTCN2019100787-appb-000003
其中D为成像区域。
发射和接收信号的等效位置可以由天线的相位中心来表示,该等效位置为两个独立天线或孔径的物理中心。在多发多收系统中,一个发射天线对应着多个接收天线,本公开的实施例中,接收天线单元和发射天线单元被设置为不处于同一位置,这种发射和接收天线空间分离的系统可以使用一个虚拟的系统模拟,在虚拟系统中,在每一组发射与接收天线之间添加 一个虚拟位置,这个位置被称为等效相位中心。收发天线组合所采集的回波数据,可以等效为其等效相位中心Ae(xe,ye)所在位置自发自收天线所采集的回波。
对于该收发组合,各天线之间物理坐标的关系可以表示为:
Figure PCTCN2019100787-appb-000004
采用等效相位中心原理,等效回波信号可以表示为:
Figure PCTCN2019100787-appb-000005
根据本公开的上述的主动式毫米波成像的稀疏多发多收阵列布置原理,图4示出一个实施例。图4中的稀疏多发多收阵列布置具体可以通过以下步骤来构造:
先根据成像指标参数如工作频率(波长λ)、天线阵列长度,也就是天线孔径Lap等要求,确定所需的等效单元数目N及间隔d;
然后,按照收发分置方式布置实际天线单元,发射天线/接收天线分别按照相互平行的两条直线分布,间隔为dtr;
接着,设计发射天线单元的布置,发射天线总数Nt为任意数,由天线孔径Lap决定;每个发射天线的间距为Mλ(在本实施例中为4λ);
接下来,设计接收天线单元的布置,接收天线总数为任意数Nr,接收天线等间距分布,间距为λ。
根据以上步骤构造的用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的一组发射天线和用于接收被人体反射的波长为毫米波的一组接收天线。在本实施例中,所述一组发射天线包括沿第一行排列的多个发射天线,所述一组接收天线包括沿第二行排列的多个接收天线,第一行所述一组发射天线平行于第二行所述一组接收天线,且第一行所述一组发射天线与第二行所述一组接收天线间隔开,且位于同一平面;其中,第一行中两个相邻的发射天线之间的间隔长度对应地在第二行中布置多于两个接收天线,从而可以在保证图像清晰度的同时减 少接收天线的数量,发射天线的数量比接收天线的数量少,从而减少了总的元件数量,因而降低制造难度和成本。
在稀疏多发多收阵列布置工作时,可以有多种形式。例如,在一个实施例中,第一行的多个发射天线从左向右(即,从一端部的发射天线开始)逐个/步进发射电磁波信号,每个发射天线的电磁波信号被最靠近它的例如6个或8个接收天线接收(保证等效相位中心之间的间隔为半波长)。最后所有的发射天线完成一次信号的发射即完成了一行的扫描。在一个实施例中,(例如)另一种工作形式,第一行的多个发射天线同时发射一个频率的电磁波信号,每个发射天线发射的信号都被编码,接收天线接收到的信号将需要解码后进行图像应用,完成一次电磁波信号的发射和接收即完成一次一维扫描。在一个实施例中,第一行的多个发射天线从左向右(即,从一端部的发射天线开始)逐个/步进发射电磁波信号,每个发射天线的电磁波信号被最靠近它的例如6个或8个接收天线接收,并且发射天线发射的电磁波信号的频率逐渐增大。最后所有的发射天线完成一次信号的发射即完成了一行的扫描。在一个实施例中,(例如)还有一种工作形式,第一行多个发射天线从左向右逐个发射电磁波信号,在完成一次一维扫描之后,第一行发射天线沿横向方向平移一定位移后,再次逐个发射电磁波信号,电磁波信号的频率与前次发射不同。
发射天线和接收天线还可以有其他工作方式。
在一个实施例中,至少一个发射天线与至少一个接收天线对齐使得两者之间的连线垂直于所述一组发射天线或所述一组接收天线的行的方向;然而,应该知道这并不是必须的。
然而,在另一实施例中,任意一个发射天线与任意一个接收天线的连线与所述一组发射天线或所述一组接收天线的行的方向成一定角度;这可以是有利的,可以有效利用发射天线和附近的接收天线之间的空间,不会使得一对发射天线与接收天线靠得太近。
在一个实施例中(作为示例),多个发射天线以4倍的辐射波的波长的距离间隔开。所述一组接收天线包括多个接收天线,以一倍的辐射波的波长的距离间隔开。发射天线和接收天线在满足上述条件的情况下,根据 阵列布置的长度或所谓的孔径确定数量。
图4示出一种布置方式,一组发射天线的一个发射天线和一组接收天线的对应的一个接收天线的连线的中点被看作这一对发射天线-接收天线的虚拟的等效相位中心,相邻的等效相位中心之间的距离为辐射波的波长的一半。在图4(下面的图5也类似)中,正方形T表示的发射天线与圆形R表示的接收天线之间用虚线连接,T和R的中点用三角形表示,三角形位置就表示虚拟的等效相位中心。一个发射天线一般可以对应多个接收天线,例如一个发射天线可以对应3个、4个、5个、6个、7个或8个接收天线,即一个发射天线发出的信号被最靠近它的3个、4个、5个、6个、7个或8个接收天线接收并识别。实际上发射天线的信号可能还被其他接收天线接收到,然而在实际应用中并不考虑其他接收天线的信号,也就是说每个发射天线与固定对应的接收天线配对实施测量。每一对发射天线-接收天线之间具有一个虚拟的等效相位中心,这些虚拟的等效相位中心,即图4中的三角形所示的等效相位中心的位置彼此间隔开的距离为辐射波的波长的一半。为了减少发射天线和接收天线的数量,并且一般避免等效相位中心的重叠,相邻的等效相位中心之间的距离为辐射波的波长的大约一半可以满足最终构成清晰的图像,例如相邻的等效相位中心之间的距离为辐射波的波长的0.3至0.7倍。换句话说,相邻的等效相位中心之间的距离大于辐射波的波长的一半太多的时候,则可能图像不清晰。
根据本公开的实施例,第一行所述一组发射天线与第二行所述一组接收天线间隔开的距离可以是任意的,但是,第一行所述一组发射天线与第二行所述一组接收天线间隔开的距离尽可能小是有利的,因为距离过大会造成等效相位中心条件(相邻等效相位中心的间距为波长的一半或接近波长的一半)不成立;然而,在实际应用中,距离过短会造成实现困难,串扰与空间排布不下的问题。在一个实施例中,第一行所述一组发射天线与第二行所述一组接收天线间隔开的距离小于成像距离的10%。
在一个实施例中,稀疏多发多收阵列布置还包括可以控制开关,用于控制所述一组发射天线依次发射毫米波。
在一个实施例中,稀疏多发多收阵列布置配置成通过所述一组发射天 线依次发射辐射波完成一组发射天线的扫描,通过多发多收阵列布置沿与所述一组发射天线的行的方向的正交方向位移逐步完成人体二维扫描;以及基于傅里叶变换的合成孔径全息算法完成成像。如图4所示,从左侧第一个发射天线开始,发射毫米量级辐射波,接收天线接收返回信号,随后第二个发射天线发射辐射波,依次操作,完成一次扫描。随后,沿纸面的向上或向下方向移动一个步进距离,再次重复上述扫描,逐步扫描人体。
在一个实施例中,稀疏多发多收阵列布置配置成基于傅里叶变换的合成孔径全息算法,一次对正确成像区域完成图像重建,成像公式为:
Figure PCTCN2019100787-appb-000006
其中,σ(x,y)是人体的散射系数,R 0是成像距离,FT 2D为二维傅里叶变换,
Figure PCTCN2019100787-appb-000007
为二维傅里叶逆变换,j为虚数单位,k为传播常数、k x、k y分别是空间传播常数;
Figure PCTCN2019100787-appb-000008
为一对发射天线-接收天线组合接收到人体的回波信号;K ω为频率步进信号的空间频率。
工作时,通过控制开关,多个发射天线依次发射辐射波。第1个发射天线工作时,第1到第4个接收天线采集回波数据;第2个发射天线工作时,第1到第8个接收天线采集回波数据;第3个发射天线工作时,第5到第12个接收天线采集回波数据;依次地,每一个发射天线对应8个接收天线采集数据;直到最后一个发射天线,即第Nt个发射天线,最后4个接收天线采集数据。
当所有发射天线依次发射后,完成一次横向数据采集,最终得到(Nt-1)×8个回波数据。根据上述等效相位中心原理,这些回波数据可以等效为(Nt-1)×8个等效相位中心所采集到的回波数据。并且,这些等效相位中间的间隔为0.5λ,满足奈奎斯特采样定律要求的等效元分布。
然后在阵列正交方向进行合成孔径扫描,即机械扫描,完成对二维孔 径的扫描,扫描的步长同样需要满足采用定理,即半波长0.5λ。
完成二维孔径扫描后,采集到的回波数据可以表示为S(x t,y t;x r,y r;K ω)。
最后,结合基于快速傅里叶变化的合成孔径全息算法,可以实现快速重建,完成成像。
成像算法的目的就是从回波表达式中反演出目标的像,即目标的散射系数σ(x,y),基于傅里叶变换的合成孔径全息算法,无需像后续投影算法一样对整个成像区域逐点重建,而是利用快速傅里叶变换的优势,一次对正确成像区域重建完成。成像公式为:
Figure PCTCN2019100787-appb-000009
其中R0为成像距离。
在另一实施例中,如图5所示,发射天线阵列与接收天线阵列进行错位设计,发射天线阵列左首第一个天线与接收天线阵列左首第一个天线间距为λ。
本公开中提出的稀疏多发多收阵列布置是基于单站等效原理,即设计阵列通过单站等效并结合控制开关的控制,使得最终形成的等效相位中心(本公开中也称等效单元或等效天线单元)满足奈奎斯特采样定律,也就是,收发天线阵列最终形成的等效天线单元的间距略大于或者等于为工作频率对应波长的一半。本公开的实施例依据上述原则,考虑到高频段毫米波波长较短,为兼顾工程可实现性,同时采用阵列稀疏化设计与阵列开关控制技术,最终实现半波长间距等效天线单元分布要求。
下面参照图4,以63个发射天线与248个接收天线组成阵列的设计过程为例,介绍本公开的稀疏多发多收阵列布置方法,本领域技术人员可以根据本发明的教导进行稀疏阵列的布置。
首先,根据成像指标参数要求,如成像分辨率、旁瓣电平等参数确定所需的等效单元数目及间隔,也就是确定等效虚拟阵列的分布。等效阵元的间隔需要最大略大于或者等于工作波长的一半。
然后,按照收发分置方式布置实际天线单元,发射天线/接收天线分别 按照相互平行的两条直线分布,直线间距可以是任意值,但是尽可能的小(可以是λ、1.5λ、2λ、3λ、4λ等),以实际设计天线单元尺寸与阵列尺寸设计要求合理选择,本发明阵列尺寸1m设计。
接着,如图4所示,设计发射天线单元的布置,发射天线总数为63(可扩展为其他任意数,具体数目由成像分辨率、成像范围等因素决定),每个发射天线间距为4λ。
接下来,设计接收天线单元的布置,接收天线总数为248(可扩展为其他任意数,具体数目由成像分辨率、成像范围等因素决定,每个接收天线间距为λ。发射天线阵列与接收天线阵列首位对其时如图4所示。
图5示出的实施例中,发射天线阵列与接收天线阵列首位错位设计,发射天线阵列左首第一个天线与接收天线阵列左首第一个天线间距为λ(可以是其他任意值,一般取为[-5λ,5λ]之间的任意值)。
工作时,第一个发射天线对前应M/2(即4)个接收天线进行差值;第二个至Nt-1个发射天线分布对应M(即8)个接收天线进行差值;第Nt个发射天线对最后M/2(即4)个接收天线进行差值,得到等间隔0.5λ的等效单元分布,最终得到满足奈奎斯特采样定律要求的等效元分布;通过电开关控制,依次切换发射天线完成一次数据采集。然后在阵列正交方向进行合成孔径扫描,完成对二维孔径的扫描。最后,结合基于快速傅里叶变化的合成孔径全息算法,可以实现快速重建,完成成像测试。
图6示出本公开的另一实施例,与图4的实施例不同的是,每个发射天线的间距为3λ,每个接收天线之间的间距为λ,其中图6A中,首个发射天线和首个接收天线对齐,图6B中,首个发射天线和首个接收天线错开一个λ。
图7示出本公开的另一实施例,与图4的实施例不同的是,每个发射天线的间距为2λ,每个接收天线之间的间距为λ,其中图7A中,首个发射天线和首个接收天线对齐,图7B中,首个发射天线和首个接收天线错开一个λ。
图8示出本公开的另一实施例,与图4的实施例不同的是,每个发射天线的间距为5λ,每个接收天线之间的间距为λ,其中图8A中,首个发 射天线和首个接收天线对齐,图8B中,首个发射天线和首个接收天线错开一个λ。工作时,第一个发射天线对前应5个接收天线进行差值;第二个至Nt-1个发射天线分布对应10个接收天线进行差值;第Nt个发射天线对最后5个接收天线进行差值,得到等间隔0.5λ的等效单元分布,最终得到满足奈奎斯特采样定律要求的等效元分布;通过电开关控制,依次切换发射天线完成一次数据采集。然后在阵列正交方向进行合成孔径扫描,完成对二维孔径的扫描。最后,结合基于快速傅里叶变化的合成孔径全息算法,可以实现快速重建,完成成像测试。例如,可以设置51个发射天线和250个接收天线,形成1m的阵列。
根据本公开的另一实施例,与以上实施例不同的是,一种用于主动式毫米波安检成像的稀疏多发多收阵列布置包括用于发射波长为毫米波的平行排列的多行发射天线和用于接收被人体反射的波长为毫米波的平行排列的多行接收天线,从而,发射天线能够发射更强的信号,接收天线能够获得更强的信号,扫描精度被改善。每一行发射天线包括多个发射天线,每一行接收天线包括多个接收天线。这样,多行发射天线依次发射毫米量级辐射波,完成一次扫描,大大提高了扫描效率,一次扫描覆盖的人体面积增加,提高扫描速度。在本实施例中,发射天线发射的电磁波信号可以进行编码,使得预定接收其信号的接收天线接收到的信号可以被识别并解码以便用于生成图像。
在本实施例中,所述多行发射天线平行于所述多行接收天线;所述多行发射天线和所述多行接收天线彼此间隔开。多行发射天线的一行发射天线与多行接收天线中的一行接收天线构成上述的稀疏多发多收阵列布置。
在其他实施例中,多对相邻的发射天线-接收天线对的多个等效相位中心的至少部分交替地排列在一排上。例如,在本公开的一个实施例,所述多个发射天线可以分成多个发射天线组,同一发射天线组内的发射天线之间间隔一倍的辐射波的波长;相邻的发射天线组之间间隔的距离是辐射波的波长的不小于二的整数倍。图9A示出本实施例的发射天线和接收天线的布置。图中t表示发射天线,r表示接收天线。t1、t2靠近,可以看作一组,t3、t4靠近可以被看作一组,t1-r1的等效相位中心与t2-r2的等效 相位中心相邻,t2-r2的等效相位中心与t1-r2的等效相位中心相邻,也就是说,t1-r1、t1-r2的等效相位中心并未相邻地排列,而是在两者之间排列了t2-r1的等效相位中心。这样的布置需要对发射天线的信号进行编码,而接收天线对接收到的预设的发射天线的编码信号进行解码,随后进行处理。接收天线对于其他发射天线的信号无法处理或不处理。以接近毫米波的波长的一半间隔并排列的等效相位中心反馈的信号被用于构成毫米波图像。
在另一实施例中,多个发射天线可以分成多个发射天线组,同一发射天线组内的发射天线之间间隔是辐射波的波长的不小于二的整数倍;相邻的发射天线组之间间隔的距离是辐射波的波长的不小于二的整数倍。图9B示出本公开的一个实施例。观察图9B可以知道,两个天线(例如t1和t2)一组,t1在r1的1.5倍毫米波波长处,t1和t2之间间距为3倍毫米波波长,而t2和t3之间的间距是5倍毫米波波长,发射天线t和接收天线r之间的间距为3倍毫米波波长。发射天线和接收天线之间的间距可以是任意值,只要能放置下收发天线阵列,然而为了使得收发天线相互耦合小,一般情况下要求发射天线和接收天线之间的间距小于成像距离的10%。t1-r2和t1-r3的等效相位中心之间是t2-r1的等效相位中心,t2-r1和t2-r2的等效相位中心之间是t1-r3的等效相位中心,多个发射天线-接收天线组的等效相位中心交替地排列。需要注意的是,在重建毫米波图像之前,需要把接收天线的数据的顺序调整为正确的顺序。在图9A中,当阵列的长度为1米,需要128个接收天线,而发射天线为64个,取成像距离0.35m,则收发天线阵列的间距为3个毫米波波长。
在实际操作时,发射天线t1发射,接收天线r1-r4接收;然后发射天线t2发射,接收天线r1-r4接收;然后发射天线t3发射,接收天线r1-r8接收;然后发射天线t4发射,接收天线r1-r8接收;根据这个规律直到,发射天线t67发射,接收天线r121-r128接收;最后发射天线t68发射,接收天线r121-r128接收;总共形成504个等效相位中心点。在重建图像之前,需要把等效相位中心的顺序调整,即按照空间上从左向右排列。
在一个实施例中,所述多个发射天线之间的间隔距离大于一倍的辐射 波的波长,所述多个接收天线以大于一倍的辐射波的波长的距离间隔开;并且,所述多个发射天线的总的数量与所述多个接收天线的总数量不相同且互质。图10示出一个实施例,其中一个发射天线对应5个接收天线,一个接收天线能够接收并识别4个发射天线的编码的信号,一个发射天线和对应的多个接收天线确定的等效相位中心与相邻的发射天线和对应的多个接收天线确定的等效相位中心交替排列,且等效相位中心间隔毫米波的波长的0.3至0.7倍,一般是0.5倍。
图10中的阵列结构为周期稀疏互质阵列,利用发射天线的阵列和接收天线的阵列中阵元数互质,并进行准单站近似,将收-发天线连线的中点看做单收发阵列的位置,从而获得等效的均匀线阵列。假设一个周期内的收、发天线数目分布为N 1、N 2,为了获得均匀采样的等效相位中心的阵列,需要N 1与N 2不相等,且N 1与N 2没有公约数,通常取N 2>N 1。一个周期的阵列天线长度为D,那么发射天线的间距为D/N 1,接收天线的阵列间距为D/N 2。一个发射天线将对应2N 2个等效相位中心,那么一个周期内的等效相位中心总数为2N 1N 2。假设阵列的周期阵列周期数目为M,那么总的等效相位中心数目为2MN 1N 2收发天线阵列间距dtr满足的条件与前面实施例中的阵列结构是一样的。
根据以上实施例构造的用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的一组发射天线和用于接收被人体反射的波长为毫米波的一组接收天线,所述一组发射天线包括沿第一行排列的多个发射天线,所述一组接收天线包括沿第二行排列的多个接收天线,所述一组发射天线的第一行的多个发射天线平行于所述一组接收天线的第二行的多个接收天线排列,且第一行所述一组发射天线与第二行所述一组接收天线间隔开且位于同一平面;其中,沿第一行排列的两个相邻的发射天线之间的间隔距离不小于辐射波的波长的一倍,沿第二行排列的多个接收天线之间的间隔距离不小于辐射波的波长的一倍,使得发射天线和接收天线的总数量相对于发射天线和接收天线被布置成一对一的发射天线和接收天线组之间以一倍辐射波的波长间隔开的情形下的总数量减少,因而降低制造难度和成本。
稀疏多发多收阵列布置工作可以有多种形式。例如,在一个实施例中,稀疏多发多收阵列布置还包括可以控制开关,用于控制所述一组发射天线依次发射毫米波。通过控制开关,第一行的多个发射天线从左向右(即,从一端部的发射天线开始)逐个/步进发射电磁波信号,每个发射天线的电磁波信号被最靠近它的例如6个或8个接收天线接收(保证等效相位中心之间的间隔为半波长)。最后所有的发射天线完成一次信号的发射即完成了一行的扫描。在一个实施例中,(例如)另一种工作形式,第一行的多个发射天线同时发射一个频率的电磁波信号,每个发射天线发射的信号都被编码,接收天线接收到的信号将需要解码后进行图像应用,完成一次电磁波信号的发射和接收即完成一次一维扫描。在一个实施例中,第一行的多个发射天线从左向右(即,从一端部的发射天线开始)逐个/步进发射电磁波信号,每个发射天线的电磁波信号被最靠近它的例如6个或8个接收天线接收,并且发射天线发射的电磁波信号的频率逐渐增大。最后所有的发射天线完成一次信号的发射即完成了一行的扫描。在一个实施例中,(例如)还有一种工作形式,第一行多个发射天线从左向右逐个发射电磁波信号,在完成一次一维扫描之后,第一行发射天线沿排列方向的横向方向平移一定位移后,再次逐个发射电磁波信号,电磁波信号的频率与前次发射不同。
发射天线和接收天线还可以有其他工作方式。如前面针对图4-8的实施例所述的那样,此处不再赘述。
本公开的一个实施例还公开一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的平行排列的多行发射天线和用于接收被人体反射的波长为毫米波的平行排列的多行接收天线,每一行发射天线包括多个发射天线,每一行接收天线包括多个接收天线;所述多行发射天线平行于所述多行接收天线;所述多行发射天线和所述多行接收天线彼此间隔开;其中,多行发射天线中的一行发射天线与多行接收天线中的一行接收天线构成如前文中参照附图4-10描述的稀疏多发多收阵列布置。此处不再赘述。
在本公开的一个实施例中,稀疏多发多收阵列布置可以包括:多个部 段,相邻的两个部段之间形成夹角;所述一组发射天线和所述一组接收天线分别包括分别布置在所述多个部段的部分。在本实施例中,由于稀疏多发多收阵列布置包括多个部段,这些部段之间形成了夹角,因而多个部段可以围绕一个半闭合的空间,如图11所示,在实际操作时,稀疏多发多收阵列布置的多个部段围绕一个对象,可以面对对象的不同的侧面。或者说,稀疏多发多收阵列布置的形状是折线形。相对于沿直线排列的稀疏多发多收阵列布置,具有多个部段且部段之间构成夹角的折线形的稀疏多发多收阵列布置能够从不同角度对待检人体进行检查,一定程度上提高了人体体侧成像效果。
例如,在一个实施例中,所述稀疏多发多收阵列布置包括第一部段,布置在第一竖直平面内;和,第二部段,布置在第二竖直平面内,其中第一竖直平面与第二竖直平面的夹角θ 12不为零;所述一组发射天线和所述一组接收天线分别包括布置在第一部段的部分和布置在第二部段的部分。相对于沿一条直线布置的情形,包括构成了夹角的第一部段和第二部段的稀疏多发多收阵列布置可以从两个方向对对象进行测量。例如,θ 12可以是90度以上180度以下的任何角度。
进一步,在另一实施例中,稀疏多发多收阵列布置还包括第三部段,布置在第三竖直平面内,所述第三竖直平面与第一竖直平面与第二竖直平面的夹角分别为θ 13和θ 23且不为零,所述一组发射天线和所述一组接收天线分别包括布置在第三部段的部分。图11示出这种布置,图中较小圆点表示发射天线,较大圆点表示接收天线。在图11中,稀疏多发多收阵列布置包括构成了夹角的第一部段1、第二部段2和第三部段3的稀疏多发多收阵列布置可以从三个方向对对象进行测量。例如,θ 13和θ 23可以是90度以上180度以下的任何角度。
在其他实施例中,所述稀疏多发多收阵列布置还可以包括第四部段、第五部段等,本领域技术人员可以基于本公开的教导根据要求进行设置。
这里需要说明的是,稀疏多发多收阵列布置的每个部段上的发射天线和接收天线的布置可以根据上述实施例的方式布置,这里不再赘述。
本公开的一个实施例,还提供一种人体安检设备,包括一个或多个上 述的稀疏多发多收阵列布置。如图12示出一种人体安检设备的示意图,人体安检设备包括第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200,其中第一稀疏多发多收阵列布置和第二稀疏多发多收阵列布置相对地布置以便在两者之间限定实施人体安检的检查空间S。第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置配置成能够在竖直平面内沿上下方向平移以实施扫描。例如,第一稀疏多发多收阵列布置100在其所在竖直平面内由上向下,第二稀疏多发多收阵列布置200分别在其所在竖直平面内由下向上扫描。
应该说明的是,仅一个第一稀疏多发多收阵列布置100也能够完成人体安检。
完成整个人体的扫描后,获得完整的散射场数据,然后传输到数据处理单元,利用全息算法进行重建,形成被测人体图像。最后,图像传输到例如显示单元显示给操作人员观察。
具体地,如图13所示,第一框架101上可以设置第一导轨装置104,第一稀疏多发多收阵列布置100以能够滑移的方式连接至所述第一导轨装置104从而能够沿着所述第一导轨装置104移动以对待测对象(人体)进行第一扫描;第二框架201上可以设置第二导轨装置204,所述第二稀疏多发多收阵列布置200以能够滑移的方式连接至所述第二导轨装置204从而能够沿着所述第二导轨装置204移动以对所述待测对象(人体)进行第二扫描。所述第一导轨装置104和所述第二导轨装置204可以相互平行。
人体安检设备可以包括驱动装置400,用于驱动所述第一稀疏多发多收阵列布置100沿着所述第一导轨装置104移动和/或驱动所述第二稀疏多发多收阵列布置200沿着所述第二导轨装置204移动。人体安检设备还可以包括约束装置,所述约束装置用于约束所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200的运动关系以使所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200只能沿相反的方向移动。在一个实施例中,所述约束装置对所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200的位置关系进行约束以使所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置 200只能以相等的速率移动。具体地,所述约束装置是连接所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200的刚性的连接线带300。所述第一导轨装置104设有第一定滑轮103,所述第二导轨装置204设有第二定滑轮203,所述连接线带从所述第一稀疏多发多收阵列布置100依次经过第一定滑轮103和第二定滑轮203连接至所述第二稀疏多发多收阵列布置200。
在另一实施例中,如图14所示,人体安检设备包括第一框架101,第一稀疏多发多收阵列布置100在第一框架101上,从而能够在第一框架101上上下移动。人体安检设备包括第二框架201,第二稀疏多发多收阵列布置200在第二框架201上,从而能够在第二框架201上上下移动。第一框架101上可以设置第一导轨装置104,第一稀疏多发多收阵列布置100以能够滑移的方式连接至所述第一导轨装置104从而能够沿着所述第一导轨装置104移动以对待测对象(人体)进行第一扫描;第二框架201上可以设置第二导轨装置204,所述第二稀疏多发多收阵列布置200以能够滑移的方式连接至所述第二导轨装置204从而能够沿着所述第二导轨装置204移动以对所述待测对象(人体)进行第二扫描。驱动装置包括直接驱动所述第一稀疏多发多收阵列布置100的第一驱动装置401,所述第一稀疏多发多收阵列布置100通过第一驱动装置连接至第一导轨装置104。所述驱动装置包括直接驱动所述第二稀疏多发多收阵列布置200的第二驱动装置402,所述第二稀疏多发多收阵列布置200通过第二驱动装置连接至第二导轨装置204。通过这种布置,第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200可以被独立控制,例如两者的移动方向可以相同或相反,移动速度可以相同或不同。在本实施例中,不设置例如第一滑轮和第二滑轮以及刚性的连接线带300的约束装置。
在第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200一起对待测对象进行扫描的整个过程中,所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200发射毫米波的时刻不同。例如,当开始扫描时,第一稀疏多发多收阵列布置100由最低频到最高频发射毫米波,第二稀疏多发多收阵列布置200由最高频到最低频发射毫米波;或 者,第二稀疏多发多收阵列布置200由最低频到最高频,第一稀疏多发多收阵列布置100由最高频到最低频。在本实施例中,第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200可以单独扫描,两者的扫描信号被用于形成人体的图像。
根据本公开的实施例的人体安检设备还包括处理器或控制器,用于控制驱动装置以实施扫描操作,还用于处理收到的毫米波信号以将第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200的毫米波回波信号处理成人体表面的图像,还可以用于接收外部输入的指令等。
使用本公开的人体安检设备对人体例如旅客等进行安检时,仅需要人体停留在人体安检设备中,即第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200之间,第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200同时扫描或分别扫描人体的一侧,然后将扫描所得的信号发送给处理器或控制器,经过处理器或控制器进行图像处理形成人体的图像,完成方便快捷的检查。
图21-23示出本公开的另外三个实施例,它们可以分别是图12-14所示出的实施例的变体,其中,第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200采用如图11所示的实施例的布置,即采用成角部的多个部段构成的第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200代替图12-14中沿直线布置的第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200。图21-23的实施例的其他方面的布置与图12-14所示出的实施例类似,此处不再赘述。
根据本公开的一个实施例,与前述的实施例(例如如图4-11)相同,除了沿第一行排列的发射天线和沿第二行排列的接收天线被设置成分别沿第一弧和第二弧排列,如图15、17A和17B所示;换句话说,沿第一行排列的发射天线和沿第二行排列的接收天线被设置在一个弧面内,两行平行,然而发射天线和接收天线分别沿弧线排列。下面说明沿弧排列的发射天线和接收天线的实现方法。
我们把直线排列的阵列弯曲成半径为R的圆弧,R的取值范围为0.5m-1m。弯曲过程如图15所示。对于沿弧排列的阵列来说,成像条件相 对于直线阵列来说,需要沿弧线排列的两个邻近的发射天线或接收天线间隔的最大值对应的弧长与弦长h的差e趋于0,如图16所示。
Figure PCTCN2019100787-appb-000010
其中,θ为圆弧对应的张角,R为圆弧半径。满足如下关系,
Figure PCTCN2019100787-appb-000011
当θ<<1时,对
Figure PCTCN2019100787-appb-000012
进行泰勒级数展开,
Figure PCTCN2019100787-appb-000013
其中,O(θ)为高阶项。
差值e可以表示为,
Figure PCTCN2019100787-appb-000014
前面如图4-10所罗列的所有阵列结构都可以是实现e~0。例如,如图6A和图7中,1个发射天线对应8个接收天线,相邻的两个发射天线间隔为4λ,取λ=4mm,弯曲成半径R=500mm的圆弧,此时e=2.22x10 -5m。图6A和图7简化地示出为发射天线和接收天线沿直线排列,实际上,根据本实施例,发射天线和接收天线沿弧线排列。图8A~11中的布置,根据本实施例被变形为发射天线和接收天线沿弧线排列。关于这些发射天线和接收天线的布置与操作与前述实施例类似。
TR间距dtr可以是任意值,一方面能放置下收发天线阵列,其使得相互耦合小,另一方面要求dtr/z0<10%,z0为成像距离。
由此可见对于宏观长度1米的阵列结构,以弧形布置与沿直线排列的阵列结构成像原理是相近似的。本公开的其他实施例中,为了方便将发射天线和接收天线以直线排列的形式示出,应该知道,这些发射天线和接收天线是沿弧形排列的。或者简单说,本公开的稀疏阵列收发装置可以首先以直线形式排列,随后通过弯曲成弧形即可。
在本公开的一个实施例中,还提供一种人体安检设备,包括一个或多个上述的稀疏多发多收阵列布置。如图18示出一种人体安检设备的示意图,人体安检设备包括第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200,其中第一稀疏多发多收阵列布置和第二稀疏多发多收阵列布置分别沿弧面布置并且相对地设置以便在两者之间限定实施人体安检的检查空间S。第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置配置成能够在竖直平面内沿上下方向平移以实施扫描。例如,第一稀疏多发多收阵列布置100在其所在竖直平面内由上向下,第二稀疏多发多收阵列布置200分别在其所在竖直平面内由下向上扫描。
应该说明的是,由于弧形的设计,仅一个第一稀疏多发多收阵列布置100也能够完成人体安检。
完成整个人体的扫描后,获得完整的散射场数据,然后传输到数据处理单元,利用全息算法进行重建,形成被测人体图像。最后,图像传输到例如显示单元显示给操作人员观察。
在二另一个实施例中,如图19所示,人体安检设备包括第一框架101,沿弧面布置的第一稀疏多发多收阵列布置100在第一框架101上,从而能够在第一框架101上上下移动。人体安检设备包括第二框架201,沿弧面布置的第二稀疏多发多收阵列布置200在第二框架201上,从而能够在第二框架201上上下移动。
在另一个实施例中,如图19所示,第一框架101上可以设置第一导轨装置104,沿弧面布置的第一稀疏多发多收阵列布置100以能够滑移的方式连接至所述第一导轨装置104从而能够沿着所述第一导轨装置104移动以对待测对象(人体)进行第一扫描;第二框架201上可以设置第二导轨装置204,沿弧面布置的所述第二稀疏多发多收阵列布置200以能够滑移的方式连接至所述第二导轨装置204从而能够沿着所述第二导轨装置204移动以对所述待测对象(人体)进行第二扫描。所述第一导轨装置104和所述第二导轨装置204可以相互平行。
人体安检设备可以包括驱动装置400,用于驱动所述第一稀疏多发多收阵列布置100沿着所述第一导轨装置104移动和/或驱动所述第二稀疏多 发多收阵列布置200沿着所述第二导轨装置204移动。人体安检设备还可以包括约束装置,所述约束装置用于约束所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200的运动关系以使所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200只能沿相反的方向移动。在一个实施例中,所述约束装置对所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200的位置关系进行约束以使所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200只能以相等的速率移动。具体地,所述约束装置是连接所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200的刚性的连接线带300。所述第一导轨装置104设有第一定滑轮103,所述第二导轨装置204设有第二定滑轮203,所述连接线带从所述第一稀疏多发多收阵列布置100依次经过第一定滑轮103和第二定滑轮203连接至所述第二稀疏多发多收阵列布置200。
在另一实施例中,如图20所示,人体安检设备包括第一框架101,沿弧面布置的第一稀疏多发多收阵列布置100在第一框架101上,从而能够在第一框架101上上下移动。人体安检设备包括第二框架201,沿弧面布置的第二稀疏多发多收阵列布置200在第二框架201上,从而能够在第二框架201上上下移动。第一框架101上可以设置第一导轨装置104,第一稀疏多发多收阵列布置100以能够滑移的方式连接至所述第一导轨装置104从而能够沿着所述第一导轨装置104移动以对待测对象(人体)进行第一扫描;第二框架201上可以设置第二导轨装置204,所述第二稀疏多发多收阵列布置200以能够滑移的方式连接至所述第二导轨装置204从而能够沿着所述第二导轨装置204移动以对所述待测对象(人体)进行第二扫描。驱动装置包括直接驱动所述第一稀疏多发多收阵列布置100的第一驱动装置401,所述第一稀疏多发多收阵列布置100通过第一驱动装置401连接至第一导轨装置104。所述驱动装置包括直接驱动所述第二稀疏多发多收阵列布置200的第二驱动装置402,所述第二稀疏多发多收阵列布置200通过第二驱动装置连接至第二导轨装置204。通过这种布置,第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200可以被独立控 制,例如两者的移动方向可以相同或相反,移动速度可以相同或不同。在本实施例中,不设置例如第一滑轮和第二滑轮以及刚性的连接线带300的约束装置。
在第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200一起对待测对象进行扫描的整个过程中,所述第一稀疏多发多收阵列布置100和所述第二稀疏多发多收阵列布置200发射毫米波的时刻不同。例如,当开始扫描时,第一稀疏多发多收阵列布置100由最低频到最高频发射毫米波,第二稀疏多发多收阵列布置200由最高频到最低频发射毫米波;或者,第二稀疏多发多收阵列布置200由最低频到最高频,第一稀疏多发多收阵列布置100由最高频到最低频。在本实施例中,第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200可以单独扫描,两者的扫描信号被用于形成人体的图像。
根据本公开的实施例的人体安检设备还包括处理器或控制器,用于控制驱动装置以实施扫描操作,还用于处理收到的毫米波信号以将第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200的毫米波回波信号处理成人体表面的图像,还可以用于接收外部输入的指令等。
使用本公开的人体安检设备对人体例如旅客等进行安检时,仅需要人体停留在人体安检设备中,即第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200之间,第一稀疏多发多收阵列布置100和第二稀疏多发多收阵列布置200同时扫描或分别扫描人体的一侧,然后将扫描所得的信号发送给处理器或控制器,经过处理器或控制器进行图像处理形成人体的图像,完成方便快捷的检查。
在本公开的一个实施例中,还提供一种使用如上述的稀疏多发多收阵列布置对人体实施检测的方法。
虽然本总体专利构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体专利构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (55)

  1. 一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的一组发射天线和用于接收由所述一组发射天线发射的被人体反射的波长为毫米波的一组接收天线;
    其中,所述一组发射天线包括沿第一行排列的多个发射天线,所述一组接收天线包括沿第二行排列的多个接收天线,所述一组发射天线的第一行的多个发射天线平行于所述一组接收天线的第二行的多个接收天线排列,且第一行所述一组发射天线与第二行所述一组接收天线间隔开,且位于同一平面;
    其中,与沿第一行排列的两个相邻的发射天线之间的间隔长度对应的第二行的相等长度范围内布置至少一个接收天线使得发射天线的数量少于接收天线的数量。
  2. 根据权利要求1所述的稀疏多发多收阵列布置,其中,至少一个发射天线与至少一个接收天线对齐使得两者之间的连线垂直于所述一组发射天线或所述一组接收天线的行的方向;或
    任意一个发射天线与任意一个接收天线的连线与所述一组发射天线或所述一组接收天线的行的方向不垂直。
  3. 根据权利要求1所述的稀疏多发多收阵列布置,其中所述多个发射天线以辐射波的波长的整数倍的距离间隔开,所述多个接收天线以一倍的辐射波的波长的距离间隔开。
  4. 根据权利要求4所述的稀疏多发多收阵列布置,其中多个发射天线以2倍、3倍、4倍或5倍的辐射波的波长的距离间隔开。
  5. 根据权利要求1所述的稀疏多发多收阵列布置,其中所述一组发射天线的一个发射天线和所述一组接收天线的最靠近的对应的多个接收天线中一个的连线的中点被看作这一对发射天线-接收天线的虚拟的等效相位中心,相邻的等效相位中心之间的距离为辐射波的波长的0.3至0.7倍。
  6. 根据权利要求5所述的稀疏多发多收阵列布置,其中相邻的等效相位中心之间的距离为辐射波的波长的一半。
  7. 根据权利要求1所述的稀疏多发多收阵列布置,其中第一行所述一 组发射天线与第二行所述一组接收天线间隔开的距离小于成像距离的10%。
  8. 根据权利要求1所述的稀疏多发多收阵列布置,其中第一行所述一组发射天线的首个发射天线和第二行所述一组接收天线的首个接收天线错位布置。
  9. 根据权利要求1所述的稀疏多发多收阵列布置,还包括控制开关,用于控制所述一组发射天线依次发射毫米波。
  10. 根据权利要求5所述的稀疏多发多收阵列布置,配置成:所述一组发射天线能够沿第一行排列的多个发射天线逐个依次发射辐射波完成一组发射天线的一维扫描,并且能够沿与所述一组发射天线的行的方向的正交方向位移完成人体二维扫描,以及能够基于傅里叶变换的合成孔径全息算法完成成像。
  11. 根据权利要求10所述的稀疏多发多收阵列布置,配置成基于傅里叶变换的合成孔径全息算法,一次对正确成像区域完成图像重建,成像公式为:
    Figure PCTCN2019100787-appb-100001
    其中,σ(x,y)是人体的散射系数,R 0是成像距离,FT 2D为二维傅里叶变换,
    Figure PCTCN2019100787-appb-100002
    为二维傅里叶逆变换,j为虚数单位,k为传播常数、k x、k y分别是空间传播常数;
    Figure PCTCN2019100787-appb-100003
    为一对发射天线-接收天线组合接收到人体的回波信号;K ω为频率步进信号的空间频率;对于目标区域内的一个点目标,I表示位于I(x n,y n)处的散射的点目标,定义I与发射天线A t的距离为R t,n,I与接收天线A r间的距离为R r,n
  12. 一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的一组发射天线和用于接收由所述一组发射天线 发射的被人体反射的波长为毫米波的一组接收天线;
    其中,所述一组发射天线包括沿第一行排列的多个发射天线,所述一组接收天线包括沿第二行排列的多个接收天线,所述一组发射天线的第一行的多个发射天线平行于所述一组接收天线的第二行的多个接收天线排列,且第一行所述一组发射天线与第二行所述一组接收天线间隔开,且位于同一平面;
    其中,沿第一行排列的两个相邻的发射天线之间的间隔距离不小于辐射波的波长的一倍,沿第二行排列的多个接收天线之间的间隔距离不小于辐射波的波长的一倍,使得发射天线和接收天线的总数量相对于发射天线和接收天线被布置成成对的发射天线和接收天线组合之间以一倍辐射波的波长间隔开的情形下的总数量减少;
    其中,所述稀疏多发多收阵列布置包括:多个部段,相邻的两个部段之间形成夹角;
    所述一组发射天线和所述一组接收天线分别包括分别布置在所述多个部段的部分。
  13. 根据权利要求12所述的稀疏多发多收阵列布置,其中,所述稀疏多发多收阵列布置包括第一部段,布置在第一竖直平面内;和,第二部段,布置在第二竖直平面内,其中第一竖直平面与第二竖直平面的夹角θ 12不为零;所述一组发射天线和所述一组接收天线分别包括布置在第一部段的部分和布置在第二部段的部分。
  14. 根据权利要求13所述的稀疏多发多收阵列布置,其中,所述稀疏多发多收阵列布置还包括第三部段,布置在第三竖直平面内,所述第三竖直平面与第一竖直平面与第二竖直平面的夹角分别为θ 13和θ 23且不为零;所述一组发射天线和所述一组接收天线分别包括布置在第三部段的部分。
  15. 根据权利要求12所述的稀疏多发多收阵列布置,其中,至少一个发射天线与至少一个接收天线对齐使得两者之间的连线垂直于所述一组发射天线或所述一组接收天线的行的方向;或者,任意一个发射天线与任意一个接收天线的连线与所述一组发射天线或所述一组接收天线的行的方向不垂直;或
    所述一组发射天线的排在首个的发射天线与所述一组接收天线的排在首个的接收天线之间的连线垂直于所述一组发射天线或所述一组接收天线的行的方向。
  16. 根据权利要求12所述的稀疏多发多收阵列布置,其中,所述一组发射天线的排在首个的发射天线与所述一组接收天线的排在首个的接收天线之间的连线不垂直于所述一组发射天线或所述一组接收天线的行的方向。
  17. 根据权利要求12所述的稀疏多发多收阵列布置,其中,所述一组发射天线的一个发射天线和所述一组接收天线的最靠近的对应的多个接收天线中一个的连线的中点被看作这一对发射天线-接收天线的虚拟的等效相位中心,相邻的等效相位中心之间的距离为辐射波的波长的0.3至0.7倍。
  18. 根据权利要求17所述的稀疏多发多收阵列布置,其中,相邻的等效相位中心之间的距离为辐射波的波长的一半。
  19. 根据权利要求17所述的稀疏多发多收阵列布置,其中沿第一行排列的两个相邻的发射天线之间的间隔范围内在第二行中对应范围内布置至少一个接收天线。
  20. 根据权利要求18所述的稀疏多发多收阵列布置,其中所述多个发射天线以辐射波的波长的不小于2的整数倍的距离间隔开,所述多个接收天线以一倍的辐射波的波长的距离间隔开。
  21. 根据权利要求19所述的稀疏多发多收阵列布置,其中多个发射天线以2倍、3倍、4倍、5倍或6倍的辐射波的波长的距离间隔开。
  22. 根据权利要求17所述的稀疏多发多收阵列布置,其中所述多个发射天线分成多个发射天线组,同一发射天线组内的发射天线之间间隔一倍或多倍的辐射波的波长,相邻的发射天线组之间间隔的距离是辐射波的波长的不小于2的整数倍。
  23. 根据权利要求17所述的稀疏多发多收阵列布置,其中所述多个发射天线之间的间隔距离大于一倍的辐射波的波长,所述多个接收天线以大于一倍的辐射波的波长的距离间隔开;并且,所述多个发射天线的总的数 量与所述多个接收天线的总数量不相同且互质。
  24. 根据权利要求17所述的稀疏多发多收阵列布置,其中相邻的发射天线与各自对应的接收天线确定的多个等效相位中心不重叠;并且
    发射天线-接收天线对的多个等效相位中心顺次排列成一排,或者多对相邻的发射天线-接收天线对的多个等效相位中心的至少部分交替地排列在一排上。
  25. 根据权利要求12所述的稀疏多发多收阵列布置,其中第一行所述一组发射天线与第二行所述一组接收天线间隔开的距离小于成像距离的10%。
  26. 根据权利要求12所述的稀疏多发多收阵列布置,还包括控制开关,用于控制所述一组发射天线依次发射毫米波。
  27. 根据权利要求12所述的稀疏多发多收阵列布置,其中第一行所述一组发射天线的首个发射天线和第二行所述一组接收天线的首个接收天线错位布置。
  28. 根据权利要求17所述的稀疏多发多收阵列布置,配置成:所述一组发射天线能够沿第一行排列的多个发射天线依次发射辐射波完成一组发射天线的扫描,多发多收阵列布置能够沿与所述一组发射天线的行的方向的正交方向位移逐步完成人体二维扫描,以及能够基于傅里叶变换的合成孔径全息算法完成成像。
  29. 根据权利要求28所述的稀疏多发多收阵列布置,配置成基于傅里叶变换的合成孔径全息算法,一次对正确成像区域完成图像重建,成像公式为:
    Figure PCTCN2019100787-appb-100004
    其中,σ(x,y)是人体的散射系数,R 0是成像距离,FT 2D为二维傅里叶变换,
    Figure PCTCN2019100787-appb-100005
    为二维傅里叶逆变换,j为虚数单位,k为传播常数、k x、k y分别是空间传播常数;
    Figure PCTCN2019100787-appb-100006
    为一对发射天线-接收天线组合接收到人体的回波信号;K ω为频率步进信号的空间频率;对于目标区域内的一个点目标,I表示位于I(x n,y n)处的散射的点目标,定义I与发射天线A t的距离为R t,n,I与接收天线A r间的距离为R r,n
  30. 一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射波长为毫米波的平行排列的多行发射天线和用于接收被人体反射的波长为毫米波的平行排列的多行接收天线,每一行发射天线包括多个发射天线,每一行接收天线包括多个接收天线;
    所述多行发射天线平行于所述多行接收天线;所述多行发射天线和所述多行接收天线彼此间隔开;
    其中,多行发射天线中的一行发射天线与多行接收天线中的一行接收天线构成如权利要求1或12所述的稀疏多发多收阵列布置。
  31. 一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括用于发射毫米波的一组发射天线和用于接收由所述一组发射天线发射的被人体反射的毫米波的一组接收天线;
    其中,所述一组发射天线包括在弧面内沿第一弧排列的多个发射天线,所述一组接收天线包括在弧面内沿第二弧排列的多个接收天线,所述一组发射天线的沿第一弧排列的多个发射天线平行于所述一组接收天线的沿第二弧排列的多个接收天线排列,且沿第一弧排列所述一组发射天线与沿第二弧排列所述一组接收天线间隔开,且位于同一弧面;
    其中,与沿第一弧排列的两个相邻的发射天线之间的间隔弧长对应的第二弧的相等弧长范围内布置至少一个接收天线。
  32. 根据权利要求31所述的稀疏多发多收阵列布置,其中,至少一个发射天线与至少一个接收天线对齐使得两者之间的连线垂直于所述一组发射天线的第一弧或所述一组接收天线的第二弧;或者,任意一个发射天线与任意一个接收天线的连线不垂直所述一组发射天线的第一弧或所述一组接收天线的第二弧。
  33. 根据权利要求31所述的稀疏多发多收阵列布置,其中,所述一组发射天线的排在首个的发射天线与所述一组接收天线的排在首个的接收 天线之间的连线垂直于所述一组发射天线的第一弧或所述一组接收天线的第二弧;或
    所述一组发射天线的排在首个的发射天线与所述一组接收天线的排在首个的接收天线之间的连线不垂直于所述一组发射天线的第一弧或所述一组接收天线的第二弧。
  34. 根据权利要求31所述的稀疏多发多收阵列布置,其中,所述一组发射天线的一个发射天线和所述一组接收天线的最靠近的对应的多个接收天线中一个的连线的中点被看作这一对发射天线-接收天线的虚拟的等效相位中心,相邻的等效相位中心之间的距离为辐射波的波长的0.3至0.7倍。
  35. 根据权利要求34所述的稀疏多发多收阵列布置,其中,相邻的等效相位中心之间的距离为辐射波的波长的一半。
  36. 根据权利要求34所述的稀疏多发多收阵列布置,其中沿第一弧排列的两个相邻的发射天线之间的间隔范围在第二弧中对应范围内布置至少一个接收天线。
  37. 根据权利要求36所述的稀疏多发多收阵列布置,其中所述多个发射天线以辐射波的波长的不小于2的整数倍的距离间隔开,所述多个接收天线以一倍的辐射波的波长的距离间隔开。
  38. 根据权利要求36所述的稀疏多发多收阵列布置,其中多个发射天线以2倍、3倍、4倍、5倍或6倍的辐射波的波长的距离间隔开。
  39. 根据权利要求34所述的稀疏多发多收阵列布置,其中所述多个发射天线分成多个发射天线组,同一发射天线组内的发射天线之间间隔一倍或多倍的辐射波的波长,相邻的发射天线组之间间隔的距离是辐射波的波长的不小于2的整数倍。
  40. 根据权利要求34所述的稀疏多发多收阵列布置,其中所述多个发射天线之间的间隔距离大于一倍的辐射波的波长,所述多个接收天线以大于一倍的辐射波的波长的距离间隔开;并且,所述多个发射天线的总的数量与所述多个接收天线的总数量不相同且互质。
  41. 根据权利要求34所述的稀疏多发多收阵列布置,其中相邻的发射 天线与各自对应的接收天线确定的多个等效相位中心不重叠;并且
    发射天线-接收天线对的多个等效相位中心顺次排列成一排,或者多对相邻的发射天线-接收天线对的多个等效相位中心的至少部分交替地排列在一排上。
  42. 根据权利要求31所述的稀疏多发多收阵列布置,其中第一弧所述一组发射天线与第二弧所述一组接收天线间隔开的距离小于成像距离的10%。
  43. 根据权利要求31所述的稀疏多发多收阵列布置,还包括控制开关,用于控制所述一组发射天线依次发射毫米波。
  44. 根据权利要求31所述的稀疏多发多收阵列布置,其中第一弧所述一组发射天线的首个发射天线和第二弧所述一组接收天线的首个接收天线错位布置。
  45. 根据权利要求34所述的稀疏多发多收阵列布置,配置成:所述一组发射天线能够沿第一弧排列的多个发射天线依次发射辐射波完成一组发射天线的扫描,多发多收阵列布置能够沿与所述一组发射天线的第一弧的方向的正交方向位移逐步完成人体二维扫描,以及能够基于傅里叶变换的合成孔径全息算法完成成像。
  46. 根据权利要求45所述的稀疏多发多收阵列布置,配置成基于傅里叶变换的合成孔径全息算法,一次对正确成像区域完成图像重建,成像公式为:
    Figure PCTCN2019100787-appb-100007
    其中,σ(x,y)是人体的散射系数,R 0是成像距离,FT 2D为二维傅里叶变换,
    Figure PCTCN2019100787-appb-100008
    为二维傅里叶逆变换,j为虚数单位,k为传播常数、k x、k y分别是空间传播常数;
    Figure PCTCN2019100787-appb-100009
    为一对发射天线-接收天线组合接收到人体的回波信号;K ω为频率步进信 号的空间频率;对于目标区域内的一个点目标,I表示位于I(x n,y n)处的散射的点目标,定义I与发射天线A t的距离为R t,n,I与接收天线A r间的距离为R r,n
  47. 一种用于主动式毫米波安检成像的稀疏多发多收阵列布置,包括布置在弧面内的用于发射波长为毫米波的平行排列的多行沿弧线排列的发射天线和用于接收被人体反射的波长为毫米波的平行排列的多行沿弧线排列的接收天线,每一弧发射天线包括多个发射天线,每一弧接收天线包括多个接收天线;
    所述多行沿弧线排列的发射天线平行于所述多行沿弧线排列的接收天线;所述多行沿弧线排列的发射天线和所述多行沿弧线排列的接收天线彼此间隔开;
    其中,多行沿弧线排列的发射天线中的一行发射天线与多行沿弧线排列的接收天线中的一行接收天线构成如权利要求31所述的稀疏多发多收阵列布置。
  48. 一种人体安检设备,包括一个或多个如权利要求1-29,31-46中任一项所述的稀疏多发多收阵列布置或如权利要求30或47中所述的稀疏多发多收阵列布置。
  49. 如权利要求48所述的人体安检设备,其中,一个或多个权利要求1-29,31-46中任一项所述的稀疏多发多收阵列布置或如权利要求30或47中所述稀疏多发多收阵列布置包括第一稀疏多发多收阵列布置和第二稀疏多发多收阵列布置,其中第一稀疏多发多收阵列布置和第二稀疏多发多收阵列布置相对地布置以便在两者之间限定实施人体安检的检查空间,并且第一稀疏多发多收阵列布置和第二稀疏多发多收阵列布置配置成能够在竖直平面内沿上下方向平移以实施扫描。
  50. 如权利要求49所述的人体安检设备,其中,人体安检设备还包括:
    第一框架,第一稀疏多发多收阵列布置在第一框架上能够在第一框架上上下移动;和,
    第二框架,第二稀疏多发多收阵列布置在第二框架上能够在第二框架上上下移动;
    其中,第一框架上设置第一导轨装置,第一稀疏多发多收阵列布置以能够滑移的方式连接至所述第一导轨装置从而能够沿着所述第一导轨装置移动以对人体进行第一扫描;第二框架上设置第二导轨装置,所述第二稀疏多发多收阵列布置以能够滑移的方式连接至所述第二导轨装置从而能够沿着所述第二导轨装置移动以对人体进行第二扫描。
  51. 如权利要求50所述的人体安检设备,其中,人体安检设备还包括:
    驱动装置,用于驱动所述第一稀疏多发多收阵列布置沿着所述第一导轨装置移动和/或驱动所述第二稀疏多发多收阵列布置沿着所述第二导轨装置移动;和
    约束装置,所述约束装置用于约束所述第一稀疏多发多收阵列布置和所述第二稀疏多发多收阵列布置的运动关系以使所述第一稀疏多发多收阵列布置和所述第二稀疏多发多收阵列布置只能沿相反的方向移动。
  52. 如权利要求51所述的人体安检设备,其中,所述约束装置是连接所述第一稀疏多发多收阵列布置和所述第二稀疏多发多收阵列布置的刚性的连接线带;
    其中,所述第一导轨装置设有第一定滑轮,所述第二导轨装置设有第二定滑轮,所述连接线带从所述第一稀疏多发多收阵列布置依次经过第一定滑轮和第二定滑轮连接至所述第二稀疏多发多收阵列布置。
  53. 如权利要求50所述的人体安检设备,其中,人体安检设备包括:第一驱动装置,直接驱动所述第一稀疏多发多收阵列布置,所述第一稀疏多发多收阵列布置通过第一驱动装置连接至第一导轨装置;和,第二驱动装置,直接驱动所述第二稀疏多发多收阵列布置,所述第二稀疏多发多收阵列布置通过第二驱动装置连接至第二导轨装置。
  54. 如权利要求49所述的人体安检设备,其中,第一稀疏多发多收阵列布置由最低频到最高频发射毫米波、第二稀疏多发多收阵列布置由最高频到最低频毫米波,或者,第二稀疏多发多收阵列布置由最低频到最高频发射毫米波、第一稀疏多发多收阵列布置由最高频到最低频毫米波。
  55. 一种使用权利要求48-54中任一项所述的人体安检设备实施的人体安检方法。
PCT/CN2019/100787 2018-08-17 2019-08-15 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法 WO2020035023A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19817109.2A EP3647826A4 (en) 2018-08-17 2019-08-15 MULTIPLE TRANSMISSION AND MULTIPLE RECEPTION ARRANGEMENTS FOR ACTIVE MILLIMETER WAVE SECURITY INSPECTION IMAGING AND HUMAN BODY SECURITY INSPECTION METHOD AND APPARATUS
BR112020027061-0A BR112020027061A2 (pt) 2018-08-17 2019-08-15 Arranjo de matriz de antena de múltiplas transmissões e múltiplas recepções esparso, e,aparelho de inspeção de segurança no corpo humano
JP2020571671A JP7181319B2 (ja) 2018-08-17 2019-08-15 アクティブミリ波セキュリティ検査結像に用いられる多重送受信アンテナアレイアレンジメント、人体セキュリティ検査装置及び方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201810946420 2018-08-17
CN201810946420.7 2018-08-17
CN201811654211.1A CN109799546A (zh) 2018-12-29 2018-12-29 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
CN201811654154.7A CN109799545A (zh) 2018-12-29 2018-12-29 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
CN201811653893.4 2018-12-29
CN201811653893.4A CN109782366A (zh) 2018-12-29 2018-12-29 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法
CN201811654154.7 2018-12-29
CN201811654211.1 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020035023A1 true WO2020035023A1 (zh) 2020-02-20

Family

ID=69525174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100787 WO2020035023A1 (zh) 2018-08-17 2019-08-15 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法

Country Status (4)

Country Link
EP (1) EP3647826A4 (zh)
JP (1) JP7181319B2 (zh)
BR (1) BR112020027061A2 (zh)
WO (1) WO2020035023A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415623A (zh) * 2020-10-30 2021-02-26 李世超 一种基于折线阵列的毫米波成像系统
CN112764116A (zh) * 2020-12-24 2021-05-07 博微太赫兹信息科技有限公司 一种稀疏阵列稀疏频点平面扫描体制快速成像方法
CN112924938A (zh) * 2021-01-28 2021-06-08 电子科技大学成都学院 一种12发16收毫米波4d成像雷达微带天线阵列
WO2022271736A3 (en) * 2021-06-20 2023-03-16 Radsee Technologies Ltd. Multiple input multiple output radar, antenna arrays and transmission schemes
JP7467307B2 (ja) 2020-10-01 2024-04-15 株式会社東芝 システム及び方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812642B (zh) * 2020-05-25 2022-11-11 北京理工大学 一种圆柱孔径mimo阵列天线、成像方法及补偿方法
CN113820713B (zh) * 2021-10-19 2023-07-18 内蒙古工业大学 发射机运动双基弧形阵列sar的成像方法、装置及存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086543A1 (en) * 2010-01-15 2011-07-21 Smiths Detection Ireland Limited An imaging system
CN203385857U (zh) * 2013-08-15 2014-01-08 同方威视技术股份有限公司 毫米波三维全息扫描成像设备
CN104375144A (zh) * 2013-08-15 2015-02-25 同方威视技术股份有限公司 毫米波三维全息扫描成像设备及人体或物品检查方法
CN205263309U (zh) * 2015-12-28 2016-05-25 同方威视技术股份有限公司 毫米波三维全息扫描成像设备
CN106054181A (zh) * 2016-05-18 2016-10-26 中国电子科技集团公司第四十研究所 一种用于太赫兹实时成像的一维稀疏阵列布置方法
CN106707275A (zh) * 2016-05-10 2017-05-24 电子科技大学 一种稀疏线阵平面扫描主动毫米波成像方法
CN206209132U (zh) * 2016-08-25 2017-05-31 同方威视技术股份有限公司 面向非合作人体安检的主动式毫米波成像系统
CN106872975A (zh) * 2017-02-27 2017-06-20 东南大学 一种毫米波主动式近场成像装置
CN109782366A (zh) * 2018-12-29 2019-05-21 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法
CN109799546A (zh) * 2018-12-29 2019-05-24 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
CN109799545A (zh) * 2018-12-29 2019-05-24 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
CN209433033U (zh) * 2018-12-29 2019-09-24 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置结构和人体安检设备
CN209433032U (zh) * 2018-12-29 2019-09-24 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置结构和人体安检设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557283A (en) * 1991-08-30 1996-09-17 Sheen; David M. Real-time wideband holographic surveillance system
US7548185B2 (en) * 2005-09-30 2009-06-16 Battelle Memorial Institute Interlaced linear array sampling technique for electromagnetic wave imaging
US8937570B2 (en) * 2012-09-28 2015-01-20 Battelle Memorial Institute Apparatus for synthetic imaging of an object
CN103197353A (zh) 2013-04-16 2013-07-10 焦海宁 垂直机械扫描微波主动成像人员安检系统
US9715012B2 (en) * 2013-04-25 2017-07-25 Battelle Memorial Institute Footwear scanning systems and methods
CN104375141A (zh) 2013-08-15 2015-02-25 同方威视技术股份有限公司 毫米波三维全息扫描成像设备及检查方法
CN104375142B (zh) * 2013-08-15 2019-12-13 同方威视技术股份有限公司 一种用于人体安全检查的毫米波全息成像设备
JP6553335B2 (ja) * 2014-06-30 2019-07-31 日本信号株式会社 送受信装置、およびレーダ計測システム
CN105467386B (zh) * 2015-12-28 2019-01-01 同方威视技术股份有限公司 毫米波三维全息扫描成像设备
US11391861B2 (en) * 2016-07-26 2022-07-19 China Communication Technology Co., Ltd. Portable security inspection device based on millimetre wave imaging

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086543A1 (en) * 2010-01-15 2011-07-21 Smiths Detection Ireland Limited An imaging system
CN203385857U (zh) * 2013-08-15 2014-01-08 同方威视技术股份有限公司 毫米波三维全息扫描成像设备
CN104375144A (zh) * 2013-08-15 2015-02-25 同方威视技术股份有限公司 毫米波三维全息扫描成像设备及人体或物品检查方法
CN205263309U (zh) * 2015-12-28 2016-05-25 同方威视技术股份有限公司 毫米波三维全息扫描成像设备
CN106707275A (zh) * 2016-05-10 2017-05-24 电子科技大学 一种稀疏线阵平面扫描主动毫米波成像方法
CN106054181A (zh) * 2016-05-18 2016-10-26 中国电子科技集团公司第四十研究所 一种用于太赫兹实时成像的一维稀疏阵列布置方法
CN206209132U (zh) * 2016-08-25 2017-05-31 同方威视技术股份有限公司 面向非合作人体安检的主动式毫米波成像系统
CN106872975A (zh) * 2017-02-27 2017-06-20 东南大学 一种毫米波主动式近场成像装置
CN109782366A (zh) * 2018-12-29 2019-05-21 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法
CN109799546A (zh) * 2018-12-29 2019-05-24 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
CN109799545A (zh) * 2018-12-29 2019-05-24 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
CN209433033U (zh) * 2018-12-29 2019-09-24 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置结构和人体安检设备
CN209433032U (zh) * 2018-12-29 2019-09-24 清华大学 用于主动式毫米波安检成像的多发多收天线阵列布置结构和人体安检设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647826A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467307B2 (ja) 2020-10-01 2024-04-15 株式会社東芝 システム及び方法
CN112415623A (zh) * 2020-10-30 2021-02-26 李世超 一种基于折线阵列的毫米波成像系统
CN112764116A (zh) * 2020-12-24 2021-05-07 博微太赫兹信息科技有限公司 一种稀疏阵列稀疏频点平面扫描体制快速成像方法
CN112764116B (zh) * 2020-12-24 2024-01-19 博微太赫兹信息科技有限公司 一种稀疏阵列稀疏频点平面扫描体制快速成像方法
CN112924938A (zh) * 2021-01-28 2021-06-08 电子科技大学成都学院 一种12发16收毫米波4d成像雷达微带天线阵列
CN112924938B (zh) * 2021-01-28 2024-04-19 电子科技大学成都学院 一种12发16收毫米波4d成像雷达微带天线阵列
WO2022271736A3 (en) * 2021-06-20 2023-03-16 Radsee Technologies Ltd. Multiple input multiple output radar, antenna arrays and transmission schemes

Also Published As

Publication number Publication date
JP7181319B2 (ja) 2022-11-30
EP3647826A1 (en) 2020-05-06
BR112020027061A2 (pt) 2021-03-30
EP3647826A4 (en) 2022-03-09
JP2021527832A (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020035023A1 (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法
CN109799546A (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
CN109799545A (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
RU2595303C2 (ru) Сканирующее устройство для формирования трехмерного голографического изображения в миллиметровом диапазоне волн и способ обследования с помощью такого устройства
CN109782366A (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法
WO2020134335A1 (zh) 用于主动式微波毫米波安检设备的电磁成像装置
CN209433032U (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置结构和人体安检设备
CN108761452A (zh) 距离补偿的多输入多输出阵列毫米波三维成像装置及方法
JP2013509066A (ja) 稀薄分布のエレメントアレイを有するアンテナ
CN105467386A (zh) 毫米波三维全息扫描成像设备
WO2018025421A1 (ja) 物体検知装置および物体検知方法
WO2018196247A1 (zh) 一种微波三维成像系统及方法
CN209433033U (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置结构和人体安检设备
EP3845931A1 (en) Multiple-input multiple-output antenna array arrangement for active millimeter wave security inspection imaging, human body security inspection apparatus and method
JP7120919B2 (ja) 物体検知装置および物体検知方法
US9791565B2 (en) Multi-faced ultrasound transducer element
CN105866771A (zh) 一种隐藏物检测系统及其检测方法
Qi et al. Application of sparse array and MIMO in near-range microwave imaging
CN109782367A (zh) 一种安检系统以及安检方法
US10162050B2 (en) Rotary antenna, scanner using such an antenna, and device for inspecting persons
Dahl et al. Fractal antenna arrays for MIMO radar applications
RU2593595C1 (ru) Способ измерения угловых координат в нелинейном радиолокаторе
CN210626686U (zh) 稀疏多发多收天线阵列布置结构和人体安检设备
CN109786977A (zh) 一种天线面阵、安检装置以及安检方法
CN113126084A (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019817109

Country of ref document: EP

Effective date: 20191218

ENP Entry into the national phase

Ref document number: 2020571671

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020027061

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020027061

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201230