WO2020034968A1 - 包裹分配系统 - Google Patents
包裹分配系统 Download PDFInfo
- Publication number
- WO2020034968A1 WO2020034968A1 PCT/CN2019/100448 CN2019100448W WO2020034968A1 WO 2020034968 A1 WO2020034968 A1 WO 2020034968A1 CN 2019100448 W CN2019100448 W CN 2019100448W WO 2020034968 A1 WO2020034968 A1 WO 2020034968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- package
- robot
- conveyor
- distribution system
- parcel
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G47/00—Article or material-handling devices associated with conveyors; Methods employing such devices
- B65G47/22—Devices influencing the relative position or the attitude of articles during transit by conveyors
- B65G47/24—Devices influencing the relative position or the attitude of articles during transit by conveyors orientating the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G47/00—Article or material-handling devices associated with conveyors; Methods employing such devices
- B65G47/74—Feeding, transfer, or discharging devices of particular kinds or types
- B65G47/90—Devices for picking-up and depositing articles or materials
Definitions
- Automated Guided Vehicle refers to a transport vehicle equipped with automatic guidance devices such as electromagnetic or optical devices that can travel along a prescribed guidance path, with safety protection and various transfer functions. Automated guided transport vehicles do not require a driver in industrial applications. The battery of the automated guided transport vehicle provides it with energy. Computers can usually be used to control their travel routes and behaviors. Electromagnetic track-following system can also be used to establish its travel route. The electromagnetic track is adhered to the floor, and the unmanned vehicle moves and moves according to the information brought by the electromagnetic track.
- a main object of the present disclosure is to overcome at least one of the shortcomings of the prior art, and to provide a package distribution system, which includes: a conveyor for transferring packages; and a positioning component provided upstream of the conveyor for processing packages. Positioning to obtain the spatial position of the package; an encoder provided on the conveyor for obtaining the linear displacement of the positioned package continued to be driven by the conveyor; a robot provided downstream of the conveyor, the robot electrically connects the encoder and the The positioning component is used to track the position of the parcel according to the spatial position and the linear displacement, and to grab the parcel onto a transport vehicle when the parcel is transferred to the grasping range of the robot.
- the encoder includes a rotating shaft that is perpendicular to an extending direction of the conveyor belt of the conveyor, and a roller sleeved on the rotating shaft, the roller abutting the conveyor belt of the conveyor.
- Photoelectric sensor used to detect whether a package reaches the identification area
- the photoelectric sensor when the package passes the recognition area and is sensed by the photoelectric sensor, the photoelectric sensor triggers the binocular stereo vision system to obtain the three-dimensional coordinates of the characteristic points of the package, and also triggers the robot to record the encoder value at this moment to start recording the linear displacement of the package;
- the binocular stereo vision system performs deep learning in advance to obtain characteristics of different kinds of packages
- the lip on the first end picker is softer than the lip on the second end picker.
- the first end picker is dedicated to grasping the package in the bag, and the second end picker is dedicated to grasping the box. Packaging parcel.
- each of the first end pickup and the second end pickup further includes a holder, and the holder includes a flat plate parallel to the bottom plate and a slide bar extending vertically from the flat plate to the bottom plate;
- the flat plate is provided with a plurality of mounting holes, the vacuum chucks are inserted into the mounting holes one by one, and the bottom plate is further provided with a sliding sleeve whose axis is perpendicular to the bottom plate, and the sliding rod is inserted Into the sliding sleeve and can slide along the sliding sleeve.
- the robot further includes a pipeline for connecting a vacuum source and a vacuum chuck, and a vacuum detection device for detecting a vacuum value in the pipeline,
- the robot stops sucking and puts the package on the conveyor belt of the conveyor.
- the robot is a six-axis robot.
- the package When the package needs to be stored in the warehouse, the package is imported from the upstream of the conveyor.
- the parcel is transported along the conveyor downstream of the conveyor.
- the parcel is positioned as it passes through the positioning assembly to obtain the spatial position of the parcel here.
- the robot can obtain the linear displacement of the parcel that has been positioned by the encoder, and then be driven by the conveyor.
- the robot can obtain the real-time position of the parcel based on the spatial position information and the linear displacement information to implement tracking of the parcel.
- the package When it is tracked that the package is within the grasping range, the package is grasped on the transport vehicle, thereby realizing the automatic distribution of the package.
- Fig. 1 is a schematic top view of a package distribution system according to an exemplary embodiment
- Fig. 2 is a schematic partial rear view of a package distribution system according to an exemplary embodiment
- Fig. 3 is a schematic front view of an end pickup device according to an exemplary embodiment
- Fig. 5 is a schematic partial plan view of a package distribution system according to an exemplary embodiment
- Fig. 6 is a schematic partial rear view of a package distribution system according to an exemplary embodiment
- Parcel distribution system 11. Conveyor; 12. Robot; 120; Sleeve; 122; Pick-up; 121; Robotic arm; 123; Vacuum detection device; 124; Base plate; 125; Vacuum suction cup; 126; Support 127, lips; 128, flat plate; 129, slide bar; 13, positioning components; 130, vertical bar; 131, binocular stereo vision system; 132, mount; 133, camera; 134, photoelectric sensor; 14, coding Device; 141, mounting bracket; 142, roller; 15, fence; 16, grabbing range; 17, prohibited area; 18, working area; 2, parcel; 3, transport vehicle.
- FIG. 1 shows a package distribution system 1 in this embodiment.
- the package distribution system 1 includes a conveyor 11, a positioning assembly 13, an encoder 14, and a robot 12.
- the conveyor 11 is used to transfer the packages 2.
- the conveyor 11 is preferably a belt conveyor 11.
- the conveyor 11 is capable of conveying the packages 2 from upstream to downstream.
- the conveyor belt of the conveyor 11 is preferably arranged horizontally.
- the conveyor 11 conveys the packages 2 in a horizontal straight direction.
- the positioning assembly 13 is disposed upstream of the conveyor 11.
- the positioning component 13 is used for positioning the package 2 to obtain the spatial position of the package 2.
- the spatial position may be a three-dimensional coordinate of a feature point on the package 2.
- the characteristic point may be a midpoint of the upper surface of the package 2.
- the package 2 is positioned as it passes through the positioning assembly 13 during transport.
- the encoder 14 is provided on the conveyor 11.
- the encoder 14 includes a mounting bracket 141, a body, a rotating shaft, and a roller 142.
- the mounting bracket 141 is connected to the body and the frame of the conveyor 11.
- the encoder 14 is mounted on the frame of the conveyor 11 through the mounting bracket 141.
- the rotating shaft protrudes from the body.
- the shaft is set horizontally.
- the extending direction of the rotating shaft is perpendicular to the extending direction of the conveyor belt of the conveyor 11.
- the roller 142 is sleeved on the rotating shaft.
- the roller 142 is coaxially arranged with the rotating shaft.
- the roller 142 abuts the conveyor belt.
- the robot 12 is disposed downstream of the conveyor 11.
- the robot 12 is electrically connected to the encoder 14 and the positioning assembly 13.
- the robot 12 may be a six-axis robot.
- the robot arm 121 of the robot 12 is provided with a pickup 122 for grasping the package 2.
- the robot 12 tracks the position of the parcel 2 according to the spatial position information of the parcel 2 input by the positioning component 13 and the linear displacement information of the parcel 2 transported by the encoder 14.
- the robot 12 can pick up the packages 2 that are transported into its picking range 16 onto the transport vehicle 3.
- the transport vehicle 3 is preferably an automatic guided transport vehicle.
- the gripping range 16 of the robot 12 is preferably an area above the portion of the conveyor 11 near the robot 12, and this area may be set as a square area, and two opposite sides of the square area are flush with both sides of the conveyor belt.
- the parcel 2 when the parcel 2 needs to be stored in the warehouse, the parcel 2 is imported from the upstream of the conveyor 11.
- the package 2 is conveyed downstream of the conveyor 11 along the conveyor 11.
- the parcel 2 is positioned when passing the positioning component 13 to obtain the spatial position of the parcel 2 here, and the robot 12 obtains the value of the encoder 14 at this moment.
- the robot 12 starts to record the linear displacement of the parcel 2 which is continuously driven by the conveyor 11 according to this value.
- the robot 12 can obtain the real-time position of the parcel 2 according to the spatial position information and the linear displacement information to implement tracking of the parcel 2.
- the parcel 2 When it is tracked that the parcel 2 is located within the grasping range 16, the parcel 2 is grasped on the transport vehicle 3, thereby realizing the automatic distribution of the parcel 2.
- the binocular stereo vision system 131 performs deep learning in advance to obtain characteristics of different kinds of packages 2.
- Step a collect target data and make a target data set
- the target data refers to multiple pictures of different packages collected by the binocular stereo vision system 131, for example, multiple pictures of different packages such as a boxed package, a white bag, a gray bag, and an envelope package.
- the number of pictures is preferably tens of thousands.
- the target dataset is a collection of these pictures.
- Training the target data set is to train each picture, and mark the features of the package in each picture, for example, mark the shape, color, and face of package 2.
- the final target parameter model is the characteristics of each type of package.
- the binocular stereo vision system 131 can identify the package pattern and the package type in the picture according to the target and the parameter model.
- a plurality of robots 12 are provided, preferably five robots.
- a plurality of robots 12 are sequentially arranged along the conveyor 11. Each robot 12 can pick up the packages 2 in the corresponding picking range 16. Setting multiple robots 12 along the conveyor 11 can speed up the distribution speed of the parcel 2 and improve the distribution efficiency of the parcel 2.
- the positioning assembly 13 includes a binocular stereo vision system 131 and a photoelectric sensor 134.
- the binocular stereo vision system 131 includes a support frame and two cameras 133.
- the support frame includes a plurality of vertical rods 130 and a mounting seat 132.
- the vertical rod 130 is disposed vertically.
- the vertical rods 130 are respectively disposed on both sides of the conveyor 11.
- the mounting base 132 is disposed above the conveyor 11, and a plurality of vertical rods 130 collectively support the mounting base 132.
- Both cameras 133 are disposed on the mounting base 132.
- the shooting directions of the two cameras 133 face downward.
- the two cameras 133 capture the recognition area that the conveyor belt of the conveyor 11 passes through.
- the identification area is preferably located directly below the two cameras 133 and is flush with the upper surface of the conveyor belt.
- the photoelectric sensor 134 is disposed on the support frame.
- the photoelectric sensor 134 is used to detect whether a parcel 2 has reached the recognition area.
- the photoelectric sensor 134 triggers two cameras 133 to shoot at the same time, and also triggers the robot 12 to record the value of the encoder 14 at this moment.
- the binocular stereo vision system 131 processes the images of the package 2 obtained by the two cameras 133, recognizes the package 2 pattern in the image, and then obtains the three-dimensional coordinates of the feature points of the package 2 through the binocular 3D reconstruction technology.
- the characteristic point may be a midpoint of the upper surface of the package 2.
- the robot 12 can track the spatial position of the parcel 2 according to the three-dimensional coordinates of the feature point, the value of the encoder 14 at this moment, the resolution of the encoder 14, the conveying direction of the conveyor belt, and the real-time value of the encoder 14.
- the binocular stereo vision system 131 is further used to identify the height of the package 2.
- the binocular stereo vision system 131 can calculate the height of the package 2 based on the images of the package 2 obtained by the two cameras 133.
- the robot 12 corresponding to the grabbing range 16 grabs the parcel 2 having the highest height in the grabbing range 16.
- the advantage of this arrangement is that the problem that the robot 12 collides with the higher package 2 when the robot 12 is grasping the low package 2 can be avoided.
- At least one of the plurality of robots 12 is provided with a first end pickup, and at least one is provided with a second end pickup.
- each of the first end pickup and the second end pickup includes a bottom plate 124 and a plurality of vacuum suction cups 125.
- the bottom plate 124 is square.
- the vacuum chuck 125 is fixed on the bottom plate 124.
- the vacuum chuck 125 includes a lip 127 and a support 126.
- the lip 127 is cylindrical.
- the lip 127 is flexible.
- the lip 127 is preferably made of rubber.
- the bottom plate 124 may be disposed horizontally.
- the support 126 is mounted on the bottom of the bottom plate 124.
- One end of the lip 127 is fixed on the support 126, and the other end of the lip 127 extends downward.
- the support 126 is provided with a through hole, and the through hole is connected to the inner cavity enclosed by the channel lip 127.
- the through hole is used to communicate the vacuum source.
- the vacuum source is preferably a vacuum pump. When the first pickup and the second pickup grasp the package 2, the lip 127 abuts on the package 2.
- the vacuum source evacuates the area enclosed by the lip 127 and the package 2 to make the vacuum suction cup 125 suck the package 2.
- the lip 127 generates a certain deformation when sucking the package 2 to form a seal, and the support plate abuts the package of the package 2 to prevent the package 2 from deforming.
- the lip 127 of the first pickup is softer than the lip 127 of the second pickup.
- the binocular stereo vision system 131 is also used to identify whether the package 2 is a package packed in a bag or a package packed in a box according to the characteristics of the preset package. The features of the package are obtained after deep learning by the binocular stereo vision system 131.
- the first end picker is dedicated to grab the package 2 in a bag
- the second end picker is dedicated to grab the package 2 in a box. In this way, the parcel 2 packaged in the bag is assigned to the robot 12 equipped with the first end picker, and the parcel 2 packaged in the box is assigned to the robot 12 equipped with the second end picker to be grasped.
- the first end pickup and the second end pickup further include a holder.
- the holder includes a flat plate 128 and a plurality of slide bars 129.
- the flat plate 128 is provided with a plurality of mounting holes.
- a plurality of slide bars 129 vertically extend from the flat plate 128 toward the same side of the flat plate 128.
- the flat plate 128 may be a square plate.
- Four slide bars 129 may be provided, and are respectively disposed on four corners of the flat plate 128.
- the holder can slide relative to the bottom plate 124, and the sliding direction is close to or away from the bottom plate 124.
- the holder constrains the vacuum suction cup 125 to only expand and contract in the axial direction, so that the vacuum suction cup 125 does not move to one side when it abuts against the package 2. Crooked.
- the vacuum suction cups 125 are arranged in four rows on the bottom plate 124. Two vacuum suction cups 125 are provided in the middle two columns. Three vacuum suction cups 125 are provided on the outer two rows. The middle two rows of vacuum suction cups 125 are disposed in the middle of the bottom plate 124. In this way, both the small and light packages 2 can be sucked with the vacuum suction cup 125 in the middle, and the large and heavy packages 2 can be sucked with all the suction cups.
- a prohibited area 17 is further provided in the working area 18.
- the robot arm 121 of each robot 12 is prohibited from reaching into the prohibited area 17.
- the prohibited area 17 just accommodates the conveyor 11 in the work area 18. This prevents the robot 12 from colliding with the conveyor 11.
- the robot 12 further includes a vacuum detection device 123.
- the vacuum detection device 123 is used to detect a vacuum value in a pipeline between the vacuum source and the vacuum chuck 125.
- the robot 12 stops the suction and returns the package 2 to the conveyor belt of the conveyor 11. This can prevent the robot 12 from dropping the package during the subsequent movement of the package 2.
- the robot 12 stops running and alarms. At this point, there is already a packet dump or it is easy to dump, and the technician can perform manual intervention after receiving the alarm.
- the parcel distribution system 1 further includes a fence 15.
- the fence 15 surrounds the robot 12 to prevent people from entering the working area 18 of the robot 12.
- the lower end of the fence 15 is provided with an opening through which the transport vehicle 3 passes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
一种包裹分配系统(1),其包括:输送机(11),用于传送包裹(2);设置在输送机(11)上游的定位组件(13),用于对包裹(2)进行定位以获得包裹(2)的空间位置;设置在输送机(11)上的编码器(14),用于获得被定位后的包裹(2)继续被输送机(11)带动的直线位移;设置在输送机(11)下游的机器人(12),机器人(12)电连接编码器(14)和定位组件(13),用于根据空间位置和直线位移追踪包裹(2)的位置,并待包裹(2)传送到机器人(12)的抓取范围(16)内时将包裹(2)抓取到运输车(3)上。
Description
交叉引用
本公开要求于2018年8月14日提交的申请号为201810925142.7、名称为“包裹分配系统”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
本公开总体来说涉及一种物流仓储技术领域,具体而言,涉及一种包裹分配系统。
自动导引运输车(Automated Guided Vehicle,简称AGV),指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车。自动导引运输车在工业应用中不需驾驶员。自动导引运输车的蓄电池为其提供能源。一般可透过电脑来控制其行进路线以及行为。也可以利用电磁轨道(electromagnetic path-following system)来设立其行进路线,电磁轨道黏贴於地板上,无人搬运车则依循电磁轨道所带来的讯息进行移动与动作。
在包裹入库时,需要用人力先将包裹分配到自动引导运输车上,然后自动引导运输车将包裹运输到仓库内的货架上。人力分配的极限为1200单每小时,并且效率随着时间下降,对体力和耐力的要求较大,工人需要长时间站立作业,身体容易劳损。
背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本公开所要解决的一个技术问题为如何实现自动化分配包裹。
本公开的一个主要目的在于克服上述现有技术的至少一种缺陷,提供一种包裹分配系统,其包括:输送机,用于传送包裹;设置在输送机上游的定位组件,用于对包裹进行定 位以获得包裹的空间位置;设置在输送机上的编码器,用于获得被定位后的包裹继续被输送机带动的直线位移;设置在输送机下游的机器人,机器人电连接所述编码器和所述定位组件,用于根据所述空间位置和所述直线位移追踪包裹的位置,并待包裹传送到机器人的抓取范围内时将包裹抓取到运输车上。
根据本公开的一个实施例,所述机器人设置有多台,多台所述机器人沿着所述输送机依次排布。
根据本公开的一个实施例,编码器包括垂直于所述输送机的传送带的延伸方向的转轴以及套装在转轴上的滚轮,所述滚轮抵接于所述输送机的传送带。
根据本公开的一个实施例,编码器设置有多个,编码器与机器人一一对应设置,编码器向与其相对于的机器人电连接。
根据本公开的一个实施例,定位组件包括:
双目立体视觉系统,包括朝所述输送机的输送带所经过的辨识区域拍摄的两个摄像机;
光电传感器,用于检测是否有包裹到达辨识区域;
其中,当包裹经过辨识区域而被光电传感器感应,光电传感器触发双目立体视觉系统获得该包裹的特征点的三维坐标,同时还触发机器人记录此刻编码器的值以开始记录包裹的直线位移;
机器人根据所述三维坐标和所述直线位移判断该包裹是否进入到机器人的抓取范围内。
根据本公开的一个实施例,双目立体视觉系统预先进行深度学习以获得不同种类包裹的特征;
双目立体视觉系统根据包裹的特征能识别出两个摄像机所拍摄的图片中的包裹图案,并还能识别出包裹图案所对应的包裹种类。
根据本公开的一个实施例,双目立体视觉系统还用于识别包裹的高度,
当一个抓取范围内同时出现多个高度不同的包裹时,该抓取范围所对应的机器人抓取该抓取范围内高度最高的包裹。
根据本公开的一个实施例,多个机器人中至少一个设置有第一端拾器,至少一个设置有第二端拾器;第一端拾器和第二端拾器均包括底板以及安装在所述底板的同一板面上的多个真空吸盘;真空吸盘包括唇边;
其中,第一端拾器上的唇边比第二端拾器上的唇边更软,第一端拾器专用于抓取袋装 包装的包裹,第二端拾器专用于抓取盒装包装的包裹。
根据本公开的一个实施例,双目立体视觉系统还用于根据预设的包裹的特征来识别包裹为袋装包装还是盒装包装。
根据本公开的一个实施例,第一端拾器和第二端拾器还均包括保持架,所述保持架包括与底板平行的平板以及从所述平板垂直延伸向所述底板的滑杆;
其中,所述平板上设置有多个安装孔,所述真空吸盘一一插装到所述安装孔内,所述底板上还设置有轴线垂直于所述底板的滑套,所述滑杆插入到所述滑套内且能沿所述滑套滑动。
根据本公开的一个实施例,机器人还包括用于连通真空源和真空吸盘的管路以及用于检测所述管路内真空值的真空检测装置,
若在真空吸盘吸取包裹的过程中真空检测装置检测到的真空值小于预设的安全值则机器人停止吸取并将包裹放回到输送机的传送带上。
根据本公开的一个实施例,若在机器人将包裹转移到运输车的过程中,真空检测装置检测到真空度小于预设的安全值则机器人停止运转并报警。
根据本公开的一个实施例,所述机器人为六轴机器人。
由上述技术方案可知,本公开的包裹分配系统的优点和积极效果在于:
当包裹需要入库时,将包裹从输送机的上游输入。包裹沿着输送机向输送机的下游输送。包裹在经过定位组件时被定位,获得包裹在此处的空间位置,同时机器人能从编码器获得被定位后的包裹继续被输送机带动的直线位移。机器人能根据该空间位置信息和直线位移信息能获得包裹的实时位置,以实现对包裹的追踪。当追踪到包裹位于抓取范围内时,将包裹抓取到运输车上,从而实现对包裹的自动化分配。
通过结合附图考虑以下对本公开的优选实施例的详细说明,本公开的各种目标、特征和优点将变得更加显而易见。附图仅为本公开的示范性图解,并非一定是按比例绘制。在附图中,同样的附图标记始终表示相同或类似的部件。其中:
图1是根据一示例性实施方式示出的一种包裹分配系统的俯视示意图;
图2是根据一示例性实施方式示出的一种包裹分配系统的局部后视示意图;
图3是根据一示例性实施方式示出的一种端拾器的主视示意图;
图4是根据一示例性实施方式示出的一种端拾器的仰视示意图;
图5是根据一示例性实施方式示出的一种包裹分配系统的局部俯视示意图;
图6是根据一示例性实施方式示出的一种包裹分配系统的局部后视示意图;
其中,附图标记说明如下:
1、包裹分配系统;11、输送机;12、机器人;120、滑套;122、端拾器;121、机械臂;123、真空检测装置;124、底板;125、真空吸盘;126、支座;127、唇边;128、平板;129、滑杆;13、定位组件;130、竖杆;131、双目立体视觉系统;132、安装座;133、摄像机;134、光电传感器;14、编码器;141、安装支架;142、滚轮;15、围栏;16、抓取范围;17、禁止区域;18、工作区域;2、包裹;3、运输车。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
参照图1,图1显示了本实施例中的一种包裹分配系统1。该包裹分配系统1包括输送机11,定位组件13,编码器14和机器人12。
输送机11用于传递包裹2。输送机11优选为带式输送机11。输送机11能将包裹2从上游向下游输送。输送机11的传送带优选为水平设置。输送机11沿着水平的直线方向输送包裹2。
定位组件13设置在输送机11的上游。定位组件13用于对包裹2进行定位,以获得包裹2的空间位置。该空间位置可以是包裹2上的特征点的三维坐标。该特征点可以是包裹2上表面的中点。包裹2在传送过程中经过定位组件13时被定位。
编码器14设置在输送机11上。编码器14包括安装支架141、本体、转轴和滚轮142。安装支架141连接本体和输送机11的机架,编码器14通过安装支架141安装在输送机11的机架上。转轴从本体中伸出。转轴水平设置。转轴的延伸方向与输送机11的输送带的延伸方向垂直。滚轮142套装在转轴上。滚轮142与转轴之间同轴设置。滚轮142抵接于传送带。传送带运动时能带动滚轮142滚动,滚轮142带动转轴转动。滚轮142在传送带上滚动的距离即为包裹2被运送的直线位移。在包裹2被定位后,通过编码器14能获得该包裹2继续被传送带带动的直线位移。
机器人12设置在输送机11的下游。机器人12电连接编码器14和定位组件13。 机器人12可以是六轴机器人。机器人12的机械臂121上设置有用于抓取包裹2的端拾器122。机器人12根据定位组件13输入的包裹2的空间位置信息和编码器14输送的包裹2的直线位移信息来追踪包裹2的位置。机器人12可以将输送到其抓取范围16内的包裹2抓取到运输车3上。当判断出包裹2到达机器人12的抓取范围16时,机器人12将该包裹2抓取到运输车3上。该运输车3优选为自动引导运输车。机器人12的抓取范围16优选为输送机11靠近机器人12的部分的上方区域,该区域可以设置成一个方形区域,方形区域相对的两条边与输送带的两侧边平齐。
这样,当包裹2需要入库时,将包裹2从输送机11的上游输入。包裹2沿着输送机11向输送机11的下游输送。包裹2在经过定位组件13时被定位,获得包裹2在此处的空间位置,同时机器人12获取到编码器14在此刻的值。机器人12根据这个值开始记录该包裹2继续被输送机11带动的直线位移。机器人12能根据该空间位置信息和直线位移信息能获得包裹2的实时位置,以实现对包裹2的追踪。当追踪到包裹2位于抓取范围16内时,将包裹2抓取到运输车3上,从而实现对包裹2的自动化分配。
优选的,为了准确识别出图像中的包裹2,双目立体视觉系统131预进行深度学习以获得不同种类的包裹2的特征。
深度学习的步骤为:
步骤a:采集目标数据,制作目标数据集;
目标数据是指双目立体视觉系统131所采集到的不同包裹的多张图片,例如,盒装、白色袋装、灰色袋装、信封包装等不同的包裹的多张图片。图片的数量优选为几万张。目标数据集即为这些图片的集合。
步骤b:对目标数据集进行训练,获取每类包裹的目标参数模型。
对目标数据集进行训练为对每一张图片训练,标记每张图片中包裹的特征,例如,标记包裹2的形状、颜色、面单等。最终获得的目标参数模型即为每类包裹的特征。双目立体视觉系统131可根据该目标,参数模型来识别出图片中的包裹图形和包裹种类。
在一个示意性的实施例中,机器人12设置有多台,优选为5台。多台机器人12沿输送机11依次排布。每台机器人12可以抓取与其相对应的抓取范围16内的包裹2。沿着输送机11设置多台机器人12可以加快包裹2的分配速度,提高包裹2的分配效率。
在一个示意性的实施例中,编码器14也设置有多个。编码器14的数量与机器人12的数量相同。编码器14与机器人12一一对应设置,编码器14电连接于与其相对应的机器人12,编码器14向与其相对应的机器人12输送包裹2的直线位移。每个编码器14分配给一个机器人12,更加可靠。
在一个示意性的实施例中,参照图2,定位组件13包括双目立体视觉系统131和光电传感器134。双目立体视觉系统131包括支撑架和两台摄像机133。支撑架包括多根竖杆130和安装座132。竖杆130竖直设置。竖杆130分别设置在输送机11的两侧。安装座132设置在输送机11的上方,多根竖杆130共同支撑起安装座132。两台摄像机133均设置在安装座132上。两个摄像机133的拍摄方向均朝下。两个摄像机133对输送机11的输送带所经过的辨识区域拍摄。该辨识区域优选位于两个摄像机133的正下方,且与传送带的上表面平齐。光电传感器134设置在支撑架上。
光电传感器134用于检测是否有包裹2到达辨识区域。当包裹2进入辨识区域时,光电传感器134触发两个摄像机133同时拍摄,与此同时还触发机器人12记录编码器14的在此刻的值。双目立体视觉系统131将两个摄像机133所获得的包裹2的图像进行处理,识别出图像中的包裹2图案,然后通过双目三维重建技术获得包裹2的特征点的三维坐标。该特征点可以是包裹2上表面的中点。机器人12能根据特征点的三维坐标,此刻编码器14的值,编码器14的分辨率,传送带的输送方向以及编码器14的实时值来跟踪包裹2所处的空间位置。
在一个示意性的实施例中,双目立体视觉系统131还用于识别包裹2的高度。双目立体视觉系统131能根据两个摄像机133所获得的包裹2的图像计算出包裹2的高度。当一个抓取范围16内同时出现多个高度不同的包裹2时,该抓取范围16所对应的机器人12抓取该抓取范围16内高度最高的包裹2。这样设置的好处在于能避免机器人12在抓取低矮的包裹2时机器人12与较高的包裹2相碰撞的问题。
在一个示意性的实施例中,多个机器人12中至少一个设置有第一端拾器,至少一个设置有第二端拾器。
参照图3、4,第一端拾器和第二端拾器均包括底板124和多个真空吸盘125。底板124呈方形。真空吸盘125固定在底板124上。真空吸盘125包括唇边127和支座126。唇边127构造为圆筒形。唇边127具有柔性。唇边127优选为采用橡胶制作。
底板124可以呈水平设置。支座126安装在底板124的底部。唇边127的一端固定在支座126上,唇边127的另一端向下延伸。支座126上设置有通孔,通孔连通道 唇边127所围合的内腔。通孔用于连通真空源。真空源优选为真空泵。第一端拾器、第二端拾器抓取包裹2时,唇边127与包裹2相抵,真空源将唇边127与包裹2所围合的区域抽真空使得真空吸盘125吸住包裹2。唇边127在吸住包裹2时产生一定的形变以形成密封,支撑盘抵住包裹2的包装以避免包裹2变形。第一端拾器的唇边127比第二端拾器的唇边127更软。
双目立体视觉系统131还用于根据预设的包裹的特征来识别包裹2为袋装包装的包裹还是盒装包装的包裹。包裹的特征由双目立体视觉系统131进行深度学习后获得。第一端拾器专用于抓取袋装包装的包裹2,第二端拾器专用于抓取盒装包装的包裹2。这样,将袋装包装的包裹2分配给安装有第一端拾器的机器人12抓取,将盒装包装的包裹2分配给安装有第二端拾器的机器人12抓取,不容易掉包。
优选地,第一端拾器和第二端拾器还包括保持架。保持架包括平板128以及多根滑杆129。平板128上设置有多个安装孔。多根滑杆129从平板128上向平板128的同一侧垂直伸出。平板128可以是方形板。滑杆129可以是设置四根,并分别设置在平板128的四个角上。
平板128与底板124平行设置,并且真空吸盘125插装到安装孔内。底板124上还设置有多个滑套120。滑套120的轴线垂直于底板124。滑套120贯穿底板124。当底板124设置成方形板时,滑套120可以是设置在底板124的四个角上。滑杆129与滑套120一一对应设置。滑杆129插入到与其相对于的滑套120内。
保持架能相对于底板124滑动,并且滑动方向为靠近或远离底板124,保持架将真空吸盘125约束成仅能沿轴线方向伸缩,这样真空吸盘125就不会在抵靠包裹2的时候向一边歪倒。
优选地,真空吸盘125在底板124上呈四列排布。中间两列均设置有两个真空吸盘125。外侧两列真空吸盘125均设置有三个。中间两列真空吸盘125设置在底板124的中部。这样既可以用中间的真空吸盘125吸取小而轻的包裹2,也可以用所有吸盘吸取大而重的包裹2。
在一个示意性的实施例中,参照图5、6,每台机器人12的机械臂121不伸出各自的工作区域18,相邻两台机器人12的工作区域18相互分离。这样,相邻两台机器人12不会产生相互碰撞。工作区域18优选为侧面与传送带远离机器人12的外缘平齐的直六面体空间。该直六面体空间容纳机器人12。
在一个示意性的实施例中,工作区域18内还设置有禁止区域17。每台机器人12 的机械臂121被禁止伸入到禁止区域17内。禁止区域17正好容纳工作区域18内的输送机11。这样就能防止机器人12与输送机11相碰撞。
在一个示意性的实施例中,机器人12还包括真空检测装置123。真空检测装置123用于检测真空源到真空吸盘125之间的管路内的真空值。
若在真空吸盘125吸取包裹2的过程中真空值小于预设的安全值则机器人12停止吸取并将包裹2放回到输送机11的传送带上。这样能防止机器人12在后续移动包裹2的过程中掉包。
若在机器人12将包裹2转移到运输车3的过程中,检测真空度小于预设的安全值则机器人12停止运转并报警。这时已经出现甩包或容易出现甩包,技术人员在接收到报警后,可以进行人工干预。
在一个示意性的实施例中,包裹分配系统1还包括围栏15。围栏15围住机器人12,以防人进入到机器人12的工作区域18。围栏15的下端设置有供运输车3通过的洞口。
在一个实施例中,定位组件13也可以是线扫描系统。
应理解,以上描述的多个示例可沿多个方向(如倾斜、颠倒、水平、垂直,等等)并且以多个构造被利用,而不背离本公开的原理。附图中示出的实施例仅作为本公开的原理的有效应用的示例而被示出和描述,本公开并不限于这些实施例的任何具体的细节。
当然,一旦仔细考虑代表性实施例的以上描述,本领域技术人员就将容易理解,可对这些具体的实施例做出多种改型、添加、替代、删除以及其他变化,并且这些变化在本公开的原理的范围内。因此,前面的详细描述应被清楚地理解为是仅以说明和示例的方式来给出的,本公开的精神和范围仅由所附权利要求书及其等同物限定。
Claims (13)
- 一种包裹分配系统,其中,包括:输送机,用于传送包裹;设置在输送机上游的定位组件,用于对包裹进行定位以获得包裹的空间位置;设置在输送机上的编码器,用于获得被定位后的包裹继续被输送机带动的直线位移;设置在输送机下游的机器人,机器人电连接所述编码器和所述定位组件,用于根据所述空间位置和所述直线位移追踪包裹的位置,并待包裹传送到机器人的抓取范围内时将包裹抓取到运输车上。
- 根据权利要求1所述的包裹分配系统,其中,所述机器人设置有多台,多台所述机器人沿着所述输送机依次排布。
- 根据权利要求1所述的包裹分配系统,其中,编码器包括垂直于所述输送机的传送带的延伸方向的转轴以及套装在转轴上的滚轮,所述滚轮抵接于所述输送机的传送带。
- 根据权利要求2所述的包裹分配系统,其中,编码器设置有多个,编码器与机器人一一对应设置,编码器向与其相对于的机器人电连接。
- 根据权利要求2所述的包裹分配系统,其中,定位组件包括:双目立体视觉系统,包括朝所述输送机的输送带所经过的辨识区域拍摄的两个摄像机;光电传感器,用于检测是否有包裹到达辨识区域;其中,当包裹经过辨识区域而被光电传感器感应,光电传感器触发双目立体视觉系统获得该包裹的特征点的三维坐标,同时还触发机器人记录此刻编码器的值以开始记录包裹的直线位移;机器人根据所述三维坐标和所述直线位移判断该包裹是否进入到机器人的抓取范围内。
- 根据权利要求5所述的包裹分配系统,其中,双目立体视觉系统预先进行深度学习以获得不同种类包裹的特征;双目立体视觉系统根据包裹的特征能识别出两个摄像机所拍摄的图片中的包裹图案,并还能识别出包裹图案所对应的包裹种类。
- 根据权利要求5所述的包裹分配系统,其中,双目立体视觉系统还用于识别包裹的高度,当一个抓取范围内同时出现多个高度不同的包裹时,该抓取范围所对应的机器人抓取该抓取范围内高度最高的包裹。
- 根据权利要求5所述的包裹分配系统,其中,多个机器人中至少一个设置有第一端拾器,至少一个设置有第二端拾器;第一端拾器和第二端拾器均包括底板以及安装在所述底板的同一板面上的多个真空吸盘;真空吸盘包括唇边;其中,第一端拾器上的唇边比第二端拾器上的唇边更软,第一端拾器专用于抓取袋装包装的包裹,第二端拾器专用于抓取盒装包装的包裹。
- 根据权利要求8所述的包裹分配系统,其中,双目立体视觉系统还用于根据预设的包裹的特征来识别包裹为袋装包装还是盒装包装。
- 根据权利要求8所述的包裹分配系统,其中,第一端拾器和第二端拾器还均包括保持架,所述保持架包括与底板平行的平板以及从所述平板垂直延伸向所述底板的滑杆;其中,所述平板上设置有多个安装孔,所述真空吸盘一一插装到所述安装孔内,所述底板上还设置有轴线垂直于所述底板的滑套,所述滑杆插入到所述滑套内且能沿所述滑套滑动。
- 根据权利要求8所述的包裹分配系统,其中,机器人还包括用于连通真空源和真空吸盘的管路以及用于检测所述管路内真空值的真空检测装置,若在真空吸盘吸取包裹的过程中真空检测装置检测到的真空值小于预设的安全值则机器人停止吸取并将包裹放回到输送机的传送带上。
- 根据权利要求11所述的包裹分配系统,其中,若在机器人将包裹转移到运输车的过程中,真空检测装置检测到真空度小于预设的安全值则机器人停止运转并报警。
- 根据权利要求1所述的包裹分配系统,其中,所述机器人为六轴机器人。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810925142.7A CN110356835A (zh) | 2018-08-14 | 2018-08-14 | 包裹分配系统 |
CN201810925142.7 | 2018-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020034968A1 true WO2020034968A1 (zh) | 2020-02-20 |
Family
ID=68212944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/100448 WO2020034968A1 (zh) | 2018-08-14 | 2019-08-13 | 包裹分配系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110356835A (zh) |
WO (1) | WO2020034968A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103313921A (zh) * | 2011-02-15 | 2013-09-18 | 欧姆龙株式会社 | 图像处理装置及图像处理系统 |
CN104395211A (zh) * | 2012-07-20 | 2015-03-04 | 株式会社安川电机 | 机器人系统及物品移送方法 |
CN205466161U (zh) * | 2016-01-07 | 2016-08-17 | 广州凯锐机械设备制造有限公司 | 一种具有报警功能的真空吸吊机 |
CN106247943A (zh) * | 2016-09-23 | 2016-12-21 | 北京京东尚科信息技术有限公司 | 物品三维定位方法、装置和系统 |
CN106985161A (zh) * | 2016-12-22 | 2017-07-28 | 北京京东尚科信息技术有限公司 | 物品抓取系统和方法 |
CN206811992U (zh) * | 2017-06-27 | 2017-12-29 | 北京京东尚科信息技术有限公司 | 端拾器和拣选机器人 |
CN209052066U (zh) * | 2018-08-14 | 2019-07-02 | 北京京东尚科信息技术有限公司 | 包裹分配系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8931240B2 (en) * | 2008-10-27 | 2015-01-13 | Formax, Inc. | Shuttle system and method for moving food products into packaging |
-
2018
- 2018-08-14 CN CN201810925142.7A patent/CN110356835A/zh active Pending
-
2019
- 2019-08-13 WO PCT/CN2019/100448 patent/WO2020034968A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103313921A (zh) * | 2011-02-15 | 2013-09-18 | 欧姆龙株式会社 | 图像处理装置及图像处理系统 |
CN104395211A (zh) * | 2012-07-20 | 2015-03-04 | 株式会社安川电机 | 机器人系统及物品移送方法 |
CN205466161U (zh) * | 2016-01-07 | 2016-08-17 | 广州凯锐机械设备制造有限公司 | 一种具有报警功能的真空吸吊机 |
CN106247943A (zh) * | 2016-09-23 | 2016-12-21 | 北京京东尚科信息技术有限公司 | 物品三维定位方法、装置和系统 |
CN106985161A (zh) * | 2016-12-22 | 2017-07-28 | 北京京东尚科信息技术有限公司 | 物品抓取系统和方法 |
CN206811992U (zh) * | 2017-06-27 | 2017-12-29 | 北京京东尚科信息技术有限公司 | 端拾器和拣选机器人 |
CN209052066U (zh) * | 2018-08-14 | 2019-07-02 | 北京京东尚科信息技术有限公司 | 包裹分配系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110356835A (zh) | 2019-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109279373B (zh) | 一种基于机器视觉的柔性拆垛码垛机器人系统及方法 | |
CN105692251B (zh) | 物品自动装车系统 | |
US11288810B2 (en) | Robotic system with automated package registration mechanism and methods of operating the same | |
US9492924B2 (en) | Moveable apparatuses having robotic manipulators and conveyors to facilitate object movement | |
US11433429B2 (en) | Logistics sorting system and logistics sorting method | |
CN111730603B (zh) | 机器人系统的控制装置以及控制方法 | |
US20210114826A1 (en) | Vision-assisted robotized depalletizer | |
US9630316B2 (en) | Real-time determination of object metrics for trajectory planning | |
KR102625214B1 (ko) | 상자들의 검출 | |
US9507995B2 (en) | Combination of stereo and structured-light processing | |
US20220119208A1 (en) | Product pick-up system and product pick-up method | |
KR20170073798A (ko) | 반송 로봇 및 그 제어 방법 | |
CN109772718A (zh) | 包裹地址识别系统、识别方法和包裹分拣系统、分拣方法 | |
Kimura et al. | Mobile dual-arm robot for automated order picking system in warehouse containing various kinds of products | |
Nakamoto et al. | High-speed and compact depalletizing robot capable of handling packages stacked complicatedly | |
US20220281114A1 (en) | Method and computing system for performing grip region detection | |
CN115744272A (zh) | 机器人多表面夹持器组件及其操作方法 | |
CN209052066U (zh) | 包裹分配系统 | |
WO2020034968A1 (zh) | 包裹分配系统 | |
SE524796C2 (sv) | Kollisionsskydd | |
EP4371711A1 (en) | A robotic system transfer unit cell and method of operation thereof | |
CN216511500U (zh) | 物体拆垛系统 | |
JP7264387B2 (ja) | 開閉式物体用のロボットグリッパアセンブリ及び物体をピッキングするための方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19849966 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19849966 Country of ref document: EP Kind code of ref document: A1 |