WO2020032613A1 - Method for transmitting and receiving signal in wireless communication system, and device for supporting same - Google Patents

Method for transmitting and receiving signal in wireless communication system, and device for supporting same Download PDF

Info

Publication number
WO2020032613A1
WO2020032613A1 PCT/KR2019/009958 KR2019009958W WO2020032613A1 WO 2020032613 A1 WO2020032613 A1 WO 2020032613A1 KR 2019009958 W KR2019009958 W KR 2019009958W WO 2020032613 A1 WO2020032613 A1 WO 2020032613A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
hop number
terminal
information
Prior art date
Application number
PCT/KR2019/009958
Other languages
French (fr)
Korean (ko)
Inventor
김영태
윤석현
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020032613A1 publication Critical patent/WO2020032613A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks

Definitions

  • the present invention relates to a method and apparatus for use in a wireless communication system, and more particularly, to a method for transmitting and receiving a signal in a next generation communication system and an apparatus supporting the same.
  • next-generation communication As more communication devices demand greater communication capacity, there is a need for enhanced mobile broadband (eMBB) communication as compared to conventional radio access technology (RAT).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • mMTC massive machine type communications
  • a communication system design considering a service / UE that is sensitive to reliability and latency is being discussed.
  • next-generation RAT considering eMBB communication, mMTC, ultra-reliable and low latency communication (URLLC), and the like are discussed, and for convenience, the technology is referred to as NR.
  • An object of the present invention is to provide a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • the present invention provides a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • a communication method by a terminal in a wireless communication system, receiving first hop number information for a first cell from a donor base station, and based on the first hop number information And determining whether to report a quality measurement result for the first cell to a base station, wherein the first hop number information is located on a path from the donor base station to the terminal.
  • a communication method is provided that includes a first hop number according to the number of relay nodes and a first offset value assigned to the first hop number.
  • a terminal used in a wireless communication system comprising a memory and a processor, the processor receives first hop number information for a first cell from a donor base station, Determine whether to report a quality measurement result for the first cell to a base station based on 1 hop number information, wherein the first hop number information is located on a path from the donor base station to the terminal;
  • a terminal is provided that includes a first hop number according to the number of relay nodes in one cell and a first offset value assigned to the first hop number.
  • the method further includes receiving second hop number information for a second cell from the donor base station, wherein the second hop number information is located on the path from the donor base station to the terminal.
  • the second hop number according to the number of relay nodes of the and may include a second offset value given to the second hop number.
  • the method may include comparing the first result value to which the first offset value is applied to the first hop number and the second result value to which the second offset value is applied to the second hop number. Report the quality measurement result for the second cell to the base station if it is larger than the second result value, and if the first result value is smaller than the second result value, report the quality measurement result for the second cell to the base station. You may not report it.
  • the first hop number information and the second hop number information may be received through a system information block (SIB) or an upper layer signal.
  • SIB system information block
  • the second cell may be a cell neighboring the first cell where the terminal is located.
  • the terminal may include an autonomous vehicle.
  • a terminal in a next generation communication system, may be connected to a cell having a low number of hops for a relay node.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram for describing physical channels and a signal transmission method using the same.
  • 3 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 4 is a diagram illustrating a structure of a radio frame based on an NR system.
  • FIG. 5 is a diagram illustrating a slot structure of a frame based on an NR system.
  • FIG. 6 is a diagram illustrating a self-contained slot structure based on the NR system.
  • FIG. 7 illustrates an abstract hybrid beamforming structure from the perspective of a transceiver unit (TXRU) and a physical antenna.
  • TXRU transceiver unit
  • FIG. 8 illustrates a beam sweeping operation for a synchronization signal and system information during downlink transmission.
  • FIG 9 illustrates a cell of a new radio access technology (NR) system.
  • NR new radio access technology
  • FIG. 13 illustrates a wireless device that can be applied to the present invention.
  • FIG. 14 illustrates another example of a wireless device that can be applied to the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station. Certain operations described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be.
  • the name of a base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-Advanced / LTE-A pro is an evolution of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE / LTE-A / LTE-A pro is an evolution of 3GPP LTE / LTE-A / LTE-A pro.
  • the 3GPP based communication standard provides downlink physical channels corresponding to resource elements carrying information originating from a higher layer, and downlink corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, reference signal and synchronization signal Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predefined special waveform that the gNB and the UE know from each other.
  • a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals are defined.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Control Format Indicator) / Downlink ACK / NACK (ACKnowlegement / Negative ACK) / Downlink Means a set of time-frequency resources or a set of resource elements, and also includes PUCCH (Physical Uplink Control CHannel) / PUSCH (Physical Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry Uplink Control Information (UCI) / Uplink Data / Random Access signals, respectively.
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource is referred to below:
  • the expression that the user equipment transmits the PUCCH / PUSCH / PRACH is hereinafter referred to as uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively.
  • the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
  • an OFDM symbol / subcarrier / RE to which CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured is configured as CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier. It is called / subcarrier / RE.
  • an OFDM symbol assigned or configured with a tracking RS (TRS) is referred to as a TRS symbol
  • a subcarrier assigned or configured with a TRS is called a TRS subcarrier and is assigned a TRS.
  • the configured RE is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which the broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called.
  • OFDM symbols / subcarriers / RE to which PSS / SSS is assigned or configured are referred to as PSS / SSS symbols / subcarriers / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are each an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, An antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS.
  • Antenna ports configured to transmit CRSs can be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs.
  • the antenna ports configured to transmit CSI-RSs may be distinguished from each other by the positions of REs occupied by the UE-RSs according to the -RS ports, and the CSI-RSs occupy The location of the REs can be distinguished from each other.
  • CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans port channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connection (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 2 is a diagram for explaining physical channels and a general signal transmission method used in a 3GPP system.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • an initial cell search operation such as synchronization with a base station is performed (S11).
  • the UE may receive a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH) from a base station through a Synchronization Signal Block (SSB) block.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal receives the PSS and the SSS, synchronizes with the base station, and acquires information such as a cell identity.
  • the terminal may receive the PBCH from the base station to obtain broadcast information in the cell.
  • the UE may check the downlink channel state by receiving a DL RS (Downlink Reference Signal) in the initial cell search step.
  • DL RS Downlink Reference Signal
  • the UE may obtain more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) corresponding thereto (S12).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure (S13 to S16) to complete the access to the base station.
  • the UE may transmit a preamble through a physical random access channel (PRACH) (S13), and may receive a random access response (RAR) for the preamble through a PDCCH and a PDSCH corresponding thereto (S14).
  • the UE may transmit a physical uplink shared channel (PUSCH) using scheduling information in the RAR (S15) and perform a contention resolution procedure such as a PDCCH and a PDSCH corresponding thereto (S16).
  • PRACH physical random access channel
  • RAR random access response
  • PUSCH physical uplink shared channel
  • the UE may perform PDCCH / PDSCH reception (S17) and PUSCH / PUCCH (Physical Uplink Control Channel) transmission (S18) as a general uplink / downlink signal transmission procedure.
  • Control information transmitted from the terminal to the base station is referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • the UCI is generally transmitted through the PUCCH, but may be transmitted through the PUSCH when control information and data should be transmitted at the same time.
  • the UE may transmit the UCI aperiodically through the PUSCH according to the request / instruction of the network.
  • 3 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 4 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • One radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs).
  • One half-frame is defined as five 1 ms subframes (SFs).
  • One subframe is divided into one or more slots, and the number of slots in the subframe depends on subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot contains 14 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • One slot includes a plurality of symbols in the time domain. For example, in general, one slot includes 14 symbols in case of CP, but one slot includes 12 symbols in case of extended CP.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block (RB) is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • a bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE.
  • Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • FIG. 6 shows the structure of a self-contained slot based on the NR system.
  • a frame is characterized by a self-complete structure in which all of a DL control channel, DL or UL data, UL control channel, etc. may be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region hereinafter, referred to as a data region
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL region (i) UL data region, (ii) UL data region + UL control region
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • Downlink Control Information (DCI), for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH.
  • DCI Downlink Control Information
  • uplink control information for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP.
  • the NR system considers using a high frequency band, that is, a millimeter frequency band of 6 GHz or more to transmit data while maintaining a high data rate to a large number of users using a wide frequency band.
  • 3GPP uses this as the name NR, which is referred to as NR system in the present invention.
  • the millimeter frequency band has a frequency characteristic that the signal attenuation with the distance is very rapid due to the use of a frequency band too high. Therefore, NR systems using bands of at least 6 GHz or more narrow beams that solve the problem of reduced coverage due to abrupt propagation attenuation by gathering and transmitting energy in a specific direction rather than omnidirectionally to compensate for abrupt propagation characteristics. narrow beam) transmission scheme.
  • narrow beam narrow beam
  • the wavelength is shortened to allow the installation of a plurality of antenna elements in the same area.
  • a total of 100 antenna elements can be installed in a two-dimension arrangement in a 0.5 lambda (wavelength) interval on a panel of 5 by 5 cm.
  • mmW it is considered to use a plurality of antenna elements to increase the beamforming gain to increase coverage or to increase throughput.
  • a beamforming scheme in which a base station or a UE transmits the same signal using a phase difference appropriate to a large number of antennas is mainly considered.
  • Such beamforming schemes include digital beamforming that creates a phase difference in a digital baseband signal, analog beamforming that creates a phase difference using a time delay (ie, cyclic shift) in a modulated analog signal, digital beamforming, and an analog beam.
  • TXRU transceiver unit
  • the millimeter frequency band should be used by a large number of antennas to compensate for rapid propagation attenuation, and digital beamforming is equivalent to the number of antennas. Since an amplifier (power amplifier, linear amplifier, etc.) is required, the implementation of digital beamforming in the millimeter frequency band has a problem of increasing the cost of communication equipment. Therefore, when a large number of antennas are required, such as the millimeter frequency band, the use of analog beamforming or hybrid beamforming is considered.
  • the analog beamforming method maps a plurality of antenna elements to one TXRU and adjusts the beam direction with an analog phase shifter.
  • Hybrid BF is an intermediate form between digital BF and analog BF, with B TXRUs, which is fewer than Q antenna elements.
  • B TXRUs which is fewer than Q antenna elements.
  • the direction of beams that can be transmitted simultaneously is limited to B or less.
  • digital beamforming processes the digital baseband signal to be transmitted or received, so that multiple beams can be used to transmit or receive signals simultaneously in multiple directions, while analog beamforming can transmit or receive signals. Since the beamforming is performed in a modulated state of the received analog signal, the signal cannot be simultaneously transmitted or received in multiple directions beyond the range covered by one beam.
  • a base station communicates with a plurality of users at the same time by using broadband transmission or multiple antenna characteristics. When a base station uses analog or hybrid beamforming and forms an analog beam in one beam direction, it is because of the characteristics of analog beamforming. Only users within the same analog beam direction can communicate.
  • the RACH resource allocation and resource utilization scheme of the base station according to the present invention to be described later is proposed to reflect the constraints caused by the analog beamforming or hybrid beamforming characteristics.
  • FIG. 7 illustrates an abstract hybrid beamforming structure from the perspective of a transceiver unit (TXRU) and a physical antenna.
  • TXRU transceiver unit
  • analog beamforming refers to an operation in which a transceiver (or RF unit) performs precoding (or combining).
  • the baseband unit and transceiver (or RF unit) perform precoding (or combining), respectively, resulting in the number of RF chains and the D / A (or A / D) converter.
  • the hybrid beamforming structure may be represented by N TXRUs and M physical antennas.
  • the digital beamforming for the L data layers to be transmitted at the transmitting end can be represented by an N-by-L matrix, and then the converted N digital signals are converted into analog signals via TXRU and then into an M-by-N matrix.
  • the expressed analog beamforming is applied.
  • the number of digital beams is L
  • the number of analog beams is N.
  • the base station is designed to change the analog beamforming on a symbol basis, so that a direction for supporting more efficient beamforming for a UE located in a specific area is being considered.
  • N TXRUs and M RF antennas are defined as one antenna panel
  • a method of introducing a plurality of antenna panels to which hybrid beamforming independent of each other is applicable in an NR system is also considered.
  • analog beams advantageous for signal reception may be different for each UE, and thus, the base station is applied to at least a synchronization signal, system information, and paging in a specific slot or subframe (SF).
  • a beam sweeping operation is considered in which a plurality of analog beams to be changed symbol by symbol so that all UEs have a reception opportunity.
  • FIG. 8 is a diagram illustrating a beam sweeping operation for a synchronization signal and system information in downlink transmission.
  • a physical resource or a physical channel through which system information of the New RAT system is broadcasted is referred to as a physical broadcast channel (xPBCH).
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels may be simultaneously transmitted in one symbol, and in order to measure a channel for each analog beam, as shown in FIG.
  • a method of introducing Beam RS (BRS), which is a reference signal (RS) transmitted for a single analog beam, has been discussed.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • a synchronization signal or a xPBCH may be transmitted for all the analog beams included in the analog beam group so that any UE can receive them well.
  • FIG 9 illustrates a cell of a new radio access technology (NR) system.
  • NR new radio access technology
  • a method in which a plurality of TRPs constitute one cell is discussed, unlike one base station forming one cell in a conventional wireless communication system such as LTE. If the cell is configured, even if the TRP serving the UE is changed, seamless communication is possible, and thus there is an advantage in that mobility management of the UE is easy.
  • PSS / SSS is transmitted omni-direction, whereas signals such as PSS / SSS / PBCH are rotated omg-directionally by the gNB applying mmWave.
  • a method of beamforming and transmitting the beam is considered.
  • transmitting / receiving signals while rotating the beam direction is referred to as beam sweeping or beam scanning.
  • beam sweeping refers to transmitter side behavior
  • beam scanning refers to receiver side behavior.
  • signals such as PSS / SSS / PBCH are transmitted for the N beam directions, respectively.
  • the gNB transmits synchronization signals such as PSS / SSS / PBCH for each direction while sweeping directions that it may have or support.
  • synchronization signals such as PSS / SSS / PBCH
  • several beams may be bundled into one beam group, and PSS / SSS / PBCH may be transmitted / received for each beam group.
  • one beam group includes one or more beams.
  • a signal such as PSS / SSS / PBCH transmitted in the same direction may be defined as one SS block, and a plurality of SS blocks may exist in one cell. When there are a plurality of SS blocks, an SS block index may be used to distinguish each SS block.
  • PSS / SSS / PBCH in the same direction may constitute one SS block, and in the system, 10 SS blocks It can be understood to exist.
  • the beam index may be interpreted as an SS block index.
  • the SSB Synchronization Signal Block
  • SSB Synchronization Signal Block
  • UE acquires DL synchronization based on SSB (eg, OFDM symbol / slot / half-frame boundary detection), cell ID (eg, Physical Cell Identifier, PCID) acquisition, beam alignment for initial access, MIB acquisition, DL measurement and the like can be performed.
  • SSB eg, OFDM symbol / slot / half-frame boundary detection
  • cell ID eg, Physical Cell Identifier, PCID
  • IAB integrated access and backhaul
  • donor base stations donor gNB, DgNB
  • relay base station relay node
  • wireless backhaul for communication between the donor base station and the relay base station or relay base station.
  • a link wireless backhaul link
  • an access link for communication between a donor base station and a terminal or between a relay base station and a terminal.
  • the present invention is a method of reflecting a value according to the number of relay hops when reporting radio resource measurement (RRM) by event triggering in an IAB environment. For example, more weight is given to relays (relay nodes) with fewer hops. Accordingly, the present invention seeks to reduce signaling overhead of wireless backhaul as a whole by allowing relays having a small number of hops to be more reflected in the cell configuration of the terminal.
  • RRM radio resource measurement
  • the amount of information to be relayed increases linearly with the number of hops. For example, if a terminal needs to relay a certain amount of information (eg, A amount) once using wireless backhaul when the terminal is attached to a single hop relay, the terminal is connected to a three-hop relay. In that case, A information must be relayed three times. Therefore, as the number of hops increases, the amount of resources of the wireless backhaul to be used increases, thereby increasing the interference of resources in the wireless backhaul.
  • a amount of information eg, A amount
  • a cell which is a relay base station reflects the number of relay hops in the RRM.
  • the RRM has two forms in NR.
  • One is event triggering, and the other is reporting the measurement results periodically.
  • the network may reflect the number of relay hops in the RRM measurement value reported by the cell ID and reflect the result in cell configuration or handover of the UE.
  • event triggering scheme when a specific event is triggered, the network may reflect the number of relay hops in the RRM measurement value reported by the cell ID and reflect the same in cell configuration or handover as in periodic reporting.
  • the network considering the cell configuration considering the relay hop number has a relay hop count only when the event is triggered during RRM. It is necessary to operate to make the calculation in consideration of the feedback, so as not to feed back unnecessary measurement values.
  • Rel.15 NR standardization specifies six event triggering in TS 38.331: In each of the six events below, an entering condition is a condition of putting a serving cell or a neighboring cell into a measurement reporting target list.
  • the removing condition is a condition of subtracting the serving cell or the neighboring cell from the measurement report target list.
  • References 1 to 6 below represent six event triggerings.
  • condition A1-1 reports the situation from the point of view of improving the condition (eg, RSRP, RSRQ, SINR) of adding a serving cell to the list of serving cells to report the measurement result. Meaning).
  • A1-1 has a margin of Hys and means that the serving cell is added to the cell list when the measurement result of the serving cell is higher than the threshold value. This condition is a formula that does not reflect the number of relay hops.
  • RH means the number of relay hops.
  • the number of relay hops may refer to the number of hops according to the number of relay nodes (eg, IAB nodes) existing on the path from the donor base station to the terminal.
  • the number of relay hops may be specified in a residual minimum SI (eg, system information block (SIB)) or may be reported per cell (or measurement objective specific) through measObjectNR, which is RRC signaling information.
  • SIB system information block
  • measObjectNR RRC signaling information.
  • measObjectNR is information transmitted through RRC signaling and may specify information related to measurement.
  • the delta value is a weight value according to the number of relay hops.
  • the delta value may be specified in the RMSI or may be informed for each cell through measObjectNR, which is RRC signaling information.
  • measObjectNR which is RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the weight value can be known without SS block decoding. Equation 2 has the effect of arbitrarily lowering the RRM measurement result according to the number of relay hops.
  • Equation 2 is intended to allow the terminal to attach / enter a cell with a small number of relay hops.
  • Event A1-2 in [Reference 1] is a condition for removing a serving cell from the list of serving cells to which the measurement result is to be reported (meaning reporting the situation in terms of improving the quality of the serving cell (eg, RSRP, RSRQ, SINR)). With a margin of hys, it means that the serving cell is removed when the measurement result of the serving cell is lower than the threshold value (Thresh).
  • A1-2 is a formula that does not reflect the number of relay hops.
  • RH means the number of relay hops, and can be indicated in each cell through measObjectNR, which is specified in the RMSI or RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the number of relay hops can be known without SS block decoding.
  • the delta value is a weight value according to the number of relay hops and may be specified in the RMSI, or may be informed for each cell (or to be measured specifically) through measObjectNR, which is RRC signaling information.
  • measObjectNR which is RRC signaling information.
  • Equation 3 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that a cell having a large number of relay hops is not intentionally suitable for connection / entry of the UE, so that the UE is located in a cell having a small number of relay hops.
  • the intention is to stick / enter.
  • Event A2-1 of [Reference 2] is a condition for adding a serving cell to the list of serving cells to which the measurement result is to be reported (meaning reporting a situation in terms of deteriorating the quality of the serving cell (eg, RSRP, RSRQ, SINR)). to be.
  • A2-1 has a margin of Hys, and means that the serving cell is added to the serving cell list when the measurement result of the serving cell is lower than the threshold value (Thresh). If this condition is reflected as a formula without relay hop count, it is as follows.
  • RH means the number of relay hops, and the number of relay hops may be specified in the RMSI, or may be informed for each cell (or specific to measurement) through measObjectNR, which is RRC signaling information. If informed by the RMSI, the UE must decode the SS block, but if informed via measObjectNR, the number of relay hops can be known without SS block decoding.
  • the delta value is a weight value according to the number of relay hops and may be specified in the RMSI or may be informed for each cell through RRC signaling information measObjectNR.
  • Equation 4 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that a cell having a larger number of relay hops is intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops There is an intention to have a terminal attach / enter a small cell.
  • event A2-2 is a condition of removing a serving cell from the list of serving cells to which the measurement result is to be reported (meaning reporting a situation in terms of poor quality of the serving cell (eg, RSRP, RSRQ, SINR)).
  • RSRP Radio Resource Reference
  • RSRQ Radio Service Response
  • SINR SINR
  • RH means the number of relay hops and can be indicated in each cell through measObjectNR, which is specified in the RMSI or RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the number of relay hops can be known without SS block decoding.
  • the delta value is a weight value according to the number of relay hops and may be specified in the RMSI, or may be informed for each cell (or to be measured specifically) through measObjectNR, which is RRC signaling information.
  • measObjectNR which is RRC signaling information.
  • Equation 5 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a larger number of relay hops are intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops There is an intention to have a terminal attach / enter a small cell.
  • event A3-1 has a margin of Hys as a condition of adding a neighboring cell to the cell list to report the measurement result, and the neighboring when the measurement result of the neighboring cell is higher than the measurement result of SpCell (special cell). This means adding a cell to the cell list.
  • Ocn and Ocp are cell specific offset values for neighbor cells and SpCell, respectively.
  • Ofn and Ofp are measurement objective specific offset values (frequency specific values) for neighbor cells and SpCell, respectively. The same frequency has the same value), and Off can be regarded as an event specific offset value. If this condition is reflected as a formula without relay hop count, it is as follows.
  • RHn and RHp represent relay hop numbers of neighbor cells and SpCell, respectively.
  • the number of relay hops may be specified in the RMSI or may be reported for each cell through measObjectNR, which is RRC signaling information.
  • measObjectNR which is RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • deltan and deltap values are weighted values based on the number of relay hops of neighboring cells and SpCell, respectively, and can be specified in the RMSI or informed for each cell (or measurement specific) through measObjectNR, which is RRC signaling information.
  • Equation 6 the values of deltan and deltap are weighted values for the number of relay hops and can be operated so that only one value can be signaled. Equation 6 has the effect of arbitrarily lowering the RRM measurement result value according to the number of relay hops, so that the larger the number of relay hops, the more intentionally unsuitable for connection / attachment of the terminal, the terminal in the cell with fewer relay hops There is an intention to make this stick / enter.
  • Event A3-2 of [Reference 3] sets Hys as a condition that removes the neighboring cell from the cell list to which the measurement result is to be reported. It is meant to be removed from.
  • Ocn and Ocp are cell-specific offset values for neighboring cells and SpCell, respectively
  • Ofn and Ofp are measurement specific offset values (frequency-specific values with the same value for the same frequency) for neighboring cells and SpCell, respectively.
  • Off can be seen as an event specific offset value. If this condition is reflected as a formula without relay hop count, it is as follows.
  • RHn and RHp respectively represent the number of relay hops of neighboring cells and SpCell, and can be specified in the RMSI or informed for each cell through measObjectNR, which is RRC signaling information.
  • measObjectNR which is RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the number of relay hops can be known without SS block decoding.
  • deltan and deltap values are weighted values based on the number of relay hops of neighboring cells and SpCell, respectively, and can be specified in the RMSI or informed for each cell (or measurement specific) through measObjectNR, which is RRC signaling information.
  • Equation 7 When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • deltan and deltap can be operated to signal only one value assuming the same value as the weight value for the number of relay hops. Equation 7 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops.As a cell having a large number of relay hops, the number of relay hops is intentionally unsuitable for the connection / attachment of the terminal. The intention is to make the terminal stick to a small cell.
  • the condition of adding the neighboring cell to the cell list to report the measurement result is set to the margin of Hys in the formula, and when the measurement result of the neighboring cell is higher than the threshold value (Thresh) It is meant to be added.
  • Ocn is a cell specific offset value for a neighboring cell
  • Ofn is a measurement target specific offset value for a neighboring cell (a frequency specific value having the same value for the same frequency). If this condition is reflected as a formula without relay hop count, it is as follows.
  • RH means the number of relay hops and can be indicated in each cell through the measObjectNR, which is specified in the RMSI or RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • the delta value in Equation 8 may be specified in the RMSI as a weight value according to the number of relay hops, or may be informed for each cell (or measurement object specific) in measObjectNR, which is RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding.
  • Equation 8 has the effect of arbitrarily lowering the RRM measurement result value according to the number of relay hops, so that a cell with a large number of relay hops is intentionally unsuitable for connection / attachment of the terminal, and thus the terminal in a cell with a small number of relay hops I have an intention to make this stick.
  • the margin of Hys is set as a condition of removing the neighbor cell from the cell list to which the measurement result is to be reported, and the neighbor cell is removed from the cell list when the measurement result of the neighbor cell is lower than the threshold value. It makes sense.
  • Ocn is a cell specific offset value for a neighboring cell
  • Ofn is a measurement target specific offset value for a neighboring cell (a frequency specific value having the same value for the same frequency). If this condition is reflected as a formula without relay hop count, it is as follows.
  • RH means the number of relay hops and can be indicated in each cell through measObjectNR, which is specified in the RMSI or RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • the delta value may be specified in the RMSI as a weight value according to the number of relay hops, or may be informed for each cell (or to be specifically measured) in the RRC signaling information measObjectNR.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • Equation 9 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a large number of relay hops are intentionally unsuitable for terminal connection / attachment, so that the number of relay hops is small. The intention is to make the terminal stick.
  • the events A5-1 and A5-2 above must satisfy both the formulas of A5-1 and A5-2 as a condition of adding a neighbor cell to the cell list to report the measurement result.
  • a margin of Hys if SpCell's measurement result is smaller than Threshold 1 (Thresh 1) and the neighbor cell's measurement is larger than Threshold 2 (Thresh 2), it means adding a neighbor cell to the cell list.
  • Ocn is a cell specific offset value for a neighboring cell
  • Ofn is a measurement target specific offset value for a neighboring cell (a frequency specific value having the same value for the same frequency). If this condition is reflected as a formula without relay hop count, it is as follows.
  • RHn and RHp respectively represent the number of relay hops of neighboring cells and SpCells, and can be specified in the RMSI or informed for each cell through measObjectNR, which is RRC signaling information.
  • measObjectNR which is RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • deltan and deltap values are weighted values based on the number of relay hops of neighboring cells and SpCell, respectively, and may be specified in the RMSI, or may be informed cell-by-cell (or measurement specific) through RRC signaling information measObjectNR.
  • Equation 10 When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding.
  • the values of deltan and deltap are assumed to be the same as weight values for the number of relay hops and can be operated to signal only one value. Equation 10 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a larger number of relay hops are intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops is small The intention is to have the terminal attached to.
  • A5-3 and A5-4 remove Hys in the A5-3 and A5-4 formulas as a condition of removing neighboring cells from the list of cells to report the measurement result, and SpCell's measurement result is Threshold 1 (Thresh If greater than 1) and the measurement result of the neighboring cell is smaller than the threshold 2 (Thresh 2), it is meant to remove the neighboring cell from the cell list.
  • Ocn is a cell specific offset value for a neighboring cell
  • Ofn is a measurement target specific offset value for a neighboring cell (a frequency specific value having the same value for the same frequency). If this condition is reflected as a formula without relay hop count, it is as follows.
  • RHn and RHp denote relay hop numbers of neighboring cells and SpCell, respectively, and can be indicated in each cell through measObjectNR, which is specified in RMSI or RRC signaling information.
  • measObjectNR which is specified in RMSI or RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • deltan and deltap values are weighted values based on the number of relay hops of neighboring cells and SpCell, respectively.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding.
  • Equation 11 the values of deltan and deltap are assumed to be the same as weight values for the number of relay hops and can be operated so that only one value is signaled. Equation 11 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a large number of relay hops are intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops is small. The intention is to make the terminal stick.
  • the margin of Hys is added as a condition of adding a neighboring cell to the cell list to report the measurement result, and the neighboring cell is added to the cell list when the measurement result of the neighboring cell is higher than the measurement result of the SCell.
  • the SCell may be regarded as a serving cell. That is, in event A6, a (secondary) secondary cell corresponding to measObjectNR associated with the event may be regarded as the serving cell.
  • Ocn and Ocs are cell specific offset values for neighbor cells and SCell, respectively, and Off can be regarded as event specific offset values. If this condition is reflected as a formula without relay hop count, it is as follows.
  • RHn and RHs denote relay hop numbers of neighboring cells and SCells, respectively, and can be specified in the RMSI or informed for each cell through measObjectNR, which is RRC signaling information.
  • measObjectNR which is RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • deltan and deltas are weighted values according to the number of relay hops of neighboring cells and SCells, respectively, and may be specified in the RMSI or may be informed for each cell (or measurement specific) in measObjectNR, which is RRC signaling information.
  • Equation 12 When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding.
  • the values of deltan and deltas are assumed to be the same as weight values for the number of relay hops and can be operated to signal only one value. Equation 12 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that a cell with a large number of relay hops is intentionally unsuitable for connection / attachment of the terminal, so that a cell with a small number of relay hops The intention is to make the terminal stick.
  • the margin of Hys is set as a condition of removing the neighbor cell from the cell list to report the measurement result, and the neighbor cell is removed from the cell list when the measurement result of the neighbor cell is lower than the measurement result of the SCell.
  • Ocn and Ocs are cell specific offset values for neighbor cells and SCell, respectively, and Off can be regarded as event specific offset values. If this condition is reflected as a formula without relay hop count, it is as follows.
  • RHn and RHs represent the number of relay hops of neighbor cells and SCells, respectively, and can be specified in the RMSI or informed for each cell through measObjectNR, which is RRC signaling information.
  • measObjectNR which is RRC signaling information.
  • the UE When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding.
  • deltan and deltas are weight values according to the number of relay hops of neighboring cells and SCells, respectively, and may be specified in the RMSI, or may be informed for each cell (or measurement specific) in measObjectNR, which is RRC signaling information.
  • Equation 13 When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding.
  • the values of deltan and deltas are assumed to be the same value as the weight value for the number of relay hops and can be operated to signal only one value. Equation 13 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a large number of relay hops are intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops is small. The intention is to make the terminal stick.
  • Ms, Mn, Mp, and Ms which are RRM measurement results of serving cells, neighboring cells, SpCells, and SCells, which are not considered offset, may be inaccurate in terms of measurement quality when a relay node is considered.
  • R1 when the result of RRM measurement of one relay node is R1, when the relay node is a single hop, it may be regarded that R1 does not reflect RRM from the donor node to the relay node. If the R1 value is high, but the RRM quality from the donor node to the relay node is not good, the actual data transmission will not have good quality.
  • the relay node needs to inform the RMSI or RRC signaling (eg, measObjectNR) of the worst value of the RRM from itself to the donor node.
  • RMSI or RRC signaling eg, measObjectNR
  • the relay node may inform all of the worst RRMs for the multiple paths.
  • the UE or the IAB node may use a smaller value in Ms, Mn, Mp, and Ms of the inventions 1 to 13 in comparison with the worst RRM during its RRM.
  • RRC signaling eg measObjectNR
  • An event is one that creates an entry condition and a removal condition when the hop count is more than a certain number regardless of the actual RSRP value.
  • the entry condition and the removal condition of the list to report the RRM measurement result can be applied.
  • the values of RHn, RHp, N1, and N2 can be informed by RMSI or RRC signaling (e.g. measObjectNR), each of the number of relay hops of neighboring cells, the number of relay hops of PSCell, the entry condition hop count margin for events, The elimination condition hop count for the event is margin.
  • the entry condition is the concept of adding the RRM measurement result to the list to report when the number of hops of the neighboring cell is less than the number of hops of the PSCell by using the neighboring cell with the fewest hops as the cell configuration for the actual UE. For sake.
  • the removal condition is a concept of subtracting from the list to report the RRM measurement result.
  • the neighboring cell having the high number of hops is not used in advance in configuring the cell for the actual UE.
  • the removal condition may include a case where the number of hops of the neighbor cell is the same as the number of hops of the PSCell.
  • N1 and N2 may be informed by measObjectNR, which is RRC signaling information, or other RRC signaling information, and N1 and N2 may be applied with the same value.
  • Invention 14 can be used as an additional condition in the current event.
  • the neighboring cell may be added to the reporting list only when the number of hops of the neighboring cell is more than a certain number of hops of the PSCell or subtracted from the reporting list only when the number of hops of the neighboring cell is more than the predetermined number.
  • RRC signaling eg measObjectNR
  • the entry condition and the removal condition may be applied to the list to report the RRM measurement result.
  • the values of RHn, RHp, threshold1, and threshold2 can be informed by RMSI or RRC signaling (e.g. measObjectNR), each of the number of relay hops of neighboring cells, the number of relay hops of PSCell, the entry condition threshold for the event, and the elimination.
  • RMSI or RRC signaling e.g. measObjectNR
  • the entry condition is a concept of adding a RRM measurement result to a list to report when the neighboring cell has a smaller number of hops than a predetermined number, so that the neighboring cell having a small hop count can be used for cell configuration for the actual UE.
  • the removal condition is a concept of subtracting from the list to report the RRM measurement result when the neighboring cell has more than a certain number of hops, so that the neighboring cell having a large number of hops is not used in advance in the cell configuration for the actual UE.
  • threshold1 and threshold2 may be informed by measObjectNR, which is RRC signaling information, or other RRC signaling information, and threshold1 and threshold2 may be applied to the same value.
  • the 15th invention can be considered to be used as an additional condition in the current event.
  • the neighboring cell may be added to the reporting list only when the number of hops of the neighboring cell is less than a certain amount (RHn ⁇ threshold1) or subtracted from the reporting list only when the number of hops is more than the certain number (RHn> threshold2).
  • RRC signaling eg, measObjectNR
  • the entry condition and the removal condition of the list to report the RRM measurement result can be applied.
  • RHn, RHs, N1, and N2 may be informed by RMSI or RRC signaling (for example, measObjectNR), each of the number of relay hops of neighboring cells, number of relay hops of SCell, entry condition hop number of events, margin of event, The elimination condition hop count for the event is margin.
  • the entry condition is a concept of adding a RRM measurement result to a list to report when the neighbor cell has a predetermined number of hops smaller than the SCell. This is to use a neighbor cell having a small hop count in a cell configuration for an actual UE.
  • the removal condition is a concept of subtracting from the list to report the RRM measurement result when the neighbor cell has more than a certain number of hops than the SCell, so that the neighbor cell having a large number of hops is not used in advance in configuring the cell for the actual UE.
  • N1 and N2 may be informed by measObjectNR, which is RRC signaling information, or other RRC signaling information, and N1 and N2 may be applied with the same value.
  • Invention 16 can be used as an additional condition in the current event.
  • the neighboring cell may be added to the reporting list only when the number of hops of the neighboring cell is less than or equal to the number of hops of the SCell or to be removed from the reporting list only when the number of hops of the neighboring cell is more than the predetermined number.
  • RRC signaling for example, measObjectNR
  • the base station may use the entry conditions and removal conditions of the 1 to 16 invention for reselection of the IAB node.
  • the said invention of 1-16 can use only a part or its combination.
  • the terminal may receive hop number information from the donor base station (S1010).
  • the terminal is located in the first cell, and the information about the first cell where the terminal is located to distinguish it from the information about the second cell which is the neighboring cell is referred to as first hop number information.
  • the terminal may determine whether to report a quality measurement result (eg, RRM measurement) for the first cell to the base station based on the first hop number information (S1020).
  • S1020 may be a step of determining whether an entry condition and / or a removal condition are satisfied whether to include the first cell in the RRM result report cell list in the above-described embodiments of the present invention.
  • the first hop number information may be the hop number (first hop number) based on the number of relay nodes in the first cell located on the path from the donor base station to the terminal of the first cell.
  • the first hop number information may further include an offset value assigned to the first hop number.
  • the terminal may report the measurement result (for example, communication quality of RSRP, RSRQ, etc.) of the first cell to the base station according to the determination result of S1020 (S1030). For example, the UE will feed back the measurement result only to the base station when the first hop number information of the first cell satisfies a predetermined condition (eg, entry condition), and satisfies another condition (eg, removal condition). The measurement result may not be fed back to the base station.
  • a predetermined condition eg, entry condition
  • another condition eg, removal condition
  • the UE may determine whether to include the neighboring second cell in the RRM result report cell list in consideration of the number of relay hops for the neighboring second cell as well as the first cell in which the terminal is located.
  • the number of hops from the donor base station to the terminal is 4 (first hop number) for the first cell, and for the second cell.
  • the hop count (second hop count) is three. Comparing the first result value and the second result value with the first offset and the second offset applied to the first hop number and the second hop number, respectively, and when the second result value is smaller, the second cell is added to the RRM result reporting cell list. It may include and report the RRM result for the second cell to the base station.
  • the terminal may include the second cell in the RRM result report cell list.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G New RAT (Long Term), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • the wireless device may be a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e. ), IoT (Internet of Thing) device (100f), AI device / server 400 may be included.
  • the vehicle may include a vehicle having a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, Head-Mounted Device (HMD), Head-Up Display (HUD), television, smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smartphone, a smart pad, a wearable device (eg, smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • the home appliance may include a TV, a refrigerator, a washing machine, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg LTE) network or a 5G (eg NR) network.
  • the wireless devices 100a-100f may communicate with each other via the base station 200 / network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. vehicle to vehicle (V2V) / vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with another IoT device (eg, sensor) or another wireless device 100a to 100f.
  • Wireless communication / connection 150a, 150b, 150c may be performed between the wireless devices 100a-100f / base station 200 and base station 200 / base station 200.
  • the wireless communication / connection is various wireless connections such as uplink / downlink communication 150a, sidelink communication 150b (or D2D communication), inter-base station communication 150c (eg relay, integrated access backhaul), and the like.
  • Technology eg, 5G NR
  • wireless communication / connections 150a, 150b, 150c, the wireless device and the base station / wireless device, the base station and the base station may transmit / receive radio signals to each other.
  • the wireless communication / connection 150a, 150b, 150c may transmit / receive signals over various physical channels.
  • a wireless signal for transmission / reception At least some of various configuration information setting processes, various signal processing processes (eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.) and resource allocation processes may be performed.
  • FIG. 13 illustrates a wireless device that can be applied to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • the ⁇ first wireless device 100 and the second wireless device 200 ⁇ may refer to the ⁇ wireless device 100x, the base station 200 ⁇ and / or the ⁇ wireless device 100x, the wireless device 100x of FIG. 12. ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the radio signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be coupled to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform instructions to perform some or all of the processes controlled by the processor 102 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 102 and memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled to the processor 102 and may transmit and / or receive wireless signals via one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or a receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • the second wireless device 200 may include one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • the processor 202 controls the memory 204 and / or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information / signal, and then transmit the wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information / signal through the transceiver 206 and then store information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and store various information related to the operation of the processor 202. For example, the memory 204 may perform instructions to perform some or all of the processes controlled by the processor 202 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 202 and memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled with the processor 202 and may transmit and / or receive wireless signals via one or more antennas 208.
  • the transceiver 206 may include a transmitter and / or a receiver.
  • the transceiver 206 may be mixed with an RF unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • One or more protocol layers may be implemented by one or more processors 102, 202, although not limited thereto.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may employ one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • One or more processors 102, 202 may generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, suggestions and / or methods disclosed herein.
  • signals eg, baseband signals
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and include descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • a PDU, an SDU, a message, control information, data, or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be included in one or more processors (102, 202) or stored in one or more memories (104, 204) of It may be driven by the above-described processor (102, 202).
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions, and / or a set of instructions.
  • One or more memories 104, 204 may be coupled to one or more processors 102, 202 and may store various forms of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • One or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage medium, and / or combinations thereof.
  • One or more memories 104, 204 may be located inside and / or outside one or more processors 102, 202.
  • one or more memories 104, 204 may be coupled with one or more processors 102, 202 through various techniques, such as a wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, wireless signals / channels, etc., as mentioned in the methods and / or operational flowcharts of this document, to one or more other devices.
  • One or more transceivers 106 and 206 may receive, from one or more other devices, user data, control information, wireless signals / channels, etc., as mentioned in the description, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. have.
  • one or more transceivers 106 and 206 may be coupled with one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to transmit user data, control information or wireless signals to one or more other devices.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to receive user data, control information or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and one or more transceivers 106, 206 may be connected to one or more antennas 108, 208 through the description, functions, and features disclosed herein.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers 106, 206 may process the received wireless signal / channel or the like in an RF band signal to process received user data, control information, wireless signals / channels, etc. using one or more processors 102,202.
  • the baseband signal can be converted.
  • One or more transceivers 106 and 206 may use the one or more processors 102 and 202 to convert processed user data, control information, wireless signals / channels, etc. from baseband signals to RF band signals.
  • one or more transceivers 106 and 206 may include (analog) oscillators and / or filters.
  • the wireless device 14 shows another example of a wireless device to which the present invention is applied.
  • the wireless device may be implemented in various forms depending on the use-example / service (see FIG. 12).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 13, and various elements, components, units / units, and / or modules are described. It can be configured as a module.
  • the wireless device 100, 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include communication circuitry 112 and transceiver (s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and / or one or more memories 104, 204 of FIG. 13.
  • the transceiver (s) 114 may include one or more transceivers 106, 206 and / or one or more antennas 108, 208 of FIG. 13.
  • the controller 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, other communication devices) through the communication unit 110 through a wireless / wired interface, or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
  • the outside eg, other communication devices
  • Information received through a wireless / wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an I / O unit, a driver, and a computing unit.
  • the wireless device may be a robot (FIGS. 12, 100 a), a vehicle (FIGS. 12, 100 b-1, 100 b-2), an XR device (FIGS. 12, 100 c), a portable device (FIGS. 12, 100 d), a home appliance. (Fig. 12, 100e), IoT devices (Fig.
  • terminals for digital broadcasting may be implemented in the form of an AI server / device (FIGS. 12 and 400), a base station (FIGS. 12 and 200), a network node, and the like.
  • the wireless device may be used in a mobile or fixed location depending on the usage-example / service.
  • various elements, components, units / units, and / or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a part of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire in the wireless device 100 or 200, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in wireless device 100, 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, a memory control processor, and the like.
  • the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and / or combinations thereof.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or the autonomous vehicle 100 may include an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130 / 140a through 140d respectively correspond to blocks 110/130/140 in FIG.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles, a base station (e.g. base station, road side unit, etc.), a server, and other external devices.
  • the controller 120 may control various elements of the vehicle or the autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driver 140a may include an engine, a motor, a power train, wheels, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired / wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, a vehicle forward / Reverse sensors, battery sensors, fuel sensors, tire sensors, steering sensors, temperature sensors, humidity sensors, ultrasonic sensors, illuminance sensors, pedal position sensors, and the like.
  • the autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and automatically setting a route when a destination is set. Technology and the like.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the obtained data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous vehicle 100 along the autonomous driving path according to the driving plan (eg, speed / direction adjustment).
  • the communication unit 110 may acquire the latest traffic information data aperiodically from an external server and may obtain the surrounding traffic information data from the surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly obtained data / information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • embodiments of the present invention have been mainly described based on a signal transmission / reception relationship between a terminal and a base station. This transmission / reception relationship is extended to the same / similarly for signal transmission / reception between the terminal and the relay or the base station and the relay.
  • Certain operations described in this document as being performed by a base station may be performed by an upper node in some cases. That is, it is apparent that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • the present invention can be used in a terminal, base station, relay or other equipment of a wireless mobile communication system.

Abstract

The present invention relates to a wireless communication system, and specifically provides a communication method comprising the steps of: receiving first hop number information for a first cell from a donor base station; and determining whether to report a quality measurement result for the first cell to a base station on the basis of the first hop number information, wherein the first hop number information includes a first hop number according to the number of relay nodes of the first cell and a first offset value assigned to the first hop number, the relay nodes being located on a path from the donor base station to the terminal, and a device therefor.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치Method for transmitting / receiving signal in wireless communication system and apparatus supporting same
본 발명은 무선 통신 시스템에서 사용되는 방법 및 장치에 관한 것으로, 보다 상세하게는 차세대 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치에 관한 것이다.The present invention relates to a method and apparatus for use in a wireless communication system, and more particularly, to a method for transmitting and receiving a signal in a next generation communication system and an apparatus supporting the same.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술 (radio access technology, RAT)에 비해 향상된 모바일 광대역 (enhanced mobile broadband, eMBB) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 대규모 기계 타입 통신 (massive machine type communications, mMTC) 역시 차세대 통신에서 고려해야 할 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도 (reliability) 및 대기 시간 (latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB 통신, mMTC, 초 신뢰성 및 저 대기 시간 통신 (ultra-reliable and low latency communication, URLLC) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR이라고 부른다.As more communication devices demand greater communication capacity, there is a need for enhanced mobile broadband (eMBB) communication as compared to conventional radio access technology (RAT). In addition, massive machine type communications (mMTC), which connects multiple devices and objects to provide various services anytime and anywhere, is also one of the major issues to be considered in next-generation communication. In addition, a communication system design considering a service / UE that is sensitive to reliability and latency is being discussed. As described above, the introduction of next-generation RAT considering eMBB communication, mMTC, ultra-reliable and low latency communication (URLLC), and the like are discussed, and for convenience, the technology is referred to as NR.
본 발명의 목적은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공하는 것이다. An object of the present invention is to provide a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.Technical objects to be achieved in the present invention are not limited to the above-mentioned matters, and other technical problems not mentioned above are provided to those skilled in the art from the embodiments of the present invention to be described below. May be considered.
본 발명은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공한다. The present invention provides a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
본 발명의 일 양상으로, 무선 통신 시스템에서 단말에 의한 통신 방법에 있어서, 도너 기지국으로부터 제 1 셀에 대한 제 1 홉(hop) 수 정보를 수신하는 단계, 및 상기 제 1 홉 수 정보에 기반하여 상기 제 1 셀에 대한 품질 측정 결과를 기지국으로 보고할지 여부를 결정하는 단계를 포함하고, 상기 제 1 홉 수 정보는, 상기 도너 기지국에서 상기 단말까지의 경로 상에 위치하는, 상기 제1 셀의 릴레이 노드들의 개수에 따른 제1 홉 수 및 상기 제1 홉 수에 부여되는 제 1 오프셋 값을 포함하는 통신 방법이 제공된다.In an aspect of the present invention, in a communication method by a terminal in a wireless communication system, receiving first hop number information for a first cell from a donor base station, and based on the first hop number information And determining whether to report a quality measurement result for the first cell to a base station, wherein the first hop number information is located on a path from the donor base station to the terminal. A communication method is provided that includes a first hop number according to the number of relay nodes and a first offset value assigned to the first hop number.
본 발명의 일 양상으로, 무선 통신 시스템에 사용되는 단말에 있어서, 메모리 및 프로세서를 포함하고, 상기 프로세서는, 도너 기지국으로부터 제 1 셀에 대한 제 1 홉(hop) 수 정보를 수신하고, 상기 제 1 홉 수 정보에 기반하여 상기 제 1 셀에 대한 품질 측정 결과를 기지국으로 보고할지 여부를 결정하며, 상기 제 1 홉 수 정보는, 상기 도너 기지국에서 상기 단말까지의 경로 상에 위치하는, 상기 제1 셀의 릴레이 노드들의 개수에 따른 제1 홉 수 및 상기 제1 홉 수에 부여되는 제 1 오프셋 값을 포함하는 단말이 제공된다. In one aspect of the present invention, a terminal used in a wireless communication system, comprising a memory and a processor, the processor receives first hop number information for a first cell from a donor base station, Determine whether to report a quality measurement result for the first cell to a base station based on 1 hop number information, wherein the first hop number information is located on a path from the donor base station to the terminal; A terminal is provided that includes a first hop number according to the number of relay nodes in one cell and a first offset value assigned to the first hop number.
바람직하게 상기 도너 기지국으로부터 제 2 셀에 대한 제 2 홉 수 정보를 수신하는 단계를 더 포함하고, 상기 제 2 홉 수 정보는, 상기 도너 기지국에서 상기 단말까지의 경로 상에 위치하는 상기 제 2 셀의 릴레이 노드들의 개수에 따른 제 2 홉 수 및 상기 제 2 홉 수에 부여되는 제 2 오프셋 값을 포함할 수 있다.Preferably, the method further includes receiving second hop number information for a second cell from the donor base station, wherein the second hop number information is located on the path from the donor base station to the terminal. The second hop number according to the number of relay nodes of the and may include a second offset value given to the second hop number.
바람직하게 상기 제 1 홉 수에 상기 제 1 오프셋 값이 적용된 제 1 결과 값과 상기 제 2 홉 수에 제 2 오프셋 값이 적용된 제 2 결과 값을 비교하는 단계를 포함하고, 상기 제 1 결과 값이 상기 제 2 결과 값보다 큰 경우 상기 제 2 셀에 대한 품질 측정 결과를 기지국으로 보고하고, 상기 제 1 결과 값이 상기 제 2 결과 값보다 작은 경우, 상기 제 2 셀에 대한 품질 측정 결과를 기지국으로 보고하지 않을 수 있다. The method may include comparing the first result value to which the first offset value is applied to the first hop number and the second result value to which the second offset value is applied to the second hop number. Report the quality measurement result for the second cell to the base station if it is larger than the second result value, and if the first result value is smaller than the second result value, report the quality measurement result for the second cell to the base station. You may not report it.
바람직하게 상기 제 1 홉 수 정보 및 제 2 홉 수 정보는 SIB (system information block) 또는 상위 계층 신호를 통해 수신될 수 있다. Preferably, the first hop number information and the second hop number information may be received through a system information block (SIB) or an upper layer signal.
바람직하게 상기 제 2 셀은 상기 단말이 위치한 상기 제 1 셀에 이웃하는 셀일 수 있다. Preferably, the second cell may be a cell neighboring the first cell where the terminal is located.
또한, 상기 단말은 자율 주행 차량을 포함할 수 있다. In addition, the terminal may include an autonomous vehicle.
상술한 본 발명의 양상들은 본 발명의 바람직한 실시 예들 중 일부에 불과하며, 본 발명의 기술적 특징들이 반영된 다양한 실시 예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.The above-described aspects of the present invention are merely some of the preferred embodiments of the present invention, and various embodiments in which the technical features of the present invention are reflected will be described in detail below by those skilled in the art. Can be derived and understood.
본 발명의 실시 예들에 따르면, 차세대 통신 시스템에서 릴레이 노드에 기반한 홉 수를 고려하여 품질 측정 결과를 효과적으로 보고할 수 있다. According to embodiments of the present invention, it is possible to effectively report the quality measurement result in consideration of the number of hops based on the relay node in the next-generation communication system.
본 발명의 실시 예들에 따르면, 차세대 통신 시스템에서, 단말은 릴레이 노드에 대한 홉 수가 적은 셀에 연결될 수 있다.   According to embodiments of the present invention, in a next generation communication system, a terminal may be connected to a cell having a low number of hops for a relay node.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술 분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.Effects obtained in the embodiments of the present invention are not limited to the above-mentioned effects, and other effects not mentioned are common knowledge in the technical field to which the present invention belongs from the following description of the embodiments of the present invention. Can be clearly derived and understood by those who have That is, unintended effects of practicing the present invention may also be derived by those skilled in the art from the embodiments of the present invention.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are provided to facilitate understanding of the present invention, and provide embodiments of the present invention together with the detailed description.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
도 2는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다. 2 is a diagram for describing physical channels and a signal transmission method using the same.
도 3은 LTE 시스템에서 사용되는 무선 프레임의 구조를 나타내는 도면이다. 3 is a diagram illustrating a structure of a radio frame used in an LTE system.
도 4는 NR 시스템에 기초한 무선 프레임의 구조를 나타낸 도면이다.4 is a diagram illustrating a structure of a radio frame based on an NR system.
도 5는 NR 시스템에 기초한 프레임의 슬롯 구조를 나타낸 도면이다. 5 is a diagram illustrating a slot structure of a frame based on an NR system.
도 6은 NR 시스템에 기초한 자기 완비 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다. FIG. 6 is a diagram illustrating a self-contained slot structure based on the NR system.
도 7은 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.FIG. 7 illustrates an abstract hybrid beamforming structure from the perspective of a transceiver unit (TXRU) and a physical antenna.
도 8은 하향링크 전송 과정에서 동기 신호와 시스템 정보에 대한 빔 스위핑(Beam Sweeping) 동작을 나타낸다.8 illustrates a beam sweeping operation for a synchronization signal and system information during downlink transmission.
도 9는 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.9 illustrates a cell of a new radio access technology (NR) system.
도 10 내지 도 11은 본 발명의 실시 예에 따른 신호 송수신 방법을 예시한 것이다. 10 to 11 illustrate a signal transmission and reception method according to an embodiment of the present invention.
도 12는 본 발명에 적용되는 통신 시스템을 예시한다. 12 illustrates a communication system applied to the present invention.
도 13은 본 발명에 적용될 수 있는 무선 기기를 예시한다.13 illustrates a wireless device that can be applied to the present invention.
도 14는 본 발명에 적용될 수 있는 무선 기기의 다른 예를 예시한다. 14 illustrates another example of a wireless device that can be applied to the present invention.
도 15는 본 발명에 적용될 수 있는 차량 또는 자율 주행 차량을 예시한다.15 illustrates a vehicle or autonomous vehicle that can be applied to the present invention.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성 요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some of the components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
본 명세서에서 본 발명의 실시 예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.In the present specification, embodiments of the present invention have been described based on data transmission / reception relations between a base station and a mobile station. Here, the base station is meant as a terminal node of a network that directly communicates with a mobile station. Certain operations described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 본 명세서에서 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.That is, various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station. In this case, the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be. In addition, in the present specification, the name of a base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
또한, 본 발명의 실시 예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동 단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다. Further, in embodiments of the present invention, a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다. In addition, the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service, and the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. The following techniques may include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various radio access systems.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고, 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다. UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. LTE-Advanced / LTE-A pro is an evolution of 3GPP LTE. 3GPP NR (New Radio or New Radio Access Technology) is an evolution of 3GPP LTE / LTE-A / LTE-A pro.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. For clarity, the description will be based on 3GPP communication systems (eg, LTE, NR), but the technical spirit of the present invention is not limited thereto.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기 정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.The 3GPP based communication standard provides downlink physical channels corresponding to resource elements carrying information originating from a higher layer, and downlink corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer. Physical signals are defined. For example, a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, reference signal and synchronization signal Is defined as downlink physical signals. A reference signal (RS), also referred to as a pilot, refers to a signal of a predefined special waveform that the gNB and the UE know from each other. For example, a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals. The 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals are defined. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are used as uplink physical channels. A demodulation reference signal (DMRS) for uplink control / data signals and a sounding reference signal (SRS) used for uplink channel measurement are defined.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.In the present invention, Physical Downlink Control CHannel (PDCCH) / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Control Format Indicator) / Downlink ACK / NACK (ACKnowlegement / Negative ACK) / Downlink Means a set of time-frequency resources or a set of resource elements, and also includes PUCCH (Physical Uplink Control CHannel) / PUSCH (Physical Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry Uplink Control Information (UCI) / Uplink Data / Random Access signals, respectively. PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE or time-frequency resource or resource element (RE) assigned to or belonging to PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH, respectively. The PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource is referred to below: The expression that the user equipment transmits the PUCCH / PUSCH / PRACH is hereinafter referred to as uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively. It is used in the same sense as transmitting data / random access signal, and the expression that the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.Hereinafter, an OFDM symbol / subcarrier / RE to which CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured is configured as CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier. It is called / subcarrier / RE. For example, an OFDM symbol assigned or configured with a tracking RS (TRS) is referred to as a TRS symbol, and a subcarrier assigned or configured with a TRS is called a TRS subcarrier and is assigned a TRS. Alternatively, the configured RE is called a TRS RE. In addition, a subframe configured for TRS transmission is called a TRS subframe. Also, a subframe in which the broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe, and a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called. OFDM symbols / subcarriers / RE to which PSS / SSS is assigned or configured are referred to as PSS / SSS symbols / subcarriers / RE, respectively.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.In the present invention, the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are each an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, An antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS. Antenna ports configured to transmit CRSs can be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs The antenna ports configured to transmit CSI-RSs may be distinguished from each other by the positions of REs occupied by the UE-RSs according to the -RS ports, and the CSI-RSs occupy The location of the REs can be distinguished from each other. Therefore, the term CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard. The control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted. The user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.The physical layer, which is the first layer, provides an information transfer service to an upper layer by using a physical channel. The physical layer is connected to the upper layer of the medium access control layer through a trans port channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel. The physical channel utilizes time and frequency as radio resources. In detail, the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.The medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel. The RLC layer of the second layer supports reliable data transmission. The function of the RLC layer may be implemented as a functional block inside the MAC. The Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane. The RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers. The radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network. To this end, the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connection (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. The non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.The downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a shared channel (SCH) for transmitting user traffic or a control message. have. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. Above the transmission channel, the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송 방법을 설명하기 위한 도면이다. 2 is a diagram for explaining physical channels and a general signal transmission method used in a 3GPP system.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.In a wireless communication system, a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station. The information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S11). 이를 위해 단말은 기지국으로부터 SSB (Synchronization Signal Block) 블록을 통해 PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal) 및 PBCH (Physical Broadcast Channel)를 수신할 수 있다. 단말은 PSS 및 SSS을 수신하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 기지국으로부터 PBCH를 수신하여 셀 내 방송 정보를 획득할 수 있다. 또한, 단말은 초기 셀 탐색 단계에서 DL RS(Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.When the power is turned off while the power is turned off, or a new terminal enters a cell, an initial cell search operation such as synchronization with a base station is performed (S11). To this end, the UE may receive a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH) from a base station through a Synchronization Signal Block (SSB) block. The terminal receives the PSS and the SSS, synchronizes with the base station, and acquires information such as a cell identity. In addition, the terminal may receive the PBCH from the base station to obtain broadcast information in the cell. In addition, the UE may check the downlink channel state by receiving a DL RS (Downlink Reference Signal) in the initial cell search step.
초기 셀 탐색을 마친 단말은 PDCCH(Physical Downlink Control Channel) 및 이에 대응되는 PDSCH(Physical Downlink Control Channel)를 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다(S12).After completing the initial cell search, the UE may obtain more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) corresponding thereto (S12).
이후, 단말은 기지국에 접속을 완료하기 위해 랜덤 접속 과정(Random Access Procedure)을 수행할 수 있다(S13~S16). 구체적으로, 단말은 PRACH(Physical Random Access Channel)를 통해 프리앰블(preamble)을 전송하고(S13), PDCCH 및 이에 대응하는 PDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 수신할 수 있다(S14). 이후, 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH(Physical Uplink Shared Channel)을 전송하고(S15), PDCCH 및 이에 대응하는 PDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16).Thereafter, the terminal may perform a random access procedure (S13 to S16) to complete the access to the base station. In more detail, the UE may transmit a preamble through a physical random access channel (PRACH) (S13), and may receive a random access response (RAR) for the preamble through a PDCCH and a PDSCH corresponding thereto (S14). . Thereafter, the UE may transmit a physical uplink shared channel (PUSCH) using scheduling information in the RAR (S15) and perform a contention resolution procedure such as a PDCCH and a PDSCH corresponding thereto (S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S17) 및 PUSCH/PUCCH(Physical Uplink Control Channel) 전송(S18)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 UCI(Uplink Control Information)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.After performing the above procedure, the UE may perform PDCCH / PDSCH reception (S17) and PUSCH / PUCCH (Physical Uplink Control Channel) transmission (S18) as a general uplink / downlink signal transmission procedure. Control information transmitted from the terminal to the base station is referred to as uplink control information (UCI). UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like. The CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like. The UCI is generally transmitted through the PUCCH, but may be transmitted through the PUSCH when control information and data should be transmitted at the same time. In addition, the UE may transmit the UCI aperiodically through the PUSCH according to the request / instruction of the network.
도 3은 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.3 is a diagram illustrating a structure of a radio frame used in an LTE system.
도 3을 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10 -8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 송신되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.Referring to FIG. 3, a radio frame has a length of 10 ms (327200 × Ts) and consists of 10 equally sized subframes. Each subframe has a length of 1 ms and consists of two slots. Each slot has a length of 0.5 ms (15360 x Ts). Here, Ts represents a sampling time and is represented by Ts = 1 / (15 kHz x 2048) = 3.2552 x 10 -8 (about 33 ns). The slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. In the LTE system, one resource block includes 12 subcarriers x 7 (6) OFDM symbols. Transmission time interval (TTI), which is a unit time for transmitting data, may be determined in units of one or more subframes. The structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
도 4는 NR에서 사용되는 무선 프레임의 구조를 예시한다.4 illustrates the structure of a radio frame used in NR.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 하나의 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하나의 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 하나의 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.In NR, uplink and downlink transmission are composed of frames. One radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs). One half-frame is defined as five 1 ms subframes (SFs). One subframe is divided into one or more slots, and the number of slots in the subframe depends on subcarrier spacing (SCS). Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Usually when CP is used, each slot contains 14 symbols. If extended CP is used, each slot includes 12 symbols. Here, the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or DFT-s-OFDM symbol).
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. In the NR system, OFDM (A) numerology (eg, SCS, CP length, etc.) may be set differently among a plurality of cells merged into one UE. Accordingly, the (absolute time) section of a time resource (eg, SF, slot, or TTI) (commonly referred to as a time unit (TU) for convenience) composed of the same number of symbols may be set differently between merged cells.
도 5는 NR 프레임의 슬롯 구조를 예시한다. 하나의 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.5 illustrates a slot structure of an NR frame. One slot includes a plurality of symbols in the time domain. For example, in general, one slot includes 14 symbols in case of CP, but one slot includes 12 symbols in case of extended CP. The carrier includes a plurality of subcarriers in the frequency domain. Resource block (RB) is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain. A bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.). The carrier may include up to N (eg 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE. Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
도 6은 NR 시스템에 기초한 자기-완비(self-contained) 슬롯의 구조를 나타낸 도면이다.6 shows the structure of a self-contained slot based on the NR system.
NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 제어 영역과 데이터 영역 사이에는 DL-to-UL 혹은 UL-to-DL 스위칭을 위한 시간 갭이 존재할 수 있다 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.In an NR system, a frame is characterized by a self-complete structure in which all of a DL control channel, DL or UL data, UL control channel, etc. may be included in one slot. For example, the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region). N and M are each an integer of 0 or more. A resource region (hereinafter, referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission, or may be used for UL data transmission. There may be a time gap for DL-to-UL or UL-to-DL switching between the control region and the data region. For example, the following configuration may be considered. Each interval is listed in chronological order.
1. DL only 구성1.DL only configuration
2. UL only 구성2. UL only configuration
3. Mixed UL-DL 구성3. Mixed UL-DL composition
- DL 영역 + GP(Guard Period) + UL 제어 영역DL area + Guard Period (GP) + UL control area
- DL 제어 영역 + GP + UL 영역DL control area + GP + UL area
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역DL area: (i) DL data area, (ii) DL control area + DL data area
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역 UL region: (i) UL data region, (ii) UL data region + UL control region
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.The PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region. PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region. Downlink Control Information (DCI), for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH. In PUCCH, uplink control information (UCI), for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted. The GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다. 하지만 밀리미터 주파수 대역은 너무 높은 주파수 대역을 이용하는 것으로 인해 거리에 따른 신호 감쇄가 매우 급격하게 나타나는 주파수 특성을 갖는다. 따라서, 적어도 6GHz 이상의 대역을 사용하는 NR 시스템은 급격한 전파 감쇄 특성을 보상하기 위해 신호 전송을 전방향이 아닌 특정 방향으로 에너지를 모아서 전송함으로써 급격한 전파 감쇄로 인한 커버리지의 감소 문제를 해결하는 좁은 빔(narrow beam) 전송 기법을 사용한다. 그러나 하나의 좁은 빔만을 이용하여 서비스하는 경우, 하나의 기지국이 서비스를 할 범위가 좁아지므로 기지국은 다수의 좁은 빔을 모아서 광대역으로 서비스를 하게 된다. On the other hand, the NR system considers using a high frequency band, that is, a millimeter frequency band of 6 GHz or more to transmit data while maintaining a high data rate to a large number of users using a wide frequency band. 3GPP uses this as the name NR, which is referred to as NR system in the present invention. However, the millimeter frequency band has a frequency characteristic that the signal attenuation with the distance is very rapid due to the use of a frequency band too high. Therefore, NR systems using bands of at least 6 GHz or more narrow beams that solve the problem of reduced coverage due to abrupt propagation attenuation by gathering and transmitting energy in a specific direction rather than omnidirectionally to compensate for abrupt propagation characteristics. narrow beam) transmission scheme. However, when only one narrow beam is used for service, since a base station narrows the service range, the base station collects a plurality of narrow beams to serve a broadband service.
밀리미터 주파수 대역, 즉, 밀리미터 파장(millimeter wave, mmW) 대역에서는 파장이 짧아져서 동일 면적에 다수 개의 안테나 요소(element)의 설치가 가능해진다. 예를 들어, 1cm의 정도의 파장을 갖는 30GHz 대역에서 5 by 5cm의 패널(panel)에 0.5 람다(lamda) (파장) 간격으로 2-차원(dimension) 배열 형태로 총 100개의 안테나 요소 설치가 가능하다. 그러므로 mmW에서는 다수 개의 안테나 요소를 사용하여 빔포밍 이득을 높여 커버리지를 증가시키거나, 처리량(throughput)을 높이는 것이 고려된다. In the millimeter frequency band, that is, the millimeter wave (mmW) band, the wavelength is shortened to allow the installation of a plurality of antenna elements in the same area. For example, in a 30 GHz band with a wavelength of about 1 cm, a total of 100 antenna elements can be installed in a two-dimension arrangement in a 0.5 lambda (wavelength) interval on a panel of 5 by 5 cm. Do. Therefore, in mmW, it is considered to use a plurality of antenna elements to increase the beamforming gain to increase coverage or to increase throughput.
밀리미터 주파수 대역에서 좁은 빔을 형성하기 위한 방법으로, 기지국이나 UE에서 많은 수의 안테나에 적절한 위상차를 이용하여 동일한 신호를 전송함으로써 특정한 방향에서만 에너지가 높아지게 하는 빔포밍 방식이 주로 고려하고 있다. 이와 같은 빔포밍 방식에는 디지털 기저대역(baseband) 신호에 위상차를 만드는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등이 있다. 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(transceiver unit, TXRU)을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 TXRU를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 즉, 밀리미터 주파수 대역은 급격한 전파 감쇄 특성을 보상하기 위해 많은 수의 안테나가 사용해야 하고, 디지털 빔포밍은 안테나 수에 해당하는 만큼 RF 컴포넌트(예, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 하므로, 밀리미터 주파수 대역에서 디지털 빔포밍을 구현하려면 통신 기기의 가격이 증가하는 문제점이 있다. 그러므로 밀리미터 주파수 대역과 같이 안테나의 수가 많이 필요한 경우에는 아날로그 빔포밍 혹은 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은 하나의 TXRU에 다수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다. 하이브리드 BF는 디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 방식이다. 하이브리드 BF의 경우, B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.As a method for forming a narrow beam in the millimeter frequency band, a beamforming scheme in which a base station or a UE transmits the same signal using a phase difference appropriate to a large number of antennas is mainly considered. Such beamforming schemes include digital beamforming that creates a phase difference in a digital baseband signal, analog beamforming that creates a phase difference using a time delay (ie, cyclic shift) in a modulated analog signal, digital beamforming, and an analog beam. Hybrid beamforming using all of the foaming. Having a transceiver unit (TXRU) to enable transmission power and phase adjustment for each antenna element enables independent beamforming for each frequency resource. However, there is a problem in that it is not effective in terms of price to install TXRU in all 100 antenna elements. In other words, the millimeter frequency band should be used by a large number of antennas to compensate for rapid propagation attenuation, and digital beamforming is equivalent to the number of antennas. Since an amplifier (power amplifier, linear amplifier, etc.) is required, the implementation of digital beamforming in the millimeter frequency band has a problem of increasing the cost of communication equipment. Therefore, when a large number of antennas are required, such as the millimeter frequency band, the use of analog beamforming or hybrid beamforming is considered. The analog beamforming method maps a plurality of antenna elements to one TXRU and adjusts the beam direction with an analog phase shifter. Such an analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band so that frequency selective beamforming (BF) cannot be performed. Hybrid BF is an intermediate form between digital BF and analog BF, with B TXRUs, which is fewer than Q antenna elements. In the case of the hybrid BF, although there are differences depending on the connection method of the B TXRU and the Q antenna elements, the direction of beams that can be transmitted simultaneously is limited to B or less.
앞서 언급한 바와 같이 디지털 빔포밍은 전송할 혹은 수신된 디지털 기저대역 신호에 대해 신호 처리를 하므로 다중의 빔을 이용하여 동시에 여러 방향으로 신호를 전송 혹은 수신할 수 있는 반면에, 아날로그 빔포밍은 전송할 혹은 수신된 아날로그 신호를 변조된 상태에서 빔포밍을 수행하므로 하나의 빔이 커버하는 범위를 넘어가는 다수의 방향으로 신호를 동시에 전송 혹은 수신할 수 없다. 통상 기지국은 광대역 전송 혹은 다중 안테나 특성을 이용하여 동시에 다수의 사용자와 통신을 수행하게 되는데, 기지국이 아날로그 혹은 하이브리드 빔포밍을 사용하고 하나의 빔 방향으로 아날로그 빔을 형성하는 경우에는 아날로그 빔포밍의 특성상 동일한 아날로그 빔 방향 안에 포함되는 사용자들과만 통신할 수 밖에 없다. 후술될 본 발명에 따른 RACH 자원 할당 및 기지국의 자원 활용 방안은 아날로그 빔포밍 혹은 하이브리드 빔포밍 특성으로 인해서 생기는 제약 사향을 반영하여 제안된다.As mentioned above, digital beamforming processes the digital baseband signal to be transmitted or received, so that multiple beams can be used to transmit or receive signals simultaneously in multiple directions, while analog beamforming can transmit or receive signals. Since the beamforming is performed in a modulated state of the received analog signal, the signal cannot be simultaneously transmitted or received in multiple directions beyond the range covered by one beam. In general, a base station communicates with a plurality of users at the same time by using broadband transmission or multiple antenna characteristics. When a base station uses analog or hybrid beamforming and forms an analog beam in one beam direction, it is because of the characteristics of analog beamforming. Only users within the same analog beam direction can communicate. The RACH resource allocation and resource utilization scheme of the base station according to the present invention to be described later is proposed to reflect the constraints caused by the analog beamforming or hybrid beamforming characteristics.
도 7은 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.FIG. 7 illustrates an abstract hybrid beamforming structure from the perspective of a transceiver unit (TXRU) and a physical antenna.
다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법이 대두되고 있다. 이때, 아날로그 빔포밍 (또는 RF 빔포밍)은 트랜시버 (혹은 RF 유닛)이 프리코딩 (또는 컴바이닝)을 수행하는 동작을 의미한다. 하드브리드 빔포밍에서 기저대역(baseband) 유닛과 트랜시버 (혹은 RF 유닛)은 각각 프리코딩 (또는 컴바이닝)을 수행하며, 이로 인해 RF 체인(chain) 수와 D/A (또는 A/D) 컨버터의 개수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다. 편의상 하이브리드 빔포밍 구조는 N개 TXRU와 M개의 물리적 안테나로 표현될 수 있다. 전송 단에서 전송할 L개 데이터 레이어에 대한 디지털 빔포밍은 N-by-L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환된 다음 M-by-N 행렬로 표현되는 아날로그 빔포밍이 적용된다. When multiple antennas are used, a hybrid beamforming technique that combines digital beamforming and analog beamforming has emerged. In this case, analog beamforming (or RF beamforming) refers to an operation in which a transceiver (or RF unit) performs precoding (or combining). In hard-brid beamforming, the baseband unit and transceiver (or RF unit) perform precoding (or combining), respectively, resulting in the number of RF chains and the D / A (or A / D) converter. There is an advantage that the performance can be close to the digital beamforming while reducing the number of. For convenience, the hybrid beamforming structure may be represented by N TXRUs and M physical antennas. The digital beamforming for the L data layers to be transmitted at the transmitting end can be represented by an N-by-L matrix, and then the converted N digital signals are converted into analog signals via TXRU and then into an M-by-N matrix. The expressed analog beamforming is applied.
도 7에서 디지털 빔의 개수는 L이며, 아날로그 빔의 개수는 N이다. 더 나아가 NR 시스템에서는 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 기지국을 설계하여, 특정한 지역에 위치한 UE에게 보다 효율적인 빔포밍을 지원하는 방향이 고려되고 있다. 더 나아가서 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로서 정의될 때, NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다. 이와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, UE별로 신호 수신에 유리한 아날로그 빔이 다를 수 있으므로, 적어도 동기 신호, 시스템 정보, 페이징 등에 대해서는 특정 슬롯 혹은 서브프레임(subframe, SF)에서 기지국이 적용할 복수 아날로그 빔들을 심볼별로 바꾸어 모든 UE들이 수신 기회를 가질 수 있도록 하는 빔 스위핑 동작이 고려되고 있다. In FIG. 7, the number of digital beams is L, and the number of analog beams is N. In FIG. Furthermore, in the NR system, the base station is designed to change the analog beamforming on a symbol basis, so that a direction for supporting more efficient beamforming for a UE located in a specific area is being considered. Furthermore, when N TXRUs and M RF antennas are defined as one antenna panel, a method of introducing a plurality of antenna panels to which hybrid beamforming independent of each other is applicable in an NR system is also considered. As such, when the base station utilizes a plurality of analog beams, analog beams advantageous for signal reception may be different for each UE, and thus, the base station is applied to at least a synchronization signal, system information, and paging in a specific slot or subframe (SF). A beam sweeping operation is considered in which a plurality of analog beams to be changed symbol by symbol so that all UEs have a reception opportunity.
도 8은 하향링크 전송 과정에서 동기 신호와 시스템 정보에 대한 빔 스위핑(Beam sweeping) 동작을 도식화한 것이다. 8 is a diagram illustrating a beam sweeping operation for a synchronization signal and system information in downlink transmission.
도 8에서 New RAT 시스템의 시스템 정보가 방송(Broadcasting)되는 물리적 자원 또는 물리 채널을 xPBCH (physical broadcast channel)로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔(Analog beam)들이 동시에 전송될 수 있으며, 아날로그 빔(Analog beam) 별 채널을 측정하기 위해, 도 8에 나타나 있는 바와 같이, 특정 안테나 패널에 대응되는 단일 아날로그 빔(Analog beam)을 위해 전송되는 참조 신호(Reference signal; RS)인 Beam RS (BRS)를 도입하는 방안이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔(Analog beam)에 대응될 수 있다. 이때, BRS와는 달리, 동기 신호(Synchronization signal) 또는 xPBCH는 임의의 UE가 잘 수신할 수 있도록 아날로그 빔 그룹(Analog beam group)에 포함된 모든 아날로그 빔(Analog beam)을 위해 전송될 수 있다.In FIG. 8, a physical resource or a physical channel through which system information of the New RAT system is broadcasted is referred to as a physical broadcast channel (xPBCH). In this case, analog beams belonging to different antenna panels may be simultaneously transmitted in one symbol, and in order to measure a channel for each analog beam, as shown in FIG. A method of introducing Beam RS (BRS), which is a reference signal (RS) transmitted for a single analog beam, has been discussed. The BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam. In this case, unlike the BRS, a synchronization signal or a xPBCH may be transmitted for all the analog beams included in the analog beam group so that any UE can receive them well.
도 9는 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.9 illustrates a cell of a new radio access technology (NR) system.
도 9를 참조하면, NR 시스템에서는 기존 LTE 등의 무선 통신 시스템에 하나의 기지국이 하나의 셀을 형성하던 것과는 달리 복수의 TRP가 하나의 셀을 구성하는 방안이 논의되고 있다 복수의 TRP가 하나의 셀을 구성하면, UE를 서비스하는 TRP가 변경되더라도 끊김 없는 통신이 가능하여 UE의 이동성 관리가 용이하다는 장점이 있다.Referring to FIG. 9, in the NR system, a method in which a plurality of TRPs constitute one cell is discussed, unlike one base station forming one cell in a conventional wireless communication system such as LTE. If the cell is configured, even if the TRP serving the UE is changed, seamless communication is possible, and thus there is an advantage in that mobility management of the UE is easy.
LTE/LTE-A 시스템에서 PSS/SSS는 전-방위적(omni-direction)으로 전송되는 것에 반해서, mmWave를 적용하는 gNB가 빔 방향을 전-방위적으로 돌려가면서 PSS/SSS/PBCH 등의 신호를 빔포밍하여 전송하는 방법이 고려되고 있다. 이와 같이 빔 방향을 돌려가면서 신호를 전송/수신하는 것을 빔 스위핑(beam sweeping) 혹은 빔 스캐닝이라 한다. 본 발명에서 “빔 스위핑'은 전송기 측 행동이고, “빔 스캐닝”은 수신기 측 행동을 나타낸다. 예를 들어 gNB가 최대 N개의 빔 방향을 가질 수 있다고 가정하면, N개의 빔 방향에 대해서 각각 PSS/SSS/PBCH 등의 신호를 전송한다. 즉 gNB는 자신이 가질 수 있는 혹은 지원하고자 하는 방향들을 스위핑하면서 각각의 방향에 대해서 PSS/SSS/PBCH 등의 동기 신호들을 전송한다. 혹은 gNB가 N개의 빔을 형성할 수 있는 경우, 몇 개씩의 빔들이 묶여 하나의 빔 그룹으로 구성할 수 있으며, 빔 그룹별로 PSS/SSS/PBCH를 전송/수신될 수 있다. 이 때, 하나의 빔 그룹은 하나 이상의 빔을 포함한다. 동일 방향으로 전송되는 PSS/SSS/PBCH 등의 신호가 하나의 SS 블록으로 정의될 수 있으며, 한 셀 내에 복수의 SS 블록들이 존재할 수 있다. 복수의 SS 블록들이 존재하는 경우, 각 SS 블록의 구분을 위해서 SS 블록 인덱스가 사용될 수 있다. 예를 들여, 한 시스템에서 10개의 빔 방향으로 PSS/SSS/PBCH가 전송되는 경우, 동일 방향으로의 PSS/SSS/PBCH이 하나의 SS 블록을 구성할 수 있으며, 해당 시스템에서는 10개의 SS 블록들이 존재하는 것으로 이해될 수 있다. 본 발명에서 빔 인덱스는 SS 블록 인덱스로 해석될 수 있다.In the LTE / LTE-A system, PSS / SSS is transmitted omni-direction, whereas signals such as PSS / SSS / PBCH are rotated omg-directionally by the gNB applying mmWave. A method of beamforming and transmitting the beam is considered. As described above, transmitting / receiving signals while rotating the beam direction is referred to as beam sweeping or beam scanning. In the present invention, "beam sweeping" refers to transmitter side behavior, and "beam scanning" refers to receiver side behavior. For example, assuming that the gNB can have up to N beam directions, signals such as PSS / SSS / PBCH are transmitted for the N beam directions, respectively. That is, the gNB transmits synchronization signals such as PSS / SSS / PBCH for each direction while sweeping directions that it may have or support. Alternatively, when the gNB can form N beams, several beams may be bundled into one beam group, and PSS / SSS / PBCH may be transmitted / received for each beam group. At this time, one beam group includes one or more beams. A signal such as PSS / SSS / PBCH transmitted in the same direction may be defined as one SS block, and a plurality of SS blocks may exist in one cell. When there are a plurality of SS blocks, an SS block index may be used to distinguish each SS block. For example, if PSS / SSS / PBCH is transmitted in 10 beam directions in one system, PSS / SSS / PBCH in the same direction may constitute one SS block, and in the system, 10 SS blocks It can be understood to exist. In the present invention, the beam index may be interpreted as an SS block index.
SSB(Synchronization Signal Block)는 SS/PBCH 블록으로 구성되며, SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. The SSB (Synchronization Signal Block) is composed of SS / PBCH blocks and is periodically transmitted according to SSB periods.
단말은 SSB에 기반하여 DL 동기 획득(예, OFDM 심볼/슬롯/하프-프레임 바운더리 검출), 셀 ID(Identifier)(예, Physical Cell Identifier, PCID) 획득, 초기 접속을 위한 빔 정렬, MIB 획득, DL 측정 등을 수행할 수 있다.UE acquires DL synchronization based on SSB (eg, OFDM symbol / slot / half-frame boundary detection), cell ID (eg, Physical Cell Identifier, PCID) acquisition, beam alignment for initial access, MIB acquisition, DL measurement and the like can be performed.
현재, 3GPP Rel. 16, 즉 NR 시스템의 표준화에서는 커버리지 홀 (coverage hole)을 보완하되, 기지국간 유선 (wired) 연결을 줄이기 위한 목적으로 릴레이 기지국에 관하여 논의 중이다. 이를 IAB (integrated access and backhaul)라 하며, 도너 기지국 (donor gNB, DgNB)은 릴레이 기지국 (릴레이 노드)을 통해 단말에게 신호를 송신하며, 도너 기지국과 릴레이 기지국간 또는 릴레이 기지국간 통신을 위한 무선 백홀 링크 (wireless backhaul link)와 도너 기지국과 단말간 또는 릴레이 기지국과 단말간 통신을 위한 액세스 링크 (access link)로 구성되어 있다.Currently, 3GPP Rel. 16, that is, the standardization of the NR system is discussing relay base stations for the purpose of supplementing coverage holes and reducing wired connections between base stations. This is called integrated access and backhaul (IAB), and donor base stations (donor gNB, DgNB) transmit signals to the terminal through a relay base station (relay node), and wireless backhaul for communication between the donor base station and the relay base station or relay base station. A link (wireless backhaul link) and an access link for communication between a donor base station and a terminal or between a relay base station and a terminal.
본 발명은 IAB 환경에서 이벤트 트리거링(event triggering)에 의한 RRM(radio resource measurement) 보고 시, 릴레이 홉(hop) 수에 따른 값을 반영하는 방법이다. 예를 들어, 홉 수가 적은 릴레이 (릴레이 노드)에 더 많은 가중치(weight)를 주는 방식이다. 이를 통해 단말의 셀 구성 시 적은 홉 수를 가진 릴레이들이 단말의 셀 구성에 좀 더 반영되도록 하여 전체적으로 무선 백홀의 시그널링 오버헤드를 줄이고자 하는 발명이다.The present invention is a method of reflecting a value according to the number of relay hops when reporting radio resource measurement (RRM) by event triggering in an IAB environment. For example, more weight is given to relays (relay nodes) with fewer hops. Accordingly, the present invention seeks to reduce signaling overhead of wireless backhaul as a whole by allowing relays having a small number of hops to be more reflected in the cell configuration of the terminal.
무선 릴레이 환경에서는 홉 수에 따라 중계해야 하는 정보의 양이 선형적으로 증가하게 된다. 예를 들어, 단말이 싱글 홉 릴레이에 연결(attach)되는 경우에 특정 양(예, A만큼의 양)의 정보를 무선 백홀을 사용해서 한 번 중계해야 한다면, 단말이 3-홉 릴레이에 연결되는 경우에는 A양의 정보를 세 번 중계해야 한다. 따라서, 홉 수가 늘어날수록 사용해야 하는 무선 백홀의 리소스 양은 증가하게 되고, 이에 따라 무선 백홀 내 리소스의 간섭(interference)은 증가하게 된다. In a wireless relay environment, the amount of information to be relayed increases linearly with the number of hops. For example, if a terminal needs to relay a certain amount of information (eg, A amount) once using wireless backhaul when the terminal is attached to a single hop relay, the terminal is connected to a three-hop relay. In that case, A information must be relayed three times. Therefore, as the number of hops increases, the amount of resources of the wireless backhaul to be used increases, thereby increasing the interference of resources in the wireless backhaul.
상기 문제점을 해결하기 위해서 다음과 같은 방법을 생각해 볼 수 있다.In order to solve the above problem, the following method can be considered.
1. RRM 시, 릴레이 기지국인 셀은 릴레이 홉 수를 RRM에 반영한다. 1. In RRM, a cell which is a relay base station reflects the number of relay hops in the RRM.
구체적으로 살펴보면, NR에서 RRM은 2가지의 형태를 띠고 있다. 한 가지는 이벤트 트리거링 방식이고, 다른 한 가지는 주기적으로 측정 결과를 보고하는 형식이다. 주기적으로 보고하는 경우, 네트워크는 셀 ID에 의해 보고된 RRM 측정 값에 릴레이 홉 수를 고려해서 단말의 셀 구성 또는 핸드오버에 반영할 수 있다. 이벤트 트리거링 방식의 경우, 특정 이벤트가 트리거링이 된 경우, 네트워크는 셀 ID에 의해 보고된 RRM 측정 값에 릴레이 홉 수를 고려해서 주기적 보고와 마찬가지로 셀 구성 또는 핸드오버에 반영할 수 있다. Specifically, the RRM has two forms in NR. One is event triggering, and the other is reporting the measurement results periodically. In the case of periodic reporting, the network may reflect the number of relay hops in the RRM measurement value reported by the cell ID and reflect the result in cell configuration or handover of the UE. In the event triggering scheme, when a specific event is triggered, the network may reflect the number of relay hops in the RRM measurement value reported by the cell ID and reflect the same in cell configuration or handover as in periodic reporting.
한편, 이벤트 트리거링 방식의 경우, 단말이 불필요하게 많은 측정 값을 피드백하지 않기 위해 특정 이벤트들을 명시한 만큼, 릴레이 홉 수를 고려한 셀 구성을 염두에 둔 네트워크는 RRM 시 이벤트 트리거링된 경우에 한해서 릴레이 홉 수를 고려한 계산을 하도록 동작하여 불필요한 측정 값을 피드백하지 않도록 할 필요가 있다.On the other hand, in the event triggering scheme, as the UE specifies specific events in order not to feed back unnecessary measurement values, the network considering the cell configuration considering the relay hop number has a relay hop count only when the event is triggered during RRM. It is necessary to operate to make the calculation in consideration of the feedback, so as not to feed back unnecessary measurement values.
Rel.15 NR 표준화에서는 TS 38.331에서 다음과 같은 6가지의 이벤트 트리거링을 명시하고 있다. 아래 각 6개의 이벤트에서 진입 조건(entering condition)은 서빙 셀(serving cell) 또는 이웃 셀(neighboring cell)을 측정 보고(measurement reporting) 대상 리스트에 넣게 되는 조건이다. 제거 조건(leaving condition)은 서빙 셀 또는 이웃 셀을 측정 보고 대상 리스트에서 빼는 조건이 된다. Rel.15 NR standardization specifies six event triggering in TS 38.331: In each of the six events below, an entering condition is a condition of putting a serving cell or a neighboring cell into a measurement reporting target list. The removing condition is a condition of subtracting the serving cell or the neighboring cell from the measurement report target list.
아래의 참조 1 내지 참조 6은 6가지의 이벤트 트리거링을 나타낸다. References 1 to 6 below represent six event triggerings.
[참조 1] [Reference 1]
Figure PCTKR2019009958-appb-img-000001
Figure PCTKR2019009958-appb-img-000001
[참조 2] [Reference 2]
Figure PCTKR2019009958-appb-img-000002
Figure PCTKR2019009958-appb-img-000002
[참조 3][Reference 3]
Figure PCTKR2019009958-appb-img-000003
Figure PCTKR2019009958-appb-img-000003
[참조 4] [Reference 4]
Figure PCTKR2019009958-appb-img-000004
Figure PCTKR2019009958-appb-img-000004
[참조 5][Reference 5]
Figure PCTKR2019009958-appb-img-000005
Figure PCTKR2019009958-appb-img-000005
[참조 6][Reference 6]
Figure PCTKR2019009958-appb-img-000006
Figure PCTKR2019009958-appb-img-000006
[참조 1]의 이벤트 A1에서, 조건 A1-1은 측정 결과를 보고할 서빙 셀 리스트에 서빙 셀을 추가하는 조건(서빙 셀의 품질 (예, RSRP, RSRQ, SINR)이 좋아지는 관점에서 상황을 보고하는 의미)이다. A1-1은 Hys라는 마진(margin)을 두고, 서빙 셀의 측정 결과가 임계 값(Thresh)보다 높은 경우에 서빙 셀을 셀 리스트에 추가하는 의미가 된다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식이며, 릴레이 홉 수가 반영된다면 다음과 같다.In Event A1 of [Reference 1], condition A1-1 reports the situation from the point of view of improving the condition (eg, RSRP, RSRQ, SINR) of adding a serving cell to the list of serving cells to report the measurement result. Meaning). A1-1 has a margin of Hys and means that the serving cell is added to the cell list when the measurement result of the serving cell is higher than the threshold value. This condition is a formula that does not reflect the number of relay hops.
2.
Figure PCTKR2019009958-appb-img-000007
2.
Figure PCTKR2019009958-appb-img-000007
2번 수식에서 RH는 릴레이 홉 수를 의미한다. 여기서 릴레이 홉 수는 도너 기지국에서 단말까지의 경로 상에 존재하는 릴레이 노드(예, IAB 노드)의 수에 따른 홉 수를 의미할 수 있다. 릴레이 홉 수는 RMSI (remaining minimum SI, 예를 들면 system information block (SIB))에서 명시하거나, RRC 시그널링 정보인 measObjectNR 을 통해 셀 마다 (또는 측정 대상 특정 (measurement objective specific) 하게) 알려줄 수 있다. 참고로, NR 시스템에서 단말이 네트워크에 접속하기 위해서 필요한 필수적인 시스템 정보를 최소 시스템 정보(minimum SI, Min.SI)라 지칭하는데, Min.SI 중에서도 가장 필수적인 정보가 PBCH를 통해 전송되고 PBCH에 전송되지 않은 나머지 Min.SI가 RMSI이다. measObjectNR는 RRC 시그널링을 통해 전송되는 정보이며 측정과 관련된 정보를 지정할 수 있다. 릴레이 홉 수를 RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR 에서 알려 주는 경우, SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 2번 수식에서 delta 값은 릴레이 홉 수에 따른 가중치 값으로, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR 을 통해 셀 마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR 에서 알려 주는 경우, SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 2번 수식은 릴레이 홉 수에 따라 RRM 측정 결과 값을 임의로 낮추는 효과가 있다. 릴레이 홉 수가 큰 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 된다(즉, 릴레이 홉 수가 클수록 2번 수식을 만족하기 어렵다). 2번 수식은 릴레이 홉 수가 적은 셀에 단말이 붙게/진입하게 하려는 의도가 있다.In formula 2, RH means the number of relay hops. Here, the number of relay hops may refer to the number of hops according to the number of relay nodes (eg, IAB nodes) existing on the path from the donor base station to the terminal. The number of relay hops may be specified in a residual minimum SI (eg, system information block (SIB)) or may be reported per cell (or measurement objective specific) through measObjectNR, which is RRC signaling information. For reference, essential system information necessary for the UE to access the network in the NR system is referred to as minimum system information (minimum SI, Min.SI). The remaining Min.SI is RMSI. measObjectNR is information transmitted through RRC signaling and may specify information related to measurement. When the relay hop number is informed by the RMSI, the UE must decode the SS block, but when the measObjectNR is informed, the relay hop number can be known without the SS block decoding. In Equation 2, the delta value is a weight value according to the number of relay hops. The delta value may be specified in the RMSI or may be informed for each cell through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the weight value can be known without SS block decoding. Equation 2 has the effect of arbitrarily lowering the RRM measurement result according to the number of relay hops. Cells with a larger number of relay hops are intentionally unsuitable for connection / attachment of the UE (that is, the larger the number of relay hops, the harder it is to satisfy equation 2). Equation 2 is intended to allow the terminal to attach / enter a cell with a small number of relay hops.
[참조 1]의 이벤트 A1-2는 측정 결과를 보고할 서빙 셀 리스트에서 서빙 셀을 제거하는 조건(서빙 셀의 품질 (예, RSRP, RSRQ, SINR)이 좋아지는 관점에서 상황을 보고하는 의미)으로 Hys라는 마진을 두고, 서빙 셀의 측정 결과가 임계 값(Thresh)보다 낮은 경우에 서빙 셀을 제거하는 의미가 된다. A1-2는 릴레이 홉 수가 반영되지 않은 수식으로써, 릴레이 홉 수를 반영한다면 다음과 같다.Event A1-2 in [Reference 1] is a condition for removing a serving cell from the list of serving cells to which the measurement result is to be reported (meaning reporting the situation in terms of improving the quality of the serving cell (eg, RSRP, RSRQ, SINR)). With a margin of hys, it means that the serving cell is removed when the measurement result of the serving cell is lower than the threshold value (Thresh). A1-2 is a formula that does not reflect the number of relay hops.
3.
Figure PCTKR2019009958-appb-img-000008
3.
Figure PCTKR2019009958-appb-img-000008
3번 수식에서 RH는 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR 을 통해 셀 마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR 에서 알려 주는 경우, SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 3번 수식에서 delta값은 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR 을 통해 셀 마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR 에서 알려 주는 경우, SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 3번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 값인 셀 일수록 UE의 연결/진입에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게/진입하게 하려는 의도가 있다. In Equation 3, RH means the number of relay hops, and can be indicated in each cell through measObjectNR, which is specified in the RMSI or RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the number of relay hops can be known without SS block decoding. In Equation 3, the delta value is a weight value according to the number of relay hops and may be specified in the RMSI, or may be informed for each cell (or to be measured specifically) through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the weight value can be known without SS block decoding. Equation 3 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that a cell having a large number of relay hops is not intentionally suitable for connection / entry of the UE, so that the UE is located in a cell having a small number of relay hops. The intention is to stick / enter.
[참조 2]의 이벤트 A2-1은 측정 결과를 보고할 서빙 셀 리스트에 서빙 셀을 추가하는 조건(서빙 셀의 품질 (예, RSRP, RSRQ, SINR)이 나빠지는 관점에서 상황을 보고하는 의미)이다. A2-1은 Hys라는 마진을 두고, 서빙 셀의 측정 결과가 임계 값(Thresh)보다 낮은 경우에 서빙 셀을 서빙 셀 리스트에 추가하는 의미가 된다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.Event A2-1 of [Reference 2] is a condition for adding a serving cell to the list of serving cells to which the measurement result is to be reported (meaning reporting a situation in terms of deteriorating the quality of the serving cell (eg, RSRP, RSRQ, SINR)). to be. A2-1 has a margin of Hys, and means that the serving cell is added to the serving cell list when the measurement result of the serving cell is lower than the threshold value (Thresh). If this condition is reflected as a formula without relay hop count, it is as follows.
4.
Figure PCTKR2019009958-appb-img-000009
4.
Figure PCTKR2019009958-appb-img-000009
4번 수식에서 RH는 릴레이 홉 수를 의미하고, 릴레이 홉 수는 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR 을 통해 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. 만약, RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야하지만, measObjectNR 을 통해 알려 주는 경우, SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 4번 수식에서 delta값은 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR 을 통해 셀마다 알려줄 수 있다. 만약, RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR 을 통해 알려 주는 경우, SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 4번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 값을 갖는 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게/진입하게 하려는 의도가 있다. In Equation 4, RH means the number of relay hops, and the number of relay hops may be specified in the RMSI, or may be informed for each cell (or specific to measurement) through measObjectNR, which is RRC signaling information. If informed by the RMSI, the UE must decode the SS block, but if informed via measObjectNR, the number of relay hops can be known without SS block decoding. In Equation 4, the delta value is a weight value according to the number of relay hops and may be specified in the RMSI or may be informed for each cell through RRC signaling information measObjectNR. If informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the UE can know the weight value without decoding the SS block. Equation 4 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that a cell having a larger number of relay hops is intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops There is an intention to have a terminal attach / enter a small cell.
[참조 2]에서 이벤트 A2-2는 측정 결과를 보고할 서빙 셀 리스트에서 서빙 셀을 제거하는 조건(서빙 셀의 품질(예, RSRP, RSRQ, SINR)이 나빠지는 관점에서 상황을 보고하는 의미)으로 Hys라는 마진을 두고, 서빙 셀의 측졍 결과가 임계 값(Thresh)보다 높은 경우에 서빙 셀을 서빙 셀 리스트에서 제거하는 의미가 된다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.In [Reference 2], event A2-2 is a condition of removing a serving cell from the list of serving cells to which the measurement result is to be reported (meaning reporting a situation in terms of poor quality of the serving cell (eg, RSRP, RSRQ, SINR)). With a margin of Hys, when the measurement result of the serving cell is higher than the threshold value, it means that the serving cell is removed from the serving cell list. If this condition is reflected as a formula without relay hop count, it is as follows.
5.
Figure PCTKR2019009958-appb-img-000010
5.
Figure PCTKR2019009958-appb-img-000010
5번 수식에서 RH는 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR 를 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR을 통해 알려 주는 경우, SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 5번 수식에서 delta값은 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인measObjectNR 을 통해 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR 을 통해 알려 주는 경우, SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 5번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 값을 갖는 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게/진입하게 하려는 의도가 있다.In Equation 5, RH means the number of relay hops and can be indicated in each cell through measObjectNR, which is specified in the RMSI or RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the number of relay hops can be known without SS block decoding. In Equation 5, the delta value is a weight value according to the number of relay hops and may be specified in the RMSI, or may be informed for each cell (or to be measured specifically) through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the UE can know the weight value without decoding the SS block. Equation 5 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a larger number of relay hops are intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops There is an intention to have a terminal attach / enter a small cell.
[참조 3]에서 이벤트 A3-1은 측정 결과를 보고할 셀 리스트에 이웃 셀을 추가하는 조건으로 Hys라는 마진을 두고, 이웃 셀의 측정 결과가 SpCell(special cell)의 측정 결과보다 높은 경우에 이웃 셀을 셀 리스트에 추가하는 의미가 된다. 수식에서 Ocn과 Ocp는 각각 이웃 셀과 SpCell에 대한 셀 특정한 오프셋(cell specific offset)값이고, Ofn과 Ofp는 각각 이웃 셀과 SpCell에 대한 측정 대상 특정한 오프(measurement objective specific offset)값(주파수 특정한 값으로 같은 주파수의 경우 같은 값을 가짐)이며, Off는 이벤트 특정한 오프셋(event specific offset)값으로 볼 수 있다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.In [Reference 3], event A3-1 has a margin of Hys as a condition of adding a neighboring cell to the cell list to report the measurement result, and the neighboring when the measurement result of the neighboring cell is higher than the measurement result of SpCell (special cell). This means adding a cell to the cell list. In the formula, Ocn and Ocp are cell specific offset values for neighbor cells and SpCell, respectively. Ofn and Ofp are measurement objective specific offset values (frequency specific values) for neighbor cells and SpCell, respectively. The same frequency has the same value), and Off can be regarded as an event specific offset value. If this condition is reflected as a formula without relay hop count, it is as follows.
6.
Figure PCTKR2019009958-appb-img-000011
6.
Figure PCTKR2019009958-appb-img-000011
6번 수식에서 RHn과 RHp는 각각 이웃 셀과 SpCell의 릴레이 홉 수를 의미한다. 릴레이 홉 수는 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR을 통해 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 6번 수식에서 deltan과 deltap값은 각각 이웃 셀과 SpCell의 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR을 통해 알려 주는 경우, SS 블록 디코딩 없이도 단말은 가중치 값을 알 수 있다. 6번 수식에서 deltan과 deltap의 값은 릴레이 홉 수에 대한 가중치 값으로써 같은 값으로 가정하고 하나의 값만 시그널링될 수 있도록 운영될 수 있다. 6번 수식은 릴레이 홉 수에 따라 RRM 측정 결과 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 값일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게/진입하게 하려는 의도가 있다. In Equation 6, RHn and RHp represent relay hop numbers of neighbor cells and SpCell, respectively. The number of relay hops may be specified in the RMSI or may be reported for each cell through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the UE can know the number of relay hops without SS block decoding. In Equation 6, deltan and deltap values are weighted values based on the number of relay hops of neighboring cells and SpCell, respectively, and can be specified in the RMSI or informed for each cell (or measurement specific) through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the UE can know the weight value without SS block decoding. In Equation 6, the values of deltan and deltap are weighted values for the number of relay hops and can be operated so that only one value can be signaled. Equation 6 has the effect of arbitrarily lowering the RRM measurement result value according to the number of relay hops, so that the larger the number of relay hops, the more intentionally unsuitable for connection / attachment of the terminal, the terminal in the cell with fewer relay hops There is an intention to make this stick / enter.
[참조 3]의 이벤트 A3-2는 측정 결과를 보고할 셀 리스트에서 이웃 셀을 제거하는 조건으로 Hys라는 마진을 두고, 이웃 셀의 측정 결과가 SpCell의 측정 결과보다 낮은 경우에 이웃 셀을 셀 리스트에서 제거하는 의미가 된다. 수식에서 Ocn과 Ocp는 각각 이웃 셀과 SpCell에 대한 셀 특정한 오프셋 값이고, Ofn과 Ofp는 각각 이웃 셀과 SpCell에 대한 측정 대상 특정한 오프셋 값(주파수 특정한 값으로 같은 주파수의 경우 같은 값을 가짐)이며, Off는 이벤트 특정한 오프셋 값으로 볼 수 있다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.Event A3-2 of [Reference 3] sets Hys as a condition that removes the neighboring cell from the cell list to which the measurement result is to be reported. It is meant to be removed from. In the formula, Ocn and Ocp are cell-specific offset values for neighboring cells and SpCell, respectively, Ofn and Ofp are measurement specific offset values (frequency-specific values with the same value for the same frequency) for neighboring cells and SpCell, respectively. , Off can be seen as an event specific offset value. If this condition is reflected as a formula without relay hop count, it is as follows.
7.
Figure PCTKR2019009958-appb-img-000012
7.
Figure PCTKR2019009958-appb-img-000012
7번 수식에서 RHn과 RHp는 각각 이웃 셀과 SpCell의 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR을 통해 알려 주는 경우, SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 7번 수식에서 deltan과 deltap값은 각각 이웃 셀과 SpCell의 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, SS 블록 디코딩 없이도 단말은 릴레이 홉 수를 알 수 있다. 7번 수식에서 deltan과 deltap의 값은 릴레이 홉 수에 대한 가중치 값으로써 같은 값으로 가정하고 하나의 값만 시그널링 되도록 운영될 수 있다. 7번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 값을 갖는 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게 하려는 의도가 있다.In Equation 7, RHn and RHp respectively represent the number of relay hops of neighboring cells and SpCell, and can be specified in the RMSI or informed for each cell through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed via measObjectNR, the number of relay hops can be known without SS block decoding. In Equation 7, deltan and deltap values are weighted values based on the number of relay hops of neighboring cells and SpCell, respectively, and can be specified in the RMSI or informed for each cell (or measurement specific) through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding. In Equation 7, deltan and deltap can be operated to signal only one value assuming the same value as the weight value for the number of relay hops. Equation 7 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops.As a cell having a large number of relay hops, the number of relay hops is intentionally unsuitable for the connection / attachment of the terminal. The intention is to make the terminal stick to a small cell.
위에서 이벤트 A4-1은 측정 결과를 보고할 셀 리스트에 이웃 셀을 추가하는 조건으로 수식에서 Hys라는 마진을 두고, 이웃 셀의 측정 결과가 임계 값(Thresh)보다 높은 경우에 이웃 셀을 셀 리스트에 추가하는 의미가 된다. 수식에서 Ocn은 이웃 셀에 대한 셀 특정 오프셋 값이고, Ofn은 이웃 셀에 대한 측정 대상 특정 오프셋 값(주파수 특정한 값으로 같은 주파수의 경우 같은 값을 가짐)이다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.In the above event A4-1, the condition of adding the neighboring cell to the cell list to report the measurement result is set to the margin of Hys in the formula, and when the measurement result of the neighboring cell is higher than the threshold value (Thresh) It is meant to be added. In the formula, Ocn is a cell specific offset value for a neighboring cell, and Ofn is a measurement target specific offset value for a neighboring cell (a frequency specific value having the same value for the same frequency). If this condition is reflected as a formula without relay hop count, it is as follows.
8.
Figure PCTKR2019009958-appb-img-000013
8.
Figure PCTKR2019009958-appb-img-000013
8번 수식에서 RH는 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 8번 수식에서 delta값은 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR에서 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 8번 수식은 릴레이 홉 수에 따라 RRM 측정 결과 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게 하려는 의도가 있다.In Equation 8, RH means the number of relay hops and can be indicated in each cell through the measObjectNR, which is specified in the RMSI or RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding. The delta value in Equation 8 may be specified in the RMSI as a weight value according to the number of relay hops, or may be informed for each cell (or measurement object specific) in measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding. Equation 8 has the effect of arbitrarily lowering the RRM measurement result value according to the number of relay hops, so that a cell with a large number of relay hops is intentionally unsuitable for connection / attachment of the terminal, and thus the terminal in a cell with a small number of relay hops I have an intention to make this stick.
위에서 이벤트 A4-2는 측정 결과를 보고할 셀 리스트에 이웃 셀을 제거하는 조건으로 Hys라는 마진을 두고, 이웃 셀의 측정 결과가 임계 값(Thresh)보다 낮은 경우에 이웃 셀을 셀 리스트에서 제거하는 의미가 된다. 수식에서 Ocn은 이웃 셀에 대한 셀 특정 오프셋 값이고, Ofn은 이웃 셀에 대한 측정 대상 특정 오프셋 값(주파수 특정한 값으로 같은 주파수의 경우 같은 값을 가짐)이다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.In the event A4-2, the margin of Hys is set as a condition of removing the neighbor cell from the cell list to which the measurement result is to be reported, and the neighbor cell is removed from the cell list when the measurement result of the neighbor cell is lower than the threshold value. It makes sense. In the formula, Ocn is a cell specific offset value for a neighboring cell, and Ofn is a measurement target specific offset value for a neighboring cell (a frequency specific value having the same value for the same frequency). If this condition is reflected as a formula without relay hop count, it is as follows.
9.
Figure PCTKR2019009958-appb-img-000014
9.
Figure PCTKR2019009958-appb-img-000014
9번 수식에서 RH는 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 9번 수식에서 delta값은 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보 measObjectNR에서 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 9번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 값인 셀일수록 단말 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게 하려는 의도가 있다. In Equation 9, RH means the number of relay hops and can be indicated in each cell through measObjectNR, which is specified in the RMSI or RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding. In Equation 9, the delta value may be specified in the RMSI as a weight value according to the number of relay hops, or may be informed for each cell (or to be specifically measured) in the RRC signaling information measObjectNR. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding. Equation 9 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a large number of relay hops are intentionally unsuitable for terminal connection / attachment, so that the number of relay hops is small. The intention is to make the terminal stick.
위에서 이벤트 A5-1과 A5-2는 측정 결과를 보고할 셀 리스트에 이웃 셀을 추가하는 조건으로 A5-1 및 A5-2의 수식을 둘 다 만족해야 한다. Hys라는 마진을 두고, SpCell의 측정 결과가 임계 값 1 (Thresh 1)보다 작아지고, 이웃 셀의 측정 결과가 임계 값 2(Thresh 2)보다 커지면, 이웃 셀을 셀 리스트에 추가하는 의미가 된다. 수식에서 Ocn은 이웃 셀에 대한 셀 특정 오프셋 값이고, Ofn은 이웃 셀에 대한 측정 대상 특정 오프셋 값(주파수 특정한 값으로 같은 주파수의 경우 같은 값을 가짐)이다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.The events A5-1 and A5-2 above must satisfy both the formulas of A5-1 and A5-2 as a condition of adding a neighbor cell to the cell list to report the measurement result. With a margin of Hys, if SpCell's measurement result is smaller than Threshold 1 (Thresh 1) and the neighbor cell's measurement is larger than Threshold 2 (Thresh 2), it means adding a neighbor cell to the cell list. In the formula, Ocn is a cell specific offset value for a neighboring cell, and Ofn is a measurement target specific offset value for a neighboring cell (a frequency specific value having the same value for the same frequency). If this condition is reflected as a formula without relay hop count, it is as follows.
10. 10.
Figure PCTKR2019009958-appb-img-000015
Figure PCTKR2019009958-appb-img-000015
10번 수식에서 RHn과 RHp는 각각 이웃 셀과 SpCell의 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 10번 수식에서 deltan과 deltap 값은 각각 이웃 셀과 SpCell의 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인measObjectNR을 통해 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 10번 수식에서 deltan과 deltap의 값은 릴레이 홉 수에 대한 가중치 값으로써 같은 값으로 가정하고 하나의 값만 시그널링되도록 운영될 수 있다. 10번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 값인 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게 하려는 의도가 있다. In Equation 10, RHn and RHp respectively represent the number of relay hops of neighboring cells and SpCells, and can be specified in the RMSI or informed for each cell through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding. In Equation 10, deltan and deltap values are weighted values based on the number of relay hops of neighboring cells and SpCell, respectively, and may be specified in the RMSI, or may be informed cell-by-cell (or measurement specific) through RRC signaling information measObjectNR. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding. In Equation 10, the values of deltan and deltap are assumed to be the same as weight values for the number of relay hops and can be operated to signal only one value. Equation 10 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a larger number of relay hops are intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops is small The intention is to have the terminal attached to.
위에서 이벤트 A5-3과 A5-4는 측정 결과를 보고할 셀 리스트에서 이웃 셀을 제거하는 조건으로 A5-3 및 A5-4 수식에서 Hys라는 마진을 두고, SpCell의 측정 결과가 임계 값 1(Thresh 1)보다 커지고, 이웃 셀의 측정 결과가 임계 값 2(Thresh 2)보다 작아지면, 이웃 셀을 셀 리스트에서 제거하는 의미가 된다. 수식에서 Ocn은 이웃 셀에 대한 셀 특정 오프셋 값이고, Ofn은 이웃 셀에 대한 측정 대상 특정 오프셋 값(주파수 특정한 값으로 같은 주파수의 경우 같은 값을 가짐)이다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.Above events A5-3 and A5-4 remove Hys in the A5-3 and A5-4 formulas as a condition of removing neighboring cells from the list of cells to report the measurement result, and SpCell's measurement result is Threshold 1 (Thresh If greater than 1) and the measurement result of the neighboring cell is smaller than the threshold 2 (Thresh 2), it is meant to remove the neighboring cell from the cell list. In the formula, Ocn is a cell specific offset value for a neighboring cell, and Ofn is a measurement target specific offset value for a neighboring cell (a frequency specific value having the same value for the same frequency). If this condition is reflected as a formula without relay hop count, it is as follows.
11.11.
Figure PCTKR2019009958-appb-img-000016
Figure PCTKR2019009958-appb-img-000016
11번 수식에서 RHn과 RHp는 각각 이웃 셀과 SpCell의 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 11번 수식에서 deltan과 deltap값은 각각 이웃 셀과 SpCell의 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인measObjectNR을 통해 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 11번 수식에서 deltan과 deltap의 값은 릴레이 홉 수에 대한 가중치 값으로써 같은 값으로 가정하고 하나의 값만 시그널링되도록 운영될 수 있다. 11번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게 하려는 의도가 있다.In Equation 11, RHn and RHp denote relay hop numbers of neighboring cells and SpCell, respectively, and can be indicated in each cell through measObjectNR, which is specified in RMSI or RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding. In Equation 11, deltan and deltap values are weighted values based on the number of relay hops of neighboring cells and SpCell, respectively. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding. In Equation 11, the values of deltan and deltap are assumed to be the same as weight values for the number of relay hops and can be operated so that only one value is signaled. Equation 11 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a large number of relay hops are intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops is small. The intention is to make the terminal stick.
위에서 이벤트 A6-1은 측정 결과를 보고할 셀 리스트에 이웃 셀을 추가하는 조건으로 Hys라는 마진을 두고, 이웃 셀의 측정 결과가 SCell의 측정결과보다 높은 경우에 이웃 셀을 셀 리스트에 추가하는 의미가 된다. 여기서, SCell은 서빙 셀로 간주될 수 있다. 즉, 이벤트 A6에서 이벤트와 연관된 measObjectNR에 해당하는 (secondary, 2 차) 셀이 서빙 셀로 간주될 수 있다. 수식에서 Ocn과 Ocs는 각각 이웃 셀과 SCell에 대한 셀 특정 오프셋 값이고, Off는 이벤트 특정한 오프셋 값으로 볼 수 있다. 이러한 조건은 릴레이 홉 수수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.In the event A6-1 above, the margin of Hys is added as a condition of adding a neighboring cell to the cell list to report the measurement result, and the neighboring cell is added to the cell list when the measurement result of the neighboring cell is higher than the measurement result of the SCell. Becomes Here, the SCell may be regarded as a serving cell. That is, in event A6, a (secondary) secondary cell corresponding to measObjectNR associated with the event may be regarded as the serving cell. In the formula, Ocn and Ocs are cell specific offset values for neighbor cells and SCell, respectively, and Off can be regarded as event specific offset values. If this condition is reflected as a formula without relay hop count, it is as follows.
12.
Figure PCTKR2019009958-appb-img-000017
12.
Figure PCTKR2019009958-appb-img-000017
12번 수식에서 RHn과 RHs는 각각 이웃 셀과 SCell의 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 12번 수식에서 deltan과 deltas값은 각각 이웃 셀과 SCell의 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR에서 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 12번 수식에서 deltan과 deltas의 값은 릴레이 홉 수에 대한 가중치 값으로써 같은 값으로 가정하고 하나의 값만 시그널링되도록 운영될 수 있다. 12번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게 하려는 의도가 있다.In Equation 12, RHn and RHs denote relay hop numbers of neighboring cells and SCells, respectively, and can be specified in the RMSI or informed for each cell through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding. In Equation 12, deltan and deltas are weighted values according to the number of relay hops of neighboring cells and SCells, respectively, and may be specified in the RMSI or may be informed for each cell (or measurement specific) in measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding. In Equation 12, the values of deltan and deltas are assumed to be the same as weight values for the number of relay hops and can be operated to signal only one value. Equation 12 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that a cell with a large number of relay hops is intentionally unsuitable for connection / attachment of the terminal, so that a cell with a small number of relay hops The intention is to make the terminal stick.
위에서 이벤트 A6-2는 측정 결과를 보고할 셀 리스트에서 이웃 셀을 제거하는 조건으로 Hys라는 마진을 두고, 이웃 셀의 측정 결과가 SCell의 측정 결과보다 낮은 경우에 이웃 셀을 셀 리스트에서 제거하는 의미가 된다. 수식에서 Ocn과 Ocs는 각각 이웃 셀과 SCell에 대한 셀 특정 오프셋 값이고, Off는 이벤트 특정한 오프셋 값으로 볼 수 있다. 이러한 조건은 릴레이 홉 수가 반영되지 않은 수식으로써 반영한다면 다음과 같다.In the event A6-2 above, the margin of Hys is set as a condition of removing the neighbor cell from the cell list to report the measurement result, and the neighbor cell is removed from the cell list when the measurement result of the neighbor cell is lower than the measurement result of the SCell. Becomes In the formula, Ocn and Ocs are cell specific offset values for neighbor cells and SCell, respectively, and Off can be regarded as event specific offset values. If this condition is reflected as a formula without relay hop count, it is as follows.
13.
Figure PCTKR2019009958-appb-img-000018
13.
Figure PCTKR2019009958-appb-img-000018
13번 수식에서 RHn과 RHs는 각각 이웃 셀과 SCell의 릴레이 홉 수를 의미하고, RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR을 통해 셀마다 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 릴레이 홉 수를 알 수 있다. 13번 수식에서 deltan과 deltas값은 각각 이웃 셀과 SCell의 릴레이 홉 수에 따른 가중치 값으로 RMSI에서 명시하거나, RRC 시그널링 정보인 measObjectNR에서 셀마다 (또는 측정 대상 특정하게) 알려줄 수 있다. RMSI에서 알려주는 경우, 단말은 반드시 SS 블록을 디코딩해야 하지만, measObjectNR에서 알려 주는 경우, 단말은 SS 블록 디코딩 없이도 가중치 값을 알 수 있다. 13번 수식에서 deltan과 deltas의 값은 릴레이 홉 수에 대한 가중치 값으로써 같은 값으로 가정하고 하나의 값만 시그널링되도록 운영될 수 있다. 13번 수식은 릴레이 홉 수에 따라 RRM 측정 결과의 값을 임의로 낮추는 효과를 가지고 있어, 릴레이 홉 수가 큰 셀일수록 단말의 연결/진입(attach)에 의도적으로 적합하지 않게 하여, 릴레이 홉 수가 적은 셀에 단말이 붙게 하려는 의도가 있다.In Equation 13, RHn and RHs represent the number of relay hops of neighbor cells and SCells, respectively, and can be specified in the RMSI or informed for each cell through measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the number of relay hops without SS block decoding. In equation 13, deltan and deltas are weight values according to the number of relay hops of neighboring cells and SCells, respectively, and may be specified in the RMSI, or may be informed for each cell (or measurement specific) in measObjectNR, which is RRC signaling information. When informed by the RMSI, the UE must decode the SS block, but when informed by measObjectNR, the UE can know the weight value without SS block decoding. In equation 13, the values of deltan and deltas are assumed to be the same value as the weight value for the number of relay hops and can be operated to signal only one value. Equation 13 has the effect of arbitrarily lowering the value of the RRM measurement result according to the number of relay hops, so that cells with a large number of relay hops are intentionally unsuitable for connection / attachment of the terminal, so that the number of relay hops is small. The intention is to make the terminal stick.
상기 발명 1~13에서, 기존의 RRM를 위한 이벤트에서 릴레이 홉 수가 추가된 이벤트가 사용될지 또는 기존의 이벤트 조건이 사용될지는 RRC 시그널링 (예를 들어, measObjectNR)에서 알려줄 수 있다.In the above inventions 1 to 13, whether an event for which the relay hop number is added or an existing event condition is used in an event for an existing RRM may be informed in RRC signaling (eg, measObjectNR).
상기 발명 1~13에서 오프셋이 고려되지 않은 serving cell, neighboring cell, SpCell, SCell의 RRM 측정 결과 값인 Ms, Mn, Mp, Ms는 릴레이 노드가 고려되는 경우 측정 품질 측면에서 부정확한 값이 될 수 있다. 예를 들어, 한 릴레이 노드의 RRM 측정 결과 값이 R1이라 할 때, 이 릴레이 노드가 싱글 홉인 경우, 도너 노드에서 상기 릴레이 노드로의 RRM이 반영되지 않은 값이 R1이라 볼 수 있다. 만약, R1값이 높은 값을 가지고 있다 할지라도, 도너 노드에서 릴레이 노드까지의 RRM 품질이 좋지 않다면, 실제 데이터 전송은 좋은 품질을 갖지 못하게 될 것이다. 따라서, 릴레이 노드는 자신부터 도너 노드까지의 RRM 중 가장 안 좋은(worst) 값을 RMSI 또는 RRC 시그널링 (예를 들어, measObjectNR)에서 알려줄 필요가 있다. 이 때, 릴레이 노드가 도너 노드까지 여러 경로(path)를 가지고 있다면, 멀티플 경로(multiple path)에 대한 가장 안 좋은(worst) RRM을 모두 알려줄 수도 있다. 이를 통해 단말 또는 IAB 노드는 자신의 RRM시, worst RRM과 비교하여 더 적은 값을 발명 1~13의 Ms, Mn, Mp, Ms에서 사용할 수 있다. 이렇게 worst RRM을 이벤트 트리거링 RRM에서 사용할지 그렇지 않을지는 RRC 시그널링 (예를 들어, measObjectNR)에서 알려줄 수 있다.In the inventions 1 to 13, Ms, Mn, Mp, and Ms, which are RRM measurement results of serving cells, neighboring cells, SpCells, and SCells, which are not considered offset, may be inaccurate in terms of measurement quality when a relay node is considered. . For example, when the result of RRM measurement of one relay node is R1, when the relay node is a single hop, it may be regarded that R1 does not reflect RRM from the donor node to the relay node. If the R1 value is high, but the RRM quality from the donor node to the relay node is not good, the actual data transmission will not have good quality. Accordingly, the relay node needs to inform the RMSI or RRC signaling (eg, measObjectNR) of the worst value of the RRM from itself to the donor node. At this time, if the relay node has multiple paths to the donor node, it may inform all of the worst RRMs for the multiple paths. Through this, the UE or the IAB node may use a smaller value in Ms, Mn, Mp, and Ms of the inventions 1 to 13 in comparison with the worst RRM during its RRM. RRC signaling (eg measObjectNR) can tell whether this worst-case RRM is used in event-triggered RRM or not.
이외에 새로운 RRM 측정 결과를 보고할 새로운 이벤트를 추가할 수도 있다. 이벤트는 실제 RSRP값과 관계없이 홉 수가 일정이상 차이 나는 경우에 진입 조건과 제거 조건을 만드는 것이다.In addition, new events can be added to report new RRM measurement results. An event is one that creates an entry condition and a removal condition when the hop count is more than a certain number regardless of the actual RSRP value.
[참조 3]의 이벤트 A3에 대응되는 개념으로 아래와 같은 조건을 고려할 수 있다. As a concept corresponding to the event A3 of [Reference 3], the following conditions can be considered.
14. 이웃 셀의 홉 수가 PSCell의 홉 수보다 일정 이상 적거나 많을 때, RRM 측정 결과를 보고할 리스트의 진입 조건과 제거 조건을 적용할 수 있다.14. When the number of hops of the neighbor cell is more than a certain number or more than the number of hops of the PSCell, the entry condition and the removal condition of the list to report the RRM measurement result can be applied.
A. 진입 조건: RHn - N1 < RHpA. Entry conditions: RHn-N1 <RHp
B. 제거 조건: RHn + N2 > RHpB. Removal conditions: RHn + N2> RHp
위에서 RHn, RHp, N1, N2의 값은 RMSI 또는 RRC 시그널링 (예를 들어 measObjectNR)으로 알려줄 수 있으며, 각각은 이웃 셀의 릴레이 홉 수, PSCell의 릴레이 홉 수, 이벤트에 대한 진입 조건 홉 수 마진, 이벤트에 대한 제거 조건 홉 수 마진이 된다. 진입 조건은 이웃 셀의 홉 수가 PSCell의 홉 수보다 일정 이상의 홉 수만큼 적을 경우, RRM 측정 결과를 보고할 리스트에 추가하는 개념으로 이를 통해 홉 수가 적은 이웃 셀을 실제 단말을 위한 셀 구성에 이용하기 위함이 된다. 제거 조건은 이웃 셀의 홉 수가 PSCell의 홉 수보다 일정 이상의 홉 수만큼 많을 경우, RRM 측정 결과를 보고할 리스트에서 빼는 개념으로 이를 통해 홉 수가 많은 이웃 셀을 실제 단말을 위한 셀 구성에 미리 이용하지 않기 위함이 된다. 또한, 바람직하게는 제거 조건에는 이웃 셀의 홉 수가 PSCell의 홉 수가 동일한 경우도 포함될 수 있다. N1과 N2는 RRC 시그널링 정보인 measObjectNR으로 알려 주거나 또 다른 RRC 시그널링 정보를 통해 알려줄 수 있고, N1과 N2는 같은 값으로 적용해서 사용할 수 있다.In the above, the values of RHn, RHp, N1, and N2 can be informed by RMSI or RRC signaling (e.g. measObjectNR), each of the number of relay hops of neighboring cells, the number of relay hops of PSCell, the entry condition hop count margin for events, The elimination condition hop count for the event is margin. The entry condition is the concept of adding the RRM measurement result to the list to report when the number of hops of the neighboring cell is less than the number of hops of the PSCell by using the neighboring cell with the fewest hops as the cell configuration for the actual UE. For sake. When the number of hops of the neighboring cell is more than a certain number of hops than the number of hops of the PSCell, the removal condition is a concept of subtracting from the list to report the RRM measurement result. Through this, the neighboring cell having the high number of hops is not used in advance in configuring the cell for the actual UE. In order not to. In addition, preferably, the removal condition may include a case where the number of hops of the neighbor cell is the same as the number of hops of the PSCell. N1 and N2 may be informed by measObjectNR, which is RRC signaling information, or other RRC signaling information, and N1 and N2 may be applied with the same value.
14번 발명은 현재 이벤트에서 추가적 조건으로 고려하여 사용하도록 할 수 있다. 예를 들어, 이벤트 A3의 조건에 추가적으로 이웃 셀의 홉 수가 PSCell의 홉 수보다 일정 이상 적을 때만 리포팅 리스트에 넣거나 일정 이상 많을 때만 리포팅 리스트에서 뺄 수 있도록 규정할 수 있다. 14번 발명을 추가적 조건으로 고려할지는 RRC 시그널링 (예를 들어, measObjectNR)으로 알려줄 수 있다. Invention 14 can be used as an additional condition in the current event. For example, in addition to the condition of event A3, it may be defined that the neighboring cell may be added to the reporting list only when the number of hops of the neighboring cell is more than a certain number of hops of the PSCell or subtracted from the reporting list only when the number of hops of the neighboring cell is more than the predetermined number. Whether to consider invention No. 14 as an additional condition can be indicated by RRC signaling (eg measObjectNR).
[참조 4]의 이벤트 A4에 대응되는 개념으로 다음과 같은 조건이 고려될 수 있다. As a concept corresponding to the event A4 of [Reference 4], the following conditions may be considered.
15. 이웃 셀의 홉 수가 임계 값보다 일정 이상 적거나 많을 때, RRM 측정 결과를 보고할 리스트에 진입 조건과 제거 조건을 적용할 수 있다.15. When the number of hops of neighboring cells is more than a certain number or more than the threshold value, the entry condition and the removal condition may be applied to the list to report the RRM measurement result.
A. 진입 조건: RHn < threshold1A. Entry conditions: RHn <threshold1
B. 제거 조건: RHn > threshold2B. Removal conditions: RHn> threshold2
위에서 RHn, RHp, threshold1, threshold2의 값은 RMSI 또는 RRC 시그널링(예를 들어 measObjectNR)으로 알려줄 수 있으며, 각각은 이웃 셀의 릴레이 홉 수, PSCell의 릴레이 홉 수, 이벤트에 대한 진입 조건 임계 값, 제거 조건 임계 값이 된다. 진입 조건은 이웃 셀이 일정 이상의 홉 수만큼 적을 경우, RRM 측정 결과를 보고할 리스트에 추가하는 개념으로 이를 통해 홉 수가 적은 이웃 셀을 실제 단말을 위한 셀 구성에 이용하기 위함이 된다. 제거 조건은 이웃 셀이 일정 이상의 홉 수만큼 많을 경우, RRM 측정 결과를 보고할 리스트에서 빼는 개념으로 이를 통해 홉 수가 많은 이웃 셀을 실제 단말을 위한 셀 구성에 미리 이용하지 않기 위함이 된다. threshold1과 threshold2는 RRC 시그널링 정보인 measObjectNR 으로 알려 주거나 또 다른 RRC 시그널링 정보를 통해 알려줄 수 있고, threshold1과 threshold2는 같은 값으로 적용해서 사용할 수 있다.In the above, the values of RHn, RHp, threshold1, and threshold2 can be informed by RMSI or RRC signaling (e.g. measObjectNR), each of the number of relay hops of neighboring cells, the number of relay hops of PSCell, the entry condition threshold for the event, and the elimination. Condition threshold. The entry condition is a concept of adding a RRM measurement result to a list to report when the neighboring cell has a smaller number of hops than a predetermined number, so that the neighboring cell having a small hop count can be used for cell configuration for the actual UE. The removal condition is a concept of subtracting from the list to report the RRM measurement result when the neighboring cell has more than a certain number of hops, so that the neighboring cell having a large number of hops is not used in advance in the cell configuration for the actual UE. threshold1 and threshold2 may be informed by measObjectNR, which is RRC signaling information, or other RRC signaling information, and threshold1 and threshold2 may be applied to the same value.
15번 발명은 현재 이벤트에서 추가적 조건으로 고려하여 사용하도록 할 수 있다. 예를 들어, 이벤트 A4의 조건에 추가적으로 이웃 셀의 홉 수가 일정 이상 적을 때(RHn < threshold1)만 리포팅 리스트에 넣거나 일정 이상 많을 때(RHn > threshold2)만 리포팅 리스트에서 뺄 수 있도록 규정할 수 있다. 이렇게 15번 발명을 추가적 조건으로 고려할지는 RRC 시그널링 (예를 들어, measObjectNR)으로 알려줄 수 있다.The 15th invention can be considered to be used as an additional condition in the current event. For example, in addition to the condition of the event A4, it may be defined that the neighboring cell may be added to the reporting list only when the number of hops of the neighboring cell is less than a certain amount (RHn <threshold1) or subtracted from the reporting list only when the number of hops is more than the certain number (RHn> threshold2). Whether or not the 15th invention is considered as an additional condition can be indicated by RRC signaling (eg, measObjectNR).
[참조 6]의 이벤트 A6에 대응되는 개념으로 다음과 같은 조건이 고려될 수 있다. As a concept corresponding to the event A6 of [Reference 6], the following conditions may be considered.
16. 이웃 셀의 홉 수가 SCell의 홉 수보다 일정 이상 적거나 많을 때, RRM 측정 결과를 보고할 리스트의 진입 조건과 제거 조건을 적용할 수 있다.16. When the number of hops of the neighboring cell is more than a certain number or more than the number of hops of the SCell, the entry condition and the removal condition of the list to report the RRM measurement result can be applied.
A. Entering condition: RHn - N1 < RHsA. Entering condition: RHn-N1 <RHs
B. Leaving condition: RHn + N2 > RHsB. Leaving condition: RHn + N2> RHs
위에서 RHn, RHs, N1, N2의 값은 RMSI 또는 RRC 시그널링(예를 들어 measObjectNR)으로 알려줄 수 있으며, 각각은 이웃 셀의 릴레이 홉 수, SCell의 릴레이 홉 수, 이벤트에 대한 진입 조건 홉 수 마진, 이벤트에 대한 제거 조건 홉 수 마진이 된다. 진입 조건은 이웃 셀이 SCell보다 일정 이상의 홉 수만큼 적을 경우, RRM 측정 결과를 보고할 리스트에 추가하는 개념으로 이를 통해 홉 수가 적은 이웃 셀을 실제 단말을 위한 셀 구성에 이용하기 위함이 된다. 제거 조건은 이웃 셀이 SCell보다 일정 이상의 홉 수만큼 많을 경우, RRM 측정 결과를 보고할 리스트에서 빼는 개념으로 이를 통해 홉 수가 많은 이웃 셀을 실제 단말을 위한 셀 구성에 미리 이용하지 않기 위함이 된다. N1과 N2는 RRC 시그널링 정보인 measObjectNR으로 알려 주거나 또 다른 RRC 시그널링 정보를 통해 알려줄 수 있고, N1과 N2는 같은 값으로 적용해서 사용할 수 있다.In the above, the values of RHn, RHs, N1, and N2 may be informed by RMSI or RRC signaling (for example, measObjectNR), each of the number of relay hops of neighboring cells, number of relay hops of SCell, entry condition hop number of events, margin of event, The elimination condition hop count for the event is margin. The entry condition is a concept of adding a RRM measurement result to a list to report when the neighbor cell has a predetermined number of hops smaller than the SCell. This is to use a neighbor cell having a small hop count in a cell configuration for an actual UE. The removal condition is a concept of subtracting from the list to report the RRM measurement result when the neighbor cell has more than a certain number of hops than the SCell, so that the neighbor cell having a large number of hops is not used in advance in configuring the cell for the actual UE. N1 and N2 may be informed by measObjectNR, which is RRC signaling information, or other RRC signaling information, and N1 and N2 may be applied with the same value.
16번 발명은 현재 이벤트에서 추가적 조건으로 고려하여 사용하도록 할 수 있다. 예를 들어, 이벤트 A6의 조건에 추가적으로 이웃 셀의 홉 수가 SCell의 홉 수보다 일정 이상 적을 때만 리포팅 리스트에 넣거나 일정 이상 많을 때만 리포팅 리스트에서 뺄 수 있도록 규정할 수 있다. 이렇게 16번 발명을 추가적 조건으로 고려할지는 RRC 시그널링 (예를 들어, measObjectNR)으로 알려줄 수 있다. Invention 16 can be used as an additional condition in the current event. For example, in addition to the condition of event A6, it may be defined that the neighboring cell may be added to the reporting list only when the number of hops of the neighboring cell is less than or equal to the number of hops of the SCell or to be removed from the reporting list only when the number of hops of the neighboring cell is more than the predetermined number. Whether or not the 16th invention is considered as an additional condition may be indicated by RRC signaling (for example, measObjectNR).
기지국은 상기 1~16 발명의 진입 조건 및 제거 조건을을 IAB 노드의 재선택(reselection)을 위해서 사용할 수 있다. The base station may use the entry conditions and removal conditions of the 1 to 16 invention for reselection of the IAB node.
상기 1~16의 발명은 일부만 사용하거나, 그 조합을 사용할 수 있다.The said invention of 1-16 can use only a part or its combination.
도 10 내지 도 11은 본 발명의 실시 예가 적용된 도면이다. 10 to 11 is a view to which an embodiment of the present invention is applied.
도 10을 참조하면, 단말은 도너 기지국으로부터 홉 수 정보를 수신할 수 있다(S1010). 여기서, 단말은 제1 셀에 위치하고 있으며, 이웃 셀인 제2 셀에 대한 정보와 구분하기 위하여 단말이 위치하고 있는 제1 셀에 대한 정보는 제1 홉 수 정보라고 지칭한다. 단말은 제1 홉 수 정보에 기반하여 제1 셀에 대한 품질 측정 결과(예, RRM measurement)를 기지국으로 보고할지 여부를 결정할 수 있다(S1020). S1020은 상술한 1 내지 16에 대한 본 발명의 실시 예에서 RRM 결과 보고 셀 리스트에 제1 셀을 포함시킬지 여부에 대한 진입 조건 및/또는 제거 조건 만족 여부를 판단하는 단계일 수 있다. 제1 홉 수 정보는 도너 기지국에서 제1 셀의 단말까지의 경로 상에 위치하는 제1 셀 내의 릴레이 노드 개수에 기반한 홉 수(제1 홉 수)일 수 있다. 아울러 제1 홉 수 정보는 제1 홉 수에 부여되는 오프셋 값을 더 포함할 수 있다. Referring to FIG. 10, the terminal may receive hop number information from the donor base station (S1010). Here, the terminal is located in the first cell, and the information about the first cell where the terminal is located to distinguish it from the information about the second cell which is the neighboring cell is referred to as first hop number information. The terminal may determine whether to report a quality measurement result (eg, RRM measurement) for the first cell to the base station based on the first hop number information (S1020). S1020 may be a step of determining whether an entry condition and / or a removal condition are satisfied whether to include the first cell in the RRM result report cell list in the above-described embodiments of the present invention. The first hop number information may be the hop number (first hop number) based on the number of relay nodes in the first cell located on the path from the donor base station to the terminal of the first cell. In addition, the first hop number information may further include an offset value assigned to the first hop number.
단말은 S1020의 판단 결과에 따라 제1 셀에 대한 측정 결과 (예, RRM의 결과로서, RSRP, RSRQ 등의 통신 품질)를 기지국으로 보고할 수 있다(S1030). 예를 들어, 단말은 제1 셀의 제1 홉 수 정보가 일정 조건 (예. 진입 조건)만족하는 경우에만 측정 결과를 기지국으로 피드백할 것이고, 또 다른 조건 (예, 제거 조건)을 만족하는 경우에는 측정 결과를 기지국으로 피드백하지 않을 수 있다. The terminal may report the measurement result (for example, communication quality of RSRP, RSRQ, etc.) of the first cell to the base station according to the determination result of S1020 (S1030). For example, the UE will feed back the measurement result only to the base station when the first hop number information of the first cell satisfies a predetermined condition (eg, entry condition), and satisfies another condition (eg, removal condition). The measurement result may not be fed back to the base station.
단말은 자신이 위치하고 있는 제1 셀 뿐만 아니라, 이웃하는 제2 셀에 대한 릴레이 홉 수도 고려하여, 이웃하는 제2 셀을 RRM 결과 보고 셀 리스트에 포함시킬지 여부를 결정할 수 있다. The UE may determine whether to include the neighboring second cell in the RRM result report cell list in consideration of the number of relay hops for the neighboring second cell as well as the first cell in which the terminal is located.
도 11의 예시를 참조하면, 제1 셀에 위치한 단말에 있어서, 도너 기지국에서 단말까지의 홉 수 관련하여, 제1 셀에 대한 홉 수는 4(제1 홉 수)이고, 제 2셀에 대한 홉 수(제2 홉 수)는 3이다. 제1 홉 수 및 제2 홉 수에 각각 제1 오프셋 및 제2 오프셋이 적용된 제1 결과 값 및 제2 결과 값을 비교하여 제2 결과 값이 더 작은 경우 제2 셀을 RRM 결과 보고 셀 리스트에 포함시킬 수 있고, 제2 셀에 대한 RRM 결과를 기지국으로 보고할 수 있다. 여기서 제1 오프셋 값 및 제2 오프셋 값을 동일하다고 가정하면, 제2 결과 값이 제1 결과 값보다 작기 때문에, 단말은 제2 셀을 RRM 결과 보고 셀 리스트에 포함시킬 수 있다. Referring to the example of FIG. 11, in the terminal located in the first cell, the number of hops from the donor base station to the terminal is 4 (first hop number) for the first cell, and for the second cell. The hop count (second hop count) is three. Comparing the first result value and the second result value with the first offset and the second offset applied to the first hop number and the second hop number, respectively, and when the second result value is smaller, the second cell is added to the RRM result reporting cell list. It may include and report the RRM result for the second cell to the base station. Here, assuming that the first offset value and the second offset value are the same, since the second result value is smaller than the first result value, the terminal may include the second cell in the RRM result report cell list.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Although not limited thereto, the various descriptions, functions, procedures, suggestions, methods and / or operational flowcharts of the present invention disclosed herein may be applied to various fields requiring wireless communication / connection (eg, 5G) between devices. have.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.Hereinafter, with reference to the drawings to illustrate in more detail. The same reference numerals in the following drawings / descriptions may illustrate the same or corresponding hardware blocks, software blocks, or functional blocks unless otherwise indicated.
도 12는 본 발명에 적용되는 통신 시스템(1)을 예시한다. 12 illustrates a communication system 1 applied to the present invention.
도 12를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.12, a communication system 1 applied to the present invention includes a wireless device, a base station, and a network. Here, the wireless device refers to a device that performs communication using a radio access technology (eg, 5G New RAT (Long Term), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device. Although not limited thereto, the wireless device may be a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e. ), IoT (Internet of Thing) device (100f), AI device / server 400 may be included. For example, the vehicle may include a vehicle having a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like. Here, the vehicle may include an unmanned aerial vehicle (UAV) (eg, a drone). XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, Head-Mounted Device (HMD), Head-Up Display (HUD), television, smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like. The portable device may include a smartphone, a smart pad, a wearable device (eg, smart watch, smart glasses), a computer (eg, a notebook, etc.). The home appliance may include a TV, a refrigerator, a washing machine, and the like. IoT devices may include sensors, smart meters, and the like. For example, the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.The wireless devices 100a to 100f may be connected to the network 300 through the base station 200. AI (Artificial Intelligence) technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 400 through the network 300. The network 300 may be configured using a 3G network, a 4G (eg LTE) network or a 5G (eg NR) network. The wireless devices 100a-100f may communicate with each other via the base station 200 / network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station / network. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. vehicle to vehicle (V2V) / vehicle to everything (V2X) communication). In addition, the IoT device (eg, sensor) may directly communicate with another IoT device (eg, sensor) or another wireless device 100a to 100f.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication / connection 150a, 150b, 150c may be performed between the wireless devices 100a-100f / base station 200 and base station 200 / base station 200. Here, the wireless communication / connection is various wireless connections such as uplink / downlink communication 150a, sidelink communication 150b (or D2D communication), inter-base station communication 150c (eg relay, integrated access backhaul), and the like. Technology (eg, 5G NR) via wireless communication / connections 150a, 150b, 150c, the wireless device and the base station / wireless device, the base station and the base station may transmit / receive radio signals to each other. For example, the wireless communication / connection 150a, 150b, 150c may transmit / receive signals over various physical channels.To this end, based on various proposals of the present invention, a wireless signal for transmission / reception At least some of various configuration information setting processes, various signal processing processes (eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.) and resource allocation processes may be performed.
도 13은 본 발명에 적용될 수 있는 무선 기기를 예시한다.13 illustrates a wireless device that can be applied to the present invention.
도 13을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 12의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 13, the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR). Here, the {first wireless device 100 and the second wireless device 200} may refer to the {wireless device 100x, the base station 200} and / or the {wireless device 100x, the wireless device 100x of FIG. 12. }.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108. The processor 102 controls the memory 104 and / or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. For example, the processor 102 may process the information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106. In addition, the processor 102 may receive the radio signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104. The memory 104 may be coupled to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform instructions to perform some or all of the processes controlled by the processor 102 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them. Here, processor 102 and memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR). The transceiver 106 may be coupled to the processor 102 and may transmit and / or receive wireless signals via one or more antennas 108. The transceiver 106 may include a transmitter and / or a receiver. The transceiver 106 may be mixed with a radio frequency (RF) unit. In the present invention, a wireless device may mean a communication modem / circuit / chip.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200 may include one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208. The processor 202 controls the memory 204 and / or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. For example, the processor 202 may process the information in the memory 204 to generate third information / signal, and then transmit the wireless signal including the third information / signal through the transceiver 206. In addition, the processor 202 may receive the radio signal including the fourth information / signal through the transceiver 206 and then store information obtained from the signal processing of the fourth information / signal in the memory 204. The memory 204 may be connected to the processor 202 and store various information related to the operation of the processor 202. For example, the memory 204 may perform instructions to perform some or all of the processes controlled by the processor 202 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them. Here, processor 202 and memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR). The transceiver 206 may be coupled with the processor 202 and may transmit and / or receive wireless signals via one or more antennas 208. The transceiver 206 may include a transmitter and / or a receiver. The transceiver 206 may be mixed with an RF unit. In the present invention, a wireless device may mean a communication modem / circuit / chip.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 100 and 200 will be described in more detail. One or more protocol layers may be implemented by one or more processors 102, 202, although not limited thereto. For example, one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP). One or more processors 102, 202 may employ one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. Can be generated. One or more processors 102, 202 may generate messages, control information, data, or information in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. One or more processors 102, 202 may generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, suggestions and / or methods disclosed herein. And one or more transceivers 106 and 206. One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and include descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. In accordance with the above, a PDU, an SDU, a message, control information, data, or information can be obtained.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer. One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPDs), one or more Programmable Logic Devices (PLDs), or one or more Field Programmable Gate Arrays (FPGAs) May be included in one or more processors 102, 202. The descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like. The descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be included in one or more processors (102, 202) or stored in one or more memories (104, 204) of It may be driven by the above-described processor (102, 202). The descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions, and / or a set of instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.One or more memories 104, 204 may be coupled to one or more processors 102, 202 and may store various forms of data, signals, messages, information, programs, codes, instructions, and / or instructions. One or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage medium, and / or combinations thereof. One or more memories 104, 204 may be located inside and / or outside one or more processors 102, 202. In addition, one or more memories 104, 204 may be coupled with one or more processors 102, 202 through various techniques, such as a wired or wireless connection.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers 106 and 206 may transmit user data, control information, wireless signals / channels, etc., as mentioned in the methods and / or operational flowcharts of this document, to one or more other devices. One or more transceivers 106 and 206 may receive, from one or more other devices, user data, control information, wireless signals / channels, etc., as mentioned in the description, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. have. For example, one or more transceivers 106 and 206 may be coupled with one or more processors 102 and 202 and may transmit and receive wireless signals. For example, one or more processors 102 and 202 may control one or more transceivers 106 and 206 to transmit user data, control information or wireless signals to one or more other devices. In addition, one or more processors 102 and 202 may control one or more transceivers 106 and 206 to receive user data, control information or wireless signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and one or more transceivers 106, 206 may be connected to one or more antennas 108, 208 through the description, functions, and features disclosed herein. Can be set to transmit and receive user data, control information, wireless signals / channels, etc., which are mentioned in the procedures, procedures, suggestions, methods and / or operational flowcharts, and the like. In this document, one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). One or more transceivers 106, 206 may process the received wireless signal / channel or the like in an RF band signal to process received user data, control information, wireless signals / channels, etc. using one or more processors 102,202. The baseband signal can be converted. One or more transceivers 106 and 206 may use the one or more processors 102 and 202 to convert processed user data, control information, wireless signals / channels, etc. from baseband signals to RF band signals. To this end, one or more transceivers 106 and 206 may include (analog) oscillators and / or filters.
도 14는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 12 참조).14 shows another example of a wireless device to which the present invention is applied. The wireless device may be implemented in various forms depending on the use-example / service (see FIG. 12).
도 14를 참조하면, 무선 기기(100, 200)는 도 13의 무선 기기(100, 200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 13의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 13의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.Referring to FIG. 14, the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 13, and various elements, components, units / units, and / or modules are described. It can be configured as a module. For example, the wireless device 100, 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140. The communication unit may include communication circuitry 112 and transceiver (s) 114. For example, communication circuitry 112 may include one or more processors 102, 202 and / or one or more memories 104, 204 of FIG. 13. For example, the transceiver (s) 114 may include one or more transceivers 106, 206 and / or one or more antennas 108, 208 of FIG. 13. The controller 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, other communication devices) through the communication unit 110 through a wireless / wired interface, or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 12, 100a), 차량(도 12, 100b-1, 100b-2), XR 기기(도 12, 100c), 휴대 기기(도 12, 100d), 가전(도 12, 100e), IoT 기기(도 12, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 12, 400), 기지국(도 12, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.The additional element 140 may be configured in various ways depending on the type of wireless device. For example, the additional element 140 may include at least one of a power unit / battery, an I / O unit, a driver, and a computing unit. Although not limited thereto, the wireless device may be a robot (FIGS. 12, 100 a), a vehicle (FIGS. 12, 100 b-1, 100 b-2), an XR device (FIGS. 12, 100 c), a portable device (FIGS. 12, 100 d), a home appliance. (Fig. 12, 100e), IoT devices (Fig. 12, 100f), terminals for digital broadcasting, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate / environment devices, It may be implemented in the form of an AI server / device (FIGS. 12 and 400), a base station (FIGS. 12 and 200), a network node, and the like. The wireless device may be used in a mobile or fixed location depending on the usage-example / service.
도 14에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.In FIG. 14, various elements, components, units / units, and / or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a part of them may be wirelessly connected through the communication unit 110. For example, the control unit 120 and the communication unit 110 are connected by wire in the wireless device 100 or 200, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly. In addition, each element, component, unit / unit, and / or module in wireless device 100, 200 may further include one or more elements. For example, the controller 120 may be composed of one or more processor sets. For example, the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, a memory control processor, and the like. As another example, the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and / or combinations thereof.
도 15는 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.15 illustrates a vehicle or an autonomous vehicle applied to the present invention. The vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
도 15를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 14의 블록 110/130/140에 대응한다.Referring to FIG. 15, the vehicle or the autonomous vehicle 100 may include an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion 140d. The antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130 / 140a through 140d respectively correspond to blocks 110/130/140 in FIG.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles, a base station (e.g. base station, road side unit, etc.), a server, and other external devices. The controller 120 may control various elements of the vehicle or the autonomous vehicle 100 to perform various operations. The control unit 120 may include an electronic control unit (ECU). The driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground. The driver 140a may include an engine, a motor, a power train, wheels, a brake, a steering device, and the like. The power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired / wireless charging circuit, a battery, and the like. The sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like. The sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, a vehicle forward / Reverse sensors, battery sensors, fuel sensors, tire sensors, steering sensors, temperature sensors, humidity sensors, ultrasonic sensors, illuminance sensors, pedal position sensors, and the like. The autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and automatically setting a route when a destination is set. Technology and the like.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit 110 may receive map data, traffic information data, and the like from an external server. The autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the obtained data. The controller 120 may control the driving unit 140a to move the vehicle or the autonomous vehicle 100 along the autonomous driving path according to the driving plan (eg, speed / direction adjustment). During autonomous driving, the communication unit 110 may acquire the latest traffic information data aperiodically from an external server and may obtain the surrounding traffic information data from the surrounding vehicles. In addition, during autonomous driving, the sensor unit 140c may acquire vehicle state and surrounding environment information. The autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly obtained data / information. The communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, a driving plan, and the like to an external server. The external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to constitute an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form embodiments by combining claims that do not have an explicit citation in the claims or as new claims by post-application correction.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 릴레이 또는 기지국과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.In this document, embodiments of the present invention have been mainly described based on a signal transmission / reception relationship between a terminal and a base station. This transmission / reception relationship is extended to the same / similarly for signal transmission / reception between the terminal and the relay or the base station and the relay. Certain operations described in this document as being performed by a base station may be performed by an upper node in some cases. That is, it is apparent that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. A base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like. In addition, the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the present invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.
본 발명은 무선 이동 통신 시스템의 단말, 기지국, 릴레이 또는 기타 다른 장비에 사용될 수 있다.The present invention can be used in a terminal, base station, relay or other equipment of a wireless mobile communication system.

Claims (13)

  1. 무선 통신 시스템에서 제 1 셀에 위치한 단말에 의한 통신 방법에 있어서, A communication method by a terminal located in a first cell in a wireless communication system,
    도너 기지국으로부터 제 1 셀에 대한 제 1 홉(hop) 수 정보를 수신하는 단계; 및 Receiving first hop number information for the first cell from the donor base station; And
    상기 제 1 홉 수 정보에 기반하여 상기 제 1 셀에 대한 품질 측정 결과를 기지국으로 보고할지 여부를 결정하는 단계를 포함하고, Determining whether to report a quality measurement result for the first cell to a base station based on the first hop number information;
    상기 제 1 홉 수 정보는, The first hop number information is,
    상기 도너 기지국에서 상기 단말까지의 경로 상에 위치하는, 상기 제1 셀의 릴레이 노드들의 개수에 따른 제1 홉 수 및 상기 제1 홉 수에 부여되는 제 1 오프셋 값을 포함하는, And a first offset value assigned to the first hop number and the first hop number according to the number of relay nodes of the first cell, located on a path from the donor base station to the terminal.
    통신 방법.Communication method.
  2. 제1항에 있어서, The method of claim 1,
    상기 도너 기지국으로부터 제 2 셀에 대한 제 2 홉 수 정보를 수신하는 단계를 더 포함하고, Receiving second hop number information for a second cell from the donor base station;
    상기 제 2 홉 수 정보는, The second hop number information is,
    상기 도너 기지국에서 상기 단말까지의 경로 상에 위치하는 상기 제 2 셀의 릴레이 노드들의 개수에 따른 제 2 홉 수 및 상기 제 2 홉 수에 부여되는 제 2 오프셋 값을 포함하는, It includes a second hop number according to the number of relay nodes of the second cell located on the path from the donor base station to the terminal and the second offset value given to the second hop number,
    통신 방법.Communication method.
  3. 제2항에 있어서, The method of claim 2,
    상기 제 1 홉 수에 상기 제 1 오프셋 값이 적용된 제 1 결과 값과 상기 제 2 홉 수에 제 2 오프셋 값이 적용된 제 2 결과 값을 비교하는 단계를 포함하고,Comparing a first result value to which the first offset value is applied to the first hop number and a second result value to which a second offset value is applied to the second hop number,
    상기 제 1 결과 값이 상기 제 2 결과 값보다 큰 경우 상기 제 2 셀에 대한 품질 측정 결과를 기지국으로 보고하고,Report the quality measurement result for the second cell to the base station when the first result value is greater than the second result value;
    상기 제 1 결과 값이 상기 제 2 결과 값보다 작은 경우, 상기 제 2 셀에 대한 품질 측정 결과를 기지국으로 보고하지 않는 통신 방법.And if the first result value is smaller than the second result value, reporting the quality measurement result for the second cell to the base station.
  4. 제2항에 있어서, The method of claim 2,
    상기 제 1 홉 수 정보 및 제 2 홉 수 정보는 SIB (system information block) 또는 상위 계층 신호를 통해 수신되는 통신 방법.The first hop number information and the second hop number information are received through a system information block (SIB) or a higher layer signal.
  5. 제2항에 있어서,The method of claim 2,
    상기 제 2 셀은 상기 단말이 위치한 상기 제 1 셀에 이웃하는 셀인 통신 방법.And the second cell is a cell neighboring the first cell in which the terminal is located.
  6. 제1항에 있어서,The method of claim 1,
    상기 릴레이 노드는 IAB(integrated access and backhaul) 노드인 통신 방법.And the relay node is an integrated access and backhaul (IAB) node.
  7. 무선 통신 시스템에 사용되는, 제1 셀에 위치한 단말에 있어서, A terminal located in a first cell, used in a wireless communication system,
    메모리; 및 Memory; And
    프로세서를 포함하고, 상기 프로세서는, A processor, wherein the processor,
    도너 기지국으로부터 제 1 셀에 대한 제 1 홉(hop) 수 정보를 수신하고, Receive first hop number information for a first cell from a donor base station,
    상기 제 1 홉 수 정보에 기반하여 상기 제 1 셀에 대한 품질 측정 결과를 기지국으로 보고할지 여부를 결정하며, Determine whether to report a quality measurement result for the first cell to a base station based on the first hop number information,
    상기 제 1 홉 수 정보는, The first hop number information is,
    상기 도너 기지국에서 상기 단말까지의 경로 상에 위치하는, 상기 제1 셀의 릴레이 노드들의 개수에 따른 제1 홉 수 및 상기 제1 홉 수에 부여되는 제 1 오프셋 값을 포함하는 단말.And a first offset value assigned to the first hop number and a first hop number according to the number of relay nodes of the first cell, located on a path from the donor base station to the terminal.
  8. 제7항에 있어서, 상기 프로세서는, The method of claim 7, wherein the processor,
    상기 도너 기지국으로부터 제 2 셀에 대한 제 2 홉 수 정보를 수신하고, Receive second hop number information for a second cell from the donor base station,
    상기 제2 홉 수 정보는,The second hop number information,
    상기 도너 기지국에서 상기 단말까지의 경로 상에 위치하는 상기 제 2 셀의 릴레이 노드들의 개수에 따른 제 2 홉 수 및 상기 제 2 홉 수에 부여되는 제 2 오프셋 값을 포함하는 단말.And a second offset value according to the number of relay nodes of the second cell located on a path from the donor base station to the terminal and a second offset value assigned to the second hop number.
  9. 제8항에 있어서, 상기 프로세서는, The method of claim 8, wherein the processor,
    상기 제 1 홉 수에 상기 제 1 오프셋 값이 적용된 제 1 결과 값과 상기 제 2 홉 수에 제 2 오프셋 값이 적용된 제2 결과 값을 비교하고,Comparing a first result value to which the first offset value is applied to the first hop number and a second result value to which a second offset value is applied to the second hop number,
    상기 제 1 결과 값이 상기 제 2 결과 값보다 큰 경우 상기 제 2 셀에 대한 품질 측정 결과를 기지국으로 보고하고,Report the quality measurement result for the second cell to the base station when the first result value is greater than the second result value;
    상기 제 1 결과 값이 상기 제2 결과 값보다 작은 경우, 상기 제 2 셀에 대한 품질 측정 결과를 기지국으로 보고하지 않는 단말.If the first result value is smaller than the second result value, the terminal does not report the quality measurement result for the second cell to the base station.
  10. 제8항에 있어서, The method of claim 8,
    상기 제 1 홉 수 정보 및 제 2 홉 수 정보는 SIB (system information block) 또는 상위 계층 신호를 통해 수신되는 단말.The first hop number information and the second hop number information are received through a system information block (SIB) or a higher layer signal.
  11. 제8항에 있어서, The method of claim 8,
    상기 제 2 셀은 상기 단말이 위치한 상기 제1 셀에 이웃하는 셀인 단말.The second cell is a cell neighboring the first cell where the terminal is located.
  12. 제7항에 있어서, The method of claim 7, wherein
    상기 릴레이 노드는 IAB(integrated access and backhaul) 노드인 단말.The relay node is an IAB (Integrated Access and Backhaul) node.
  13. 제7항에 있어서 상기 단말은 상기 릴레이 노드, 상기 도너 기지국 및 상기 단말 이외의 다른 자율 주행 차량 중 적어도 하나와 통신할 수 있는 자율 주행 차량을 포함하는 단말.The terminal of claim 7, wherein the terminal comprises an autonomous vehicle capable of communicating with at least one of the relay node, the donor base station, and another autonomous vehicle other than the terminal.
PCT/KR2019/009958 2018-08-08 2019-08-08 Method for transmitting and receiving signal in wireless communication system, and device for supporting same WO2020032613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0092624 2018-08-08
KR20180092624 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020032613A1 true WO2020032613A1 (en) 2020-02-13

Family

ID=69413567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009958 WO2020032613A1 (en) 2018-08-08 2019-08-08 Method for transmitting and receiving signal in wireless communication system, and device for supporting same

Country Status (1)

Country Link
WO (1) WO2020032613A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201527A1 (en) * 2022-04-19 2023-10-26 Mediatek Singapore Pte. Ltd. Methods and apparatus of measurement in a radio system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100105495A (en) * 2009-03-18 2010-09-29 한국전자통신연구원 System for transmitting reference signal
US20120002568A1 (en) * 2009-03-17 2012-01-05 Esa Tapani Tiirola Configuring the Transmission of Periodic Feedback Information on a Physical Uplink Shared Channel (PUSCH)
US20140274054A1 (en) * 2013-03-15 2014-09-18 Raytheon Applied Signal Technology, Inc. Gsm channel tracking
US20160345345A1 (en) * 2015-05-21 2016-11-24 Qualcomm Incorporated Methods and apparatus for signal timing detection, sharing, and interference avoidance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120002568A1 (en) * 2009-03-17 2012-01-05 Esa Tapani Tiirola Configuring the Transmission of Periodic Feedback Information on a Physical Uplink Shared Channel (PUSCH)
KR20100105495A (en) * 2009-03-18 2010-09-29 한국전자통신연구원 System for transmitting reference signal
US20140274054A1 (en) * 2013-03-15 2014-09-18 Raytheon Applied Signal Technology, Inc. Gsm channel tracking
US20160345345A1 (en) * 2015-05-21 2016-11-24 Qualcomm Incorporated Methods and apparatus for signal timing detection, sharing, and interference avoidance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 36.331, vol. RAN WG2, no. V15.2.2, 10 July 2018 (2018-07-10), pages 1 - 791, XP051474963 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201527A1 (en) * 2022-04-19 2023-10-26 Mediatek Singapore Pte. Ltd. Methods and apparatus of measurement in a radio system

Similar Documents

Publication Publication Date Title
WO2020046062A1 (en) Method for performing beam sweeping by terminal supporting sidelink in wireless communication system, and terminal therefor
WO2020226372A1 (en) Method and device for transmitting sidelink reference signal in nr v2x
WO2020032765A1 (en) Method and terminal for communicating with other terminal in wireless communication system
WO2020180099A1 (en) Method and device for measuring sidelink channel in wireless communication system
WO2020204630A1 (en) Method and device for transmitting information related to sidelink channel in nr v2x
WO2021029745A1 (en) Method and device for determining, with respect to psfch resource, time domain for performing sidelink communication in nr v2x
WO2020159312A1 (en) Method for measuring position of terminal in wireless communication system and terminal
WO2020226405A1 (en) Method and device for determining rsrp in nr v2x
WO2020145723A1 (en) Method and apparatus for selecting pssch resource in nr v2x
WO2020171634A1 (en) Method and apparatus for location-based sidelink communication in nr v2x
WO2021091089A1 (en) Method and apparatus for determining whether to feedback based on distance in nr v2x
WO2020145480A1 (en) Method for transmitting or receiving signal in wireless communication system, and device supporting same
WO2020209642A1 (en) Method and device for determining sidelink transmit power in nr v2x
WO2020167031A1 (en) Transmission of sidelink resource information of nr v2x
WO2020190065A1 (en) Method and device for triggering measurement/report of aperiodic sidelink channel state information on basis of retransmission result in wireless communication system
WO2020209643A1 (en) Method for determining sidelink transmission power in nr v2x, and synchronization
WO2020226379A1 (en) Csi-rs transmission based on sidelink communication
WO2020218801A1 (en) Method and device for feedback regarding reception of dci associated with sidelink in nr v2x
WO2020032768A1 (en) Method and terminal for receiving signal in wireless communication system
WO2020209698A1 (en) Method and apparatus for transmitting sci in nr v2x groupcast communication
WO2020226399A1 (en) Method and device for selecting transmission resource in nr v2x
WO2020067831A1 (en) Method for terminal, which supports sidelink, to transmit signals in wireless communication system, and terminal therefor
WO2020032770A1 (en) Method and user equipment for transmitting signal to reception user equipment in wireless communication system
WO2022025473A1 (en) Method and device for determining sidelink transmission resource on basis of rsrp value in nr v2x
WO2021010764A1 (en) Method and device for transmitting location information in nr v2x

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846940

Country of ref document: EP

Kind code of ref document: A1