WO2020032544A1 - Method and device for wireless node communication in wireless communication system - Google Patents

Method and device for wireless node communication in wireless communication system Download PDF

Info

Publication number
WO2020032544A1
WO2020032544A1 PCT/KR2019/009807 KR2019009807W WO2020032544A1 WO 2020032544 A1 WO2020032544 A1 WO 2020032544A1 KR 2019009807 W KR2019009807 W KR 2019009807W WO 2020032544 A1 WO2020032544 A1 WO 2020032544A1
Authority
WO
WIPO (PCT)
Prior art keywords
access
iab
terminal
information
category
Prior art date
Application number
PCT/KR2019/009807
Other languages
French (fr)
Korean (ko)
Inventor
김상범
김성훈
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190012823A external-priority patent/KR20200016776A/en
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US17/264,059 priority Critical patent/US11743815B2/en
Publication of WO2020032544A1 publication Critical patent/WO2020032544A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for smoothly providing a service in a wireless communication system. More specifically, the present invention relates to a method and apparatus for transmitting and receiving data by a wireless node of a wireless communication system.
  • a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • the 5G communication system defined by 3GPP is called New Radio (NR) system.
  • mmWave ultra-high frequency
  • 60 Gigabit 60 GHz
  • 5G communication systems In order to mitigate the path loss of radio waves in the ultra-high frequency band and to increase the transmission distance of radio waves, beamforming, massive array multiple input / output (Full-Dimensional MIMO) and FD-MIMO in 5G communication systems Array antenna, analog beam-forming, and large scale antenna techniques have been discussed and applied to NR systems.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation And other technology developments are being made.
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC sliding window superposition coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA Non-orthogonal multiple access and sparse code multiple access have been developed.
  • IoT Internet of Things
  • IoE Internet of Everything
  • sensing technology wired / wireless communication and network infrastructure, service interface technology, and security technology
  • M2M Machine to machine
  • MTC Machine Type Communication
  • IoT intelligent Internet technology services that provide new value in human life by collecting and analyzing data generated from connected objects may be provided.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing IT (iInformation Technology) technology and various industries. It can be applied to.
  • 5G communication such as a sensor network, a machine to machine (M2M), a machine type communication (MTC), and the like are implemented by techniques such as beamforming, MIMO, and array antennas.
  • M2M machine to machine
  • MTC machine type communication
  • cloud RAN cloud radio access network
  • the disclosed embodiment is to provide an apparatus and method capable of effectively providing a service in a mobile communication system.
  • a terminal performs access control on a network, wherein the above-described method includes: triggering access to the network at an access-stratum (AS) layer; Determining whether a block timer for the access category corresponding to the triggered access is running; and determining, at the AS layer, that the block for the access category has been levied when the block timer expires.
  • AS access-stratum
  • the access control of the network of the terminal can be efficiently performed.
  • IAB integrated access and backhaul
  • FIG. 2 is a flowchart illustrating an IAB to which an embodiment is applied.
  • FIG. 3 is a flowchart illustrating a method of obtaining system information broadcasted by a neighboring IAB node for configuring an IAB according to an embodiment.
  • FIG. 4 is a flowchart illustrating a method of performing access to a neighboring IAB node for configuring an IAB according to an embodiment.
  • FIG. 5 is a flowchart illustrating a method of obtaining changed IAB configuration information, according to an exemplary embodiment.
  • FIG. 6 is a block diagram illustrating an internal structure of a terminal according to an embodiment.
  • FIG. 7 is a block diagram illustrating a configuration of a base station according to an embodiment.
  • FIG. 8 is a diagram illustrating a structure of a next generation mobile communication system to which an embodiment is applied.
  • FIG. 9 is a diagram for describing a process of performing access control of a connected mode or inactive mode terminal according to an embodiment.
  • FIG. 10 is a flowchart illustrating a process of performing access control by a connected mode or inactive mode terminal according to an embodiment.
  • 11 is a flowchart illustrating a process of performing an access control for an AS-triggered event by a connected mode or inactive mode terminal according to an embodiment.
  • FIG. 12 is a flowchart illustrating an operation of a terminal AS according to an embodiment.
  • FIG. 13 is a flowchart illustrating an operation of a terminal NAS according to an embodiment.
  • FIG. 14 is a flowchart illustrating a process of performing access control when a NAS performs access category mapping for an AS-triggered event according to an embodiment.
  • 15 is a block diagram illustrating an internal structure of a terminal according to an embodiment.
  • 16 is a block diagram illustrating a configuration of a base station according to an embodiment.
  • a terminal performs access control on a network, wherein the above-described method includes: triggering access to the network at an access-stratum (AS) layer; Determining whether a block timer for the access category corresponding to the triggered access is running; and determining, at the AS layer, that the block for the access category has been levied when the block timer expires.
  • AS access-stratum
  • each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It will create means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
  • each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the blocks may occur out of order.
  • the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC), and ' ⁇ part' performs certain roles. do.
  • ' ⁇ ' is not meant to be limited to software or hardware. May be configured to reside in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • components and 'parts' may be combined into a smaller number of components and 'parts' or further separated into additional components and 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
  • ' ⁇ unit' may include one or more processors.
  • IAB integrated access and backhaul
  • a mobile communication network includes a plurality of base stations and core network devices. Each base station and core network devices can carry control and data traffic over a wired backhaul interface.
  • the IAB is a technology for replacing the wired backhaul according to an embodiment with the wireless backhaul using the RAN node.
  • the wireless backhaul described above may eliminate the cost and time required to install a wired network in order to establish a wired backhaul. In addition, it is possible to establish a mobile communication network in a relatively short time in an urgently needed service area.
  • the IAB nodes 1a-15, 1a-20, and 1a-25 are RAN nodes that serve as wireless backhauls for carrying data traffic as well as a wireless access base station supporting terminals 1a-30 and 1a-35. Can mean.
  • the IAB node requesting traffic forwarding is called a child IAB node, and the IAB node forwarding the requested traffic is called a parent IAB node.
  • An IAB node can be child, parent, or both.
  • the IAB donor 1a-10 may refer to a RAN node connected to the core network 1a-05 and providing wireless backhaul function to the IAB nodes 1a-15, 1a-20, and 1a-25.
  • IAB nodes 1a-15, 1a-20, and 1a-25 are not directly connected to the core network, they can be connected to the IAB donor 1a-10 directly or via another IAB node. 1a-10) can send or receive control or data traffic to the core network.
  • Each IAB node is connected to terminals located within a service area, and can transmit and receive data from the IAB donor 1a-10 or to the IAB donor 1a-10.
  • the new IAB node 1 (1a-25) When a new IAB node 1 (1a-25) is created, the new IAB node 1 (1a-25) identifies the neighboring IAB nodes (1a-15, 1a-20) or IAB donor (1a-10), and the most appropriate node. You can perform the process of connecting to. In the present disclosure, this is called an IAB setup process.
  • the present disclosure proposes an embodiment of a detailed process required in the IAB setup process.
  • separate system information for the IAB node is defined, through which configuration information of the IAB node may be provided.
  • the present disclosure proposes separate access control, separate random access resources, and separate RRC signaling for the IAB setup process according to an embodiment.
  • FIG. 2 is a diagram illustrating an operation of an IAB to which an embodiment is applied.
  • IAB node 1 (1b-05) is a newly created node.
  • IAB node 2 (1b-10) and IAB node 3 (1b-15) are nodes that have completed the existing IAB setup.
  • the IAB donor 1b-20 is detected at the IAB node 2 (1b-10) and the IAB node 3 (1b-15), but not at the IAB node 1 (1b-05).
  • IAB node 1 (1b-05) can detect adjacent IAB node 2 (1b-10) and IAB node 3 (1b-15).
  • the disclosure can also be applied to scenarios where the IAB donor 1b-20 is sensed at IAB node 1 1b-05.
  • IAB donor 1b-20, IAB node 2 (1b-10), and IAB node 3 (1b-15) are always periodically broadcast system information, i.e., Master Information Block (MIB) or Through the System Information Block 1 (SIB1), IAB-related essential information can be broadcast. Since the size of the information that can be stored in the MIB or SIB1 is limited, the above-mentioned essential information may need to be minimized.
  • the essential information may normally indicate whether a node providing the above-described information supports the IAB function.
  • the IAB donor or the IAB node may include at least one of the following information as essential information.
  • First information an indicator indicating whether or not the IAB function is supported
  • Second information an indicator indicating whether a current IAB connection is available
  • the indicator described above is set.
  • Access for IAB setup is mapped to a separately defined access category or access identity, and the cell can broadcast barring configuration information for the aforementioned access category or access identity. If the third information is provided, the second information may not be needed.
  • New IAB nodes may have the ability to expect in terms of latency and maximum possible data rate when connected to an IAB donor or a particular neighboring IAB node. If an IAB donor or neighboring IAB node provides this kind of information, it can be used to determine that node. However, in order to minimize latency or maximum possible data rate information, it may be necessary to quantize it.
  • An embodiment of the present disclosure proposes an IAB category indicating a specific range of the above-described latency or maximum possible data rate information.
  • an IAB node supporting up to X data rate may broadcast IAB category 2 while an IAB node supporting up to Y data rate may be broadcast. Latency may be indicated as a separate category in a similar concept or as a category combined with the above-described data rate.
  • the hop count from the IAB donor to the neighboring IAB node may be important. Higher hop counts mean higher latency. If you need to provide services with low latency, you may not be connected to neighboring IAB nodes with high hop counts. Thus, neighboring IAB nodes can provide hop count information. If the hop count is 0, this may mean that the node is an IAB donor.
  • 6th information an indicator indicating whether a corresponding cell is an IAB node or an IAB donor
  • the fifth information may also indicate whether the corresponding node is an IAB node or an IAB donor. However, since the fifth information indicates hop number information, a plurality of bits may be required. The IAB donor needs only the sixth information, which is a one-bit indicator. This is useful in terms of signaling overhead.
  • the essential information may have any size, even with the above-listed information.
  • additional configuration information required for the IAB setup process For example, configuration information actually required for an IAB setup process such as random access, access control (Barring), and adaptation layer configuration information for the purpose of IAB setup may be included. This can be contrasted with the SIB1 containing information indicating whether the IAB node broadcasting it supports the IAB function. Therefore, this information is preferably transmitted through a separate SIBx, not the above-described MIB or SIB1.
  • General terminals have no reason to receive the above-described information. Therefore, if more specific information is stored in a separate SIBx for IAB only, it is possible to minimize the terminal from reading unnecessary information. In one embodiment, all remaining views may be included in the SIBx except for an indicator indicating whether to support the IAB function.
  • the new IAB node 1b-05 receives the SIB1 from the neighbor cell and, upon confirming the indicator described above from the SIB1, may additionally begin the procedure of acquiring the SIBx.
  • SIB1 may include scheduling information of the above-described SIBx.
  • SIBx belongs to the on-demand SI. That is, SIBx belongs to SIB that can be broadcast only upon request.
  • the new IAB node 1b-05 may request the above-described SIBx to the neighboring IAB node through msg1 (Message 1, SI request dedicated preamble) or msg3 (Message 3).
  • SIBx may be transmitted periodically, at the discretion of the IAB node.
  • the IAB nodes receive the above-described SIBx according to the scheduling information obtained from SIB1, and the general terminal does not need to receive them.
  • the above-described SIBx may include the following information.
  • Second information an indicator indicating whether a current IAB connection is available
  • Second information Barring configuration information for access for IAB setup.
  • Seventh information configuration information for determining an adjacent IAB node to be connected
  • the seventh information may include minimum required Reference Signal Received Power (RSRP) or Reference Signal Received Quality (RSRQ) information that can be connected to the neighboring IAB node described above.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the new IAB node is a neighboring IAB node.
  • the RSRP or RSRQ value measured by the reference signal of the reference signal must be larger than the minimum required RSRP or RSRQ value described above including a predetermined correction value to select the neighboring IAB node described above. It may be included in the existing SIB2, SIB3s or SIB4.
  • the IAB setup is an operation for configuring the IAB wireless backhaul network, and may be of high importance. Therefore, a separate random access resource for the IAB is required.
  • One embodiment of the present disclosure proposes to provide a separate random access preamble or random access frequency / time resource for the IAB.
  • Traffic transmission between IAB nodes is done through a new adaptation layer. Therefore, the adjacent IAB node can broadcast the configuration information for the above-described adaptation layer.
  • the new IAB node 1 1b-05 may select one neighboring IAB node according to a given equation.
  • the necessary information can be broadcast by neighboring IAB nodes using system information.
  • the seventh information described above may correspond to this.
  • at least one of the Public Land Mobile Network (PLMN) lists broadcasted by the IAB node 2 (1b-10) in SIB1 should be a PLMN supported by the IAB node 1 (1b-05).
  • PLMN Public Land Mobile Network
  • the new IAB node 1 (1b-05) may select the neighboring IAB node 2 (1b-10) and determine whether to allow access using the barring configuration information broadcasted by the node described above. have.
  • New IAB node 1 (1b-05) can map access for IAB setup with a separately defined access category or access identity.
  • the new IAB node 1 (1b-05) may perform a barring check using the barring configuration information for the aforementioned access category or access identity broadcasted by the neighboring IAB node 2 (1b-10). have.
  • the access identity may be indication information defined within 3GPP, that is, specified in a standard document.
  • the access identity may be used to indicate a specific access as shown in Table 1 below.
  • access identities can be used to indicate accesses classified as Access Class 11 through 15, multimedia services with priority (MPS), and mission critical services (MCS). have.
  • Access Class 11 through 15 may direct access for operators only or for public use.
  • the access class information may be information stored in a subscriber identity module / universal subscriber identity module (SIM / USIM) of a terminal or an IAB node.
  • SIM subscriber identity module
  • USIM universal subscriber identity module
  • Access categories can be divided into two types. For example, one kind may be a standardized access category.
  • the above-mentioned category may be a category defined at the RAN level, ie specified in the standard document. This allows different operators to apply the same standardized access category.
  • a category corresponding to Emergency may belong to a standardized access category. All accesses may correspond to at least one of the standardized access categories.
  • Another kind may be an operator-specific (non-standardized) access category.
  • the aforementioned categories are defined outside 3GPP and may not be specified in the standard document.
  • what an operator-specific access category means may vary from operator to operator. That is, the category and the nature of the existing ACDC (Application specific Congestion control for Data Communication) may be the same. Any access triggered on the terminal NAS may not be mapped to an operator-specific access category.
  • the main difference from the existing ACDC is that the above-mentioned categories do not correspond only to the application, but also correspond to other elements besides the application, that is, service type, call type, terminal type, user group, signaling type, slice type, or a combination of the above elements. Can be.
  • the above-described access category may be used to indicate a specific access as shown in Table 2 below.
  • Access categories 0 through 7 can be used to indicate a standardized access category, and access categories 32 through 63 can be used to indicate an operator-specific access category.
  • the operator server may provide the terminal NAS with information about operator-specific access category information (Management Object, MO) through NAS signaling or application level data transmission.
  • the above information may indicate which element each operator-specific category corresponds to, such as an application.
  • the access category 32 may specify in the above-described information that the access category 32 corresponds to an access corresponding to a Facebook application.
  • the base station may provide the terminal with the category list for providing the barring configuration information and the barring configuration information corresponding to each category using the system information.
  • the terminal may include logical blocks of the NAS and the AS. In the present disclosure, the terminal described above may be matched with an IAB node requesting IAB setup.
  • the terminal NAS may map the triggered access to one or more of the above-described access identities and one of the above access categories according to a predetermined rule.
  • a NAS and an AS may not be clearly distinguished as in a general terminal.
  • certain logical blocks in the IAB may map access associated with IAB setup to one or more access identities and one access category.
  • the above-described mapping operation may be performed in all RRC states, that is, in the connected mode (RRC_CONNECTED), the standby mode (RRC_IDLE), and the inactive mode (RRC_INACTIVE). The characteristics of each RRC state are listed as follows.
  • a UE specific DRX may be configured by upper layers
  • the UE The UE:
  • a UE specific DRX may be configured by upper layers or by RRC layer;
  • the UE stores the AS context
  • the UE The UE:
  • the UE stores the AS context.
  • the UE may be configured with a UE specific DRX .
  • Network controlled mobility i.e. handover within NR and to / from E-UTRAN.
  • the UE The UE:
  • the terminal NAS may transmit the mapped access identity and the access category to the terminal AS together with a service request.
  • a barring check operation for determining whether this is allowed before performing the wireless connection caused by the above-described message. Can be performed.
  • a NAS and an AS may not be clearly distinguished as in a general terminal. Therefore, in the case of an IAB node, a predetermined logical block in the IAB may perform a barring check for access related to the IAB setup. Through the barring check operation described above, if the above-described wireless connection is allowed, the IAB node may request the network to establish an RRC connection.
  • the operator may want to allow only certain types of services from among accesses corresponding to at least one of Access Class 11 through 15. Accordingly, the barring configuration information of the access category may be configured with ac-barringFactor and ac-barringTime.
  • the NAS is responsible for processes not directly related to wireless connection, i.e., authentication, service request, session management, while the AS may be responsible for processes related to wireless connection.
  • the network can provide management object information to the NAS using OAM (application level data messages) or NAS messages.
  • OAM application level data messages
  • the above information may indicate which element each operator-specific access category corresponds to, such as an application.
  • the NAS may use the information described above to determine which operator-specific category the triggered access maps to.
  • Triggered access may include a new MMTEL service (voice call, video call), SMS transmission, new PDU session establishment, existing PDU session change, and the like.
  • the NAS may map an access identity and an access category corresponding to the above-described property of the service.
  • the service described above may not be mapped to any access identity, or may be mapped to one or more access identities.
  • the above-described service may be mapped to one access category.
  • the NAS can first check whether the above-mentioned service is mapped with the operator-specific access category provided by the management object. If not mapped to any operator-specific access category, the NAS can map to one of the standardized access categories.
  • one service can be mapped to one operator-specific access category and one standardized access category. However, if it does not map to any operator-specific access category, the NAS can map to one of the standardized access categories.
  • the emergency service may be an exception.
  • the NAS may send a new session request or service request to the AS along with the mapped access identity and access category.
  • the NAS can send a new session request in connected or inactive mode and a service request in standby mode.
  • the AS may receive barring configuration information from system information broadcasted by the network.
  • An exemplary embodiment of the ASN.1 structure of the barring configuration information is shown in Table 3 below, a detailed description thereof will be described later.
  • the AS may determine whether the service request is allowed by using the access identity, the access category information mapped by the NAS, and the corresponding barring setting information received from the network.
  • the operation of determining whether the service request is allowed may mean a barring check.
  • the terminal may receive system information including the access control configuration information and store the configuration information.
  • Barring configuration information may be provided for each PLMN and access category.
  • BarringPerCatList IE can be used to provide barring configuration information of access categories belonging to one PLMN.
  • the PLMN id and barring configuration information of each access category may be included in the above-described IE in the form of a list.
  • the barring setting information for each access category may include an access category id (or index) indicating a specific access category, a uac-BarringForAccessIdentity field, a uac-BarringFactor field, and a uac-Barringtime field.
  • each bit constituting uac-BarringForAccessIdentity may correspond to one access identity. If the above-described bit value is indicated as '0', access associated with the above-described access identity may be allowed. For at least one of the mapped access identities, access may be allowed if at least one of the corresponding bits in uac-BarringForAccessIdentity is '0'. For at least one of the mapped access identities, if any one of the corresponding bits in uac-BarringForAccessIdentity is not '0', an additional barring check may be additionally performed using the uac-BarringFactor field.
  • the range of uac-BarringFactor ⁇ may be 0 ⁇ ⁇ ⁇ 1.
  • the terminal AS derives one random value rand with 0 ⁇ rand ⁇ 1, and if the above-described random value is smaller than uac-BarringFactor, access is not prohibited. Otherwise, access may be regarded as prohibited. If it is determined that access is prohibited, the terminal AS may delay the access attempt for a predetermined time derived using the following equation.
  • the terminal AS may drive a timer having the above-described time value. In the present disclosure, the timer described above may mean a barring timer.
  • the terminal AS may inform the terminal NAS of this.
  • the terminal AS may notify the terminal NAS of requesting access again (barring alleviation). From this time, the terminal NAS may request access to the terminal AS again.
  • the AS may request an RRC connection establishment or RRC connection resume from the network or transmit data related to a new session.
  • the aforementioned access category may need to be classified as either a standardized access category or an operator-defined access category.
  • the new access category corresponding to the access for IAB setup described above is classified as an operator-defined access category
  • information about operator-defined access category information for the IAB node through NAS signaling or application level data transmission from the operator server ( Management Object, MO) may be provided.
  • the above-described information may include information about which operator-defined access category number corresponds to the access for the IAB setup, as shown in Table 1 and Table 2 above. If the above information is not provided to the IAB node, the IAB node may map the access for IAB setup to a given standardized access category.
  • the above-described predetermined access category may mean a standardized access category corresponding to MO-signalling.
  • the IAB node receiving the IAB setup request may broadcast barring configuration information corresponding to the new operator-defined access category through system information.
  • a new access category corresponding to an access for IAB setup is classified as a standardized access category, as shown in Table 1 and Table 2 above, it is determined in advance which standardized access category number corresponds to the access for IAB setup described above. Can be specified.
  • the IAB node receiving the IAB setup request can broadcast the barring configuration information corresponding to the new standardized access category through the system information.
  • one access may be mapped to multiple access categories.
  • the operator-defined access category could be mapped in preference to the standardized access category.
  • the IAB setup access can be mapped to a predetermined operator-defined access category and a dedicated standardized access category for the IAB setup access, the IAB node requesting the IAB setup is always a new standardized access category for the IAB setup access. You can to
  • a separate access identity can be defined for access for IAB setup.
  • the IAB node that triggers the access for IAB setup can map the aforementioned access to a new access identity.
  • the above-described access can be mapped to a predetermined access category.
  • the predetermined access category may mean a standardized access category corresponding to MO-signalling or a new access category for separate IAB setup.
  • the barring configuration information described above may be provided for each access category, and the configuration information may include bitmap information indicating whether to allow access for each access identity.
  • the bitmap information may also include information on whether a separate access identity is allowed for access for new IAB setup. If indicated as allowed, the access can be considered to be allowed without performing a barring check.
  • the IAB node can map the access for IAB setup to an existing access identity.
  • an access for IAB setup may be mapped to a specific access identity.
  • IAB Nodes can map access for IAB setup to access identity 11 or 15.
  • IAB node 1 (1b-05) may attempt random access to the selected neighboring IAB node 2 (1b-10) using an IAB dedicated random access preamble.
  • the reason for defining a separate access category or access identity is to allow you to consider IAB setup differently from other accesses. This is because the IAB setup constitutes a backhaul network, which can be a high priority.
  • the IAB node 1 (1b-05) may perform random access using a separate random access preamble and random access frequency / time resources for the IAB.
  • the total number of IAB dedicated random access preambles described above may be set equal to the total number of child IAB nodes that IAB node 2 (1b-10) can connect as a parent node.
  • the above-described IAB node 2 (1b-10) indicates that the IAB is supported through the system information, the above-described IAB dedicated random access preamble may not be set. In this case, the above-described IAB node 1 (1b-05) may attempt random access using a general random access preamble.
  • the IAB node 2 (1b-10) receiving the preamble may transmit a random access response (RAR) to the IAB node 1 (1b-05). If the above-mentioned RAR is not received or if the received RAR does not include the ID value of the transmitted preamble described above, IAB node 1 (1b-05) may postpone retransmission of the preamble for a specific time. have.
  • the specific time described above may be derived through the backoff value stored in the MAC PDU of the RAR.
  • the backoff value described above may be a value between 0 and 1
  • the specific value described above may be a random value between 0 and backoff.
  • the above-described specific time can be derived by multiplying the above-described stored backoff value by the scaling value provided as system information.
  • the IAB node 1 1b-05 that has successfully received the RAR may send msg3.
  • the above-described msg3 may include a predetermined RRC message.
  • the neighbor IAB node 2 1b-10 may forward msg3 received with the radio resource indicated by the above-described RAR to the IAB donor 1b-20.
  • IAB node 1 (1b-05) is connected to the IAB donor 1b-20 through a single hop, that is, IAB node 2 (1b-10)
  • 1b-05 may be connected to the IAB donor 1b-20 through one or more multiple hops.
  • the control or data traffic of the above-described IAB node 1 (1b-05) may be forwarded to the IAB donor 1b-20 via a plurality of hops sequentially.
  • a capsulation or an F1AP (F1 Application Protocol) message may be used in the adaptation layer for each hop-to-hop interval.
  • the predetermined RRC message may be used to request the IAB setup from the IAB donor 1b-20 described above.
  • the RRCSetupRequest message may be used as the predetermined RRC message.
  • the RRCSetupRequest message may be used to initialize the RRC establishment.
  • the above-described predetermined RRC message may include a cause value indicating that the above-mentioned message is intended for IAB setup.
  • the RRCSetupRequest message may include a establishment cause value. In this case, a new cause value indicating IAB setup may be newly defined.
  • Msg3 is limited in size, it may not be possible to define a new cause value indicating the IAB setup described above. Therefore, in this case, an existing specific cause value may be used as the establishment cause value of the RRCSetupRequest message for IAB setup. In one embodiment, highPriorityAccess or MO-signalling may be set. Instead, a cause value or an indicator indicating that the above-described IAB setup is used may be included in the RRCSetupComplete message stored in msg5 (message 5).
  • an ID indicating the IAB node 1 (1b-05) may be included.
  • the above-described ID may be used to determine the IAB node 1 (1b-05) between the IAB node 2 (1b-10) and the IAB donor (1b-20).
  • IAB nodes or IAB nodes to which IAB donor (1b-20) forwards traffic from IAB node 1 (1b-05) The setup message indicating that the above-described IAB node 1 (1b-05) may be supported may be transmitted to the neighboring IAB node (ie IAB node 2) forming direct connection with 1 (1b-05). At this time, the above-described ID may be used.
  • the IAB node 1 (1b-05) and the IAB donor (1b-20) establish a non-access stratum (NAS) registration / authentication (NAS container of RRCSetupComplete message) and security settings through a predetermined RRC message. (Security Mode Command message / Security Mode Complete message) can be performed. Accordingly, similarly to the LTE system, security may be achieved between the IAB node 1 1b-05 and the IAB donor 1b-20. On the other hand, for IAB node 2 1b-10 forwarding traffic from IAB node 1 1b-05, authentication may be required for IAB node 1 1b-05.
  • NAS non-access stratum
  • authentication may be required for IAB node 1 1b-05.
  • IAB node 1 (1b-05) Without any authentication or security procedure, it is not possible to continue forwarding traffic from IAB node 1 (1b-05) to the IAB donor (1b-20). Therefore, when the registration, authentication, and security process between the IAB node 1 (1b-05) and the IAB donor (1b-20) is completed, the IAB donor (1b-20) sends a message to the IAB node 1 (1b-05). It is possible to send an indicator that IAB node 1 (1b-05) may continue to be supported to IAB node 2 (1b-10), which forwards traffic of the " At this time, IAB node 2 (1b-10) may support other IAB nodes other than IAB node 1 (1b-05). Therefore, an ID that can distinguish between IAB nodes is required.
  • the ID may be included in the initial RRC message for the initial IAB node 1 (1b-05) by the setup process, or the Temporary C-RNTI (Cell-Radio Network) that the IAB node 2 (1b-10) includes in the RAR message. Temporary Identifier) value may be used. If the Temporary C-RNTI value included in the RAR message is utilized, IAB Node 1 (1b-05) includes the Temporary C-RNTI value included in the RAR in the RRCSetupRequest message, via IAB Node 2 (1b-10). Can be sent to the IAB donor (1b-20).
  • the Temporary C-RNTI Cell-Radio Network
  • IAB node 1 (1b-05) attempts random access for IAB setup to IAB node 2 (1b-10)
  • IAB node 2 (1b-10) is described in detail from the IAB donor 1b-20 for a predetermined time. If IAB does not receive the information about the supported support, IAB node 2 (1b-10) may disconnect from the IAB node 1 (1b-05).
  • the IAB node 1 (1b-05) can configure a wireless backhaul with the IAB donor (1b-20) through the IAB node 2 (1b-10).
  • step 1b-75 if the IAB donor 1b-20 determines that a reset / release is necessary for a predetermined cause, in step 1b-80, the IAB donor 1b-20 may be sent through a predetermined RRC message. This can be used to inform IAB nodes that require routing reset / release. In addition, setting information necessary for resetting / resetting routing may also be provided.
  • steps 1b-85 if one IAB node constituting the wireless backhaul determines that routing reset / release is necessary according to a predetermined cause, the IAB node sends a message to the IAB donor 1b-20 through a predetermined RRC message. This may be informed, and neighbor IAB nodes associated with the radio backhaul may be informed by a predetermined RRC message or system information. Due to the structure of the IAB, RRC connections between IAB nodes may be very limited. Therefore, it may be advantageous to inform the reset / release of IAB routing through system information.
  • IAB routing reset / release may be indicated through paging downlink control information (DCI) or paging.
  • DCI Downlink Control Information
  • a paging DCI may be a DCI including paging information, in particular, a system information change indicator.
  • the paging DCI in the present disclosure is an indicator indicating IAB routing reset / release, or an indicator indicating that IAB related system information that may cause routing reset / release has been changed, or an SIB or SI message including IAB related system information. It may include an indicator indicating that has changed.
  • the IAB node may broadcast the changed system information.
  • the child IAB node may need to monitor paging from the parent IAB node according to a predetermined paging frame (PF) and paging occsion (PO).
  • PF paging frame
  • PO paging occsion
  • the above-described PF and PO may have the following characteristics.
  • Each IAB node has a unique International Mobile Subscriber Identity (IMSI) value and is derived by applying the above-described IMSI value and parameter values provided by neighboring IAB nodes transmitting paging,
  • IMSI International Mobile Subscriber Identity
  • All IAB nodes have the same IMSI value and are derived by applying the above-described IMSI value and parameter values provided by the neighboring IAB node transmitting paging.
  • all IAB nodes may have the same PF and PO.
  • the PF is a radio frame starting with the PO
  • the PO may be a plurality of time slots through which paging DCI or paging may be transmitted, that is, a subframe or an Orthogonal Frequency Division Multiplexing (OFDM) symbol. .
  • OFDM Orthogonal Frequency Division Multiplexing
  • the general terminal may define a new P-RNTI dedicated to the IAB node to indicate the paging DCI or paging described above.
  • the above-described P-RNTI may use a predefined value. The general terminal does not need to decode the DCI encoded with the new P-RNTI described above.
  • the IAB node that receives the paging DCI or paging indicating IAB routing reset / release may receive SIB1 and, if necessary, receive SIBx. SIBx may be provided on-demand. In one embodiment, if the SIB1 received from the neighboring IAB node indicates that it no longer supports IAB through the first information, or indicates that the IAB connection is no longer possible through the second information, then in SIBx The seventh information provided may be used to find another neighboring IAB node to support the wireless backhaul.
  • IAB node 1 1b-05 may determine the change of the connected IAB node.
  • IAB node 1 (1b-05) terminates the connection with existing IAB node 2 (1b-10) and decides to establish a new wireless backhaul connection with another neighboring IAB node 3 (1b-15). In this case, a disconnection process may be performed with the IAB node 2 (1b-10) that is connected for the existing wireless backhaul.
  • IAB node 1 1b-05 may send a related MAC CE or L1 signaling or Adaptation layer control message at IAB node 2 1b-10.
  • the IAB node 1 (1b-05) may transmit an RRC message requesting the IAB donor (1b-20) to disconnect the IAB node 2 (1b-10) and the connection to the new IAB node.
  • the above-described IAB node 1 (1b-05) may trigger the IAB setup process at the new neighbor IAB node 3 (1b-15).
  • intra-cell handover may be performed for terminals in the aforementioned connection mode state for bearer reset, security reset, retransmission reset, reset or reset of each L2 layer.
  • FIG. 3 is a flowchart illustrating a method of obtaining system information broadcasted by a neighboring IAB node for configuring an IAB according to an embodiment.
  • the IAB node may initiate the process of selecting an adjacent IAB node (or IAB donor) for the wireless backhaul configuration.
  • the above-described IAB node may search for an adjacent IAB node or IAB donor that satisfies a predetermined signal quality.
  • the IAB node may preferentially select adjacent IAB nodes that provide the largest signal strength.
  • the above-described signal quality may be derived by measuring a single side band (SSB) signal periodically transmitted by an adjacent IAB node. If the signal strength of the IAB donor satisfies a predetermined value or more, the IAB donor may be selected in preference to the neighboring IAB node.
  • SSB single side band
  • the above-described constant signal strength may be provided or predefined through system information.
  • the IAB node may receive SIB1 from the selected neighboring IAB node (or IAB donor).
  • the 0IAB node may determine whether it can connect from SIB1 to the neighbor IAB node for wireless backhaul configuration. If the indicator (first information described above) indicating whether to support the IAB function is not included in SIB1, the above-described cell is a cell that does not support the IAB. In addition, even if the IAB function is supported, it is difficult to additionally support the above-described new IAB node when supporting other neighboring IAB nodes with the maximum number of connectable IAB nodes or when network congestion occurs. Therefore, the new IAB node can be suppressed or rejected from requesting the IAB connection with the second information or the third information described above. The above-described second information and third information may also be provided to SIB1. In addition, the above-described SIB1 may include scheduling information for SIBx.
  • step 1c-25 if it is determined that the IAB node cannot connect, it may select another neighboring IAB node (or IAB donor).
  • the IAB node may receive the SIBx including detailed configuration information for configuring the wireless backhaul.
  • the above-described SIBx may include configuration information actually required for the IAB setup process, such as random access, access control (Barring), and adaptation layer configuration information for the purpose of IAB setup.
  • the SIBx described above may be provided in an on-demand manner since it does not need to be broadcast at all times periodically.
  • FIG. 4 is a flowchart illustrating a method of performing access to a neighboring IAB node for configuring an IAB according to an embodiment.
  • the IAB node may transmit one random access preamble to the selected neighboring IAB node (or IAB donor). Through the system information, an IAB dedicated random access preamble may be provided, otherwise, a general random access preamble may be applied.
  • the IAB node may receive a RAR from an adjacent IAB node.
  • the IAB node may transmit msg 3 using a radio resource indicated by the RAR.
  • the above-described msg3 message may include an RRCSetupRequest, and the above-described RRC message may include a cause value indicating IAB setup.
  • the RRCSetupRequest message for RRC establishment is reused, but a new RRC message for IAB setup may be defined.
  • the IAB node may receive msg4 from the neighboring IAB node described above.
  • the IAB node may send a msg5 message.
  • the above-mentioned message may include cause value indicating IAB setup. This is a problem of size limitation of msg3, because the above-described cause value may not be included in msg3.
  • FIG. 5 is a flowchart illustrating a method of obtaining changed IAB configuration information, according to an exemplary embodiment.
  • the IAB node may receive paging DCI or paging from the adjacent IAB node constituting the IAB.
  • the IAB node may receive SIB1 from the neighboring IAB node described above.
  • the IAB node may receive SIBx from the neighboring IAB node described above.
  • the IAB node may determine whether the IAB node change / reset is necessary through the received SIB1 and SIBx described above.
  • the IAB node may perform a process of disconnecting an existing neighboring IAB node.
  • the above-described release process may be requested by the IAB node to the above-described neighboring IAB node using a predetermined MAC CE, L1 signaling, Adaptation layer control message, or the like, or may be triggered by the neighboring IAB node using the RRCRelease message.
  • the IAB node may perform an IAB setup process with another neighboring IAB node after the above-described release process is completed.
  • FIG. 6 is a block diagram illustrating an internal structure of a terminal according to an embodiment.
  • the terminal may include a radio frequency (RF) processor 1f-10, a baseband processor 1f-20, a storage unit 1f-30, and a controller 1f-40. have.
  • RF radio frequency
  • the RF processor 1f-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1f-10 up-converts the baseband signal provided from the baseband processor 1f-20 into an RF band signal and transmits the same through an antenna, and baseband the RF band signal received through the antenna. Can be down converted to a signal.
  • the RF processor 1f-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. have. In FIG. 6, only one antenna is illustrated, but the above-described terminal may include a plurality of antennas.
  • the RF processor 1f-10 may include a plurality of RF chains.
  • the RF processor 1f-10 may perform beamforming. For the above-described beamforming, the RF processor 1f-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor may perform MIMO (Multi Input Multi Output), and may receive multiple layers when performing the MIMO operation.
  • MIMO Multi Input Multi Output
  • the baseband processor 1f-20 may perform a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processor 1f-20 may generate complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the baseband processor 1f-20 may restore the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1f-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the baseband processor 1f-20 generates complex symbols by encoding and modulating a transmission bit string, and performs the above-described complex symbols on subcarriers.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols may be configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the baseband processor 1f-20 divides the baseband signal provided from the RF processor 1f-10 into OFDM symbol units and is mapped to subcarriers through a fast fourier transform (FFT) operation. After recovering the signals, the received bit stream may be restored by demodulation and decoding.
  • FFT fast fourier transform
  • the baseband processor 1f-20 and the RF processor 1f-10 may transmit and receive signals as described above. Accordingly, the baseband processor 1f-20 and the RF processor 1f-10 described above may be referred to as a transmitter, a receiver, a transceiver, or a communicator. Furthermore, at least one of the baseband processor 1f-20 and the RF processor 1f-10 may include a plurality of communication modules to support a plurality of different radio access technologies. In addition, at least one of the baseband processor 1f-20 and the RF processor 1f-10 may include different communication modules to process signals of different frequency bands. For example, the different wireless access technologies described above may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like.
  • a wireless LAN eg, IEEE 802.11
  • a cellular network eg, LTE
  • the different frequency bands described above may include a super high frequency (SHF) (eg, 2.NRHz, NRhz) band and a millimeter wave (eg, 60 GHz) band.
  • SHF super high frequency
  • the terminal may transmit and receive signals to and from the base station using the baseband processor 1f-20 and the RF processor 1f-10.
  • the signal may include control information and data.
  • the storage unit 1f-30 may store data such as a basic program, an application program, and setting information for the operation of the terminal described above.
  • the storage unit 1f-30 may store information related to the second access node performing wireless communication using the second wireless access technology.
  • the storage unit 1f-30 may provide the stored data according to the request of the controller 1f-40 described above.
  • the storage unit 1f-30 may be configured as a storage medium or a combination of storage media such as a ROM, a RAM, a hard disk, a CD-ROM, a DVD, and the like.
  • the storage unit 1f-30 may be configured of a plurality of memories.
  • the storage unit 1f-30 may store a program for supporting beam-based cooperative communication.
  • the controller 1f-40 controls the overall operations of the terminal described above.
  • the controller 1f-40 may transmit and receive a signal through the baseband processor 1f-20 and the RF processor 1f-10.
  • the control unit 1f-40 can record and read data in the storage unit 1f-40.
  • the controller 1f-40 may include at least one processor.
  • the controller 1f-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
  • CP communication processor
  • AP application processor
  • FIG. 7 is a block diagram illustrating a configuration of a main station in a wireless communication system according to an embodiment.
  • the base station includes an RF processor 1g-10, a baseband processor 1g-20, a backhaul communication unit 1g-30, a storage unit 1g-40, and a controller 1g-50. It may include.
  • the RF processor 1g-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1g-10 up-converts the baseband signal provided from the baseband processor 1g-20 into an RF band signal and transmits the same through an antenna, and baseband the RF band signal received through the antenna. Can be downconverted to a signal.
  • the RF processor 1g-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In FIG. 7, only one antenna is shown, but the above-described first access node may have a plurality of antennas.
  • the RF processor 1g-10 may include a plurality of RF chains.
  • the RF processor 1g-10 may perform beamforming. For the beamforming described above, the RF processor 1g-10 may adjust the phase and the magnitude of each of the signals transmitted and received through the plurality of antennas or antenna elements.
  • the RF processor may perform a downlink MIMO operation by transmitting one or more layers.
  • the baseband processor 1g-20 may perform a conversion function between the baseband signal and the bit string according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 1g-20 may generate complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1g-20 may restore the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1g-10. For example, in accordance with the OFDM scheme, during data transmission, the baseband processor 1g-20 generates complex symbols by encoding and modulating a transmission bit stream, maps the above-described complex symbols to subcarriers, and then IFFT. OFDM symbols may be configured through operation and CP insertion.
  • the baseband processor 1g-20 divides the baseband signal provided from the RF processor 1g-10 into OFDM symbol units and restores signals mapped to subcarriers through an FFT operation.
  • the received bit stream may be restored by performing demodulation and decoding.
  • the baseband processor 1g-20 and the RF processor 1g-10 may transmit and receive signals as described above. Accordingly, the baseband processor 1g-20 and the RF processor 1g-10 described above may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
  • the backhaul communication unit 1g-30 may provide an interface for communicating with other nodes in the network. That is, the backhaul communication unit 1g-30 converts the bit string transmitted from the above-described main base station to another node, for example, an auxiliary base station, core network, etc., into a physical signal, and converts the physical signal received from the above-described other node. Can be converted to a bit string.
  • the storage unit 1g-40 may store data such as a basic program, an application program, and setting information for the operation of the main station described above.
  • the storage unit 1g-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like.
  • the storage unit 1g-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal.
  • the storage 1g-40 may provide stored data at the request of the controller 1g-50.
  • the controller 1g-50 controls the overall operations of the main station described above.
  • the controller 1g-50 may transmit and receive signals through the baseband processor 1g-20 and the RF processor 1g-10 or through the backhaul communication unit 1g-30.
  • the controller 1g-50 may record and read data in the storage 1g-40.
  • the controller 1g-50 may include at least one processor.
  • a radio access network of a next generation mobile communication system includes a next generation base station (New Radio Node B, hereinafter referred to as gNB) 2a-10 and an AMF 2a-05, New Radio Core Network. It can be composed of).
  • the user terminal (New Radio User Equipment, NR UE or terminal) 2a-15 may access an external network through the gNB 2a-10 and the AMF 2a-05.
  • the gNB may correspond to an eNB (Evolved Node B) of the LTE system.
  • the gNB is connected to the NR UE through a radio channel and may provide superior service than the existing Node B (2a-20).
  • an apparatus for collecting and scheduling state information such as buffer states, available transmit power states, and channel states of UEs is required. 2a-10) may be in charge.
  • One gNB can typically control multiple cells.
  • the mobile station may have a conventional maximum bandwidth or more, and an additional beamforming technique may be further combined using an orthogonal frequency division multiplexing (OFDM) as a wireless access technology.
  • OFDM orthogonal frequency division multiplexing
  • an adaptive modulation & coding (AMC) scheme for determining a modulation scheme and a channel coding rate according to the channel state of the UE can be applied.
  • the AMF 2a-05 may perform functions such as mobility support, bearer setup, QoS setup, and the like.
  • the AMF 2a-05 may be connected to a plurality of base stations as a device for various control functions as well as a mobility management function for a terminal.
  • the next generation mobile communication system may be linked to the LTE system, and the AMF 2a-05 may be connected to the MME 2a-25 through a network interface.
  • the MME 2a-25 may be connected to the eNB 2a-30 which is an existing base station.
  • the terminal supporting the LTE-NR Dual Connectivity may transmit and receive data while maintaining the connection to the eNB 2a-30 as well as the gNB 2a-10 (2a-35).
  • FIG. 9 is a diagram for describing a process of performing access control of a connected mode or inactive mode terminal according to an embodiment.
  • An access identity is an indication of information defined within 3GPP, that is, specified in a standard document.
  • the above-described access identity is used to indicate a specific access as shown in Table 4 below.
  • the access identity may indicate mainly access classes 11 to 15 classified as access classes, multimedia priorities (MPS), and special purpose services (MCS). Access Class 11 to 15 described above may direct access for operators or for public use only.
  • Access categories can be divided into two types. One kind is the standardized access category.
  • the above-mentioned categories are the categories defined at the RAN level, ie specified in the standard document. This allows different operators to apply the same standardized access category.
  • a category corresponding to Emergency may belong to the standardized access category described above. All accesses may correspond to at least one of the standardized access categories described above.
  • the aforementioned categories are defined outside 3GPP and are not specified in the standard document. Thus, the meaning of one operator-specific access category for each operator may be different. This is the same as the category in the existing ACDC (Application specific Congestion control for Data Communication). At the terminal NAS, any access triggered may not be mapped to an operator-specific access category.
  • the main difference from the existing ACDC is that the above-mentioned categories correspond not only to the application but also to other elements besides the application, that is, service type, call type, terminal type, user group, signaling type, slice type, or a combination of the above-described elements. Can be.
  • the above-described access category may be used to indicate a specific access as shown in Table 5 below.
  • Access categories 0 through 7 can be used to indicate a standardized access category, and access categories 32 through 63 can be used to indicate an operator-specific access category.
  • the operator server 2b-25 may provide the terminal NAS b-10 with information about operator-specific access category information (Management Object, MO) through NAS signaling or application level data transmission.
  • the above information may indicate which element each operator-specific category corresponds to, such as an application.
  • the access category 32 may specify in the above-described information that the access category 32 corresponds to an access corresponding to a Facebook application.
  • the base station 2b-20 may provide the terminal 2b-05 with a category list for providing barring configuration information and barring configuration information corresponding to each category using the system information.
  • the terminal 2b-05 may include logical blocks of the NAS 2b-10 and the access stratum 2b-15.
  • the terminal NAS 2b-10 may map the triggered access to one or more of the above-described access identities and one of the above-described access categories according to a predetermined rule.
  • the above-described mapping operation may be performed in all RRC states, that is, in the connected mode (RRC_CONNECTED), the standby mode (RRC_IDLE), and the inactive mode (RRC_INACTIVE).
  • RRC_CONNECTED the connected mode
  • RRC_IDLE standby mode
  • RRC_INACTIVE the inactive mode
  • a UE specific DRX may be configured by upper layers
  • the UE The UE:
  • a UE specific DRX may be configured by upper layers or by RRC layer;
  • the UE stores the AS context
  • the UE The UE:
  • the UE stores the AS context.
  • the UE may be configured with a UE specific DRX .
  • Network controlled mobility i.e. handover within NR and to / from E-UTRAN.
  • the UE The UE:
  • one access may be additionally mapped to one operator-specific access category if it can be mapped to one standardized access category.
  • the above-described terminal NAS 2b-10 may transmit the above-described mapped access identity and access category to the above-described terminal AS 2b-15 together with the service request.
  • the terminal AS 2b-15 is provided with the above-described access identity or access category information together with the message received from the terminal NAS 2b-10 in all RRC states, performing the wireless connection caused by the above-described message. You can perform a barring check operation to determine whether this is allowed before.
  • the terminal 2b-05 may request the RRC connection establishment from the network.
  • the NAS 2b-10 of the connected mode or inactive mode terminal may transmit the access identity and the access category to the terminal AS 2b-15 for the following reason (2b-30).
  • the following reasons are collectively referred to as 'new session request'.
  • SMS short -sending of SMS (SMS over IP, or SMS over NAS)
  • the NAS 2b-10 of the standby mode terminal may transmit an access identity and an access category to the terminal AS 2b-15 at the time of a service request.
  • the terminal AS 2b-15 may determine whether the access triggered by the terminal NAS 2b-10 is allowed using the barring configuration information described above (barring check).
  • one embodiment of the present disclosure may be characterized in that the access to the access class 11, 12, 13, 14, 15 that is indicated by the access identity is determined whether to allow access according to the attribute distinguished by the access category.
  • an embodiment proposes a method of configuring barring configuration information of an access identity or an access category.
  • the barring setting information of the above-described access category is composed of an ac-barringFactor and an ac-barringTime like the conventional barring setting information of ACB (Access Class Barring) or ACDC.
  • FIG. 10 is a diagram for describing a process of performing access control by a connected mode or inactive mode terminal according to an embodiment.
  • the terminal 2c-05 includes a NAS 2c-10 and an AS 2c-15.
  • the NAS described above is responsible for processes not directly related to the wireless connection, i.e., authentication, service request, session management, while the AS described above may be responsible for processes related to the wireless connection.
  • the network 2c-20 may provide management object information to the NAS described above using an OAM (application level data message) or NAS message.
  • OAM application level data message
  • the above information may indicate which element, such as an application, each operator-specific access category corresponds to.
  • the NAS 2c-10 may use the information described above to determine which operator-specific category the triggered access maps to.
  • the triggered access described above may correspond to a new MMTEL service (voice call, video call), SMS transmission, new PDU session establishment, existing PDU session change, and the like.
  • the NAS 2c-10 may map an access identity and an access category corresponding to the attribute of the service described above.
  • the service described above may not be mapped to any access identity, or may be mapped to one or more access identities.
  • the above-described service may be mapped to one access category. Assuming that it can be mapped to one access category, it can be checked first whether or not the above-described service is mapped to an operator-specific access category provided by the above-described management object. If it does not map to any operator-specific access category, it can be mapped to one of the standardized access categories described above. Assuming that you can map to multiple access categories, one service maps to one operator-specific access category and one standardized access category. However, if it is not mapped to any operator-specific access category, it can be mapped to one of the standardized access categories described above.
  • the emergency service may be an exception in the above-described mapping rule.
  • step 2c-40 the NAS 2c-10 sends a new session request or service request to the AS 2c-15 together with the mapped access identity and access category described above.
  • the NAS 2c-10 may transmit a new session request in the connected mode or the inactive mode and a service request in the standby mode.
  • the AS 2c-15 may receive barring configuration information from system information broadcast by the network.
  • An example of the ASN.1 structure of the barring configuration information described above is the following code, a detailed description thereof will be described later.
  • the AS 2c-15 permits the above-described service request, using the access identity and access category information mapped by the NAS 2c-10 and the corresponding barring configuration information received from the network described above. Can be determined.
  • an operation of determining whether the above-described service request is allowed is called a barring check.
  • the terminal 2c-05 may receive the system information including the above-described access control setting information and store the above-mentioned setting information.
  • the barring configuration information described above may be provided for each PLMN and for each access category. BarringPerCatList IE can be used to provide barring configuration information of access categories belonging to one PLMN.
  • the PLMN id and barring configuration information of each access category may be included in the above-described IE in the form of a list.
  • the barring configuration information for each access category may include an access category id (or index) indicating a specific access category, a uac-BarringForAccessIdentity field, a uac-BarringFactor field, and a uac-Barringtime field.
  • each bit constituting uac-BarringForAccessIdentity corresponds to one access identity, and when the above-described bit value is indicated as '0', access associated with the above-described access identity is allowed.
  • access may be allowed if at least one of the corresponding bits in uac-BarringForAccessIdentity is '0'. If at least one of the corresponding bits in the uac-BarringForAccessIdentity is not '0' for at least one of the mapped access identities described above, an additional barring check may be performed using the uac-BarringFactor field.
  • the above-described range of uac-BarringFactor ⁇ may be 0 ⁇ ⁇ ⁇ 1.
  • the terminal AS derives one random value rand with 0 ⁇ rand ⁇ 1, and if the above-mentioned random value is smaller than the above-described uac-BarringFactor, access may not be prohibited. Otherwise, access may be regarded as prohibited. If it is determined that access is prohibited, the above-described terminal AS 2c-15 may delay the access attempt for a predetermined time derived using Equation 2 below.
  • the terminal AS 2c-15 may drive a timer having the above-described time value. In the present disclosure, the above-described timer is called a barring timer.
  • the above-mentioned terminal AS 2c-15 may inform the above-mentioned terminal NAS 2c-10.
  • the above-described terminal AS 2c-15 may inform the terminal NAS 2c-10 that it can request access again (barring alleviation). From this time, the above-described terminal NAS 2c-10 may request access to the above-mentioned terminal AS 2c-15 again.
  • step 2c-50 according to the predetermined rule described above, if the service request is allowed, the above-described AS 2c-15 requests the RRC connection establishment or RRC connection resume from the above-mentioned network, or new Send data related to session.
  • the access may be triggered in the terminal AS.
  • the terminal in the inactive mode may trigger an RNA update (RAN Notification Area) or Resume process in a state where the terminal NAS is not involved.
  • RNA update is an operation similar to a tracking area update (TAU), in which the UE reports RNA to the RAN periodically or periodically when the UE moves out of a predetermined cell or cell group area (RNA) at the RAN level.
  • Resume is a process in which the terminal in the inactive mode switches to the connected mode in order to start transmitting and receiving data again. In general, three levels of RRC message transmission and reception may be required.
  • access as described above by way of example is referred to as an AS-triggered event.
  • 11 is a flowchart illustrating a process of performing an access control for an AS-triggered event by a connected mode or inactive mode terminal according to an embodiment.
  • the terminal 2d-05 includes a terminal NAS 2d-10 and an AS 2d-15.
  • the terminal NAS 2d-10 triggers an access in LTE, but in the next generation mobile communication system, the terminal AS 2d-15 may trigger a specific access.
  • the base station 2d-20 may provide the barring configuration information to the terminals in the service area by using the system information.
  • the barring configuration information described above may be provided for each access category.
  • step 2d-30 the above-described terminal AS (2d-15) may trigger a specific access, such as RNA update or Resume.
  • the terminal AS 2d-15 may map one corresponding access category to the above-described access.
  • the terminal AS 2d-15 may perform barring check by using the barring configuration information corresponding to the mapped access category described above. Barring check has been described with reference to the preceding drawings.
  • the terminal AS 2d-15 derives one barring time, and has a timer having the aforementioned time value, i.e. You can start the barring timer. While the above-described timer is running, it can be regarded as barred for access corresponding to the above-described access category.
  • the terminal AS 2d-15 may not trigger the AS-triggered event for which access is prohibited until the above-described timer expires.
  • the terminal NAS 2d-10 does not trigger the access-prohibited NAS-triggered event until the above-described timer expires, or even if triggered, the terminal AS 2d-15 sets the above-described NAS-triggered event to prohibit access. Can be considered.
  • various options may be proposed as follows.
  • Option 1 apply a single barring timer for all access categories
  • one timer can be started. While the above timer is running, access of all access categories cannot be attempted. In this case, an access attempt may be allowed for a predetermined or predefined access category. For example, an emergency call, high priority access, or MT (Mobile Termination) access may attempt to access regardless of timer operation.
  • MT Mobile Termination
  • one timer can be started. While the above-described timer is running, it may not be possible to attempt to access the corresponding access category. Thus, access belonging to different access categories can be attempted.
  • the standardized access category and the operator-defined access category may be one group, a group according to a predetermined priority, or one NAS-triggered event and one AS-triggered event, respectively.
  • Option 4 Apply barring timers for each standardized access category, and apply a single barring timer for all operator-defined access categories.
  • one timer can be started. While the above-described timer is running, access to the corresponding standardized access category may not be attempted. At this time, access belonging to another access category may be attempted. On the other hand, if an access corresponding to one operator-defined access category is deemed to be prohibited through the barring check, one timer may be started. While the above-described timer is running, it may not be possible to attempt to access all operator-defined access categories.
  • the above-described terminal NAS 2d-10 when access of the above-described AS-triggered event is prohibited, if a predetermined condition is not satisfied, the above-described terminal NAS 2d-10 is not informed, and a barring timer corresponding thereto is not provided. You may not be notified when it expires.
  • step 2d-50 the timer may be driven.
  • step 2d-45 because the terminal AS 2d-15 does not inform the terminal NAS 2d-10 that access is prohibited for a specific access category or group of access categories, while the above-described timer is running, The terminal NAS 2d-10 may trigger a new access for the specific access category or access category group described above.
  • the terminal NAS 2d-10 may transmit a service request or session management to the terminal AS 2d-15 together with an access category and an access identity corresponding to the aforementioned access.
  • the terminal AS 2d-15 may inform the terminal NAS 2d-10 that the above-described access is not allowed if the barring timer corresponding to the new access described above is already running.
  • the base station has set an access permission using the system information on the access identity provided from the terminal NAS 2d-10 together with the access category, the above-described access may be allowed.
  • step 2d-65 the above terminal AS 2d-15 indicates that the above-described timer has expired.
  • the terminal NAS 2d-10 can be informed. This is to prevent the terminal NAS 2d-10 from repeatedly triggering access even when the above-described barring timer is running.
  • step 2d-70 the above-described terminal NAS 2d-10 that is reported that the above-described barring timer expires may trigger a new access for the aforementioned access category or access category group.
  • the terminal AS 2d-15 may perform a barring check and, if deemed to be allowed, may attempt to access the base station. Therefore, the predetermined condition described in the present disclosure refers to an access category or an access category group corresponding to the barring timer described above by the terminal NAS 2d-10 while the terminal AS 2d-15 is driving one barring timer. It may be a case of triggering a new access and requesting access to the terminal AS 2d-15.
  • An access, access category, or access category group that does not correspond to the running barring timer may perform the above-described separate operation.
  • FIG. 12 is a flowchart illustrating an operation of a terminal AS according to an embodiment.
  • the terminal AS may recognize a NAS-triggered event or an AS-triggered event.
  • the above-described NAS-triggered event may be triggered by the terminal NAS, and the relevant access category may be delivered to the terminal AS described above.
  • the above-mentioned AS-triggered event is triggered by the terminal AS, such as RNA update or Resume may belong to this.
  • the terminal AS described above may perform a barring check.
  • the terminal AS may use barring configuration information corresponding to the access category provided by the aforementioned terminal NAS and the aforementioned access category broadcast by the base station.
  • the terminal AS may provide one or more access identities together with the access category provided by the terminal NAS, and if the base station has set access permission to at least one of the above-described access identities using system information It can be considered to allow the above-mentioned access.
  • step 2e-15 the terminal AS may determine whether the aforementioned access is prohibited through the barring check described above.
  • step 2e-20 if the above-described access is allowed, the terminal AS may perform random access to the base station.
  • step 2e-25 if the above-described access is not allowed, the terminal AS may inform the terminal NAS of this and start one timer corresponding to the above-described access category.
  • step 2e-30 when the above-mentioned running timer expires, the above-mentioned terminal AS informs the above-mentioned terminal NAS of requesting access again (barring alleviation). From this point, the above-described terminal NAS may request access to the above-mentioned terminal AS again.
  • the above-mentioned terminal AS may map one corresponding access category. It is also possible to map more than one access identity.
  • the above-described terminal AS may perform a barring check.
  • the above-described terminal AS may use the barring configuration information corresponding to the mapped access category and the above-described access category broadcast by the base station.
  • the terminal AS may map one or more access identities, and if the base station sets access permission to at least one of the above-described access identities using system information, it may be regarded as granting the aforementioned access. .
  • the terminal AS may determine whether the above-mentioned access is prohibited through the above-described barring check.
  • step 2e-50 if the above-described access is not allowed, the terminal AS does not notify the terminal NAS of this, and may drive one timer corresponding to the above-described access category.
  • step 2e-55 while the above-mentioned timer is running, if the terminal NAS requests the above-mentioned terminal AS for access belonging to an access category or an access category group corresponding to the above-described timer, the above-mentioned terminal AS is the above-mentioned access.
  • the above-mentioned terminal NAS can be notified that the is prohibited.
  • step 2e-60 if the above-mentioned terminal NAS is informed that the above-mentioned access is prohibited while the above-mentioned timer is running, the above-mentioned terminal AS may inform the above-mentioned terminal NAS that the above-described timer has expired.
  • step 2e-65 if the above-described access is allowed, the above-described terminal AS may perform random access to the base station.
  • FIG. 13 is a flowchart illustrating an operation of a terminal NAS according to an embodiment.
  • step 2f-05 the terminal NAS triggers one access, maps one access category corresponding thereto, and maps one or more access identity.
  • the above-described terminal NAS may transmit the above-described mapped access category and access identity to the terminal AS.
  • step 2f-15 the above-described terminal NAS may be reported to the above-mentioned terminal AS that the above-described access is not allowed. At this time, the above-described terminal NAS may not trigger the above-mentioned access again until the above-described terminal AS informs that the corresponding timer expires and can resend the above-mentioned access. However, in addition to the above-described access category, accesses corresponding to other access categories may be triggered.
  • the above-described terminal NAS may determine whether an access that does not correspond to the barring timer being driven, or a specific access such as emergency or high priority access is triggered.
  • step 2f-25 if an access that does not correspond to the running barring timer or a specific access such as emergency or high priority access is triggered, the above-described terminal NAS may map to one access category for the above-described access.
  • the above-described terminal NAS may deliver the above-described access category to the above-described terminal AS.
  • the above-described terminal NAS may request the access again by the above-described terminal AS if the access bar corresponding to the barring timer being driven or a specific access such as emergency or high priority access has not been triggered. You can wait until you report it.
  • FIG. 14 is a flowchart illustrating a process of performing access control when a NAS performs access category mapping for an AS-triggered event according to an embodiment.
  • the base station 2g-20 may provide barring configuration information to terminals in a service area by using system information.
  • the barring configuration information described above may be provided for each access category.
  • step 2g-30 the above-described terminal AS (2g-15) may trigger a specific access, such as RNA update or resume for data transmission.
  • the terminal AS 2g-15 may request access category mapping from the terminal NAS 2g-10 for the triggered access described above.
  • the above-described terminal NAS 2g-10 may map the corresponding access category and access identity to the above-described access.
  • the above-described terminal NAS 2g-10 may transfer the above-described mapped access category and access identity information to the above-described terminal AS 2g-15.
  • the above-described terminal NAS (2g-10) may include an indicator indicating that the above-mentioned delivered access category and access identity is for access by the request of the terminal AS (2g-15).
  • the above-described terminal AS 2g-15 may perform barring check by using barring configuration information corresponding to the mapped access category described above.
  • the barring check described above has been described with reference to the preceding drawings.
  • step 2g-55 if the above-mentioned access is considered to be prohibited according to the result of the barring check described above, one barring time can be derived and a timer having the above-described time value, i.e., a barring timer can be driven. While the above-described timer is running, it is considered to be barred for access corresponding to the above-mentioned access category.
  • the terminal AS 2g-15 does not trigger the AS-triggered event corresponding to the above timer until the above timer expires.
  • the terminal NAS 2g-10 may instruct that access of the access category corresponding to the above-described timer is prohibited.
  • the terminal NAS 2g-10 and the terminal AS 2g-15 may not trigger the forbidden access until the above timer expires.
  • step 2g-75 if the above-described barring timer expires, the terminal AS 2g-15 may inform the above-mentioned terminal NAS 2g-10 that the above-described timer has expired.
  • An access, access category, or access category group that does not correspond to the running barring timer may perform the above-described separate operation.
  • 15 is a block diagram illustrating an internal structure of a terminal according to an embodiment.
  • the above-described terminal includes a radio frequency (RF) processor 2h-10, a baseband processor 2h-20, a storage unit 2h-30, and a controller 2h-40. can do.
  • RF radio frequency
  • the above-described RF processor 2h-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the above-described RF processor 2h-10 up-converts the baseband signal provided from the above-described baseband processor 2h-20 into an RF band signal and transmits the same through an antenna, and is received through the above-described antenna.
  • the RF band signal can be down converted to a baseband signal.
  • the RF processor 2h-10 described above includes a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. can do.
  • the above-described terminal may be provided with a plurality of antennas.
  • the above-described RF processor 2h-10 may include a plurality of RF chains.
  • the above-described RF processor 2h-10 may perform beamforming.
  • the above-described RF processing unit 2h-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
  • the above-described RF processor may perform MIMO, and may receive multiple layers when performing the MIMO operation.
  • the baseband processor 2h-20 described above may perform a baseband signal and bit string conversion function according to the physical layer standard of the system. For example, during data transmission, the baseband processor 2h-20 described above may generate complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the baseband processor 2h-20 described above may restore the received bit string by demodulating and decoding the baseband signal provided from the above-described RF processor 2h-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the above-described baseband processor 2h-20 generates complex symbols by encoding and modulating a transmission bit string, and performs the complex symbols described above.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols may be configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the baseband processor 2h-20 described above divides the baseband signal provided from the above-described RF processor 2h-10 in OFDM symbol units and performs subcarriers through a fast Fourier transform (FFT) operation. After the signals mapped to the signals are restored, the received bit stream may be recovered by demodulation and decoding.
  • FFT fast Fourier transform
  • the baseband processor 2h-20 and the RF processor 2h-10 described above may transmit and receive signals as described above. Accordingly, the baseband processor 2h-20 and the RF processor 2h-10 described above may be referred to as a transmitter, a receiver, a transceiver, or a communicator. Furthermore, at least one of the baseband processor 2h-20 and the RF processor 2h-10 described above may include a plurality of communication modules to support a plurality of different radio access technologies. In addition, at least one of the baseband processor 2h-20 and the RF processor 2h-10 described above may include different communication modules to process signals of different frequency bands.
  • the different wireless access technologies described above may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like.
  • the different frequency bands described above may include a super high frequency (SHF) (eg, 2.NRHz, NRhz) band and a millimeter wave (eg, 60 GHz) band.
  • SHF super high frequency
  • the terminal may transmit and receive a signal with the base station using the baseband processor 2h-20 and the RF processor 2h-10.
  • the signal may include control information and data.
  • the storage unit 2h-30 may store data such as a basic program, an application program, and setting information for the operation of the terminal described above.
  • the above-described storage unit 2h-30 may store information related to the second access node that performs wireless communication using the second wireless access technology.
  • the above-described storage unit 2h-30 may provide stored data at the request of the above-described control unit 2h-40.
  • the storage unit 2h-30 may be configured with a storage medium or a combination of storage media such as a ROM, a RAM, a hard disk, a CD-ROM, a DVD, and the like.
  • the storage unit 2h-30 may include a plurality of memories.
  • the storage unit 2h-30 may store a program for supporting beam-based cooperative communication.
  • the above-described control unit 2h-40 controls the overall operations of the above-described terminal.
  • the above-described control unit 2h-40 may transmit and receive signals through the above-described baseband processor 2h-20 and the above-described RF processor 2h-10.
  • the above-described control unit 2h-40 can record and read data in the above-described storage unit 2h-40.
  • the above-described control unit 2h-40 may include at least one processor.
  • the controller 2h-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
  • CP communication processor
  • AP application processor
  • 16 is a block diagram illustrating a configuration of a main station in a wireless communication system according to an embodiment of the present disclosure.
  • the above-described base station includes an RF processor 2i-10, a baseband processor 2i-20, a backhaul communication unit 2i-30, a storage unit 2i-40, and a controller 2i-50. It may include.
  • the above-described RF processor 2i-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the above-described RF processor 2i-10 up-converts the baseband signal provided from the above-described baseband processor 2i-20 to an RF band signal and transmits the same through an antenna, and is received through the above-described antenna.
  • the RF band signal can be downconverted to a baseband signal.
  • the above-described RF processor 2i-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like.
  • the above-described first access node may have a plurality of antennas.
  • the above-described RF processor 2i-10 may include a plurality of RF chains.
  • the above-described RF processor 2i-10 may perform beamforming. For the above-described beamforming, the above-described RF processing unit 2i-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor described above may perform a downlink MIMO operation by transmitting one or more layers.
  • the baseband processor 2i-20 described above may perform a baseband signal and bit string conversion function according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 2i-20 described above may generate complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the baseband processor 2i-20 described above may restore the received bit string by demodulating and decoding the baseband signal provided from the above-described RF processor 2i-10. For example, according to the OFDM scheme, when transmitting data, the baseband processor 2i-20 described above generates complex symbols by encoding and modulating a transmission bit stream, and maps the above-described complex symbols to subcarriers. , OFDM symbols may be configured through IFFT operation and CP insertion.
  • the baseband processor 2i-20 described above divides the baseband signal provided from the above-described RF processor 2i-10 in OFDM symbol units and signals mapped to subcarriers through an FFT operation. After restoring the data, the received bit stream may be restored by demodulation and decoding.
  • the baseband processor 2i-20 and the RF processor 2i-10 described above may transmit and receive signals as described above. Accordingly, the baseband processor 2i-20 and the RF processor 2i-10 described above may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
  • the backhaul communication unit 2i-30 described above may provide an interface for communicating with other nodes in the network. That is, the above-described backhaul communication unit 2i-30 converts the bit string transmitted from the above-described main base station to another node, for example, an auxiliary base station, core network, etc., into a physical signal, and receives a physical signal received from the above-described other node. The signal can be converted into a bit string.
  • the storage unit 2i-40 described above may store data such as a basic program, an application program, and setting information for the operation of the main station described above.
  • the above-described storage unit 2i-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like.
  • the above-described storage unit 2i-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal.
  • the above-described storage unit 2i-40 may provide stored data at the request of the above-described control unit 2i-50.
  • the above-described control unit 2i-50 can control the overall operations of the above-described main station. For example, the above-described control unit 2i-50 transmits and receives a signal through the above-described baseband processor 2i-20 and the above-described RF processor 2i-10 or through the above-described backhaul communication unit 2i-30. can do. In addition, the above-described control unit 2i-50 can record and read data in the above-described storage unit 2i-40. To this end, the above-described control unit 2i-50 may include at least one processor.
  • a computer-readable storage medium for storing one or more programs (software modules) may be provided.
  • One or more programs stored in a computer readable storage medium are configured for execution by one or more processors in an electronic device.
  • One or more programs include instructions that cause an electronic device to execute methods in accordance with embodiments described in the claims or specifications of this disclosure.
  • Such programs may include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • magnetic disc storage device compact disc ROM (CD-ROM), digital versatile discs (DVDs) or other forms
  • CD-ROM compact disc ROM
  • DVDs digital versatile discs
  • It can be stored in an optical storage device, a magnetic cassette. Or, it may be stored in a memory composed of some or all of these combinations.
  • each configuration memory may be included in plural.
  • the program is accessed through a communication network composed of a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device may be connected to a device that performs an embodiment of the present disclosure through an external port. In addition, a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.
  • a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible.
  • Such a storage device may be connected to a device that performs an embodiment of the present disclosure through an external port.
  • a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.

Abstract

In a method for a terminal to control access to a network in a wireless communication system according to an embodiment, the method may include: a step for triggering access to the network in an access-stratum (AS) layer; a step for determining whether a blocking timer for an access category corresponding to the triggered access is being driven in the AS layer; and a step for determining, when the blocking timer expires, that the blocking of the access category has been alleviated in the AS layer.

Description

무선통신 시스템에서의 무선 노드 통신 방법 및 장치Method and apparatus for wireless node communication in wireless communication system
본 개시는 무선 통신 시스템에 관한 것으로, 무선 통신 시스템에서 서비스를 원활하게 제공하기 위한 방법 및 장치에 관한 것이다. 보다 구체적으로 무선 통신 시스템의 무선 노드가 데이터를 송수신하는 방법 및 장치에 관한 것이다.The present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for smoothly providing a service in a wireless communication system. More specifically, the present invention relates to a method and apparatus for transmitting and receiving data by a wireless node of a wireless communication system.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 3GPP에서 정한 5G 통신 시스템은 New Radio (NR) 시스템이라고 불리고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되었고, NR 시스템에 적용되었다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.In order to meet the increasing demand for wireless data traffic since the commercialization of 4G communication system, efforts are being made to develop an improved 5G communication system or a pre-5G communication system. For this reason, a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE). The 5G communication system defined by 3GPP is called New Radio (NR) system. In order to achieve high data rates, 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band). In order to mitigate the path loss of radio waves in the ultra-high frequency band and to increase the transmission distance of radio waves, beamforming, massive array multiple input / output (Full-Dimensional MIMO) and FD-MIMO in 5G communication systems Array antenna, analog beam-forming, and large scale antenna techniques have been discussed and applied to NR systems. In addition, in order to improve the network of the system, 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation And other technology developments are being made. In addition, in 5G systems, Hybrid FSK and QAM Modulation (FQAM) and sliding window superposition coding (SWSC), Advanced Coding Modulation (ACM), and FBMC (Filter Bank Multi Carrier) and NOMA are advanced access technologies. Non-orthogonal multiple access and sparse code multiple access have been developed.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고받아 처리하는 사물인터넷(Internet of Things, 이하 IoT) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(iInformation Technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.Meanwhile, the Internet is evolving from a human-centered connection network where humans create and consume information, and an Internet of Things (IoT) network that exchanges and processes information between distributed components such as things. Internet of Everything (IoE) technology, in which big data processing technology through connection with cloud servers and the like, is combined with IoT technology, is also emerging. In order to implement the IoT, technical elements such as sensing technology, wired / wireless communication and network infrastructure, service interface technology, and security technology are required, and recently, a sensor network for connection between things, a machine to machine , M2M), Machine Type Communication (MTC), etc. are being studied. In an IoT environment, intelligent Internet technology (IT) services that provide new value in human life by collecting and analyzing data generated from connected objects may be provided. IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing IT (iInformation Technology) technology and various industries. It can be applied to.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 5G 통신이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.Accordingly, various attempts have been made to apply the 5G communication system to the IoT network. For example, 5G communication such as a sensor network, a machine to machine (M2M), a machine type communication (MTC), and the like are implemented by techniques such as beamforming, MIMO, and array antennas. The application of cloud radio access network (cloud RAN) as the big data processing technology described above may be an example of convergence of 5G technology and IoT technology.
상술한 것과 이동통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 됨으로써, 이러한 서비스들을 효과적으로 제공하기 위한 방안이 요구되고 있다.As described above and various services can be provided according to the development of the mobile communication system, there is a demand for a method for effectively providing these services.
개시된 실시예는 이동통신 시스템에서 서비스를 효과적으로 제공할 수 있는 장치 및 방법을 제공하기 위한 것이다.The disclosed embodiment is to provide an apparatus and method capable of effectively providing a service in a mobile communication system.
실시예에 의한 무선 통신 시스템에서 단말이 네트워크에 대한 액세스 제어를 수행하는 방법에 있어서, 상술된 방법은 access-stratum (AS) 계층에서, 상기 네트워크에 대한 액세스를 트리거하는 단계, 상기 AS 계층에서, 상기 트리거된 액세스에 대응되는 액세스 카테고리에 대한 차단 타이머가 구동중인지 여부를 판별하는 단계 및 상기 AS 계층에서, 상기 차단 타이머가 만료되면, 상기 액세스 카테고리에 대한 차단이 완화(alleviated)되었다고 판별하는 단계를 포함한다. In the wireless communication system according to an embodiment of the present invention, a terminal performs access control on a network, wherein the above-described method includes: triggering access to the network at an access-stratum (AS) layer; Determining whether a block timer for the access category corresponding to the triggered access is running; and determining, at the AS layer, that the block for the access category has been levied when the block timer expires. Include.
실시예에 의한 단말의 액세스 제어 수행 방법에 의하면, 단말의 네트워크에 대한 액세스 제어가 효율적으로 수행될 수 있다.According to the method for performing access control of the terminal according to the embodiment, the access control of the network of the terminal can be efficiently performed.
도 1은 일 실시예가 적용되는 IAB(Integrated Access and Backhaul) 노드를 도시하는 도면이다.1 is a diagram illustrating an integrated access and backhaul (IAB) node to which an embodiment is applied.
도 2는 일 실시예가 적용되는 IAB를 설명하기 위한 순서도이다.2 is a flowchart illustrating an IAB to which an embodiment is applied.
도 3은 일 실시예에 따른 IAB 구성을 위해 인접 IAB 노드가 브로드캐스팅하는 시스템 정보를 획득하는 방법을 설명하기 위한 순서도이다.3 is a flowchart illustrating a method of obtaining system information broadcasted by a neighboring IAB node for configuring an IAB according to an embodiment.
도 4는 일 실시예에 따른 IAB 구성을 위해, 인접 IAB 노드에 엑세스를 수행하는 방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a method of performing access to a neighboring IAB node for configuring an IAB according to an embodiment.
도 5는 일 실시예에 따른 변경된 IAB 설정 정보를 획득하는 방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating a method of obtaining changed IAB configuration information, according to an exemplary embodiment.
도 6은 일 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다.6 is a block diagram illustrating an internal structure of a terminal according to an embodiment.
도 7은 일 실시예에 따른 기지국의 구성을 도시하는 블록도이다. 7 is a block diagram illustrating a configuration of a base station according to an embodiment.
도 8은 일 실시예가 적용되는 차세대 이동통신 시스템의 구조를 도시하는 도면이다.8 is a diagram illustrating a structure of a next generation mobile communication system to which an embodiment is applied.
도 9는 일 실시예에 따른 연결 모드 혹은 비활성 모드 단말의 엑세스 제어를 수행하는 과정을 설명하기 위한 도면이다.9 is a diagram for describing a process of performing access control of a connected mode or inactive mode terminal according to an embodiment.
도 10은 일 실시예에 따른 연결 모드 혹은 비활성 모드 단말이 엑세스 제어를 수행하는 과정을 설명하기 위한 순서도이다.10 is a flowchart illustrating a process of performing access control by a connected mode or inactive mode terminal according to an embodiment.
도 11은 일 실시예에 따른 연결 모드 혹은 비활성 모드 단말이 AS-triggered event에 대한 엑세스 제어를 수행하는 과정을 설명하기 위한 순서도이다. 11 is a flowchart illustrating a process of performing an access control for an AS-triggered event by a connected mode or inactive mode terminal according to an embodiment.
도 12는 일 실시예에 따른 단말 AS 동작을 설명하기 위한 순서도이다.12 is a flowchart illustrating an operation of a terminal AS according to an embodiment.
도 13은 일 실시예에 따른 단말 NAS 동작을 설명하기 위한 순서도이다.13 is a flowchart illustrating an operation of a terminal NAS according to an embodiment.
도 14는 일 실시예에 따른 AS-triggered event에 대한 access category 맵핑을 NAS가 수행하는 경우 엑세스 제어를 수행하는 과정을 설명하기 위한 순서도이다.FIG. 14 is a flowchart illustrating a process of performing access control when a NAS performs access category mapping for an AS-triggered event according to an embodiment.
도 15는 일 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다.15 is a block diagram illustrating an internal structure of a terminal according to an embodiment.
도 16은 일 실시예에 따른 기지국의 구성을 나타낸 블록도이다.16 is a block diagram illustrating a configuration of a base station according to an embodiment.
실시예에 의한 무선 통신 시스템에서 단말이 네트워크에 대한 액세스 제어를 수행하는 방법에 있어서, 상술된 방법은 access-stratum (AS) 계층에서, 상기 네트워크에 대한 액세스를 트리거하는 단계, 상기 AS 계층에서, 상기 트리거된 액세스에 대응되는 액세스 카테고리에 대한 차단 타이머가 구동중인지 여부를 판별하는 단계 및 상기 AS 계층에서, 상기 차단 타이머가 만료되면, 상기 액세스 카테고리에 대한 차단이 완화(alleviated)되었다고 판별하는 단계를 포함한다. In the wireless communication system according to an embodiment of the present invention, a terminal performs access control on a network, wherein the above-described method includes: triggering access to the network at an access-stratum (AS) layer; Determining whether a block timer for the access category corresponding to the triggered access is running; and determining, at the AS layer, that the block for the access category has been levied when the block timer expires. Include.
이하 본 개시의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. 실시예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In describing the embodiments, descriptions of technical contents that are well known in the art to which the present disclosure belongs and are not directly related to the present disclosure will be omitted. This is to more clearly communicate without obscure the subject matter of the present disclosure by omitting unnecessary description.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성 요소에는 동일한 참조 번호를 부여하였다.For the same reason, some of the components in the accompanying drawings are exaggerated, omitted or schematically illustrated. In addition, the size of each component does not reflect the actual size entirely. In each figure, the same or corresponding components are given the same reference numerals.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present disclosure, and methods of accomplishing the same will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below, but may be implemented in various forms, and the present embodiments are merely provided to make the disclosure of the present disclosure complete, and those skilled in the art to which the present disclosure belongs. It is provided to fully inform the person having the scope of the invention, and the present disclosure is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.It will be appreciated that each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It will create means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s). Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.In addition, each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of order. For example, the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.In this case, the term '~ part' used in the present embodiment refers to software or a hardware component such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC), and '~ part' performs certain roles. do. However, '~' is not meant to be limited to software or hardware. May be configured to reside in an addressable storage medium or may be configured to play one or more processors. Thus, as an example, '~' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables. Functions provided within components and 'parts' may be combined into a smaller number of components and 'parts' or further separated into additional components and 'parts'. In addition, the components and '~' may be implemented to play one or more CPUs in the device or secure multimedia card. Also, in an embodiment, '~ unit' may include one or more processors.
도 1은 일 실시예가 적용되는 IAB(Integrated Access and Backhaul) 노드를 구성하는 개념도이다. 1 is a conceptual diagram illustrating an integrated access and backhaul (IAB) node to which an embodiment is applied.
일 실시예에 의한 이동통신망은 다수의 기지국들과 코어네트워크 장치들로 구성되어 있다. 각 기지국들과 코어네트워크 장치들은 유선 백홀 인터페이스로 제어 및 데이터 트래픽을 실어 나를 수 있다. IAB란, 일 실시예에 의한 유선 백홀 역할을 RAN 노드를 활용하여 무선 백홀로 대체하는 기술이다. 상술된 무선 백홀은 유선 백홀을 구축하기 위해, 유선망을 설치해야하는 비용과 시간을 배제시킬 수 있다. 또한, 긴급하게 서비스가 필요한 지역에 이동통신망을 비교적 짧은 시간 내에 구축할 수 있도록 할 수 있다. According to an embodiment, a mobile communication network includes a plurality of base stations and core network devices. Each base station and core network devices can carry control and data traffic over a wired backhaul interface. The IAB is a technology for replacing the wired backhaul according to an embodiment with the wireless backhaul using the RAN node. The wireless backhaul described above may eliminate the cost and time required to install a wired network in order to establish a wired backhaul. In addition, it is possible to establish a mobile communication network in a relatively short time in an urgently needed service area.
IAB 노드(1a-15, 1a-20, 1a-25)란 단말(1a-30, 1a-35)을 지원하는 무선 접속 기지국 역할뿐 아니라 데이터 트래픽을 나르는 무선 백홀 역할을 하는 RAN 노드(node)를 의미할 수 있다. 실시예에 있어서, 트래픽 포워딩을 요청하는 IAB 노드는 child IAB 노드, 요청받은 트래픽을 포워딩해주는 IAB 노드는 parent IAB 노드라고 칭한다. 하나의 IAB 노드는 child, parent 혹은 둘 모두가 될 수도 있다. IAB donor(1a-10)는 코어네트워크(1a-05)와 연결되고, IAB 노드들(1a-15, 1a-20, 1a-25)에게 무선 백홀 기능을 제공하는 RAN 노드를 의미할 수 있다. IAB 노드들(1a-15, 1a-20, 1a-25)은 직접 코어네트워크와 연결되어 있지 않기 때문에, 직접 혹은 다른 IAB 노드를 경유하여 IAB donor(1a-10)에 연결될 수 있고, IAB donor(1a-10)를 통해 제어 혹은 데이터 트래픽을 코어네트워크에 송수신할 수 있다. 각 IAB 노드들은 서비스 영역 내에 위치한 단말들과 연결되며, 송수신되는 데이터를 IAB donor(1a-10)로부터 혹은 IAB donor(1a-10)로 전송할 수 있다. The IAB nodes 1a-15, 1a-20, and 1a-25 are RAN nodes that serve as wireless backhauls for carrying data traffic as well as a wireless access base station supporting terminals 1a-30 and 1a-35. Can mean. In an embodiment, the IAB node requesting traffic forwarding is called a child IAB node, and the IAB node forwarding the requested traffic is called a parent IAB node. An IAB node can be child, parent, or both. The IAB donor 1a-10 may refer to a RAN node connected to the core network 1a-05 and providing wireless backhaul function to the IAB nodes 1a-15, 1a-20, and 1a-25. Since the IAB nodes 1a-15, 1a-20, and 1a-25 are not directly connected to the core network, they can be connected to the IAB donor 1a-10 directly or via another IAB node. 1a-10) can send or receive control or data traffic to the core network. Each IAB node is connected to terminals located within a service area, and can transmit and receive data from the IAB donor 1a-10 or to the IAB donor 1a-10.
신규 IAB 노드 1(1a-25)이 생성되면, 신규 IAB 노드 1(1a-25)은 주변 IAB 노드(1a-15, 1a-20) 혹은 IAB donor(1a-10)을 파악하고, 가장 적절한 노드에 연결하는 과정을 수행할 수 있다. 본 개시에서는 이를 IAB setup 과정이라고 칭한다. 본 개시에서는 IAB setup 과정에서 요구되는 세부 과정의 일 실시예를 제안한다. 특히, 일 실시예에 의하면, IAB 노드를 위한 별도의 시스템 정보가 정의되고, 이를 통해, IAB 노드의 설정 정보가 제공될 수 있다. 또한, 본 개시에서는 일 실시예에 의한 IAB setup 과정을 위한 별도의 엑세스 제어, 별도의 랜덤 엑세스 자원, 그리고, 별도의 RRC 시그널링을 제안한다. When a new IAB node 1 (1a-25) is created, the new IAB node 1 (1a-25) identifies the neighboring IAB nodes (1a-15, 1a-20) or IAB donor (1a-10), and the most appropriate node. You can perform the process of connecting to. In the present disclosure, this is called an IAB setup process. The present disclosure proposes an embodiment of a detailed process required in the IAB setup process. In particular, according to one embodiment, separate system information for the IAB node is defined, through which configuration information of the IAB node may be provided. In addition, the present disclosure proposes separate access control, separate random access resources, and separate RRC signaling for the IAB setup process according to an embodiment.
도 2는 일 실시예가 적용되는 IAB의 동작을 설명하기 위한 도면이다. 2 is a diagram illustrating an operation of an IAB to which an embodiment is applied.
IAB 노드 1(1b-05)은 신규 생성된 노드이다. 반면, IAB 노드 2(1b-10)와 IAB 노드 3(1b-15)은 기존 IAB setup을 완료한 노드들이다. 본 실시 예에서는, 예시적으로, IAB donor(1b-20)가 IAB 노드 2(1b-10)와 IAB 노드 3(1b-15)에는 감지되나, IAB 노드 1(1b-05)에는 감지되는 않은 시나리오를 설명한다. 대신, IAB 노드 1(1b-05)은 인접한 IAB 노드 2(1b-10) 와 IAB 노드 3(1b-15)를 감지할 수 있다. 그러나, 본 개시의 내용은 IAB donor(1b-20)가 IAB 노드 1(1b-05)에는 감지되는 시나리오에도 적용될 수 있다. IAB node 1 (1b-05) is a newly created node. On the other hand, IAB node 2 (1b-10) and IAB node 3 (1b-15) are nodes that have completed the existing IAB setup. In this embodiment, for example, the IAB donor 1b-20 is detected at the IAB node 2 (1b-10) and the IAB node 3 (1b-15), but not at the IAB node 1 (1b-05). Explain the scenario. Instead, IAB node 1 (1b-05) can detect adjacent IAB node 2 (1b-10) and IAB node 3 (1b-15). However, the disclosure can also be applied to scenarios where the IAB donor 1b-20 is sensed at IAB node 1 1b-05.
단계 1b-25에서, IAB donor(1b-20), IAB 노드 2(1b-10), IAB 노드 3(1b-15)는 항상 주기적으로 브로드캐스팅되는 시스템 정보, 즉, MIB(Master Information Block) 혹은 SIB1(System Information Block 1)을 통해, IAB 관련 필수 정보를 브로드캐스팅할 수 있다. MIB 혹은 SIB1에 수납될 수 있는 정보의 크기는 제한적이므로, 상술된 필수 정보는 최소화되어야 할 수 있다. 필수 정보는 통상 상술된 정보를 제공하는 노드가 IAB 기능을 지원하는지 여부를 지시할 수 있다. 본 개시의 일 실시예는, IAB donor 혹은 IAB 노드가 필수 정보로서, 하기 정보를 적어도 하나 포함하는 것을 특징으로 할 수 있다. In steps 1b-25, IAB donor 1b-20, IAB node 2 (1b-10), and IAB node 3 (1b-15) are always periodically broadcast system information, i.e., Master Information Block (MIB) or Through the System Information Block 1 (SIB1), IAB-related essential information can be broadcast. Since the size of the information that can be stored in the MIB or SIB1 is limited, the above-mentioned essential information may need to be minimized. The essential information may normally indicate whether a node providing the above-described information supports the IAB function. According to an embodiment of the present disclosure, the IAB donor or the IAB node may include at least one of the following information as essential information.
- 제 1 정보: IAB 기능을 지원하는지 여부를 지시하는 지시자First information: an indicator indicating whether or not the IAB function is supported
- 제 2 정보: 현재 IAB 연결이 가능한지 여부를 지시하는 지시자Second information: an indicator indicating whether a current IAB connection is available
해당 셀이 IAB 기능을 지원하더라도, 이미 많은 인접 IAB 노드들과 연결되어 있거나, 무선 백홀이 혼잡한 경우에는 신규 IAB 노드가 추가되는 것이 금지될 수도 있다. 이러한 경우, 상술된 지시자가 설정된다. Even if the cell supports the IAB function, it may be forbidden to add a new IAB node when it is already connected with many neighboring IAB nodes or when the wireless backhaul is congested. In this case, the indicator described above is set.
- 제 3 정보: IAB setup을 위한 엑세스에 대한 barring 설정 정보Third information: Barring configuration information for access for IAB setup
이미 많은 인접 IAB 노드들과 연결되어 있거나, 무선 백홀이 혼잡한 경우에는 신규 IAB 노드가 추가되는 것을 제어할 필요가 있다. IAB setup을 위한 엑세스는 별도로 정의된 access category 혹은 access identity와 맵핑되며, 해당 셀은 상술된 access category 혹은 access identity에 대한 barring 설정 정보를 브로드캐스팅할 수 있다. 제 3 정보가 제공되는 경우에는, 제 2 정보가 필요하지 않을 수 있다. If you are already connected to many adjacent IAB nodes or if the wireless backhaul is congested, you need to control the addition of new IAB nodes. Access for IAB setup is mapped to a separately defined access category or access identity, and the cell can broadcast barring configuration information for the aforementioned access category or access identity. If the third information is provided, the second information may not be needed.
- 제 4 정보: 현재 IAB 기능을 통해 지원 가능한 무선 백홀의 능력 정보Fourth information: capability information of the wireless backhaul currently available through the IAB function
신규 IAB 노드는 IAB donor 혹은 특정 인접 IAB 노드와 연결될 때, latency, 최대 가능 data rate 측면에서 기대하는 능력이 있을 수 있다. IAB donor 혹은 인접 IAB 노드가 이런 종류의 정보를 제공한다면, 해당 노드를 결정하는데 활용될 수 있다. 다만, latency 혹은 최대 가능한 data rate 정보를 최소화하기 위해, 이를 양자화할 필요가 있을 수 있다. 본 개시의 일 실시예에서는 상술된 latency 혹은 최대 가능한 data rate 정보의 특정 범위를 지시하는 IAB category을 제안한다. 일 실시예에 있어서, X data rate까지 지원하는 IAB 노드는 IAB category 1, Y data rate까지 지원하는 IAB 노드는 IAB category 2를 브로드캐스팅할 수 있다. Latency도 비슷한 개념으로 별도의 category로 지시되거나, 상술된 data rate과 결합된 category로 지시될 수도 있다. New IAB nodes may have the ability to expect in terms of latency and maximum possible data rate when connected to an IAB donor or a particular neighboring IAB node. If an IAB donor or neighboring IAB node provides this kind of information, it can be used to determine that node. However, in order to minimize latency or maximum possible data rate information, it may be necessary to quantize it. An embodiment of the present disclosure proposes an IAB category indicating a specific range of the above-described latency or maximum possible data rate information. In an embodiment, an IAB node supporting up to X data rate may broadcast IAB category 2 while an IAB node supporting up to Y data rate may be broadcast. Latency may be indicated as a separate category in a similar concept or as a category combined with the above-described data rate.
- 제 5 정보: 해당 셀까지의 IAB 홉(hop) 수 정보Fifth information: IAB hop count information to the cell
신규 IAB 노드에서는 IAB donor에서 인접 IAB 노드까지의 홉 수가 중요할 수 있다. 홉 수가 높을수록 높은 latency을 의미하기 때문이다. 자신이 낮은 latency로 서비스를 제공할 필요가 있다면, 높은 홉 수를 가진 인접 IAB 노드와 연결되어서는 안 될 수 있다. 따라서, 인접 IAB 노드는 홉 수 정보를 제공할 수 있다. 만약 홉 수가 0이라면, 이는 해당 노드가 IAB donor임을 의미할 수 있다. For new IAB nodes, the hop count from the IAB donor to the neighboring IAB node may be important. Higher hop counts mean higher latency. If you need to provide services with low latency, you may not be connected to neighboring IAB nodes with high hop counts. Thus, neighboring IAB nodes can provide hop count information. If the hop count is 0, this may mean that the node is an IAB donor.
- 제 6 정보: 해당 셀이 IAB 노드인지 혹은 IAB donor 인지 여부를 지시하는 지시자6th information: an indicator indicating whether a corresponding cell is an IAB node or an IAB donor
상술된 제 5 정보를 통해서도 해당 노드가 IAB 노드인지 혹은 IAB donor 인지 지시할 수도 있다. 그러나 제 5 정보는 홉 수 정보를 지시하므로 복수의 비트가 필요할 수 있다. IAB donor는 1 비트 지시자인 제 6 정보만 있어도 충분하다. 이는 시그널링 오버헤드 관점에서 유용하다.The fifth information may also indicate whether the corresponding node is an IAB node or an IAB donor. However, since the fifth information indicates hop number information, a plurality of bits may be required. The IAB donor needs only the sixth information, which is a one-bit indicator. This is useful in terms of signaling overhead.
필수 정보는, 상술된 나열한 정보로도 적지 않은 크기를 가질 수 있다. 또한, IAB setup 과정을 위해, 추가적으로 요구되는 설정 정보들이 있을 수 있다. 일례로, IAB setup 목적의 랜덤 엑세스, 엑세스 제어(Barring), Adaptation 계층 설정 정보 등의 IAB setup 과정을 위해 실제 필요한 설정 정보가 포함될 수 있다. 이는 SIB1이 이를 브로드캐스팅하는 IAB 노드가 IAB 기능을 지원하는지 여부를 지시하는 정보를 포함하는 것과 대비될 수 있다. 따라서, 이러한 정보는 상술된 MIB 혹은 SIB1이 아닌, 별도의 SIBx을 통해 전송하는 것이 바람직하다. The essential information may have any size, even with the above-listed information. In addition, there may be additional configuration information required for the IAB setup process. For example, configuration information actually required for an IAB setup process such as random access, access control (Barring), and adaptation layer configuration information for the purpose of IAB setup may be included. This can be contrasted with the SIB1 containing information indicating whether the IAB node broadcasting it supports the IAB function. Therefore, this information is preferably transmitted through a separate SIBx, not the above-described MIB or SIB1.
일반 단말들은 상술된 정보를 수신할 이유가 없다. 따라서, 좀 더 구체적인 정보를 IAB만을 위한 별도의 SIBx에 수납하면, 단말들이 불필요한 정보를 읽는 것을 최소화시킬 수 있다. 일 실시예에 있어서, IAB 기능을 지원하는지 여부를 지시하는 지시자를 제외하고, 나머지 보는 모두 SIBx에 포함될 수도 있다. General terminals have no reason to receive the above-described information. Therefore, if more specific information is stored in a separate SIBx for IAB only, it is possible to minimize the terminal from reading unnecessary information. In one embodiment, all remaining views may be included in the SIBx except for an indicator indicating whether to support the IAB function.
단계 1b-30에서, 신규 IAB 노드(1b-05)는 인접 셀로부터 SIB1을 수신하고, SIB1으로부터 상술된 지시자를 확인하면, 추가적으로 SIBx을 획득하는 절차를 시작할 수 있다. SIB1은 상술된 SIBx의 스케줄링 정보를 포함하고 있을 수 있다. SIBx는 on-demand SI에 속한다. 즉, SIBx는 요청이 있을 시에만 브로드캐스팅될 수 있는 SIB에 속한다. In step 1b-30, the new IAB node 1b-05 receives the SIB1 from the neighbor cell and, upon confirming the indicator described above from the SIB1, may additionally begin the procedure of acquiring the SIBx. SIB1 may include scheduling information of the above-described SIBx. SIBx belongs to the on-demand SI. That is, SIBx belongs to SIB that can be broadcast only upon request.
단계 1b-30에서, 신규 IAB 노드(1b-05)는 msg1(Message 1, SI request 전용 프리엠블) 혹은 msg3(Message 3)을 통해, 상술된 SIBx을 인접 IAB 노드에 요청할 수 있다. 그러나, SIBx는, IAB 노드의 판단에 따라, 주기적으로 전송될 수도 있다. IAB 노드들은 SIB1으로부터 획득한 스케줄링 정보에 따라 상술된 SIBx을 수신하며, 일반 단말은 수신할 필요가 없다. 상술된 SIBx는 아래와 같은 정보를 포함할 수 있다.In step 1b-30, the new IAB node 1b-05 may request the above-described SIBx to the neighboring IAB node through msg1 (Message 1, SI request dedicated preamble) or msg3 (Message 3). However, SIBx may be transmitted periodically, at the discretion of the IAB node. The IAB nodes receive the above-described SIBx according to the scheduling information obtained from SIB1, and the general terminal does not need to receive them. The above-described SIBx may include the following information.
- 제 2 정보: 현재 IAB 연결이 가능한지 여부를 지시하는 지시자Second information: an indicator indicating whether a current IAB connection is available
상술된 설명 참고See description above
- 제 3 정보: IAB setup을 위한 엑세스에 대한 barring 설정 정보. Third information: Barring configuration information for access for IAB setup.
상술된 설명 참고See description above
- 제 4 정보: 현재 IAB 기능을 통해 지원 가능한 무선 백홀의 능력 정보. 상술된 설명 참고Fourth information: capability information of a wireless backhaul that is currently supportable via IAB functionality. See description above
- 제 5 정보: 해당 셀까지의 IAB 홉(hop) 수 정보. 상술된 설명 참고Fifth information: IAB hop count information to the cell. See description above
- 제 6 정보: 해당 셀이 IAB 노드인지 혹은 IAB donor 인지 여부를 지시하는 지시자. 상술된 설명 참고Sixth information: an indicator indicating whether the cell is an IAB node or an IAB donor. See description above
- 제 7 정보: 연결될 인접 IAB 노드를 결정하기 위한 설정 정보Seventh information: configuration information for determining an adjacent IAB node to be connected
신규 IAB 노드가 인접 IAB 노드와 연결되기 위해서는, 신규 IAB 노드가 인접 IAB 노드의 서비스 영역 내에 위치해야 한다. 따라서, 기존의 셀 선택 혹은 재선택을 위한 S criteria와 유사한 수식이 필요할 수 있다. 제 7 정보는 상술된 인접 IAB 노드와 연결할 수 있는 최소 요구 RSRP(Reference Signal Received Power) 혹은 RSRQ((Reference Signal Received Quality) 정보를 포함할 수 있다. 실시예에 있어서, 신규 IAB 노드는 인접 IAB 노드의 reference signal을 측정한 RSRP 혹은 RSRQ값이 소정의 보정값을 포함하여 상술된 최소 요구 RSRP 혹은 RSRQ값보다 커야 상술된 인접 IAB 노드를 선택할 수 있다. 제 7 정보는 IAB을 위한 별도의 SIBx가 아닌, 기존의 SIB2, SIB3s 혹은 SIB4에 포함될 수도 있다. In order for a new IAB node to connect with an adjacent IAB node, the new IAB node must be located within the service area of the adjacent IAB node. Therefore, a formula similar to S criteria for selecting or reselecting existing cells may be required. The seventh information may include minimum required Reference Signal Received Power (RSRP) or Reference Signal Received Quality (RSRQ) information that can be connected to the neighboring IAB node described above. In an embodiment, the new IAB node is a neighboring IAB node. The RSRP or RSRQ value measured by the reference signal of the reference signal must be larger than the minimum required RSRP or RSRQ value described above including a predetermined correction value to select the neighboring IAB node described above. It may be included in the existing SIB2, SIB3s or SIB4.
- 제 8 정보: IAB setup을 위한 별도의 랜덤 엑세스 자원Eighth Information: Separate Random Access Resource for IAB Setup
IAB setup은 IAB 무선 백홀망을 구성하는 동작으로, 중요도가 높을 수 있다. 따라서, IAB을 위한 별도의 랜덤 엑세스 자원이 요구된다. 본 개시의 일 실시예에서는 IAB을 위한 별도의 랜덤 엑세스 프리엠블 혹은 랜덤 엑세스 주파수/시간 자원을 제공하는 것을 제안한다. The IAB setup is an operation for configuring the IAB wireless backhaul network, and may be of high importance. Therefore, a separate random access resource for the IAB is required. One embodiment of the present disclosure proposes to provide a separate random access preamble or random access frequency / time resource for the IAB.
- 제 9 정보: Adaptation 계층 설정 정보Ninth information: Adaptation layer setting information
IAB 노드 간의 트래픽 전송은 신규 Adaptation 계층을 통해 이루어진다. 따라서, 인접 IAB 노드가 상술된 Adaptation 계층에 대한 설정 정보를 브로드캐스팅할 수 있다. Traffic transmission between IAB nodes is done through a new adaptation layer. Therefore, the adjacent IAB node can broadcast the configuration information for the above-described adaptation layer.
단계 1b-40에서, 신규 IAB 노드 1(1b-05)은 소정의 수식에 따라 하나의 인접 IAB 노드를 선택할 수 있다. 상술된 수식을 계산하기 위해, 필요한 정보는 인접 IAB 노드가 시스템 정보를 이용하여 브로드캐스팅할 수 있다. 상술된 제 7 정보가 이에 해당할 수 있다. 또한, IAB 노드 2(1b-10)가 SIB1에서 브로드캐스팅하는 PLMN(Public Land Mobile Network) 리스트에서 적어도 하나는 IAB 노드 1(1b-05)이 지원하는 PLMN이어야 한다. 만약, 상술된 PLMN 리스트에 속한 PLMN 중 어느 하나도 상술된 IAB 노드 1(1b-05)의 HPLMN(Home Public Land Mobile Network) 혹은 EHPLMN(Equivalent HPLMN)에 속하지 않는다면, 상술된 IAB 노드 1(1b-05)은 상술된 IAB 노드 2(1b-10)와 연결될 수 없다. In steps 1b-40, the new IAB node 1 1b-05 may select one neighboring IAB node according to a given equation. In order to calculate the above-described formula, the necessary information can be broadcast by neighboring IAB nodes using system information. The seventh information described above may correspond to this. In addition, at least one of the Public Land Mobile Network (PLMN) lists broadcasted by the IAB node 2 (1b-10) in SIB1 should be a PLMN supported by the IAB node 1 (1b-05). If none of the PLMNs belonging to the above-described PLMN list belong to the above-mentioned Home Public Land Mobile Network (HPLMN) or Equivalent HPLMN (EHPLMN) of IAB node 1 (1b-05), the above-described IAB node 1 (1b-05) ) Cannot be connected to the IAB node 2 1b-10 described above.
단계 1b-40에서, 신규 IAB 노드 1(1b-05)은 인접 IAB 노드 2(1b-10)을 선택하고, 상술된 노드가 브로드캐스팅하는 barring 설정 정보를 이용하여, 엑세스 허용 여부를 판단할 수 있다. 신규 IAB 노드 1(1b-05)은 IAB setup을 위한 엑세스는 별도로 정의된 access category 혹은 access identity와 맵핑할 수 있다. In step 1b-40, the new IAB node 1 (1b-05) may select the neighboring IAB node 2 (1b-10) and determine whether to allow access using the barring configuration information broadcasted by the node described above. have. New IAB node 1 (1b-05) can map access for IAB setup with a separately defined access category or access identity.
단계 1b-45에서, 신규 IAB 노드 1(1b-05)은 인접 IAB 노드 2(1b-10)가 브로드캐스팅하는 상술된 access category 혹은 access identity에 대한 barring 설정 정보를 이용하여 barring check을 수행할 수 있다. In steps 1b-45, the new IAB node 1 (1b-05) may perform a barring check using the barring configuration information for the aforementioned access category or access identity broadcasted by the neighboring IAB node 2 (1b-10). have.
엑세스 아이덴티티 (Access Identity)와 엑세스 카테고리 (Access Category)를 기반으로 하는 barring check에 관하여 이하에서 보다 상세히 설명한다. 엑세스 아이덴티티는 3GPP 내에서 정의되는, 즉 표준 문서에 명시화된 지시 정보일 수 있다. 엑세스 아이덴티티는 아래의 표 1과 같이 특정 엑세스를 지시하는데 이용될 수 있다. 예를 들어, 엑세스 아이덴티티는 Access Class 11부터 15로 분류되는 엑세스들과 우선 순위를 가진 멀티미디어 서비스 (Multimedia Priority Service, MPS), 그리고 특수 목적 서비스 (Mission Critical Service, MCS)을 지시하는 데 이용될 수 있다. Access Class 11부터 15는 사업자 관계자 전용 혹은 공공 목적 용도의 엑세스를 지시할 수 있다. 아래의 표 1에서, Access Class 정보는 단말 혹은 IAB 노드의 Subscriber Identity Module/Universal Subscriber Identity Module (SIM/USIM)에 저장되어 있는 정보일 수 있다. A barring check based on an access identity and an access category will be described in more detail below. The access identity may be indication information defined within 3GPP, that is, specified in a standard document. The access identity may be used to indicate a specific access as shown in Table 1 below. For example, access identities can be used to indicate accesses classified as Access Class 11 through 15, multimedia services with priority (MPS), and mission critical services (MCS). have. Access Class 11 through 15 may direct access for operators only or for public use. In Table 1 below, the access class information may be information stored in a subscriber identity module / universal subscriber identity module (SIM / USIM) of a terminal or an IAB node.
Figure PCTKR2019009807-appb-img-000001
Figure PCTKR2019009807-appb-img-000001
엑세스 카테고리는 두 종류로 구분될 수 있다. 예시적으로, 한 종류는 standardized access category일 수 있다. 상술된 카테고리는 RAN 레벨에서 정의되는, 즉 표준 문서에 명시화된 카테고리일 수 있다. 따라서 각기 다른 사업자들도 동일한 standardized access category을 적용할 수 있다. 본 개시에서, Emergency에 대응되는 category는 standardized access category에 속할 수 있다. 모든 엑세스들은 standardized access category 중 적어도 하나에 대응될 수 있다. Access categories can be divided into two types. For example, one kind may be a standardized access category. The above-mentioned category may be a category defined at the RAN level, ie specified in the standard document. This allows different operators to apply the same standardized access category. In the present disclosure, a category corresponding to Emergency may belong to a standardized access category. All accesses may correspond to at least one of the standardized access categories.
또 다른 종류는 operator-specific (non-standardized) access category일 수있다. 상술된 카테고리는 3GPP 외부에서 정의되며, 표준 문서에 명시화되지 않을 수 있다. 따라서, 하나의 operator-specific access category가 의미하는 것은 사업자마다 상이할 수 있다. 즉, 기존의 ACDC(Application specific Congestion control for Data Communication)에서의 카테고리와 그 성격이 동일할 수 있다. 단말 NAS에서 트리거된 어떤 엑세스는 operator-specific access category에 맵핑되지 않을 수도 있다. 기존 ACDC와의 큰 차이점은 상술된 카테고리가 어플리케이션에만 대응되는 것이 아니라, 어플리케이션 이외에 다른 요소들, 즉 서비스 종류, 콜 종류, 단말 종류, 사용자 그룹, 시그널링 종류, 슬라이스 종류 혹은 상기 요소들의 조합과도 대응될 수 있다는 점이다. 즉, 다른 요소에 속한 엑세스들에 대해 엑세스 승인 여부를 제어할 수 있다. 상술된 엑세스 카테고리는 아래의 표 2와 같이 특정 엑세스를 지시하는데 이용될 수 있다. 엑세스 카테고리 0 번부터 7 번까지는 standardized access category을 지시하는데 이용될 수 있으며, 엑세스 카테고리 32 번부터 63는 operator-specific access category을 지시하는데 이용될 수 있다. Another kind may be an operator-specific (non-standardized) access category. The aforementioned categories are defined outside 3GPP and may not be specified in the standard document. Thus, what an operator-specific access category means may vary from operator to operator. That is, the category and the nature of the existing ACDC (Application specific Congestion control for Data Communication) may be the same. Any access triggered on the terminal NAS may not be mapped to an operator-specific access category. The main difference from the existing ACDC is that the above-mentioned categories do not correspond only to the application, but also correspond to other elements besides the application, that is, service type, call type, terminal type, user group, signaling type, slice type, or a combination of the above elements. Can be. That is, it is possible to control whether to grant access to accesses belonging to other elements. The above-described access category may be used to indicate a specific access as shown in Table 2 below. Access categories 0 through 7 can be used to indicate a standardized access category, and access categories 32 through 63 can be used to indicate an operator-specific access category.
Figure PCTKR2019009807-appb-img-000002
Figure PCTKR2019009807-appb-img-000002
사업자 서버는 NAS 시그널링 혹은 어플리케이션 레벨 데이터 전송을 통해, 단말 NAS에게 operator-specific access category 정보에 대한 정보 (Management Object, MO)를 제공할 수 있다. 상술된 정보는 각 operator-specific category가 어플리케이션 등 어떤 요소에 대응되는지를 나타낼 수 있다. 예를 들어, 엑세스 카테고리 32 번은 페이스북 어플리케이션에 대응하는 엑세스에 대응됨을 상술된 정보에 명시할 수 있다. 기지국은 시스템 정보를 이용하여, barring 설정 정보를 제공하는 카테고리 리스트와 각 카테고리에 대응하는 barring 설정 정보 정보를 단말들에게 제공할 수 있다. 단말은 NAS와 AS 의 논리적인 블록을 포함할 수 있다. 본 개시에서는, 상술된 단말이 IAB setup을 요청하는 IAB 노드와 일치될 수 있다. The operator server may provide the terminal NAS with information about operator-specific access category information (Management Object, MO) through NAS signaling or application level data transmission. The above information may indicate which element each operator-specific category corresponds to, such as an application. For example, the access category 32 may specify in the above-described information that the access category 32 corresponds to an access corresponding to a Facebook application. The base station may provide the terminal with the category list for providing the barring configuration information and the barring configuration information corresponding to each category using the system information. The terminal may include logical blocks of the NAS and the AS. In the present disclosure, the terminal described above may be matched with an IAB node requesting IAB setup.
단말 NAS는 트리거된 엑세스를 소정의 규칙에 따라, 상술된 하나 이상의 엑세스 아이덴티티와 하나의 상기 엑세스 카테고리에 맵핑시킬 수 있다. IAB setup을 요청하는 IAB 노드의 경우에는 일반 단말과 같이 명확하게 NAS와 AS가 구분되어 있지 않을 수 있다. 따라서, IAB 노드의 경우, IAB 내 소정의 논리적인 블록이, IAB setup과 관련된 엑세스를, 하나 이상의 엑세스 아이덴티티와 하나의 상기 엑세스 카테고리에 맵핑시킬 수 있다. 상술된 맵핑 동작은 모든 RRC states, 즉, 연결 모드 (RRC_CONNECTED), 대기 모드 (RRC_IDLE), 비활성 모드 (RRC_INACTIVE)에서 수행될 수 있다. 각 RRC state의 특성은 하기와 같이 나열된다. The terminal NAS may map the triggered access to one or more of the above-described access identities and one of the above access categories according to a predetermined rule. In the case of an IAB node requesting IAB setup, a NAS and an AS may not be clearly distinguished as in a general terminal. Thus, in the case of an IAB node, certain logical blocks in the IAB may map access associated with IAB setup to one or more access identities and one access category. The above-described mapping operation may be performed in all RRC states, that is, in the connected mode (RRC_CONNECTED), the standby mode (RRC_IDLE), and the inactive mode (RRC_INACTIVE). The characteristics of each RRC state are listed as follows.
RRC_IDLE:RRC_IDLE:
- A UE specific DRX may be configured by upper layers;A UE specific DRX may be configured by upper layers;
- UE controlled mobility based on network configuration;UE controlled mobility based on network configuration;
- The UE:The UE:
- Monitors a Paging channel;Monitors a Paging channel;
- Performs neighbouring cell measurements and cell (re-)selection;Performs neighboring cell measurements and cell (re-) selection;
- Acquires system information.-Acquires system information.
RRC_INACTIVE:RRC_INACTIVE:
- A UE specific DRX may be configured by upper layers or by RRC layer;A UE specific DRX may be configured by upper layers or by RRC layer;
- UE controlled mobility based on network configuration;UE controlled mobility based on network configuration;
- The UE stores the AS context;The UE stores the AS context;
- The UE:The UE:
- Monitors a Paging channel;Monitors a Paging channel;
- Performs neighbouring cell measurements and cell (re-)selection;Performs neighboring cell measurements and cell (re-) selection;
- Performs RAN-based notification area updates when moving outside the RAN-based notification area;Performs RAN-based notification area updates when moving outside the RAN-based notification area;
- Acquires system information.-Acquires system information.
RRC_CONNECTED:RRC_CONNECTED:
- The UE stores the AS context.The UE stores the AS context.
- Transfer of unicast data to/from UE.Transfer of unicast data to / from UE.
- At lower layers, the UE may be configured with a UE specific DRX.;At lower layers, the UE may be configured with a UE specific DRX .;
- For UEs supporting CA, use of one or more SCells, aggregated with the SpCell, for increased bandwidth;For UEs supporting CA, use of one or more SCells, aggregated with the SpCell, for increased bandwidth;
- For UEs supporting DC, use of one SCG, aggregated with the MCG, for increased bandwidth;-For UEs supporting DC, use of one SCG, aggregated with the MCG, for increased bandwidth;
- Network controlled mobility, i.e. handover within NR and to/from E-UTRAN.Network controlled mobility, i.e. handover within NR and to / from E-UTRAN.
- The UE:The UE:
- Monitors a Paging channel;Monitors a Paging channel;
- Monitors control channels associated with the shared data channel to determine if data is scheduled for it;Monitors control channels associated with the shared data channel to determine if data is scheduled for it;
- Provides channel quality and feedback information;Provides channel quality and feedback information;
- Performs neighbouring cell measurements and measurement reporting;Performs neighboring cell measurements and measurement reporting;
- Acquires system information.-Acquires system information.
단말 NAS는 Service Request와 함께 상기 맵핑한 엑세스 아이덴티티와 엑세스 카테고리를 상기 단말 AS에 전달할 수 있다. The terminal NAS may transmit the mapped access identity and the access category to the terminal AS together with a service request.
단말 AS는, 모든 RRC state에서 단말 NAS로부터 수신하는 메시지와 함께 엑세스 아이덴티티 혹은 엑세스 카테고리 정보를 제공받는다면, 상술된 메시지로 인해 야기되는 무선 접속을 수행하기 전에 이것이 허용되는지 여부를 판단하는 barring check 동작을 수행할 수 있다. IAB setup을 요청하는 IAB 노드의 경우에는 일반 단말과 같이 명확하게 NAS와 AS가 구분되어 있지 않을 수 있다. 따라서, IAB 노드의 경우, IAB 내 소정의 논리적인 블록이 상기 IAB setup과 관련된 엑세스에 대해 barring check을 수행할 수 있다. 상술된 barring check 동작을 통해, 상술된 무선 접속이 허용되면, IAB 노드는 네트워크에 RRC 연결 설정을 요청할 수 있다. If the terminal AS is provided with access identity or access category information with a message received from the terminal NAS in all RRC states, a barring check operation for determining whether this is allowed before performing the wireless connection caused by the above-described message. Can be performed. In the case of an IAB node requesting IAB setup, a NAS and an AS may not be clearly distinguished as in a general terminal. Therefore, in the case of an IAB node, a predetermined logical block in the IAB may perform a barring check for access related to the IAB setup. Through the barring check operation described above, if the above-described wireless connection is allowed, the IAB node may request the network to establish an RRC connection.
사업자는 Access Class 11부터 15중 적어도 하나와 대응하는 엑세스 중에서 특정 서비스 종류만을 허용하기를 원할 수 있다. 따라서, 엑세스 카테고리의 barring 설정 정보는 ac-barringFactor와 ac-barringTime으로 구성될 수 있다.The operator may want to allow only certain types of services from among accesses corresponding to at least one of Access Class 11 through 15. Accordingly, the barring configuration information of the access category may be configured with ac-barringFactor and ac-barringTime.
NAS는 무선 접속과 직접적인 관련없는 과정들, 즉 인증, 서비스 요청, 세션 관리를 담당하며, 반면 상기 AS는 무선 접속과 관련있는 과정들을 담당할 수 있다. 네트워크는 OAM (어플리케이션 레벨의 데이터 메시지) 혹은 NAS 메시지를 이용하여 NAS에 management object 정보를 제공할 수 있다. 상술된 정보에는 각 operator-specific access category가 어플리케이션 등 어떤 요소에 대응되는지가 나타날 수 있다. NAS는 트리거된 엑세스가 어떤 operator-specific category에 맵핑되는지를 판단하기 위해, 상술된 정보를 이용할 수 있다. 트리거된 엑세스는 신규 MMTEL 서비스 (음성 통화, 영상 통화), SMS 전송, 신규 PDU 세션 성립, 기존 PDU 세션 변경 등을 포함할 수 있다. NAS는 서비스가 트리거되면, 상술된 서비스의 속성과 대응되는 엑세스 아이덴티티와 엑세스 카테고리를 맵핑시킬 수 있다. 상술된 서비스는 어느 엑세스 아이덴티티와도 맵핑되지 않을 수도 있으며, 하나 이상의 엑세스 아이덴티티와 맵핑될 수도 있다. 또한 상술된 서비스는 하나의 엑세스 카테고리와 맵핑될 수도 있다.  The NAS is responsible for processes not directly related to wireless connection, i.e., authentication, service request, session management, while the AS may be responsible for processes related to wireless connection. The network can provide management object information to the NAS using OAM (application level data messages) or NAS messages. The above information may indicate which element each operator-specific access category corresponds to, such as an application. The NAS may use the information described above to determine which operator-specific category the triggered access maps to. Triggered access may include a new MMTEL service (voice call, video call), SMS transmission, new PDU session establishment, existing PDU session change, and the like. When the service is triggered, the NAS may map an access identity and an access category corresponding to the above-described property of the service. The service described above may not be mapped to any access identity, or may be mapped to one or more access identities. In addition, the above-described service may be mapped to one access category.
하나의 엑세스 카테고리와 맵핑할 수 있다는 가정 하에서, NAS는 상술된 서비스가 management object에서 제공하는 operator-specific access category와 맵핑되는지 여부를 먼저 확인할 수 있다. 어느 operator-specific access category와도 맵핑이 되지 않는다면, NAS는 standardized access category 중 대응할 수 있는 하나와 맵핑시킬 수 있다. Under the assumption that it can be mapped with one access category, the NAS can first check whether the above-mentioned service is mapped with the operator-specific access category provided by the management object. If not mapped to any operator-specific access category, the NAS can map to one of the standardized access categories.
복수 개의 엑세스 카테고리와 맵핑할 수 있다는 가정 하에서, 하나의 서비스는 하나의 operator-specific access category와 하나의 standardized access category와 맵핑될 수 있다. 그러나, 어느 operator-specific access category와도 맵핑이 되지 않는다면, NAS는 standardized access category 중 대응할 수 있는 하나와 맵핑시킬 수 있다. 상술된 맵핑 규칙에서 emergency 서비스는 예외가 될 수 있다. Under the assumption that it can map to multiple access categories, one service can be mapped to one operator-specific access category and one standardized access category. However, if it does not map to any operator-specific access category, the NAS can map to one of the standardized access categories. In the above mapping rule, the emergency service may be an exception.
NAS는 맵핑한 엑세스 아이덴티티와 엑세스 카테고리와 함께, new session request 혹은 Service Request을 AS로 전송할 수 있다. NAS는 연결 모드 혹은 비활성 모드에서는 new session request, 대기 모드에서는 Service Request를 전송할 수 있다. AS는 네트워크가 브로드캐스팅하는 시스템 정보 (System Information)로부터 barring 설정 정보를 수신할 수 있다. barring 설정 정보의 ASN.1 구조의 예시적인 실시예는 아래의 [표 3]과 같으며, 이에 대한 상세한 설명은 후술한다. The NAS may send a new session request or service request to the AS along with the mapped access identity and access category. The NAS can send a new session request in connected or inactive mode and a service request in standby mode. The AS may receive barring configuration information from system information broadcasted by the network. An exemplary embodiment of the ASN.1 structure of the barring configuration information is shown in Table 3 below, a detailed description thereof will be described later.
Figure PCTKR2019009807-appb-img-000003
Figure PCTKR2019009807-appb-img-000003
AS는 NAS가 맵핑한 엑세스 아이덴티티, 엑세스 카테고리 정보와 네트워크로부터 수신한 대응하는 barring 설정 정보를 이용하여, 서비스 요청이 허용되는지 여부를 판단할 수 있다. 본 개시에서는 서비스 요청이 허용되는지 여부를 판단하는 동작은 barring check를 의미할 수 있다. 단말은 상기 엑세스 제어 설정 정보를 포함한 시스템 정보를 수신하고, 상기 설정 정보를 저장할 수 있다. barring 설정 정보는 PLMN별 및 access category 별로 제공될 수 있다. BarringPerCatList IE는 하나의 PLMN에 속한 access category들의 barring 설정 정보를 제공하는데 이용될 수 있다. 이를 위해, PLMN id와 각 access category들의 barring 설정 정보는 리스트 형태로 상술된 IE에 포함될 수 있다. 상술된 access category별 barring 설정 정보에는 특정 access category을 지시하는 access category id (혹은 index), uac-BarringForAccessIdentity field, uac-BarringFactor field와 uac-Barringtime field을 포함할 수 있다. The AS may determine whether the service request is allowed by using the access identity, the access category information mapped by the NAS, and the corresponding barring setting information received from the network. In the present disclosure, the operation of determining whether the service request is allowed may mean a barring check. The terminal may receive system information including the access control configuration information and store the configuration information. Barring configuration information may be provided for each PLMN and access category. BarringPerCatList IE can be used to provide barring configuration information of access categories belonging to one PLMN. To this end, the PLMN id and barring configuration information of each access category may be included in the above-described IE in the form of a list. The barring setting information for each access category may include an access category id (or index) indicating a specific access category, a uac-BarringForAccessIdentity field, a uac-BarringFactor field, and a uac-Barringtime field.
barring check 동작은 다음과 같을 수 있다. 먼저, uac-BarringForAccessIdentity을 구성하는 각 비트들은 하나의 엑세스 아이덴티티와 대응될 수 있다. 상술된 비트 값이 '0'으로 지시되면, 상술된 엑세스 아이덴티티와 관련된 엑세스가 허용될 수 있다. 맵핑된 엑세스 아이덴티티들 중 적어도 하나에 대해, uac-BarringForAccessIdentity 내의 대응하는 비트들 중 적어도 하나가 '0'이면, 엑세스가 허용될 수 있다. 맵핑된 엑세스 아이덴티티들 중 적어도 하나에 대해, uac-BarringForAccessIdentity 내의 대응하는 비트들 중 어느 하나도'0'이 아니면, 추가적으로 uac-BarringFactor field을 이용하여 후술되는 추가적인 barring check가 수행될 수 있다. uac-BarringFactor α의 범위는 0 ≤ α <1 일 수 있다. 단말 AS는 0 ≤ rand <1인 하나의 랜덤 값 rand을 도출하며, 상술된 랜덤 값이 uac-BarringFactor보다 작으면 엑세스가 금지되지 않은 것으로, 그렇지 않다면 엑세스가 금지된 것으로 간주할 수 있다. 엑세스가 금지된 것으로 결정되면, 단말 AS는 아래의 수식을 이용하여 도출된 소정의 시간 동안 엑세스 시도를 지연시킬 수 있다. 단말 AS는 상술된 시간 값을 가지는 타이머를 구동시킬 수 있다. 본 개시에서, 상술된 타이머는 barring timer를 의미할 수 있다.The barring check operation can be as follows. First, each bit constituting uac-BarringForAccessIdentity may correspond to one access identity. If the above-described bit value is indicated as '0', access associated with the above-described access identity may be allowed. For at least one of the mapped access identities, access may be allowed if at least one of the corresponding bits in uac-BarringForAccessIdentity is '0'. For at least one of the mapped access identities, if any one of the corresponding bits in uac-BarringForAccessIdentity is not '0', an additional barring check may be additionally performed using the uac-BarringFactor field. The range of uac-BarringFactor α may be 0 ≦ α <1. The terminal AS derives one random value rand with 0 ≤ rand <1, and if the above-described random value is smaller than uac-BarringFactor, access is not prohibited. Otherwise, access may be regarded as prohibited. If it is determined that access is prohibited, the terminal AS may delay the access attempt for a predetermined time derived using the following equation. The terminal AS may drive a timer having the above-described time value. In the present disclosure, the timer described above may mean a barring timer.
Figure PCTKR2019009807-appb-img-000004
Figure PCTKR2019009807-appb-img-000004
상술된 엑세스가 금지되면, 단말 AS는 이를 단말 NAS에게 알릴 수 있다. 그리고, 도출된 소정의 시간이 만료되면, 단말 AS는 단말 NAS에게 다시 엑세스를 요청할 수 있음 (barring alleviation)을 알릴 수 있다. 이때부터 단말 NAS은 엑세스를 단말 AS에 다시 요청할 수 있다. If the above-described access is prohibited, the terminal AS may inform the terminal NAS of this. When the derived predetermined time expires, the terminal AS may notify the terminal NAS of requesting access again (barring alleviation). From this time, the terminal NAS may request access to the terminal AS again.
상술된 소정의 규칙에 따라, 서비스 요청이 허용되면, AS는 네트워크에 RRC 연결 성립 (RRC connection establishment 혹은 RRC connection resume)을 요청하거나, new session과 관련된 데이터를 전송할 수 있다. According to the predetermined rule described above, if a service request is allowed, the AS may request an RRC connection establishment or RRC connection resume from the network or transmit data related to a new session.
IAB setup을 위한 엑세스를 위해 별도의 access category을 정의한다고 가정한다면, 상술된 access category는 standardized access category 혹은 operator-defined access category 중 하나로 분류되어야 할 수 있다.Assuming that a separate access category is defined for access for IAB setup, the aforementioned access category may need to be classified as either a standardized access category or an operator-defined access category.
상술된 IAB setup을 위한 엑세스에 대응하는 신규 access category가 operator-defined access category로 분류된다면, 사업자 서버에서 NAS 시그널링 혹은 어플리케이션 레벨 데이터 전송을 통해, IAB 노드에 대한 operator-defined access category 정보에 대한 정보 (Management Object, MO)가 제공될 수 있다. 상술된 정보는, 위의 표 1 및 표 2와 같이, 어떤 operator-defined access category number가 상기 IAB setup을 위한 엑세스에 대응하는지에 대한 정보를 포함할 수 있다. 만약 상술된 정보가 IAB 노드에 제공되지 않는다면, IAB 노드는 IAB setup을 위한 엑세스를 소정의 standardized access category에 맵핑시킬 수 있다. 상술된 소정의 access category란 MO-signalling에 대응하는 standardized access category을 의미할 수 있다. IAB setup 요청을 받는 IAB 노드는 시스템 정보를 통해, 상기 신규 operator-defined access category에 대응하는 barring 설정 정보를 브로드캐스팅할 수 있다.If the new access category corresponding to the access for IAB setup described above is classified as an operator-defined access category, information about operator-defined access category information for the IAB node through NAS signaling or application level data transmission from the operator server ( Management Object, MO) may be provided. The above-described information may include information about which operator-defined access category number corresponds to the access for the IAB setup, as shown in Table 1 and Table 2 above. If the above information is not provided to the IAB node, the IAB node may map the access for IAB setup to a given standardized access category. The above-described predetermined access category may mean a standardized access category corresponding to MO-signalling. The IAB node receiving the IAB setup request may broadcast barring configuration information corresponding to the new operator-defined access category through system information.
IAB setup을 위한 엑세스에 대응하는 신규 access category가 standardized access category로 분류된다면, 위의 표 1 및 표 2와 같이, 어떤 standardized access category number가 상술된 IAB setup을 위한 엑세스에 대응하는지가 미리 표준문서에 명시될 수 있다.  If a new access category corresponding to an access for IAB setup is classified as a standardized access category, as shown in Table 1 and Table 2 above, it is determined in advance which standardized access category number corresponds to the access for IAB setup described above. Can be specified.
IAB setup 요청을 받는 IAB 노드는 시스템 정보를 통해, 신규 standardized access category에 대응하는 barring 설정 정보를 브로드캐스팅할 수 있다. 통상 하나의 엑세스는 다수의 access category와 맵핑 가능할 수도 있다. 일 실시예에 있어서, NR access control에서는 트리거된 하나의 엑세스가 operator-defined access category와 standardized access category에 맵핑 가능하다면, 그 operator-defined access category가 standardized access category보다 우선시되어 맵핑될 수 있었다. 그러나, 본 개시에서는 IAB setup 엑세스가 소정의 operator-defined access category와 IAB setup 엑세스를 위한 전용 standardized access category에 맵핑 가능하여도, IAB setup을 요청하는 IAB 노드는 항상 IAB setup 엑세스를 위한 신규 standardized access category에 할 수 있다. The IAB node receiving the IAB setup request can broadcast the barring configuration information corresponding to the new standardized access category through the system information. Typically one access may be mapped to multiple access categories. In one embodiment, in a NR access control, if a triggered access is mapable to an operator-defined access standard and a standardized access category, the operator-defined access category could be mapped in preference to the standardized access category. However, in the present disclosure, even though the IAB setup access can be mapped to a predetermined operator-defined access category and a dedicated standardized access category for the IAB setup access, the IAB node requesting the IAB setup is always a new standardized access category for the IAB setup access. You can to
한편, IAB setup을 위한 엑세스를 위해 별도의 access identity를 정의할 수 있다. IAB setup을 위한 엑세스가 트리거되면, IAB setup을 위한 엑세스를 트리거하는 IAB 노드는 상술된 엑세스를 신규 access identity에 맵핑시킬 수 있다. 또한 상술된 엑세스를 소정의 access category에 맵핑시킬 수 있다. Meanwhile, a separate access identity can be defined for access for IAB setup. When an access for IAB setup is triggered, the IAB node that triggers the access for IAB setup can map the aforementioned access to a new access identity. In addition, the above-described access can be mapped to a predetermined access category.
소정의 access category란 MO-signalling에 대응하는 standardized access category 혹은 별도의 IAB setup을 위한 신규 access category을 의미할 수 있다. 상술된 barring 설정 정보는 access category별로 제공될 수 있으며, 설정 정보에는 access identity별로 엑세스 허용 여부를 지시하는 비트맵 정보가 함께 포함될 수 있다. 비트맵 정보에는 신규 IAB setup을 위한 엑세스를 위해 별도의 access identity가 허용되는지 여부에 대한 정보도 포함될 수 있다. 만약 허용되는 것으로 지시되면, 엑세스는 barring check 수행없이 엑세스가 허용되는 것으로 간주될 수 있다.The predetermined access category may mean a standardized access category corresponding to MO-signalling or a new access category for separate IAB setup. The barring configuration information described above may be provided for each access category, and the configuration information may include bitmap information indicating whether to allow access for each access identity. The bitmap information may also include information on whether a separate access identity is allowed for access for new IAB setup. If indicated as allowed, the access can be considered to be allowed without performing a barring check.
다른 옵션으로, IAB 노드는 IAB setup을 위한 엑세스를 기존의 access identity에 맵핑할 수 있다. 본 개시에서는 IAB setup을 위한 엑세스를 특정 access identity에 맵핑시킬 수 있다. access identity 11은 for PLMN use, access identity 12은 security services, access identity 13은 public utilities (e.g. water/gas suppliers), access identity 14은 emergency services, access identity 15은 PLMN staff에 대응된다고 간주할 때, IAB 노드는 IAB setup을 위한 엑세스를 access identity 11 혹은 15에 맵핑시킬 수 있다.Alternatively, the IAB node can map the access for IAB setup to an existing access identity. In the present disclosure, an access for IAB setup may be mapped to a specific access identity. When considered that access identity 11 corresponds to PLMN use, access identity 12 to security services, access identity 13 to public utilities (eg water / gas suppliers), access identity 14 to emergency services, and access identity 15 to PLMN staff, IAB Nodes can map access for IAB setup to access identity 11 or 15.
만약 상술된 엑세스가 허용된다면, IAB 노드 1(1b-05)은 IAB 전용(dedicated) 랜덤 엑세스 프리엠블을 이용하여, 선택한 인접 IAB 노드 2(1b-10)로 랜덤 엑세스를 시도할 수 있다. 별도의 access category 혹은 access identity을 정의하는 이유는 IAB setup을 다른 엑세스와 차별적으로 고려할 수 있도록 하기 위해서이다. 이는 IAB setup이 백홀망을 구성하는 것이기 때문에 우선 순위가 높을 수 있기 때문이다. If the above-described access is allowed, IAB node 1 (1b-05) may attempt random access to the selected neighboring IAB node 2 (1b-10) using an IAB dedicated random access preamble. The reason for defining a separate access category or access identity is to allow you to consider IAB setup differently from other accesses. This is because the IAB setup constitutes a backhaul network, which can be a high priority.
단계 1b-50에서, IAB 노드 1(1b-05)은 IAB을 위한 별도의 랜덤 엑세스 프리엠블과 랜덤 엑세스 주파수/시간 자원을 이용하여, 랜덤 엑세스를 수행할 수 있다. 상술된 IAB 전용 랜덤 엑세스 프리엠블의 총 수는 IAB 노드 2(1b-10)가 parent node로서 연결해 줄 수 있는 총 child IAB 노드의 수와 동일하게 설정될 수 있다. 상술된 IAB 노드 2(1b-10)가 시스템 정보를 통해, IAB을 지원한다고 지시함에도, 상술된 IAB 전용 랜덤 엑세스 프리엠블을 설정하지 않을 수도 있다. 이 경우, 상술된 IAB 노드 1(1b-05)은 일반 랜덤 엑세스 프리엠블을 이용하여, 랜덤 엑세스를 시도할 수 있다. In steps 1b-50, the IAB node 1 (1b-05) may perform random access using a separate random access preamble and random access frequency / time resources for the IAB. The total number of IAB dedicated random access preambles described above may be set equal to the total number of child IAB nodes that IAB node 2 (1b-10) can connect as a parent node. Although the above-described IAB node 2 (1b-10) indicates that the IAB is supported through the system information, the above-described IAB dedicated random access preamble may not be set. In this case, the above-described IAB node 1 (1b-05) may attempt random access using a general random access preamble.
단계 1b-55에서, 프리엠블을 수신한 IAB 노드 2(1b-10)는 IAB 노드 1(1b-05)에게 RAR(Random Access Response)을 전송할 수 있다. 만약 상술된 RAR을 수신하지 못하거나, 혹은 수신한 RAR이 상술된 전송한 프리엠블의 아이디값을 포함하고 있지 않다면, IAB 노드 1(1b-05)는 특정 시간 동안 프리엠블의 재전송을 연기시킬 수 있다. 상술된 특정 시간은 RAR의 MAC PDU에 수납되는 backoff 값을 통해 도출될 수 있다. 예를 들어, 상술된 backoff 값은 0과 1 사이의 값이며, 상술된 특정 값은 0과 backoff 사이의 랜덤 값일 수 있다. IAB setup을 위한 랜덤 엑세스의 경우에는, 상술된 수납된 backoff 값에 시스템 정보로 제공되는 scaling 값을 곱하여, 상술된 특정 시간이 도출될 수 있다. In operation 1b-55, the IAB node 2 (1b-10) receiving the preamble may transmit a random access response (RAR) to the IAB node 1 (1b-05). If the above-mentioned RAR is not received or if the received RAR does not include the ID value of the transmitted preamble described above, IAB node 1 (1b-05) may postpone retransmission of the preamble for a specific time. have. The specific time described above may be derived through the backoff value stored in the MAC PDU of the RAR. For example, the backoff value described above may be a value between 0 and 1, and the specific value described above may be a random value between 0 and backoff. In the case of random access for IAB setup, the above-described specific time can be derived by multiplying the above-described stored backoff value by the scaling value provided as system information.
단계 1b-60에서, RAR을 성공적으로 수신한 IAB 노드 1(1b-05)은 msg3을 전송할 수 있다. 상술된 msg3은 소정의 RRC 메시지를 포함할 수 있다. 인접 IAB 노드 2(1b-10)는 상술된 RAR로 지시된 무선 자원으로 수신된 msg3을 IAB donor(1b-20)로 포워딩할 수 있다. 본 실시 예에서는 예시적으로 IAB 노드 1(1b-05)가 단일 홉, 즉 IAB 노드 2(1b-10)을 통해, IAB donor(1b-20)에 연결되는 시나리오를 설명하고 있으나, IAB 노드 1(1b-05)는 하나 이상의 복수 홉을 통해, IAB donor(1b-20)에 연결될 수도 있다. 이 경우, 상술된 IAB 노드 1(1b-05)의 제어 혹은 데이터 트래픽은 복수 홉을 순차적으로 경유하여, IAB donor(1b-20)에 포워딩되게 될 수 있다. In steps 1b-60, the IAB node 1 1b-05 that has successfully received the RAR may send msg3. The above-described msg3 may include a predetermined RRC message. The neighbor IAB node 2 1b-10 may forward msg3 received with the radio resource indicated by the above-described RAR to the IAB donor 1b-20. In the present exemplary embodiment, a scenario in which IAB node 1 (1b-05) is connected to the IAB donor 1b-20 through a single hop, that is, IAB node 2 (1b-10), is described. 1b-05 may be connected to the IAB donor 1b-20 through one or more multiple hops. In this case, the control or data traffic of the above-described IAB node 1 (1b-05) may be forwarded to the IAB donor 1b-20 via a plurality of hops sequentially.
단계 1b-65에서, 상술된 포워딩을 위해, 각 홉간 무선 구간마다 adaptation 계층에서 capsulation 혹은 F1AP(F1 Application Protocol) 메시지 등이 이용될 수 있다. 소정의 RRC 메시지는 상술된 IAB donor(1b-20)에게 IAB setup을 요청하는데 이용될 수 있다. 소정의 RRC 메시지로는 RRCSetupRequest 메시지가 이용될 수 있다. 통상 RRCSetupRequest 메시지는 RRC establishment을 초기화하는데 이용될 수 있다. 상술된 소정의 RRC 메시지에는 상술된 메시지가 IAB setup 용도임을 지시하는 cause value가 포함될 수 있다. 일 실시예에 있어서, RRCSetupRequest 메시지에는 establishment cause value가 포함될 수 있다. 이때, IAB setup을 지시하는 신규 cause value가 신규로 정의될 수 있다. In steps 1b-65, for the above-described forwarding, a capsulation or an F1AP (F1 Application Protocol) message may be used in the adaptation layer for each hop-to-hop interval. The predetermined RRC message may be used to request the IAB setup from the IAB donor 1b-20 described above. The RRCSetupRequest message may be used as the predetermined RRC message. In general, the RRCSetupRequest message may be used to initialize the RRC establishment. The above-described predetermined RRC message may include a cause value indicating that the above-mentioned message is intended for IAB setup. In one embodiment, the RRCSetupRequest message may include a establishment cause value. In this case, a new cause value indicating IAB setup may be newly defined.
Msg3는 크기가 제한적이기 때문에, 상술된 IAB setup을 지시하는 신규 cause value을 정의하지 못할 수도 있다. 따라서, 이러한 경우에는 IAB setup을 위한 RRCSetupRequest 메시지의 establishment cause value로 기존의 특정 cause value 값을 이용할 수 있다. 일 실시예에 있어서, highPriorityAccess 혹은 MO-signalling이 설정될 수 있다. 대신, msg5(message 5)에 수납되는 RRCSetupComplete 메시지에 상술된 IAB setup 용도임을 지시하는 cause value 혹은 지시자가 포함될 수 있다. Since Msg3 is limited in size, it may not be possible to define a new cause value indicating the IAB setup described above. Therefore, in this case, an existing specific cause value may be used as the establishment cause value of the RRCSetupRequest message for IAB setup. In one embodiment, highPriorityAccess or MO-signalling may be set. Instead, a cause value or an indicator indicating that the above-described IAB setup is used may be included in the RRCSetupComplete message stored in msg5 (message 5).
IAB setup을 지시하는 cause value 외에, IAB 노드 1(1b-05)을 지시하는 아이디가 포함될 수 있다. 상술된 아이디는 IAB 노드 2(1b-10)와 IAB donor(1b-20) 간 IAB 노드 1(1b-05)을 확정하는데 이용될 수 있다. IAB 노드 1(1b-05)과 IAB donor(1b-20) 간 연결 설정이 완료되면, IAB donor(1b-20)가 IAB 노드 1(1b-05)의 트래픽을 포워딩하는 IAB 노드들 혹은 IAB 노드 1(1b-05)과 직접 연결을 구성하고 있는 인접 IAB 노드(i.e. IAB 노드 2)에게, 상술된 IAB 노드 1(1b-05)을 지원해도 된다는 설정 메시지를 전송할 수 있다. 이 때, 상술된 아이디가 이용될 수 있다.In addition to the cause value indicating the IAB setup, an ID indicating the IAB node 1 (1b-05) may be included. The above-described ID may be used to determine the IAB node 1 (1b-05) between the IAB node 2 (1b-10) and the IAB donor (1b-20). When the connection establishment between IAB node 1 (1b-05) and IAB donor (1b-20) is completed, IAB nodes or IAB nodes to which IAB donor (1b-20) forwards traffic from IAB node 1 (1b-05) The setup message indicating that the above-described IAB node 1 (1b-05) may be supported may be transmitted to the neighboring IAB node (ie IAB node 2) forming direct connection with 1 (1b-05). At this time, the above-described ID may be used.
단계 1b-70에서, IAB 노드 1(1b-05)과 IAB donor(1b-20)는 소정의 RRC 메시지를 통해, NAS(Non-Access Stratum) 등록/인증(RRCSetupComplete 메시지의 NAS Container) 및 보안 설정(Security Mode Command 메시지/Security Mode Complete 메시지)를 수행할 수 있다. 따라서, LTE 시스템과 동일하게, IAB 노드 1(1b-05)과 IAB donor(1b-20) 간에는 보안이 이루어질 수 있다. 다른 한편으로, IAB 노드 1(1b-05)의 트래픽을 포워딩하는 IAB 노드 2(1b-10) 입장에서는 IAB 노드 1(1b-05)에 대한 인증이 요구될 수 있다. 어떤 인증 혹은 보안 절차없이, 계속 IAB 노드 1(1b-05)의 트래픽을 IAB donor(1b-20)에 포워딩할 수는 없다. 따라서, IAB 노드 1(1b-05)과 IAB donor(1b-20) 간에 등록, 인증, 보안 절차가 완료되면, IAB donor(1b-20)는 소정의 메시지를 통해, IAB 노드 1(1b-05)의 트래픽을 포워딩하는 IAB 노드 2(1b-10)에 IAB 노드 1(1b-05)을 계속 지원해도 된다는 지시자를 전송할 수 있다. 이 때, IAB 노드 2(1b-10)는 IAB 노드 1(1b-05) 외의, 다른 IAB 노드들도 지원하고 있을 수 있다. 따라서, IAB 노드간을 구별할 수 있는 아이디가 필요하다. 아이디는 최초 IAB 노드 1(1b-05)이 setup 과정을 위한 초기 RRC 메시지에서 이를 포함시킬 수도 있으며, 혹은 IAB 노드 2(1b-10)가 RAR 메시지에 포함시키는 Temporary C-RNTI(Cell-Radio Network Temporary Identifier) 값이 이용될 수 있다. RAR 메시지에 포함시키는 Temporary C-RNTI 값이 활용된다면, IAB 노드 1(1b-05)은 RAR에 포함된 Temporary C-RNTI 값을 RRCSetupRequest 메시지에 포함시켜, IAB 노드 2(1b-10)를 경유하여 IAB donor(1b-20)로 전송할 수 있다. IAB 노드 1(1b-05)이 IAB 노드 2(1b-10)에 IAB setup을 위한 랜덤 엑세스를 시도한 이후, IAB 노드 2(1b-10)가 소정의 시간 동안 IAB donor(1b-20)로부터 상술된 지원 여부에 대한 정보를 수신하지 못한다면, IAB 노드 2(1b-10)는 IAB 노드 1(1b-05)과의 연결을 해제할 수 있다. In steps 1b-70, the IAB node 1 (1b-05) and the IAB donor (1b-20) establish a non-access stratum (NAS) registration / authentication (NAS container of RRCSetupComplete message) and security settings through a predetermined RRC message. (Security Mode Command message / Security Mode Complete message) can be performed. Accordingly, similarly to the LTE system, security may be achieved between the IAB node 1 1b-05 and the IAB donor 1b-20. On the other hand, for IAB node 2 1b-10 forwarding traffic from IAB node 1 1b-05, authentication may be required for IAB node 1 1b-05. Without any authentication or security procedure, it is not possible to continue forwarding traffic from IAB node 1 (1b-05) to the IAB donor (1b-20). Therefore, when the registration, authentication, and security process between the IAB node 1 (1b-05) and the IAB donor (1b-20) is completed, the IAB donor (1b-20) sends a message to the IAB node 1 (1b-05). It is possible to send an indicator that IAB node 1 (1b-05) may continue to be supported to IAB node 2 (1b-10), which forwards traffic of the &quot; At this time, IAB node 2 (1b-10) may support other IAB nodes other than IAB node 1 (1b-05). Therefore, an ID that can distinguish between IAB nodes is required. The ID may be included in the initial RRC message for the initial IAB node 1 (1b-05) by the setup process, or the Temporary C-RNTI (Cell-Radio Network) that the IAB node 2 (1b-10) includes in the RAR message. Temporary Identifier) value may be used. If the Temporary C-RNTI value included in the RAR message is utilized, IAB Node 1 (1b-05) includes the Temporary C-RNTI value included in the RAR in the RRCSetupRequest message, via IAB Node 2 (1b-10). Can be sent to the IAB donor (1b-20). After IAB node 1 (1b-05) attempts random access for IAB setup to IAB node 2 (1b-10), IAB node 2 (1b-10) is described in detail from the IAB donor 1b-20 for a predetermined time. If IAB does not receive the information about the supported support, IAB node 2 (1b-10) may disconnect from the IAB node 1 (1b-05).
상술된 setup 과정을 통해, IAB 노드 1(1b-05)은 IAB 노드 2(1b-10)을 통해, IAB donor(1b-20)와 무선 백홀을 구성할 수 있다. 그러나, 무선 백홀 구간에서의 혼잡, IAB 노드 혹은 IAB donor(1b-20)의 능력 변경, 특정 원인으로 인한 홉 역할을 하는 IAB 노드 이탈/다운, 소정의 시간 동안 특정 무선 백홀 구간에서 트래픽 미발생 등이 발생하면, 상술된 무선 백홀에 대한 routing이 재조정되거나, 특정 IAB 노드에서 제공 가능한 능력 혹은 설정이 변경될 수 있다. 따라서, 어느 부분에서 변경이 일어났는지에 따라, IAB 노드 혹은 IAB donor(1b-20)가 이를 상술된 무선 백홀 구성에 관여하고 있는 IAB 노드들에게 알려야 한다. Through the above-described setup process, the IAB node 1 (1b-05) can configure a wireless backhaul with the IAB donor (1b-20) through the IAB node 2 (1b-10). However, congestion in the wireless backhaul interval, capability change of the IAB node or IAB donor (1b-20), IAB node departure / down that serves as a hop due to a specific cause, no traffic in a specific wireless backhaul interval for a predetermined time, etc. If this occurs, the routing for the wireless backhaul described above may be readjusted or the capabilities or settings available at a particular IAB node may change. Therefore, depending on where the change occurred, the IAB node or IAB donor 1b-20 should inform the IAB nodes involved in the wireless backhaul configuration described above.
단계 1b-75에서, 만약 IAB donor(1b-20)가 소정의 원인에 따라 재설정/해제가 필요하다고 판단하는 경우, 단계 1b-80에서, IAB donor(1b-20)는 소정의 RRC 메시지를 통해, routing 재설정/해제가 요구되는 IAB 노드들에게 이를 알릴 수 있다. 또한, 이때 routing 재설정/해제에 필요한 설정 정보도 함께 제공될 수 있다. In step 1b-75, if the IAB donor 1b-20 determines that a reset / release is necessary for a predetermined cause, in step 1b-80, the IAB donor 1b-20 may be sent through a predetermined RRC message. This can be used to inform IAB nodes that require routing reset / release. In addition, setting information necessary for resetting / resetting routing may also be provided.
단계 1b-85에서, 만약 무선 백홀을 구성하는 한 IAB 노드가 소정의 원인에 따라 routing 재설정/해제가 필요하다고 판단하는 경우, IAB 노드는 소정의 RRC 메시지를 통해, IAB donor(1b-20)에게 이를 알릴 수 있고, 무선 백홀을 구성하는 자신과 연관된 인접 IAB 노드들에게는 소정의 RRC 메시지 혹은 시스템 정보로 이를 알릴 수 있다. IAB 구조 상, IAB 노드간에는 RRC 연결이 불가능하게 매우 제한적일 수 있다. 따라서, 시스템 정보를 통해, IAB routing의 재설정/해제를 알리는 것은 장점이 될 수 있다. In steps 1b-85, if one IAB node constituting the wireless backhaul determines that routing reset / release is necessary according to a predetermined cause, the IAB node sends a message to the IAB donor 1b-20 through a predetermined RRC message. This may be informed, and neighbor IAB nodes associated with the radio backhaul may be informed by a predetermined RRC message or system information. Due to the structure of the IAB, RRC connections between IAB nodes may be very limited. Therefore, it may be advantageous to inform the reset / release of IAB routing through system information.
본 개시의 일 실시예에서는 단계 1b-90에 도시된 바와 같이, paging DCI(Downlink Control Information) 혹은 paging을 통해, IAB routing 재설정/해제가 지시될 수 있다. DCI(Downlink Control Information)는 PDCCH(Physical Downlink Control Channel)에서 전송되는 L1 메시지이며, paging DCI는 페이징 정보 특히, 시스템 정보 변경 지시자를 포함하는 DCI일 수 있다. 본 개시에서의 paging DCI는 IAB routing 재설정/해제를 지시하는 지시자, 혹은 routing 재설정/해제를 야기할 수 있는 IAB 관련 시스템 정보가 변경되었음을 지시하는 지시자, 혹은 IAB관련 시스템 정보를 포함하는 SIB 혹은 SI message가 변경되었음을 지시하는 지시자를 포함할 수 있다. In an embodiment of the present disclosure, as shown in steps 1b-90, IAB routing reset / release may be indicated through paging downlink control information (DCI) or paging. Downlink Control Information (DCI) is an L1 message transmitted on a Physical Downlink Control Channel (PDCCH), and a paging DCI may be a DCI including paging information, in particular, a system information change indicator. The paging DCI in the present disclosure is an indicator indicating IAB routing reset / release, or an indicator indicating that IAB related system information that may cause routing reset / release has been changed, or an SIB or SI message including IAB related system information. It may include an indicator indicating that has changed.
단계 1b-95 및 1b-105에서, IAB 노드는 변경된 시스템 정보를 브로드캐스팅할 수 있다. Child IAB 노드는 parent IAB 노드로부터의 페이징을 소정의 Paging Frame(PF)와 Paging Occasion(PO)에 따라 모니터링해야 할 수 있다. 일 실시예에 있어서, 상술된 PF와 PO는, 아래와 같은 특징을 가질 수 있다.In steps 1b-95 and 1b-105, the IAB node may broadcast the changed system information. The child IAB node may need to monitor paging from the parent IAB node according to a predetermined paging frame (PF) and paging occsion (PO). In one embodiment, the above-described PF and PO may have the following characteristics.
1) 각 IAB 노드들은 고유의 IMSI( International Mobile Subscriber Identit y, 아이디) 값을 가지고 있으며, 상술된 IMSI 값과 페이징을 전송하는 인접 IAB 노드가 제공하는 파라미터 값들을 적용하여 도출되거나, 1) Each IAB node has a unique International Mobile Subscriber Identity (IMSI) value and is derived by applying the above-described IMSI value and parameter values provided by neighboring IAB nodes transmitting paging,
2) IAB 노드들의 아이디와는 무관하게 시스템 정보로 설정되거나, 혹은 미리 정해져 있거나,2) It is set as system information regardless of the ID of the IAB nodes, or predetermined;
3) 모든 IAB 노드들은 동일한 IMSI 값을 가지고 있으며, 상술된 IMSI 값과 페이징을 전송하는 인접 IAB 노드가 제공하는 파라미터 값들을 적용하여 도출된다.3) All IAB nodes have the same IMSI value and are derived by applying the above-described IMSI value and parameter values provided by the neighboring IAB node transmitting paging.
상술된 2)와 3) 에서는 모든 IAB 노드들이 동일한 PF와 PO을 가질 수 있다. 여기서 PF는 PO가 시작하는 라디오 프레임(radio frame)이며, PO는 paging DCI 혹은 paging이 전송될 수 있는 복수 개의 시간 슬롯들, 즉 서브프레임 (subframe) 혹은 OFDM(Orthogonal Frequency Division Multiplexing) 심볼일 수 있다.In 2) and 3) described above, all IAB nodes may have the same PF and PO. Here, the PF is a radio frame starting with the PO, and the PO may be a plurality of time slots through which paging DCI or paging may be transmitted, that is, a subframe or an Orthogonal Frequency Division Multiplexing (OFDM) symbol. .
일반 단말은 routing 재설정/해제에 대한 시스템 정보를 수신할 필요가 없으므로, 상술된 paging DCI 혹은 paging을 지시하기 위해, IAB 노드 전용의 신규 P-RNTI을 정의할 수 있다. 상술된 P-RNTI는 미리 정의된 값을 사용할 수 있다. 일반 단말은 상술된 신규 P-RNTI로 부호화된 DCI을 디코딩할 필요가 없다. Since the general terminal does not need to receive system information about routing resetting / release, it may define a new P-RNTI dedicated to the IAB node to indicate the paging DCI or paging described above. The above-described P-RNTI may use a predefined value. The general terminal does not need to decode the DCI encoded with the new P-RNTI described above.
단계 1b-100에서, IAB routing 재설정/해제를 지시하는 paging DCI 혹은 paging을 수신한 IAB 노드는 SIB1을 수신하고, 필요할 시 SIBx을 수신할 수 있다. SIBx은 on-demand 방식으로 제공될 수 있다. 일 실시예에 있어서, 인접 IAB 노드로부터 수신한 SIB1이 제 1 정보를 통해, 더 이상 IAB을 지원하지 않는 것으로 지시하거나, 혹은 제 2 정보를 통해, 더 이상 IAB 연결이 불가능하다고 지시한다면, SIBx에서 제공해주는 제 7 정보를 이용하여 무선 백홀을 지원해줄 다른 인접 IAB 노드를 찾을 수 있다. In step 1b-100, the IAB node that receives the paging DCI or paging indicating IAB routing reset / release may receive SIB1 and, if necessary, receive SIBx. SIBx may be provided on-demand. In one embodiment, if the SIB1 received from the neighboring IAB node indicates that it no longer supports IAB through the first information, or indicates that the IAB connection is no longer possible through the second information, then in SIBx The seventh information provided may be used to find another neighboring IAB node to support the wireless backhaul.
단계 1b-110에서, IAB 노드 1(1b-05)은 연결된 IAB노드의 변경을 결정할 수 있다.In steps 1b-110, IAB node 1 1b-05 may determine the change of the connected IAB node.
단계 1b-115에서, IAB 노드 1(1b-05)은 기존의 IAB 노드 2(1b-10)와 연결을 종료하고, 다른 인접 IAB 노드 3(1b-15)과 새로 무선 백홀 연결을 하기로 결정하면, 기존 무선 백홀을 위해 연결하고 있었던 IAB 노드 2(1b-10)와 연결 해제 과정을 수행할 수 있다. In steps 1b-115, IAB node 1 (1b-05) terminates the connection with existing IAB node 2 (1b-10) and decides to establish a new wireless backhaul connection with another neighboring IAB node 3 (1b-15). In this case, a disconnection process may be performed with the IAB node 2 (1b-10) that is connected for the existing wireless backhaul.
단계 1b-120에서, 해제를 알리기 위해, IAB 노드 1(1b-05)는 IAB 노드 2(1b-10)에서 관련된 MAC CE 혹은 L1 시그널링 혹은 Adaptation 계층 제어 메시지를 전송할 수 있다. 또한, IAB 노드 1(1b-05)은 IAB donor(1b-20)에게 상술된 IAB 노드 2(1b-10)와의 연결 해제 및 신규 IAB 노드와의 연결을 요청하는 RRC 메시지를 전송할 수 있다. 상술된 IAB 노드 1(1b-05)은 신규 인접 IAB 노드 3(1b-15)에서 IAB setup 과정을 트리거할 수 있다.In step 1b-120, to inform release, IAB node 1 1b-05 may send a related MAC CE or L1 signaling or Adaptation layer control message at IAB node 2 1b-10. In addition, the IAB node 1 (1b-05) may transmit an RRC message requesting the IAB donor (1b-20) to disconnect the IAB node 2 (1b-10) and the connection to the new IAB node. The above-described IAB node 1 (1b-05) may trigger the IAB setup process at the new neighbor IAB node 3 (1b-15).
상술된 routing 재설정 혹은 해제로 인해, IAB 노드 1(1b-05)로부터 데이터를 송수신하던 단말들을 재설정할 필요가 있다. 단계 1b-125에서, Bearer 재설정, 보안 재설정, 재전송 재설정, 각 L2 계층의 재설정 혹은 리셋 등을 위해, 상술된 연결 모드 상태에 있는 단말들에 대한 intra-cell handover가 수행될 수 있다.Due to the above-described routing reset or release, it is necessary to reset terminals that have been transmitting and receiving data from the IAB node 1 (1b-05). In steps 1b-125, intra-cell handover may be performed for terminals in the aforementioned connection mode state for bearer reset, security reset, retransmission reset, reset or reset of each L2 layer.
도 3은 일 실시예에 따른 IAB 구성을 위해 인접 IAB 노드가 브로드캐스팅하는 시스템 정보를 획득하는 방법을 설명하기 위한 순서도이다.3 is a flowchart illustrating a method of obtaining system information broadcasted by a neighboring IAB node for configuring an IAB according to an embodiment.
1c-05 단계에서, IAB 노드는 무선 백홀 구성을 위해 인접 IAB 노드(혹은 IAB donor) 선택 과정을 초기화할 수 있다. In steps 1c-05, the IAB node may initiate the process of selecting an adjacent IAB node (or IAB donor) for the wireless backhaul configuration.
1c-10 단계에서, 상술된 IAB 노드는 소정의 신호 품질을 만족하는 인접 IAB 노드 혹은 IAB donor를 검색할 수 있다. 일 실시예에 있어서, IAB 노드는 가장 큰 신호 세기를 제공하는 인접 IAB 노드를 우선적으로 선택할 수 있다. 상술된 신호 품질은 인접 IAB 노드가 주기적으로 전송하는 SSB(Single Side Band) 신호를 측정하여 도출될 수 있다. IAB donor의 신호 세기가 일정 이상을 만족한다면, IAB donor가 인접 IAB 노드보다 우선적으로 선택될 수 있다. 상술된 일정 신호 세기는 시스템 정보를 통해, 제공되거나 미리 정의되어질 수 있다. In step 1c-10, the above-described IAB node may search for an adjacent IAB node or IAB donor that satisfies a predetermined signal quality. In one embodiment, the IAB node may preferentially select adjacent IAB nodes that provide the largest signal strength. The above-described signal quality may be derived by measuring a single side band (SSB) signal periodically transmitted by an adjacent IAB node. If the signal strength of the IAB donor satisfies a predetermined value or more, the IAB donor may be selected in preference to the neighboring IAB node. The above-described constant signal strength may be provided or predefined through system information.
1c-15 단계에서, IAB 노드는 선택한 인접 IAB 노드(혹은 IAB donor) 로부터 SIB1을 수신할 수 있다.In steps 1c-15, the IAB node may receive SIB1 from the selected neighboring IAB node (or IAB donor).
1c-20 단계에서, 0IAB 노드는 SIB1으로부터 인접 IAB 노드에 무선 백홀 구성을 위해 연결할 수 있는지 여부를 판단할 수 있다. IAB 기능을 지원하는지 여부를 지시하는 지시자(상술된 제 1 정보)가 SIB1에 포함되지 않는다면, 상술된 셀은 IAB을 지원하지 않은 셀이다. 또한 IAB 기능을 지원하더라도, 이미 최대 연결 가능한 IAB 노드 수로 다른 인접 IAB 노드들을 지원 중이거나, 망 혼잡 상황이라면, 상술된 신규 IAB 노드를 추가적으로 지원하기 어렵다. 따라서, 상술된 제 2 정보 혹은 제 3 정보로 신규 IAB 노드가 IAB 연결을 요청하는 것을 억제 혹은 거부할 수 있다. 상술된 제 2 정보 및 제 3 정보도 SIB1으로 제공될 수 있다. 또한, 상술된 SIB1은 SIBx에 대한 스케줄링 정보를 포함할 수 있다. In step 1c-20, the 0IAB node may determine whether it can connect from SIB1 to the neighbor IAB node for wireless backhaul configuration. If the indicator (first information described above) indicating whether to support the IAB function is not included in SIB1, the above-described cell is a cell that does not support the IAB. In addition, even if the IAB function is supported, it is difficult to additionally support the above-described new IAB node when supporting other neighboring IAB nodes with the maximum number of connectable IAB nodes or when network congestion occurs. Therefore, the new IAB node can be suppressed or rejected from requesting the IAB connection with the second information or the third information described above. The above-described second information and third information may also be provided to SIB1. In addition, the above-described SIB1 may include scheduling information for SIBx.
1c-25 단계에서, IAB 노드는 연결하지 못한다고 판단하면, 다른 인접 IAB 노드(혹은 IAB donor) 를 선택할 수 있다. In step 1c-25, if it is determined that the IAB node cannot connect, it may select another neighboring IAB node (or IAB donor).
1c-30 단계에서, IAB 노드는 연결 가능하다고 판단하면, 무선 백홀 구성을 위한 상세 설정 정보를 포함하고 있는 SIBx을 수신할 수 있다. 상술된 SIBx는 IAB setup 목적의 랜덤 엑세스, 엑세스 제어 (Barring), Adaptation 계층 설정 정보 등 IAB setup 과정을 위해 실제 필요한 설정 정보를 포함할 수 있다. 상술된 SIBx는 주기적으로 항상 브로드캐스팅될 필요가 없기 때문에, on-demand 방식으로 제공될 수 있다. In step 1c-30, if it is determined that the IAB node is connectable, the IAB node may receive the SIBx including detailed configuration information for configuring the wireless backhaul. The above-described SIBx may include configuration information actually required for the IAB setup process, such as random access, access control (Barring), and adaptation layer configuration information for the purpose of IAB setup. The SIBx described above may be provided in an on-demand manner since it does not need to be broadcast at all times periodically.
도 4는 일 실시예에 따른 IAB 구성을 위해, 인접 IAB 노드에 엑세스를 수행하는 방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a method of performing access to a neighboring IAB node for configuring an IAB according to an embodiment.
1d-05 단계에서, IAB 노드는 선택한 인접 IAB 노드(혹은 IAB donor)에 하나의 랜덤 엑세스 프리엠블을 전송할 수 있다. 시스템 정보를 통해, IAB 전용 랜덤 엑세스 프리엠블이 제공될 수 있으며, 그렇지 않은 경우엔, 일반 랜덤 엑세스 프리엠블이 적용될 수 있다.In steps 1d-05, the IAB node may transmit one random access preamble to the selected neighboring IAB node (or IAB donor). Through the system information, an IAB dedicated random access preamble may be provided, otherwise, a general random access preamble may be applied.
1d-10 단계에서, IAB 노드는 인접 IAB 노드로부터 RAR을 수신할 수 있다. In steps 1d-10, the IAB node may receive a RAR from an adjacent IAB node.
1d-15 단계에서, IAB 노드는 RAR이 지시하는 무선 자원을 이용하여, msg3을 전송할 수 있다. 상술된 msg3 메시지에는 RRCSetupRequest 가 포함되며, 상술된 RRC 메시지에는 IAB setup을 지시하는 cause value가 포함될 수 있다. 본 실시 예에서는 예시적으로 RRC establishment 을 위한 RRCSetupRequest 메시지를 재사용하지만, IAB setup을 위한 신규 RRC 메시지가 정의될 수도 있다. In step 1d-15, the IAB node may transmit msg 3 using a radio resource indicated by the RAR. The above-described msg3 message may include an RRCSetupRequest, and the above-described RRC message may include a cause value indicating IAB setup. In the present exemplary embodiment, the RRCSetupRequest message for RRC establishment is reused, but a new RRC message for IAB setup may be defined.
1d-20 단계에서, IAB 노드는 상술된 인접 IAB 노드로부터 msg4을 수신할 수 있다.In steps 1d-20, the IAB node may receive msg4 from the neighboring IAB node described above.
1d-25 단계에서, IAB 노드는 msg5 메시지를 전송할 수 있다. 상술된 메시지에 IAB setup을 지시하는 cause value가 포함될 수도 있다. 이는 msg3의 크기 제한 문제로, 상술된 cause value가 msg3에 포함되지 못할 수도 있기 때문이다. In steps 1d-25, the IAB node may send a msg5 message. The above-mentioned message may include cause value indicating IAB setup. This is a problem of size limitation of msg3, because the above-described cause value may not be included in msg3.
도 5는 일 실시예에 따른 변경된 IAB 설정 정보를 획득하는 방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating a method of obtaining changed IAB configuration information, according to an exemplary embodiment.
1e-05 단계에서, IAB 노드는 IAB을 구성하고 있는 인접 IAB 노드로부터 paging DCI 혹은 paging을 수신할 수 있다. In step 1e-05, the IAB node may receive paging DCI or paging from the adjacent IAB node constituting the IAB.
1e-10 단계에서, IAB 노드는 상술된 인접 IAB 노드로부터 SIB1을 수신할 수 있다.In steps 1e-10, the IAB node may receive SIB1 from the neighboring IAB node described above.
1e-15 단계에서, IAB 노드는 상술된 인접 IAB 노드로부터 SIBx을 수신할 수 있다.In steps 1e-15, the IAB node may receive SIBx from the neighboring IAB node described above.
1e-20 단계에서, IAB 노드는 상술된 수신한 SIB1 및 SIBx을 통해, IAB 노드 변경/재설정이 필요한지 여부를 판단할 수 있다.In steps 1e-20, the IAB node may determine whether the IAB node change / reset is necessary through the received SIB1 and SIBx described above.
1e-25 단계에서, IAB 노드는 IAB 노드 변경이 필요하다면, 기존 인접 IAB 노드와의 연결을 해제하는 과정을 수행할 수 있다. 상술된 해제 과정은 IAB 노드가 소정의 MAC CE, L1 시그널링, Adaptation 계층 제어 메시지 등을 이용하여 상술된 인접 IAB 노드에 요청하거나, 인접 IAB 노드가 RRCRelease 메시지를 이용하여 트리거할 수도 있다. In steps 1e-25, if the IAB node needs to be changed, the IAB node may perform a process of disconnecting an existing neighboring IAB node. The above-described release process may be requested by the IAB node to the above-described neighboring IAB node using a predetermined MAC CE, L1 signaling, Adaptation layer control message, or the like, or may be triggered by the neighboring IAB node using the RRCRelease message.
1e-30 단계에서, IAB 노드는 상술된 해제 과정이 완료된 후, 다른 인접 IAB 노드와 IAB setup 과정을 수행할 수 있다. In step 1e-30, the IAB node may perform an IAB setup process with another neighboring IAB node after the above-described release process is completed.
도 6은 일 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다.6 is a block diagram illustrating an internal structure of a terminal according to an embodiment.
도 6을 참조하면, 단말은 RF(Radio Frequency)처리부(1f-10), 기저대역(baseband)처리부(1f-20), 저장부(1f-30) 및 제어부(1f-40)를 포함할 수 있다.Referring to FIG. 6, the terminal may include a radio frequency (RF) processor 1f-10, a baseband processor 1f-20, a storage unit 1f-30, and a controller 1f-40. have.
RF처리부(1f-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(1f-10)는 기저대역처리부(1f-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환할 수 있다. 예를 들어, RF처리부(1f-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 도 6에서는, 하나의 안테나만이 도시되었으나, 상술된 단말은 복수의 안테나들을 구비할 수 있다. 또한, RF처리부(1f-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, RF처리부(1f-10)는 빔포밍(beamforming)을 수행할 수 있다. 상술된 빔포밍을 위해, RF처리부(1f-10)는 복수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 RF 처리부는 MIMO(Multi Input Multi Output)를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. The RF processor 1f-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1f-10 up-converts the baseband signal provided from the baseband processor 1f-20 into an RF band signal and transmits the same through an antenna, and baseband the RF band signal received through the antenna. Can be down converted to a signal. For example, the RF processor 1f-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. have. In FIG. 6, only one antenna is illustrated, but the above-described terminal may include a plurality of antennas. In addition, the RF processor 1f-10 may include a plurality of RF chains. In addition, the RF processor 1f-10 may perform beamforming. For the above-described beamforming, the RF processor 1f-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements. In addition, the RF processor may perform MIMO (Multi Input Multi Output), and may receive multiple layers when performing the MIMO operation.
기저대역처리부(1f-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(1f-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(1f-20)는 RF처리부(1f-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(1f-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상술된 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(1f-20)는 RF처리부(1f-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.The baseband processor 1f-20 may perform a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processor 1f-20 may generate complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the baseband processor 1f-20 may restore the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1f-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the baseband processor 1f-20 generates complex symbols by encoding and modulating a transmission bit string, and performs the above-described complex symbols on subcarriers. After mapping to, OFDM symbols may be configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion. In addition, when receiving data, the baseband processor 1f-20 divides the baseband signal provided from the RF processor 1f-10 into OFDM symbol units and is mapped to subcarriers through a fast fourier transform (FFT) operation. After recovering the signals, the received bit stream may be restored by demodulation and decoding.
기저대역처리부(1f-20) 및 RF처리부(1f-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 상술된 기저대역처리부(1f-20) 및 상술된 RF처리부(1f-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 기저대역처리부(1f-20) 및 RF처리부(1f-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 복수의 통신 모듈들을 포함할 수 있다. 또한, 기저대역처리부(1f-20) 및 RF처리부(1f-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상술된 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상술된 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다. 단말은 기저대역처리부(1f-20) 및 RF처리부(1f-10)를 이용하여 기지국과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다.The baseband processor 1f-20 and the RF processor 1f-10 may transmit and receive signals as described above. Accordingly, the baseband processor 1f-20 and the RF processor 1f-10 described above may be referred to as a transmitter, a receiver, a transceiver, or a communicator. Furthermore, at least one of the baseband processor 1f-20 and the RF processor 1f-10 may include a plurality of communication modules to support a plurality of different radio access technologies. In addition, at least one of the baseband processor 1f-20 and the RF processor 1f-10 may include different communication modules to process signals of different frequency bands. For example, the different wireless access technologies described above may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like. In addition, the different frequency bands described above may include a super high frequency (SHF) (eg, 2.NRHz, NRhz) band and a millimeter wave (eg, 60 GHz) band. The terminal may transmit and receive signals to and from the base station using the baseband processor 1f-20 and the RF processor 1f-10. Here, the signal may include control information and data.
저장부(1f-30)는 상술된 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 특히, 저장부(1f-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 저장부(1f-30)는 상술된 제어부(1f-40)의 요청에 따라 저장된 데이터를 제공할 수 있다. 저장부(1f-30)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 저장부(1f-30)는 복수 개의 메모리로 구성될 수도 있다. 일 실시예에서, 저장부(1f-30)는 빔 기반 협력 통신을 지원하기 위한 프로그램을 저장할 수 있다.The storage unit 1f-30 may store data such as a basic program, an application program, and setting information for the operation of the terminal described above. In particular, the storage unit 1f-30 may store information related to the second access node performing wireless communication using the second wireless access technology. The storage unit 1f-30 may provide the stored data according to the request of the controller 1f-40 described above. The storage unit 1f-30 may be configured as a storage medium or a combination of storage media such as a ROM, a RAM, a hard disk, a CD-ROM, a DVD, and the like. In addition, the storage unit 1f-30 may be configured of a plurality of memories. In one embodiment, the storage unit 1f-30 may store a program for supporting beam-based cooperative communication.
제어부(1f-40)는 상술된 단말의 전반적인 동작들을 제어한다. 예를 들어, 제어부(1f-40)는 기저대역처리부(1f-20) 및 RF처리부(1f-10)을 통해 신호를 송수신할 수 있다. 또한, 제어부(1f-40)는 저장부(1f-40)에 데이터를 기록하고, 읽을 수 있다. 이를 위해, 제어부(1f-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부(1f-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.The controller 1f-40 controls the overall operations of the terminal described above. For example, the controller 1f-40 may transmit and receive a signal through the baseband processor 1f-20 and the RF processor 1f-10. In addition, the control unit 1f-40 can record and read data in the storage unit 1f-40. To this end, the controller 1f-40 may include at least one processor. For example, the controller 1f-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
도 7은 일 실시 예에 따른 무선 통신 시스템에서 주기지국의 구성을 도시하는 블록도이다.7 is a block diagram illustrating a configuration of a main station in a wireless communication system according to an embodiment.
도 7에 도시된 바와 같이, 기지국은 RF처리부(1g-10), 기저대역처리부(1g-20), 백홀통신부(1g-30), 저장부(1g-40), 제어부(1g-50)를 포함할 수 있다.As shown in FIG. 7, the base station includes an RF processor 1g-10, a baseband processor 1g-20, a backhaul communication unit 1g-30, a storage unit 1g-40, and a controller 1g-50. It may include.
RF처리부(1g-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(1g-10)는 기저대역처리부(1g-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환할 수 있다. 예를 들어, RF처리부(1g-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 도 7에서, 하나의 안테나만이 도시되었으나, 상술된 제1접속 노드는 복수의 안테나들을 구비할 수 있다. 또한, RF처리부(1g-10)는 복수의 RF 체인들을 포함할 수 있다. 나아가, RF처리부(1g-10)는 빔포밍을 수행할 수 있다. 상술된 빔포밍을 위해, RF처리부(1g-10)는 복수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다. The RF processor 1g-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1g-10 up-converts the baseband signal provided from the baseband processor 1g-20 into an RF band signal and transmits the same through an antenna, and baseband the RF band signal received through the antenna. Can be downconverted to a signal. For example, the RF processor 1g-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In FIG. 7, only one antenna is shown, but the above-described first access node may have a plurality of antennas. In addition, the RF processor 1g-10 may include a plurality of RF chains. In addition, the RF processor 1g-10 may perform beamforming. For the beamforming described above, the RF processor 1g-10 may adjust the phase and the magnitude of each of the signals transmitted and received through the plurality of antennas or antenna elements. The RF processor may perform a downlink MIMO operation by transmitting one or more layers.
기저대역처리부(1g-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(1g-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(1g-20)은 RF처리부(1g-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(1g-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상술된 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(1g-20)은 RF처리부(1g-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 기저대역처리부(1g-20) 및 RF처리부(1g-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 상술된 기저대역처리부(1g-20) 및 상술된 RF처리부(1g-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.The baseband processor 1g-20 may perform a conversion function between the baseband signal and the bit string according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 1g-20 may generate complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1g-20 may restore the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1g-10. For example, in accordance with the OFDM scheme, during data transmission, the baseband processor 1g-20 generates complex symbols by encoding and modulating a transmission bit stream, maps the above-described complex symbols to subcarriers, and then IFFT. OFDM symbols may be configured through operation and CP insertion. In addition, upon receiving data, the baseband processor 1g-20 divides the baseband signal provided from the RF processor 1g-10 into OFDM symbol units and restores signals mapped to subcarriers through an FFT operation. The received bit stream may be restored by performing demodulation and decoding. The baseband processor 1g-20 and the RF processor 1g-10 may transmit and receive signals as described above. Accordingly, the baseband processor 1g-20 and the RF processor 1g-10 described above may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
백홀통신부(1g-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공할 수 있다. 즉, 백홀통신부(1g-30)는 상술된 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상술된 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한할 수 있다.The backhaul communication unit 1g-30 may provide an interface for communicating with other nodes in the network. That is, the backhaul communication unit 1g-30 converts the bit string transmitted from the above-described main base station to another node, for example, an auxiliary base station, core network, etc., into a physical signal, and converts the physical signal received from the above-described other node. Can be converted to a bit string.
저장부(1g-40)는 상술된 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 특히, 저장부(1g-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 저장부(1g-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 저장부(1g-40)는 제어부(1g-50)의 요청에 따라 저장된 데이터를 제공할 수 있다.The storage unit 1g-40 may store data such as a basic program, an application program, and setting information for the operation of the main station described above. In particular, the storage unit 1g-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like. In addition, the storage unit 1g-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal. The storage 1g-40 may provide stored data at the request of the controller 1g-50.
제어부(1g-50)는 상술된 주기지국의 전반적인 동작들을 제어한다. 예를 들어, 제어부(1g-50)는 기저대역처리부(1g-20) 및 RF처리부(1g-10)을 통해 또는 백홀통신부(1g-30)을 통해 신호를 송수신할 수 있다. 또한, 제어부(1g-50)는 저장부(1g-40)에 데이터를 기록하고, 읽을 수 있다. 이를 위해, 제어부(1g-50)는 적어도 하나의 프로세서를 포함할 수 있다. The controller 1g-50 controls the overall operations of the main station described above. For example, the controller 1g-50 may transmit and receive signals through the baseband processor 1g-20 and the RF processor 1g-10 or through the backhaul communication unit 1g-30. In addition, the controller 1g-50 may record and read data in the storage 1g-40. To this end, the controller 1g-50 may include at least one processor.
도 8은 일 실시예가 적용되는 차세대 이동통신 시스템의 구조를 도시하는 도면이다. 도 8을 참조하면, 차세대 이동통신 시스템(New Radio, NR 또는 5G)의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 gNB)(2a-10)과 AMF(2a-05, New Radio Core Network)로 구성될 수 있다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말)(2a-15)은 gNB(2a-10) 및 AMF(2a-05)를 통해 외부 네트워크에 접속할 수 있다.8 is a diagram illustrating a structure of a next generation mobile communication system to which an embodiment is applied. Referring to FIG. 8, a radio access network of a next generation mobile communication system (New Radio, NR, or 5G) includes a next generation base station (New Radio Node B, hereinafter referred to as gNB) 2a-10 and an AMF 2a-05, New Radio Core Network. It can be composed of). The user terminal (New Radio User Equipment, NR UE or terminal) 2a-15 may access an external network through the gNB 2a-10 and the AMF 2a-05.
도 8에서 gNB는 LTE 시스템의 eNB(Evolved Node B)에 대응될 수 있다. gNB는 NR UE와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다(2a-20). 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를gNB (2a-10)가 담당할 수 있다. 하나의 gNB는 통상 다수의 셀들을 제어할 수 있다. LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 칭한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용할 수 있다. AMF(2a-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행할 수 있다. AMF(2a-05)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다. 또한 차세대 이동통신 시스템은 LTE 시스템과도 연동될 수 있으며, AMF(2a-05)이 MME(2a-25)와 네트워크 인터페이스를 통해 연결될 수 있다. MME(2a-25)는 기존 기지국인 eNB(2a-30)과 연결될 수 있다. LTE-NR Dual Connectivity을 지원하는 단말은 gNB(2a-10)뿐 아니라, eNB(2a-30)에도 연결을 유지하면서, 데이터를 송수신할 수 있다(2a-35). In FIG. 8, the gNB may correspond to an eNB (Evolved Node B) of the LTE system. The gNB is connected to the NR UE through a radio channel and may provide superior service than the existing Node B (2a-20). In the next generation mobile communication system, since all user traffic is serviced through a shared channel, an apparatus for collecting and scheduling state information such as buffer states, available transmit power states, and channel states of UEs is required. 2a-10) may be in charge. One gNB can typically control multiple cells. In order to implement ultra-high speed data transmission compared to LTE, the mobile station may have a conventional maximum bandwidth or more, and an additional beamforming technique may be further combined using an orthogonal frequency division multiplexing (OFDM) as a wireless access technology. In addition, an adaptive modulation & coding (AMC) scheme for determining a modulation scheme and a channel coding rate according to the channel state of the UE can be applied. The AMF 2a-05 may perform functions such as mobility support, bearer setup, QoS setup, and the like. The AMF 2a-05 may be connected to a plurality of base stations as a device for various control functions as well as a mobility management function for a terminal. In addition, the next generation mobile communication system may be linked to the LTE system, and the AMF 2a-05 may be connected to the MME 2a-25 through a network interface. The MME 2a-25 may be connected to the eNB 2a-30 which is an existing base station. The terminal supporting the LTE-NR Dual Connectivity may transmit and receive data while maintaining the connection to the eNB 2a-30 as well as the gNB 2a-10 (2a-35).
도 9는 일 실시예에 따른 연결 모드 혹은 비활성 모드 단말의 엑세스 제어를 수행하는 과정을 설명하기 위한 도면이다.9 is a diagram for describing a process of performing access control of a connected mode or inactive mode terminal according to an embodiment.
도 9를 참조하여 설명되는 실시예에서는 엑세스 아이덴티티(Access Identity)와 엑세스 카테고리(Access Category)를 기반으로 하는 엑세스 제어 설정 정보를 효과적으로 제공하는 방법이 제안된다. 엑세스 아이덴티티는 3GPP 내에서 정의되는, 즉 표준 문서에 명시화된 지시 정보이다. 상술된 엑세스 아이덴티티는 아래의 [표 4]와 같이 특정 엑세스를 지시하는데 이용된다. 엑세스 아이덴티티는 주로, Access Class 11부터 15로 분류되는 엑세스들과 우선 순위를 가진 멀티미디어 서비스(Multimedia Priority Service, MPS), 그리고 특수 목적 서비스(Mission Critical Service, MCS)을 지시할 수 있다. 상술된 Access Class 11부터 15는 사업자 관계자 전용 혹은 공공 목적 용도의 엑세스를 지시할 수 있다.In the embodiment described with reference to FIG. 9, a method of effectively providing access control configuration information based on an access identity and an access category is proposed. An access identity is an indication of information defined within 3GPP, that is, specified in a standard document. The above-described access identity is used to indicate a specific access as shown in Table 4 below. The access identity may indicate mainly access classes 11 to 15 classified as access classes, multimedia priorities (MPS), and special purpose services (MCS). Access Class 11 to 15 described above may direct access for operators or for public use only.
Figure PCTKR2019009807-appb-img-000005
Figure PCTKR2019009807-appb-img-000005
엑세스 카테고리는 두 종류로 구분될 수 있다. 한 종류는 standardized access category이다. 상술된 카테고리는 RAN 레벨에서 정의되는, 즉 표준 문서에 명시화된 카테고리이다. 따라서 각기 다른 사업자들이 동일한 standardized access category을 적용할 수 있다. 본 개시에서, Emergency에 대응되는 category는 상술된 standardized access category에 속할 수 있다. 모든 엑세스들은 상술된 standardized access category 중 적어도 하나에 대응될 수 있다.Access categories can be divided into two types. One kind is the standardized access category. The above-mentioned categories are the categories defined at the RAN level, ie specified in the standard document. This allows different operators to apply the same standardized access category. In the present disclosure, a category corresponding to Emergency may belong to the standardized access category described above. All accesses may correspond to at least one of the standardized access categories described above.
또 다른 종류는 operator-specific (non-standardized) access category이다. 상술된 카테고리는 3GPP 외부에서 정의되며, 표준 문서에 명시화되지 않는다. 따라서, 사업자마다 하나의 operator-specific access category가 의미하는 것은 상이할 수 있다. 이는 기존의 ACDC(Application specific Congestion control for Data Communication)에서의 카테고리와 그 성격이 동일하다. 단말 NAS에서, 트리거된 어떤 엑세스는 operator-specific access category에 맵핑되지 않을 수도 있다. 기존 ACDC와의 큰 차이점은 상술된 카테고리가 어플리케이션에만 대응되는 것이 아니라, 어플리케이션 이외에 다른 요소들, 즉 서비스 종류, 콜 종류, 단말 종류, 사용자 그룹, 시그널링 종류, 슬라이스 종류 혹은 상술된 요소들의 조합과도 대응될 수 있다는 점이다. 즉, 다른 요소에 속한 엑세스들에 대해 엑세스 승인 여부를 제어할 수 있다. 상술된 엑세스 카테고리는 아래의 [표 5]와 같이 특정 엑세스를 지시하는데 이용될 수 있다. 엑세스 카테고리 0 번부터 7 번까지는 standardized access category을 지시하는데 이용되며, 엑세스 카테고리 32 번부터 63는 operator-specific access category을 지시하는데 이용될 수 있다.  Another kind is the operator-specific (non-standardized) access category. The aforementioned categories are defined outside 3GPP and are not specified in the standard document. Thus, the meaning of one operator-specific access category for each operator may be different. This is the same as the category in the existing ACDC (Application specific Congestion control for Data Communication). At the terminal NAS, any access triggered may not be mapped to an operator-specific access category. The main difference from the existing ACDC is that the above-mentioned categories correspond not only to the application but also to other elements besides the application, that is, service type, call type, terminal type, user group, signaling type, slice type, or a combination of the above-described elements. Can be. That is, it is possible to control whether to grant access to accesses belonging to other elements. The above-described access category may be used to indicate a specific access as shown in Table 5 below. Access categories 0 through 7 can be used to indicate a standardized access category, and access categories 32 through 63 can be used to indicate an operator-specific access category.
Figure PCTKR2019009807-appb-img-000006
Figure PCTKR2019009807-appb-img-000006
사업자 서버(2b-25)는 NAS 시그널링 혹은 어플리케이션 레벨 데이터 전송을 통해, 단말 NAS(b-10)에게 operator-specific access category 정보에 대한 정보(Management Object, MO)를 제공할 수 있다. 상술된 정보는 각 operator-specific category가 어플리케이션 등 어떤 요소에 대응되는지를 나타낼 수 있다. 예를 들어, 엑세스 카테고리 32 번은 페이스북 어플리케이션에 대응하는 엑세스에 대응됨을 상술된 정보에 명시할 수 있다. 기지국(2b-20)은 시스템 정보를 이용하여, barring 설정 정보를 제공하는 카테고리 리스트와 각 카테고리에 대응하는 barring 설정 정보 정보를 단말(2b-05)들에게 제공할 수 있다. 단말(2b-05)은 NAS(2b-10)와 AS(Access Stratum, 2b-15)의 논리적인 블록을 포함할 수 있다. The operator server 2b-25 may provide the terminal NAS b-10 with information about operator-specific access category information (Management Object, MO) through NAS signaling or application level data transmission. The above information may indicate which element each operator-specific category corresponds to, such as an application. For example, the access category 32 may specify in the above-described information that the access category 32 corresponds to an access corresponding to a Facebook application. The base station 2b-20 may provide the terminal 2b-05 with a category list for providing barring configuration information and barring configuration information corresponding to each category using the system information. The terminal 2b-05 may include logical blocks of the NAS 2b-10 and the access stratum 2b-15.
단말 NAS(2b-10)는 트리거된 엑세스를 소정의 규칙에 따라, 상술된 하나 이상의 엑세스 아이덴티티와 하나의 상술된 엑세스 카테고리에 맵핑시킬 수 있다. 상술된 맵핑 동작은 모든 RRC states, 즉, 연결 모드 (RRC_CONNECTED), 대기 모드 (RRC_IDLE), 비활성 모드 (RRC_INACTIVE)에서 수행될 수 있다. 각 RRC state의 특성은 아래와 같이 나열될 수 있다. The terminal NAS 2b-10 may map the triggered access to one or more of the above-described access identities and one of the above-described access categories according to a predetermined rule. The above-described mapping operation may be performed in all RRC states, that is, in the connected mode (RRC_CONNECTED), the standby mode (RRC_IDLE), and the inactive mode (RRC_INACTIVE). The characteristics of each RRC state can be listed as follows.
RRC_IDLE:RRC_IDLE:
- A UE specific DRX may be configured by upper layers;A UE specific DRX may be configured by upper layers;
- UE controlled mobility based on network configuration;UE controlled mobility based on network configuration;
- The UE:The UE:
- Monitors a Paging channel;Monitors a Paging channel;
- Performs neighbouring cell measurements and cell (re-)selection;Performs neighboring cell measurements and cell (re-) selection;
- Acquires system information.-Acquires system information.
RRC_INACTIVE:RRC_INACTIVE:
- A UE specific DRX may be configured by upper layers or by RRC layer;A UE specific DRX may be configured by upper layers or by RRC layer;
- UE controlled mobility based on network configuration;UE controlled mobility based on network configuration;
- The UE stores the AS context;The UE stores the AS context;
- The UE:The UE:
- Monitors a Paging channel;Monitors a Paging channel;
- Performs neighbouring cell measurements and cell (re-)selection;Performs neighboring cell measurements and cell (re-) selection;
- Performs RAN-based notification area updates when moving outside the RAN-based notification area;Performs RAN-based notification area updates when moving outside the RAN-based notification area;
- Acquires system information.-Acquires system information.
RRC_CONNECTED:RRC_CONNECTED:
- The UE stores the AS context.The UE stores the AS context.
- Transfer of unicast data to/from UE.Transfer of unicast data to / from UE.
- At lower layers, the UE may be configured with a UE specific DRX.;At lower layers, the UE may be configured with a UE specific DRX .;
- For UEs supporting CA, use of one or more SCells, aggregated with the SpCell, for increased bandwidth;For UEs supporting CA, use of one or more SCells, aggregated with the SpCell, for increased bandwidth;
- For UEs supporting DC, use of one SCG, aggregated with the MCG, for increased bandwidth;-For UEs supporting DC, use of one SCG, aggregated with the MCG, for increased bandwidth;
- Network controlled mobility, i.e. handover within NR and to/from E-UTRAN.Network controlled mobility, i.e. handover within NR and to / from E-UTRAN.
- The UE:The UE:
- Monitors a Paging channel;Monitors a Paging channel;
- Monitors control channels associated with the shared data channel to determine if data is scheduled for it;Monitors control channels associated with the shared data channel to determine if data is scheduled for it;
- Provides channel quality and feedback information;Provides channel quality and feedback information;
- Performs neighbouring cell measurements and measurement reporting;Performs neighboring cell measurements and measurement reporting;
- Acquires system information.-Acquires system information.
다른 옵션으로, 상술된 엑세스 카테고리 맵핑에서, 하나의 엑세스는 하나의 standardized access category와 맵핑 가능하다면, 추가적으로 하나의 operator-specific access category와 맵핑될 수도 있다. 상술된 단말 NAS(2b-10)는 Service Request와 함께 상술된 맵핑한 엑세스 아이덴티티와 엑세스 카테고리를 상술된 단말 AS(2b-15)에 전달할 수 있다. Alternatively, in the access category mapping described above, one access may be additionally mapped to one operator-specific access category if it can be mapped to one standardized access category. The above-described terminal NAS 2b-10 may transmit the above-described mapped access identity and access category to the above-described terminal AS 2b-15 together with the service request.
단말 AS(2b-15)는 모든 RRC state에서 단말 NAS(2b-10)로부터 수신하는 메시지와 함께 상술된 엑세스 아이덴티티 혹은 엑세스 카테고리 정보를 제공받는다면, 상술된 메시지로 인해 야기되는 무선 접속을 수행하기 전에 이것이 허용되는지 여부를 판단하는 barring check 동작을 수행할 수 있다. If the terminal AS 2b-15 is provided with the above-described access identity or access category information together with the message received from the terminal NAS 2b-10 in all RRC states, performing the wireless connection caused by the above-described message. You can perform a barring check operation to determine whether this is allowed before.
상술된 barring check 동작을 통해, 무선 접속이 허용되면, 단말(2b-05)은 네트워크에 RRC 연결 설정을 요청할 수 있다. 일 실시예에 있어서, 연결 모드 혹은 비활성 모드 단말의 NAS(2b-10)는 아래의 이유로 인해, 단말 AS(2b-15)에 엑세스 아이덴티티와 엑세스 카테고리를 전송할 수 있다(2b-30). 본 개시에서는 아래의 이유들을 'new session request'로 통칭한다. If the wireless connection is allowed through the barring check operation described above, the terminal 2b-05 may request the RRC connection establishment from the network. In one embodiment, the NAS 2b-10 of the connected mode or inactive mode terminal may transmit the access identity and the access category to the terminal AS 2b-15 for the following reason (2b-30). In the present disclosure, the following reasons are collectively referred to as 'new session request'.
- new MMTEL(Multimedia Telephony) voice or video sessionnew MMTEL (Multimedia Telephony) voice or video session
- sending of SMS (SMS over IP, or SMS over NAS)-sending of SMS (SMS over IP, or SMS over NAS)
- new PDU session establishmentnew PDU session establishment
- existing PDU session modificationexisting PDU session modification
- service request to re-establish the user plane for an existing PDU session-service request to re-establish the user plane for an existing PDU session
반면, 대기 모드 단말의 NAS(2b-10)는 서비스 요청 (Service Request) 시, 단말 AS(2b-15)에 엑세스 아이덴티티와 엑세스 카테고리를 전송할 수 있다. On the other hand, the NAS 2b-10 of the standby mode terminal may transmit an access identity and an access category to the terminal AS 2b-15 at the time of a service request.
단말 AS(2b-15)는 상술된 barring 설정 정보 정보를 이용하여, 단말 NAS(2b-10)에 의해 트리거된 엑세스가 허용되는지 여부를 판단할 수 있다(barring check). The terminal AS 2b-15 may determine whether the access triggered by the terminal NAS 2b-10 is allowed using the barring configuration information described above (barring check).
사업자는 Access Class 11부터 15중 적어도 하나와 대응하는 엑세스 중에서 특정 서비스 종류만을 허용하기를 원할 수 있다. 따라서, 본 개시의 일 실시예는 엑세스 아이덴티티로 지시되는 Access Class 11, 12, 13, 14, 15에 속하는 엑세스를 access category로 구별되는 속성에 따라 엑세스 허용 여부를 결정하는 것을 특징으로 할 수 있다. 이를 위해, 일 실시예는 엑세스 아이덴티티 혹은 엑세스 카테고리의 barring 설정 정보를 구성하는 방법을 제안한다. 본 개시에서는 예시적으로, 상술된 엑세스 카테고리의 barring 설정 정보는 종래의 ACB(Access Class Barring) 혹은 ACDC의 barring 설정 정보처럼 ac-barringFactor와 ac-barringTime으로 구성된다고 가정한다.The operator may want to allow only certain types of services from among accesses corresponding to at least one of Access Class 11 through 15. Accordingly, one embodiment of the present disclosure may be characterized in that the access to the access class 11, 12, 13, 14, 15 that is indicated by the access identity is determined whether to allow access according to the attribute distinguished by the access category. To this end, an embodiment proposes a method of configuring barring configuration information of an access identity or an access category. In the present disclosure, for example, it is assumed that the barring setting information of the above-described access category is composed of an ac-barringFactor and an ac-barringTime like the conventional barring setting information of ACB (Access Class Barring) or ACDC.
도 10은 일 실시예에 따른 연결 모드 혹은 비활성 모드 단말이 엑세스 제어를 수행하는 과정을 설명하기 위한 도면이다.10 is a diagram for describing a process of performing access control by a connected mode or inactive mode terminal according to an embodiment.
도 10을 참조하면, 단말(2c-05)은 NAS(2c-10)와 AS(2c-15)를 포함한다. 상술된 NAS는 무선 접속과 직접적인 관련없는 과정들, 즉 인증, 서비스 요청, 세션 관리를 담당하며, 반면 상술된 AS는 무선 접속과 관련있는 과정들을 담당할 수 있다. Referring to FIG. 10, the terminal 2c-05 includes a NAS 2c-10 and an AS 2c-15. The NAS described above is responsible for processes not directly related to the wireless connection, i.e., authentication, service request, session management, while the AS described above may be responsible for processes related to the wireless connection.
단계 2c-25에서, 네트워크(2c-20)는 OAM(어플리케이션 레벨의 데이터 메시지) 혹은 NAS 메시지를 이용하여 상술된 NAS에 management object 정보를 제공할 수 있다. 상술된 정보는 각 operator-specific access category가 어플리케이션 등 어떤 요소에 대응되는지를 나타낼 수 있다. NAS(2c-10)는 트리거된 엑세스가 어떤 operator-specific category에 맵핑되는지를 판단하기 위해, 상술된 정보를 이용할 수 있다. 상술된 트리거된 엑세스는 신규 MMTEL 서비스(음성 통화, 영상 통화), SMS 전송, 신규 PDU 세션 성립, 기존 PDU 세션 변경 등이 해당될 수 있다. In steps 2c-25, the network 2c-20 may provide management object information to the NAS described above using an OAM (application level data message) or NAS message. The above information may indicate which element, such as an application, each operator-specific access category corresponds to. The NAS 2c-10 may use the information described above to determine which operator-specific category the triggered access maps to. The triggered access described above may correspond to a new MMTEL service (voice call, video call), SMS transmission, new PDU session establishment, existing PDU session change, and the like.
단계 2c-30에서, NAS(2c-10)는 서비스가 트리거되면, 상술된 서비스의 속성과 대응되는 엑세스 아이덴티티와 엑세스 카테고리를 맵핑시킬 수 있다. 상술된 서비스는 어느 엑세스 아이덴티티와도 맵핑되지 않을 수도 있으며, 하나 이상의 엑세스 아이덴티티와 맵핑될 수도 있다. 또한 상술된 서비스는 하나의 엑세스 카테고리와 맵핑될 수 있다. 하나의 엑세스 카테고리와 맵핑할 수 있다는 가정에서는 상술된 서비스가 상술된 management object에서 제공하는 operator-specific access category와 맵핑되는지 여부를 먼저 확인할 수 있다. 어느 operator-specific access category와도 맵핑이 되지 않는다면, 상술된 standardized access category 중 대응할 수 있는 하나와 맵핑시킬 수 있다. 복수 개의 엑세스 카테고리와 맵핑할 수 있다는 가정에서는 하나의 서비스는 하나의 operator-specific access category와 하나의 standardized access category와 맵핑시킨다. 그러나, 어느 operator-specific access category와도 맵핑이 되지 않는다면, 상술된 standardized access category 중 대응할 수 있는 하나와 맵핑시킬 수 있다. 실시예에 있어서, 상술된 맵핑 규칙에서 emergency 서비스는 예외가 될 수 있다. In operation 2c-30, when the service is triggered, the NAS 2c-10 may map an access identity and an access category corresponding to the attribute of the service described above. The service described above may not be mapped to any access identity, or may be mapped to one or more access identities. In addition, the above-described service may be mapped to one access category. Assuming that it can be mapped to one access category, it can be checked first whether or not the above-described service is mapped to an operator-specific access category provided by the above-described management object. If it does not map to any operator-specific access category, it can be mapped to one of the standardized access categories described above. Assuming that you can map to multiple access categories, one service maps to one operator-specific access category and one standardized access category. However, if it is not mapped to any operator-specific access category, it can be mapped to one of the standardized access categories described above. In an embodiment, the emergency service may be an exception in the above-described mapping rule.
단계 2c-40에서, NAS(2c-10)는 상술된 맵핑한 엑세스 아이덴티티와 엑세스 카테고리와 함께, new session request 혹은 Service Request을 AS(2c-15)로 전송한다. NAS(2c-10)는 연결 모드 혹은 비활성 모드에서는 new session request, 대기 모드에서는 Service Request를 전송할 수 있다. In step 2c-40, the NAS 2c-10 sends a new session request or service request to the AS 2c-15 together with the mapped access identity and access category described above. The NAS 2c-10 may transmit a new session request in the connected mode or the inactive mode and a service request in the standby mode.
단계 2c-35에서, AS(2c-15)는 네트워크가 브로드캐스팅하는 시스템 정보(System Information)로부터 barring 설정 정보를 수신할 수 있다. 상술된 barring 설정 정보의 ASN.1 구조의 일례는 아래의 코드와 같으며, 이에 대한 상세한 설명은 후술한다.In operation 2c-35, the AS 2c-15 may receive barring configuration information from system information broadcast by the network. An example of the ASN.1 structure of the barring configuration information described above is the following code, a detailed description thereof will be described later.
Figure PCTKR2019009807-appb-img-000007
Figure PCTKR2019009807-appb-img-000007
단계 2c-45에서, AS(2c-15)는 NAS(2c-10)가 맵핑한 엑세스 아이덴티티와 엑세스 카테고리 정보와 상술된 네트워크로부터 수신한 대응하는 barring 설정 정보를 이용하여, 상술된 서비스 요청이 허용되는지 여부를 판단할 수 있다. 본 개시에서는 상술된 서비스 요청이 허용되는지 여부를 판단하는 동작을 barring check라고 칭한다. 단말(2c-05)은 상술된 엑세스 제어 설정 정보를 포함한 시스템 정보를 수신하고, 상술된 설정 정보를 저장할 수 있다. 상술된 barring 설정 정보는 PLMN별 및 access category 별로 제공될 수 있다. BarringPerCatList IE는 하나의 PLMN에 속한 access category들의 barring 설정 정보를 제공하는데 이용될 수 있다. 이를 위해, PLMN id와 각 access category들의 barring 설정 정보가 리스트 형태로 상술된 IE에 포함될 수 있다. 상술된 access category별 barring 설정 정보는 특정 access category을 지시하는 access category id (혹은 index), uac-BarringForAccessIdentity field, uac-BarringFactor field와 uac-Barringtime field을 포함할 수 있다. In steps 2c-45, the AS 2c-15 permits the above-described service request, using the access identity and access category information mapped by the NAS 2c-10 and the corresponding barring configuration information received from the network described above. Can be determined. In the present disclosure, an operation of determining whether the above-described service request is allowed is called a barring check. The terminal 2c-05 may receive the system information including the above-described access control setting information and store the above-mentioned setting information. The barring configuration information described above may be provided for each PLMN and for each access category. BarringPerCatList IE can be used to provide barring configuration information of access categories belonging to one PLMN. To this end, the PLMN id and barring configuration information of each access category may be included in the above-described IE in the form of a list. The barring configuration information for each access category may include an access category id (or index) indicating a specific access category, a uac-BarringForAccessIdentity field, a uac-BarringFactor field, and a uac-Barringtime field.
상술된 barring check 동작의 일 실시예를 보다 구체적으로 설명하면 다음과 같다. 먼저, uac-BarringForAccessIdentity을 구성하는 각 비트들은 하나의 엑세스 아이덴티티와 대응되며, 상술된 비트 값이 '0'으로 지시되면, 상술된 엑세스 아이덴티티와 관련된 엑세스는 허용된다. 상술된 맵핑된 엑세스 아이덴티티들 중 적어도 하나에 대해, uac-BarringForAccessIdentity 내의 대응하는 비트들 중 적어도 하나가 '0'이면 엑세스가 허용될 수 있다. 상술된 맵핑된 엑세스 아이덴티티들 중 적어도 하나에 대해, uac-BarringForAccessIdentity 내의 대응하는 비트들 중 어느 하나도'0'이 아니면, 추가적으로 uac-BarringFactor field을 이용하여 후술되는 추가적인 barring check을 수행할 수 있다. 상술된 uac-BarringFactor α의 범위는 0 ≤ α <1 일 수 있다. 단말 AS는 0 ≤ rand <1인 하나의 랜덤 값 rand을 도출하며, 상술된 랜덤 값이 상술된 uac-BarringFactor보다 작으면 엑세스가 금지되지 않은 것으로, 그렇지 않다면 엑세스가 금지된 것으로 간주할 수 있다. 엑세스가 금지된 것으로 결정되면, 상술된 단말 AS(2c-15)는 아래의 [수학식 2]를 이용하여 도출된 소정의 시간 동안 엑세스 시도를 지연시킬 수 있다. 단말 AS(2c-15)는 상술된 시간 값을 가지는 타이머를 구동시킬 수 있다. 본 개시에서는 상술된 타이머를 barring timer라 칭한다.Hereinafter, an embodiment of the barring check operation described above will be described in detail. First, each bit constituting uac-BarringForAccessIdentity corresponds to one access identity, and when the above-described bit value is indicated as '0', access associated with the above-described access identity is allowed. For at least one of the mapped access identities described above, access may be allowed if at least one of the corresponding bits in uac-BarringForAccessIdentity is '0'. If at least one of the corresponding bits in the uac-BarringForAccessIdentity is not '0' for at least one of the mapped access identities described above, an additional barring check may be performed using the uac-BarringFactor field. The above-described range of uac-BarringFactor α may be 0 ≦ α <1. The terminal AS derives one random value rand with 0 ≤ rand <1, and if the above-mentioned random value is smaller than the above-described uac-BarringFactor, access may not be prohibited. Otherwise, access may be regarded as prohibited. If it is determined that access is prohibited, the above-described terminal AS 2c-15 may delay the access attempt for a predetermined time derived using Equation 2 below. The terminal AS 2c-15 may drive a timer having the above-described time value. In the present disclosure, the above-described timer is called a barring timer.
Figure PCTKR2019009807-appb-img-000008
Figure PCTKR2019009807-appb-img-000008
상술된 엑세스가 금지되면, 상술된 단말 AS(2c-15)는 이를 상술된 단말 NAS(2c-10)에게 알릴 수 있다. 그리고, 도출된 소정의 시간이 만료되면, 상술된 단말 AS(2c-15)는 단말 NAS(2c-10)에게 다시 엑세스를 요청할 수 있음(barring alleviation)을 알릴 수 있다. 이때부터 상술된 단말 NAS(2c-10)은 엑세스를 상술된 단말 AS(2c-15)에 다시 요청할 수 있다. If the above-mentioned access is prohibited, the above-mentioned terminal AS 2c-15 may inform the above-mentioned terminal NAS 2c-10. When the derived predetermined time expires, the above-described terminal AS 2c-15 may inform the terminal NAS 2c-10 that it can request access again (barring alleviation). From this time, the above-described terminal NAS 2c-10 may request access to the above-mentioned terminal AS 2c-15 again.
단계 2c-50에서, 상술된 소정의 규칙에 따라, 서비스 요청이 허용되면, 상술된 AS(2c-15)는 상술된 네트워크에 RRC 연결 성립(RRC connection establishment 혹은 RRC connection resume)을 요청하거나, new session과 관련된 데이터를 전송할 수 있다. In step 2c-50, according to the predetermined rule described above, if the service request is allowed, the above-described AS 2c-15 requests the RRC connection establishment or RRC connection resume from the above-mentioned network, or new Send data related to session.
차세대 이동통신 시스템에서는 단말 AS에서 엑세스를 트리거할 수도 있다. 일 실시예로, 비활성 모드에 있는 단말은 RNA update(RAN Notification Area)혹은 Resume 과정을 단말 NAS가 관여하지 않은 상태에서 트리거할 수 있다. RNA update는 TAU(Tracking Area Update)와 유사한 동작으로, 단말이 RAN 레벨에서 미리 설정된 셀 혹은 셀 그룹 단위의 영역 (RNA)을 벗어나 새로운 영역으로 이동할 경우 혹은 주기적으로, RAN에 RNA를 보고하는 과정이다. Resume은 비활성 모드에 있는 단말이 다시 데이터 송수신을 시작하기 위해, 연결 모드로 전환하는 과정이다. 통상 3 단계의 RRC 메시지 송수신이 요구될 수 있다. 본 개시에서는, 예시적으로 상술된 바와 같은 엑세스를 AS-triggered event로 칭한다. In the next generation mobile communication system, the access may be triggered in the terminal AS. In an embodiment, the terminal in the inactive mode may trigger an RNA update (RAN Notification Area) or Resume process in a state where the terminal NAS is not involved. RNA update is an operation similar to a tracking area update (TAU), in which the UE reports RNA to the RAN periodically or periodically when the UE moves out of a predetermined cell or cell group area (RNA) at the RAN level. . Resume is a process in which the terminal in the inactive mode switches to the connected mode in order to start transmitting and receiving data again. In general, three levels of RRC message transmission and reception may be required. In the present disclosure, access as described above by way of example is referred to as an AS-triggered event.
도 11은 일 실시예에 따른 연결 모드 혹은 비활성 모드 단말이 AS-triggered event에 대한 엑세스 제어를 수행하는 과정을 설명하기 위한 순서도이다. 11 is a flowchart illustrating a process of performing an access control for an AS-triggered event by a connected mode or inactive mode terminal according to an embodiment.
도 11을 참조하면, 단말(2d-05)은 단말 NAS(2d-10)와 AS(2d-15)를 포함한다. 통상 LTE에서는 단말 NAS(2d-10)가 엑세스를 트리거하지만, 차세대 이동통신 시스템에서는 특정 엑세스에 대해, 단말 AS(2d-15)가 트리거할 수 있다. Referring to FIG. 11, the terminal 2d-05 includes a terminal NAS 2d-10 and an AS 2d-15. In general, the terminal NAS 2d-10 triggers an access in LTE, but in the next generation mobile communication system, the terminal AS 2d-15 may trigger a specific access.
단계 2d-25에서, 기지국(2d-20)은 시스템 정보를 이용하여, barring 설정 정보를 서비스 영역 내에 있는 단말들에게 제공할 수 있다. 상술된 barring 설정 정보는 access category별로 제공될 수 있다. In step 2d-25, the base station 2d-20 may provide the barring configuration information to the terminals in the service area by using the system information. The barring configuration information described above may be provided for each access category.
단계 2d-30에서, 상술된 단말 AS(2d-15)는 RNA update 혹은 Resume등 특정 엑세스를 트리거할 수 있다. In step 2d-30, the above-described terminal AS (2d-15) may trigger a specific access, such as RNA update or Resume.
단계 2d-35에서, 단말 AS(2d-15)는 상술된 엑세스에 대해, 대응하는 하나의 access category을 맵핑시킬 수 있다. 그리고 단말 AS(2d-15)는 상술된 맵핑된 access category와 대응하는 barring 설정 정보를 이용하여, barring check을 수행할 수 있다. barring check에관하여는 앞선 도면들을 참조하여 설명하였다. 상술된 barring check의 결과에 따라, 단계 2d-40에서, 단말 AS(2d-15)는 상술된 엑세스가 금지되는 것으로 간주되면, 하나의 barring 시간을 도출하고, 상술된 시간 값을 가지는 타이머, 즉 barring timer를 구동시킬 수 있다. 상술된 타이머가 구동하는 동안에는 상술된 access category에 대응하는 엑세스에 대해 금지 (barred)되는 것으로 간주할 수 있다. 따라서, 단말 AS(2d-15)는 상술된 타이머가 만료하기 전까지 엑세스가 금지된 AS-triggered event을 트리거하지 않을 수 있다. 단말 NAS(2d-10)는 상술된 타이머가 만료하기 전까지 엑세스가 금지된 NAS-triggered event을 트리거하지 않거나, 트리거된거라도, 단말 AS(2d-15)가 상술된 NAS-triggered event을 엑세스 금지로 간주할 수 있다. 실시예에 있어서, 상술된 타이머를 어느 범위의 access category까지 적용할지에 관하여, 아래와 같이 여러 옵션이 제안될 수 있다. In steps 2d-35, the terminal AS 2d-15 may map one corresponding access category to the above-described access. The terminal AS 2d-15 may perform barring check by using the barring configuration information corresponding to the mapped access category described above. Barring check has been described with reference to the preceding drawings. According to the result of the barring check described above, in step 2d-40, if the terminal AS 2d-15 is deemed to be prohibited from access described above, the terminal AS 2d-15 derives one barring time, and has a timer having the aforementioned time value, i.e. You can start the barring timer. While the above-described timer is running, it can be regarded as barred for access corresponding to the above-described access category. Accordingly, the terminal AS 2d-15 may not trigger the AS-triggered event for which access is prohibited until the above-described timer expires. The terminal NAS 2d-10 does not trigger the access-prohibited NAS-triggered event until the above-described timer expires, or even if triggered, the terminal AS 2d-15 sets the above-described NAS-triggered event to prohibit access. Can be considered. In an embodiment, with regard to which range of access categories the timer described above applies to, various options may be proposed as follows.
- option 1: 모든 access category에 대해, 단일 barring timer 적용Option 1: apply a single barring timer for all access categories
하나의 access category에 대응하는 엑세스가 barring check을 통해, 금지되는 것으로 간주되면, 하나의 타이머가 구동될 수 있다. 상술된 타이머가 구동되는 동안에는 모든 access category의 엑세스를 시도할 수 없다. 이 때, 미리 설정 혹은 정의된 특정 access category는 엑세스 시도가 허용될 수 있다. 일례로, emergency call, high priority access 혹은 MT(Mobile Termination) 엑세스는 타이머 구동과 상관없이 엑세스를 시도할 수 있다. If access corresponding to one access category is deemed to be prohibited through a barring check, one timer can be started. While the above timer is running, access of all access categories cannot be attempted. In this case, an access attempt may be allowed for a predetermined or predefined access category. For example, an emergency call, high priority access, or MT (Mobile Termination) access may attempt to access regardless of timer operation.
- option 2: access category별 barring timer 적용-option 2: apply barring timer for each access category
하나의 access category에 대응하는 엑세스가 barring check을 통해, 금지되는 것으로 간주되면, 하나의 타이머가 구동될 수 있다. 상술된 타이머가 구동되는 동안에는 해당 access category에 대한 엑세스를 시도할 수 없을 수 있다. 따라서, 다른 access category에 속한 엑세스는 시도될 수 있다.If access corresponding to one access category is deemed to be prohibited through a barring check, one timer can be started. While the above-described timer is running, it may not be possible to attempt to access the corresponding access category. Thus, access belonging to different access categories can be attempted.
- option 3: 소정의 access category 그룹별 barring timer 적용-option 3: apply barring timer for each access category group
하나의 access category에 대응하는 엑세스가 barring check을 통해, 금지되는 것으로 간주되면, 하나의 타이머가 구동될 수 있다. 상술된 타이머가 구동되는 동안에는 해당 access category가 속한 그룹의 모든 access category에 대한 엑세스를 시도할 수 없을 수 있다. 상술된 그룹은 여러 정의로 특정될 수 있다. 일 실시예에 있어서, standardized access category와 operator-defined access category를 각각 하나의 그룹, 혹은 소정의 우선 순위에 따른 그룹 혹은 NAS-triggered event와 AS-triggered event을 각각 하나의 그룹으로 할 수 있다. If access corresponding to one access category is deemed to be prohibited through a barring check, one timer can be started. While the above timer is running, it may not be possible to attempt access to all the access categories of the group to which the corresponding access category belongs. The above-mentioned groups may be specified by various definitions. According to an embodiment, the standardized access category and the operator-defined access category may be one group, a group according to a predetermined priority, or one NAS-triggered event and one AS-triggered event, respectively.
- option 4: standardized access category별 barring timer 적용, 그리고 모든 operator-defined access category에 대한 단일 barring timer 적용Option 4: Apply barring timers for each standardized access category, and apply a single barring timer for all operator-defined access categories.
하나의 standardized access category에 대응하는 엑세스가 barring check을 통해, 금지되는 것으로 간주되면, 하나의 타이머가 구동될 수 있다. 상술된 타이머가 구동되는 동안에는 해당 standardized access category에 대한 엑세스를 시도할 수 없을 수 있다. 이 때, 다른 access category에 속한 엑세스는 시도될 수 있다. 반면, 하나의 operator-defined access category에 대응하는 엑세스가 barring check을 통해, 금지되는 것으로 간주되면, 하나의 타이머가 구동될 수 있다. 상술된 타이머가 구동되는 동안에는 모든 operator-defined access category의 엑세스를 시도할 수 없을 수 있다.If access corresponding to one standardized access category is deemed to be prohibited through a barring check, one timer can be started. While the above-described timer is running, access to the corresponding standardized access category may not be attempted. At this time, access belonging to another access category may be attempted. On the other hand, if an access corresponding to one operator-defined access category is deemed to be prohibited through the barring check, one timer may be started. While the above-described timer is running, it may not be possible to attempt to access all operator-defined access categories.
본 개시의 일 실시예에 의하면, 상술된 AS-triggered event의 엑세스가 금지되는 경우, 소정의 조건이 만족하지 않는다면, 이를 상술된 단말 NAS(2d-10)에 알리지 않으며, 이에 대응하는 barring timer가 만료할 시 이를 알리지 않을 수 있다. According to one embodiment of the present disclosure, when access of the above-described AS-triggered event is prohibited, if a predetermined condition is not satisfied, the above-described terminal NAS 2d-10 is not informed, and a barring timer corresponding thereto is not provided. You may not be notified when it expires.
단계 2d-50에서, 상기 타이머가 구동될 수 있다.In step 2d-50, the timer may be driven.
단계 2d-45에서, 단말 AS(2d-15)가 특정 access category 혹은 access category 그룹에 대해 엑세스가 금지되었다는 것을 단말 NAS(2d-10)에 알리기 않기 때문에, 상술된 타이머가 구동하는 동안, 상술된 단말 NAS(2d-10)는 상술된 특정 access category 혹은 access category 그룹에 대해 새로운 엑세스를 트리거할 수 있다. In step 2d-45, because the terminal AS 2d-15 does not inform the terminal NAS 2d-10 that access is prohibited for a specific access category or group of access categories, while the above-described timer is running, The terminal NAS 2d-10 may trigger a new access for the specific access category or access category group described above.
단계 2d-55에서, 단말 NAS(2d-10)는 상술된 단말 AS(2d-15)에게 상술된 엑세스에 대응하는 access category, access identity와 함께 service request 혹은 session management을 전송할 수 있다. In step 2d-55, the terminal NAS 2d-10 may transmit a service request or session management to the terminal AS 2d-15 together with an access category and an access identity corresponding to the aforementioned access.
단계 2d-60에서, 단말 AS(2d-15)는 상술된 새로운 엑세스에 대응하는 barring timer가 이미 구동 중이면, 상술된 엑세스가 허용되지 않음을 단말 NAS(2d-10)에 알릴 수 있다. 하나의 예외로, 만약 access category와 함께 단말 NAS(2d-10)로부터 제공받은 access identity에 대해, 기지국이 시스템 정보를 이용하여 엑세스 허용을 설정하였다면, 상술된 엑세스를 허용할 수도 있다. In step 2d-60, the terminal AS 2d-15 may inform the terminal NAS 2d-10 that the above-described access is not allowed if the barring timer corresponding to the new access described above is already running. As an exception, if the base station has set an access permission using the system information on the access identity provided from the terminal NAS 2d-10 together with the access category, the above-described access may be allowed.
상술된 barring timer가 만료되고 상술된 엑세스가 금지되고 있음을 상술된 단말 NAS(2d-10)에게 알린 경우, 단계 2d-65에서, 단말 AS(2d-15)는 상술된 타이머가 만료되었음을 상술된 단말 NAS(2d-10)에 알릴 수 있다. 이는 단말 NAS(2d-10)가 상술된 barring timer가 구동 중임에도, 반복적으로 엑세스를 트리거하는 것을 방지하기 위함이다. If the above-mentioned barring timer has expired and the above-mentioned terminal NAS 2d-10 has been notified that the above-described access is prohibited, in step 2d-65, the above terminal AS 2d-15 indicates that the above-described timer has expired. The terminal NAS 2d-10 can be informed. This is to prevent the terminal NAS 2d-10 from repeatedly triggering access even when the above-described barring timer is running.
단계 2d-70에서, 상술된 barring timer가 만료됨을 보고받은 상술된 단말 NAS(2d-10)은 상술된 access category 혹은 access category 그룹에 대해 새로운 엑세스를 트리거할 수 있다. In step 2d-70, the above-described terminal NAS 2d-10 that is reported that the above-described barring timer expires may trigger a new access for the aforementioned access category or access category group.
단계 2d-75에서,상술된 엑세스에 대해, 단말 AS(2d-15)는 barring check을 수행하고, 허용되는 것으로 간주되면 기지국으로 엑세스를 시도할 수 있다. 따라서, 본 개시에서 상술된 소정의 조건이란, 단말 AS(2d-15)가 하나의 barring timer을 구동 중에 단말 NAS(2d-10)가 상술된 barring timer에 대응하는 access category 혹은 access category 그룹에 대해 새로운 엑세스를 트리거하고, 이를 단말 AS(2d-15)에 엑세스를 요청하는 경우일 수 있다. In step 2d-75, for the above-described access, the terminal AS 2d-15 may perform a barring check and, if deemed to be allowed, may attempt to access the base station. Therefore, the predetermined condition described in the present disclosure refers to an access category or an access category group corresponding to the barring timer described above by the terminal NAS 2d-10 while the terminal AS 2d-15 is driving one barring timer. It may be a case of triggering a new access and requesting access to the terminal AS 2d-15.
구동 중인 barring timer와 대응하지 않은 엑세스, access category 혹은 access category 그룹은 별도의 상술된 동작을 수행할 수 있다. An access, access category, or access category group that does not correspond to the running barring timer may perform the above-described separate operation.
도 12는 일 실시예에 따른 단말 AS 동작을 설명하기 위한 순서도이다. 12 is a flowchart illustrating an operation of a terminal AS according to an embodiment.
2e-05 단계에서, 단말 AS는 NAS-triggered event 혹은 AS-triggered event을 인지할 수 있다. 상술된 NAS-triggered event는 단말 NAS에 의해 트리거되고, 관련된 access category가 상술된 단말 AS에게 전달될 수 있다. 상술된 AS-triggered event는 단말 AS가 트리거하며, RNA update 혹은 Resume 등이 이에 속할 수 있다. In step 2e-05, the terminal AS may recognize a NAS-triggered event or an AS-triggered event. The above-described NAS-triggered event may be triggered by the terminal NAS, and the relevant access category may be delivered to the terminal AS described above. The above-mentioned AS-triggered event is triggered by the terminal AS, such as RNA update or Resume may belong to this.
2e-10 단계에서, NAS-triggered event에 대해, 상술된 단말 AS는 barring check을 수행할 수 있다. 이 때, 단말 AS는 상술된 단말 NAS가 제공하는 access category와 기지국이 브로드캐스팅하는 상술된 access category에 대응하는 barring 설정 정보를 이용할 수 있다. 실시예에 있어서, 단말 AS는 단말 NAS가 제공하는 access category와 함께 하나 이상의 access identity을 제공할 수 있으며, 기지국이 시스템 정보를 이용하여 상술된 access identity들 중 적어도 하나에 대해 엑세스 허용을 설정하였다면, 상술된 엑세스를 허용하는 것으로 간주할 수 있다. In step 2e-10, for the NAS-triggered event, the terminal AS described above may perform a barring check. In this case, the terminal AS may use barring configuration information corresponding to the access category provided by the aforementioned terminal NAS and the aforementioned access category broadcast by the base station. In an embodiment, the terminal AS may provide one or more access identities together with the access category provided by the terminal NAS, and if the base station has set access permission to at least one of the above-described access identities using system information It can be considered to allow the above-mentioned access.
2e-15 단계에서, 단말 AS는 상술된 barring check을 통해, 상술된 엑세스가 금지되었는지 여부를 판단할 수 있다. In step 2e-15, the terminal AS may determine whether the aforementioned access is prohibited through the barring check described above.
2e-20 단계에서, 상술된 엑세스가 허용된다면, 단말 AS는 기지국에 랜덤 엑세스를 수행할 수 있다. In step 2e-20, if the above-described access is allowed, the terminal AS may perform random access to the base station.
2e-25 단계에서, 상술된 엑세스가 허용되지 않는다면, 단말 AS는 이를 단말 NAS에게 알리고 상술된 access category에 대응하는 하나의 타이머를 구동시킬 수 있다. In step 2e-25, if the above-described access is not allowed, the terminal AS may inform the terminal NAS of this and start one timer corresponding to the above-described access category.
2e-30 단계에서, 상술된 구동 중인 타이머가 만료되면, 상술된 단말 AS는 상술된 단말 NAS에게 다시 엑세스를 요청할 수 있음 (barring alleviation)을 알린다. 이때부터 상술된 단말 NAS은 엑세스를 상술된 단말 AS에 다시 요청할 수 있다. In step 2e-30, when the above-mentioned running timer expires, the above-mentioned terminal AS informs the above-mentioned terminal NAS of requesting access again (barring alleviation). From this point, the above-described terminal NAS may request access to the above-mentioned terminal AS again.
2e-35 단계에서, AS-triggered event에 대해, 상술된 단말 AS는 하나의 대응하는 access category을 맵핑할 수 있다. 또한, 하나의 이상의 access identity을 맵핑할 수도 있다. In step 2e-35, for the AS-triggered event, the above-mentioned terminal AS may map one corresponding access category. It is also possible to map more than one access identity.
2e-40 단계에서, 상술된 단말 AS는 barring check을 수행할 수 있다. 이 때, 상술된 단말 AS는 상술된 맵핑한 access category와 기지국이 브로드캐스팅하는 상술된 access category에 대응하는 barring 설정 정보를 이용할 수 있다. 단말 AS는 단말 NAS가 하나 이상의 access identity을 맵핑할 수 있으며, 기지국이 시스템 정보를 이용하여 상술된 access identity들 중 적어도 하나에 대해 엑세스 허용을 설정하였다면, 상술된 엑세스를 허용하는 것으로 간주할 수 있다. In step 2e-40, the above-described terminal AS may perform a barring check. In this case, the above-described terminal AS may use the barring configuration information corresponding to the mapped access category and the above-described access category broadcast by the base station. The terminal AS may map one or more access identities, and if the base station sets access permission to at least one of the above-described access identities using system information, it may be regarded as granting the aforementioned access. .
2e-45 단계에서, 단말 AS는 상술된 barring check을 통해, 상술된 엑세스가 금지되었는지 여부를 판단할 수 있다. In step 2e-45, the terminal AS may determine whether the above-mentioned access is prohibited through the above-described barring check.
2e-50 단계에서, 상술된 엑세스가 허용되지 않는다면, 단말 AS는 이를 단말 NAS에게 알리지 않으며, 상술된 access category에 대응하는 하나의 타이머를 구동시킬 수 있다. In step 2e-50, if the above-described access is not allowed, the terminal AS does not notify the terminal NAS of this, and may drive one timer corresponding to the above-described access category.
2e-55 단계에서, 상술된 타이머가 구동 중에, 만약 단말 NAS가 상술된 타이머에 대응하는 access category 혹은 access category 그룹에 속한 엑세스를 상술된 단말 AS에게 요청하는 경우, 상술된 단말 AS는 상술된 엑세스가 금지되고 있음을 상술된 단말 NAS에게 알릴 수 있다. In step 2e-55, while the above-mentioned timer is running, if the terminal NAS requests the above-mentioned terminal AS for access belonging to an access category or an access category group corresponding to the above-described timer, the above-mentioned terminal AS is the above-mentioned access. The above-mentioned terminal NAS can be notified that the is prohibited.
2e-60 단계에서, 상술된 타이머가 구동 중에, 상술된 엑세스가 금지되고 있음을 상술된 단말 NAS에게 알린 경우, 상술된 단말 AS는 상술된 타이머가 만료되었음을 상술된 단말 NAS에게 알릴 수 있다. In step 2e-60, if the above-mentioned terminal NAS is informed that the above-mentioned access is prohibited while the above-mentioned timer is running, the above-mentioned terminal AS may inform the above-mentioned terminal NAS that the above-described timer has expired.
2e-65 단계에서, 상술된 엑세스가 허용된다면, 상술된 단말 AS는 기지국에 랜덤 엑세스를 수행할 수 있다. In step 2e-65, if the above-described access is allowed, the above-described terminal AS may perform random access to the base station.
도 13은 일 실시예에 따른 단말 NAS 동작을 설명하기 위한 순서도이다. 13 is a flowchart illustrating an operation of a terminal NAS according to an embodiment.
2f-05 단계에서, 단말 NAS는 하나의 엑세스를 트리거하고, 이에 대응하는 하나의 access category을 맵핑하며, 하나 이상의 access identity을 맵핑할 수 있다. In step 2f-05, the terminal NAS triggers one access, maps one access category corresponding thereto, and maps one or more access identity.
2f-10 단계에서, 상술된 단말 NAS는 상술된 맵핑한 하나의 access category와 access identity을 단말 AS로 전송할 수 있다. In step 2f-10, the above-described terminal NAS may transmit the above-described mapped access category and access identity to the terminal AS.
2f-15 단계에서, 상술된 단말 NAS는 상술된 엑세스가 허용되지 않았음을 상술된 단말 AS에게 보고 받을 수 있다. 이 때, 상술된 단말 NAS는 상술된 단말 AS가 대응하는 타이머가 만료되어 상술된 엑세스를 다시 보낼 수 있다고 알려줄 때까지 상술된 엑세스를 다시 트리거하지 않을 수 있다. 그러나, 상술된 access category 외, 다른 access category에 대응하는 엑세스는 트리거할 수 있다. In step 2f-15, the above-described terminal NAS may be reported to the above-mentioned terminal AS that the above-described access is not allowed. At this time, the above-described terminal NAS may not trigger the above-mentioned access again until the above-described terminal AS informs that the corresponding timer expires and can resend the above-mentioned access. However, in addition to the above-described access category, accesses corresponding to other access categories may be triggered.
2f-20 단계에서, 상술된 단말 NAS는 구동 중인 barring timer와 대응하지 않는 엑세스 혹은 emergency, high priority access 등 특정 엑세스가 트리거되었는지 여부를 판단할 수 있다. In step 2f-20, the above-described terminal NAS may determine whether an access that does not correspond to the barring timer being driven, or a specific access such as emergency or high priority access is triggered.
2f-25 단계에서, 만약 구동 중인 barring timer와 대응하지 않은 엑세스 혹은 emergency, high priority access 등 특정 엑세스가 트리거되었다면, 상술된 단말 NAS는 상술된 엑세스에 대해, 하나의 access category에 맵핑할 수 있다 In step 2f-25, if an access that does not correspond to the running barring timer or a specific access such as emergency or high priority access is triggered, the above-described terminal NAS may map to one access category for the above-described access.
2f-30 단계에서, 상술된 단말 NAS는 상술된 access category을 상술된 단말 AS에 전달할 수 있다. In step 2f-30, the above-described terminal NAS may deliver the above-described access category to the above-described terminal AS.
2f-35 단계에서, 상술된 단말 NAS는 만약 구동 중인 barring timer와 대응하는 엑세스 엑세스 혹은 emergency, high priority access 등 특정 엑세스가 트리거되지 않았다면, 상술된 단말 AS이 다시 엑세스를 요청할 수 있음(barring alleviation)을 보고할 때까지 대기할 수 있다.In step 2f-35, the above-described terminal NAS may request the access again by the above-described terminal AS if the access bar corresponding to the barring timer being driven or a specific access such as emergency or high priority access has not been triggered. You can wait until you report it.
도 14는 일 실시예에 따른 AS-triggered event에 대한 access category 맵핑을 NAS가 수행하는 경우 엑세스 제어를 수행하는 과정을 설명하기 위한 순서도이다. FIG. 14 is a flowchart illustrating a process of performing access control when a NAS performs access category mapping for an AS-triggered event according to an embodiment.
도 14를 참조하면, 단계 2g-25에서, 기지국(2g-20)은 시스템 정보를 이용하여, barring 설정 정보를 서비스 영역 내에 있는 단말들에게 제공할 수 있다. 상술된 barring 설정 정보는 access category별로 제공될 수 있다. Referring to FIG. 14, in step 2g-25, the base station 2g-20 may provide barring configuration information to terminals in a service area by using system information. The barring configuration information described above may be provided for each access category.
단계 2g-30에서, 상술된 단말 AS(2g-15)는 RNA update 혹은 데이터 전송을 위한 Resume등 특정 엑세스를 트리거할 수 있다. In step 2g-30, the above-described terminal AS (2g-15) may trigger a specific access, such as RNA update or resume for data transmission.
단계 2g-35에서, 단말 AS(2g-15)는 상술된 트리거된 엑세스에 대해 단말 NAS(2g-10)에게 access category 맵핑을 요청할 수 있다. In steps 2g-35, the terminal AS 2g-15 may request access category mapping from the terminal NAS 2g-10 for the triggered access described above.
단계 2g-40에서, 상술된 단말 NAS(2g-10)는 상술된 엑세스에 대해, 대응하는 하나의 access category와 access identity을 맵핑시킬 수 있다. In steps 2g-40, the above-described terminal NAS 2g-10 may map the corresponding access category and access identity to the above-described access.
그리고 단계 2g-45에서, 상술된 단말 NAS(2g-10)는 상술된 맵핑한 access category와 access identity 정보를 상술된 단말 AS(2g-15)에게 전달할 수 있다. 이 때, 상술된 단말 NAS(2g-10)는 상술된 전달된 access category와 access identity가 단말 AS(2g-15)의 요청에 의한 엑세스에 대한 것이라는 것을 지시하는 지시자를 포함할 수 있다. In step 2g-45, the above-described terminal NAS 2g-10 may transfer the above-described mapped access category and access identity information to the above-described terminal AS 2g-15. At this time, the above-described terminal NAS (2g-10) may include an indicator indicating that the above-mentioned delivered access category and access identity is for access by the request of the terminal AS (2g-15).
단계 2g-50에서, 상술된 단말 AS(2g-15)는 상술된 맵핑된 access category와 대응하는 barring 설정 정보를 이용하여, barring check을 수행할 수 있다. 상술된 barring check는 앞선 도면을 참조하여 설명하였다. In operation 2g-50, the above-described terminal AS 2g-15 may perform barring check by using barring configuration information corresponding to the mapped access category described above. The barring check described above has been described with reference to the preceding drawings.
단계 2g-55에서, 상술된 barring check의 결과에 따라, 상술된 엑세스가 금지되는 것으로 간주되면, 하나의 barring 시간을 도출하고, 상술된 시간 값을 가지는 타이머, 즉 barring timer를 구동시킬 수 있다. 상술된 타이머가 구동하는 동안에는 상술된 access category에 대응하는 엑세스에 대해 금지 (barred)되는 것으로 간주한다.In step 2g-55, if the above-mentioned access is considered to be prohibited according to the result of the barring check described above, one barring time can be derived and a timer having the above-described time value, i.e., a barring timer can be driven. While the above-described timer is running, it is considered to be barred for access corresponding to the above-mentioned access category.
따라서, 단계 2g-60에서, 단말 AS(2g-15)는 상술된 타이머가 만료하기 전까지 상술된 타이머에 대응하는 AS-triggered event을 트리거하지 않으며. 단말 NAS(2g-10)에게 상술된 타이머와 대응하는 access category의 엑세스는 금지되었다고 지시할 수 있다. Therefore, in steps 2g-60, the terminal AS 2g-15 does not trigger the AS-triggered event corresponding to the above timer until the above timer expires. The terminal NAS 2g-10 may instruct that access of the access category corresponding to the above-described timer is prohibited.
단계 2g-65 및 2g-70에서, 단말 NAS(2g-10)와 단말 AS(2g-15)는 상술된 타이머가 만료하기 전까지 금지된 엑세스를 트리거하지 않을 수 있다. In steps 2g-65 and 2g-70, the terminal NAS 2g-10 and the terminal AS 2g-15 may not trigger the forbidden access until the above timer expires.
단계 2g-75에서, 상술된 barring timer가 만료되면, 단말 AS(2g-15)는 상술된 타이머가 만료되었음을 상술된 단말 NAS(2g-10)에 알릴 수 있다. 구동 중인 barring timer와 대응하지 않은 엑세스, access category 혹은 access category 그룹은 별도의 상술된 동작을 수행할 수 있다.In step 2g-75, if the above-described barring timer expires, the terminal AS 2g-15 may inform the above-mentioned terminal NAS 2g-10 that the above-described timer has expired. An access, access category, or access category group that does not correspond to the running barring timer may perform the above-described separate operation.
도 15는 일 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다. 15 is a block diagram illustrating an internal structure of a terminal according to an embodiment.
도 15를 참조하면, 상술된 단말은 RF(Radio Frequency)처리부(2h-10), 기저대역(baseband)처리부(2h-20), 저장부(2h-30), 제어부(2h-40)를 포함할 수 있다.Referring to FIG. 15, the above-described terminal includes a radio frequency (RF) processor 2h-10, a baseband processor 2h-20, a storage unit 2h-30, and a controller 2h-40. can do.
상술된 RF처리부(2h-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, 상술된 RF처리부(2h-10)는 상술된 기저대역처리부(2h-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상술된 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환할 수 있다. 예를 들어, 상술된 RF처리부(2h-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상술된 도면에서, 하나의 안테나만이 도시되었으나, 상술된 단말은 복수의 안테나들을 구비할 수 있다. 또한, 상술된 RF처리부(2h-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상술된 RF처리부(2h-10)는 빔포밍(beamforming)을 수행할 수 있다. 상술된 빔포밍을 위해, 상술된 RF처리부(2h-10)는 복수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상술된 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. The above-described RF processor 2h-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the above-described RF processor 2h-10 up-converts the baseband signal provided from the above-described baseband processor 2h-20 into an RF band signal and transmits the same through an antenna, and is received through the above-described antenna. The RF band signal can be down converted to a baseband signal. For example, the RF processor 2h-10 described above includes a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. can do. In the above drawings, only one antenna is shown, but the above-described terminal may be provided with a plurality of antennas. In addition, the above-described RF processor 2h-10 may include a plurality of RF chains. Furthermore, the above-described RF processor 2h-10 may perform beamforming. For the above-described beamforming, the above-described RF processing unit 2h-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements. In addition, the above-described RF processor may perform MIMO, and may receive multiple layers when performing the MIMO operation.
상술된 기저대역처리부(2h-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 상술된 기저대역처리부(2h-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 상술된 기저대역처리부(2h-20)은 상술된 RF처리부(2h-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상술된 기저대역처리부(2h-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상술된 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성할 수 있다. 또한, 데이터 수신 시, 상술된 기저대역처리부(2h-20)은 상술된 RF처리부(2h-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.The baseband processor 2h-20 described above may perform a baseband signal and bit string conversion function according to the physical layer standard of the system. For example, during data transmission, the baseband processor 2h-20 described above may generate complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the baseband processor 2h-20 described above may restore the received bit string by demodulating and decoding the baseband signal provided from the above-described RF processor 2h-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the above-described baseband processor 2h-20 generates complex symbols by encoding and modulating a transmission bit string, and performs the complex symbols described above. After mapping to subcarriers, OFDM symbols may be configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion. In addition, upon reception of data, the baseband processor 2h-20 described above divides the baseband signal provided from the above-described RF processor 2h-10 in OFDM symbol units and performs subcarriers through a fast Fourier transform (FFT) operation. After the signals mapped to the signals are restored, the received bit stream may be recovered by demodulation and decoding.
상술된 기저대역처리부(2h-20) 및 상술된 RF처리부(2h-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 상술된 기저대역처리부(2h-20) 및 상술된 RF처리부(2h-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 상술된 기저대역처리부(2h-20) 및 상술된 RF처리부(2h-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상술된 기저대역처리부(2h-20) 및 상술된 RF처리부(2h-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상술된 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상술된 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다. 단말은 기저대역처리부(2h-20) 및 RF처리부(2h-10)를 이용하여 기지국과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다.The baseband processor 2h-20 and the RF processor 2h-10 described above may transmit and receive signals as described above. Accordingly, the baseband processor 2h-20 and the RF processor 2h-10 described above may be referred to as a transmitter, a receiver, a transceiver, or a communicator. Furthermore, at least one of the baseband processor 2h-20 and the RF processor 2h-10 described above may include a plurality of communication modules to support a plurality of different radio access technologies. In addition, at least one of the baseband processor 2h-20 and the RF processor 2h-10 described above may include different communication modules to process signals of different frequency bands. For example, the different wireless access technologies described above may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like. In addition, the different frequency bands described above may include a super high frequency (SHF) (eg, 2.NRHz, NRhz) band and a millimeter wave (eg, 60 GHz) band. The terminal may transmit and receive a signal with the base station using the baseband processor 2h-20 and the RF processor 2h-10. Here, the signal may include control information and data.
상술된 저장부(2h-30)는 상술된 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 특히, 상술된 저장부(2h-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 상술된 저장부(2h-30)는 상술된 제어부(2h-40)의 요청에 따라 저장된 데이터를 제공할 수 있다. 저장부(2h-30)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 저장부(2h-30)는 복수 개의 메모리로 구성될 수도 있다. 일 실시예에서, 저장부(2h-30)는 빔 기반 협력 통신을 지원하기 위한 프로그램을 저장할 수 있다.The storage unit 2h-30 may store data such as a basic program, an application program, and setting information for the operation of the terminal described above. In particular, the above-described storage unit 2h-30 may store information related to the second access node that performs wireless communication using the second wireless access technology. In addition, the above-described storage unit 2h-30 may provide stored data at the request of the above-described control unit 2h-40. The storage unit 2h-30 may be configured with a storage medium or a combination of storage media such as a ROM, a RAM, a hard disk, a CD-ROM, a DVD, and the like. In addition, the storage unit 2h-30 may include a plurality of memories. In one embodiment, the storage unit 2h-30 may store a program for supporting beam-based cooperative communication.
상술된 제어부(2h-40)는 상술된 단말의 전반적인 동작들을 제어한다. 예를 들어, 상술된 제어부(2h-40)는 상술된 기저대역처리부(2h-20) 및 상술된 RF처리부(2h-10)을 통해 신호를 송수신할 수 있다. 또한, 상술된 제어부(2h-40)는 상술된 저장부(2h-40)에 데이터를 기록하고, 읽을 수 있다. 이를 위해, 상술된 제어부(2h-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상술된 제어부(2h-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. The above-described control unit 2h-40 controls the overall operations of the above-described terminal. For example, the above-described control unit 2h-40 may transmit and receive signals through the above-described baseband processor 2h-20 and the above-described RF processor 2h-10. In addition, the above-described control unit 2h-40 can record and read data in the above-described storage unit 2h-40. For this purpose, the above-described control unit 2h-40 may include at least one processor. For example, the controller 2h-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
도 16은 본 개시의 실시 예에 따른 무선 통신 시스템에서 주기지국의 구성을 나타낸 블록도이다.16 is a block diagram illustrating a configuration of a main station in a wireless communication system according to an embodiment of the present disclosure.
도 16을 참조하면, 상술된 기지국은 RF처리부(2i-10), 기저대역처리부(2i-20), 백홀통신부(2i-30), 저장부(2i-40), 제어부(2i-50)를 포함할 수 있다.Referring to FIG. 16, the above-described base station includes an RF processor 2i-10, a baseband processor 2i-20, a backhaul communication unit 2i-30, a storage unit 2i-40, and a controller 2i-50. It may include.
상술된 RF처리부(2i-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, 상술된 RF처리부(2i-10)는 상술된 기저대역처리부(2i-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상술된 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환할 수 있다. 예를 들어, 상술된 RF처리부(2i-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상술된 도면에서, 하나의 안테나만이 도시되었으나, 상술된 제1접속 노드는 복수의 안테나들을 구비할 수 있다. 또한, 상술된 RF처리부(2i-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상술된 RF처리부(2i-10)는 빔포밍을 수행할 수 있다. 상술된 빔포밍을 위해, 상술된 RF처리부(2i-10)는 복수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상술된 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다. The above-described RF processor 2i-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the above-described RF processor 2i-10 up-converts the baseband signal provided from the above-described baseband processor 2i-20 to an RF band signal and transmits the same through an antenna, and is received through the above-described antenna. The RF band signal can be downconverted to a baseband signal. For example, the above-described RF processor 2i-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the above drawings, only one antenna is shown, but the above-described first access node may have a plurality of antennas. In addition, the above-described RF processor 2i-10 may include a plurality of RF chains. In addition, the above-described RF processor 2i-10 may perform beamforming. For the above-described beamforming, the above-described RF processing unit 2i-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements. The RF processor described above may perform a downlink MIMO operation by transmitting one or more layers.
상술된 기저대역처리부(2i-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 상술된 기저대역처리부(2i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 상술된 기저대역처리부(2i-20)은 상술된 RF처리부(2i-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상술된 기저대역처리부(2i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상술된 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성할 수 있다. 또한, 데이터 수신 시, 상술된 기저대역처리부(2i-20)은 상술된 RF처리부(2i-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 상술된 기저대역처리부(2i-20) 및 상술된 RF처리부(2i-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 상술된 기저대역처리부(2i-20) 및 상술된 RF처리부(2i-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.The baseband processor 2i-20 described above may perform a baseband signal and bit string conversion function according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 2i-20 described above may generate complex symbols by encoding and modulating a transmission bit string. In addition, when receiving data, the baseband processor 2i-20 described above may restore the received bit string by demodulating and decoding the baseband signal provided from the above-described RF processor 2i-10. For example, according to the OFDM scheme, when transmitting data, the baseband processor 2i-20 described above generates complex symbols by encoding and modulating a transmission bit stream, and maps the above-described complex symbols to subcarriers. , OFDM symbols may be configured through IFFT operation and CP insertion. In addition, upon reception of data, the baseband processor 2i-20 described above divides the baseband signal provided from the above-described RF processor 2i-10 in OFDM symbol units and signals mapped to subcarriers through an FFT operation. After restoring the data, the received bit stream may be restored by demodulation and decoding. The baseband processor 2i-20 and the RF processor 2i-10 described above may transmit and receive signals as described above. Accordingly, the baseband processor 2i-20 and the RF processor 2i-10 described above may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
상술된 백홀통신부(2i-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공할 수 있다. 즉, 상술된 백홀통신부(2i-30)는 상술된 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상술된 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환할 수 있다.The backhaul communication unit 2i-30 described above may provide an interface for communicating with other nodes in the network. That is, the above-described backhaul communication unit 2i-30 converts the bit string transmitted from the above-described main base station to another node, for example, an auxiliary base station, core network, etc., into a physical signal, and receives a physical signal received from the above-described other node. The signal can be converted into a bit string.
상술된 저장부(2i-40)는 상술된 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 특히, 상술된 저장부(2i-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상술된 저장부(2i-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상술된 저장부(2i-40)는 상술된 제어부(2i-50)의 요청에 따라 저장된 데이터를 제공할 수 있다.The storage unit 2i-40 described above may store data such as a basic program, an application program, and setting information for the operation of the main station described above. In particular, the above-described storage unit 2i-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like. In addition, the above-described storage unit 2i-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal. In addition, the above-described storage unit 2i-40 may provide stored data at the request of the above-described control unit 2i-50.
상술된 제어부(2i-50)는 상술된 주기지국의 전반적인 동작들을 제어할 수있다. 예를 들어, 상술된 제어부(2i-50)는 상술된 기저대역처리부(2i-20) 및 상술된 RF처리부(2i-10)을 통해 또는 상술된 백홀통신부(2i-30)을 통해 신호를 송수신할 수 있다. 또한, 상술된 제어부(2i-50)는 상술된 저장부(2i-40)에 데이터를 기록하고, 읽을 수 있다. 이를 위해, 상술된 제어부(2i-50)는 적어도 하나의 프로세서를 포함할 수 있다. The above-described control unit 2i-50 can control the overall operations of the above-described main station. For example, the above-described control unit 2i-50 transmits and receives a signal through the above-described baseband processor 2i-20 and the above-described RF processor 2i-10 or through the above-described backhaul communication unit 2i-30. can do. In addition, the above-described control unit 2i-50 can record and read data in the above-described storage unit 2i-40. To this end, the above-described control unit 2i-50 may include at least one processor.
본 개시의 청구항 또는 명세서에 기재된 실시예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다. Methods according to the embodiments described in the claims or the specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다. When implemented in software, a computer-readable storage medium for storing one or more programs (software modules) may be provided. One or more programs stored in a computer readable storage medium are configured for execution by one or more processors in an electronic device. One or more programs include instructions that cause an electronic device to execute methods in accordance with embodiments described in the claims or specifications of this disclosure.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다. Such programs (software modules, software) may include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (EEPROM: Electrically Erasable Programmable Read Only Memory), magnetic disc storage device, compact disc ROM (CD-ROM), digital versatile discs (DVDs) or other forms It can be stored in an optical storage device, a magnetic cassette. Or, it may be stored in a memory composed of some or all of these combinations. In addition, each configuration memory may be included in plural.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.In addition, the program is accessed through a communication network composed of a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device may be connected to a device that performs an embodiment of the present disclosure through an external port. In addition, a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.
상술한 본 개시의 구체적인 실시예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the above-described specific embodiments of the present disclosure, the components included in the invention are expressed in the singular or plural in accordance with the specific embodiments presented. However, the singular or plural expressions are selected to suit the circumstances presented for convenience of description, and the present disclosure is not limited to the singular or plural elements, and the singular or plural elements may be used in the singular or the singular. Even expressed components may be composed of a plurality.
한편, 본 명세서와 도면에 개시된 본 개시의 실시예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 일 실시예와 다른 일 실시예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 또한 상기 실시예들은 FDD LTE 시스템을 기준으로 제시되었지만, TDD LTE 시스템, 5G 혹은 NR 시스템 등 다른 시스템에도 상기 실시예의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능할 것이다.On the other hand, the embodiments of the present disclosure disclosed in the specification and drawings are merely presented specific examples to easily explain the technical contents of the present disclosure and aid in understanding the present disclosure, and are not intended to limit the scope of the present disclosure. That is, it will be apparent to those skilled in the art that other modifications based on the technical spirit of the present disclosure can be implemented. In addition, each of the above embodiments can be combined with each other if necessary to operate. For example, portions of one embodiment of the present disclosure and another embodiment may be combined with each other so that the base station and the terminal may be operated. In addition, although the above embodiments are presented based on the FDD LTE system, other modifications based on the technical spirit of the embodiment may be implemented in other systems such as a TDD LTE system, a 5G, or an NR system.

Claims (14)

  1. 무선 통신 시스템에서 단말이 네트워크에 대한 액세스 제어를 수행하는 방법에 있어서,In the method for the terminal to perform access control on the network in a wireless communication system,
    access-stratum (AS) 계층에서, 상기 네트워크에 대한 액세스를 트리거하는 단계;at an access-stratum (AS) layer, triggering access to the network;
    상기 AS 계층에서, 상기 트리거된 액세스에 대응되는 액세스 카테고리에 대한 차단 타이머가 구동중인지 여부를 판별하는 단계; 및Determining, at the AS layer, whether a blocking timer for an access category corresponding to the triggered access is running; And
    상기 AS 계층에서, 상기 차단 타이머가 만료되면, 상기 액세스 카테고리에 대한 차단이 완화(alleviated)되었다고 판별하는 단계를 포함하는, 액세스 제어 수행 방법.And determining, at the AS layer, that the blocking for the access category has been levied when the blocking timer expires.
  2. 제1항에 있어서,The method of claim 1,
    상기 AS 계층에서, 상기 트리거된 액세스에 대응되는 상기 액세스 카테고리에 대한 상기 차단 타이머가 구동중인지 여부에 관한 정보를 Non-Access-Stratum(NAS) 계층에 전달하는 단계를 더 포함하는, 단말의 액세스 제어 수행 방법.And transmitting, at the AS layer, information on whether the cutoff timer for the access category corresponding to the triggered access is running, to a non-access-stratum (NAS) layer. How to do it.
  3. 제2항에 있어서, The method of claim 2,
    상기 AS 계층에서, 상기 차단 타이머가 만료되었는지 여부에 기초하여 상기 액세스 카테고리에 대한 차단이 완화(alleviated)되었다는 정보를 상기 NAS 계층에 전달하는 단계를 더 포함하는, 단말의 액세스 제어 수행 방법.And transmitting, at the AS layer, information to the NAS layer that the blocking for the access category has been relaxed based on whether the blocking timer has expired.
  4. 제 2항에 있어서,The method of claim 2,
    상기 NAS 계층에서, 상기 AS 계층으로부터 수신한 상기 액세스 카테고리에 대한 상기 차단 타이머가 구동중인지 여부에 관한 정보에 기초하여, 상기 액세스 카테고리에 대응되는 액세스의 트리거를 수행할지 여부를 판별하는, 단말의 액세스 제어 수행 방법.At the NAS layer, determining whether to trigger an access corresponding to the access category based on information on whether the cutoff timer for the access category received from the AS layer is running; How to perform control.
  5. 제3항에 있어서,The method of claim 3,
    상기 NAS 계층에서, 상기 AS 계층으로부터 수신한 상기 액세스 카테고리에 대한 차단이 완화(alleviated)되었다는 정보에 기초하여, 상기 액세스 카테고리에 대응되는 액세스의 트리거를 수행할지 여부를 판별하는, 단말의 액세스 제어 수행 방법.At the NAS layer, determining whether to trigger an access corresponding to the access category based on information that the blocking for the access category received from the AS layer has been relaxed; Way.
  6. 제 1항에 있어서,The method of claim 1,
    상기 액세스는 비활성 모드에 있는 상기 단말의 무선 액세스 네트워크 통지 영역 업데이트(radio access network notification area update) 요청에 응답하여 트리거되는 액세스인, 단말의 액세스 제어 수행 방법.And the access is an access triggered in response to a request for a radio access network notification area update of the terminal in an inactive mode.
  7. 제1항에 있어서,The method of claim 1,
    상기 액세스는 상기 단말을 비활성 모드에서 연결 모드로 전환하는 요청에 응답하여 트리거되는 액세스인, 단말의 액세스 제어 수행 방법.And wherein the access is an access triggered in response to a request for switching the terminal from inactive mode to connected mode.
  8. 네트워크에 대한 액세스 제어를 수행하는 단말에 있어서,In the terminal performing the access control to the network,
    송수신부; 및A transceiver; And
    상기 송수신부를 제어하고, access-stratum (AS) 계층을 포함하는 프로세서를 포함하며, 상기 프로세서는: A processor for controlling the transceiver and including an access-stratum (AS) layer, the processor comprising:
    상기 AS 계층이 상기 네트워크에 대한 액세스를 트리거하도록 하고, 상기 AS 계층이 상기 트리거된 액세스에 대응되는 액세스 카테고리에 대한 차단 타이머가 구동중인지 여부를 판별하도록 하고, 상기 AS 계층이 상기 차단 타이머가 만료되면, 상기 액세스 카테고리에 대한 차단이 완화(alleviated)되었다고 판별하도록 하는, 단말.Cause the AS layer to trigger access to the network, the AS layer to determine whether a cutoff timer for an access category corresponding to the triggered access is running, and if the AS layer expires And determine that the blocking for the access category has been levied.
  9. 제8항에 있어서,The method of claim 8,
    상기 프로세서는 Non-Access-Stratum(NAS) 계층을 더 포함하며, 상기 프로세서는 상기 AS 계층이 상기 트리거된 액세스에 대응되는 상기 액세스 카테고리에 대한 상기 차단 타이머가 구동중인지 여부에 관한 정보를 상기 NAS 계층에 전달하도록 하는, 단말.The processor further includes a Non-Access-Stratum (NAS) layer, wherein the processor provides information about whether the AS layer is running the shutdown timer for the access category corresponding to the triggered access to the NAS layer. Terminal for delivery to.
  10. 제9항에 있어서, The method of claim 9,
    상기 프로세서는 상기 AS 계층이, 상기 차단 타이머가 만료되었는지 여부에 기초하여 상기 액세스 카테고리에 대한 차단이 완화(alleviated)되었다는 정보를 상기 NAS 계층에 전달하도록 하는, 단말.The processor is further configured to cause the AS layer to communicate to the NAS layer that the blocking for the access category has been levied based on whether the cutoff timer has expired.
  11. 제 9항에 있어서,The method of claim 9,
    상기 프로세서는 상기 NAS 계층이 상기 AS 계층으로부터 수신한 상기 액세스 카테고리에 대한 상기 차단 타이머가 구동중인지 여부에 관한 정보에 기초하여, 상기 액세스 카테고리에 대응되는 액세스의 트리거를 수행할지 여부를 판별하도록 하는, 단말.Wherein the processor is further configured to determine whether to perform a trigger of an access corresponding to the access category, based on the information regarding whether the blocking timer for the access category received from the AS layer is running. Terminal.
  12. 제 10항에 있어서,The method of claim 10,
    상기 프로세서는 상기 NAS 계층이 상기 AS 계층으로부터 수신한 상기 액세스 카테고리에 대한 차단이 완화(alleviated)되었다는 정보에 기초하여, 상기 액세스 카테고리에 대응되는 액세스의 트리거를 수행할지 여부를 판별하도록 하는, 단말.The processor allows the NAS layer to determine whether to trigger an access corresponding to the access category based on the information that the blocking for the access category received from the AS layer has been relaxed.
  13. 제 8항에 있어서,The method of claim 8,
    상기 액세스는 비활성 모드에 있는 상기 단말의 무선 액세스 네트워크 통지 영역 업데이트(radio access network notification area update) 요청에 응답하여 트리거되는 액세스인, 단말의 액세스 제어 수행 방법.And the access is an access triggered in response to a request for a radio access network notification area update of the terminal in an inactive mode.
  14. 제8항에 있어서,The method of claim 8,
    상기 액세스는 상기 단말을 비활성 모드에서 연결 모드로 전환하는 요청에 응답하여 트리거되는 액세스인, 단말.The access is an access triggered in response to a request to switch the terminal from inactive mode to connected mode.
PCT/KR2019/009807 2018-08-07 2019-08-06 Method and device for wireless node communication in wireless communication system WO2020032544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/264,059 US11743815B2 (en) 2018-08-07 2019-08-06 Method and device for wireless node communication in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180092097 2018-08-07
KR10-2018-0092097 2018-08-07
KR1020190012823A KR20200016776A (en) 2018-08-07 2019-01-31 Method and apparatus for wireless communication of wireless node in wireless communication system
KR10-2019-0012823 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020032544A1 true WO2020032544A1 (en) 2020-02-13

Family

ID=69415560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009807 WO2020032544A1 (en) 2018-08-07 2019-08-06 Method and device for wireless node communication in wireless communication system

Country Status (1)

Country Link
WO (1) WO2020032544A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085521A1 (en) * 2021-11-11 2023-05-19 엘지전자 주식회사 Terminal operating method and apparatus in wireless communication system
EP4178304A4 (en) * 2020-07-03 2023-11-08 Vivo Mobile Communication Co., Ltd. Random access method and apparatus, and network side device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140140595A (en) * 2012-03-21 2014-12-09 삼성전자주식회사 Granular network access control and methods therof
KR20160128342A (en) * 2014-11-10 2016-11-07 엘지전자 주식회사 Method and user equipment for blocking network access by acdc
US20180109992A1 (en) * 2014-07-09 2018-04-19 Lg Electronics Inc. Method and apparatus for performing application specific access control in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140140595A (en) * 2012-03-21 2014-12-09 삼성전자주식회사 Granular network access control and methods therof
US20180109992A1 (en) * 2014-07-09 2018-04-19 Lg Electronics Inc. Method and apparatus for performing application specific access control in wireless communication system
KR20160128342A (en) * 2014-11-10 2016-11-07 엘지전자 주식회사 Method and user equipment for blocking network access by acdc

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "E114][E118][E169] Barring alleviation and timer T302", R2-1809677, 3GPP TSG RAN WG2 AH 1087 MEETING, vol. RAN WG2, 21 June 2018 (2018-06-21), Montreal, Canada, pages 1 - 4, XP051525524 *
INTERDIGITAL INC.: "Open Issues on NAS/AS Interaction Related to Wait Timer", R2-1809602, 3GPP TSG RAN WG2 NR AH1087 MEETING, vol. RAN WG2, 22 June 2018 (2018-06-22), Montreal, Canada, pages 1 - 4, XP051525454 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4178304A4 (en) * 2020-07-03 2023-11-08 Vivo Mobile Communication Co., Ltd. Random access method and apparatus, and network side device
WO2023085521A1 (en) * 2021-11-11 2023-05-19 엘지전자 주식회사 Terminal operating method and apparatus in wireless communication system

Similar Documents

Publication Publication Date Title
WO2018174489A1 (en) Method and device for effectively performing standby mode operation in next generation mobile communication system
WO2018174483A1 (en) Method and apparatus for supporting discontinuous reception mode of connected mode in mobile communication system
WO2018026139A1 (en) Method and apparatus for performing paging in mobile communication system
WO2021025406A1 (en) Method and apparatus for performing frequency measurement and setting frequency measurement for non-connection mode terminal
WO2019093813A1 (en) Method and apparatus for transmitting and receiving signals in wireless communication system
WO2017074071A1 (en) Method of performing cell selection and re-selection using pmax parameters and system adapted thereto
WO2019194605A1 (en) Method and apparatus for efficiently providing access control configuration information in next-generation wireless communication system
WO2014062035A1 (en) System and method for ad-hoc/network assisted device discovery protocol for device to device communications
WO2020032702A1 (en) Method and apparatus for configuring network connection in mobile communication system
WO2021066422A1 (en) Method and apparatus for performing radio resource management (rrm) measurement in wireless communication system
WO2016175639A1 (en) Method for performing d2d operation by terminal in wireless communication system and terminal using same method
WO2016190639A1 (en) Method and device for reporting buffer state during lte-wireless lan combining in wireless communication system
WO2020060178A1 (en) Method and apparatus for reporting selected plmn of rrc-inactive mode ue in next-generation communication system
WO2017030423A1 (en) V2x operation method performed by terminal in wireless communication system and terminal using same method
WO2018052233A1 (en) Method and device for updating system information in wireless communication system
WO2020032533A1 (en) Method and apparatus for transmitting or receiving signal in mobile communication system
WO2021091314A1 (en) Method and apparatus for managing network slices in wireless communication system
WO2020067791A1 (en) Method for processing node failure in integrated access and backhaul system and method for transmitting redirection information therein
WO2020162733A1 (en) Method and apparatus for updating list of cells to be measured in reselection of cell in idle mode in next-generation wireless communication system
WO2016163824A1 (en) Selective prioritization method of frequency executed by terminal in wireless communication system, and terminal using same method
WO2018226010A1 (en) Method and apparatus for requesting system information by using preamble in next generation mobile communication system
WO2017131495A1 (en) Method for operating terminal in accordance with semi-persistent scheduling in wireless communication system, and terminal device using method
WO2016122270A1 (en) Method for transmitting discovery message by terminal in wireless communication system, and terminal using same
WO2016163821A1 (en) Discovery announcement method performed by terminal in wireless communication system, and terminal using same
WO2016163859A1 (en) Method, carried out by user equipment, for transmitting priority information in wireless communication system and user equipment utilizing the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846861

Country of ref document: EP

Kind code of ref document: A1