WO2020032519A1 - Method for preparing plasmonics implementation layer, and plasmonic antibacterial/sterilization filter using same - Google Patents

Method for preparing plasmonics implementation layer, and plasmonic antibacterial/sterilization filter using same Download PDF

Info

Publication number
WO2020032519A1
WO2020032519A1 PCT/KR2019/009762 KR2019009762W WO2020032519A1 WO 2020032519 A1 WO2020032519 A1 WO 2020032519A1 KR 2019009762 W KR2019009762 W KR 2019009762W WO 2020032519 A1 WO2020032519 A1 WO 2020032519A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasmonic
agent
weight
layer
base solution
Prior art date
Application number
PCT/KR2019/009762
Other languages
French (fr)
Korean (ko)
Inventor
이재철
Original Assignee
주식회사 제씨콤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제씨콤 filed Critical 주식회사 제씨콤
Publication of WO2020032519A1 publication Critical patent/WO2020032519A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Definitions

  • the present invention relates to a plasmonic expression layer, and more particularly, to a method for preparing a plasmonic expression layer with improved productivity while improving sterilization / antibacterial / resolution in the visible light region and to a plasmonic antibacterial / sterilization filter applied thereto. It is about.
  • the photocatalyst is a kind of catalyst, and light is used as a main energy source, and when light having energy above the bandgap is incident, an electron / hole pair is generated and an oxidation / reduction reaction is performed.
  • an electron / hole pair is generated and an oxidation / reduction reaction is performed.
  • titanium-based oxides TiOx
  • TiOx titanium-based oxides
  • These titanium oxides are not corrosive by light and are biologically and chemically harmless and do not affect the human body.
  • it is most used because it is economically inexpensive because it is stable and rich in acid, base and organic solvent used as a solvent of the photocatalyst.
  • titanium oxide has a limitation in that it has a wide bandgap and absorbs light in the ultraviolet region, which is about 4% of the total light, thereby exhibiting photocatalytic activity. For this reason, there is a problem in that the manufacturing cost of products such as air cleaners, water purifiers and the like increases due to the use of ultraviolet light sources of high cost.
  • the ultraviolet light source reacts with the surrounding oxygen to generate ozone harmful to the human body. Therefore, since a separate component for removing or filtering ozone is required, the manufacturing cost of the product is further increased, and as the size of the product is increased, there is a problem that space utilization is lowered.
  • the plasmonics phenomenon is a phenomenon having a different principle from the oxidation / reduction reaction by the electron hole pair of the photocatalyst and has sterilization / antibacterial / degradation ability. That is, when visible light enters the plasmonic structure, partial activation occurs between the metal and the dielectric, and the generated electrons move to the surface to generate active oxygen species. Then, decomposition of harmful substances (eg, S0x, organic substances including NOx, etc.) by the generated reactive oxygen species occurs and bactericidal action of bacteria and viruses occurs.
  • harmful substances eg, S0x, organic substances including NOx, etc.
  • the plasmonic structure is applied to various structures having a substrate or flexibility to have an antibacterial and sterilization function through the plasmonic phenomenon in the visible light region.
  • the plasmonic structure is applied by depositing a plasmon-forming material on the surface of the substrate.
  • the present invention is capable of mass production while improving the sterilization / antibacterial / resolution for harmful substances such as S Ox / NOx and bacteria, viruses in the visible light range, the productivity is improved plasmonics expression
  • the problem is to provide a method for producing a layer and a plasmonic antimicrobial / sterilization filter applied thereto.
  • the present invention is prepared by mixing a first base solution containing a titanium alkoxide compound and a second base solution containing a metal nitride so that antibacterial and bactericidal functions are exhibited in visible light by the plasmonic phenomenon.
  • a first step of preparing a binder composition each comprising the prepared nanocore shell and a silane oligomer;
  • a second step in which the binder composition is coated on the surface of the coating object and semi-cured at a predetermined temperature range to form an adhesive binder layer;
  • the present invention is an adhesive binder layer formed by separating and mixing the first agent and the second agent comprising silane oligomers of different weight percent mutually, and titanium alkoxide so that antibacterial and bactericidal functions are exhibited in visible light by the plasmonic phenomenon.
  • a plasmonic expression layer comprising a nanocore shell prepared by mixing a first base solution containing a compound and a second base solution containing a metal nitride is sequentially laminated and coated on the outer surface of each of the plurality of glass beads.
  • a plurality of plasmonic functional beads And an accommodating space in which a plurality of the plasmonic functional beads are filled between the inner partition and the outer partition, so that light in the visible region is irradiated therein to activate the plasmonic phenomenon through the plasmonic functional beads.
  • the plasmonic expression layer is applied to the inner partition and the outer partition including a filter body having a projection having an opening gap less than the diameter of the plasmonic functional beads. Provides plasmonic antimicrobial / sterilization filters.
  • the manufacturing method of the plasmonic expression layer according to the present invention and the plasmonic antimicrobial / sterilization filter applied thereto provides the following effects.
  • a plasmonic expression layer having strong antibacterial / sterilizing ability is formed even in visible light. Therefore, the plasmonics phenomenon is activated even in a low-cost visible light lamp or natural light, and thus economical and excellent antibacterial / sterilizing ability can significantly improve the hygiene of the product and the surroundings of the plasmonic expression layer.
  • the binder composition to be pre-coated on the surface of the coating object is based on the silane-based, but separate mixing of the two formulations with different composition ratios to control the adhesion and curing rate, so that the nanocore shell is attached / before the binder is completely cured As combined, the coating power is improved.
  • the adhesion binder layer is dissolved and re-cured by IPA remaining on the surface, thereby providing more firm adhesion, thereby significantly improving the coating power of the plasmonic expression layer. Can be.
  • the nanocore shell is manufactured by mixing and treating the dielectric material and the nanometal particle solution to express the plasmonic phenomenon, mass production is possible.
  • the process is simplified by continuously coating each coating in the liquid and ultra-fine state without heat treatment at high temperature / high pressure, thereby minimizing restrictions on the shape, material bending and heat resistance of the product. It can be applied to a variety of industries that require visible light antibacterial / sterilization function through the surface plasmon phenomenon can be significantly improved utilization.
  • FIG. 1 is a flow chart showing a method for producing a plasmonic expression layer according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing a method of manufacturing a nanocore shell in the method for producing a plasmonic expression layer according to an embodiment of the present invention.
  • Figure 3 is an exemplary view showing a state in which the nanocore shell is bonded to the adhesive binder layer in the method for producing a plasmonic expression layer according to an embodiment of the present invention.
  • Figure 4 is an exemplary view showing a coating process through a rotary stirring in the manufacturing method of the plasmonic expression layer according to an embodiment of the present invention.
  • Figure 5 is a photograph showing the results of the bactericidal evaluation for the plasmonic expression layer prepared according to each example.
  • Figure 6 is a cross-sectional view showing a sterilization process using a plasmonic antibacterial / sterilization filter applied plasmonic expression layer prepared according to an embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a plasmonic expression layer according to an embodiment of the present invention
  • Figure 2 is a method of manufacturing a nanocore shell in the method of manufacturing a plasmonic expression layer according to an embodiment of the present invention
  • 3 is an exemplary view showing a state in which a nanocore shell is bonded to an adhesive binder layer in a method of manufacturing a plasmonic expression layer according to an embodiment of the present invention.
  • the manufacturing method of the plasmonic expression layer may be applied to the coating, which has the substrate, beads, mesh or flexibility, but need to sterilize and antibacterial of harmful organic substances.
  • the coating object such as a substrate, beads, mesh, etc., on which the plasmonic expression layer is formed, may be applied to products such as various machines, parts, or articles that must maintain an antimicrobial state or a filter that decomposes and sterilizes organic substances in the surrounding environment. .
  • the plasmonic expression layer As the plasmonic expression layer is formed on the coating object, it can be maintained in a clean and hygienic state by antibacterial and sterilization through the plasmonic phenomenon in the visible light region.
  • the plasmonic expression layer may be applied to a filter provided in an air purifier or a water purification device.
  • a plasmonic antibacterial / sterilization filter in which the plasmonic expression layer is formed will be described as an example.
  • the method for producing a plasmonic expression layer according to the present invention is prepared through a series of steps as follows.
  • a first base solution containing a titanium alkoxide compound and a second base solution containing a metal nitride are mixed, heat treated and refluxed to prepare a nanocore shell structure in which a plasmonic phenomenon is expressed.
  • a binder composition including a silane oligomer is prepared (s10).
  • the binder composition is semi-cured in the coating and a predetermined temperature range on the surface of the coating object to form an adhesive binder layer (s20).
  • the predetermined temperature range is preferably set to 60 ⁇ 150 °C, more preferably, may be set to a temperature of less than 120 °C.
  • a plasmonic expression expression layer is formed on the outer surface of the coating object (s30).
  • the titanium alkoxide compound is oxidized and provided to surround the outer surface of the nano metal particles in the second base solution in the form of titanium dioxide (TiO 2 ) dielectric.
  • TiO 2 titanium dioxide
  • the titanium dioxide is Under the influence of light irradiated from the light source, a plasmonic phenomenon occurs between the surface of the nanometal particle and the dielectric, and locally strong electrons are generated. The electrons thus generated migrate to the surface of the dielectric and generate reactive oxygen species on the surface of the nanocore shell.
  • the generated active oxygen species and ionized particles cause microorganisms to be sterilized or to oxidatively decompose organic compounds having toxic and volatile properties such as formaldehyde, phenol, TCE, and the like.
  • the metal nitride is nano-sized in solution and the surface is surrounded by the titanium dioxide.
  • the plasmonic phenomenon is expressed in visible light by the surface of the nano metal particles and the titanium dioxide dielectric covering the nano metal particles. Therefore, the light source may be provided with a visible light lamp which is inexpensive and does not generate ozone when reacting with oxygen, thereby significantly improving economic efficiency and safety.
  • the first base solution is one selected from the group consisting of titanium ethoxide, titanium methoxide, titanium butoxide, titanium isopropoxide, and mixtures thereof. It is preferred to be provided. More preferably, it may be provided with titanium tetra isopropoxide (hereinafter TTIP).
  • TTIP titanium tetra isopropoxide
  • Such a titanium alkoxide compound is included to supply the titanium dioxide dielectric to be coated on the surface of the coating object (C) to exhibit a plasmonic phenomenon.
  • the second base solution is selected from the group consisting of gold nitrate, silver nitrate, copper nitrate, nickel nitrate, cobalt nitrate, and a mixture thereof. It is preferred to be provided.
  • Such metal nitrides are included to supply nanometal particles (or noble metal nanoparticles) to which titanium dioxide is bonded to the surface to generate plasmonic phenomenon in visible light as described above.
  • the alcohol solvent is methyl alcohol, ethyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, pentyl alcohol, benzyl alcohol, and the like. It is preferably provided with one selected from the group consisting of a mixture thereof.
  • the nano-core shell (14a) is formed through the following process.
  • the first base solution that is, the titanium alkoxide compound is added to an alcohol solvent and mixed for 13 to 17 minutes at a temperature range of 27 to 33 ° C. to form a primary solution (s11).
  • the second base solution ie, metal nitride, is added to the primary solution and mixed for 13 to 17 minutes at a temperature range of 27 to 33 ° C. to form a secondary solution (s12).
  • DMF dimethylformamide
  • the secondary solution was added to the secondary solution, followed by heat treatment and reflux for 100 to 200 minutes at a temperature range of 80 to 120 ° C. to form a tertiary solution including the nanocore shell 14a.
  • the reflux is preferably understood as an operation of condensing the vapor generated by heating to return to the liquid phase.
  • the nanocore shell 14a is 1.2-2.2 wt% of the first base solution, 1.7-2.4 wt% of the second base solution, 73-80 wt% of the alcohol solvent, 17- Preferably, 23 wt% of DMF is included.
  • the first base solution and the second base solution are added to supply dielectric and nano metal particles in which plasmonic phenomenon is expressed.
  • the weight percent range of the first base solution and the second base solution is It is preferable that they are 1: 1.05-1.18.
  • the outer surface of the metal nanoparticles may be uniformly wrapped with titanium dioxide and formed as the nanocore shell 14a.
  • the alcoholic solvent when the alcoholic solvent is more than 80% by weight, the input amount of each base solution is reduced, and if less than 73% by weight, the mixing uniformity is lowered, so it is preferably included in 73 to 80% by weight.
  • the base solution may be stably mixed and the nanocore shell 14a may be formed.
  • the nanocore shell 14a is formed by heat-treating for 100 to 200 minutes in a temperature range of 80 to 120 ° C. while maintaining a solution state through a reflux process. At this time, the nanocore shell 14a is separated from the tertiary solution and washed with isopropyl alcohol (hereinafter referred to as IPA) (s14).
  • IPA isopropyl alcohol
  • the nanocore shell 14a and the isopropyl alcohol preferably have a weight range of 1:99 to 5:95.
  • the third solution is centrifuged to separate only the nanocore shell 14a.
  • the IPA in the above weight% range is mixed with the separated nanocore shell 14a, the surface of the nanocore shell 14a is washed, and the nanocoreshell 14a is present on the IPA solution. do.
  • the nanocore shell 14a when the nanocore shell 14a is introduced in the state in which the binder composition described later is pre-coated to the coating object C, the surface of the adhesive binder layer 13 of the silane base is partially formed by the IPA. Dissolves. Through this, the nanocore shell 14a may be more firmly attached / bonded to the adhesive binder layer 13, so that the coating power of the plasmonic expression layer 14 may be significantly improved.
  • the TTIP and the silver nitrate may be formed as a reaction structure of the nanocore shell 14a in which the titanium dioxide 14b is wrapped on the outer surface of the silver particles 14c through mutual reactions.
  • the nanocore shell 14a manufactured as described above may be formed to have a particle diameter of 50 to 150 nm.
  • the silver particles 14c are provided at the central side of the nanocore shell 14a so that the outer surface is wrapped in the titanium dioxide 14b, and the silver particles 14c are formed to have a particle diameter of 10 to 50 nm.
  • the silver particles 14c may have a particle diameter of 10 to 20 nm, but may be embedded in a plurality of one inside the nanocore shell 14a, and the titanium dioxide 14b may be entirely wrapped around the plurality of silver particles 14c. And may be provided in one shell form.
  • the nanocore shell 14a may be added to be coated on the outer surface of the adhesive binder layer 13 in the form of the above-described tertiary solution, but may further improve adhesion to the adhesive binder layer 13.
  • the IPA is washed and added in powder or solution form.
  • the binder composition is preferably prepared by separating and mixing a first agent comprising a silane oligomer and a second agent comprising a weight percent silane oligomer different from the first agent.
  • the first agent and the second agent is separated and mixed, the first agent and the second agent is provided separately as a separate composition, which is mixed as a single composition before coating the surface of the coating object It is preferable to understand that.
  • the first agent includes 45 to 80 wt% of a siloxane oligomer, 15 to 50 wt% of a diluent solvent, and 2 to 8 wt% of a reaction additive based on the total weight of the first agent.
  • the second agent is preferably 40 to 65% by weight of the siloxane oligomer, 30 to 55% by weight of the diluent solvent, and 2 to 6% by weight of the reaction additive, based on the total weight of the second agent. .
  • the first agent and the second agent preferably include one selected from the group consisting of siloxane trimers, siloxane tetramers, and mixtures thereof as the siloxane oligomer.
  • the diluent solvent included in the first agent and the second agent may be an alcohol solvent selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof. It is preferable to include.
  • the reaction additive included in the first agent and the second agent may include at least one or more of an antifoaming agent, a dispersant, a coupling agent. In this way, the individual composition of the first agent and the second agent or the separation and mixing of the first agent and the second agent to reduce the generation of bubbles and each compound can be mixed uniformly.
  • the adhesive binder layer 13 may be firmly coated with a uniform thickness on the surface of the coating object (C). At this time, it is preferable that the adhesive provider layer 13 is firmly coated because it is excellent in adhesion with the surface of the coating object (C). Through this, since the plasmonic expression layer 14 coated on the outer surface of the adhesive binder layer 13 is firmly attached, sterilization and resolution of microorganisms and organic compounds in the air through the plasmonic phenomenon can be significantly improved. have.
  • the nanocore shell 14a is stably attached / bonded while visible light is incident on the coating object C on which the plasmonic expression layer 14 is formed. It can have an attachment ability that can be.
  • the first agent and the second agent is a mixture of the same kind of compound is composed, but the weight ratio of each compound is provided is set differently. Moreover, it is preferable that the weight% of the siloxane oligomers contained in the first agent is set at a ratio greater than the weight% of the siloxane oligomers contained in the second agent.
  • the first agent may include 65% by weight of the siloxane oligomer, 30% by weight of isopropyl alcohol, and 5% by weight of the reaction additive.
  • the second agent may include 55% by weight of the siloxane oligomer, 40% by weight of isopropyl alcohol, and 5% by weight of the reaction additive.
  • the first agent is included as an adhesive for firmly coating the plasmonic expression layer 14 on the surface of the coating object (C).
  • the second agent is included as a curing agent for adjusting the curing rate of the adhesive binder layer (13).
  • the present invention is based on the siloxane oligomer, but is composed of a different mixing ratio of the binder composition which is separated and mixed with a formulation having adhesion and curing ability is coated on the surface of the coating object (C). Therefore, the outer surface of the adhesive binder layer 13 The coating rate of the plasmonic expression layer 14 that is continuously coated is improved, through which the expression of the plasmonic phenomenon can be significantly improved.
  • the first agent and the second agent is preferably mixed in a ratio of 8 to 10: 1 by weight ratio.
  • the first agent is mixed at less than 8 wt% with respect to the first wt% of the second agent, cracks of the adhesive binder layer 13 due to a rapid curing reaction occur while increasing the ratio of the curing agent in the binder composition.
  • the outer surface of the adhesive binder layer 13 is cured before the nanocore shell 14a included in the plasmonic expression layer 14 is attached.
  • the plasmonic expression layer 14 may not be formed to a uniform thickness, or the adhesion may be degraded, thereby degrading coating performance.
  • the coating performance is reduced, so that the plasmonic expression layer 14 is unevenly formed on the surface of the coating object (C), and the adhesion range of the nanocore shell 14a is reduced, so that the expression of plasmonic phenomenon is reduced. Is lowered. For this reason, harmful substances such as SOx / NOx, bacteria and viruses are not substantially decomposed or sterilized, and when applied to an air purifier, the air cleaning efficiency of the space to be purified is reduced.
  • the binder composition becomes excessively sticky and the curing time increases.
  • the binder coating is bonded between the coating object (C) in the step of coating, or is bonded to the inner surface of the rotary stirrer is a coating. This causes peeling or cracking of the adhesive binder layer 13 in the process of separating the coating object (C).
  • the nanocore shell 14a included in the plasmonic expression layer 14 is excessively settled into the adhesive binder layer 13.
  • an area in which the air contaminated by the organic material is contaminated with the nanocore shell 14a is reduced. Therefore, the bactericidal and resolution of microorganisms and organic compounds are lowered due to the lower expression of plasmonic phenomenon.
  • the first agent and the second agent are mixed in a ratio of 8 to 10: 1 by weight so that the adhesive binder layer 13 is uniformly coated on the surface of the coating object C, and each layer is firmly coated. desirable.
  • the binder composition is composed of a mixing ratio at which the first agent as an adhesive is larger than the second agent as a curing agent. Therefore, not only the flat substrate but also the surface of the coating object having the structure and the flexible structure in which the mesh, the beads and the irregular / irregular irregularities are formed can be uniformly coated.
  • the nanocore shell 14a is mixed with a powder or a solvent and coated on the outer surface of the adhesive binder layer 13 in a liquid phase, but before the binder composition is completely cured to form a thin film, that is, the adhesive binder layer ( It is preferable to add in the semi-cured state of 13).
  • the nanocore shell 14a is bonded / attached to the adhesive binder layer 13 in an ultrafine state of tens to hundreds of nano units. Therefore, the plasmonic expression layer 14 may be formed on the surface of the curved or minute gap regardless of the surface shape and deformation of the coating object (C). Through this, it can be applied to a variety of products requiring plasmonics visible light antibacterial / sterilization functionality can be significantly improved utilization.
  • the adhesive force of the first agent and the curing induction reaction of the second agent may buffer each other.
  • the curing and drying speed of the adhesive binder layer 13 may be controlled through the second agent. Through this, the adhesive binder layer 13 is uniformly formed on the surface of the coating object C, and the nanocore shell 14a is continuously added while the adhesive binder layer 13 is semi-cured. The plasmonic expression layer 14 to be formed may be firmly attached.
  • the manufacturing process of the above-described nanocore shell 14a, the process of coating the adhesive binder layer 13 and finally the process of manufacturing the plasmonic expression layer 14 is substantially a heat treatment process of 120 °C or less Go through
  • Si—O—Si bonds formed on the surface of the adhesive binder layer 13 based on silane are mixed with Ti—O—Ti bonds formed on the surface of the nanocore shell 14a, and thus, -Si -O-Ti-O- bond is formed. That is, the unstable bonding structure of the nanocore shell 14a may be coupled and attached in a stable state through the reaction with the adhesive binder layer 13 and the adhesive performance. Through this, the plasmonic expression layer 14 may be firmly coated on the outer surface of the adhesive binder layer 13 through physical and chemical bonding.
  • the present invention can be minimized deformation of the coating object (C) due to heat, unlike the prior art had a material limitation according to the heat resistance. Accordingly, the restriction of the use of the material to which the plasmonic expression layer 14 can be applied can be significantly reduced. Through this, since the range of the industrial field to which the plasmonic expression layer 14 is applicable increases significantly, the usability and economic efficiency may be significantly improved.
  • Figure 4 is an exemplary view showing a coating process through a rotary stirring in the manufacturing method of the plasmonic expression layer according to an embodiment of the present invention.
  • the coating object is prepared and illustrated as an example of the glass beads 12.
  • the adhesive binder layer 13 is formed by inserting a plurality of the glass beads 12 and the binder composition b into a rotary stirrer s and rotating stirring. At this time, the glass beads 12 are preferably provided in a transparent sphere shape having a predetermined diameter.
  • the binder composition b is laminated on the outer surface of each of the glass beads 12.
  • the rotary stirrer (s) is rotated and stirred for 4 to 9 minutes at a speed of 10 to 60 rpm to form an adhesive binder layer on the outer surface of each of the plurality of glass beads 12 ( 13).
  • the rotation speed of the rotary stirrer (s) is more preferably set to 22 ⁇ 27 rpm, moreover, the rotary stirrer (s) is rotated at a speed of 25 rpm, the drying time may be set to 5 minutes. .
  • the adhesive binder layer 13 is formed into the plasmonic expression layer 14 as it is continuously stirred and rotated into the naconoshell solution or powder state in the rotary stirrer s in a semi-cured state. do.
  • the nanocore shell is sequentially introduced into the rotary stirrer s containing the glass beads 12 coated with the adhesive binder layer 13 in a semi-cured state, and rotated while the adhesive binder layer 13 is rotated.
  • the nanocore shell is laminated on the outer surface.
  • the rotary stirrer (s) is set to correspond to the rotational speed when coating the binder composition (b), a plurality of the glass beads (80 to 100 minutes by drying while rotating stirring) 12)
  • the plasmonic expression layer is formed on the outer surface of the adhesive binder layer 13 formed on each outer surface.
  • the drying time can be set to 90 minutes.
  • the binder composition (b) and the nanocore shell are sequentially coated with a solution or powder on the outer surface of each of the plurality of glass beads 12 to have plasmonic antimicrobial / sterilization function in the visible region. It may be formed of a plurality of plasmonic functional beads.
  • the plasmonic functionalities are preferably understood to mean having antibacterial / sterilizing function in visible light through the plasmonic phenomenon.
  • the rotation speed of the rotary stirrer s as the amount of the glass beads 12 to coat the plasmonic expression layer is increased. That is, by adjusting the rotation speed of the rotary stirrer (s) according to the production amount of the product coated with the plasmonics expression layer can be adjusted the coating thickness and coating performance of the coating layer to be continuously laminated. Through this, the coating quality of the plasmonic expression layer can always be kept constant, the quality of the product to which it is applied can be significantly improved.
  • the binder composition (b) is preferably coated with 17 to 23 parts by weight based on 1000 parts by weight of the plurality of glass beads 12.
  • the thickness of the adhesive binder layer 13 is formed to a thickness that does not satisfy the adhesive strength enough to be firmly attached to the plasmonic expression layer.
  • the binder composition (b) is added in excess of 23 parts by weight, the economic efficiency is lowered due to the generation of surplus and the adhesion occurs between the glass beads 12 due to the surplus.
  • the binder composition (b) may be coated with a thickness such that the adhesive binder layer 13 may firmly attach the nanocore shell, while preventing the adhesion between the glass beads 12. (12) It is preferable to add 17-23 weight part with respect to 1000 weight part.
  • the nanocore shell 17 to 23 parts by weight based on 1000 parts by weight of the plurality of glass beads 12 is preferably coated on the outer surface of the adhesive binder layer 13 in a semi-cured state.
  • the nanocore shell may be added in a solution state.
  • the nanocore shell when the nanocore shell is less than 17 parts by weight, the thickness of the plasmonic expression layer is formed to be thin and the plasmonics developability is lowered because it is not coated on the outer surface of the glass beads 12 as a whole. On the other hand, if the nanocore shell is added in excess of 23 parts by weight, the economic efficiency is reduced due to the generation of excess.
  • the nanocore shell is 17 to 23 parts by weight based on 1000 parts by weight of the plurality of glass beads 12 so as to satisfy the antimicrobial / sterilization characteristics through the expression of the plasmonic phenomenon to reduce the manufacturing cost. This is preferred.
  • each coating layer when forming each coating layer, the rotary stirrer (s) is preferably rotated in a state arranged inclined in a predetermined angle range ( ⁇ ).
  • the predetermined angle range ⁇ is preferably set to 15 ⁇ 20 °.
  • each of the coating layer is preferably understood as the adhesive binder layer 13 and the plasmonic expression layer.
  • the binder composition (b) may be uniformly coated on the outer surface of each of the plurality of glass beads 12 while the rotational traction and automatic slide movement / fall of the glass beads 12 are repeated.
  • the plurality of glass beads 12 may be stirred and rotated individually through the rotation of the rotary stirrer s. Through this, while the individual coating is made on the outer surface of each of the glass beads 12, it is possible to prevent the adhesion between the glass beads 12 or the adhesion between the glass beads 12 and the inner surface of the rotary stirrer (s).
  • each of the coating layers such as the adhesive binder layer 13 and the plasmonic expression layer may be uniformly and firmly coated with a predetermined thickness.
  • each of the coating layers may be automatically laminated and coated, thereby improving productivity.
  • the plasmonic expression layer through the simple process of rotating and stirring the glass beads 12, the binder composition (b) and the nanocore shell into the solution or powder with a time difference in the rotary stirrer (s). Can be formed.
  • the adhesive force of the binder composition (b) is greater than the load of the glass beads 12 so that rotational traction and slide movement / fall are not automatically performed. . This causes adhesion between the plurality of glass beads 12 or adhesion between the glass beads 12 and the inner surface of the rotary stirrer s.
  • the rotary stirrer s when the rotary stirrer s is disposed at an inclination angle exceeding 20 °, due to the automatic slide movement / falling impact of the glass bead 12 rotated and towed to the inclined upper side of the rotary stirrer s. Cracks are generated in the glass beads 12 or the adhesive binder layer 12. In addition, the glass beads 12 are separated to the outside of the rotary stirrer s by the reaction of the drop impact.
  • the rotary stirrer (s) is 15 to 20 so that a plurality of the glass beads 12 are freely rotated to the viscosity of the binder composition (b) and the cracks due to impacts are individually coated while being automatically moved / falling. It is preferably arranged obliquely in the angle range.
  • the rotary stirrer s may be rotated and stirred in a state where the inclination angle is 0 °, that is, disposed horizontally with the ground.
  • a heating unit for maintaining the internal temperature of the rotary stirrer (s) above a predetermined temperature may be further provided.
  • the heating unit is provided as a heating means, such as a heating bulb disposed on the open upper side of the rotary stirrer s to provide radiant heat, a hot air fan, or an induction heating device such as a water heater disposed below the rotary stirrer s. do.
  • a heating means such as a heating bulb disposed on the open upper side of the rotary stirrer s to provide radiant heat, a hot air fan, or an induction heating device such as a water heater disposed below the rotary stirrer s. do.
  • heat of at least room temperature preferably 60 to 150 ° C., and more preferably 120 ° C. or less, may be applied to the inside of the rotary stirrer s.
  • the adhesive binder layer 13 may be semi-cured in a state having a predetermined adhesiveness without being completely cured.
  • the nanocore shell solution continuously injected in a state in which the adhesive binder layer 13 is coated in a semi-cured state may be rapidly cured while being coated in a thin thin film form.
  • the present invention is continuously coated through a relatively low temperature heat treatment to simplify the process steps and equipment required for the process.
  • the restrictions on the shape, material bending and heat resistance of the product applicable to the process can be minimized, it can be used in various industrial fields requiring plasmonics visible light antimicrobial / sterilization function, which can significantly improve utilization.
  • the adhesive binder layer 13 formed based on the siloxane oligomer forms a thin silica film on the outer surface of each of the plurality of glass beads 12, so that the plasmonic expression layer is firmly attached.
  • the light transmittance of the adhesive binder layer 13 is high, light irradiated from the light source may be transmitted while passing through the plurality of plasmonic functional beads as a whole.
  • Figure 5 is a photograph showing the results of the bactericidal evaluation of the plasmonic expression layer prepared according to each embodiment.
  • the sterilization evaluation results of the plasmonic functional beads including the plasmonic expression layer prepared according to the present invention is as follows.
  • Table 1 is a table showing the coating evaluation according to the mixing ratio of the first agent and the second agent.
  • the coating method except for the mixing ratio of the first agent and the second agent is as follows.
  • Each example prepares the same amount of glass beads and measures the initial weight.
  • the nanocoreshell solution in each example is prepared in a 1: 1 ratio with the binder composition prepared according to the mixing ratio of each example.
  • the binder composition prepared according to the mixing ratio of each example is coated on the glass beads once for 1 minute and then the nanocore shell solution is coated for 3 minutes. Then, the binder composition and the nanocore shell solution prepared according to each embodiment are then coated. After sequentially measuring the weight of the glass beads immediately after coating and drying and washing them.
  • the coating performance was evaluated by calculating the peeling amount by comparing the initial weight of each example with the weight immediately after coating and the weight after washing, and it is preferable that the smaller the peeling amount, the higher the coating rate.
  • the sterilization rate evaluation method of the plasmonic functional beads prepared according to each example is as follows.
  • the experiment uses E. coli DH5 ⁇ as the experimental strain, the OD value is set to 1 and the basic bacterial count is set to 10 4 . Then, 50 g of the plasmonic functional beads prepared according to each example were mixed and directly dispensed with the experimental strain in 150 ml of distilled water, respectively. Subsequently, after 5 minutes by irradiating light in the visible region, the test bacteria were treated in the order of separation / washing / dilution, and each plate was plated in a medium and incubated at 35 ° C. for 24 hours to measure the number of bacteria.
  • the mixing ratio of the first agent and the second agent can be confirmed that the excellent coating performance and sterilization rate in Example 3 satisfying the range of 8 ⁇ 10: 1 by weight ratio.
  • Example 1 where the mixing ratio of the second agent, which is a curing agent, is relatively high, the coating weight is lower than that of other examples, and thus, the sterilization rate is low.
  • Example 2 having a relatively high mixing ratio of the first agent as an adhesive, it can be confirmed that the coating performance is high but the sterilization rate is lower than that of Example 3.
  • Example 4 Individual coating 4 minutes (1 minute / 3 minutes)
  • Example 5 1 1 mix, once 4 minutes
  • Table 2 is a table showing the coating method of the plasmonic functional beads according to each embodiment
  • Table 3 is a table showing the surface composition of the plasmonic functional beads prepared according to Example 4 and Example 5 of Table 2
  • the content of the surface composition was expressed in weight percent through EDAX analysis.
  • the binder composition was coated on the outer surface of the glass beads once for 1 minute and then laminated coating the nanocore shell solution once for 3 minutes.
  • the binder composition and the nanocore shell solution were mixed 1: 1 to coat the outer surface of the glass beads once for 4 minutes.
  • Example 6 the binder composition and the nanocore shell solution were mixed 1: 1 to coat the outer surface of the glass bead once for 4 minutes, and then the same mixture was further coated once more.
  • the binder composition and the nanocoreshell solution were mixed 1: 1 to coat the outer surface of the glass bead once for 20 seconds, and then separately prepared for the nanocoreshell solution to be further coated for 3 minutes and 30 seconds. .
  • composition method of each composition except the coating method and the coating time in each embodiment according to Table 2 is the same as in Example 3 of Table 1.
  • the sterilization experiment using the plasmonic functional beads prepared according to the Examples of Table 2 was performed in the same manner as in Table 1 above.
  • the comparative example shown in Figure 4 is to directly dispense the experimental strain to 200ml of distilled water not mixed with plasmonic functional beads to measure the number of bacteria in the above method.
  • Example 4 in which many titanium components were detected on the surface, that is, the plasmonic functional beads prepared according to the present invention exhibited high sterilization rate of 99.9% through excellent plasmonic development. I could confirm it.
  • Example 6 and Example 7 the titanium component is detected by a lower weight ratio than Example 5, and the display is omitted from Table 3.
  • FIG. 6 is a cross-sectional view illustrating a sterilization process using a plasmonic antibacterial / sterilization filter to which a plasmonic expression layer prepared according to an embodiment of the present invention is applied.
  • the plasmonic functional beads 11 to which the plasmonic expression layer 14 is applied to the surface are filled in the filter body portion 15 in which an accommodating space is formed. It may be provided as / sterilization filter (10).
  • the air purification apparatus 100 provided with the plasmonic antibacterial / sterilization filter 10 may sterilize / decompose organic matters contained in the air in the purification target space and keep them clean.
  • plasmonic functional beads 11 may be expressed plasmonic phenomenon on each outer surface.
  • each of the plasmonic functional beads 11 is formed as a sphere, and the contact area between each other is minimized, the area where the contaminated air sucked from the outside corresponds to each of the plasmonic functional beads 11 is greatly increased. Can be set. Therefore, since the plasmonics reactivity is significantly improved relative to the volume of the plasmonic antibacterial / sterilization filter 10, the air purifier 100 may be provided with a compact and excellent air cleaning effect.
  • the filter body 15 may have a hollow cylindrical inner partition 16 having a predetermined first diameter and a second diameter spaced apart from the outer surface of the inner partition 16 by a predetermined interval.
  • a hollow cylindrical outer partition 17 is included.
  • the first diameter and the second diameter are preferably standardized according to the size of the air purification device including the plasmonic antibacterial / sterilization filter 10.
  • the inner partition 16 and the outer partition 17 is preferably formed in a cylindrical shape having the same center.
  • an upper end side between the inner partition 16 and the outer partition 17 may be opened, and each lower end may be connected to a donut-shaped bottom surface.
  • the filter body portion 15 may be formed in various shapes such as square, pentagonal, hexagonal or elliptical in cross-section, and may be formed in a plate shape in which the inner partition is provided on one side and the outer partition is provided on the other side. It may be.
  • the inner partition 16 and the outer partition 17 is preferably formed with projections 16a, 17a having an opening gap less than the diameter of the plasmonic functional beads 11.
  • the projections 16a and 17a are formed in plural through the entire surfaces of the inner partition 16 and the outer partition 17.
  • light in the visible light region irradiated from the lamp unit 20 may be transmitted to the plurality of plasmonic functional beads 11 through the projection unit 16a formed in the inner partition 16.
  • the contaminated air a1 of the indoor space is sucked through the inlet hole 31h formed in the housing part 30 in which the plasmonic antimicrobial / sterilization filter 10 is accommodated, and then into the outer partition 17. It is transmitted to the inside of the accommodation space through the formed projection portion 17a.
  • the air may be purified while the microorganisms and organic compounds contained in the air (a1) contaminated by the plasmonic phenomenon through the plasmonic functional beads 11 are sterilized and decomposed.
  • the purified air a2 may be discharged into the indoor space through the upper side of the air purifier 100 through the projection 16a formed in the inner partition 16.
  • the opening gap w of the projections 16a and 17a formed in the inner partition 16 and the outer partition 17 is smaller than the diameter d of the plasmonic functional beads 11. desirable.
  • the area that can pass through the projections 16a and 17a to be irradiated to the plurality of plasmonic functional beads 11 filled in the accommodation space is set to the maximum.
  • the plasmonic functional beads 11 can be prevented from being separated into the inner partition 16 or the outer partition 17 through the projections 16a and 17a.
  • the lamp unit 20 passing through the projections (16a, 17a) to the plurality of plasmonic functional beads 11 irradiating light in the visible light region is It is preferred to be provided.
  • the inner partition 16 and the outer partition 17 are each provided in a hollow cylindrical shape and have the same center, and the lamp unit 20 is disposed at the same center of each of the partitions 16 and 17. do. Therefore, since the amount of light irradiated to the plurality of plasmonic functional beads 11 filled in the accommodation space is uniformly transmitted, sterilization and resolution of microorganisms and organic compounds can be further improved.
  • harmful substances such as microorganisms or volatile organic compounds (VOCs) in the air sucked from the indoor space in which the air purifier 100 including the plasmonic antibacterial / sterilization filter 10 is disposed are sterilized and decomposed.
  • indoor air may be kept clean and comfortable as the harmful substances are sterilized and decomposed to re-release the purified air.
  • the base filter 50 including the HEPA filter 51 and the deodorizing filter 52 may be provided to surround the circumference of the plasmonic antibacterial / sterilization filter 10.
  • the blowing means 40 when the blowing means 40 is driven, the contaminated air a1 introduced through the inlet part 31 is moved to the hollow 53 side in the base filter 50. At this time, while the contaminated air a1 passes through the HEPA filter 51, foreign substances having a relatively large size are physically filtered first. Subsequently, primary filtered air is continuously filtered through the deodorizing filter 52 stacked inside the HEPA filter 51 while adsorbing an odor component in the air.
  • the plasmonic antimicrobial / sterilization filter 10 is provided inside the hollow 53 of the base filter 50, and a purification space 10a is formed at the center thereof.
  • the lamp unit 20 is disposed at the center of the plasmonic antibacterial / sterilizing filter 10 to irradiate light in the visible region.
  • the plasmonic antibacterial / sterilizing filter 10 is organic in air passing through the base filter 50 through the plasmonic phenomenon which is activated by the light in the visible ray region irradiated from the lamp unit 20.
  • the material can be sterilized and purified.
  • the contaminants in the air blown through the HEPA filter 51, the deodorization filter 52, and the plasmonics antibacterial / sterilization filter 10, which are multi-layered in and outward, are sequentially purified through physical and chemical reactions. Therefore, the cleanliness of the air can be significantly improved.
  • the present invention can be applied to the industry for the manufacture and use of antimicrobial / sterilization filter by providing a plasmonic antimicrobial / sterilization filter to which the plasmonics expression layer with improved productivity while improving the sterilization / antibacterial / resolution in the visible region. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)

Abstract

The present invention provides a method for preparing a plasmonics implementation layer which has improved abilities in sterilizing/fighting/disintegrating harmful substances such as SOx/NOx, bacteria, and viruses, in the visible light region, and which is mass-producible and thus increases productivity. More specifically, the method comprises: a first step in which a nano-core shell and a binder composition containing a silane-based oligomer are prepared, the nano-core shell being prepared by mixing a first base solution containing a titanium alkoxide compound with a second base solution containing a metal nitride; a second step in which the binder composition is coated on the surface of a coating target and semi-cured in a preset temperature range, thereby forming an adhesive binder layer; and a third step in which the nano core-shell is coated and cured on the outer surface of the adhesive binder layer, thereby forming a plasmonics implementation layer. Thus, antibacterial and sterilization effects can be exhibited through plasmonics phenomena in the visible light region.

Description

플라즈모닉스 발현층의 제조방법 및 그가 적용된 플라즈모닉스 항균/살균 필터Manufacturing method of plasmonics expression layer and plasmonics antimicrobial / sterilization filter applied thereto
본 발명은 플라즈모닉스 발현층에 관한 것으로, 보다 상세하게는 가시광선영역에서 살균/항균/분해능이 개선되면서도 생산성이 향상된 플라즈모닉스 발현층의 제조방법 및 그가 적용된 플라즈모닉스 항균/살균 필터에 관한 것이다.The present invention relates to a plasmonic expression layer, and more particularly, to a method for preparing a plasmonic expression layer with improved productivity while improving sterilization / antibacterial / resolution in the visible light region and to a plasmonic antibacterial / sterilization filter applied thereto. It is about.
최근 들어서 급속도로 발전하는 사회 환경에 의해 대기오염이 심각해지고 있으며, 실내 공간에 머무르는 시간이 증가하면서 실내의 공기질 개선에 대한 요구가 증가되고 있다. 특히, 황사와 더불어 유해 중금속을 포함하는 미세먼지 및 초미세먼지로 인한 호흡기, 안구, 피부 질환 등이 급증하고 있으며, 전염성이 높은 세균 및 바이러스의 출현에 따른 질병에 대한 위험성이 증가하고 있다.Recently, due to the rapidly developing social environment, air pollution is getting serious, and the demand for improving the air quality of the indoor space is increasing as the time to stay in the indoor space increases. In particular, respiratory, eye and skin diseases caused by fine dust and ultrafine dust containing harmful heavy metals are increasing rapidly along with yellow dust, and the risk of diseases due to the emergence of highly infectious bacteria and viruses is increasing.
이에 따라, 공기 내의 유기 및 무기 오염물질을 흡착하고 살균/분해시키는 기술이 연구 및 개발되고 있으며, 이 중 광촉매는 경제적이면서도 친환경적인 이유로 특히 주목받고 있다.Accordingly, technologies for adsorbing and sterilizing / decomposing organic and inorganic contaminants in the air have been researched and developed, among which photocatalysts are particularly attracting attention for economical and environmentally friendly reasons.
상세히, 상기 광촉매는 촉매의 종류 중 한가지로 빛을 주 에너지원으로 하며, 밴드갭 이상의 에너지를 갖는 빛이 입사되면 전자와 정공 쌍이 생성되면서 산화/환원 반응이 이루어진다. 이를 통해, 상기 광촉매 표면에 흡착된 오염물질, 특히 세균 등과 같은 유기 오염물질을 분해함에 따라 오염된 공기를 정화할 수 있다.In detail, the photocatalyst is a kind of catalyst, and light is used as a main energy source, and when light having energy above the bandgap is incident, an electron / hole pair is generated and an oxidation / reduction reaction is performed. Through this, contaminants adsorbed on the surface of the photocatalyst, in particular, it is possible to purify the contaminated air by decomposing organic pollutants such as bacteria.
여기서, 광촉매 물질로는 여러 반도체 물질이 연구되고 있으며, 특히 티타늄계열의 산화물(TiOx)이 주로 사용된다. 이러한 티타늄계 산화물은 빛에 의한 부식성이 없고, 생물학적/화학적으로 무해하여 인체에 영향을 주지 않는다. 또한, 광촉매의 용매로 사용되는 산, 염기 및 유기용매에 대하여 안정적이고 양이 풍부하여 경제적인 측면에서 저렴하기 때문에 가장 많이 사용되고 있다.Here, various semiconductor materials have been studied as the photocatalyst material, and in particular, titanium-based oxides (TiOx) are mainly used. These titanium oxides are not corrosive by light and are biologically and chemically harmless and do not affect the human body. In addition, it is most used because it is economically inexpensive because it is stable and rich in acid, base and organic solvent used as a solvent of the photocatalyst.
그러나, 이러한 티타늄계 산화물은 밴드갭이 넓어서 전체 빛의 4% 내외인 자외선영역의 빛을 흡수하여 광촉매 활성을 나타낸다는 한계점을 가지고 있다. 이로 인해, 단가가 비싼 자외선계열의 광원을 사용함으로 인해 공기청정기, 정수장치 등과 같은 제품의 제조비용이 증가하는 문제점이 있었다.However, such a titanium oxide has a limitation in that it has a wide bandgap and absorbs light in the ultraviolet region, which is about 4% of the total light, thereby exhibiting photocatalytic activity. For this reason, there is a problem in that the manufacturing cost of products such as air cleaners, water purifiers and the like increases due to the use of ultraviolet light sources of high cost.
또한, 자외선계열의 광원은 주변의 산소와 반응하여 인체에 유해한 오존을 발생시킨다. 이로 인해, 오존을 제거 또는 필터링하기 위한 별도의 구성품을 필요로 하므로 제품의 제조비용이 더욱 증가되며, 제품의 사이즈가 커지면서 공간 활용성이 저하되는 문제점이 있었다.In addition, the ultraviolet light source reacts with the surrounding oxygen to generate ozone harmful to the human body. Therefore, since a separate component for removing or filtering ozone is required, the manufacturing cost of the product is further increased, and as the size of the product is increased, there is a problem that space utilization is lowered.
한편, 플라즈모닉스(plasmonics) 현상은 광촉매의 전자 정공 쌍에 의한 산화/환원 반응과는 다른 원리를 갖는 현상으로 살균/항균/분해능을 갖는다. 즉, 가시광이 플라즈모닉스 구조에 입사되면, 금속과 유전체 사이에서 부분적인 활성화가 일어나고, 이때 발생한 전자가 표면으로 이동하면서 활성 산소종을 발생시킨다. 그리고, 이때 발생된 활성 산소종에 의한 유해물질(예컨대, S0x, NOx를 포함하는 유기물질 등)의 분해와 세균, 바이러스의 살균작용이 일어난다.On the other hand, the plasmonics phenomenon is a phenomenon having a different principle from the oxidation / reduction reaction by the electron hole pair of the photocatalyst and has sterilization / antibacterial / degradation ability. That is, when visible light enters the plasmonic structure, partial activation occurs between the metal and the dielectric, and the generated electrons move to the surface to generate active oxygen species. Then, decomposition of harmful substances (eg, S0x, organic substances including NOx, etc.) by the generated reactive oxygen species occurs and bactericidal action of bacteria and viruses occurs.
이러한 플라즈모닉스 구조를 기판이나 유연성을 갖는 다양한 구조물에 적용하여 가시광선영역에서도 플라즈모닉스 현상을 통한 항균 및 살균 기능을 갖도록 하는 기술이 일부 개시되었다. 상기 플라즈모닉스 구조는 플라즈몬을 형성하는 물질을 상기 기판 등의 표면에 증착시키는 방법으로 적용된다.Some techniques have been disclosed in which the plasmonic structure is applied to various structures having a substrate or flexibility to have an antibacterial and sterilization function through the plasmonic phenomenon in the visible light region. The plasmonic structure is applied by depositing a plasmon-forming material on the surface of the substrate.
그러나, 종래의 플라즈모닉스 구조를 적용하는 방법은 일반적으로 진공장비와 고온의 열처리 방법을 통해 이루어져야 했으므로 증착되는 소재 선정에 제한이 많으며, 이로 인하여 대량생산이나 연속생산이 어려워 생산성이 저하되는 문제점이 있었다.However, since the method of applying the conventional plasmonic structure has to be generally made through vacuum equipment and high temperature heat treatment method, there are many limitations in the selection of the material to be deposited. As a result, mass production or continuous production is difficult, which leads to a problem in that the productivity is reduced. there was.
더욱이, 유연성을 가지는 기판이나 메쉬, 비드 등의 구조물에는 그 외면에 플라즈모닉스 구조를 형성시키기 어려우며, 형성된 플라즈모닉스 구조를 통하여 일정 성능 이상의 플라즈모닉스 가시광 항균/살균 기능을 제공받기 어려운 문제점이 있었다.In addition, it is difficult to form a plasmonic structure on the outer surface of a flexible substrate, a mesh, a bead, etc. structure, and it is difficult to provide plasmonics visible light antibacterial / sterilization function with a certain performance through the formed plasmonic structure. there was.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 가시광선영역에서 SOx/NOx 등의 유해물질 및 세균, 바이러스에 대한 살균/항균/분해능이 개선되면서도 대량생산이 가능하여 생산성이 향상된 플라즈모닉스 발현층의 제조방법 및 그가 적용된 플라즈모닉스 항균/살균 필터를 제공하는 것을 해결과제로 한다.In order to solve the above problems, the present invention is capable of mass production while improving the sterilization / antibacterial / resolution for harmful substances such as S Ox / NOx and bacteria, viruses in the visible light range, the productivity is improved plasmonics expression The problem is to provide a method for producing a layer and a plasmonic antimicrobial / sterilization filter applied thereto.
상기의 과제를 해결하기 위하여, 본 발명은 플라즈모닉스 현상에 의하여 가시광에서 항균 및 살균 기능이 나타나도록 티타늄 알콕사이드 화합물을 포함하는 제1베이스용액 및 금속 질화물을 포함하는 제2베이스용액이 혼합되어 제조된 나노코어쉘과, 실란계 올리고머를 포함하는 바인더 조성물이 각각 준비되는 제1단계; 코팅대상물의 표면에 상기 바인더 조성물이 코팅 및 기설정된 온도범위에서 반경화되어 점착바인더층이 형성되는 제2단계; 및 상기 점착바인더층의 외면에 상기 나노코어쉘이 코팅 및 경화되어 플라즈모닉스 발현층을 형성하는 제3단계를 포함하는 플라즈모닉스 발현층의 제조방법을 제공한다.In order to solve the above problems, the present invention is prepared by mixing a first base solution containing a titanium alkoxide compound and a second base solution containing a metal nitride so that antibacterial and bactericidal functions are exhibited in visible light by the plasmonic phenomenon. A first step of preparing a binder composition each comprising the prepared nanocore shell and a silane oligomer; A second step in which the binder composition is coated on the surface of the coating object and semi-cured at a predetermined temperature range to form an adhesive binder layer; And a third step of coating and curing the nanocore shell on the outer surface of the adhesive binder layer to form a plasmonic expression layer.
또한, 본 발명은 상호 상이한 중량%의 실란계 올리고머를 포함하는 제1제 및 제2제가 분리혼합되어 형성되는 점착바인더층과, 플라즈모닉스 현상에 의하여 가시광에서 항균 및 살균 기능이 나타나도록 티타늄 알콕사이드 화합물을 포함하는 제1베이스용액 및 금속 질화물을 포함하는 제2베이스용액이 혼합되어 제조된 나노코어쉘을 포함하는 플라즈모닉스 발현층이 복수개의 유리비드 각각의 외면에 순차적으로 적층 코팅되어 구비되는 복수개의 플라즈모닉스 기능성 비드; 및 내부 격벽 및 외부 격벽 사이에 복수개의 상기 플라즈모닉스 기능성 비드가 충진되는 수용공간이 형성되되, 가시광선영역의 광이 내부로 조사되어 상기 플라즈모닉스 기능성 비드를 통한 플라즈모닉스 현상이 활성화되도록 상기 내부 격벽 및 상기 외부 격벽에 상기 플라즈모닉스 기능성 비드의 직경 미만의 개구 간격을 갖는 투영부가 형성된 필터바디부를 포함하는 플라즈모닉스 발현층이 적용된 플라즈모닉스 항균/살균 필터를 제공한다.In addition, the present invention is an adhesive binder layer formed by separating and mixing the first agent and the second agent comprising silane oligomers of different weight percent mutually, and titanium alkoxide so that antibacterial and bactericidal functions are exhibited in visible light by the plasmonic phenomenon. A plasmonic expression layer comprising a nanocore shell prepared by mixing a first base solution containing a compound and a second base solution containing a metal nitride is sequentially laminated and coated on the outer surface of each of the plurality of glass beads. A plurality of plasmonic functional beads; And an accommodating space in which a plurality of the plasmonic functional beads are filled between the inner partition and the outer partition, so that light in the visible region is irradiated therein to activate the plasmonic phenomenon through the plasmonic functional beads. The plasmonic expression layer is applied to the inner partition and the outer partition including a filter body having a projection having an opening gap less than the diameter of the plasmonic functional beads. Provides plasmonic antimicrobial / sterilization filters.
상기의 해결 수단을 통하여, 본 발명에 따른 플라즈모닉스 발현층의 제조방법 및 그가 적용된 플라즈모닉스 항균/살균 필터는 다음과 같은 효과를 제공한다.Through the above solution, the manufacturing method of the plasmonic expression layer according to the present invention and the plasmonic antimicrobial / sterilization filter applied thereto provides the following effects.
첫째, 이산화티타늄이 금, 은 등의 수~수십 나노크기의 나노금속입자를 감싸는 나노코어쉘 구조로 결합되면서 가시광에서도 강력한 항균/살균능을 갖는 플라즈모닉스 발현층이 형성된다. 따라서, 가격이 저렴한 가시광램프 또는 자연광에서도 플라즈모닉스 현상이 활성화되므로 경제적이면서도 항균/살균능이 우수하여 플라즈모닉스 발현층이 적용된 제품 및 제품 주변의 위생성이 현저히 향상될 수 있다.First, as titanium dioxide is combined into a nanocore shell structure surrounding nano-sized nano-metal particles of gold and silver, a plasmonic expression layer having strong antibacterial / sterilizing ability is formed even in visible light. Therefore, the plasmonics phenomenon is activated even in a low-cost visible light lamp or natural light, and thus economical and excellent antibacterial / sterilizing ability can significantly improve the hygiene of the product and the surroundings of the plasmonic expression layer.
둘째, 코팅대상물의 표면에 선코팅되는 바인더 조성물이 실란계를 베이스로 하되 조성비가 상이하게 설정된 두개의 제제를 분리혼합하여 접착력 및 경화속도가 조절되므로 바인더가 완전히 경화되기 전 나노코어쉘이 부착/결합됨에 따라 코팅력이 향상된다. 이와 동시에, 나노코어쉘이 IPA에 세척된 후 투입되면서 표면에 잔존하는 IPA에 의해 점착바인더층의 표면이 용해 및 재경화되면서 더욱 견고한 부착능이 부여되므로 상기 플라즈모닉스 발현층의 코팅력이 현저히 향상될 수 있다.Second, the binder composition to be pre-coated on the surface of the coating object is based on the silane-based, but separate mixing of the two formulations with different composition ratios to control the adhesion and curing rate, so that the nanocore shell is attached / before the binder is completely cured As combined, the coating power is improved. At the same time, as the nanocore shell is washed in IPA and then injected into the surface, the adhesion binder layer is dissolved and re-cured by IPA remaining on the surface, thereby providing more firm adhesion, thereby significantly improving the coating power of the plasmonic expression layer. Can be.
셋째, 플라즈모닉스 현상을 발현할 수 있도록 유전체 물질과 나노금속입자 용액을 혼합 및 처리 처리하는 방법으로 나노코어쉘이 제조되므로 대량생산이 가능하다. 또한, 액상 및 초미립자 상태의 각 코팅물을 고온/고압으로 열처리 하지 않고 연속적으로 코팅하여 공정이 단순화되므로 제품의 형태, 소재의 굽힘성 및 내열성에 제한이 최소화되어 표면 플라즈몬 현상을 통한 가시광 항균/살균 기능이 요구되는 다양한 산업분야에 적용할 수 있어 활용성이 현저히 향상될 수 있다.Third, since the nanocore shell is manufactured by mixing and treating the dielectric material and the nanometal particle solution to express the plasmonic phenomenon, mass production is possible. In addition, the process is simplified by continuously coating each coating in the liquid and ultra-fine state without heat treatment at high temperature / high pressure, thereby minimizing restrictions on the shape, material bending and heat resistance of the product. It can be applied to a variety of industries that require visible light antibacterial / sterilization function through the surface plasmon phenomenon can be significantly improved utilization.
도 1은 본 발명의 일실시예에 따른 플라즈모닉스 발현층의 제조방법을 나타낸 흐름도.1 is a flow chart showing a method for producing a plasmonic expression layer according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 플라즈모닉스 발현층의 제조방법에서 나노코어쉘의 제조방법을 나타낸 흐름도.Figure 2 is a flow chart showing a method of manufacturing a nanocore shell in the method for producing a plasmonic expression layer according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 플라즈모닉스 발현층의 제조방법에서 점착바인더층에 나노코어쉘이 결합된 상태를 나타낸 예시도.Figure 3 is an exemplary view showing a state in which the nanocore shell is bonded to the adhesive binder layer in the method for producing a plasmonic expression layer according to an embodiment of the present invention.
도 4는 본 발명의 일실시예 따른 플라즈모닉스 발현층의 제조방법에서 회전 교반을 통한 코팅 과정을 나타낸 예시도.Figure 4 is an exemplary view showing a coating process through a rotary stirring in the manufacturing method of the plasmonic expression layer according to an embodiment of the present invention.
도 5는 각 실시예에 따라 제조된 플라즈모닉스 발현층에 대한 살균평가 결과를 나타낸 사진.Figure 5 is a photograph showing the results of the bactericidal evaluation for the plasmonic expression layer prepared according to each example.
도 6은 본 발명의 일실시예에 따라 제조되는 플라즈모닉스 발현층이 적용된 플라즈모닉스 항균/살균 필터를 이용한 살균 과정을 나타낸 단면 예시도.Figure 6 is a cross-sectional view showing a sterilization process using a plasmonic antibacterial / sterilization filter applied plasmonic expression layer prepared according to an embodiment of the present invention.
본 발명의 최선의 실시 형태는 첨부된 도면을 참조하여 이하에서 보다 상세히 설명될 것이다.Best Modes for Carrying Out the Invention The best embodiments of the invention will be described in more detail below with reference to the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 플라즈모닉스 발현층의 제조방법 및 그가 적용된 플라즈모닉스 항균/살균 필터를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a method for producing a plasmonic expression layer according to a preferred embodiment of the present invention and a plasmonic antibacterial / sterilization filter applied thereto.
도 1은 본 발명의 일실시예에 따른 플라즈모닉스 발현층의 제조방법을 나타낸 흐름도이고, 도 2는 본 발명의 일실시예에 따른 플라즈모닉스 발현층의 제조방법에서 나노코어쉘의 제조방법을 나타낸 흐름도이며, 도 3은 본 발명의 일실시예에 따른 플라즈모닉스 발현층의 제조방법에서 점착바인더층에 나노코어쉘이 결합된 상태를 나타낸 예시도이다.1 is a flowchart illustrating a method of manufacturing a plasmonic expression layer according to an embodiment of the present invention, Figure 2 is a method of manufacturing a nanocore shell in the method of manufacturing a plasmonic expression layer according to an embodiment of the present invention. 3 is an exemplary view showing a state in which a nanocore shell is bonded to an adhesive binder layer in a method of manufacturing a plasmonic expression layer according to an embodiment of the present invention.
한편, 상기 플라즈모닉스 발현층의 제조방법은 기판, 비드, 메쉬 또는 유연성을 가지면서도 유해 유기물의 살균 및 항균을 필요로 하는 코팅대상물에 적용될 수 있다. 그리고, 상기 플라즈모닉스 발현층이 형성된 기판, 비드, 메쉬 등의 코팅대상물은 주변 환경의 유기물을 분해 및 살균하는 필터 또는 항균상태를 유지하여야 하는 다양한 기계, 부품 또는 물품 등의 제품에 적용될 수 있다. On the other hand, the manufacturing method of the plasmonic expression layer may be applied to the coating, which has the substrate, beads, mesh or flexibility, but need to sterilize and antibacterial of harmful organic substances. In addition, the coating object, such as a substrate, beads, mesh, etc., on which the plasmonic expression layer is formed, may be applied to products such as various machines, parts, or articles that must maintain an antimicrobial state or a filter that decomposes and sterilizes organic substances in the surrounding environment. .
즉, 상기 코팅대상물에 상기 플라즈모닉스 발현층이 형성됨에 따라 가시광선영역에서의 플라즈모닉스 현상을 통하여 항균 및 살균됨으로써 청정하고 위생적인 상태로 유지될 수 있다. 예컨대, 상기 플라즈모닉스 발현층은 공기 정화장치 또는 정수장치에 구비되는 필터에 적용될 수 있으며, 이하에서는 상기 플라즈모닉스 발현층이 형성된 플라즈모닉스 항균/살균 필터를 예로서 설명한다.That is, as the plasmonic expression layer is formed on the coating object, it can be maintained in a clean and hygienic state by antibacterial and sterilization through the plasmonic phenomenon in the visible light region. For example, the plasmonic expression layer may be applied to a filter provided in an air purifier or a water purification device. Hereinafter, a plasmonic antibacterial / sterilization filter in which the plasmonic expression layer is formed will be described as an example.
도 1 내지 도 3에서 보는 바와 같이, 본 발명에 따른 플라즈모닉스 발현층의 제조방법은 다음과 같은 일련의 단계를 통해 제조된다. As shown in Figures 1 to 3, the method for producing a plasmonic expression layer according to the present invention is prepared through a series of steps as follows.
먼저, 티타늄 알콕사이드 화합물을 포함하는 제1베이스용액 및 금속 질화물을 포함하는 제2베이스용액이 혼합되고 열처리 및 환류되어 플라즈모닉스 현상이 발현되는 나노코어쉘 구조로 제조된다. 더불어, 실란계 올리고머를 포함하는 바인더 조성물이 준비된다(s10).First, a first base solution containing a titanium alkoxide compound and a second base solution containing a metal nitride are mixed, heat treated and refluxed to prepare a nanocore shell structure in which a plasmonic phenomenon is expressed. In addition, a binder composition including a silane oligomer is prepared (s10).
그리고, 상기 코팅대상물의 표면에 상기 바인더 조성물이 코팅 및 기설정된 온도범위에서 반경화되어 점착바인더층이 형성된다(s20). 이때, 상기 기설정된 온도범위는 60~150℃로 설정됨이 바람직하며, 더욱 바람직하게는 120℃ 이하의 온도로 설정될 수 있다.Then, the binder composition is semi-cured in the coating and a predetermined temperature range on the surface of the coating object to form an adhesive binder layer (s20). At this time, the predetermined temperature range is preferably set to 60 ~ 150 ℃, more preferably, may be set to a temperature of less than 120 ℃.
이어서, 상기 점착바인더층의 외면에 상기 나노코어쉘이 코팅 및 경화됨에 따라 상기 코팅대상물의 외면에 플라즈모닉스 발현층이 형성된다(s30).Subsequently, as the nanocore shell is coated and cured on the outer surface of the adhesive binder layer, a plasmonic expression expression layer is formed on the outer surface of the coating object (s30).
상세히, 상기 티타늄 알콕사이드 화합물(titanium alkoxide compound)은 산화되어 이산화티타늄(titanium dioxide,TiO2) 유전체 형태로 상기 제2베이스용액 내의 나노 금속입자의 외면을 감싸도록 구비된다. 이때, 상기 이산화티타늄은 광원으로부터 조사되는 빛의 영향을 받으면 나노금속입자 표면과 유전체 사이에서 플라즈모닉스 현상이 발현되고 국부적으로 강한 전자가 발생하게 된다. 이렇게 생성된 전자는 유전체의 표면으로 이동하고 나노코어쉘 표면에서 활성 산소종을 발생시킨다.In detail, the titanium alkoxide compound is oxidized and provided to surround the outer surface of the nano metal particles in the second base solution in the form of titanium dioxide (TiO 2 ) dielectric. At this time, the titanium dioxide is Under the influence of light irradiated from the light source, a plasmonic phenomenon occurs between the surface of the nanometal particle and the dielectric, and locally strong electrons are generated. The electrons thus generated migrate to the surface of the dielectric and generate reactive oxygen species on the surface of the nanocore shell.
그리고, 이렇게 발생된 활성 산소종 및 이온화된 입자에 의해 미생물이 살균되거나 포름알데히드, 페놀, TCE 등과 같은 독성 및 휘발성을 갖는 유기화합물을 산화 분해시킨다.Then, the generated active oxygen species and ionized particles cause microorganisms to be sterilized or to oxidatively decompose organic compounds having toxic and volatile properties such as formaldehyde, phenol, TCE, and the like.
또한, 상기 금속 질화물(metal nitride)은 용액 내에서 나노크기로 입자화되며, 표면이 상기 이산화티타늄에 의해 감싸여진다. 이때, 나노금속입자의 표면과 이를 감싸고 있는 이산화티타늄 유전체에 의해 가시광에서 플라즈모닉스 현상이 발현된다. 따라서, 광원으로 비용이 저렴하면서도 산소와의 반응시 오존을 발생시키지 않는 가시광램프로 구비될 수 있어 경제성 및 안전성이 현저히 향상될 수 있다.In addition, the metal nitride is nano-sized in solution and the surface is surrounded by the titanium dioxide. At this time, the plasmonic phenomenon is expressed in visible light by the surface of the nano metal particles and the titanium dioxide dielectric covering the nano metal particles. Therefore, the light source may be provided with a visible light lamp which is inexpensive and does not generate ozone when reacting with oxygen, thereby significantly improving economic efficiency and safety.
이때, 상기 제1베이스용액는 티타늄 에톡사이드(titanium ethoxide), 티타늄 메톡사이드(titanium methoxide), 티타늄 부톡사이드(titanium butoxide), 티타늄 이소프로폭사이드(titanium isopropoxide) 및 이들의 혼합물로 이루어진 군 중에서 선택된 하나로 구비됨이 바람직하다. 더욱 바람직하게는, 티타늄 테트라 이소프로폭사이드(titanium tetra isopropoxide,이하 TTIP)로 구비될 수 있다. 이러한 티타늄 알콕사이드 화합물은 상기 코팅대상물(C)의 표면에 코팅되어 플라즈모닉스 현상이 나타나도록 상기 이산화티타늄 유전체를 공급하기 위해 포함된다.In this case, the first base solution is one selected from the group consisting of titanium ethoxide, titanium methoxide, titanium butoxide, titanium isopropoxide, and mixtures thereof. It is preferred to be provided. More preferably, it may be provided with titanium tetra isopropoxide (hereinafter TTIP). Such a titanium alkoxide compound is included to supply the titanium dioxide dielectric to be coated on the surface of the coating object (C) to exhibit a plasmonic phenomenon.
그리고, 상기 제2베이스용액는 질산금(gold nitrate), 질산은(silver nitrate), 질산구리(copper nitrate), 질산니켈(nickel nitrate), 질산코발트(cobalt nitrate) 및 이들의 혼합물로 이루어진 군 중에서 선택된 하나로 구비됨이 바람직하다. 이러한 금속 질화물은 상술한 바와 같이 플라즈모닉스 현상을 가시광에서 발생시킬 수 있도록 상기 이산화티타늄이 표면에 결합되는 나노금속입자(또는, 귀금속 나노입자)를 공급하기 위해 포함된다.The second base solution is selected from the group consisting of gold nitrate, silver nitrate, copper nitrate, nickel nitrate, cobalt nitrate, and a mixture thereof. It is preferred to be provided. Such metal nitrides are included to supply nanometal particles (or noble metal nanoparticles) to which titanium dioxide is bonded to the surface to generate plasmonic phenomenon in visible light as described above.
더불어, 상기 알코올계 용매는 메틸 알코올(methyl alcohol), 에틸 알코올(ethyl alcohol), 프로필 알코올(propyl alcohol), 이소프로필 알코올(isopropyl alcohol), 펜틸 알코올(pentyl alcohol), 벤질 알코올(benzyl alcohol) 및 이들의 혼합물로 이루어진 군 중에서 선택된 하나로 구비됨이 바람직하다. 여기서, 상기 나노코어쉘(nano-coreshell,14a)은 다음과 같은 과정을 통해 형성된다.In addition, the alcohol solvent is methyl alcohol, ethyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, pentyl alcohol, benzyl alcohol, and the like. It is preferably provided with one selected from the group consisting of a mixture thereof. Here, the nano-core shell (14a) is formed through the following process.
먼저, 상기 제1베이스용액 즉, 상기 티타늄 알콕사이드 화합물을 알코올계 용매에 투입하고 27~33℃ 온도범위에서 13~17분간 혼합하여 1차 용액을 형성한다(s11). 그리고, 상기 1차 용액에 상기 제2베이스용액, 즉 금속 질화물을 투입하고 27~33℃ 온도범위에서 13~17분간 혼합하여 2차 용액을 형성된다(s12).First, the first base solution, that is, the titanium alkoxide compound is added to an alcohol solvent and mixed for 13 to 17 minutes at a temperature range of 27 to 33 ° C. to form a primary solution (s11). Then, the second base solution, ie, metal nitride, is added to the primary solution and mixed for 13 to 17 minutes at a temperature range of 27 to 33 ° C. to form a secondary solution (s12).
이어서, 상기 2차 용액에 디메틸포름아미드(dimethylformamide,이하 DMF)를 투입하고 80~120℃ 온도범위에서 100~200분간 열처리 및 환류(reflux)시켜 상기 나노코어쉘(14a)이 포함된 3차 용액을 형성(s13)한다. 여기서, 환류라 함은 가열에 의해 발생한 증기를 응축시켜 액체상으로 되돌리는 조작으로 이해함이 바람직하다.Subsequently, dimethylformamide (hereinafter referred to as DMF) was added to the secondary solution, followed by heat treatment and reflux for 100 to 200 minutes at a temperature range of 80 to 120 ° C. to form a tertiary solution including the nanocore shell 14a. To form (s13). Here, the reflux is preferably understood as an operation of condensing the vapor generated by heating to return to the liquid phase.
이때, 상기 나노코어쉘(14a)은 1.2~2.2 중량%의 상기 제1베이스용액과, 1.7~2.4 중량%의 상기 제2베이스용액과, 73~80 중량%의 상기 알코올계 용매와, 17~23 중량%의 상기 DMF를 포함하여 조성됨이 바람직하다.At this time, the nanocore shell 14a is 1.2-2.2 wt% of the first base solution, 1.7-2.4 wt% of the second base solution, 73-80 wt% of the alcohol solvent, 17- Preferably, 23 wt% of DMF is included.
여기서, 상기 제1베이스용액 및 상기 제2베이스용액은 플라즈모닉스 현상이 발현되는 유전체 및 나노금속입자를 공급하도록 투입되며 바람직하게는 상기 제1베이스용액 및 상기 제2베이스용액의 중량% 범위는 1:1.05~1.18인 것이 바람직하다. 이에 따라, 상기 금속나노입자의 외면을 이산화티타늄이 균일하게 감싸면서 나노코어쉘(14a)로서 형성될 수 있다.Herein, the first base solution and the second base solution are added to supply dielectric and nano metal particles in which plasmonic phenomenon is expressed. Preferably, the weight percent range of the first base solution and the second base solution is It is preferable that they are 1: 1.05-1.18. Accordingly, the outer surface of the metal nanoparticles may be uniformly wrapped with titanium dioxide and formed as the nanocore shell 14a.
또한, 상기 알코올계 용매가 80 중량%를 초과하면 각 베이스용액의 투입량이 감소되며 73 중량% 미만이면 혼합 균일성이 저하되므로 73~80 중량%로 포함됨이 바람직하다. 더불어, 상기 DMF는 17~23 중량%로 포함됨에 따라 각 상기 베이스용액이 안정적으로 혼합 및 상기 나노코어쉘(14a) 구조가 형성될 수 있다.In addition, when the alcoholic solvent is more than 80% by weight, the input amount of each base solution is reduced, and if less than 73% by weight, the mixing uniformity is lowered, so it is preferably included in 73 to 80% by weight. In addition, as the DMF is contained in 17 to 23% by weight, the base solution may be stably mixed and the nanocore shell 14a may be formed.
그리고, 80~120℃ 온도범위에서 100~200분간 열처리하여 상기 나노코어쉘(14a)이 형성되도록 유도하면서도 환류공정을 통해 용액상태로 유지된다. 이때, 상기 3차 용액으로부터 상기 나노코어쉘(14a)을 분리 및 이소프로필 알코올(isopropyl alcohol, 이하IPA)로 세척(s14)한다. 여기서, 상기 나노코어쉘(14a) 및 상기 이소프로필 알코올의 중량% 범위는 1:99 내지 5:95인 것이 바람직하다.In addition, the nanocore shell 14a is formed by heat-treating for 100 to 200 minutes in a temperature range of 80 to 120 ° C. while maintaining a solution state through a reflux process. At this time, the nanocore shell 14a is separated from the tertiary solution and washed with isopropyl alcohol (hereinafter referred to as IPA) (s14). Herein, the nanocore shell 14a and the isopropyl alcohol preferably have a weight range of 1:99 to 5:95.
상세히, 상기 3차 용액을 원심분리하여 상기 나노코어쉘(14a) 만을 분리한다. 그리고, 분리된 나노코어쉘(14a)에 상술한 중량% 범위의 상기 IPA를 혼합하면 상기 나노코어쉘(14a)의 표면이 세척되고, 상기 IPA 용액 상에 상기 나노코어쉘(14a)이 존재하게 된다.In detail, the third solution is centrifuged to separate only the nanocore shell 14a. In addition, when the IPA in the above weight% range is mixed with the separated nanocore shell 14a, the surface of the nanocore shell 14a is washed, and the nanocoreshell 14a is present on the IPA solution. do.
이에 따라, 후술되는 상기 바인더 조성물이 상기 코팅대상물(C)에 선코팅된 상태에서 상기 나노코어쉘(14a)이 투입되면 실란계 베이스의 점착바인더층(13)의 표면이 상기 IPA에 의해 부분적으로 용해된다. 이를 통해, 상기 나노코어쉘(14a)이 상기 점착바인더층(13)에 더욱 견고하게 부착/결합될 수 있어 상기 플라즈모닉스 발현층(14)의 코팅력이 현저히 향상될 수 있다.Accordingly, when the nanocore shell 14a is introduced in the state in which the binder composition described later is pre-coated to the coating object C, the surface of the adhesive binder layer 13 of the silane base is partially formed by the IPA. Dissolves. Through this, the nanocore shell 14a may be more firmly attached / bonded to the adhesive binder layer 13, so that the coating power of the plasmonic expression layer 14 may be significantly improved.
예를 들면, 1.8 중량%의 상기 TTIP가 77 중량%의 2-프로필 알코올에 투입 및 혼합되어 상기 1차 용액이 형성된다. 그리고, 상기 1차 용액에 1.96 중량%의 질산은을 투입 및 혼합하여 상기 2차 용액이 형성된다. 이어서, 상기 2차 용액에 19.24 중량%의 상기 DMF를 투입하고 상술한 온도에서 열처리 및 환류시킨다. 이를 통해, 상기 TTIP와 상기 질산은은 상호간의 반응을 통해 은 입자(14c)의 외면에 이산화티타늄(14b)이 감싸지는 상기 나노코어쉘(14a)이 반응구조물로서 형성될 수 있다.For example, 1.8 wt% of the TTIP is added to 77 wt% of 2-propyl alcohol and mixed to form the primary solution. In addition, 1.96% by weight of silver nitrate is added to the primary solution and mixed to form the secondary solution. Subsequently, 19.24% by weight of the DMF was added to the secondary solution, followed by heat treatment and reflux at the above-mentioned temperature. Through this, the TTIP and the silver nitrate may be formed as a reaction structure of the nanocore shell 14a in which the titanium dioxide 14b is wrapped on the outer surface of the silver particles 14c through mutual reactions.
이렇게 제조된 나노코어쉘(14a)은 50~150nm의 입경을 갖도록 형성될 수 있다. 이때, 상기 은 입자(14c)는 상기 나노코어쉘(14a)의 중앙부측에 구비되어 외면이 상기 이산화티타늄(14b)에 감싸여지되, 상기 은 입자(14c)가 10~50nm의 입경을 갖도록 형성될 수 있다. 또는, 상기 은 입자(14c)는 10~20nm의 입경을 갖되 하나의 상기 나노코어쉘(14a) 내부에 복수개로 내재되며, 복수개의 상기 은입자(14c)를 상기 이산화티타늄(14b)이 전체적으로 감싸면서 하나의 쉘형태로 구비될 수도 있다.The nanocore shell 14a manufactured as described above may be formed to have a particle diameter of 50 to 150 nm. At this time, the silver particles 14c are provided at the central side of the nanocore shell 14a so that the outer surface is wrapped in the titanium dioxide 14b, and the silver particles 14c are formed to have a particle diameter of 10 to 50 nm. Can be. Alternatively, the silver particles 14c may have a particle diameter of 10 to 20 nm, but may be embedded in a plurality of one inside the nanocore shell 14a, and the titanium dioxide 14b may be entirely wrapped around the plurality of silver particles 14c. And may be provided in one shell form.
그리고, 상기 나노코어쉘(14a)은 상술한 3차 용액의 형태로 상기 점착바인더층(13)의 외면에 코팅되도록 투입될 수도 있으나, 상기 점착바인더층(13)과의 부착성이 더욱 개선되도록 상기 IPA에 세척되어 분말 또는 용액 형태로 투입된다.In addition, the nanocore shell 14a may be added to be coated on the outer surface of the adhesive binder layer 13 in the form of the above-described tertiary solution, but may further improve adhesion to the adhesive binder layer 13. The IPA is washed and added in powder or solution form.
한편, 상기 바인더 조성물은 실란계 올리고머를 포함하는 제1제 및 상기 제1제와 상이한 중량%의 실란계 올리고머를 포함하는 제2제가 분리혼합되어 제조됨이 바람직하다. 이때, 상기 제1제 및 상기 제2제가 분리혼합된다 함은, 상기 제1제와 상기 제2제가 별도로 분리되어 개별 조성물로서 구비되되, 상기 코팅대상물의 표면에 코팅하기 전 단일의 조성물로서 혼합되는 것으로 이해함이 바람직하다. On the other hand, the binder composition is preferably prepared by separating and mixing a first agent comprising a silane oligomer and a second agent comprising a weight percent silane oligomer different from the first agent. In this case, the first agent and the second agent is separated and mixed, the first agent and the second agent is provided separately as a separate composition, which is mixed as a single composition before coating the surface of the coating object It is preferable to understand that.
상세히, 상기 제1제는, 상기 제1제 전체 중량%에 대하여 실록산 올리고머(siloxane oligomer) 45~80 중량%와, 희석용매 15~50 중량%와, 반응첨가제 2~8 중량%를 포함하여 구비됨이 바람직하다. 그리고, 상기 제2제는, 상기 제2제 전체 중량%에 대하여 실록산 올리고머 40~65 중량%와, 희석용매 30~55 중량%와, 반응첨가제 2~6 중량%를 포함하여 구비됨이 바람직하다.In detail, the first agent includes 45 to 80 wt% of a siloxane oligomer, 15 to 50 wt% of a diluent solvent, and 2 to 8 wt% of a reaction additive based on the total weight of the first agent. Is preferred. The second agent is preferably 40 to 65% by weight of the siloxane oligomer, 30 to 55% by weight of the diluent solvent, and 2 to 6% by weight of the reaction additive, based on the total weight of the second agent. .
여기서, 상기 제1제 및 상기 제2제는 상기 실록산 올리고머로서 실록산 트리머(siloxane trimer), 실록산 테트라머(siloxane tetramer) 및 이들의 혼합물로 이루어진 군 중에서 선택된 하나를 포함함이 바람직하다.Here, the first agent and the second agent preferably include one selected from the group consisting of siloxane trimers, siloxane tetramers, and mixtures thereof as the siloxane oligomer.
그리고, 상기 제1제 및 상기 제2제에 포함되는 상기 희석용매는 메틸 알코올, 에틸 알코올, 프로필 알코올, 이소프로필 알코올, 펜틸 알코올, 벤질 알코올 및 이들의 혼합물로 이루어진 군 중에서 선택되는 알코올계 용매를 포함함이 바람직하다. 더불어, 상기 제1제 및 상기 제2제에 포함되는 반응첨가제는 소포제, 분산제, 커플링제 중 적어도 하나 이상을 포함할 수 있다. 이를 통해, 상기 제1제 및 상기 제2제의 개별적인 조성 또는 상기 제1제와 상기 제2제를 분리혼합시 기포 발생을 감소시키고 각 화합물이 균일하게 혼합될 수 있다.The diluent solvent included in the first agent and the second agent may be an alcohol solvent selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof. It is preferable to include. In addition, the reaction additive included in the first agent and the second agent may include at least one or more of an antifoaming agent, a dispersant, a coupling agent. In this way, the individual composition of the first agent and the second agent or the separation and mixing of the first agent and the second agent to reduce the generation of bubbles and each compound can be mixed uniformly.
이에 따라, 상기 점착바인더층(13)이 상기 코팅대상물(C)의 표면에 균일한 두께로 견고하게 코팅될 수 있다. 이때, 상기 점착바이더층(13)이 견고하게 코팅된다 함은 상기 코팅대상물(C)의 표면과의 부착성이 우수함으로 이해함이 바람직하다. 이를 통해, 상기 점착바인더층(13)의 외면에 코팅되는 상기 플라즈모닉스 발현층(14)이 견고하게 부착되므로 플라즈모닉스 현상을 통한 공기 내 미생물 및 유기화합물의 살균 및 분해능이 현저히 향상될 수 있다.Accordingly, the adhesive binder layer 13 may be firmly coated with a uniform thickness on the surface of the coating object (C). At this time, it is preferable that the adhesive provider layer 13 is firmly coated because it is excellent in adhesion with the surface of the coating object (C). Through this, since the plasmonic expression layer 14 coated on the outer surface of the adhesive binder layer 13 is firmly attached, sterilization and resolution of microorganisms and organic compounds in the air through the plasmonic phenomenon can be significantly improved. have.
또한, 상기 점착바인더층(13)이 투명으로 형성됨에 따라 상기 플라즈모닉스 발현층(14)이 형성된 상기 코팅대상물(C)에 가시광이 입사되면서도 상기 나노코어쉘(14a)이 안정적으로 부착/결합될 수 있는 부착능을 가질 수 있다.In addition, as the adhesive binder layer 13 is formed to be transparent, the nanocore shell 14a is stably attached / bonded while visible light is incident on the coating object C on which the plasmonic expression layer 14 is formed. It can have an attachment ability that can be.
이때, 상기 제1제와 상기 제2제는 상호 동일한 종류의 화합물이 혼합되어 조성되되, 각 화합물이 혼합되는 중량비가 상이하게 설정되어 구비된다. 더욱이, 상기 제1제에 포함되는 실록산 올리고머의 중량%가 상기 제2제에 포함되는 실록산 올리고머의 중량%보다 큰 비율로 설정됨이 바람직하다.In this case, the first agent and the second agent is a mixture of the same kind of compound is composed, but the weight ratio of each compound is provided is set differently. Moreover, it is preferable that the weight% of the siloxane oligomers contained in the first agent is set at a ratio greater than the weight% of the siloxane oligomers contained in the second agent.
예컨대, 상기 제1제는 실록산 올리고머 65 중량%와, 이소프로필 알코올 30 중량%, 그리고 반응첨가제 5 중량%를 포함하여 조성될 수 있다. 또한, 상기 제2제는 실록산 올리고머 55 중량%와, 이소프로필 알코올 40 중량%, 그리고 반응첨가제 5 중량%를 포함하여 조성될 수 있다. 여기서, 상기 제1제는 상기 코팅대상물(C)의 표면에 상기 플라즈모닉스 발현층(14)이 견고하게 코팅되기 위한 접착제로서 포함된다. 그리고, 상기 제2제는 상기 점착바인더층(13)의 경화속도를 조절하는 경화제로서 포함된다.For example, the first agent may include 65% by weight of the siloxane oligomer, 30% by weight of isopropyl alcohol, and 5% by weight of the reaction additive. In addition, the second agent may include 55% by weight of the siloxane oligomer, 40% by weight of isopropyl alcohol, and 5% by weight of the reaction additive. Here, the first agent is included as an adhesive for firmly coating the plasmonic expression layer 14 on the surface of the coating object (C). And, the second agent is included as a curing agent for adjusting the curing rate of the adhesive binder layer (13).
즉, 본 발명은 실록산 올리고머를 베이스로 하되 상이한 혼합비로 조성되어 접착능과 경화능을 갖는 제제를 분리혼합한 바인더 조성물이 상기 코팅대상물(C)의 표면에 코팅된다. 따라서, 상기 점착바인더층(13)의 외면에 연속적으로 코팅되는 상기 플라즈모닉스 발현층(14)의 코팅율이 향상되며, 이를 통하여 플라즈모닉스 현상의 발현성이 현저히 향상될 수 있다. That is, the present invention is based on the siloxane oligomer, but is composed of a different mixing ratio of the binder composition which is separated and mixed with a formulation having adhesion and curing ability is coated on the surface of the coating object (C). Therefore, the outer surface of the adhesive binder layer 13 The coating rate of the plasmonic expression layer 14 that is continuously coated is improved, through which the expression of the plasmonic phenomenon can be significantly improved.
이때, 상기 제1제 및 상기 제2제는 중량비로 8~10:1 비율로 혼합됨이 바람직하다. 상세히, 상기 제2제 1 중량%에 대하여 상기 제1제가 8 중량% 미만으로 혼합되면, 상기 바인더 조성물 내에 경화제 비율이 증가하면서 급격한 경화 반응으로 인한 점착바인더층(13)의 크랙이 발생한다. 또한, 상기 점착바인더층(13)의 외면에 상기 플라즈모닉스 발현층(14)에 포함된 상기 나노코어쉘(14a)이 부착되기 전 경화된다.At this time, the first agent and the second agent is preferably mixed in a ratio of 8 to 10: 1 by weight ratio. In detail, when the first agent is mixed at less than 8 wt% with respect to the first wt% of the second agent, cracks of the adhesive binder layer 13 due to a rapid curing reaction occur while increasing the ratio of the curing agent in the binder composition. In addition, the outer surface of the adhesive binder layer 13 is cured before the nanocore shell 14a included in the plasmonic expression layer 14 is attached.
이로 인하여 상기 플라즈모닉스 발현층(14)이 균일한 두께로 형성되지 못하거나 부착력이 저하되어 박리되는 등 코팅성능이 저하된다. 또한, 코팅성능이 저하되어 상기 코팅대상물(C)의 표면에 상기 플라즈모닉스 발현층(14)이 불균일하게 형성되고 상기 나노코어쉘(14a)의 부착범위가 감소되므로 플라즈모닉스 현상의 발현성이 낮아진다. 이로 인해, SOx/NOx 등의 유해물질 및 세균, 바이러스가 실질적으로 분해 또는 살균되지 못하며, 공기 정화장치에 적용되는 경우 정화대상 공간의 공기청정 효율이 저하된다.As a result, the plasmonic expression layer 14 may not be formed to a uniform thickness, or the adhesion may be degraded, thereby degrading coating performance. In addition, the coating performance is reduced, so that the plasmonic expression layer 14 is unevenly formed on the surface of the coating object (C), and the adhesion range of the nanocore shell 14a is reduced, so that the expression of plasmonic phenomenon is reduced. Is lowered. For this reason, harmful substances such as SOx / NOx, bacteria and viruses are not substantially decomposed or sterilized, and when applied to an air purifier, the air cleaning efficiency of the space to be purified is reduced.
반면, 상기 제2제 1 중량%에 대하여 상기 제1제가 10 중량%를 초과하여 혼합되면, 상기 바인더 조성물이 과도하게 끈적해지고 경화시간이 증가한다. 이로 인해, 상기 바인더 코팅물이 코팅되는 단계에서 상기 코팅대상물(C) 간에 접착되거나, 코팅이 이루어지는 회전교반기의 내면에 접착된다. 이는 상기 코팅대상물(C)을 분리하는 과정에서 상기 점착바인더층(13)의 박리 또는 크랙의 발생을 야기한다.On the other hand, when the first agent is mixed in excess of 10% by weight relative to the first weight% of the second agent, the binder composition becomes excessively sticky and the curing time increases. Thus, the binder coating is bonded between the coating object (C) in the step of coating, or is bonded to the inner surface of the rotary stirrer is a coating. This causes peeling or cracking of the adhesive binder layer 13 in the process of separating the coating object (C).
또한, 상기 바인더 조성물의 경화가 지연되면서 상기 플라즈모닉스 발현층(14) 내에 포함되는 상기 나노코어쉘(14a)이 상기 점착바인더층(13)으로 과도하게 침하된다. 이로 인해, 상기 코팅대상물(C)의 표면에 상기 점착바인더층(13)은 소정의 두께를 갖도록 코팅되더라도 유기물이 포함되어 오염된 공기가 상기 나노코어쉘(14a)과 대응하는 면적이 작아진다. 따라서, 플라즈모닉스 현상의 발현성이 낮아짐으로 인해 미생물 및 유기화합물의 살균 및 분해능이 저하된다.In addition, as the curing of the binder composition is delayed, the nanocore shell 14a included in the plasmonic expression layer 14 is excessively settled into the adhesive binder layer 13. As a result, even though the adhesive binder layer 13 is coated on the surface of the coating object C to have a predetermined thickness, an area in which the air contaminated by the organic material is contaminated with the nanocore shell 14a is reduced. Therefore, the bactericidal and resolution of microorganisms and organic compounds are lowered due to the lower expression of plasmonic phenomenon.
따라서, 상기 코팅대상물(C)의 표면에 상기 점착바인더층(13)이 균일하면서도 각 층이 견고하게 코팅되도록 상기 제1제 및 상기 제2제는 중량비로 8~10:1 비율로 혼합됨이 바람직하다.Accordingly, the first agent and the second agent are mixed in a ratio of 8 to 10: 1 by weight so that the adhesive binder layer 13 is uniformly coated on the surface of the coating object C, and each layer is firmly coated. desirable.
더욱이, 상기 바인더 조성물은 접착제로서의 상기 제1제가 경화제로서의 상기 제2제보다 큰 혼합비율로 조성됨이 바람직하다. 따라서, 평판형의 기판뿐만 아니라, 메쉬, 비드 및 정형/비정형의 요철부가 형성된 구조 및 유연한 구조의 코팅대상물의 표면에도 균일하게 코팅될 수 있다.Furthermore, it is preferable that the binder composition is composed of a mixing ratio at which the first agent as an adhesive is larger than the second agent as a curing agent. Therefore, not only the flat substrate but also the surface of the coating object having the structure and the flexible structure in which the mesh, the beads and the irregular / irregular irregularities are formed can be uniformly coated.
또한, 상기 나노코어쉘(14a)이 분말 또는 용매에 혼합되어 액상으로 상기 점착바인더층(13)의 외면에 코팅되되, 상기 바인더 조성물이 완전 경화되어 박막으로 형성되기 전, 즉 상기 점착바인더층(13)의 반경화상태에서 투입됨이 바람직하다.In addition, the nanocore shell 14a is mixed with a powder or a solvent and coated on the outer surface of the adhesive binder layer 13 in a liquid phase, but before the binder composition is completely cured to form a thin film, that is, the adhesive binder layer ( It is preferable to add in the semi-cured state of 13).
더욱이, 상기 나노코어쉘(14a)은 수십~수백 나노단위의 초미립자 상태로 상기 점착바인더층(13)에 결합/부착된다. 따라서, 상기 코팅대상물(C)의 표면 형상 및 형상의 변형에 상관없이 굴곡지거나 미세한 틈의 표면에도 상기 플라즈모닉스 발현층(14)이 형성될 수 있다. 이를 통해, 플라즈모닉스 가시광 항균/살균 기능성을 필요로 하는 다양한 제품에 적용될 수 있어 활용성이 현저히 향상될 수 있다.Furthermore, the nanocore shell 14a is bonded / attached to the adhesive binder layer 13 in an ultrafine state of tens to hundreds of nano units. Therefore, the plasmonic expression layer 14 may be formed on the surface of the curved or minute gap regardless of the surface shape and deformation of the coating object (C). Through this, it can be applied to a variety of products requiring plasmonics visible light antibacterial / sterilization functionality can be significantly improved utilization.
한편, 상기 제1제 및 상기 제2제가 상기 코팅대상물(C)의 표면에 코팅하기 전 분리혼합되어 준비됨에 따라 상기 제1제의 접착력 및 상기 제2제의 경화유도 반응이 상호 완충될 수 있다. Meanwhile, as the first agent and the second agent are separated and prepared before coating the surface of the coating object (C), the adhesive force of the first agent and the curing induction reaction of the second agent may buffer each other. .
즉, 상기 제1제를 기반으로 하는 접착력은 유지되면서도 상기 제2제를 통해 상기 점착바인더층(13)의 경화 및 건조속도를 조절할 수 있다. 이를 통해, 상기 코팅대상물(C)의 표면에 상기 점착바인더층(13)이 균일하게 형성되며, 상기 점착바인더층(13)이 반경화된 상태에서 상기 나노코어쉘(14a)이 연속적으로 투입되어 형성되는 상기 플라즈모닉스 발현층(14)이 견고하게 부착될 수 있다.That is, while maintaining the adhesion based on the first agent, the curing and drying speed of the adhesive binder layer 13 may be controlled through the second agent. Through this, the adhesive binder layer 13 is uniformly formed on the surface of the coating object C, and the nanocore shell 14a is continuously added while the adhesive binder layer 13 is semi-cured. The plasmonic expression layer 14 to be formed may be firmly attached.
한편, 상술한 나노코어쉘(14a)의 제조공정, 상기 점착바인더층(13)을 코팅하는 공정 및 최종적으로 상기 플라즈모닉스 발현층(14)을 제조하는 공정은 실질적으로 120℃ 이하의 열처리 과정을 거친다.On the other hand, the manufacturing process of the above-described nanocore shell 14a, the process of coating the adhesive binder layer 13 and finally the process of manufacturing the plasmonic expression layer 14 is substantially a heat treatment process of 120 ℃ or less Go through
이에 따라, 실란을 기반으로 하는 상기 점착바인더층(13)의 표면에 형성되는 Si-O-Si 결합이 상기 나노코어쉘(14a)의 표면에 형성되는 Ti-O-Ti 결합과 혼재되면서 -Si-O-Ti-O- 결합을 형성한다. 즉, 상기 나노코어쉘(14a)의 불안정한 결합구조가 상기 점착바인더층(13)과의 반응 및 접착성능을 통해 안정적인 상태로 결합 및 부착될 수 있다. 이를 통해, 상기 플라즈모닉스 발현층(14)은 상기 점착바인더층(13)의 외면에 물리적 및 화학적인 결합을 통해 견고하게 코팅될 수 있다.Accordingly, Si—O—Si bonds formed on the surface of the adhesive binder layer 13 based on silane are mixed with Ti—O—Ti bonds formed on the surface of the nanocore shell 14a, and thus, -Si -O-Ti-O- bond is formed. That is, the unstable bonding structure of the nanocore shell 14a may be coupled and attached in a stable state through the reaction with the adhesive binder layer 13 and the adhesive performance. Through this, the plasmonic expression layer 14 may be firmly coated on the outer surface of the adhesive binder layer 13 through physical and chemical bonding.
또한, 열처리 과정에서 가해지는 온도가 종래보다 낮은 120℃ 이하로 설정되므로 내열성에 따라 소재 제한이 있던 종래와 달리 본 발명은 열에 의한 상기 코팅대상물(C)의 변형이 최소화될 수 있다. 이에 따라, 상기 플라즈모닉스 발현층(14)이 적용될 수 있는 소재 사용의 제약이 현저히 감소할 수 있다. 이를 통해, 상기 플라즈모닉스 발현층(14)이 적용 가능한 산업분야의 범위가 현저히 증가하므로 활용성 및 경제성이 현저히 향상될 수 있다.In addition, since the temperature applied in the heat treatment process is set to 120 ° C lower than the prior art, the present invention can be minimized deformation of the coating object (C) due to heat, unlike the prior art had a material limitation according to the heat resistance. Accordingly, the restriction of the use of the material to which the plasmonic expression layer 14 can be applied can be significantly reduced. Through this, since the range of the industrial field to which the plasmonic expression layer 14 is applicable increases significantly, the usability and economic efficiency may be significantly improved.
한편, 도 4는 본 발명의 일실시예 따른 플라즈모닉스 발현층의 제조방법에서 회전 교반을 통한 코팅 과정을 나타낸 예시도이다. 이하에서는 상기 코팅대상물이 유리비드(12)로 준비되는 것을 예로서 설명 및 도시한다.Meanwhile, Figure 4 is an exemplary view showing a coating process through a rotary stirring in the manufacturing method of the plasmonic expression layer according to an embodiment of the present invention. Hereinafter, the coating object is prepared and illustrated as an example of the glass beads 12.
도 4에서 보는 바와 같이, 상기 점착바인더층(13)은 회전교반기(s) 내에 복수개의 상기 유리비드(12) 및 상기 바인더 조성물(b)을 투입하여 회전 교반시켜 형성된다. 이때, 상기 유리비드(12)는 기설정된 직경을 갖는 투명의 구 형상으로 구비됨이 바람직하다.As shown in FIG. 4, the adhesive binder layer 13 is formed by inserting a plurality of the glass beads 12 and the binder composition b into a rotary stirrer s and rotating stirring. At this time, the glass beads 12 are preferably provided in a transparent sphere shape having a predetermined diameter.
상세히, 상기 회전교반기(s) 내에서 복수개의 상기 유리비드(12) 및 상기 바인더 조성물(b)이 회전되면서 혼합되면 상기 유리비드(12) 각각의 외면에 상기 바인더 조성물(b)이 적층 코팅된다.In detail, when the plurality of glass beads 12 and the binder composition b are mixed while rotating in the rotary stirrer s, the binder composition b is laminated on the outer surface of each of the glass beads 12. .
이때, 상기 바인더 조성물(b)을 코팅시, 상기 회전교반기(s)를 10~60 rpm의 속도로 4~9분간 회전 교반시켜 복수개의 상기 유리비드(12) 각각의 외면에 상기 점착바인더층(13)을 형성시킨다. 여기서, 상기 회전교반기(s)의 회전속도는 22~27 rpm으로 설정됨이 더욱 바람직하며, 더욱이 상기 회전교반기(s)가 25 rpm의 속도로 회전되며, 건조시간은 5분으로 설정될 수 있다.At this time, when the binder composition (b) is coated, the rotary stirrer (s) is rotated and stirred for 4 to 9 minutes at a speed of 10 to 60 rpm to form an adhesive binder layer on the outer surface of each of the plurality of glass beads 12 ( 13). Here, the rotation speed of the rotary stirrer (s) is more preferably set to 22 ~ 27 rpm, moreover, the rotary stirrer (s) is rotated at a speed of 25 rpm, the drying time may be set to 5 minutes. .
그리고, 상기 점착바인더층(13)이 반경화된 상태에서 상기 회전교반기(s) 내에 상기 나코노어쉘 용액 또는 분말상태로 연속적으로 투입되어 회전 교반됨에 따라 상기 플라즈모닉스 발현층(14)으로 형성된다.In addition, the adhesive binder layer 13 is formed into the plasmonic expression layer 14 as it is continuously stirred and rotated into the naconoshell solution or powder state in the rotary stirrer s in a semi-cured state. do.
상세히, 상기 점착바인더층(13)이 반경화상태로 코팅된 상기 유리비드(12)가 수용된 상기 회전교반기(s)에 상기 나노코어쉘이 순차적으로 투입되어 회전되면서 상기 점착바인더층(13)의 외면에 상기 나노코어쉘이 적층 코팅된다.In detail, the nanocore shell is sequentially introduced into the rotary stirrer s containing the glass beads 12 coated with the adhesive binder layer 13 in a semi-cured state, and rotated while the adhesive binder layer 13 is rotated. The nanocore shell is laminated on the outer surface.
이때, 상기 나노코어쉘을 코팅시, 상기 회전교반기(s)는 상기 바인더 조성물(b)을 코팅시 회전속도와 대응하도록 설정하되, 80~100분간 회전 교반시키면서 건조됨에 따라 복수개의 상기 유리비드(12) 각각의 외면에 형성된 상기 점착바인더층(13)의 외면에 상기 플라즈모닉스 발현층이 형성된다. 더욱이, 복수개의 상기 유리비드(12) 각각의 외면에 형성된 상기 점착바인더층(13)의 외면에 상기 플라즈모닉스 발현층이 형성되기 위하여, 더욱 바람직하게는 상기 회전교반기(s)가 25 rpm의 속도로 회전되며, 건조시간은 90분으로 설정될 수 있다.At this time, when coating the nanocore shell, the rotary stirrer (s) is set to correspond to the rotational speed when coating the binder composition (b), a plurality of the glass beads (80 to 100 minutes by drying while rotating stirring) 12) The plasmonic expression layer is formed on the outer surface of the adhesive binder layer 13 formed on each outer surface. Further, in order to form the plasmonic expression layer on the outer surface of the adhesive binder layer 13 formed on the outer surface of each of the plurality of glass beads 12, more preferably, the rotary stirrer s of 25 rpm Rotated at speed, the drying time can be set to 90 minutes.
이를 통해, 복수개의 상기 유리비드(12) 각각의 외면에 상기 바인더 조성물 (b)및 상기 나노코어쉘이 용액 또는 분말로 연속적으로 순차 코팅됨에 따라 가시광선영역대에서 플라즈모닉스 항균/살균 기능을 갖는 복수개의 플라즈모닉스 기능성 비드로 형성될 수 있다. 이때, 플라즈모닉스 기능성이라 함은 플라즈모닉스 현상을 통하여 가시광에서 항균/살균 기능을 갖는 것을 의미함으로 이해함이 바람직하다.As a result, the binder composition (b) and the nanocore shell are sequentially coated with a solution or powder on the outer surface of each of the plurality of glass beads 12 to have plasmonic antimicrobial / sterilization function in the visible region. It may be formed of a plurality of plasmonic functional beads. At this time, the plasmonic functionalities are preferably understood to mean having antibacterial / sterilizing function in visible light through the plasmonic phenomenon.
여기서, 상기 플라즈모닉스 발현층을 코팅하고자 하는 상기 유리비드(12)의 양이 증가할수록 상기 회전교반기(s)의 회전속도를 느리게 설정함이 바람직하다. 즉, 상기 플라즈모닉스 발현층이 코팅된 제품의 생산량에 따라 상기 회전교반기(s)의 회전속조를 조절함으로써 연속적으로 적층되는 코팅층의 코팅 두께 및 코팅성능이 조절될 수 있다. 이를 통해, 상기 플라즈모닉스 발현층의 코팅 품질이 항상 일정하게 유지될 수 있으며, 이가 적용되는 제품의 품질이 현저히 향상될 수 있다.Here, it is preferable to set the rotation speed of the rotary stirrer s as the amount of the glass beads 12 to coat the plasmonic expression layer is increased. That is, by adjusting the rotation speed of the rotary stirrer (s) according to the production amount of the product coated with the plasmonics expression layer can be adjusted the coating thickness and coating performance of the coating layer to be continuously laminated. Through this, the coating quality of the plasmonic expression layer can always be kept constant, the quality of the product to which it is applied can be significantly improved.
이때, 상기 바인더 조성물(b)은, 복수개의 상기 유리비드(12) 1000 중량부에 대하여 17~23 중량부가 투입되어 코팅됨이 바람직하다.In this case, the binder composition (b) is preferably coated with 17 to 23 parts by weight based on 1000 parts by weight of the plurality of glass beads 12.
여기서, 상기 바인더 조성물(b)이 17 중량부 미만으로 투입되면 상기 점착바인더층(13)의 두께가 상기 플라즈모닉스 발현층이 견고하게 부착될 수 있을 정도의 접착력을 만족하지 못하는 두께로 형성된다. 반면, 상기 바인더 조성물(b)이 23 중량부를 초과하여 투입되면, 잉여물 발생으로 인하여 경제성이 저하되며 잉여물로 인하여 상기 유리비드(12) 간에 부착이 발생한다.Here, when the binder composition (b) is added to less than 17 parts by weight, the thickness of the adhesive binder layer 13 is formed to a thickness that does not satisfy the adhesive strength enough to be firmly attached to the plasmonic expression layer. . On the other hand, when the binder composition (b) is added in excess of 23 parts by weight, the economic efficiency is lowered due to the generation of surplus and the adhesion occurs between the glass beads 12 due to the surplus.
따라서, 상기 바인더 조성물(b)은 상기 점착바인더층(13)이 상기 나노코어쉘을 견고하게 부착할 수 있는 두께로 코팅되면서도 상기 유리비드(12) 간의 부착을 방지할 수 있도록 복수개의 상기 유리비드(12) 1000 중량부에 대하여 17~23 중량부가 투입됨이 바람직하다.Accordingly, the binder composition (b) may be coated with a thickness such that the adhesive binder layer 13 may firmly attach the nanocore shell, while preventing the adhesion between the glass beads 12. (12) It is preferable to add 17-23 weight part with respect to 1000 weight part.
또한, 상기 나노코어쉘은, 복수개의 상기 유리비드(12) 1000 중량부에 대하여 17~23 중량부가 투입되어 반경화상태의 상기 점착바인더층(13)의 외면에 코팅됨이 바람직하다. 이때, 상기 나노코어쉘은 용액 상태로 투입될 수 있다.In addition, the nanocore shell, 17 to 23 parts by weight based on 1000 parts by weight of the plurality of glass beads 12 is preferably coated on the outer surface of the adhesive binder layer 13 in a semi-cured state. In this case, the nanocore shell may be added in a solution state.
여기서, 상기 나노코어쉘이 17 중량부 미만으로 투입되면 상기 플라즈모닉스 발현층의 두께가 얇게 형성되며 상기 유리비드(12) 외면에 전체적으로 코팅되지 못하여 플라즈모닉스 현상성이 낮아진다. 반면, 상기 나노코어쉘이 23 중량부를 초과하여 투입되면 잉여물 발생으로 인하여 경제성이 저하된다.Here, when the nanocore shell is less than 17 parts by weight, the thickness of the plasmonic expression layer is formed to be thin and the plasmonics developability is lowered because it is not coated on the outer surface of the glass beads 12 as a whole. On the other hand, if the nanocore shell is added in excess of 23 parts by weight, the economic efficiency is reduced due to the generation of excess.
따라서, 상기 나노코어쉘은 플라즈모닉스 현상의 발현을 통한 항균/살균특성을 만족하면서도 제조비용이 절감될 수 있도록, 복수개의 상기 유리비드(12) 1000 중량부에 대하여 17~23 중량부가 투입됨이 바람직하다.Therefore, the nanocore shell is 17 to 23 parts by weight based on 1000 parts by weight of the plurality of glass beads 12 so as to satisfy the antimicrobial / sterilization characteristics through the expression of the plasmonic phenomenon to reduce the manufacturing cost. This is preferred.
여기서, 각 코팅층을 형성시, 상기 회전교반기(s)는 기설정된 각도 범위(Θ)로 경사지게 배치된 상태에서 회전됨이 바람직하다. 이때, 상기 기설정된 각도 범위(Θ)는 15~20°로 설정됨이 바람직하다. 또한, 상기 각 코팅층이라 함은 상기 점착바인더층(13) 및 상기 플라즈모닉스 발현층으로 이해함이 바람직하다.Here, when forming each coating layer, the rotary stirrer (s) is preferably rotated in a state arranged inclined in a predetermined angle range (Θ). At this time, the predetermined angle range Θ is preferably set to 15 ~ 20 °. In addition, each of the coating layer is preferably understood as the adhesive binder layer 13 and the plasmonic expression layer.
상세히, 상기 회전교반기(s)가 15~20° 각도 범위로 경사진 상태로 회전 교반되면, 내부에 투입된 복수개의 상기 유리비드(12)가 상기 회전교반기(s)의 경사진 상측으로 회전 견인된다.In detail, when the rotary stirrer s is rotated and stirred in an inclined state in an angle range of 15 to 20 °, the plurality of glass beads 12 introduced therein are rotated and pulled to the inclined upper side of the rotary stirrer s. .
그리고, 상기 회전교반기(s)의 경사진 상측으로 회전 견인된 상기 유리비드(12)가 자중에 의해 상기 회전교반기(s)의 하측으로 자동으로 슬라이드 이동 또는 낙하된다. 이러한 상기 유리비드(12)의 회전 견인 및 자동적인 슬라이드 이동/낙하가 반복되면서 복수개의 상기 유리비드(12) 각각의 외면에 상기 바인더 조성물(b)이 균일하게 코팅될 수 있다.Then, the glass bead 12 rotated and pulled to the inclined upper side of the rotary stirrer s automatically slides or falls to the lower side of the rotary stirrer s by its own weight. The binder composition (b) may be uniformly coated on the outer surface of each of the plurality of glass beads 12 while the rotational traction and automatic slide movement / fall of the glass beads 12 are repeated.
여기서, 복수개의 상기 유리비드(12) 각각의 외면에 상기 바인더 조성물(b)이 코팅되는 과정에서 상기 회전교반기(s)의 회전 구동을 통해, 상기 유리비드(12)의 위치가 자동으로 회전 변경된다. 이에 따라, 복수개의 상기 유리비드(12) 각각의 외면에 상기 바인더 조성물(b)이 균일하게 코팅되면서도 유리비드(12) 간의 접착 또는 상기 유리비드(12)와 상기 회전교반기(s)의 내면 간의 접착이 방지된다.Here, the rotation of the rotary stirrer s in the process of coating the binder composition (b) on the outer surface of each of the plurality of glass beads 12, the position of the glass beads 12 is automatically changed rotation do. Accordingly, while the binder composition (b) is uniformly coated on the outer surface of each of the plurality of glass beads 12, the adhesion between the glass beads 12 or between the glass beads 12 and the inner surface of the rotary stirrer s. Adhesion is prevented.
즉, 본 발명은 상기 회전교반기(s)의 회전을 통하여 복수개의 상기 유리비드(12)가 교반 및 개별적으로 자전될 수 있다. 이를 통해, 상기 유리비드(12) 각각의 외면에 개별적인 코팅이 이루어지면서도 상기 유리비드(12) 간의 접착 또는 상기 유리비드(12)와 상기 회전교반기(s) 내면간의 접착을 방지할 수 있다.That is, in the present invention, the plurality of glass beads 12 may be stirred and rotated individually through the rotation of the rotary stirrer s. Through this, while the individual coating is made on the outer surface of each of the glass beads 12, it is possible to prevent the adhesion between the glass beads 12 or the adhesion between the glass beads 12 and the inner surface of the rotary stirrer (s).
따라서, 상기 점착바인더층(13) 및 상기 플라즈모닉스 발현층 등의 각 코팅층이 일정한 두께로 균일하고 견고하게 코팅될 수 있다. 또한, 상기 회전교반기(s)가 회전되기만 하면 각 상기 코팅층이 자동으로 적층 코팅되므로 생산성이 현저히 향상될 수 있다.Therefore, each of the coating layers such as the adhesive binder layer 13 and the plasmonic expression layer may be uniformly and firmly coated with a predetermined thickness. In addition, as the rotary stirrer s is rotated, each of the coating layers may be automatically laminated and coated, thereby improving productivity.
더욱이, 상기 회전교반기(s) 내에 상기 유리비드(12), 상기 바인더 조성물(b) 및 상기 나노코어쉘을 용액 또는 분말로 시간차를 두고 투입하면서 회전 교반시키는 간단한 공정을 통해 상기 플라즈모닉스 발현층을 형성시킬 수 있다.Further, the plasmonic expression layer through the simple process of rotating and stirring the glass beads 12, the binder composition (b) and the nanocore shell into the solution or powder with a time difference in the rotary stirrer (s). Can be formed.
즉, 상기 플라즈모닉스 발현층의 제조를 위한 고가의 열처리 장비 또는 진공 장비등을 필요로 하지 않아 작업공간이 컴팩트하게 형성될 수 있으며 제조비용이 절감된다. 또한, 각 공정시 작업위치를 이동시키지 않고 연속적인 제조가 가능하다. 더욱이, 상기 회전교반기(s)의 크기 또는 개수를 증가시키는 간단한 방법으로 연속생산 및 대량생산이 가능하므로 생산성 및 제조성이 현저히 향상될 수 있다.That is, it does not require expensive heat treatment equipment or vacuum equipment for the production of the plasmonic expression layer can be formed in a compact workspace and manufacturing cost is reduced. In addition, it is possible to manufacture continuously without moving the working position in each process. Moreover, since the continuous production and the mass production are possible by a simple method of increasing the size or number of the rotary stirrer (s), productivity and manufacturability can be significantly improved.
이때, 상기 회전교반기(s)가 15° 미만의 경사각도로 배치되면, 상기 바인더 조성물(b)의 접착력이 상기 유리비드(12)의 하중보다 크게 작용하여 회전 견인 및 자동적으로 슬라이드 이동/낙하되지 않는다. 이로 인해, 복수개의 상기 유리비드(12)간의 접착 또는 상기 유리비드(12)와 상기 회전교반기(s)의 내면 간의 접착이 야기된다.At this time, when the rotary stirrer s is disposed at an inclination angle of less than 15 °, the adhesive force of the binder composition (b) is greater than the load of the glass beads 12 so that rotational traction and slide movement / fall are not automatically performed. . This causes adhesion between the plurality of glass beads 12 or adhesion between the glass beads 12 and the inner surface of the rotary stirrer s.
또는, 상기 회전교반기(s)가 20°를 초과하는 경사각도로 배치되면, 상기 회전교반기(s)의 경사진 상측으로 회전 견인된 상기 유리비드(12)의 자동적인 슬라이드 이동/낙하시 충격으로 인하여 상기 유리비드(12) 또는 상기 점착바인더층(12)에 크랙이 발생한다. 또한, 상기 유리비드(12)가 낙하 충격에 의한 반동으로 상기 회전교반기(s)의 외측으로 이탈된다.Alternatively, when the rotary stirrer s is disposed at an inclination angle exceeding 20 °, due to the automatic slide movement / falling impact of the glass bead 12 rotated and towed to the inclined upper side of the rotary stirrer s. Cracks are generated in the glass beads 12 or the adhesive binder layer 12. In addition, the glass beads 12 are separated to the outside of the rotary stirrer s by the reaction of the drop impact.
따라서, 상기 회전교반기(s)는 복수개의 상기 유리비드(12)가 상기 바인더 조성물(b)의 점성에 대하여 자유롭게 회전 견인 및 자동 이동/낙하되면서 개별 코팅되면서도 충격에 의한 크랙이 방지되도록 15~20° 각도 범위로 경사지게 배치됨이 바람직하다.Accordingly, the rotary stirrer (s) is 15 to 20 so that a plurality of the glass beads 12 are freely rotated to the viscosity of the binder composition (b) and the cracks due to impacts are individually coated while being automatically moved / falling. It is preferably arranged obliquely in the angle range.
물론, 경우에 따라 상기 회전교반기(s)는 경사각도가 0°, 즉 지면과 수평으로 배치된 상태에서 회전 교반이 이루어질 수도 있다.Of course, in some cases, the rotary stirrer s may be rotated and stirred in a state where the inclination angle is 0 °, that is, disposed horizontally with the ground.
한편, 상기 점착바인더층(13) 또는 상기 플라즈모닉스 발현층이 형성되는 단계에서, 상기 회전교반기(s)의 내부 온도를 기설정된 온도 이상으로 유지하기 위한 가온부가 더 구비될 수 있다. On the other hand, in the step of forming the adhesive binder layer 13 or the plasmonic expression layer, a heating unit for maintaining the internal temperature of the rotary stirrer (s) above a predetermined temperature may be further provided.
예컨대, 상기 가온부는 상기 회전교반기(s)의 개구된 상측에 배치되어 복사열을 제공하는 열전구, 열풍기 또는 상기 회전교반기(s)의 하부에 배치되는 중탕기와 같은 유도가열장치 등의 히팅수단으로 구비된다. 그리고, 상기 히팅수단이 구동되면 상기 회전교반기(s)의 내부에는 상온 이상의 열, 바람직하게는 60~150℃ 온도범위, 더욱 바람직하게는 120℃ 이하의 열이 가해질 수 있다.For example, the heating unit is provided as a heating means, such as a heating bulb disposed on the open upper side of the rotary stirrer s to provide radiant heat, a hot air fan, or an induction heating device such as a water heater disposed below the rotary stirrer s. do. When the heating means is driven, heat of at least room temperature, preferably 60 to 150 ° C., and more preferably 120 ° C. or less, may be applied to the inside of the rotary stirrer s.
이를 통해, 상기 점착바인더층(13)이 완전히 경화되지 않고 소정의 점착성을 가진 상태로 반경화될 수 있다. 또한, 상기 점착바인더층(13)가 반경화상태로 코팅된 상태에서 연속적으로 투입되는 상기 나노코어쉘 용액이 얇은 박막 형태로 코팅되면서도 신속하게 경화될 수 있다.Through this, the adhesive binder layer 13 may be semi-cured in a state having a predetermined adhesiveness without being completely cured. In addition, the nanocore shell solution continuously injected in a state in which the adhesive binder layer 13 is coated in a semi-cured state may be rapidly cured while being coated in a thin thin film form.
또한, 고온/고압의 열처리 장치 또는 진공 장치를 필요로 하던 종래와 달리, 본 발명은 비교적 낮은 온도의 열처리를 통해 연속적으로 코팅하여 공정단계 및 공정에 필요한 장비가 단순화된다. 또한, 공정에 적용 가능한 제품의 형태, 소재의 굽힘성 및 내열성에 제한이 최소화되어 플라즈모닉스 가시광 항균/살균 기능이 요구되는 다양한 산업분야에 사용할 수 있어 활용성이 현저히 향상될 수 있다.In addition, unlike the prior art, which requires a high temperature / high pressure heat treatment apparatus or a vacuum apparatus, the present invention is continuously coated through a relatively low temperature heat treatment to simplify the process steps and equipment required for the process. In addition, since the restrictions on the shape, material bending and heat resistance of the product applicable to the process can be minimized, it can be used in various industrial fields requiring plasmonics visible light antimicrobial / sterilization function, which can significantly improve utilization.
이때, 실록산 올리고머를 베이스로 하여 형성되는 상기 점착바인더층(13)은 복수개의 상기 유리비드(12) 각각의 외면에 실리카 박막을 형성하므로 상기 플라즈모닉스 발현층이 견고하게 부착된다. 또한, 상기 점착바인더층(13)의 광투과율이 높아서 상기 광원으로부터 조사되는 빛이 복수개의 상기 플라즈모닉스 기능성 비드를 전체적으로 투과하면서 전달될 수 있다.In this case, the adhesive binder layer 13 formed based on the siloxane oligomer forms a thin silica film on the outer surface of each of the plurality of glass beads 12, so that the plasmonic expression layer is firmly attached. In addition, since the light transmittance of the adhesive binder layer 13 is high, light irradiated from the light source may be transmitted while passing through the plurality of plasmonic functional beads as a whole.
한편, 도 5는 각 실시예에 따라 제조된 플라즈모닉스 발현층에 대한 살균평가 결과를 나타낸 사진이다.On the other hand, Figure 5 is a photograph showing the results of the bactericidal evaluation of the plasmonic expression layer prepared according to each embodiment.
도 5 및 후술되는 표 1 내지 표 3에서 보는 바와 같이, 본 발명에 따라 제조된 플라즈모닉스 발현층을 포함하는 플라즈모닉스 기능성 비드의 살균평가 결과는 아래와 같다.As shown in Figure 5 and Tables 1 to 3 to be described later, the sterilization evaluation results of the plasmonic functional beads including the plasmonic expression layer prepared according to the present invention is as follows.
혼합 비율Mixing ratio 코팅평가Coating Evaluation
제1제The first 제2제Second 초기 중량(g)Initial weight (g) 코팅 중량(g)Coating weight (g) 세척 중량(g)Washing weight (g) 박리량(g)Peel Amount (g) 살균율(%)Sterilization Rate (%)
실시예 1Example 1 66 1One 100100 102102 100.6100.6 1.41.4 93.693.6
실시예 2Example 2 1212 1One 100100 102.9102.9 102.1102.1 0.80.8 97.297.2
실시예 3Example 3 99 1One 100100 103.1103.1 102.2102.2 0.90.9 99.499.4
표 1은 상기 제1제 및 상기 제2제의 혼합 비율에 따른 코팅평가를 나타낸 표이다. 상기 표 1에 따른 각 실시예에서 상기 제1제 및 상기 제2제의 혼합 비율을 제외한 코팅방법은 다음과 같다. 각 실시예는 동일한 양의 유리비드를 준비하고 초기 중량을 측정한다. 그리고, 각 실시예에서 나노코어쉘 용액은 각 실시예의 혼합 비율에 따라 준비되는 바인더 조성물과 1:1 비율로 준비된다. 또한, 각 실시예의 혼합 비율에 따라 조성된 바인더 조성물을 유리비드에 1분간 1회 코팅 후 상기 나노코어쉘 용액을 3분간 코팅한다.이어서, 각 실시예에 따라 조성된 바인더 조성물 및 나노코어쉘 용액을 순차적으로 코팅 및 건조한 직후의 유리비드 중량과 이를 세척한 후의 중량을 각각 측정한다. 그리고, 각 실시예의 초기 중량과 코팅 직후의 중량, 그리고 세척후 중량을 비교하여 박리량을 산출하여 코팅성능을 평가하였으며, 박리량이 작을수록 코팅율이 높은 것으로 이해함이 바람직하다.Table 1 is a table showing the coating evaluation according to the mixing ratio of the first agent and the second agent. In each embodiment according to Table 1, the coating method except for the mixing ratio of the first agent and the second agent is as follows. Each example prepares the same amount of glass beads and measures the initial weight. In addition, the nanocoreshell solution in each example is prepared in a 1: 1 ratio with the binder composition prepared according to the mixing ratio of each example. In addition, the binder composition prepared according to the mixing ratio of each example is coated on the glass beads once for 1 minute and then the nanocore shell solution is coated for 3 minutes. Then, the binder composition and the nanocore shell solution prepared according to each embodiment are then coated. After sequentially measuring the weight of the glass beads immediately after coating and drying and washing them. In addition, the coating performance was evaluated by calculating the peeling amount by comparing the initial weight of each example with the weight immediately after coating and the weight after washing, and it is preferable that the smaller the peeling amount, the higher the coating rate.
이와 함께, 각 실시예에 따라 제조된 플라즈모닉스 기능성 비드의 살균율을 함께 평가한다. 각 실시예에 따라 제조된 플라즈모닉스 기능성 비드의 살균율 평가방법은 다음과 같다.In addition, the sterilization rate of the plasmonic functional beads prepared according to each example is evaluated together. The sterilization rate evaluation method of the plasmonic functional beads prepared according to each example is as follows.
상세히, 실험에는 E.coli DH5α를 실험균주로 사용하며, OD값을 1로 맞추고 기본 균수를 104로 설정한다. 그리고, 각 실시예에 따라 제조된 플라즈모닉스 기능성 비드 50g을 150ml의 증류수에 각각 혼합 및 실험균주를 직접 분주한다. 이어서, 가시광선영역의 빛을 조사하여 5분 후 실험균을 분리/세척/희석 순으로 처리하고 배지에 각각 도말하여 35℃에서 24시간 동안 배양시켜 세균수를 측정하였다.In detail, the experiment uses E. coli DH5α as the experimental strain, the OD value is set to 1 and the basic bacterial count is set to 10 4 . Then, 50 g of the plasmonic functional beads prepared according to each example were mixed and directly dispensed with the experimental strain in 150 ml of distilled water, respectively. Subsequently, after 5 minutes by irradiating light in the visible region, the test bacteria were treated in the order of separation / washing / dilution, and each plate was plated in a medium and incubated at 35 ° C. for 24 hours to measure the number of bacteria.
상기 표 1에서 보는 바와 같이, 상기 제1제 및 상기 제2제의 혼합 비율이 중량비로 8~10:1 범위를 만족하는 실시예 3에서 코팅성능 및 살균율이 우수한 것을 확인할 수 있다.As shown in Table 1, the mixing ratio of the first agent and the second agent can be confirmed that the excellent coating performance and sterilization rate in Example 3 satisfying the range of 8 ~ 10: 1 by weight ratio.
반면, 경화제인 상기 제2제의 혼합 비율이 상대적으로 높은 실시예 1의 경우 코팅 중량이 다른 실시예들에 비해 낮으며, 이로 인한 살균율도 낮음을 확인할 수 있다. 또한, 접착제인 상기 제1제의 혼합 비율이 상대적으로 높은 실시예 2의 경우 코팅성능은 높으나 살균율은 실시예 3에 비하여 낮음을 확인할 수 있다.On the other hand, in Example 1, where the mixing ratio of the second agent, which is a curing agent, is relatively high, the coating weight is lower than that of other examples, and thus, the sterilization rate is low. In addition, in the case of Example 2 having a relatively high mixing ratio of the first agent as an adhesive, it can be confirmed that the coating performance is high but the sterilization rate is lower than that of Example 3.
코팅방법Coating method 코팅시간Coating time
실시예 4Example 4 코팅개별 코팅Individual coating 4분(1분/3분)4 minutes (1 minute / 3 minutes)
실시예 5Example 5 1:1 혼합, 1회 1: 1 mix, once 4분4 minutes
실시예 6Example 6 1:1 혼합, 2회 코팅1: 1 mixing, 2 coatings 4분4 minutes
실시예 7Example 7 1:1 혼합, 1회 코팅/나노코어쉘 추가 1회 코팅1: 1 mixing, one coating / one additional nanocore shell coating 4분(20초/3분30초)4 minutes (20 seconds / 3 minutes 30 seconds)
성분ingredient 실시예4Example 4 실시예5Example 5
CC 34.8934.89 33.1233.12
OO 31.4131.41 33.2833.28
SiSi 27.4627.46 30.6830.68
TiTi 6.246.24 2.922.92
표 2는 각 실시예에 따른 플라즈모닉스 기능성 비드의 코팅방법을 나타낸 표이고, 표 3은 상기 표 2의 실시예 4 및 실시예 5에 따라 제조된 플라즈모닉스 기능성 비드의 표면 조성물을 나타낸 표이며, EDAX 분석을 통해 표면 조성물의 함량을 중량%로 표시하였다. 이때, 실시예 4는 본 발명에 따라 상기 바인더 조성물을 상기 유리비드 외면에 1분간 1회 코팅 후 상기 나노코어쉘 용액을 3분간 1회 적층 코팅한 것이다. 그리고, 실시예 5는 상기 바인더 조성물과 상기 나노코어쉘 용액을 1:1로 혼합하여 상기 유리비드의 외면에 4분간 1회 코팅한 것이다. 그리고, 실시예 6은 상기 바인더 조성물과 상기 나노코어쉘 용액을 1:1로 혼합하여 유리비드 외면에 4분간 1회 코팅 후 동일한 혼합물을 추가로 1회 더 코팅한 것이다. 그리고, 실시예 7은 상기 바인더 조성물과 상기 나노코어쉘 용액을 1:1로 혼합하여 유리비드 외면에 20초간 1회 코팅 후 상기 나노코어쉘 용액을 별도로 준비하여 3분 30초간 추가로 코팅한 것이다.Table 2 is a table showing the coating method of the plasmonic functional beads according to each embodiment, Table 3 is a table showing the surface composition of the plasmonic functional beads prepared according to Example 4 and Example 5 of Table 2 The content of the surface composition was expressed in weight percent through EDAX analysis. At this time, in Example 4, the binder composition was coated on the outer surface of the glass beads once for 1 minute and then laminated coating the nanocore shell solution once for 3 minutes. In Example 5, the binder composition and the nanocore shell solution were mixed 1: 1 to coat the outer surface of the glass beads once for 4 minutes. In Example 6, the binder composition and the nanocore shell solution were mixed 1: 1 to coat the outer surface of the glass bead once for 4 minutes, and then the same mixture was further coated once more. In Example 7, the binder composition and the nanocoreshell solution were mixed 1: 1 to coat the outer surface of the glass bead once for 20 seconds, and then separately prepared for the nanocoreshell solution to be further coated for 3 minutes and 30 seconds. .
이때, 상기 표 2에 따른 각 실시예에서 코팅방법 및 코팅시간을 제외한 각 조성물의 조성방법은 상기 표 1의 실시예 3과 동일하다.At this time, the composition method of each composition except the coating method and the coating time in each embodiment according to Table 2 is the same as in Example 3 of Table 1.
그리고, 상기 표 2의 각 실시예에 따라 제조된 플라즈모닉스 기능성 비드를 이용한 살균실험은 상기의 표 1과 동일한 방법으로 진행하였다. 한편, 도 4에 표시된 비교예는 플라즈모닉스 기능성 비드를 혼합하지 않은 증류수 200ml에 실험균주를 직접 분주한 후 상기의 방법을 세균수를 측정한 것이다.In addition, the sterilization experiment using the plasmonic functional beads prepared according to the Examples of Table 2 was performed in the same manner as in Table 1 above. On the other hand, the comparative example shown in Figure 4 is to directly dispense the experimental strain to 200ml of distilled water not mixed with plasmonic functional beads to measure the number of bacteria in the above method.
상세히, 상기 표 3을 참고하면 상기 바인더 조성물과 상기 나노코어쉘 용액이 혼합되어 코팅되는 실시예 5보다 상기 바인더 조성물을 코팅하고 상기 나노코어쉘 용액을 순차적으로 코팅하는 실시예 4에서 표면에 티탄 성분이 많이 검출됨을 확인할 수 있었다. 따라서, 도 5에서와 같이, 표면에 티탄 성분이 많이 검출된 실시예 4, 즉 본 발명에 따라 제조된 플라즈모닉스 기능성 비드가 우수한 플라즈모닉스 현상 발현을 통해 99.9 %의 높은 살균율을 나타냄을 확인할 수 있었다. 이때, 실시예 6과 실시예 7의 경우 실시예 5보다 티탄 성분이 낮은 중량비로 검출되어 표 3에서 표시를 생략하였다.In detail, referring to Table 3, the titanium component is coated on the surface of Example 4 to coat the binder composition and sequentially coat the nanocoreshell solution, rather than Example 5, wherein the binder composition and the nanocoreshell solution are mixed and coated. It was confirmed that much of this was detected. Accordingly, as shown in FIG. 5, Example 4, in which many titanium components were detected on the surface, that is, the plasmonic functional beads prepared according to the present invention exhibited high sterilization rate of 99.9% through excellent plasmonic development. I could confirm it. At this time, in the case of Example 6 and Example 7, the titanium component is detected by a lower weight ratio than Example 5, and the display is omitted from Table 3.
한편, 도 6은 본 발명의 일실시예에 따라 제조되는 플라즈모닉스 발현층이 적용된 플라즈모닉스 항균/살균 필터를 이용한 살균 과정을 나타낸 단면 예시도이다.6 is a cross-sectional view illustrating a sterilization process using a plasmonic antibacterial / sterilization filter to which a plasmonic expression layer prepared according to an embodiment of the present invention is applied.
도 6에서 보는 바와 같이, 표면에 상기 플라즈모닉스 발현층(14)이 적용된 상기 플라즈모닉스 기능성 비드(11)는 내부에 수용공간이 형성된 상기 필터바디부(15)에 충진되어 플라즈모닉스 항균/살균 필터(10)로 구비될 수 있다. 그리고, 상기 플라즈모닉스 항균/살균 필터(10)가 구비되는 공기 정화장치(100)를 통해 정화대상 공간의 공기에 포함된 유기물을 살균/분해하여 청정하게 유지할 수 있다.As shown in FIG. 6, the plasmonic functional beads 11 to which the plasmonic expression layer 14 is applied to the surface are filled in the filter body portion 15 in which an accommodating space is formed. It may be provided as / sterilization filter (10). In addition, the air purification apparatus 100 provided with the plasmonic antibacterial / sterilization filter 10 may sterilize / decompose organic matters contained in the air in the purification target space and keep them clean.
이러한 플라즈모닉스 기능성 비드(11)는 각각의 외면에서 플라즈모닉스 현상이 발현될 수 있다. 또한, 각각의 상기 플라즈모닉스 기능성 비드(11)가 구로 형성되어 상호간의 접촉면적이 최소화되므로, 외부에서 흡입되는 오염된 공기가 각각의 상기 플라즈모닉스 기능성 비드(11)와 대응하는 면적이 크게 설정될 수 있다. 따라서, 상기 플라즈모닉스 항균/살균 필터(10)의 체적 대비 플라즈모닉스 반응성이 현저히 향상되므로 컴팩트하면서도 공기청정 효과가 우수한 공기 정화장치(100)를 제공받을 수 있다.These plasmonic functional beads 11 may be expressed plasmonic phenomenon on each outer surface. In addition, since each of the plasmonic functional beads 11 is formed as a sphere, and the contact area between each other is minimized, the area where the contaminated air sucked from the outside corresponds to each of the plasmonic functional beads 11 is greatly increased. Can be set. Therefore, since the plasmonics reactivity is significantly improved relative to the volume of the plasmonic antibacterial / sterilization filter 10, the air purifier 100 may be provided with a compact and excellent air cleaning effect.
상세히, 상기 필터바디부(15)는 기설정된 제1직경을 갖는 중공형 원통형상의 내부 격벽(16) 및 상기 내부 격벽(16)의 외면 외측으로 소정의 간격으로 이격되어 기설정된 제2직경을 갖는 중공형 원통형상의 외부 격벽(17)을 포함한다. 여기서, 상기 제1직경 및 상기 제2직경은 상기 플라즈모닉스 항균/살균 필터(10)를 포함하는 공기 정화장치의 사이즈에 따라 규격화되어 설정됨이 바람직하다.In detail, the filter body 15 may have a hollow cylindrical inner partition 16 having a predetermined first diameter and a second diameter spaced apart from the outer surface of the inner partition 16 by a predetermined interval. A hollow cylindrical outer partition 17 is included. Here, the first diameter and the second diameter are preferably standardized according to the size of the air purification device including the plasmonic antibacterial / sterilization filter 10.
이때, 상기 내부 격벽(16) 및 상기 외부 격벽(17)은 동일한 중심을 갖는 원통형상으로 형성됨이 바람직하다. 그리고, 상기 내부 격벽(16) 및 상기 외부 격벽(17) 사이의 상단부측은 개구되되 각 하단부가 연결되어 도넛형상의 바닥면으로 형성됨이 바람직하다. 이를 통해, 상기 램프부(20)로부터 조사되는 빛이 도달하는 간격이 균일하게 형성될 수 있다.At this time, the inner partition 16 and the outer partition 17 is preferably formed in a cylindrical shape having the same center. In addition, an upper end side between the inner partition 16 and the outer partition 17 may be opened, and each lower end may be connected to a donut-shaped bottom surface. Through this, the interval at which the light irradiated from the lamp unit 20 reaches can be formed uniformly.
물론, 상기 필터바디부(15)는 단면형상이 사각, 오각, 육각 또는 타원형 등의 다양한 형상으로 형성될 수 있으며, 일측에 상기 내부 격벽이 구비되고 타측에 상기 외부 격벽이 구비되는 판형으로 형성될 수도 있다.Of course, the filter body portion 15 may be formed in various shapes such as square, pentagonal, hexagonal or elliptical in cross-section, and may be formed in a plate shape in which the inner partition is provided on one side and the outer partition is provided on the other side. It may be.
여기서, 상기 내부 격벽(16) 및 상기 외부 격벽(17)에는 상기 플라즈모닉스 기능성 비드(11)의 직경 미만의 개구 간격을 갖는 투영부(16a,17a)가 형성됨이 바람직하다. 상세히, 상기 투영부(16a,17a)는 상기 내부 격벽(16) 및 상기 외부 격벽(17)의 전체적인 표면에 복수개로 관통 형성된다. Here, the inner partition 16 and the outer partition 17 is preferably formed with projections 16a, 17a having an opening gap less than the diameter of the plasmonic functional beads 11. In detail, the projections 16a and 17a are formed in plural through the entire surfaces of the inner partition 16 and the outer partition 17.
즉, 상기 램프부(20)로부터 조사되는 가시광선영역의 빛이 상기 내부 격벽(16)에 형성된 투영부(16a)를 통해 복수개의 상기 플라즈모닉스 기능성 비드(11)로 전해질 수 있다. 또한, 실내 공간의 오염된 공기(a1)는 상기 플라즈모닉스 항균/살균 필터(10)가 수용되는 하우징부(30)에 형성된 유입공(31h)을 통해 흡입된 후 상기 외부 격벽(17)에 형성된 투영부(17a)를 통하여 상기 수용공간의 내측으로 전달된다.That is, light in the visible light region irradiated from the lamp unit 20 may be transmitted to the plurality of plasmonic functional beads 11 through the projection unit 16a formed in the inner partition 16. In addition, the contaminated air a1 of the indoor space is sucked through the inlet hole 31h formed in the housing part 30 in which the plasmonic antimicrobial / sterilization filter 10 is accommodated, and then into the outer partition 17. It is transmitted to the inside of the accommodation space through the formed projection portion 17a.
그리고, 상기 플라즈모닉스 기능성 비드(11)를 통한 플라즈모닉스 현상에 의해 오염된 공기(a1)에 포함된 미생물 및 유기화합물이 살균 및 분해되면서 공기가 정화될 수 있다. 이때, 정화된 공기(a2)는 상기 내부 격벽(16)에 형성된 투영부(16a)를 통해 상기 공기 정화장치(100)의 상측을 통하여 실내 공간으로 배출될 수 있다.In addition, the air may be purified while the microorganisms and organic compounds contained in the air (a1) contaminated by the plasmonic phenomenon through the plasmonic functional beads 11 are sterilized and decomposed. In this case, the purified air a2 may be discharged into the indoor space through the upper side of the air purifier 100 through the projection 16a formed in the inner partition 16.
즉, 상기 램프부(20)를 통해 직접적으로 조사되는 빛(v)과 상기 나노코어쉘을 통해 간접적으로 반사되는 빛(r)을 통해 복수개의 상기 플라즈모닉스 기능성 비드(11)의 전체적인 외면에서 플라즈모닉스 현상이 발현될 수 있다. 이를 통해, 상기 필터바디부(15)에 형성된 투영부(16a,17a)를 제외한 몸체에 의해 가려지는 부분에 충진된 플라즈모닉스 기능성 비드(11)에도 가시광선영역의 빛이 전달될 수 있다. 따라서, 상기 플라즈모닉스 항균/살균 필터(10)의 플라즈모닉스 현상을 통한 공기정화 효율이 현저히 향상될 수 있다.That is, in the entire outer surface of the plurality of plasmonic functional beads 11 through light (v) directly irradiated through the lamp unit 20 and light (r) reflected indirectly through the nanocore shell. Plasmonix phenomena may be manifested. Through this, light in the visible region may also be transmitted to the plasmonic functional beads 11 filled in portions covered by the body except for the projections 16a and 17a formed in the filter body 15. Therefore, the air purification efficiency through the plasmonic phenomenon of the plasmonic antibacterial / sterilizing filter 10 can be significantly improved.
여기서, 상기 내부 격벽(16) 및 상기 외부 격벽(17)에 형성된 상기 투영부(16a,17a)의 개구간격(w)은 상기 플라즈모닉스 기능성 비드(11)의 직경(d)보다 작게 형성됨이 바람직하다.Here, the opening gap w of the projections 16a and 17a formed in the inner partition 16 and the outer partition 17 is smaller than the diameter d of the plasmonic functional beads 11. desirable.
따라서, 상기 가시광선영역의 빛이 상기 수용공간에 충진된 복수개의 상기 플라즈모닉스 기능성 비드(11)에 조사되기 위해 상기 투영부(16a,17a)를 투과할 수 있는 면적은 최대한으로 설정된다. 이와 동시에, 상기 플라즈모닉스 기능성 비드(11)가 상기 투영부(16a,17a)를 통해 상기 내부 격벽(16)의 내측 또는 상기 외부 격벽(17)의 외측으로 이탈됨을 방지할 수 있다.Therefore, the area that can pass through the projections 16a and 17a to be irradiated to the plurality of plasmonic functional beads 11 filled in the accommodation space is set to the maximum. At the same time, the plasmonic functional beads 11 can be prevented from being separated into the inner partition 16 or the outer partition 17 through the projections 16a and 17a.
한편, 상기 필터바디부(15)의 중앙부에는 상기 투영부(16a,17a)를 통과하여 복수개의 상기 플라즈모닉스 기능성 비드(11)에 가시광선영역의 빛을 조사하는 상기 램프부(20)가 구비됨이 바람직하다.On the other hand, in the central portion of the filter body 15, the lamp unit 20 passing through the projections (16a, 17a) to the plurality of plasmonic functional beads 11 irradiating light in the visible light region is It is preferred to be provided.
상세히, 상기 내부 격벽(16) 및 상기 외부 격벽(17)이 각각 중공형 원통형상으로 구비되되 동일한 중심을 갖도록 형성되며, 상기 램프부(20)가 각 격벽(16,17)의 동일한 중심에 배치된다. 따라서, 상기 수용공간에 충진된 복수개의 상기 플라즈모닉스 기능성 비드(11)에 조사되는 광량이 균일하게 전달되므로 미생물 및 유기화합물의 살균 및 분해능이 더욱 향상될 수 있다.In detail, the inner partition 16 and the outer partition 17 are each provided in a hollow cylindrical shape and have the same center, and the lamp unit 20 is disposed at the same center of each of the partitions 16 and 17. do. Therefore, since the amount of light irradiated to the plurality of plasmonic functional beads 11 filled in the accommodation space is uniformly transmitted, sterilization and resolution of microorganisms and organic compounds can be further improved.
이에 따라, 상기 플라즈모닉스 항균/살균 필터(10)가 구비되는 공기 정화장치(100)가 배치된 실내 공간으로부터 흡입된 공기 내의 미생물 또는 휘발성 유기화합물(VOCs) 등의 유해물질이 살균 및 분해된다. 그리고, 상기의 유해물질이 살균 및 분해되어 정화된 공기를 재방출함에 따라 실내 공기가 청결하고 쾌적하게 유지될 수 있다.Accordingly, harmful substances such as microorganisms or volatile organic compounds (VOCs) in the air sucked from the indoor space in which the air purifier 100 including the plasmonic antibacterial / sterilization filter 10 is disposed are sterilized and decomposed. . In addition, indoor air may be kept clean and comfortable as the harmful substances are sterilized and decomposed to re-release the purified air.
이때, 상기 플라즈모닉스 항균/살균 필터(10)의 외주를 감싸도록 헤파필터(51) 및 탈취필터(52)를 포함하는 베이스 필터(50)가 구비될 수 있다. In this case, the base filter 50 including the HEPA filter 51 and the deodorizing filter 52 may be provided to surround the circumference of the plasmonic antibacterial / sterilization filter 10.
즉, 상기 송풍수단(40)이 구동되면 상기 유입부(31)를 통해 유입된 오염된 공기(a1)는 상기 베이스 필터(50) 내의 중공(53)측으로 이동된다. 이때, 상기 오염된 공기(a1)가 상기 헤파필터(51)를 통과하면서 비교적 크기가 큰 이물질 등이 물리적으로 1차 여과된다. 이어서, 1차 여과된 공기가 상기 헤파필터(51)의 내부에 적층된 상기 탈취필터(52)를 연속적으로 통과하면서 공기 중의 냄새 성분이 흡착되면서 여과된다.That is, when the blowing means 40 is driven, the contaminated air a1 introduced through the inlet part 31 is moved to the hollow 53 side in the base filter 50. At this time, while the contaminated air a1 passes through the HEPA filter 51, foreign substances having a relatively large size are physically filtered first. Subsequently, primary filtered air is continuously filtered through the deodorizing filter 52 stacked inside the HEPA filter 51 while adsorbing an odor component in the air.
그리고, 상기 플라즈모닉스 항균/살균 필터(10)는 상기 베이스 필터(50)의 상기 중공(53) 내측에 구비되며, 중앙부에 정화공간(10a)이 형성된다. 더불어, 상기 램프부(20)는 상기 플라즈모닉스 항균/살균 필터(10)의 중앙부에 배치되어 가시광선영역의 빛을 조사한다.In addition, the plasmonic antimicrobial / sterilization filter 10 is provided inside the hollow 53 of the base filter 50, and a purification space 10a is formed at the center thereof. In addition, the lamp unit 20 is disposed at the center of the plasmonic antibacterial / sterilizing filter 10 to irradiate light in the visible region.
따라서, 상기 플라즈모닉스 항균/살균 필터(10)는 상기 램프부(20)로부터 조사되는 가시광선영역의 빛에 의해 활성화되는 플라즈모닉스 현상을 통해 상기 베이스 필터(50)를 통과한 공기 중의 유기물질을 살균 및 정화시킬 수 있다.Therefore, the plasmonic antibacterial / sterilizing filter 10 is organic in air passing through the base filter 50 through the plasmonic phenomenon which is activated by the light in the visible ray region irradiated from the lamp unit 20. The material can be sterilized and purified.
즉, 내외측으로 다중 적층된 헤파필터(51), 탈취필터(52) 및 플라즈모닉스 항균/살균 필터(10)를 연속적으로 통과하여 송풍되는 공기 중의 오염물질을 물리적 및 화학적 반응을 통하여 복합적으로 정화되므로 공기의 청정도가 현저히 향상될 수 있다.That is, the contaminants in the air blown through the HEPA filter 51, the deodorization filter 52, and the plasmonics antibacterial / sterilization filter 10, which are multi-layered in and outward, are sequentially purified through physical and chemical reactions. Therefore, the cleanliness of the air can be significantly improved.
이상 설명한 바와 같이, 본 발명은 상술한 각 실시예에 한정되는 것은 아니며, 본 발명의 청구항에서 청구하는 범위를 벗어남 없이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 변형 실시되는 것은 가능하며, 이러한 변형 실시는 본 발명의 범위에 속한다.As described above, the present invention is not limited to the above-described embodiments, but may be modified and implemented by those skilled in the art without departing from the scope of the claims of the present invention. Such modifications are within the scope of the present invention.
본 발명은 가시광선영역에서 살균/항균/분해능이 개선되면서도 생산성이 향상된 플라즈모닉스 발현층이 적용된 플라즈모닉스 항균/살균 필터를 제공함으로써 항균/살균 필터의 제조 및 사용을 위한 산업에 적용될 수 있다. The present invention can be applied to the industry for the manufacture and use of antimicrobial / sterilization filter by providing a plasmonic antimicrobial / sterilization filter to which the plasmonics expression layer with improved productivity while improving the sterilization / antibacterial / resolution in the visible region. .

Claims (10)

  1. 플라즈모닉스 현상에 의하여 가시광에서 항균 및 살균능이 나타나도록 티타늄 알콕사이드 화합물을 포함하는 제1베이스용액 및 금속 질화물을 포함하는 제2베이스용액이 혼합되어 제조된 나노코어쉘과, 실란계 올리고머를 포함하는 바인더 조성물이 각각 준비되는 제1단계;Nano-core shell prepared by mixing a first base solution containing a titanium alkoxide compound and a second base solution containing a metal nitride so as to exhibit antibacterial and bactericidal properties in visible light by the plasmonic phenomenon, and comprising a silane oligomer A first step in which each binder composition is prepared;
    코팅대상물의 표면에 상기 바인더 조성물이 코팅 및 기설정된 온도범위에서 반경화되어 점착바인더층이 형성되는 제2단계; 및A second step in which the binder composition is coated on the surface of the coating object and semi-cured at a predetermined temperature range to form an adhesive binder layer; And
    상기 점착바인더층의 외면에 상기 나노코어쉘이 코팅 및 경화되어 플라즈모닉스 발현층을 형성하는 제3단계를 포함하는 플라즈모닉스 발현층의 제조방법.And a third step of coating and curing the nanocore shell on an outer surface of the adhesive binder layer to form a plasmonic expression layer.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1단계에서,In the first step,
    상기 제1베이스용액은 티타늄 에톡사이드, 티타늄 메톡사이드, 티타늄 부톡사이드, 티타늄 이소프로폭사이드 및 이들의 혼합물로 이루어진 군 중에서 선택된 하나로 구비되며,The first base solution is provided with one selected from the group consisting of titanium ethoxide, titanium methoxide, titanium butoxide, titanium isopropoxide and mixtures thereof,
    상기 제2베이스용액은 질산금, 질산은, 질산구리, 질산니켈, 질산코발트 및 이들의 혼합물로 이루어진 군 중에서 선택된 하나로 구비됨을 특징으로 하는 플라즈모닉스 발현층의 제조방법.The second base solution is gold nitrate, silver nitrate, copper nitrate, nickel nitrate, cobalt nitrate and a method for producing a plasmonic expression layer characterized in that it is provided with one selected from the group consisting of a mixture thereof.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제1단계에서, 상기 나노코어쉘은 In the first step, the nanocore shell is
    상기 제1베이스용액을 알코올계 용매에 투입 및 혼합하여 1차 용액을 형성하는 단계와,Adding and mixing the first base solution in an alcohol solvent to form a primary solution;
    상기 1차 용액에 상기 제2베이스용액을 투입 및 혼합하여 2차 용액을 형성하는 단계와,Adding and mixing the second base solution to the primary solution to form a secondary solution;
    상기 2차 용액에 디메틸포름아미드를 투입하고 열처리 및 환류시켜 상기 나노코어쉘이 포함된 3차 용액을 제조하는 단계와,Dimethylformamide was added to the secondary solution, followed by heat treatment and reflux to prepare a tertiary solution including the nanocore shell;
    상기 3차 용액으로부터 상기 나노코어쉘을 분리 및 이소프로필 알코올로 세척하는 단계를 포함하여 형성됨을 특징으로 하는 플라즈모닉스 발현층의 제조방법. Separating the nanocore shell from the tertiary solution and washing with isopropyl alcohol method of producing a plasmonic expression layer characterized in that it is formed.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제1단계에서, 상기 3차 용액을 제조하는 단계는 80~120℃ 온도범위에서 100~200분간 수행되며,In the first step, preparing the tertiary solution 100 to 200 minutes are carried out in the temperature range of 80 ~ 120 ℃,
    상기 나노코어쉘은 1.2~2.2 중량%의 상기 제1베이스용액과, 1.7~2.4 중량%의 상기 제2베이스용액과, 73~80 중량%의 상기 알코올계 용매와, 17~23 중량%의 디메틸포름아미드를 포함하여 조성됨을 특징으로 하는 플라즈모닉스 발현층의 제조방법.The nanocore shell includes 1.2 to 2.2 wt% of the first base solution, 1.7 to 2.4 wt% of the second base solution, 73 to 80 wt% of the alcohol solvent, and 17 to 23 wt% of dimethyl. Method for producing a plasmonic expression layer characterized in that it comprises a formamide.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제2단계에서, 상기 바인더 조성물은 실록산 올리고머를 포함하는 제1제 및 상기 제1제와 상이한 중량%의 실록산 올리고머를 포함하는 제2제가 분리혼합되어 준비됨을 특징으로 하는 플라즈모닉스 발현층의 제조방법.In the second step, the binder composition is prepared by separating and mixing a first agent comprising a siloxane oligomer and a second agent comprising a siloxane oligomer different from the first agent by weight. Manufacturing method.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 제1단계에서, 상기 제1제는 상기 제1제 전체 중량%에 대하여 실록산 올리고머 45~80 중량%와, 희석용매 15~50 중량%와, 반응첨가제 2~8 중량%를 포함하고, 상기 제2제는 상기 제2제 전체 중량%에 대하여 실록산 올리고머 40~65 중량%와, 희석용매 30~55 중량%와, 반응첨가제 2~6 중량%를 포함하되, In the first step, the first agent comprises 45 to 80% by weight of the siloxane oligomer, 15 to 50% by weight of the diluent solvent, and 2 to 8% by weight of the reaction additive, based on the total weight of the first agent. The second agent includes 40 to 65% by weight of the siloxane oligomer, 30 to 55% by weight of the diluent solvent, and 2 to 6% by weight of the reaction additive, based on the total weight of the second agent.
    상기 제1단계에서, 상기 제1제 및 상기 제2제는 중량비로 8~10:1 비율로 혼합됨을 특징으로 하는 플라즈모닉스 발현층의 제조방법.In the first step, the first agent and the second agent is a method of producing a plasmonic expression layer, characterized in that mixed in a ratio of 8 to 10: 1 by weight.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제2단계에서, 상기 코팅대상물은 기설정된 직경을 갖는 유리비드로 구비되되, 상기 점착바인더층은 회전교반기 내에 복수개의 상기 유리비드 및 상기 바인더 조성물을 투입하여 22~27 rpm의 속도로 4~9분간 회전 교반시켜 반경화되도록 형성되고,In the second step, the coating object is provided with glass beads having a predetermined diameter, the adhesive binder layer is a 4 ~ at a speed of 22 ~ 27 rpm by putting a plurality of the glass beads and the binder composition in a rotary stirrer It is formed to be semi-cured by rotating stirring for 9 minutes,
    상기 제3단계에서, 상기 플라즈모닉스 발현층은 상기 회전교반기 내에 상기 나노코어쉘을 투입하여 22~27 rpm의 속도로 80~100분간 회전 교반시켜 상기 점착바인더층과 Si-O-Ti 결합 및 경화됨을 특징으로 하는 플라즈모닉스 발현층의 제조방법.In the third step, the plasmonic expression layer is added to the nanocore shell in the rotary stirrer by rotating stirring for 80 to 100 minutes at a speed of 22 ~ 27 rpm and the adhesion binder layer and Si-O-Ti bond and Method for producing a plasmonic expression layer characterized in that cured.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제2단계에서, 상기 바인더 조성물은 복수개의 상기 유리비드 1000 중량부에 대하여 17~23 중량부 투입되어 코팅되고,In the second step, the binder composition is coated with 17 to 23 parts by weight based on 1000 parts by weight of the plurality of glass beads,
    상기 제3단계에서, 상기 나노코어쉘은 복수개의 상기 유리비드 1000 중량부에 대하여 17~20 중량부 투입되어 코팅됨을 특징으로 하는 플라즈모닉스 발현층의 제조방법.In the third step, the nanocore shell is a method of manufacturing a plasmonic expression layer, characterized in that 17 to 20 parts by weight based on 1000 parts by weight of the glass bead is coated.
  9. 상호 상이한 중량%의 실란계 올리고머를 포함하는 제1제 및 제2제가 분리혼합되어 형성되는 점착바인더층과, 플라즈모닉스 현상에 의하여 가시광에서 항균 및 살균 기능이 나타나도록 티타늄 알콕사이드 화합물을 포함하는 제1베이스용액 및 금속 질화물을 포함하는 제2베이스용액이 혼합되어 제조된 나노코어쉘을 포함하는 플라즈모닉스 발현층이 복수개의 유리비드 각각의 외면에 순차적으로 적층 코팅되어 구비되는 복수개의 플라즈모닉스 기능성 비드; 및An adhesive binder layer formed by separating and mixing a first agent and a second agent comprising silane oligomers having different weight percents from each other, and a agent containing a titanium alkoxide compound such that antibacterial and bactericidal functions are exhibited in visible light by plasmonic development. A plurality of plasmonics in which a plasmonic expression layer comprising a nanocore shell prepared by mixing a first base solution and a second base solution including a metal nitride are sequentially laminated and coated on the outer surface of each of the plurality of glass beads. Functional beads; And
    내부 격벽 및 외부 격벽 사이에 복수개의 상기 플라즈모닉스 기능성 비드가 충진되는 수용공간이 형성되되, 가시광선영역의 광이 내부로 조사되어 상기 플라즈모닉스 기능성 비드를 통한 플라즈모닉스 현상이 활성화되도록 상기 내부 격벽 및 상기 외부 격벽에 상기 플라즈모닉스 기능성 비드의 직경 미만의 개구 간격을 갖는 투영부가 형성된 필터바디부를 포함하는 플라즈모닉스 발현층이 적용된 플라즈모닉스 항균/살균 필터.An accommodation space in which a plurality of the plasmonic functional beads are filled is formed between the inner partition and the outer partition, and the light of visible light is irradiated to the inside to activate the plasmonic phenomenon through the plasmonic functional beads. The plasmonic expression layer is applied to the inner partition and the outer partition including a filter body having a projection having an opening gap less than the diameter of the plasmonic functional beads. Plasmonics antibacterial / sterilization filter.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 나노코어쉘은 1.2~2.2 중량%의 상기 제1베이스용액과, 1.7~2.4 중량%의 상기 제2베이스용액와, 73~80 중량%의 알코올계 용매와, 17~23 중량%의 디메틸포름아미드를 포함하여 조성되되, 이소프로필 알코올로 세척되어 상기 점착바인더층의 외면에 부착됨을 특징으로 하는 플라즈모닉스 발현층이 적용된 플라즈모닉스 항균/살균 필터.The nanocore shell comprises 1.2 to 2.2 wt% of the first base solution, 1.7 to 2.4 wt% of the second base solution, 73 to 80 wt% of an alcohol solvent, and 17 to 23 wt% of dimethylformamide. A plasmonic antimicrobial / sterilization filter applied with a plasmonic expression layer, characterized in that the composition, including, but is washed with isopropyl alcohol and attached to the outer surface of the adhesive binder layer.
PCT/KR2019/009762 2018-08-10 2019-08-06 Method for preparing plasmonics implementation layer, and plasmonic antibacterial/sterilization filter using same WO2020032519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180093679A KR101950735B1 (en) 2018-08-10 2018-08-10 manufacturing method for plasmonics expression layer and plasmonics antimicrobal/sterilizing filter using thereof
KR10-2018-0093679 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020032519A1 true WO2020032519A1 (en) 2020-02-13

Family

ID=65585061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009762 WO2020032519A1 (en) 2018-08-10 2019-08-06 Method for preparing plasmonics implementation layer, and plasmonic antibacterial/sterilization filter using same

Country Status (2)

Country Link
KR (1) KR101950735B1 (en)
WO (1) WO2020032519A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021179006A1 (en) * 2020-03-03 2021-09-10 University Of South Florida Plasmonic photoelectrochemical oxidation face mask
CN113694241A (en) * 2020-05-20 2021-11-26 宗成圣 Haze-removing antibacterial film
WO2023159357A1 (en) * 2022-02-22 2023-08-31 耐酷时科技有限责任公司 Preparation method for hollow core-shell structure by photocatalytic particle self-driven nucleation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950735B1 (en) * 2018-08-10 2019-02-21 주식회사 제씨콤 manufacturing method for plasmonics expression layer and plasmonics antimicrobal/sterilizing filter using thereof
KR102081740B1 (en) 2019-11-22 2020-05-15 (주)필스톤 Manufacturing Method of Air Cleaning Filter containing Plasmonics Matter of Ag/TiO2 core/shell nano structure
KR102267827B1 (en) 2020-12-18 2021-06-24 (주)필스톤 Manufacturing Method of Air Cleaning Filter Containing Plasmonics Matter of Ag-Cu/TiO2 Bimetallic Nano Core Sshell Structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110002508A (en) * 2009-07-02 2011-01-10 표계열 Circulation type plasma sterilizer for easy removing residual ozone
KR20120103525A (en) * 2012-07-30 2012-09-19 (주) 라이트플러스 Clean sterilizer using antibacterial air
KR20120105703A (en) * 2011-03-16 2012-09-26 한국광기술원 Photocatalyst water purifier using plasmon
KR20130092662A (en) * 2012-02-13 2013-08-21 박광선 A plasma sterilization household dryer
KR20150047026A (en) * 2013-10-23 2015-05-04 (주) 라이트플러스 Photocatalyst cleaning apparatus of using plasmon
KR101950735B1 (en) * 2018-08-10 2019-02-21 주식회사 제씨콤 manufacturing method for plasmonics expression layer and plasmonics antimicrobal/sterilizing filter using thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160054729A (en) 2014-11-06 2016-05-17 서울바이오시스 주식회사 A Compact Air Cleaner Using UV LED and Photocatalytic Filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110002508A (en) * 2009-07-02 2011-01-10 표계열 Circulation type plasma sterilizer for easy removing residual ozone
KR20120105703A (en) * 2011-03-16 2012-09-26 한국광기술원 Photocatalyst water purifier using plasmon
KR20130092662A (en) * 2012-02-13 2013-08-21 박광선 A plasma sterilization household dryer
KR20120103525A (en) * 2012-07-30 2012-09-19 (주) 라이트플러스 Clean sterilizer using antibacterial air
KR20150047026A (en) * 2013-10-23 2015-05-04 (주) 라이트플러스 Photocatalyst cleaning apparatus of using plasmon
KR101950735B1 (en) * 2018-08-10 2019-02-21 주식회사 제씨콤 manufacturing method for plasmonics expression layer and plasmonics antimicrobal/sterilizing filter using thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021179006A1 (en) * 2020-03-03 2021-09-10 University Of South Florida Plasmonic photoelectrochemical oxidation face mask
US11844966B2 (en) 2020-03-03 2023-12-19 University Of South Florida Plasmonic photoelectrochemical oxidation face mask
CN113694241A (en) * 2020-05-20 2021-11-26 宗成圣 Haze-removing antibacterial film
WO2023159357A1 (en) * 2022-02-22 2023-08-31 耐酷时科技有限责任公司 Preparation method for hollow core-shell structure by photocatalytic particle self-driven nucleation

Also Published As

Publication number Publication date
KR101950735B1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2020032519A1 (en) Method for preparing plasmonics implementation layer, and plasmonic antibacterial/sterilization filter using same
EP0633064A1 (en) Photocatalyst composite and process for producing the same
US8781310B2 (en) Coating composition comprising photocatalyst coated with apatite and radiant heating system
WO2017047980A1 (en) Photocatalyst functional nonwoven fabric, and method for producing same
CN1141074A (en) Cleaning arrangement including filters and ultraviolet radiation
CN1622858A (en) Photocatalytic composite material and method for preparation thereof
WO2017137154A1 (en) Method for grafting polysiloxanes on surfaces of photocatalytic metal oxides, polysiloxane-grafted metal oxide surfaces and applications thereof
KR100945311B1 (en) Visible ray reaction type hybrid photocatalyst filter and air cleaner
JP2003305371A (en) Photocatalyst thin film and article equipped therewith
WO2018043854A1 (en) Air purification module and manufacturing method therefor
KR100395264B1 (en) Photocatalytic composition having functions of air purification and antimicrobial activity and a moth-proof net coated with the composition
JP2010065372A (en) Method of production element having antibacterial property
CN1230079C (en) Nanometer optical catalyst bactericidal composition and preparation thereof
WO2022149927A1 (en) Photocatalytic coating composition for sterilization device using led lamp ultraviolet rays, and sterilization device having member coated therewith
JP4585188B2 (en) Antibacterial component
WO2022102916A1 (en) Ceramic foam sponge filter having photocatalyst deposited therein, and manufacturing method therefor
CN211502517U (en) LED photocatalyst sterilizing lamp
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate
JPH08131842A (en) Formation of member having photocatalytic action
CN1840506A (en) Method for producing photocatalyst ceramic materials
CN113045913A (en) Nano composite coating with porous bridging structure and preparation method thereof
KR102558794B1 (en) Hydrophilic hard coating composition containing titanium dioxide nanoparticles
WO2018143712A1 (en) Air filter and air purification module including same
JP2017080727A (en) Photocatalyst-coated body
US20240198322A1 (en) Visible light-sensitive photocatalyst composition and a visible light-sensitive photocatalyst film comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847420

Country of ref document: EP

Kind code of ref document: A1