WO2020032403A1 - Conductive composite using conductive composite solution, and method for producing same - Google Patents

Conductive composite using conductive composite solution, and method for producing same Download PDF

Info

Publication number
WO2020032403A1
WO2020032403A1 PCT/KR2019/008533 KR2019008533W WO2020032403A1 WO 2020032403 A1 WO2020032403 A1 WO 2020032403A1 KR 2019008533 W KR2019008533 W KR 2019008533W WO 2020032403 A1 WO2020032403 A1 WO 2020032403A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive composite
conductive
styrene
solution
solvent
Prior art date
Application number
PCT/KR2019/008533
Other languages
French (fr)
Korean (ko)
Inventor
정운룡
조성환
송준혁
공민식
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2020032403A1 publication Critical patent/WO2020032403A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a conductive composite using a conductive composite solution and a method for manufacturing the same, and more particularly, by using the conductive composite solution according to the present invention, without having to prepare a stretchable substrate separately, it has a double-sided conductivity, elasticity and adhesion
  • the present invention relates to various types of conductive composites and a method of manufacturing the same.
  • Materials such as metals have excellent conductivity but are hard to utilize as they are due to their hard and stiff properties. When using materials such as carbon nanotubes or graphene alone, it is also difficult to make flexible electrodes.
  • a method for making a stretchable electrode As a method for making a stretchable electrode, a carbon nanotube, a transparent fluorinated polymer, an ionic liquid is prepared in paste form, a metal particle and polyacrylic acid mixture is formed in a paste form, and an inkjet method is used to make a pattern.
  • An example of forming a metal layer on a PDMS substrate to have elasticity as much as wrinkles are spread has been reported.
  • these methods have a problem such that the conductivity of the used material or the corrugated substrate is not large and the conductivity is sharply lowered or mechanically broken according to the stretching.
  • An object of the present invention is to solve the above problems, by using a conductive composite solution according to the present invention, without having to prepare a flexible substrate separately, the conductivity of various forms (film or wire, etc.) with double-sided conductivity, stretchable and tacky To provide a complex.
  • the present invention provides a method for producing a conductive composite that can be produced through a simple process that does not require low production costs and additional processes.
  • the conductive nanoparticles there is provided a conductive composite solution.
  • the conductive nanoparticles may include one or more selected from silver (Ag), gold, aluminum, copper, platinum, palladium, tin, carbon nanotubes (CNT), and silicon.
  • the conductive nanoparticles may include silver (Ag).
  • the silver (Ag) may be in the form of any one selected from flakes, wires, spheres, and combinations thereof.
  • the thermoplastic rubber may include one or more selected from styrenic block copolymers, polyurethanes, and PDMS.
  • the styrene block copolymer is SBS (poly (styrene-butadiene-styrene)), SIS (poly (styrene-isoprene-styrene)), SEBS (poly (styrene-ethylene / butylene-styrene)), SEPS (poly (styrene) -ethylene-propylene-styrene)) and SBBS (poly (styrene-butadiene-butylene-styrene)) may include one or more selected.
  • SBS poly (styrene-butadiene-styrene)
  • SIS poly (styrene-isoprene-styrene)
  • SEBS poly (styrene-ethylene / butylene-styrene)
  • SEPS poly (styrene) -ethylene-propylene-styrene)
  • SBBS poly
  • the solvent is tetrahydrofuran (THF), toluene (Toluene), chloroform (Chloroform), pentane (Pentane), hexane (Hexane), heptane (Octane), methyl pentane (Methylpentane), cyclophene It may include one or more selected from among cyclopentane, cyclohexane, methylcyclohexane, benzene, benzene, ethylbenzene, and xylene.
  • the thermoplastic rubber may be 5 to 100 parts by weight based on 100 parts by weight of the conductive nanoparticles.
  • a conductive composite prepared by drying a solvent in a conductive composite solution containing conductive nanoparticles, a thermoplastic rubber and a solvent.
  • the conductive composite may be any one selected from fiber, wire, and film.
  • Modulus of the conductive composite may be 0.3 to 1.5 Gpa.
  • Peel strength of the conductive composite may be 10 to 2500 N / m.
  • the conductive composite may be used as any one selected from an adhesive tape, an electrode, an interconnection circuit, and a shielding film.
  • thermoplastic rubber may be 5 to 100 parts by weight based on 100 parts by weight of the conductive nanoparticles in step (a).
  • the thermoplastic rubber may be 10 to 30 parts by weight based on 100 parts by weight of the conductive nanoparticles.
  • the molding can be any one selected from casting, spin coating, dip coating, screen printing, nozzle printing, spinning and spraying.
  • the shape and thickness of the conductive composite may be controlled according to one or more selected from the type of the solvent and the concentration of the conductive composite solution.
  • the conductive composite of the present invention does not need to separately prepare a stretchable substrate, and has excellent effects on both sides of conductivity, stretchability and adhesion.
  • the conductive composite of the present invention can be produced in various forms (film or wire, etc.) by using the conductive composite solution according to the present invention.
  • the manufacturing method of the conductive composite of the present invention has the effect that can be produced through a simple process that does not require a low production cost and additional processes.
  • FIG. 1 is a schematic view showing the configuration of a conductive composite solution of the present invention.
  • FIG. 2 is an image showing a patterned conductive composite prepared according to Example 3.
  • FIG. 2 is an image showing a patterned conductive composite prepared according to Example 3.
  • FIG. 3 is an SEM image of a conductive composite prepared according to Example 1.
  • Example 4 is a roughness measurement result of the conductive composite prepared according to Example 1.
  • FIG. 6 is a strain-stress curve of a conductive composite prepared according to Example 1.
  • FIG. 7 is an optical microscope (OM) image of the conductive composite prepared according to Example 2.
  • FIG. 8A and 8B are SEM images of the conductive composite prepared according to Example 2.
  • FIG. 8A and 8B are SEM images of the conductive composite prepared according to Example 2.
  • FIG. 9 is a current-voltage curve of a conductive composite prepared according to Example 2.
  • Example 10 is a photograph showing a process of attaching two films by applying a heat source to the conductive composite prepared according to Example 1.
  • FIG. 11 is a photograph showing a process of attaching two films using body temperature and pressure to the conductive composite prepared according to Example 4.
  • FIG. 1 is a schematic view showing the configuration of a conductive composite solution of the present invention.
  • the conductive composite solution and the conductive composite of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
  • the present invention is a conductive nanoparticle; Thermoplastic rubber; It provides a conductive complex solution comprising a; and a solvent.
  • the conductive nanoparticles may include at least one selected from silver (Ag), gold, aluminum, copper, platinum, palladium, tin, carbon nanotubes (CNT), and silicon, and preferably include silver (Ag). can do.
  • the silver (Ag) may be in the form of any one selected from flakes, wires, spheres, and combinations thereof, and preferably silver flakes having a flake structure.
  • silver In general, silver is cheaper than other precious metals and is manufactured in various forms (nanowires and nanoparticles) and is applied to various industrial fields. Silver is an easy-to-purchase material that can be used immediately without additional processing.
  • the thermoplastic rubber may include at least one selected from a styrenic block copolymer, polyurethane, and PDMS.
  • the styrene block copolymer is SBS (poly (styrene-butadiene-styrene)), SIS (poly (styrene-isoprene-styrene)), SEBS (poly (styrene-ethylene / butylene-styrene)), SEPS (poly (styrene) -ethylene-propylene-styrene)) and SBBS (poly (styrene-butadiene-butylene-styrene)) may include one or more selected.
  • SBS poly (styrene-butadiene-styrene)
  • SIS poly (styrene-isoprene-styrene)
  • SEBS poly (styrene-ethylene / butylene-styrene)
  • SEPS poly (styrene) -ethylene-propylene-styrene)
  • SBBS poly
  • the styrenic block copolymer is a block copolymer of styrene and diene, and two separate phases exist. Each phase consists of repeating parts of the same molecule.
  • the simplest arrangement is an A-B-A or triblock structure, where A represents a hard copolymer block and B represents a soft block. Therefore, the hard block acts as a skeleton, the soft block is a polymer that can be stretched to increase the stretchability.
  • the most commonly used dienes are butadiene (S-B-S), isoprene (S-I-S) and ethylene (S-EB-S).
  • the solvent is tetrahydrofuran (THF), toluene (Toluene), chloroform (Chloroform), pentane (Pentane), hexane (Hexane), heptane (Octane), methyl pentane (Methylpentane), cyclophene It may include one or more selected from among cyclopentane, cyclohexane, methylcyclohexane, benzene, benzene, ethylbenzene, and xylene, but the solvent may include Any solvent capable of dissolving the styrenic block copolymer can be used, and the scope of the present invention is not limited thereto.
  • the thermoplastic rubber may be 5 to 100 parts by weight based on 100 parts by weight of the conductive nanoparticles.
  • the conductive composite solution of the present invention can be manufactured in a desired form (film or wire or other form) using the conductive composite solution without separately preparing a conductor and a flexible substrate.
  • the solvent to be used is not fixed, so that any solvent capable of dissolving the polymer can be used in a variety of applications, and the concentration of the conductive complex solution is also irrelevant.
  • the present invention provides a conductive composite prepared by drying a solvent in a conductive composite solution containing conductive nanoparticles, a thermoplastic rubber and a solvent.
  • the conductive composite may be any one selected from fiber, wire, and film.
  • Modulus of the conductive composite may be 0.3 to 1.5 GPa, preferably 0.7 to 1.4 GPa, more preferably 1 to 1.3 GPa.
  • Peel strength of the conductive composite may be 10 to 2500 N / m, preferably 20 to 2300 N / m, more preferably 40 to 2100 N / m.
  • the conductive composite may be used as any one selected from an adhesive tape, an electrode, an interconnection circuit, and a shielding film.
  • the conductive composite is viscoelastic, including a thermoplastic rubber (styrene-based block copolymer), heat can be applied to the polymer chain in the conductive composite. Therefore, according to the substrate to be attached through this can be utilized as an adhesive tape having a degree of adhesiveness that can be completely attached from the post-it level of 3M company. For example, when the conductive composite is attached through a simple heat treatment, the adhesive may be attached at a strength similar to that of a tape, and chemically through the O 2 plasma process may be more strongly attached than a simple heat treatment.
  • the conductive composite When the conductive composite is manufactured in the form of a film, the roughness is low, and it can be utilized as a very flat stretchable electrode.
  • the conductive composite may be utilized as a self-healing conductive material recoverable to a heat source such as an iron or a dryer.
  • the conventional conductor proceeds with a process of raising a conductive layer on a stretchable substrate.
  • this method has only one side in terms of the entire substrate, and thus has only one conductivity.
  • the surface roughness caused by the conductor on the surface increases sharply. Will follow.
  • the conductive composite itself made of the conductive composite solution exhibits conductivity, it has conductivity while maintaining the properties of the styrene-based block copolymer. Therefore, it has the advantage of having conductivity on both sides, so it can be actively used in the field requiring interconnection on the z-axis.
  • a conductive composite solution is prepared by mixing conductive nanoparticles, a thermoplastic rubber, and a solvent (step a).
  • the thermoplastic rubber may be 5 to 100 parts by weight, and preferably 10 to 30 parts by weight based on 100 parts by weight of the conductive nanoparticles.
  • the conductive composite solution makes a solution based on the ratio of the thermoplastic rubber and the conductive nanoparticles. Since the weight ratio of the thermoplastic rubber and the conductive nanoparticles is 1: 3, the conductivity of the conductive composite solution is shown, and the concentration of the solution can be adjusted to suit the desired process.
  • step b the conductive composite solution film, wire , flake Mold into shape.
  • the molding can be any one selected from casting, coating, printing, spinning and spraying.
  • the coating may include one or more selected from spin coating, slot coating, dip coating, bar coating, roll coating, gravure coating, microgravure coating, wire coating and spray coating.
  • the printing may include at least one selected from inkjet printing, nozzle printing, screen printing, flexo printing, and offset printing.
  • the spinning may comprise one or more selected from melt spinning, dry spinning, wet spinning and electrospinning.
  • the shape and thickness of the conductive composite may be controlled according to one or more selected from the type of the solvent and the concentration of the conductive composite solution.
  • Example 1 conductive composite in film form
  • SBS polystyrene-butadiene-styrene
  • SBS polystyrene-butadiene-styrene
  • SBS Silver flake , 7440-22-4, sigma aldrich
  • Example 2 fiber-like conductive composite
  • THF tetrahydrofuran
  • SBS polystyrene-butadiene-styrene
  • Example 4 conductive composite in film form
  • SBS polystyrene-butadiene-styrene
  • SIS polystyrene-isoprene-styrene
  • SBS + SIS silver flake (Silver flake) was added so that the weight ratio of 1: 5 to prepare a conductive composite solution, by spin coating method 20um
  • a conductive composite in the form of a film with a level thickness was prepared.
  • Test Example 1 of a conductive composite made of a film SEM image
  • FIG. 3 is an SEM image of a conductive composite prepared according to Example 1.
  • silver flakes were uniformly distributed in the styrene block copolymer (extensible body) to form a conductive network.
  • Test Example 2 of the conductive composite made of film Roughness (Roughness) measurement
  • Example 4 is a roughness measurement result of the conductive composite prepared according to Example 1.
  • the conductive composite solution itself is made of a film (thin film) (Example 1)
  • roughness is 10 nm or less, which is very low compared to other electrodes.
  • Figure 5 is a graph measuring the resistance change according to the stretchability of the conductive composite prepared according to Example 1.
  • the change in resistance in stretching within about 50% maintains a very low resistance from 4 ohms to 10 ohms, and does not show a big difference from the initial state.
  • FIG. 6 is a strain-stress curve of a conductive composite prepared according to Example 1.
  • FIG. A film of 1 ⁇ 3 cm 2 area was used.
  • the tensile stress and strain at break (%) of the conductive composite prepared according to Example 1 in the form of a film was measured by drawing a stress-strain curve and analyzing the same while pulling at a constant rate of 100 ⁇ / s.
  • the average value of the remaining measured values except the highest value and the lowest value by measuring 10 times is shown in Table 1 below.
  • the conductive composite (film) prepared according to Example 1 was maintained unbroken even at about 500% or more of stretching, and maintained at about 50% of stretching based on such mechanical properties.
  • Example 1 was maintained unbroken even at about 500% or more of stretching, and maintained at about 50% of stretching based on such mechanical properties.
  • the conductive composite prepared according to Example 1 may be used as an extensible electrode.
  • Test Example 5 of the conductive composite made of fiber SEM And OM image
  • FIG. 7 is an optical microscope (OM) image of the conductive composite prepared according to Example 2
  • Figures 8a and 8b are SEM images of the conductive composite prepared according to Example 2.
  • FIG. 9 is a current-voltage curve of a conductive composite prepared according to Example 2.
  • FIG. 10 is a photograph showing a process of attaching two films by applying a heat source to the conductive composite prepared according to Example 1
  • FIG. 11 shows two films using body temperature and pressure on the conductive composite prepared according to Example 4. This is a picture showing the attaching process.
  • the conductive composite in the form of a film prepared according to Example 1 was cut and overlapped with '+', and the overlapping portions were contacted with a heat source, and the overlapping portions were sufficiently adhered. Therefore, it was found that the conductive composite according to the present invention can be adhered to a desired shape by using a heat source (ex: iron) that can be easily used in real life (FIG. 10).
  • a heat source ex: iron
  • both ends of the conductive composite in the form of a film prepared according to Example 4 were overlapped in a ring shape, and after pressing with a finger, it was confirmed that the overlapped portions were sufficiently adhered to the stretch. Therefore, the conductive composite according to the present invention could simply adhere to the desired shape using the body temperature and pressure (Fig. 11).
  • the conductive composite including the conductive composite solution according to the present invention can be attached to a desired place using adhesiveness, and self repair or extension or shape molding can be performed.
  • Peel strength of the conductive composite prepared according to Example 1 was measured and shown in Table 1 below.
  • the peel strength was measured by the method of 90 ° peeling test the two films attached to before and after heat treatment and before and after O 2 plamsa.
  • the conductive composite of the present invention does not need to separately prepare a stretchable substrate, and has excellent effects on both sides of conductivity, stretchability and adhesion.
  • the conductive composite of the present invention can be produced in various forms (film or wire, etc.) by using the conductive composite solution according to the present invention.
  • the manufacturing method of the conductive composite of the present invention has the effect that can be produced through a simple process that does not require a low production cost and additional processes.

Abstract

The present invention relates to a conductive composite solution comprising: conductive nanoparticles; thermoplastic rubber; and a solvent. A conductive composite, according to the present invention, uses the conductive composite solution, according to the present invention, and thus a separate stretchable substrate does not have to be prepared, and an effect is achieved of exhibiting excellent double-sided conductivity, stretchability and adhesion, and in addition, a method for producing the conductive composite, according to the present invention, has an effect whereby the conductive composite may be produced into various forms (film or wire, etc.) through low production costs and a simple process that does not require additional processes.

Description

전도성 복합 용액을 이용한 전도성 복합체 및 그의 제조방법Conductive Composite Using Conductive Composite Solution and Manufacturing Method Thereof
본 발명은 전도성 복합 용액을 이용한 전도성 복합체 및 그의 제조방법에 관한 것으로, 보다 상세하게는, 본 발명에 따른 전도성 복합 용액을 사용함으로써, 신축성 기판을 따로 준비하지 않고, 양면 전도성, 신축성 및 점착성이 있는 다양한 형태의 전도성 복합체 및 그의 제조방법에 관한 것이다.The present invention relates to a conductive composite using a conductive composite solution and a method for manufacturing the same, and more particularly, by using the conductive composite solution according to the present invention, without having to prepare a stretchable substrate separately, it has a double-sided conductivity, elasticity and adhesion The present invention relates to various types of conductive composites and a method of manufacturing the same.
전자소자의 응용 분야가 넓어지면서 종래의 딱딱한 기판 위에 존재하는 전자소자의 한계를 극복할 수 있는 유연한 형태의 전자소자에 대한 요구가 커지고 있다. 유연한 디스플레이, 스마트 의복, 유전체 엘라스토머 액츄에이터(DEA), 생체적합성 전극, 생체내 전기적 신호 감지 등과 같은 분야에 사용되는 전자소자들은 유연하고 신축성 있는 형태가 요구된다. 이와 같은 유연성, 신축성을 갖는 전자소자 분야에서 기본적이면서 중요한 기술 중 하나가 전도성을 유지하면서 신축 가능한 전극을 형성하는 것이다.As the field of application of electronic devices expands, there is a growing demand for flexible electronic devices that can overcome the limitations of electronic devices existing on conventional rigid substrates. Electronic devices used in applications such as flexible displays, smart garments, dielectric elastomer actuators (DEAs), biocompatible electrodes, and in vivo electrical signal sensing require flexible and flexible forms. One of the basic and important techniques in the field of flexible and stretchable electronic devices is to form a stretchable electrode while maintaining conductivity.
금속과 같은 물질은 전도성이 우수하지만 딱딱하고, 뻣뻣한 성질로 인하여 그대로 활용하기 어렵다. 탄소 나노튜브나 그래핀(graphene)과 같은 물질도 단독으로 사용할 경우에는 역시 신축성 있는 전극을 만들기 힘들다.Materials such as metals have excellent conductivity but are hard to utilize as they are due to their hard and stiff properties. When using materials such as carbon nanotubes or graphene alone, it is also difficult to make flexible electrodes.
신축 가능한 전극을 만들기 위한 방법으로서 탄소나노튜브와 투명한 플루오르화 고분자, 이온성 액체를 섞어서 페이스트 형태로 제조한 예, 금속 입자와 폴리아크릴산 혼합물을 페이스트 형태로 만들어 잉크젯 방법으로 패턴을 만든 예, 그리고 주름진 PDMS 기판 위에 금속층을 형성하여 주름이 펴지는 만큼 신축성을 갖게 하는 예 등이 보고된 바 있다. 그러나 이러한 방법들은 사용된 물질이나 주름진 기판의 신축성이 크지 못하여 신축에 따라 전도성이 급격히 낮아지거나 기계적으로 깨지는 것과 같은 문제점이 있었다.As a method for making a stretchable electrode, a carbon nanotube, a transparent fluorinated polymer, an ionic liquid is prepared in paste form, a metal particle and polyacrylic acid mixture is formed in a paste form, and an inkjet method is used to make a pattern. An example of forming a metal layer on a PDMS substrate to have elasticity as much as wrinkles are spread has been reported. However, these methods have a problem such that the conductivity of the used material or the corrugated substrate is not large and the conductivity is sharply lowered or mechanically broken according to the stretching.
또한, 은 기반의 연신성 전도체 연구 동향을 살펴보면, 은 나노 와이어 또는 은 나노 파티클을 이용한 연신성 전도체의 경우 비교적 저렴한 재료로 연신성 전도체를 제작할 수 있는 장점이 있으나, 기본적으로 은 나노 기반의 물질을 사용하게 되면 지속되는 반복테스트의 경우 초기의 전도성을 유지하기가 매우 힘든 문제점이 있었다. 또한 100% 수준의 높은 연신이 가해졌을 경우 대부분의 전도체가 전도성을 잃어버렸고, 종래의 연구들은 제작 과정이 기판과 전도체를 각각 제작 및 준비를 하여 두 물질을 하나로 합치는 등의 복잡한 실험 과정이 필요한 문제가 있었다.In addition, looking at the research trend of silver-based stretchable conductors, in the case of stretchable conductors using silver nanowires or silver nanoparticles, there is an advantage that a stretchable conductor can be made of a relatively inexpensive material, but basically a silver nano-based material In case of continued repeated test, it was very difficult to maintain the initial conductivity. In addition, most of the conductors lost their conductivity when 100% high stretching was applied, and previous studies have required complicated experiments, such as fabricating and preparing substrates and conductors separately and combining the two materials into one. There was a problem.
본 발명의 목적은 상기 문제점을 해결하기 위한 것으로, 본 발명에 따른 전도성 복합 용액을 사용함으로써, 신축성 기판을 따로 준비하지 않고, 양면 전도성, 신축성 및 점착성이 있는 다양한 형태(필름 또는 와이어 등)의 전도성 복합체를 제공하는데 있다.An object of the present invention is to solve the above problems, by using a conductive composite solution according to the present invention, without having to prepare a flexible substrate separately, the conductivity of various forms (film or wire, etc.) with double-sided conductivity, stretchable and tacky To provide a complex.
또한, 낮은 생산단가 및 추가적인 공정이 필요 없는 간단한 공정을 통해 제조할 수 있는 전도성 복합체의 제조방법을 제공하는데 있다.In addition, the present invention provides a method for producing a conductive composite that can be produced through a simple process that does not require low production costs and additional processes.
본 발명의 일 측면에 따르면, 전도성 나노입자; 열가소성 고무; 및 용매;를 포함하는 전도성 복합 용액이 제공된다. According to an aspect of the invention, the conductive nanoparticles; Thermoplastic rubber; And a solvent; there is provided a conductive composite solution.
상기 전도성 나노입자는 은(Ag), 금, 알루미늄, 구리, 백금, 팔라듐, 주석, 탄소나노튜브(CNT) 및 실리콘 중에서 선택된 1종 이상을 포함할 수 있다.The conductive nanoparticles may include one or more selected from silver (Ag), gold, aluminum, copper, platinum, palladium, tin, carbon nanotubes (CNT), and silicon.
상기 전도성 나노입자는 은(Ag)을 포함할 수 있다.The conductive nanoparticles may include silver (Ag).
상기 은(Ag)은 판(flake), 와이어, 구형 및 이들의 조합 중 선택된 어느 하나의 형태일 수 있다.The silver (Ag) may be in the form of any one selected from flakes, wires, spheres, and combinations thereof.
상기 열가소성 고무가 스티렌계 블록공중합체, 폴리우레탄 및 PDMS 중에서 선택된 1종 이상을 포함할 수 있다The thermoplastic rubber may include one or more selected from styrenic block copolymers, polyurethanes, and PDMS.
상기 스티렌계 블록공중합체가 SBS(poly(styrene-butadiene-styrene)), SIS(poly(styrene-isoprene-styrene)), SEBS(poly(styrene-ethylene/butylene-styrene)), SEPS(poly(styrene-ethylene-propylene-styrene)) 및 SBBS(poly(styrene-butadiene-butylene-styrene)) 중에서 선택된 1종 이상을 포함할 수 있다.The styrene block copolymer is SBS (poly (styrene-butadiene-styrene)), SIS (poly (styrene-isoprene-styrene)), SEBS (poly (styrene-ethylene / butylene-styrene)), SEPS (poly (styrene) -ethylene-propylene-styrene)) and SBBS (poly (styrene-butadiene-butylene-styrene)) may include one or more selected.
상기 용매가 테트라하이드로퓨란(THF), 톨루엔(Toluene), 클로로포름(Chloroform), 펜탄(Pentane), 헥세인(Hexane), 헵탄(Heptane), 옥탄(Octane), 메틸펜테인(Methylpentane), 사이클로펜테인(Cyclopentane), 사이클로헥세인(Cyclohexane), 메틸시클로헥산(Methylcyclohexane), 벤젠(Benzene), 에틸벤젠(Ethylbenzene) 및 자일렌(Xylene)중에서 선택된 1종 이상을 포함할 수 있다.The solvent is tetrahydrofuran (THF), toluene (Toluene), chloroform (Chloroform), pentane (Pentane), hexane (Hexane), heptane (Octane), methyl pentane (Methylpentane), cyclophene It may include one or more selected from among cyclopentane, cyclohexane, methylcyclohexane, benzene, benzene, ethylbenzene, and xylene.
상기 전도성 나노입자 100 중량부에 대하여 상기 열가소성 고무가 5 내지 100중량부일 수 있다.The thermoplastic rubber may be 5 to 100 parts by weight based on 100 parts by weight of the conductive nanoparticles.
본 발명의 다른 하나의 측면에 따르면, 전도성 나노입자와, 열가소성 고무와 용매를 포함하는 전도성 복합 용액에서 용매를 건조시켜 제조한 전도성 복합체가 제공된다.According to another aspect of the present invention, there is provided a conductive composite prepared by drying a solvent in a conductive composite solution containing conductive nanoparticles, a thermoplastic rubber and a solvent.
상기 전도성 복합체의 형태가 파이버(fiber), 와이어 및 필름 중에서 선택된 어느 하나일 수 있다.The conductive composite may be any one selected from fiber, wire, and film.
상기 전도성 복합체의 모듈러스가 0.3 내지 1.5 Gpa 일 수 있다.Modulus of the conductive composite may be 0.3 to 1.5 Gpa.
상기 전도성 복합체의 박리강도가 10 내지 2500 N/m 일 수 있다.Peel strength of the conductive composite may be 10 to 2500 N / m.
상기 전도성 복합체는 점착테이프, 전극, 인터커넥션 회로 및 차폐막 중에서 선택된 어느 하나로 사용할 수 있다.The conductive composite may be used as any one selected from an adhesive tape, an electrode, an interconnection circuit, and a shielding film.
본 발명의 다른 하나의 측면에 따르면, (a) 전도성 나노입자, 열가소성 고무 및 용매를 혼합하여 전도성 복합 용액을 제조하는 단계; 및 (b) 상기 전도성 복합 용액을 필름, 와이어, 플레이크 형태로 성형하는 단계; 및 (c) 성형된 상기 전도성 복합용액에서 용매를 건조시켜 전도성 복합체를 제조하는 단계;를 포함하는 전도성 복합체의 제조방법이 제공된다.According to another aspect of the invention, (a) mixing the conductive nanoparticles, thermoplastic rubber and a solvent to prepare a conductive composite solution; And (b) molding the conductive composite solution into a film, wire, or flake form; And (c) drying the solvent in the molded conductive composite solution to prepare a conductive composite.
단계 (a)에서 상기 전도성 나노입자 100 중량부에 대하여 상기 열가소성 고무가 5 내지 100 중량부일 수 있다.The thermoplastic rubber may be 5 to 100 parts by weight based on 100 parts by weight of the conductive nanoparticles in step (a).
단계 (a)에서 상기 전도성 나노입자 100 중량부에 대하여 상기 열가소성 고무가 10 내지 30 중량부일 수 있다.In step (a), the thermoplastic rubber may be 10 to 30 parts by weight based on 100 parts by weight of the conductive nanoparticles.
단계 (b)에서 상기 성형이 캐스팅, 스핀 코팅, 딥 코팅, 스크린 프린팅, 노즐 프린팅, 방사 및 스프레이 중에서 선택된 어느 하나일 수 있다.In step (b) the molding can be any one selected from casting, spin coating, dip coating, screen printing, nozzle printing, spinning and spraying.
상기 전도성 복합체의 형태 및 두께는 상기 용매의 종류 및 상기 전도성 복합 용액의 농도 중에서 선택된 1종 이상에 따라 제어될 수 있다.The shape and thickness of the conductive composite may be controlled according to one or more selected from the type of the solvent and the concentration of the conductive composite solution.
본 발명의 전도성 복합체는 본 발명에 따른 전도성 복합 용액을 사용함으로써, 신축성 기판을 따로 준비할 필요가 없으며, 양면 전도성, 신축성 및 점착성이 우수한 효과가 있다.By using the conductive composite solution according to the present invention, the conductive composite of the present invention does not need to separately prepare a stretchable substrate, and has excellent effects on both sides of conductivity, stretchability and adhesion.
본 발명의 전도성 복합체는 본 발명에 따른 전도성 복합 용액을 사용함으로써, 다양한 형태(필름 또는 와이어 등)로 제조할 수 있다.The conductive composite of the present invention can be produced in various forms (film or wire, etc.) by using the conductive composite solution according to the present invention.
또한, 본 발명의 전도성 복합체의 제조방법은 낮은 생산단가 및 추가적인 공정이 필요 없는 간단한 공정을 통해 제조할 수 있는 효과가 있다.In addition, the manufacturing method of the conductive composite of the present invention has the effect that can be produced through a simple process that does not require a low production cost and additional processes.
도 1은 본 발명의 전도성 복합용액의 구성을 나타낸 개략도이다.1 is a schematic view showing the configuration of a conductive composite solution of the present invention.
도 2는 실시예 3에 따라 제조된 패터닝된 전도성 복합체를 보여주는 이미지이다.2 is an image showing a patterned conductive composite prepared according to Example 3. FIG.
도 3은 실시예 1에 따라 제조된 전도성 복합체의 SEM 이미지이다.3 is an SEM image of a conductive composite prepared according to Example 1. FIG.
도 4는 실시예 1에 따라 제조된 전도성 복합체의 러프니스 측정결과이다.4 is a roughness measurement result of the conductive composite prepared according to Example 1.
도 5는 실시예 1에 따라 제조된 전도성 복합체의 연신성에 따른 저항(전도도)를 비교한 결과이다.5 is a result of comparing the resistance (conductivity) according to the stretchability of the conductive composite prepared according to Example 1.
도 6은 실시예 1에 따라 제조된 전도성 복합체의 스트레인-스트레스 곡선이다.6 is a strain-stress curve of a conductive composite prepared according to Example 1. FIG.
도 7은 실시예 2에 따라 제조된 전도성 복합체의 광학현미경(OM) 이미지이다.7 is an optical microscope (OM) image of the conductive composite prepared according to Example 2. FIG.
도 8a 및 8b는 실시예 2에 따라 제조된 전도성 복합체의 SEM 이미지이다.8A and 8B are SEM images of the conductive composite prepared according to Example 2. FIG.
도 9는 실시예 2에 따라 제조된 전도성 복합체의 전류-전압 곡선이다.9 is a current-voltage curve of a conductive composite prepared according to Example 2. FIG.
도 10은 실시예 1에 따라 제조된 전도성 복합체에 열원을 가하여 두개의 필름을 붙이는 과정을 나타낸 사진이다.10 is a photograph showing a process of attaching two films by applying a heat source to the conductive composite prepared according to Example 1.
도 11은 실시예 4에 따라 제조된 전도성 복합체에 체온과 압력을 이용하여 두개의 필름을 붙이는 과정을 나타낸 사진이다.11 is a photograph showing a process of attaching two films using body temperature and pressure to the conductive composite prepared according to Example 4.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following descriptions are not intended to limit the present invention to specific embodiments, and detailed descriptions of well-known techniques related to the present invention will be omitted when it is determined that the present invention may obscure the gist of the present invention. .
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, operation, component, or combination thereof described in the specification, and one or more other features or It should be understood that the present invention does not exclude the possibility of adding or presenting numbers, steps, operations, components, or a combination thereof.
도 1은 본 발명의 전도성 복합용액의 구성을 나타낸 개략도이다. 이하, 본 발명의 전도성 복합용액 및 전도성 복합체에 대해 상세히 설명하도록 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.1 is a schematic view showing the configuration of a conductive composite solution of the present invention. Hereinafter, the conductive composite solution and the conductive composite of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명은 전도성 나노입자; 열가소성 고무; 및 용매;를 포함하는 전도성 복합 용액을 제공한다.The present invention is a conductive nanoparticle; Thermoplastic rubber; It provides a conductive complex solution comprising a; and a solvent.
상기 전도성 나노입자는 은(Ag), 금, 알루미늄, 구리, 백금, 팔라듐, 주석, 탄소나노튜브(CNT) 및 실리콘 중에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 은(Ag)을 포함할 수 있다.The conductive nanoparticles may include at least one selected from silver (Ag), gold, aluminum, copper, platinum, palladium, tin, carbon nanotubes (CNT), and silicon, and preferably include silver (Ag). can do.
상기 은(Ag)은 판(flake), 와이어, 구형 및 이들의 조합 중 선택된 어느 하나의 형태일 수 있고 바람직하게는 판(flake) 구조의 silver flake일 수 있다.The silver (Ag) may be in the form of any one selected from flakes, wires, spheres, and combinations thereof, and preferably silver flakes having a flake structure.
일반적으로 은은 다른 귀금속에 비해 가격이 저렴하며 다양한 형태로 제작되어 (나노 와이어, 나노 파티클) 다양한 산업 분야에 응용되고 있다. 은은 시중에서 구입하기 쉬운 형태의 재료이기 때문에 추가적인 공정 없이도 바로 사용이 가능한 장점이 있다.In general, silver is cheaper than other precious metals and is manufactured in various forms (nanowires and nanoparticles) and is applied to various industrial fields. Silver is an easy-to-purchase material that can be used immediately without additional processing.
상기 열가소성 고무가 스티렌계 블록공중합체, 폴리우레탄, PDMS 중에서 선택된 1종 이상을 포함할 수 있다.The thermoplastic rubber may include at least one selected from a styrenic block copolymer, polyurethane, and PDMS.
상기 스티렌계 블록공중합체가 SBS(poly(styrene-butadiene-styrene)), SIS(poly(styrene-isoprene-styrene)), SEBS(poly(styrene-ethylene/butylene-styrene)), SEPS(poly(styrene-ethylene-propylene-styrene)) 및 SBBS(poly(styrene-butadiene-butylene-styrene)) 중에서 선택된 1종 이상을 포함할 수 있다.The styrene block copolymer is SBS (poly (styrene-butadiene-styrene)), SIS (poly (styrene-isoprene-styrene)), SEBS (poly (styrene-ethylene / butylene-styrene)), SEPS (poly (styrene) -ethylene-propylene-styrene)) and SBBS (poly (styrene-butadiene-butylene-styrene)) may include one or more selected.
상기 스티렌계 블록공중합체는 스타이렌과 다이엔의 블록공중합체로, 두 가지 별개의 상이 존재한다. 각 상은 동일한 분자의 반복되는 부분으로 구성 되어있다. 가장 간단한 배열은 A-B-A 또는 3블록 구조인데, 여기서 A는 경질 공중합체블록을 나타내고, B는 연질 블록을 나타낸다. 따라서 경질 블록이 뼈대 역할을 하게 되고, 연질 블록이 연신성을 가져 늘어날 수 있는 고분자가 된다. 가장 일반적으로 사용되는 다이엔은 부타디엔 (S-B-S), 이소프렌 (S-I-S) 및 에틸렌 (S-EB-S) 이다.The styrenic block copolymer is a block copolymer of styrene and diene, and two separate phases exist. Each phase consists of repeating parts of the same molecule. The simplest arrangement is an A-B-A or triblock structure, where A represents a hard copolymer block and B represents a soft block. Therefore, the hard block acts as a skeleton, the soft block is a polymer that can be stretched to increase the stretchability. The most commonly used dienes are butadiene (S-B-S), isoprene (S-I-S) and ethylene (S-EB-S).
상기 용매가 테트라하이드로퓨란(THF), 톨루엔(Toluene), 클로로포름(Chloroform), 펜탄(Pentane), 헥세인(Hexane), 헵탄(Heptane), 옥탄(Octane), 메틸펜테인(Methylpentane), 사이클로펜테인(Cyclopentane), 사이클로헥세인(Cyclohexane), 메틸시클로헥산(Methylcyclohexane), 벤젠(Benzene), 에틸벤젠(Ethylbenzene) 및 자일렌(Xylene) 중에서 선택된 1종 이상을 포함할 수 있으나, 상기 용매는 상기 스티렌계 블록공중합체를 녹일 수 있는 용매라면 어느 것이든 가능하며, 본 발명의 범위를 여기에 한정하지 않는다.The solvent is tetrahydrofuran (THF), toluene (Toluene), chloroform (Chloroform), pentane (Pentane), hexane (Hexane), heptane (Octane), methyl pentane (Methylpentane), cyclophene It may include one or more selected from among cyclopentane, cyclohexane, methylcyclohexane, benzene, benzene, ethylbenzene, and xylene, but the solvent may include Any solvent capable of dissolving the styrenic block copolymer can be used, and the scope of the present invention is not limited thereto.
상기 전도성 나노입자 100 중량부에 대하여 상기 열가소성 고무가 5 내지 100 중량부일 수 있다. The thermoplastic rubber may be 5 to 100 parts by weight based on 100 parts by weight of the conductive nanoparticles.
본 발명의 전도성 복합 용액은 전도체와 신축성 기판을 따로 준비하지 않고, 상기 전도성 복합 용액을 이용하여 원하는 형태 (필름 또는 와이어 또는 다른 형태)로 제작이 가능하다. 사용하는 용매는 고정 되지 않고, 고분자를 녹일 수 있는 용매면 다 가능하기 때문에 활용범위가 다양하며, 상기 전도성 복합 용액의 농도 또한 무관하기 때문에 원하는 용도에 맞는 농도 조절이 가능하다.The conductive composite solution of the present invention can be manufactured in a desired form (film or wire or other form) using the conductive composite solution without separately preparing a conductor and a flexible substrate. The solvent to be used is not fixed, so that any solvent capable of dissolving the polymer can be used in a variety of applications, and the concentration of the conductive complex solution is also irrelevant.
본 발명은 전도성 나노입자와, 열가소성 고무와 용매를 포함하는 전도성 복합 용액에서 용매를 건조시켜 제조한 전도성 복합체를 제공한다.The present invention provides a conductive composite prepared by drying a solvent in a conductive composite solution containing conductive nanoparticles, a thermoplastic rubber and a solvent.
상기 전도성 복합체의 형태가 파이버(fiber), 와이어 및 필름 중에서 선택된 어느 하나일 수 있다.The conductive composite may be any one selected from fiber, wire, and film.
상기 전도성 복합체의 모듈러스가 0.3 내지 1.5 GPa일 수 있으며, 바람직하게는 0.7 내지 1.4 GPa, 보다 바람직하게는 1 내지 1.3 GPa 일 수 있다. Modulus of the conductive composite may be 0.3 to 1.5 GPa, preferably 0.7 to 1.4 GPa, more preferably 1 to 1.3 GPa.
상기 전도성 복합체의 박리강도가 10 내지 2500 N/m 일 수 있으며, 바람직하게는 20 내지 2300 N/m, 보다 바람직하게는 40 내지 2100 N/m 일 수 있다. Peel strength of the conductive composite may be 10 to 2500 N / m, preferably 20 to 2300 N / m, more preferably 40 to 2100 N / m.
상기 전도성 복합체는 점착테이프, 전극, 인터커넥션 회로 및 차페막 중에서 선택된 어느 하나로 사용할 수 있다. The conductive composite may be used as any one selected from an adhesive tape, an electrode, an interconnection circuit, and a shielding film.
상기 전도성 복합체는 열가소성 고무(스티렌계 블록공중합체)를 포함하여 점탄성이 있기 때문에 열을 가하면 전도성 복합체 내의 고분자 사슬에 움직임을 줄 수 있다. 따라서 이를 통하여 붙이고자 하는 기판에 따라 3M사의 포스트-잇 수준부터 완벽하게 붙일 수 있는 정도의 점착성을 갖는 접착테이프로 활용이 가능하다. 예를 들어 상기 전도성 복합체를 단순 열처리를 통해 붙이는 경우, 테이프 정도의 강도로 붙일 수 있고, O2 plasma 과정을 통해 화학적으로(chemically) 붙이는 경우, 단순 열처리의 경우보다 더 강력하게 붙일 수 있다.Since the conductive composite is viscoelastic, including a thermoplastic rubber (styrene-based block copolymer), heat can be applied to the polymer chain in the conductive composite. Therefore, according to the substrate to be attached through this can be utilized as an adhesive tape having a degree of adhesiveness that can be completely attached from the post-it level of 3M company. For example, when the conductive composite is attached through a simple heat treatment, the adhesive may be attached at a strength similar to that of a tape, and chemically through the O 2 plasma process may be more strongly attached than a simple heat treatment.
상기 전도성 복합체가 필름형태로 제조되는 경우, 러프니스(roughness)가 낮은 편으로, 아주 평탄한 신축성 전극으로 활용이 가능하다.When the conductive composite is manufactured in the form of a film, the roughness is low, and it can be utilized as a very flat stretchable electrode.
상기 전도성 복합체는 다리미 또는 드라이기와 같은 열원으로 복구 가능한 자가 치료형 전도성 재료로 활용이 가능하다.The conductive composite may be utilized as a self-healing conductive material recoverable to a heat source such as an iron or a dryer.
또한, 종래의 전도체는 신축성 기판에 전도성 층을 올리는 식의 프로세스로 진행되었으나, 이러한 방법은 전체 기판의 입장에서 한쪽 면만 활용 하기 때문에 전도성이 한쪽에만 있으며, 표면 위에 전도체로 인한 표면 러프니스의 급격한 증가가 뒤따르게 된다. 그러나 본 발명의 경우 전도성 복합 용액으로 만들어진 전도성 복합체 자체가 전도성을 띄고 있기 때문에 스티렌계 블록공중합체의 특성을 살리면서 전도성까지 가지고 있게 된다. 따라서 양면으로 전도성을 가지고 있다는 장점이 있기 때문에 z축으로 인터커넥팅을 필요로 하는 분야에 적극적으로 활용할 수 있다.In addition, the conventional conductor proceeds with a process of raising a conductive layer on a stretchable substrate. However, this method has only one side in terms of the entire substrate, and thus has only one conductivity. The surface roughness caused by the conductor on the surface increases sharply. Will follow. However, in the case of the present invention, since the conductive composite itself made of the conductive composite solution exhibits conductivity, it has conductivity while maintaining the properties of the styrene-based block copolymer. Therefore, it has the advantage of having conductivity on both sides, so it can be actively used in the field requiring interconnection on the z-axis.
이하, 본 발명의 전도성 복합체의 제조방법에 대해 상세히 설명하도록 한다. Hereinafter, a method of manufacturing the conductive composite of the present invention will be described in detail.
먼저, 전도성 나노입자, 열가소성 고무 및 용매를 혼합하여 전도성 복합 용액을 제조한다(단계 a).First, a conductive composite solution is prepared by mixing conductive nanoparticles, a thermoplastic rubber, and a solvent (step a).
단계 (a)에서 상기 전도성 나노입자 100 중량부에 대하여 상기 열가소성 고무가 5 내지 100 중량부일 수 있고, 바람직하게는 10 내지 30 중량부일 수 있다. In step (a), the thermoplastic rubber may be 5 to 100 parts by weight, and preferably 10 to 30 parts by weight based on 100 parts by weight of the conductive nanoparticles.
상기 전도성 복합 용액은 열가소성 고무와 전도성 나노입자의 비율을 기준으로 용액을 만든다. 상기 열가소성 고무와 전도성 나노입자의 무게비가 1:3부터 전도성 복합 용액의 전도성이 나타나게 되고, 용액의 농도는 원하는 프로세스에 맞게 얼마든지 조절이 가능하였다.The conductive composite solution makes a solution based on the ratio of the thermoplastic rubber and the conductive nanoparticles. Since the weight ratio of the thermoplastic rubber and the conductive nanoparticles is 1: 3, the conductivity of the conductive composite solution is shown, and the concentration of the solution can be adjusted to suit the desired process.
다음으로, 상기 전도성 복합 용액을 필름, Next, the conductive composite solution film, 와이어wire , , 플레이크flake 형태로 성형한다(단계 b). Mold into shape (step b).
단계 (b)에서 상기 성형이 캐스팅, 코팅, 프린팅, 방사 및 스프레이 중에서 선택된 어느 하나 일 수 있다. In step (b) the molding can be any one selected from casting, coating, printing, spinning and spraying.
상기 코팅은 스핀 코팅, 슬롯 코팅, 딥 코팅, 바 코팅, 롤 코팅, 그라비아 코팅, 마이크로그라비아 코팅, 와이어 코팅 및 스프레이 코팅 중에서 선택된 1종 이상을 포함할 수 있다.The coating may include one or more selected from spin coating, slot coating, dip coating, bar coating, roll coating, gravure coating, microgravure coating, wire coating and spray coating.
상기 프린팅은 잉크젯 프린팅, 노즐 프린팅, 스크린 프린팅, 플렉소 프린팅 및 오프셋 프린팅 중에서 선택된 1종 이상을 포함할 수 있다.The printing may include at least one selected from inkjet printing, nozzle printing, screen printing, flexo printing, and offset printing.
상기 방사는 용융 방사, 건식 방사, 습식 방사 및 전기 방사 중에서 선택된 1종 이상을 포함할 수 있다.The spinning may comprise one or more selected from melt spinning, dry spinning, wet spinning and electrospinning.
상기 전도성 복합체의 형태 및 두께는 상기 용매의 종류 및 상기 전도성 복합 용액의 농도 중에서 선택된 1종 이상에 따라 제어될 수 있다.The shape and thickness of the conductive composite may be controlled according to one or more selected from the type of the solvent and the concentration of the conductive composite solution.
마지막으로, Finally, 성형된Molded 상기 전도성 복합용액에서 용매를  Solvent in the conductive composite solution 건조시켜Drying 전도성 복합체를 제조한다(단계 c). Prepare the conductive composite (step c).
[실시예] EXAMPLE
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, a preferred embodiment of the present invention will be described. However, this is for illustrative purposes and the scope of the present invention is not limited thereto.
실시예Example 1: 필름 형태의 전도성 복합체 1: conductive composite in film form
클로로포름(chloroform, 대정화금)에 폴리스티렌-부타디엔-스티렌(SBS, (poly(styrene-butadiene-styrene)), 9003-55-8, 시그마알드리치)를 10wt% 녹인 후, SBS: 은 플레이크(Silver flake, 7440-22-4, 시그마알드리치)의 무게비가 1:5가 되도록 넣어서 전도성 복합 용액을 제조하였고, 스핀 코팅의 방법으로 20um 수준의 두께를 가진 필름 형태의 전도성 복합체를 제조하였다.10 wt% of polystyrene-butadiene-styrene (SBS, (poly (styrene-butadiene-styrene)), 9003-55-8, sigma aldrich) was dissolved in chloroform, and SBS: Silver flake , 7440-22-4, sigma aldrich) weight ratio of 1: 5 was prepared to prepare a conductive composite solution, by the spin coating method to prepare a conductive composite in the form of a film having a thickness of 20um level.
실시예Example 2: 파이버 형태의 전도성 복합체 2: fiber-like conductive composite
테트라하이드로퓨란(THF)에 폴리스티렌-부타디엔-스티렌(SBS, (poly(styrene-butadiene-styrene)))를 10wt% 녹인 후, THF: 은 플레이크(Silver flake)의 무게비가 1:5가 되도록 넣어서 전도성 복합 용액을 제조하였고, 전기 방사의 방법으로 파이버 형태의 전도성 복합체를 제조하였다.After dissolving 10 wt% of polystyrene-butadiene-styrene (SBS) in tetrahydrofuran (THF), THF: conductive material was added so that the weight ratio of silver flakes was 1: 5. The composite solution was prepared, and a conductive composite in the form of fiber was prepared by the method of electrospinning.
실시예Example 3:  3: 패터닝된Patterned 전도성 복합체 Conductive composite
클로로포름(chloroform)에 폴리스티렌-부타디엔-스티렌(SBS, (poly(styrene-butadiene-styrene)))를 10wt% 녹인 후, SBS: 은 플레이크(Silver flake)의 무게비가 1:5가 되도록 넣어서 전도성 복합 용액을 제조하였고, 패턴 마스크를 이용하여 기재 상에 스크린 프린팅으로 패터닝된 전도성 복합체를 제조하였다. 도 2는 실시예 3에 따라 제조된 패터닝된 전도성 복합체의 모습을 보여주는 사진이다.After dissolving 10 wt% of polystyrene-butadiene-styrene (SBS) in chloroform, SBS: conductive composite solution was added so that the weight ratio of silver flakes was 1: 5. And a conductive composite patterned by screen printing on a substrate using a pattern mask. Figure 2 is a photograph showing the appearance of the patterned conductive composite prepared according to Example 3.
실시예Example 4: 필름 형태의 전도성 복합체  4: conductive composite in film form
클로로포름(chloroform)에 폴리스티렌-부타디엔-스티렌(SBS, (poly(styrene-butadiene-styrene)))과 폴리스티렌-이소프렌-스티렌(SIS, (poly(styrene-isoprene-styrene)), 25038-32-8, 시그마알드리치)를 1:4의 비율이 되도록 10wt% 녹인 후, (SBS + SIS): 은 플레이크(Silver flake)의 무게비가 1:5가 되도록 넣어서 전도성 복합 용액을 제조하였고, 스핀 코팅의 방법으로 20um 수준의 두께를 가진 필름 형태의 전도성 복합체를 제조하였다.Chloroform in polystyrene-butadiene-styrene (SBS, polystyrene-butadiene-styrene) and polystyrene-isoprene-styrene (SIS), 25038-32-8, Sigma Aldrich) was dissolved 10wt% to a ratio of 1: 4, and then (SBS + SIS): silver flake (Silver flake) was added so that the weight ratio of 1: 5 to prepare a conductive composite solution, by spin coating method 20um A conductive composite in the form of a film with a level thickness was prepared.
[시험예] [Test Example]
시험예Test Example 1: 필름으로 제조된 전도성 복합체의  1: of a conductive composite made of a film SEMSEM 이미지 image
도 3은 실시예 1에 따라 제조된 전도성 복합체의 SEM 이미지이다. 3 is an SEM image of a conductive composite prepared according to Example 1. FIG.
도 3을 참조하면, 스티렌계 블록공중합체(연신성 body)에 은 플레이크(전도성 물질)이 균일하게 분포되어 전도성 네트워크가 형성된 것을 알 수 있었다. Referring to FIG. 3, it was found that silver flakes (conductive materials) were uniformly distributed in the styrene block copolymer (extensible body) to form a conductive network.
시험예Test Example 2: 필름으로 제조된 전도성 복합체의  2: of the conductive composite made of film 러프니스Roughness (Roughness) 측정(Roughness) measurement
도 4는 실시예 1에 따라 제조된 전도성 복합체의 러프니스 측정결과이다.4 is a roughness measurement result of the conductive composite prepared according to Example 1.
도 4를 참조하면, 전도성 복합용액 자체가 필름(박막)으로 제조될 경우(실시예 1), 러프니스가 10 nm 이하로 다른 전극에 비해 굉장히 낮은 편으로 나타난다. Referring to FIG. 4, when the conductive composite solution itself is made of a film (thin film) (Example 1), roughness is 10 nm or less, which is very low compared to other electrodes.
따라서 손으로 만졌을 때 매우 부드럽고, 전극 재료로 사용하기에 아주 큰 장점을 가지고 있다. 기존의 연구되었던 전극들의 러프니스는 일반적으로 30~50nm 수준임을 감안하면 극평탄 연신성 전극으로 활용이 가능할 것으로 판단된다.Therefore, it is very soft when touched by hand and has a great advantage to use as an electrode material. Considering the roughness of electrodes that have been studied in the past, it is generally possible to use it as an extremely flat stretchable electrode, considering that the roughness is generally about 30-50 nm.
시험예Test Example 3: 필름으로 제조된 전도성 복합체의 전기적 특성 분석 3: Electrical Characterization of Conductive Composites Made of Film
도 5는 실시예 1에 따라 제조된 전도성 복합체의 연신성에 따른 저항변화를 측정한 그래프이다.Figure 5 is a graph measuring the resistance change according to the stretchability of the conductive composite prepared according to Example 1.
도 5를 참조하면, 약 50% 이내의 연신에서 저항의 변화가 4옴에서 10옴 수준으로 매우 낮은 저항을 유지하고, 초기 상태와 큰 차이를 보이지 않는다.Referring to FIG. 5, the change in resistance in stretching within about 50% maintains a very low resistance from 4 ohms to 10 ohms, and does not show a big difference from the initial state.
따라서, 본 발명의 전도성 복합 용액을 이용하여 전도성 복합체를 제조하는 경우, 전도성을 잃어버리지 않고, 초기의 전도성을 유지하는 사실을 알 수 있었다.Thus, when the conductive composite is prepared using the conductive composite solution of the present invention, it was found that the conductivity is maintained without losing the conductivity.
시험예Test Example 4: 필름으로 제조된 전도성 복합체의 기계적 특성 분석 4: Mechanical Characterization of Conductive Composites Made of Film
도 6은 실시예 1에 따라 제조된 전도성 복합체의 스트레인-스트레스 곡선이다. 1x3 cm2 면적의 필름을 사용하였다.6 is a strain-stress curve of a conductive composite prepared according to Example 1. FIG. A film of 1 × 3 cm 2 area was used.
또한, 필름 형태인 실시예 1에 따라 제조된 전도성 복합체의 모듈러스 및 파단신도(strain at break, %)를 일정한 속도인 100μ/s로 당기면서 스트레스-스트레인 곡선을 그리고 이를 분석하는 방법으로 측정하였고, 10회 측정하여 최고치 및 최저치를 제외한 나머지 측정값의 평균값을 하기 표 1에 기재하였다.In addition, the tensile stress and strain at break (%) of the conductive composite prepared according to Example 1 in the form of a film was measured by drawing a stress-strain curve and analyzing the same while pulling at a constant rate of 100 μ / s. The average value of the remaining measured values except the highest value and the lowest value by measuring 10 times is shown in Table 1 below.
모듈러스 (GPa)Modulus (GPa) 파단신도(strain at break, %)Elongation at break (%)
실시예 1Example 1 1.21.2 2500 %2500%
도 6을 참조하면, 실시예 1에 따라 제조된 전도성 복합체(필름)의 경우, 대략적으로 500% 이상의 연신에서도 끊어지지 않고 유지되었으며, 이러한 기계적 특성을 바탕으로 약 50% 수준의 연신에서 전도성을 유지할 수 있었다.Referring to FIG. 6, the conductive composite (film) prepared according to Example 1 was maintained unbroken even at about 500% or more of stretching, and maintained at about 50% of stretching based on such mechanical properties. Could.
또한, 표 1을 참조하면, 실시예 1에 따라 제조된 전도성 복합체의 모듈러스와 파단신도가 높아 필름을 당겨도 쉽게 끊어지지 않음을 알 수 있었다.In addition, referring to Table 1, it was found that the modulus and elongation at break of the conductive composite prepared according to Example 1 were not easily broken even when the film was pulled.
따라서, 실시예 1에 따라 제조된 전도성 복합체를 연신성 전극으로 활용이 가능할 것으로 판단된다.Therefore, it is determined that the conductive composite prepared according to Example 1 may be used as an extensible electrode.
시험예Test Example 5: 파이버로 제조된 전도성 복합체의  5: of the conductive composite made of fiber SEMSEM  And OMOM 이미지 image
도 7은 실시예 2에 따라 제조된 전도성 복합체의 광학현미경(OM) 이미지이고, 도 8a 및 8b는 실시예 2에 따라 제조된 전도성 복합체의 SEM 이미지이다.7 is an optical microscope (OM) image of the conductive composite prepared according to Example 2, Figures 8a and 8b are SEM images of the conductive composite prepared according to Example 2.
도 7, 8a 및 8b를 참조하면, 두께가 5um 에서 100um 수준까지의 fiber를 만들 수 있었으며, 이를 이용하여 다공성 필름의 형태로도 만들 수 있음을 알 수 있었다. 7, 8a and 8b, it was possible to make a fiber from the thickness of 5um to 100um level, it can be seen that also in the form of a porous film using this.
시험예Test Example 6: 파이버로 제조된 전도성 복합체의 전기적 특성 분석 6: Electrical Characterization of Conductive Composites Made of Fiber
도 9는 실시예 2에 따라 제조된 전도성 복합체의 전류-전압 곡선이다.9 is a current-voltage curve of a conductive composite prepared according to Example 2. FIG.
도 9를 참조하면, 전압의 증가에 따라 전류도 일정하게 증가하는 것을 볼 수 있는데, 이로 인해 이 전극이 오믹(Ohmic)한 거동을 가지고 있다는 것을 알 수 있었다. Referring to FIG. 9, it can be seen that the current increases constantly as the voltage increases, which causes the electrode to have ohmic behavior.
시험예Test Example 7: 점착성 분석 7: adhesive analysis
도 10은 실시예 1에 따라 제조된 전도성 복합체에 열원을 가하여 두개의 필름을 붙이는 과정을 나타낸 사진이고, 도 11은 실시예 4에 따라 제조된 전도성 복합체에 체온과 압력을 이용하여 두개의 필름을 붙이는 과정을 나타낸 사진이다.FIG. 10 is a photograph showing a process of attaching two films by applying a heat source to the conductive composite prepared according to Example 1, and FIG. 11 shows two films using body temperature and pressure on the conductive composite prepared according to Example 4. This is a picture showing the attaching process.
도 10 및 11을 참조하면, 실시예 1에 따라 제조된 필름 형태의 전도성 복합체를 잘라 '+'자로 겹치고, 겹친부분에 열원을 접촉시킨후 겹친부분이 충분히 점착된 것을 확인하였다. 따라서 본 발명에 따른 전도성 복합체는 실생활에 쉽게 이용할 수 있는 열원 (ex: 다리미)을 이용하여 원하는 모양으로 점착하는 것이 가능한 사실을 알 수 있었다(도 10). 또한, 사용하는 고분자의 조성을 다르게 하여 실시예 4에 따라 제조된 필름 형태의 전도성 복합체의 양 말단을 링(ring) 모양으로 겹치고, 손가락으로 눌러준 후 스트레칭에도 겹친부분이 충분히 점착된 것을 확인하였다. 따라서 본 발명에 따른 전도성 복합체는 단순하게 체온과 압력을 이용하여 원하는 모양으로 점착할 수 있었다(도 11).10 and 11, the conductive composite in the form of a film prepared according to Example 1 was cut and overlapped with '+', and the overlapping portions were contacted with a heat source, and the overlapping portions were sufficiently adhered. Therefore, it was found that the conductive composite according to the present invention can be adhered to a desired shape by using a heat source (ex: iron) that can be easily used in real life (FIG. 10). In addition, by varying the composition of the polymer used, both ends of the conductive composite in the form of a film prepared according to Example 4 were overlapped in a ring shape, and after pressing with a finger, it was confirmed that the overlapped portions were sufficiently adhered to the stretch. Therefore, the conductive composite according to the present invention could simply adhere to the desired shape using the body temperature and pressure (Fig. 11).
따라서 본 발명에 따른 전도성 복합 용액을 포함하는 전도성 복합체는 점착성을 이용하여 원하는 곳에 부착할 수 있으며, 자가 수리 또는 연장 또는 모양 성형이 가능하다는 사실을 알 수 있었다.Therefore, it can be seen that the conductive composite including the conductive composite solution according to the present invention can be attached to a desired place using adhesiveness, and self repair or extension or shape molding can be performed.
시험예Test Example 8: 박리강도 및 기계적 특성 측정 8: Peel strength and mechanical properties
실시예 1에 따라 제조된 전도성 복합체의 박리강도를 측정하여 아래 표 1에 나타내었다.Peel strength of the conductive composite prepared according to Example 1 was measured and shown in Table 1 below.
이때, 박리강도는 열처리 전후와 O2 plamsa 전후에 따라 부착한 두 개의 필름을 90°박리 시험의 방법으로 측정하였다. At this time, the peel strength was measured by the method of 90 ° peeling test the two films attached to before and after heat treatment and before and after O 2 plamsa.
박리강도 (N/m)Peel Strength (N / m)
열처리 전Before heat treatment 열처리 후After heat treatment
O2 plasma 전O 2 plasma before 50 N/m50 N / m 150 N/m150 N / m
O2 plasma 후After O 2 plasma 2000 N/m2000 N / m 2000 N/m2000 N / m
표 2를 참조하면, 실시예 1에 따라 제조된 두 개의 필름을 열처리를 하거나 O2 plasma 처리를 한 후 부착할 경우 접착력이 증가함을 알 수 있었다.Referring to Table 2, it can be seen that the adhesive strength increases when the two films prepared according to Example 1 are attached after heat treatment or O 2 plasma treatment.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
본 발명의 전도성 복합체는 본 발명에 따른 전도성 복합 용액을 사용함으로써, 신축성 기판을 따로 준비할 필요가 없으며, 양면 전도성, 신축성 및 점착성이 우수한 효과가 있다.By using the conductive composite solution according to the present invention, the conductive composite of the present invention does not need to separately prepare a stretchable substrate, and has excellent effects on both sides of conductivity, stretchability and adhesion.
본 발명의 전도성 복합체는 본 발명에 따른 전도성 복합 용액을 사용함으로써, 다양한 형태(필름 또는 와이어 등)로 제조할 수 있다.The conductive composite of the present invention can be produced in various forms (film or wire, etc.) by using the conductive composite solution according to the present invention.
또한, 본 발명의 전도성 복합체의 제조방법은 낮은 생산단가 및 추가적인 공정이 필요 없는 간단한 공정을 통해 제조할 수 있는 효과가 있다.In addition, the manufacturing method of the conductive composite of the present invention has the effect that can be produced through a simple process that does not require a low production cost and additional processes.

Claims (18)

  1. 전도성 나노입자; Conductive nanoparticles;
    열가소성 고무; 및Thermoplastic rubber; And
    용매;를Solvent;
    포함하는 전도성 복합 용액. Conductive composite solution containing.
  2. 제1항에 있어서,The method of claim 1,
    상기 전도성 나노입자는 은(Ag), 금, 알루미늄, 구리, 백금, 팔라듐, 주석, 탄소나노튜브(CNT) 및 실리콘 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 복합 용액.The conductive nanoparticles include at least one selected from silver (Ag), gold, aluminum, copper, platinum, palladium, tin, carbon nanotubes (CNT) and silicon.
  3. 제1항에 있어서,The method of claim 1,
    상기 전도성 나노입자는 은(Ag)을 포함하는 것을 특징으로 하는 전도성 복합 용액.The conductive nanoparticles are conductive composite solution, characterized in that containing silver (Ag).
  4. 제3항에 있어서,The method of claim 3,
    상기 은(Ag)은 판(flake), 와이어, 구형 및 이들의 조합 중 선택된 어느 하나의 형태인 것을 특징으로 하는 전도성 복합 용액.The silver (Ag) is a conductive composite solution, characterized in that any one selected from flakes, wires, spheres and combinations thereof.
  5. 제1항에 있어서,The method of claim 1,
    상기 열가소성 고무가 스티렌계 블록공중합체, 폴리우레탄 및 PDMS 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 복합 용액.A conductive composite solution, characterized in that the thermoplastic rubber comprises one or more selected from styrenic block copolymer, polyurethane and PDMS.
  6. 제1항에 있어서,The method of claim 1,
    상기 스티렌계 블록공중합체가 SBS(poly(styrene-butadiene-styrene)), SIS(poly(styrene-isoprene-styrene)), SEBS(poly(styrene-ethylene/butylene-styrene)), SEPS(poly(styrene-ethylene-propylene-styrene)) 및 SBBS(poly(styrene-butadiene-butylene-styrene)) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 복합 용액.The styrene block copolymer is SBS (poly (styrene-butadiene-styrene)), SIS (poly (styrene-isoprene-styrene)), SEBS (poly (styrene-ethylene / butylene-styrene)), SEPS (poly (styrene) -ethylene-propylene-styrene)) and SBBS (poly (styrene-butadiene-butylene-styrene)) conductive composite solution comprising at least one selected from.
  7. 제1항에 있어서,The method of claim 1,
    상기 용매가 테트라하이드로퓨란(THF), 톨루엔(Toluene), 클로로포름(Chloroform), 펜탄(Pentane), 헥세인(Hexane), 헵탄(Heptane), 옥탄(Octane), 메틸펜테인(Methylpentane), 사이클로펜테인(Cyclopentane), 사이클로헥세인(Cyclohexane), 메틸시클로헥산(Methylcyclohexane), 벤젠(Benzene), 에틸벤젠(Ethylbenzene) 및 자일렌(Xylene) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전도성 복합 용액.The solvent is tetrahydrofuran (THF), toluene (Toluene), chloroform (Chloroform), pentane (Pentane), hexane (Hexane), heptane (Octane), methylpentane (Methylpentane), cyclophene Conductive complex solution comprising at least one selected from among cyclopentane, cyclohexane, methylcyclohexane, benzene, benzene, ethylbenzene and xylene .
  8. 제1항에 있어서,The method of claim 1,
    상기 전도성 나노입자 100 중량부에 대하여 상기 열가소성 고무가 5 내지 100중량부인 것을 특징으로 하는 전도성 복합 용액.The conductive composite solution, characterized in that the thermoplastic rubber is 5 to 100 parts by weight based on 100 parts by weight of the conductive nanoparticles.
  9. 전도성 나노입자와, 열가소성 고무와 용매를 포함하는 전도성 복합 용액에서 용매를 건조시켜 제조한 전도성 복합체.A conductive composite prepared by drying a solvent in a conductive composite solution containing conductive nanoparticles, a thermoplastic rubber, and a solvent.
  10. 제9항에 있어서,The method of claim 9,
    상기 전도성 복합체의 형태가 파이버(fiber), 와이어 및 필름 중에서 선택된 어느 하나인 것을 특징으로 하는 전도성 복합체. Form of the conductive composite is a conductive composite, characterized in that any one selected from fiber (wire), wire and film.
  11. 제9항에 있어서,The method of claim 9,
    상기 전도성 복합체의 모듈러스가 0.3 내지 1.5 Gpa인 것을 특징으로 하는 전도성 복합체.The conductive composite, characterized in that the modulus of the conductive composite is 0.3 to 1.5 Gpa.
  12. 제9항에 있어서,The method of claim 9,
    상기 전도성 복합체의 박리강도가 10 내지 2500 N/m 인 것을 특징으로 하는 전도성 복합체.A conductive composite, characterized in that the peel strength of the conductive composite is 10 to 2500 N / m.
  13. 제9항에 있어서,The method of claim 9,
    상기 전도성 복합체는 점착테이프, 전극, 인터커넥션 회로 및 차폐막 중에서 선택된 어느 하나에 사용하기 위한 것을 특징으로 하는 전도성 복합체.The conductive composite is a conductive composite, characterized in that for use in any one selected from the adhesive tape, the electrode, the interconnection circuit and the shielding film.
  14. (a) 전도성 나노입자, 열가소성 고무 및 용매를 혼합하여 전도성 복합 용액을 제조하는 단계; (a) mixing a conductive nanoparticle, a thermoplastic rubber, and a solvent to prepare a conductive composite solution;
    (b) 상기 전도성 복합 용액을 필름, 와이어, 플레이크 형태로 성형하는 단계;및(b) forming the conductive composite solution into a film, wire, or flake form; and
    (c) 성형된 상기 전도성 복합용액에서 용매를 건조시켜 전도성 복합체를 제조하는 단계;를(c) drying the solvent in the formed conductive composite solution to prepare a conductive composite;
    포함하는 전도성 복합체의 제조방법.Method for producing a conductive composite comprising.
  15. 제14항에 있어서,The method of claim 14,
    단계 (a)에서 상기 전도성 나노입자 100중량부에 대하여 상기 열가소성 고무가 5 내지 100 중량부인 것을 특징으로 하는 전도성 복합체의 제조방법.The method for producing a conductive composite, characterized in that 5 to 100 parts by weight of the thermoplastic rubber relative to 100 parts by weight of the conductive nanoparticles in step (a).
  16. 제15항에 있어서,The method of claim 15,
    단계 (a)에서 상기 전도성 나노입자 100중량부에 대하여 상기 열가소성 고무가 10 내지 30 중량부인 것을 특징으로 하는 전도성 복합체의 제조방법.The method for producing a conductive composite, characterized in that the thermoplastic rubber is 10 to 30 parts by weight based on 100 parts by weight of the conductive nanoparticles in step (a).
  17. 제14항에 있어서,The method of claim 14,
    단계 (b)에서 상기 성형이 캐스팅, 스핀 코팅, 딥 코팅, 스크린 프린팅, 노즐 프린팅, 방사 및 스프레이 중에서 선택된 어느 하나인 것을 특징으로 하는 전도성 복합체의 제조방법.The method of manufacturing a conductive composite, characterized in that the molding in step (b) is any one selected from casting, spin coating, dip coating, screen printing, nozzle printing, spinning and spraying.
  18. 제14항에 있어서,The method of claim 14,
    상기 전도성 복합체의 형태 및 두께는 상기 용매의 종류 및 상기 전도성 복합 용액의 농도 중에서 선택된 1종 이상에 따라 제어되는 것을 특징으로 하는 전도성 복합체의 제조방법.Form and thickness of the conductive composite is controlled according to at least one selected from the type of the solvent and the concentration of the conductive composite solution.
PCT/KR2019/008533 2018-08-10 2019-07-11 Conductive composite using conductive composite solution, and method for producing same WO2020032403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180093717A KR20200018025A (en) 2018-08-10 2018-08-10 Conductive composite using conductive complex solution and method for manufacturing the same
KR10-2018-0093717 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020032403A1 true WO2020032403A1 (en) 2020-02-13

Family

ID=69415323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008533 WO2020032403A1 (en) 2018-08-10 2019-07-11 Conductive composite using conductive composite solution, and method for producing same

Country Status (2)

Country Link
KR (1) KR20200018025A (en)
WO (1) WO2020032403A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765995A (en) * 2020-07-06 2020-10-13 东华大学 Self-driven antibacterial flexible electronic skin and preparation method thereof
CN113668088A (en) * 2021-08-09 2021-11-19 江南大学 SEBS/CNT/MXene composite conductive rubber fiber and preparation and application thereof
CN113699789A (en) * 2021-09-23 2021-11-26 天津理工大学 Preparation method of low-cost elastic strain sensing material with fold structure
CN115748246A (en) * 2022-10-14 2023-03-07 四川大学 Stretchable electronic material with mechanical-electrical double heterogeneous characteristic structure and preparation and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110079103A (en) * 2009-12-31 2011-07-07 제일모직주식회사 Thermoplastic resin composition with good electromagnetic wave shielding
KR101233982B1 (en) * 2011-10-20 2013-02-22 한양대학교 산학협력단 Ultrahigh conductive elastomeric and printable nanocomposite films and the method for preparing the same
KR20160039170A (en) * 2016-03-23 2016-04-08 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
KR20160145336A (en) * 2015-06-10 2016-12-20 성균관대학교산학협력단 Patterning method of flexible conductive composite film
WO2017150320A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Temporary adhesive composition and laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110079103A (en) * 2009-12-31 2011-07-07 제일모직주식회사 Thermoplastic resin composition with good electromagnetic wave shielding
KR101233982B1 (en) * 2011-10-20 2013-02-22 한양대학교 산학협력단 Ultrahigh conductive elastomeric and printable nanocomposite films and the method for preparing the same
KR20160145336A (en) * 2015-06-10 2016-12-20 성균관대학교산학협력단 Patterning method of flexible conductive composite film
WO2017150320A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Temporary adhesive composition and laminate
KR20160039170A (en) * 2016-03-23 2016-04-08 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765995A (en) * 2020-07-06 2020-10-13 东华大学 Self-driven antibacterial flexible electronic skin and preparation method thereof
CN113668088A (en) * 2021-08-09 2021-11-19 江南大学 SEBS/CNT/MXene composite conductive rubber fiber and preparation and application thereof
CN113699789A (en) * 2021-09-23 2021-11-26 天津理工大学 Preparation method of low-cost elastic strain sensing material with fold structure
CN115748246A (en) * 2022-10-14 2023-03-07 四川大学 Stretchable electronic material with mechanical-electrical double heterogeneous characteristic structure and preparation and application thereof

Also Published As

Publication number Publication date
KR20200018025A (en) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2020032403A1 (en) Conductive composite using conductive composite solution, and method for producing same
US10588569B2 (en) Conductive fabric
WO2014109619A1 (en) Graphene transfer method using self-adhesive film
WO2020036253A1 (en) Pixel-type pressure sensor and manufacturing method therefor
WO2015083860A1 (en) Method of manufacturing transparent electrode using electrospinning method, and transparent electrode formed using same
WO2019139241A1 (en) Transparent light emitting device display
WO2018084518A1 (en) Epoxy paste composition including silver-coated copper nanowires having core-shell structure, and conductive film including same
WO2012091451A2 (en) Release film
TW201825013A (en) Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity
WO2017131362A1 (en) Transparent electrode and electronic device including same
KR20200135925A (en) Conductive composite using conductive complex solution and method for manufacturing the same
WO2019117360A1 (en) Nanofiber metal coating method using metal salt reduction effect, and transparent electrode manufacturing method
WO2018174351A1 (en) Functional contact lens and manufacturing method therefor
WO2017176003A1 (en) Semiconductor ink composition containing carbon nanotubes and method for manufacturing thin film transistor using same
KR20190083947A (en) Adhesive transparent electrode and method for manufacturing thereof
WO2018131897A1 (en) Graphene-based liquid crystal dispersion liquid, liquid crystal composite elastic fiber and method for preparing same
WO2021085877A1 (en) Metal deposition-based strechable electrode using electrospun mat and manufacturing method therefor
WO2023219363A1 (en) Stretchable anisotropic conductive film, method for manufacturing same, and stretchable electronic device comprising same
WO2020226288A1 (en) Spike heat output-type pressure sensor comprising electrolyte, and method for manufacturing same
WO2023219357A1 (en) Stretchable anisotropic conductive film containing liquid metal particles and manufacturing method therefor
TWI710618B (en) Method for manufacturing water transfer printable conductive membrane and water transfer printable conductive membrane manufactured thereof, and wearable component, light-emitting component and wearable light-emitting device using the water transfer printable conductive membrane
JP7215430B2 (en) Clothing for measuring biological information and elastic laminate sheet
WO2013019020A2 (en) Nano-wire and method for manufacturing the same
WO2018043897A1 (en) Polyimide film for semiconductor package reflow process, and manufacturing method therefor
KR102267543B1 (en) Method of manufacturing wrinkled electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846613

Country of ref document: EP

Kind code of ref document: A1