WO2020032103A1 - 測距システム、測距方法、車両用灯具、および車両 - Google Patents

測距システム、測距方法、車両用灯具、および車両 Download PDF

Info

Publication number
WO2020032103A1
WO2020032103A1 PCT/JP2019/031123 JP2019031123W WO2020032103A1 WO 2020032103 A1 WO2020032103 A1 WO 2020032103A1 JP 2019031123 W JP2019031123 W JP 2019031123W WO 2020032103 A1 WO2020032103 A1 WO 2020032103A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
pattern
distance
camera
infrared light
Prior art date
Application number
PCT/JP2019/031123
Other languages
English (en)
French (fr)
Inventor
隆雄 村松
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2020032103A1 publication Critical patent/WO2020032103A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/60Projection of signs from lighting devices, e.g. symbols or information being projected onto the road

Definitions

  • the present disclosure relates to a ranging technology for a vehicle.
  • the distance to the target is extremely important information for automatic driving.
  • a stereo camera LiDAR (Light Detection and Ranging, Laser Imaging and Detection and Ranging), a millimeter wave radar, an ultrasonic sonar, and the like are employed.
  • LiDAR is promising as a sensor for automatic driving because it can measure the distance to the target and can determine the type of the target by arithmetic processing.
  • LiDAR has a large size and a high cost, and therefore has a high threshold for being mounted on an inexpensive vehicle.
  • the present disclosure provides an inexpensive ranging system and ranging method.
  • a ranging system and a ranging method mounted on a vehicle are provided.
  • a distance measuring system or a distance measuring method irradiates a pattern of infrared light onto a road surface, takes an image of a periphery of a vehicle including a road surface irradiated with the pattern with a camera, and based on a target and a pattern included in the image of the camera. To get the distance to the target.
  • a vehicle including the distance measuring system.
  • a vehicular lamp including the above distance measurement system.
  • an inexpensive ranging system and ranging method can be provided.
  • FIG. 1 is a diagram showing a distance measuring system according to an embodiment.
  • FIG. 2 is a diagram illustrating an operation of the distance measuring system in FIG. 1.
  • FIG. 2 is a diagram illustrating a vehicle according to a first embodiment. It is a figure showing the vehicles concerning a 2nd example. It is a figure showing the vehicle concerning a 3rd example. It is a figure showing the vehicles concerning a 4th example. It is a figure showing a headlamp incorporating a distance measuring system.
  • the ranging system is mounted on a vehicle.
  • the distance measuring system includes an infrared light irradiation unit, a camera, and a calculation unit.
  • the infrared light irradiator irradiates an infrared light pattern onto a road surface.
  • the intensity and color of light that can be emitted are stipulated by law for each irradiation area and irradiation direction.
  • the pattern irradiated by the infrared light irradiating unit is infrared light and cannot be seen by human eyes, and thus does not correspond to violation of regulations.
  • the calculation unit acquires the distance to the target based on the target and the pattern included in the image of the camera.
  • the distance to the target can be obtained using the pattern as a ruler.
  • the pattern includes line light or spot light.
  • the line light or a set of spot lights included in the pattern.
  • the line light is not distorted, it can be understood that the target is located on the back side of the line light. If the line light is distorted, it can be understood that the target is located before the line light. Since the pattern is formed by infrared light, it is not affected by the surrounding brightness, so that the distance can be measured day and night.
  • Vehicles often have cameras already installed to monitor the surroundings of the vehicle.
  • the hardware that originally exists can be used for the camera and the arithmetic unit.
  • a distance measuring function can be added to the conventional system.
  • the pattern may include a plurality of parallel line lights.
  • the distance between the plurality of line lights may be equal, or the distance may be wider as the distance from the own vehicle increases.
  • the pattern may be radiated concentrically around the camera. Thereby, the distance from the camera can be measured.
  • the pattern may include a plurality of line lights each extending in a direction along the outer edge of the vehicle when the vehicle is viewed from above and spaced apart in a direction orthogonal to the outer edge. Thereby, the distance from the outer edge of the vehicle can be measured.
  • FIG. 1 is a diagram showing a distance measuring system 300 according to the embodiment.
  • the distance measurement system 300 is mounted on the vehicle 100.
  • the distance measurement system 300 includes an infrared light irradiation unit 310, a camera 320, and a calculation unit 330.
  • the infrared light irradiation unit 310 irradiates the road surface with the infrared light pattern PTN.
  • the pattern PTN has a known distance from the own vehicle.
  • the pattern PTN includes, for example, line light or spot light.
  • the camera 320 has sensitivity not only in the visible light wavelength region but also in the infrared light wavelength region irradiated by the infrared light irradiation unit 310. Therefore, it is possible to simultaneously image the pattern PTN illuminated on the road surface and the target OBJ around the vehicle 100.
  • the image IMG generated by the camera 320 is input to the calculation unit 330.
  • the calculation unit 330 acquires the distance (that is, position) to the target OBJ based on the target OBJ and the pattern PTN included in the image IMG of the camera 320.
  • Arithmetic unit 330 may be a microcontroller that includes a CPU and a memory and can be controlled by software.
  • the arithmetic unit 330 may be hardware such as an FPGA (Field Programmable Gate Array) or an IC (Integrated Circuit) designed specifically.
  • the pattern PTN includes a plurality (n) of line lights L1 to Ln.
  • Each of the line lights L1 to Ln extends in the direction (the y direction in the figure) along the outer edge (front edge here) E1 of the vehicle when the vehicle is viewed from above.
  • the plurality of line lights are spaced at equal intervals in a direction orthogonal to the outer edge (x direction in the figure).
  • Each line light may be a set of a plurality of spot lights discretely arranged in a line.
  • FIG. 2 is a diagram for explaining the operation of the distance measuring system 300 in FIG. FIG. 2 shows an image IMG of the camera.
  • the image IMG includes a pattern PTN including a plurality of line lights L1 to Ln and a target OBJ.
  • a pattern PTN including a plurality of line lights L1 to Ln and a target OBJ.
  • the target OBJ is located on the back side of the line light Li.
  • the line light Li is distorted, it can be seen that the target OBJ is located before the line light Li.
  • the line lights L1 and L2 are drawn on the road without distortion. Since the line light L3 is blocked by the target OBJ, a part thereof is distorted. That is, it can be seen that the target OBJ is located between the line lights L2 and L3.
  • the positions where the line lights L1 to Ln are drawn on the road surface are uniquely determined by the optical system of the infrared light irradiation unit 310 and are known. That is, the distance of each of the line lights L1 to Ln from the own vehicle is uniquely determined by the optical system of the infrared light irradiation unit 310 and is known. Therefore, the calculation unit 330 can acquire information on the distance (position) to the target OBJ. The calculation unit 330 may identify the type of the target (pedestrian, preceding vehicle, oncoming vehicle, etc.) from the image IMG.
  • the application of the distance obtained by the distance measuring system 300 is not particularly limited, but can be used for, for example, automatic driving.
  • the above is the operation of the distance measuring system 300.
  • the camera 320 and the arithmetic unit 330 can use hardware already mounted on many vehicles. Further, the infrared light irradiating section 310 is less expensive than LiDAR. Therefore, an inexpensive distance measuring system 300 can be provided.
  • the distance measuring system 300 uses the infrared light pattern, there is an advantage that the distance measuring system 300 is not affected by the surrounding brightness, and therefore can be measured day and night. In addition, since infrared light is invisible and does not belong to any of red light and white light, there is an advantage that the irradiation direction is not legally restricted.
  • the distance measurement system 300 is used for distance measurement in front of the vehicle, but the infrared light is not restricted by the irradiation direction. Therefore, the distance measurement system 300 can be used not only for the front of the vehicle but also for the distance measurement on the side of the vehicle or behind the vehicle.
  • FIG. 3 is a diagram showing a vehicle 100A according to the first embodiment.
  • the vehicle 100A includes four distance measuring systems 300F, 300B, 300L, and 300R provided on the front, rear, left, and right sides of the vehicle, respectively.
  • the line generated by the distance measuring system 300F extends in a direction (y direction) along the front edge E1 of the vehicle when the vehicle is viewed from above.
  • the line generated by the distance measuring system 300B extends in a direction (y direction) along the rear edge E2 of the vehicle when the vehicle is viewed from above.
  • the line generated by the distance measuring system 300L extends in the direction (x direction) along the left edge E3 of the vehicle when the vehicle is viewed from above.
  • the line generated by the distance measuring system 300R extends in a direction (x direction) along the right edge E4 of the vehicle when the vehicle is viewed from above. Distance from the outer edge of the vehicle is equal line between L F _i, L B _i, L L _i, L R _i , as illustrated in Figure 3, it may be continuously formed to surround the vehicle.
  • FIG. 4 is a diagram illustrating a vehicle 100B according to the second embodiment.
  • four distance measuring systems 300FL, 300FR, 300RL, and 300RR are provided at four corners of the vehicle 100.
  • left and right head lamps 110L and 110R and left and right rear lamps 140L and 140R are provided. Therefore, at least one of the infrared light irradiation unit 310, the camera 320, and the calculation unit 330 can be incorporated in the headlamp 110 and / or the rear lamp 140.
  • the head lamp 110 and the rear lamp 140 are examples of a vehicle lamp.
  • the headlamp 110 and the rear lamp 140 have built-in circuits for turning on various light sources, an optical system, and an arithmetic processing unit. Therefore, by incorporating the components of the distance measuring system 300 into the lamp, a part of the hardware resources can be shared, and the cost of the distance measuring system 300 can be reduced.
  • FIG. 5 is a diagram illustrating a vehicle 100C according to the third embodiment.
  • the vehicle 100C includes four distance measurement systems 300F, 300B, 300L, and 300R provided on the front, rear, left, and right sides of the vehicle, respectively.
  • FIG. 6 is a diagram illustrating a vehicle 100D according to the fourth embodiment.
  • four distance measuring systems 300FL, 300FR, 300RL, and 300RR are arranged at four corners of the vehicle.
  • FIG. 7 is a diagram showing a headlamp 110 having a built-in distance measuring system 300.
  • the headlamp 110 has an ADB (Adaptive Driving Beam) system.
  • the headlamp 110 can adaptively control the light distribution pattern according to the surrounding situation.
  • ADB Adaptive Driving Beam
  • the headlamp 110 includes an interface circuit 120 connected to the vehicle-side ECU via a bus.
  • the interface circuit 120 can receive information from the vehicle-side ECU and transmit the state of the headlamp 110 to the ECU.
  • the light distribution pattern to be formed by the headlamp 110 may be calculated by the vehicle-side ECU.
  • the interface circuit 120 receives data indicating a light distribution pattern from the vehicle-side ECU.
  • the interface circuit 120 may receive vehicle information such as vehicle speed and steering angle.
  • the white light source 112 includes a semiconductor light source such as an LED (light emitting diode) and an LD (laser diode).
  • the lighting circuit 116 controls a drive current supplied to the white light source 112, and controls turning on / off and brightness of the white light source 112.
  • the optical system 114 projects the light emitted from the white light source 112 toward the front of the vehicle.
  • the optical system 114 may include a patterning device such as a DMD (Digital Mirror Device).
  • the microcomputer 118 changes the light distribution pattern by controlling the DMD.
  • the white light source 112 may include a plurality of LEDs arranged in a matrix in a line.
  • the lighting circuit 116 is configured so that a plurality of LEDs can be individually turned on and off.
  • the microcomputer 118 supplies data for instructing turning on and off of the plurality of LEDs to the lighting circuit 116 in accordance with the light distribution pattern. Good.
  • the infrared light irradiation unit 310 includes an infrared light source 312, an optical system 314, and a lighting circuit 316.
  • a semiconductor light source such as an LED (light emitting diode) or an LD (laser diode) can be used.
  • the lighting circuit 316 supplies a current to the infrared light source 312 to cause the infrared light source 312 to emit light.
  • the optical system 314 patterns the infrared light emitted from the infrared light source 312 and projects the pattern PTN on a road surface.
  • Calculating section 330 detects a target ahead of the vehicle based on image IMG captured by camera 320. In addition, the calculation unit 330 acquires the distance to the target based on the image IMG. The acquired distance may be transmitted to the vehicle-side ECU via the interface circuit 120. The function of the calculation unit 330 may be implemented in the microcomputer 118 included in the headlamp 110. Thus, the cost of the distance measuring system 300, that is, the cost of the headlamp 110 can be reduced.
  • the lighting circuit 116 and the lighting circuit 316 may share a part of hardware.
  • the lighting circuits 116 and 316 may share a power supply circuit and the like. Thereby, the cost of the headlamp 110 can be reduced.
  • the headlamp 110 may itself generate the light distribution pattern based on the image captured by the camera 320. In this case, since the camera for controlling the light distribution pattern and for measuring the distance can be shared, the cost of the headlamp 110 can be further reduced.
  • the pattern PTN may include a plurality of spot lights arranged in a matrix.
  • the infrared light irradiating unit 310 irradiates a plurality of lines in a fixed manner.
  • the infrared light irradiation unit 310 may scan the line light L1 extending in the y direction in the x direction. Scanning can increase the resolution of the distance.
  • the infrared light irradiation unit 310 may scan the plurality of line lights L1 to L4 shown in FIG. 1 in the x direction.
  • the distance is measured by the distance measurement system 300 in four directions, that is, the front, rear, left, and right directions of the vehicle.
  • a high-precision LiDAR ranging system may be employed for the front, and the inexpensive ranging system 300 according to the embodiment may be employed for the side (or the rear).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

赤外光照射部(310)は、赤外光のパターン(PTN)を路面に照射する。カメラ(320)は、パターン(PTN)が照射された路面を含む車両(100)の周囲を撮像する。演算部(330)は、カメラ(320)の画像に含まれる物標とパターン(PTN)にもとづいて、物標までの距離を取得する。

Description

測距システム、測距方法、車両用灯具、および車両
 本開示は、車両用の測距技術に関する。
 物標までの距離は、自動運転に極めて重要な情報である。距離を測定する手段としては、ステレオカメラ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ミリ波レーダ、超音波ソナーなどが採用されている。
 LiDARは物標までの距離が測定できる上、演算処理によって物標の種類の判定も可能であることから、自動運転用のセンサとして有望視されている。しかしながらLiDARは、サイズが大きく、コストが高いため、安価な車両に搭載するには敷居が高い。
 本開示は、安価な測距システムおよび測距方法を提供する。
 本開示のある態様によれば、車両に搭載される測距システムおよび測距方法が提供される。測距システムまたは測距方法は、赤外光のパターンを路面に照射し、パターンが照射された路面を含む車両の周囲をカメラで撮像し、カメラの画像に含まれる物標とパターンにもとづいて、物標までの距離を取得する。
 本開示のある態様によれば、上記測距システムを備える車両が提供される。また、本開示のある態様によれば、上記測距システムを備える車両用灯具が提供される。
 本開示によれば、安価な測距システムおよび測距方法を提供できる。
実施の形態に係る測距システムを示す図である。 図1の測距システムの動作を説明する図である。 第1実施例に係る車両を示す図である。 第2実施例に係る車両を示す図である。 第3実施例に係る車両を示す図である。 第4実施例に係る車両を示す図である。 測距システムを内蔵するヘッドランプを示す図である。
(実施の形態の概要)
 本明細書に開示される一実施の形態は、測距システムに関する。測距システムは、車両に搭載される。測距システムは、赤外光照射部、カメラおよび演算部を備える。赤外光照射部は、赤外光のパターンを路面に照射する。車両に関しては、照射領域および照射方向ごとに、放射してよい光の強度や色が法規で定められている。赤外光照射部により照射されるパターンは赤外光であり人間の目からは見えないため、法規違反に該当しない。演算部は、カメラの画像に含まれる物標とパターンにもとづいて、物標までの距離を取得する。
 この実施の形態によれば、赤外光のパターンは自車からの距離が既知であるため、パターンを物差しとして、物標までの距離を取得できる。たとえば、パターンは、ライン光またはスポット光を含む。パターンに含まれるひとつのライン光(あるいはスポット光の集合)に着目したとき、ライン光が歪んでいなければ、物標はそのライン光より奥側に位置することがわかる。また、ライン光が歪んでいれば、物標はそのライン光より手前に位置することがわかる。パターンは、赤外光により形成されるため、周囲の明るさの影響を受けず、したがって昼夜を問わずに測距可能である。
 車両には、車両の周囲を監視するためのカメラがすでに搭載されるケースが多い。こうしたケースでは、カメラと演算部については、元々存在するハードウェアが流用できる。新たに赤外光照射部を追加することで、従来のシステムに測距機能を追加できる。
 好ましくは、パターンは、平行な複数のライン光を含んでもよい。複数のライン光の距離は、等間隔であってもよいし、自車から遠いほど間隔が広くてもよい。
 パターンは、カメラを中心とする同心円状に照射されてもよい。これにより、カメラからの距離を測定できる。
 パターンは、それぞれが、車両を上から見たときの車両の外縁に沿う方向に伸び、外縁と直交方向に離間する複数のライン光を含んでもよい。これにより、車両の外縁からの距離を測定できる。
(実施の形態)
 以上が測距システムの概要である。以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、この用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。
 図1は、実施の形態に係る測距システム300を示す図である。測距システム300は、車両100に搭載される。測距システム300は、赤外光照射部310、カメラ320、演算部330を備える。赤外光照射部310は、赤外光のパターンPTNを路面に照射する。パターンPTNは、自車からの距離が既知である。パターンPTNは、例えば、ライン光またはスポット光を含む。
 カメラ320は、可視光の波長領域のみでなく、赤外光照射部310により照射される赤外光の波長領域にも感度を有する。したがって、路面に照射されたパターンPTNと車両100の周囲の物標OBJを同時に撮像可能である。カメラ320が生成する画像IMGは、演算部330に入力される。
 演算部330は、カメラ320の画像IMGに含まれる物標OBJとパターンPTNにもとづいて、物標OBJまでの距離(すなわち位置)を取得する。演算部330は、CPUおよびメモリを含みソフトウェア制御可能なマイクロコントローラであってもよい。あるいは演算部330は、FPGA(Field Programmable Gate Array)などのハードウェアであってもよいし、専用設計されたIC(Integrated Circuit)であってもよい。
 図1の例では、パターンPTNは複数(n本)のライン光L1~Lnを含む。各ライン光L1~Lnは、車両を上から見たときの車両の外縁(ここでは前縁)E1に沿った方向(図中、y方向)に伸びている。また複数のライン光は、外縁と直交方向(図中、x方向)に等間隔に離間している。各ライン光は、ライン状に離散的に配置された複数のスポット光の集合であってもよい。
 以上が測距システム300の基本構成である。続いて、測距システム300の動作を説明する。図2は、図1の測距システム300の動作を説明する図である。図2には、カメラの画像IMGが示される。
 画像IMGには、複数のライン光L1~Lnを含むパターンPTNと、物標OBJが含まれている。ひとつのライン光Liに着目したとき、ライン光Liが歪んでいなければ、物標OBJはそのライン光Liより奥側に位置することがわかる。また、ライン光Liが歪んでいれば、物標OBJはそのライン光Liより手前に位置することがわかる。図2の例では、ライン光L1,L2は歪まずに路面に描画される。ライン光L3は、物標OBJにより遮られるので、その一部が歪んでいる。つまり物標OBJは、ライン光L2とL3の間に位置することが分かる。各ライン光L1~Lnの路面に描画される位置は、赤外光照射部310の光学系によって一意に定まり、既知である。すなわち、各ライン光L1~Lnの自車からの距離は、赤外光照射部310の光学系によって一意に定まり、既知である。したがって演算部330は、物標OBJまでの距離(位置)の情報を取得することができる。この演算部330は、画像IMGから物標の種類(歩行者、先行車、対向車など)を識別してもよい。
 測距システム300によって得られた距離の用途は特に限定されないが、たとえば自動運転に用いることができる。
 以上が測距システム300の動作である。カメラ320および演算部330は、多くの車両に既に搭載されているハードウェアを利用することができる。また赤外光照射部310は、LiDARに比べれば安価である。したがって、安価な測距システム300を提供することができる。
 測距システム300では、赤外光のパターンを用いているため、周囲の明るさの影響を受けず、したがって昼夜を問わずに測距可能であるという利点がある。また赤外光は目に見えず、赤色、白色光のいずれにも属さないため、法規的に照射方向が制約を受けないという利点がある。
 本開示は、図1あるいは上述の説明から導かれるさまざまな装置、方法に及ぶものであり、特定の構成に限定されるものではない。以下、本開示の範囲を狭めるためではなく、発明の本質や動作の理解を助け、またそれらを明確化するために、より具体的な構成例や実施例を説明する。
(第1実施例)
 図1の例では、測距システム300を車両前方の測距に用いたが、赤外光は照射方向の制約を受けない。したがって測距システム300は、車両前方のみでなく、車両側方、あるいは車両後方の測距にも用いることができる。
 図3は、第1実施例に係る車両100Aを示す図である。車両100Aは、車両の前方、後方、左側方、右側方それぞれに設けられた4個の測距システム300F,300B,300L,300Rを備える。
 第1実施例において、測距システム300#(#=F,B,L,R)が生成するパターンPTN_#は、複数のラインL1~Lnを含んでいる。測距システム300Fが生成するラインは、車両を上から見たときの車両の前縁E1に沿う方向(y方向)に伸びる。測距システム300Bが生成するラインは、車両を上から見たときの車両の後縁E2に沿う方向(y方向)に伸びる。測距システム300Lが生成するラインは、車両を上から見たときの車両の左縁E3に沿う方向(x方向)に伸びる。測距システム300Rが生成するラインは、車両を上から見たときの車両の右縁E4に沿う方向(x方向)に伸びる。車両の外縁からの距離が等しいライン同士L_i,L_i,L_i,L_iは、図3に例示されるように、車両を取り囲むように連続的に形成されてもよい。
(第2実施例)
 図4は、第2実施例に係る車両100Bを示す図である。第2実施例では、4個の測距システム300FL,300FR,300RL,300RRが、車両100の4隅に設けられている。各測距システム300#(#=FL,FR,RL,RR)は、パターンPTN_#を形成する。
 4個の測距システム300が設けられる4隅には、左右のヘッドランプ110L,110R、左右のリアランプ140L,140Rが設けられている。したがって、赤外光照射部310、カメラ320、演算部330の少なくともひとつを、ヘッドランプ110および/またはリアランプ140に内蔵することができる。ヘッドランプ110およびリアランプ140は、車両用灯具の一例である。
 ヘッドランプ110やリアランプ140には、各種光源を点灯するための回路や光学系、演算処理装置が内蔵されている。したがって、測距システム300の構成要素をランプに内蔵することで、ハードウェア資源の一部を兼用することができ、測距システム300のコストを下げることができる。
(第3実施例)
 図5は、第3実施例に係る車両100Cを示す図である。車両100Cは、車両の前方、後方、左側方、右側方それぞれに設けられた4個の測距システム300F,300B,300L,300Rを備える。
 第3実施例では、赤外光照射部310が生成するパターンPTN_#(#=F,B,L,R)の形状が、第1実施例や第2実施例と異なっている。すなわち、パターンPTN_#は、カメラ320を中心とする同心円状に照射される。図1で示した配置と同様に、カメラ320は赤外光照射部310と近接して配置される。
(第4実施例)
 図6は、第4実施例に係る車両100Dを示す図である。第4実施例では、第2実施例と同様に、4個の測距システム300FL,300FR,300RL,300RRが、車両の4隅に配置される。各測距システム300#(#=FL,FR,RL,RR)が生成するパターンPTN_#は、図5と同様である。すなわち、パターンPTN_#は、カメラ320を中心とする同心円状に照射される。図6においても、測距システム300はヘッドランプ110やリアランプ140に内蔵してもよい。
 図7は、測距システム300を内蔵するヘッドランプ110を示す図である。ヘッドランプ110は、ADB(Adaptive Driving Beam )システムを搭載している。ヘッドランプ110は、周囲の状況に応じて、配光パターンを適応的に制御可能となっている。
 ヘッドランプ110は、車両側ECUとバスを介して接続されるインタフェース回路120を備えている。インタフェース回路120は、車両側ECUからの情報を受信し、またヘッドランプ110の状態をECUに送信可能である。ヘッドランプ110が形成すべき配光パターンは、車両側ECUにおいて演算してもよい。この場合、インタフェース回路120は、車両側ECUから配光パターンを指示するデータを受信する。
 インタフェース回路120は、車速、ステアリング角などに、車両の情報を受信してもよい。
 白色光源112は、たとえばLED(発光ダイオード)やLD(レーザダイオード)などの半導体光源を含む。点灯回路116は、白色光源112に供給される駆動電流を制御し、白色光源112の点消灯や輝度を制御する。光学系114は、白色光源112の出射光を車両前方に投影する。
 たとえば光学系114は、DMD(Digital Mirror Device)をはじめとするパターニングデバイスを含んでもよい。マイコン118は、DMDを制御することにより、配光パターンを変化させる。
 あるいは白色光源112は、ライン状にマトリクス状に配置される複数のLEDを含んでもよい。点灯回路116は複数のLEDを個別に点消灯可能に構成されており、マイコン118は、配光パターンに応じて、複数のLEDの点消灯を指示するデータを、点灯回路116に供給してもよい。
 赤外光照射部310は、赤外光源312、光学系314、点灯回路316を含む。赤外光源312は、LED(発光ダイオード)あるいはLD(レーザダイオード)などの半導体光源を用いることができる。点灯回路316は、赤外光源312に電流を供給し、赤外光源312を発光させる。光学系314は、赤外光源312から発光された赤外光をパターニングし、路面にパターンPTNを投影する。
 演算部330は、カメラ320が撮像した画像IMGにもとづいて、車両前方の物標を検出する。また、演算部330は、画像IMGにもとづいて、物標までの距離を取得する。取得した距離は、インタフェース回路120を介して、車両側ECUに送信してもよい。演算部330の機能は、ヘッドランプ110が備えるマイコン118に実装してもよい。これにより測距システム300、すなわちヘッドランプ110のコストを下げることができる。
 たとえば点灯回路116と点灯回路316は、ハードウェアの一部を共有してもよい。たとえば、点灯回路116と316とで、電源回路などを共有してもよい。これによりヘッドランプ110のコストを下げることができる。
 さらにヘッドランプ110は、カメラ320が撮像した画像にもとづいて、配光パターンを自身で生成してもよい。この場合、配光パターンの制御と測距のためのカメラを兼用できるため、さらにヘッドランプ110のコストを下げることができる。
 以上、本開示について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。
(第1変形例)
 パターンPTNは、マトリクス状に配置された複数のスポット光を含んでもよい。
(第2変形例)
 実施の形態では、赤外光照射部310が複数のラインを固定的に照射したがその限りでない。たとえば、図1を例にとると、赤外光照射部310は、y方向に伸びるライン光L1を、x方向にスキャンしてもよい。スキャンにより、距離の分解能を高めることができる。もちろん、赤外光照射部310は、図1に示す複数のライン光L1~L4を、x方向にスキャンしてもよい。
(第3変形例)
 いくつかの実施例においては、車両の前後、左右の4方向について、測距システム300により測距することとしたがその限りでない。たとえば、前方については高精度なLiDARによる測距システムを採用し、側方(あるいは後方)について、実施の形態に係る安価な測距システム300を採用してもよい。
 実施の形態にもとづき、具体的な語句を用いて本開示を説明したが、実施の形態は、本開示の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本開示の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
 本出願は、2018年8月10日出願の日本特許出願2018-151996号に基づくものであり、その内容はここに参照として取り込まれる。

Claims (8)

  1.  車両に搭載される測距システムであって、
     赤外光のパターンを路面に照射する赤外光照射部と、
     前記パターンが照射された路面を含む前記車両の周囲を撮像するカメラと、
     前記カメラの画像に含まれる物標と前記パターンにもとづいて、前記物標までの距離を取得する演算部と、
     を備える、測距システム。
  2.  前記パターンは、ライン光またはスポット光を含む、請求項1に記載の測距システム。
  3.  前記パターンは、前記カメラを中心とする同心円状に照射される、請求項1または2に記載の測距システム。
  4.  前記パターンは、それぞれが、前記車両を上から見たときの前記車両の外縁に沿う方向に伸び、前記外縁と直交方向に離間する複数のライン光を含む、請求項1または2に記載の測距システム。
  5.  請求項1から4のいずれか一項に記載の測距システムを備える、車両。
  6.  請求項1から4のいずれか一項に記載の測距システムを備える、車両用灯具。
  7.  車両の周囲に位置する物標までの距離を測定する方法であって、
     赤外光のパターンを路面に照射するステップと、
     前記パターンが照射された路面を含む前記車両の周囲をカメラで撮像するステップと、
     前記カメラの画像に含まれる前記物標と前記パターンにもとづいて、前記物標までの距離を取得するステップと、
     を備える、測距方法。
  8.  前記パターンは、ライン光またはスポット光を含む、請求項7に記載の測距方法。
PCT/JP2019/031123 2018-08-10 2019-08-07 測距システム、測距方法、車両用灯具、および車両 WO2020032103A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-151996 2018-08-10
JP2018151996A JP2020027031A (ja) 2018-08-10 2018-08-10 車載測距システム、測距方法および車両用灯具、自動車

Publications (1)

Publication Number Publication Date
WO2020032103A1 true WO2020032103A1 (ja) 2020-02-13

Family

ID=69413853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031123 WO2020032103A1 (ja) 2018-08-10 2019-08-07 測距システム、測距方法、車両用灯具、および車両

Country Status (2)

Country Link
JP (1) JP2020027031A (ja)
WO (1) WO2020032103A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172870A1 (ja) * 2011-06-14 2012-12-20 日産自動車株式会社 距離計測装置及び環境地図生成装置
WO2018056199A1 (ja) * 2016-09-21 2018-03-29 日本電気株式会社 距離測定システム、距離測定方法およびプログラム記録媒体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172870A1 (ja) * 2011-06-14 2012-12-20 日産自動車株式会社 距離計測装置及び環境地図生成装置
WO2018056199A1 (ja) * 2016-09-21 2018-03-29 日本電気株式会社 距離測定システム、距離測定方法およびプログラム記録媒体

Also Published As

Publication number Publication date
JP2020027031A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
US10369922B2 (en) Vehicle headlight device
US10239440B2 (en) Illumination apparatus for vehicle
ES2909663T3 (es) Faro de vehículo o luz trasera de vehículo
US11454539B2 (en) Vehicle lamp
US10965878B2 (en) Vehicle illumination system and vehicle
CN110869667B (zh) 灯具单元及车辆用前照灯
JP2005350010A (ja) ステレオ式車外監視装置
JP2013119357A (ja) 照明制御装置
KR20180134072A (ko) 차량용 헤드램프 시스템 및 이의 제어 방법
US20220338327A1 (en) Vehicle infrared lamp system, vehicle infrared sensor system, vehicle infrared-sensor-equipped lamp, and optical-sensor-equipped lamp
JP7267694B2 (ja) 車両用灯具
WO2021166849A1 (ja) 車両用灯具
US10981493B2 (en) Control apparatus for vehicle headlight, control method for vehicle headlight, vehicle headlight system
WO2022196296A1 (ja) 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
WO2020032103A1 (ja) 測距システム、測距方法、車両用灯具、および車両
US20220305980A1 (en) Vehicle lamp system
WO2021193645A1 (ja) ゲーティングカメラ、センシングシステム、車両用灯具
WO2020189289A1 (ja) 車両用灯具および車両用灯具システム
JP7137414B2 (ja) 車両用灯具
JP2016000615A (ja) 車両用前照灯装置
WO2020209005A1 (ja) 車両用灯具および車両システム
JP2019021433A (ja) 車両用灯具
CN111344517B (zh) 具有主要光束以及可根据车辆前方检测到的障碍物的位置来定向的窄光束的照明设备
CN113811715A (zh) 车辆用灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847693

Country of ref document: EP

Kind code of ref document: A1