WO2020032080A1 - Compound, salt of compound, neuromodulation agent, method for evaluating neuromodulation agent, method for producing compound, and method for producing salt of compound - Google Patents

Compound, salt of compound, neuromodulation agent, method for evaluating neuromodulation agent, method for producing compound, and method for producing salt of compound Download PDF

Info

Publication number
WO2020032080A1
WO2020032080A1 PCT/JP2019/031022 JP2019031022W WO2020032080A1 WO 2020032080 A1 WO2020032080 A1 WO 2020032080A1 JP 2019031022 W JP2019031022 W JP 2019031022W WO 2020032080 A1 WO2020032080 A1 WO 2020032080A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
unsaturated hydrocarbon
general formula
Prior art date
Application number
PCT/JP2019/031022
Other languages
French (fr)
Japanese (ja)
Inventor
睦生 塗谷
洋祐 芦刈
正人 安井
ゆかり 藤本
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2020535822A priority Critical patent/JP7456621B2/en
Publication of WO2020032080A1 publication Critical patent/WO2020032080A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/14Quaternary ammonium compounds, e.g. edrophonium, choline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
    • A61K31/36Compounds containing methylenedioxyphenyl groups, e.g. sesamin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/46Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/48Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by hydroxy groups
    • C07C215/52Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by hydroxy groups linked by carbon chains having two carbon atoms between the amino groups and the six-membered aromatic ring or the condensed ring system containing that ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/46Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/66Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with quaternised amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/56Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
    • C07C217/60Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms linked by carbon chains having two carbon atoms between the amino groups and the six-membered aromatic ring or the condensed ring system containing that ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/64Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains further substituted by singly-bound oxygen atoms
    • C07C217/66Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains further substituted by singly-bound oxygen atoms with singly-bound oxygen atoms and six-membered aromatic rings bound to the same carbon atom of the carbon chain
    • C07C217/70Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains further substituted by singly-bound oxygen atoms with singly-bound oxygen atoms and six-membered aromatic rings bound to the same carbon atom of the carbon chain linked by carbon chains having two carbon atoms between the amino groups and the six-membered aromatic ring or the condensed ring system containing that ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/58Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a compound, a salt of the compound, a neurological modulator, a method for evaluating a neurological modulator, a method for producing a compound, and a method for producing a salt of a compound.
  • a method for detecting a biological substance is roughly divided into a label capable of emitting an electromagnetic wave such as a fluorescent substance and a radioisotope (in this specification, sometimes referred to as an “electromagnetic wave emission label”).
  • an electromagnetic wave emission label there are two methods: a method of labeling a substance and detecting a biological substance by emitting electromagnetic waves from the label, and a method of detecting a biological substance without using such an electromagnetic wave emission label.
  • a method using a radioisotope and a method using a fluorescent substance are known.
  • the method using a radioisotope has the advantage that the biological activity of the biological substance is hardly lost and the specificity is high.
  • this method has drawbacks that it is difficult to perform safety management due to the use of radioactive materials, is not suitable for observation in living tissue, and has low resolution and sensitivity. Low practicality. Therefore, it is also difficult to apply the method to the detection of a neurological modulator.
  • a method using a fluorescent substance a method using a fluorescent dye or a fluorescent protein has been put to practical use, but these fluorescent substances have a large molecular weight by themselves.
  • a fluorescent green dye FFN511 which is itself taken into dopamine-containing neurons and is detectable in these cells is known (see Patent Document 1). Although the molecular weight of this fluorescent dye is relatively smaller than the molecular weight of the normal fluorescent dye or fluorescent protein, it is still about twice the molecular weight of dopamine. Therefore, the FFN 511 is significantly different from a normal observation target molecule in its behavior and properties. In fact, FFN 511 is considered to have no biological activity, and further absorbs short-wavelength light, which is not always common, and emits light in a wide wavelength band. Therefore, it is difficult to use with other dyes, and there is no alternative dye.
  • Non-Patent Document 1 a method of detecting biological substances without using an electromagnetic wave emission label, a method of detecting using a Raman microscope is known, focusing on the fact that a specific group in a molecule causes Raman scattering. I have. For example, a triple bond between carbon atoms (C ⁇ C) can be detected by a Raman microscope, and a method for detecting an analog of a biomolecule into which such a triple bond is introduced has been disclosed (Non-Patent Document 1). reference).
  • Non-Patent Document 1 is irrelevant to a neurological function modulator, and no neuronal function modulator having a triple bond between carbon atoms has been reported so far. .
  • An object of the present invention is to provide a novel nerve function-regulating substance capable of practically evaluating the state of uptake into a nerve cell or the state of a cellular response caused by the uptake.
  • the present invention employs the following configuration. [1].
  • X 1 , X 2 , X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms.
  • the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent
  • the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded
  • the methylene group is May be substituted with a carbonyl group
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more
  • the methylene groups which are not adjacent to each other may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or when X 3 and X 4 are the alkyl groups
  • the two alkyl groups are bonded to each other to form a ring Well;
  • a hydrogen group When both n 1 and n 3 are 0, at least one of X 1 , X 2 , X 3 and X 4 is the unsaturated hydrocarbon group, When both n 1 and n 3 are 1, one or more of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the unsaturated hydrocarbons. Group. )
  • the compound represented by the general formula (I) is a compound represented by the following general formula (I) -1, (I) -2, (I) -3 or (I) -4, [1] Or a salt thereof.
  • R; n 3 are the same as above. ) [4].
  • X 01 , X 02 , X 03 and X 04 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms.
  • the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent
  • the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded
  • the methylene group is May be substituted with a carbonyl group
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more May be substituted with an oxygen atom
  • X 01 and X 02 are the alkyl groups, these two alkyl groups are bonded to each other to form a ring.
  • X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent; n 01 is 0 or 1; n 02 is an integer of 1 to 5; However, when n 01 is 0, one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups, When n 01 is 1, one or more of X 01 , X 02 , X 03 , X 04 and X 05 are the unsaturated hydrocarbon groups. )
  • n 02 is the same as described above;
  • X 011 , X 021 and X 031 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • X 011 and X 021 are the above-mentioned alkyl groups, these two alkyl groups are May combine with each other to form a ring;
  • X 041 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent;
  • X 010 , X 020 and X 030 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and may have a substituent.
  • the unsaturated hydrocarbon group has 3 to 9 carbon atoms and the unsaturated hydrocarbon group has a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group;
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, one methylene group or two or more methylene groups that are not adjacent to each other are may be substituted with an oxygen atom, if X 010 and X 020 is the above alkyl group, these two alkyl groups may form a ring with each other, however, X 010 , One of X 020 and X 030 Species or two or more are the aforementioned unsaturated hydrocarbon groups. )
  • X 012, X 022 and X 032 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, when X 012 and X 022 is the above alkyl group, these two alkyl
  • the groups may be linked to each other to form a ring;
  • G 01 , G 02 , G 03 and G 04 are each independently a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group , Halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy
  • a neurological function modulator comprising the compound according to any one of [1] to [6] or a salt thereof. [8].
  • a neurological function modulator comprising a group having a triple bond between carbon atoms. [9].
  • the compound having a structure in which one or two or more hydrogen atoms in dopamine, noradrenaline, adrenaline or serotonin in the dopamine, noradrenaline, adrenaline or serotonin is replaced by a group having a triple bond between carbon atoms, or a salt thereof.
  • a method for producing a compound represented by the following general formula (IA) or a salt thereof comprising reacting a compound represented by the following general formula (Ia) with a compound represented by the following general formula (Ic) And when one or more of the following Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are the following protecting groups, after the step of reacting, removing the group, by performing, as a compound represented by the following general formula (I a), in the compounds represented by the following general formula (Ia), the following Z 1a, Z 2a, Z A method for producing a compound or a salt thereof, wherein a compound having a structure in which a hydrogen atom among 3a , Z 4a and Z 6a is substituted with the following X 0a or a salt thereof is obtained.
  • X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene
  • the methylene group may be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, 1 Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring; X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atom
  • Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are each independently a hydrogen atom, an alkyl group having 1 to 9 carbon atoms or a protecting group, and when Z 1a and Z 2a are the above-mentioned alkyl groups Or when Z 3a and Z 4a are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring, provided that Z 1a , Z 2a , Z 3a , One or more of Z 4a and Z 6a are hydrogen atoms. )
  • X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group.
  • Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring;
  • X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
  • X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
  • n 3 is 0 or 1;
  • n 2 is an integer from 1 to 5;
  • LG 2 is a leaving group;
  • Z 1b , Z 2b , Z 3b , Z 4b and Z 6b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds
  • An optionally substituted unsaturated hydrocarbon group having 3 to 9 carbon atoms or a protecting group wherein Z 1b and Z 2b are the aforementioned alkyl groups, or Z 3b and Z 4b are the aforementioned alkyl groups May have the two alkyl groups linked to each other to form a ring;
  • X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
  • a method for producing a compound represented by the following general formula (IIA) or a salt thereof comprising reacting a compound represented by the following general formula (IIa) with a compound represented by the following general formula (Ic) a step of, following Z 01a, Z 02a, among the Z 03a and Z 04a, when one or more are below protecting group, after the step of the reaction, further, removing the protecting group And a salt represented by the following general formula (II A ) or a salt thereof in a compound represented by the following general formula (IIa): Z 01a , Z 02a , Z 03a and Z of 04a, it is hydrogen atom, to obtain a compound or a salt structure substituted by the following X 0a, compound or a salt thereof.
  • X 01, X 02, X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group.
  • Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups Groups may be linked to each other to form a ring ;
  • X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
  • n 01 is 0 or 1;
  • n 02 is an integer of 1 to 5;
  • X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups,
  • X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, wherein the unsaturated hydrocarbon group is When having a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group, and the unsaturated
  • one methylene group or two or more non-adjacent methylene groups may be substituted with an oxygen atom;
  • LG 1 is a leaving group;
  • Z 01a, Z 02a, Z 03a and Z 04a each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms, or a protecting group, if Z 01a and Z 02a is said alkyl group, these two alkyl groups may form a ring with each other, however, Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more is a hydrogen atom.
  • X 01 , X 02 , X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group.
  • Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups
  • the groups may be linked to each other to form a ring ;
  • X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
  • n 02 is an integer of 1 to 5;
  • LG 3 is a leaving group;
  • Z 01b , Z 02b , Z 03b and Z 04b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds between carbon atoms, and have a substituent.
  • Z 01b and Z 02b are the above-mentioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. May be;
  • X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
  • the compound of the present embodiment or a salt thereof can be used as a nerve function regulating substance.
  • the nerve function-modulating substance of the present embodiment or by applying the neurofunction-modulating substance evaluation method of the present embodiment, the state of uptake of the nerve function-modulating substance into nerve cells, or the state brought about by the uptake. The state of the cell response can be evaluated practically.
  • the compound represented by the general formula (I) or a salt thereof can be produced by the method for producing a compound or a salt thereof of the present embodiment.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when the compound of the present invention is used in Example 6.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when the compound of the present invention is used in Example 6.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when the compound of the present invention is used in Example 6.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when another compound of the present invention is used in Example 6.
  • FIG. FIG. 9 is imaging data of a test piece with a confocal microscope when another compound of the present invention is used in Example 6.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when another compound of the present invention is used in Example 6.
  • FIG. FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7.
  • FIG. FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7.
  • FIG. FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7.
  • FIG. FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7.
  • FIG. FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7.
  • FIG. FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7.
  • FIG. FIG. 9 is imaging data of a test piece with a confocal microscope when the compound of the present invention is used in Example 8.
  • FIG. 9 shows data on the time-dependent changes in the intensity of the fluorescent signal when the compound of the present invention is used in Example 8.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when another compound of the present invention is used in Example 8.
  • FIG. 9 shows data on the change over time in the intensity of the fluorescence signal when another compound of the present invention was used in Example 8.
  • FIG. 9 is imaging data of a test piece with a confocal microscope when a known compound is used in Example 8.
  • FIG. FIG. 9 shows data on the change over time of the intensity of the fluorescent signal when a known compound is used in Example 8.
  • FIG. FIG. 15 shows imaging data of nerve cells by a confocal microscope when a known fluorescent dye is used in Example 11.
  • FIG. 14 shows imaging data of nerve cells by a confocal microscope when the compound of the present invention is used in Example 11.
  • FIG. 14 shows imaging data of nerve cells by a confocal microscope when another compound of the present invention is used in Example 11.
  • FIG. FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11.
  • FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11.
  • FIG. FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11.
  • FIG. FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11.
  • FIG. FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11.
  • FIG. FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of
  • FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12.
  • FIG. FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12.
  • FIG. FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12.
  • FIG. FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12.
  • FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12.
  • FIG. FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12.
  • FIG. FIG. 14 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 15.
  • FIG. FIG. 14 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 15.
  • FIG. 14 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 15.
  • FIG. 14 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 15.
  • FIG. 14 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 16.
  • FIG. Fig. 15 shows imaging data of a test piece with a confocal microscope when a known fluorescent protein is used in Example 16.
  • FIG. 14 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 16.
  • FIG. 14 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 17.
  • FIG. FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known antibody is used in Example 17.
  • FIG. FIG. 14 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 17.
  • FIG. FIG. 14 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 17.
  • FIG. FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known antibody is used in Example 17.
  • FIG. 14 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 17.
  • FIG. FIG. 15 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 18.
  • FIG. 15 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 18.
  • FIG. FIG. 19 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 19.
  • FIG. FIG. 19 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 19.
  • FIG. 19 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 19.
  • X 1 , X 2 , X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms.
  • the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent
  • the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded
  • the methylene group is May be substituted with a carbonyl group
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more
  • the methylene groups which are not adjacent to each other may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or when X 3 and X 4 are the alkyl groups
  • the two alkyl groups are bonded to each other to form a ring Well;
  • a hydrogen group When both n 1 and n 3 are 0, at least one of X 1 , X 2 , X 3 and X 4 is the unsaturated hydrocarbon group, When both n 1 and n 3 are 1, one or more of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the unsaturated hydrocarbons. Group. )
  • Compound (I) is useful as a nerve function regulator (that is, a physiologically active substance involved in the regulation of nerve function), as described later.
  • the compound (I) will be described later because at least one of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 is the unsaturated hydrocarbon group.
  • detection can be performed with high accuracy, and its dynamics can be easily observed.
  • the structure of compound (I) will be described in detail.
  • X 1 , X 2 , X 3 and X 4 are each independently: A hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent.
  • the methylene group at the terminal on the bonding destination side is a methylene group bonded to the nitrogen atom (N) in the general formula (I).
  • the above-mentioned methylene group at the terminal on the bonding side is a methylene group bonded to an oxygen atom (O) bonded to a benzene ring skeleton in the general formula (I). .
  • the alkyl group in X 1 to X 4 may have 1 to 9 carbon atoms, but is preferably linear or branched.
  • the number of carbon atoms of the alkyl group in X 1 to X 4 may be any one of 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, and 8 or more, and 9 or less, 8 or less , 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, and 2 or less.
  • alkyl group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, and neopentyl.
  • Tert-pentyl group 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, -Methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3,3-dimethylpentyl, 3-ethylpentyl, 2 , 2,3-trimethylbutyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, nonyl group and the like.
  • the unsaturated hydrocarbon group for X 1 to X 4 is not particularly limited as long as it has 3 to 9 carbon atoms and has 1 to 4 triple bonds (C ⁇ C) between carbon atoms.
  • Examples of the unsaturated hydrocarbon group for X 1 to X 4 include a structure in which a single bond (C—C) between carbon atoms in the alkyl group having 3 to 9 carbon atoms is substituted with an unsaturated bond.
  • Preferred examples of the unsaturated hydrocarbon group include a structure in which, in the alkyl group having 3 to 9 carbon atoms, 1 to 4 single bonds (C—C) between carbon atoms are replaced by triple bonds. Things.
  • the carbon number of the unsaturated hydrocarbon group in X 1 to X 4 may be any of 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, and 8 or more, and 9 or less, 8 or less, 7 or less. , 6 or less, 5 or less, and 4 or less.
  • the number of triple bonds between carbon atoms may be any one or more, two or more, and three or more, or four or less, three or less. Any of the following and two or less may be used.
  • Compound (I) in which the number of triple bonds between carbon atoms in the unsaturated hydrocarbon group is one (that is, the unsaturated hydrocarbon group is an alkynyl group) is easy to produce. It is preferred in that respect.
  • the positions of triple bonds and double bonds between carbon atoms are not particularly limited. However, it is preferable that the terminal carbon atom on the bonding destination side in X 1 to X 4 does not form an unsaturated bond with an adjacent carbon atom.
  • the above-mentioned carbon atom at the terminal on the bonding destination side is a carbon atom bonded to the nitrogen atom (N) in the general formula (I).
  • the above-mentioned carbon atom at the terminal on the bonding side is a carbon atom bonded to an oxygen atom (O) bonded to a benzene ring skeleton in the general formula (I).
  • O oxygen atom
  • I benzene ring skeleton in the general formula (I).
  • one carbon atom does not form two unsaturated bonds (in other words, these unsaturated bonds Are not adjacent in X 1 to X 4 ).
  • the terminal carbon atom on the side opposite to the bond destination side preferably forms a triple bond with an adjacent carbon atom.
  • an unsaturated hydrocarbon group which is an alkynyl group include a propargyl group (alias: 2-propynyl group, —CH 2 —C ⁇ CH), a 3-butynyl group, a 4-pentynyl group, and a 5-hexynyl group. , 6-heptynyl group, 7-octynyl group and 8-noninyl group.
  • the unsaturated hydrocarbon group for X 1 to X 4 has one or two or more methylene groups other than the terminal at the bonding destination, one methylene group is an oxygen atom (—O— ), Or two or more non-adjacent methylene groups may be substituted with an oxygen atom.
  • the terminus on the bonding destination side of the unsaturated hydrocarbon group is the same as that described above with reference to a methylene group as an example.
  • X 1 and X 2 it is a group bonded to the nitrogen atom (N) in the general formula (I), and in the case of X 3 and X 4 , the benzene ring skeleton in the general formula (I) It is a group bonded to a bonded oxygen atom (O).
  • the unsaturated hydrocarbon group has one methylene group other than the terminal at the bonding destination, this one methylene group may be substituted with an oxygen atom.
  • this one methylene group may be substituted with an oxygen atom.
  • two or more non-adjacent methylene groups are substituted with an oxygen atom. It may be.
  • the unsaturated hydrocarbon group has an alkylene group having 2 or more carbon atoms, the alkylene group is connected to a methylene group by the number of carbon atoms of the alkylene group. I reckon.
  • some or all of the two or more non-adjacent methylene groups can be selected from such alkylene groups.
  • the substitution position is not particularly limited as long as the above conditions are satisfied, and the carbon atom forming a triple bond between carbon atoms is not particularly limited.
  • it is a carbon atom that is not adjacent to an atom.
  • the number of the methylene groups substituted with an oxygen atom is preferably one or two, and more preferably one.
  • the unsaturated hydrocarbon group in which the methylene group is substituted with an oxygen atom is preferable.
  • the unsaturated hydrocarbon group having 5 to 9 carbon atoms one methylene group is substituted with an oxygen atom. That have been included.
  • the terminal methylene group on the bonding destination is substituted with a carbonyl group, and one or more methylene groups other than the terminal on the bonding destination are substituted. May be substituted with an oxygen atom.
  • unsaturated hydrocarbon groups preferred are, for example, the above-mentioned unsaturated hydrocarbon groups having 5 to 9 carbon atoms, wherein the terminal methylene group on the bonding side is substituted with a carbonyl group, and One in which one methylene group other than the terminal on the bonding side is substituted with an oxygen atom is exemplified.
  • the unsaturated hydrocarbon group for X 1 to X 4 may have a substituent.
  • “the unsaturated hydrocarbon group may have a substituent” means that one or more hydrogen atoms in the unsaturated hydrocarbon group are substituted with a group other than a hydrogen atom. May be ".
  • the term “group” includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
  • Examples of the substituent which X 1 to X 4 may have include, for example, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group (—OH ), Halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl Groups, hydroxyalkyl groups, halogenated alkyl groups, alkoxyalkyl groups, alkylcarbonyloxyalkyl groups, arylcarbonyloxyalkyl groups, aralkylcarbonyloxyalkyl groups, and the like.
  • the aryl group (aromatic hydrocarbon group) as the substituent may be monocyclic or polycyclic.
  • the aryl group include a phenyl group, 1-naphthyl group, 2-naphthyl group, o-tolyl group, m-tolyl group, p-tolyl group, xylyl group (dimethylphenyl group) and the like.
  • Examples include groups in which one or more hydrogen atoms of the group are further substituted with an aryl group or an alkyl group similar to those in X 1 to X 4 .
  • the aryl group having such a substituent preferably has 6 to 20 carbon atoms including the substituent.
  • the aryl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • the aryl group having a substituent preferably has 7 to 20 carbon atoms including the substituent.
  • the trialkylsilyl group as the substituent is a monovalent group having a structure in which three hydrogen atoms of a silyl group (—SiH 3 ) are substituted with the same alkyl groups as those in X 1 to X 4 .
  • the three alkyl groups bonded to the silicon atom in the trialkylsilyl group may be all the same, may be different from each other, or only a part (more specifically, two) may be the same. It may be.
  • the combination of different alkyl groups can be arbitrarily selected and is not particularly limited.
  • trialkylsilyl group examples include, but are not limited to, a trimethylsilyl group, an ethyldimethylsilyl group, a diethylmethylsilyl group, a tert-butyldimethylsilyl group, and the like.
  • the trialkylsilyl group preferably has 3 to 20 carbon atoms.
  • dialkylmonoarylsilyl group as the substituent, two hydrogen atoms of a silyl group (—SiH 3 ) are substituted with the same alkyl groups as those in X 1 to X 4 , and one hydrogen atom is substituted. And a monovalent group having a structure substituted with the same aryl group as the above-mentioned substituent.
  • the two alkyl groups bonded to the silicon atom in the dialkylmonoarylsilyl group may be the same or different.
  • the combination of different alkyl groups can be arbitrarily selected and is not particularly limited.
  • dialkylmonoarylsilyl group examples include, but are not limited to, a dimethylphenylsilyl group and a diethylphenylsilyl group.
  • the dialkylmonoarylsilyl group preferably has 8 to 30 carbon atoms.
  • one hydrogen atom of the silyl group (—SiH 3 ) is substituted with the same alkyl group as that in X 1 to X 4 and two hydrogen atoms are And a monovalent group having a structure substituted with the same aryl group as the above-mentioned substituent.
  • the two aryl groups bonded to the silicon atom in the monoalkyldiarylsilyl group may be the same or different from each other.
  • the combination of different aryl groups can be arbitrarily selected and is not particularly limited.
  • Examples of the monoalkyldiarylsilyl group include, but are not limited to, a methyldiphenylsilyl group, an ethyldiphenylsilyl group, and a tert-butyldiphenylsilyl group.
  • the monoalkyldiarylsilyl group preferably has 13 to 30 carbon atoms.
  • Examples of the triarylsilyl group as the substituent include a monovalent group having a structure in which three hydrogen atoms of a silyl group (—SiH 3 ) are substituted with the same aryl group as the substituent.
  • Can be The three aryl groups bonded to the silicon atom in the triarylsilyl group may be all the same, may be different, or may be partially (more specifically, two) identical. It may be.
  • the combination of different aryl groups can be arbitrarily selected and is not particularly limited.
  • Examples of the triarylsilyl group include, but are not limited to, a triphenylsilyl group.
  • the triarylsilyl group preferably has 18 to 30 carbon atoms.
  • halogen atom examples include a fluorine atom (—F), a chlorine atom (—Cl), a bromine atom (—Br), and an iodine atom (—I).
  • alkoxy group as the substituent examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, nonyloxy, and the like.
  • a monovalent group having a structure in which an alkyl group similar to that in 1 to X 4 is bonded to an oxygen atom is exemplified.
  • the alkoxy group preferably has 1 to 9 carbon atoms.
  • alkylcarbonyloxy group examples include a methylcarbonyloxy group (also called an acetoxy group), an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group, and isobutyl.
  • the alkylcarbonyloxy group preferably has 2 to 10 carbon atoms.
  • the arylcarbonyloxy group as the substituent includes, for example, phenylcarbonyloxy group, 1-naphthylcarbonyloxy group, 2-naphthylcarbonyloxy group, o-tolylcarbonyloxy group, m-tolylcarbonyloxy group, p-tolyl
  • the arylcarbonyloxy group preferably has 7 to 21 carbon atoms, and more preferably 7 to 11 carbon atoms.
  • Examples of the aralkyl group as the substituent include a benzyl group (alias: phenylmethyl group), a phenethyl group (alias: 2-phenylethyl group), a 1-naphthylmethyl group, a 2-naphthylmethyl group, a 2- (1 In the same alkyl groups as those in X 1 to X 4 such as —naphthyl) ethyl group, 2- (2-naphthyl) methyl group and phenylnonyl group, one hydrogen atom is the same as the above-mentioned substituent. And a monovalent group having a structure substituted with an aryl group.
  • the aralkyl group preferably has 7 to 29 carbon atoms, and more preferably 7 to 19 carbon atoms.
  • trialkylsilylalkyl group as the substituent one hydrogen atom in the same alkyl group as that in X 1 to X 4 is substituted with the same trialkylsilyl group as the substituent.
  • Monovalent groups of the structure are mentioned.
  • the trialkylsilylalkyl group as the substituent include, but are not limited to, a trimethylsilylmethyl group, an ethyldimethylsilylmethyl group, a diethylmethylsilylmethyl group, and a tert-butyldimethylsilylmethyl group.
  • the trialkylsilylalkyl group preferably has 4 to 25 carbon atoms.
  • dialkyl monoaryl silylalkyl group is a substituent, one of the hydrogen atoms of the same alkyl group as in X 1 ⁇ X 4 is substituted with the same dialkylamino monoaryl silyl group as being the substituent And a monovalent group having the following structure.
  • dialkylmonoarylsilylalkyl group as the substituent include, but are not limited to, a dimethylphenylsilylmethyl group and a diethylphenylsilylmethyl group.
  • the dialkylmonoarylsilylalkyl group preferably has 9 to 35 carbon atoms.
  • Examples of the monoalkyl diaryl silylalkyl group is a substituent, one of the hydrogen atoms of the same alkyl group as in X 1 ⁇ X 4 is substituted with the same mono alkyldiarylsilyl groups and those that are the substituent And a monovalent group having the following structure.
  • Examples of the dialkylmonoarylsilylalkyl group as the substituent include, but are not limited to, a methyldiphenylsilylmethyl group, an ethyldiphenylsilylmethyl group, and a tert-butyldiphenylsilylmethyl group.
  • the monoalkyldiarylsilylalkyl group preferably has 14 to 35 carbon atoms.
  • triarylsilylalkyl group As the triarylsilylalkyl group as the substituent, one hydrogen atom of the same alkyl group as that in the above-described trialkylsilyl group is substituted with the same triarylsilyl group as the above-described substituent. And a monovalent group having the following structure.
  • the triarylsilylalkyl group as the substituent include, but are not limited to, a triphenylsilylmethyl group.
  • the triarylsilylalkyl group preferably has 19 to 35 carbon atoms.
  • Examples of the hydroxyalkyl group as the substituent include a monovalent group having a structure in which one hydrogen atom of the same alkyl group as in X 1 to X 4 is substituted with a hydroxy group.
  • Examples of the hydroxyalkyl group as the substituent include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 3-hydroxy-n-propyl group, a 2-hydroxy-1-methylethyl group, Examples include, but are not limited to, a hydroxy-1-methylethyl group and a hydroxynonyl group.
  • the hydroxyalkyl group preferably has 1 to 9 carbon atoms.
  • halogenated alkyl group as the substituent examples include a monovalent group having a structure in which one or more hydrogen atoms of the same alkyl group as those in X 1 to X 4 are substituted with a halogen atom.
  • a perhaloalkyl group a monovalent group having a structure in which all hydrogen atoms are substituted with halogen atoms
  • the halogen atom that replaces the hydrogen atom include the same halogen atom as the substituent.
  • these two or more halogen atoms may be all the same, may be all different, or may be partially the same. Is also good.
  • halogenated alkyl group as the substituent include, for example, a monochloromethyl group, a dichloromethyl group, a trichloromethyl group, a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a monochlorononyl group, and the like. It is not limited to.
  • the halogenated alkyl group preferably has 1 to 9 carbon atoms.
  • the alkoxyalkyl group as the substituent is a monovalent structure having the same alkyl group as that in X 1 to X 4 in which one hydrogen atom is substituted with the same alkoxy group as the substituent.
  • the group of is mentioned.
  • Examples of the alkoxyalkyl group as the substituent include a methoxymethyl group, an ethoxymethyl group, an n-propoxymethyl group, an isopropoxymethyl group, a methoxyethyl group, an ethoxyethyl group, an n-propoxyethyl group, and an isopropoxyethyl group.
  • the alkoxyalkyl group preferably has 2 to 18 carbon atoms.
  • alkylcarbonyloxyalkyl group as the substituent, one hydrogen atom of the same alkyl group as that in X 1 to X 4 is substituted with the same alkylcarbonyloxy group as the above substituent.
  • Monovalent groups of the structure are mentioned.
  • alkylcarbonyloxyalkyl group examples include a methylcarbonyloxymethyl group (alias: acetoxymethyl group), an ethylcarbonyloxymethyl group, an n-propylcarbonyloxymethyl group, an isopropylcarbonyloxymethyl group, a nonylcarbonyl Oxymethyl group, methylcarbonyloxyethyl group (alias: acetoxyethyl group), ethylcarbonyloxyethyl group, n-propylcarbonyloxyethyl group, isopropylcarbonyloxyethyl group, nonylcarbonyloxyethyl group, methylcarbonyloxynonyl group (alias) : Acetoxynonyl group) and the like, but are not limited thereto.
  • the alkylcarbonyloxyalkyl group preferably has 3 to 19 carbon atoms.
  • arylcarbonyloxyalkyl group as the substituent, one hydrogen atom of the same alkyl group as that in X 1 to X 4 is substituted with the same arylcarbonyloxy group as the above substituent.
  • Monovalent groups of the structure are mentioned.
  • the arylcarbonyloxyalkyl group as the substituent include a phenylcarbonyloxymethyl group, a 1-naphthylcarbonyloxymethyl group, a 2-naphthylcarbonyloxymethyl group, a phenylcarbonyloxyethyl group, and a 1-naphthylcarbonyloxyethyl group.
  • the arylcarbonyloxyalkyl group preferably has 8 to 30 carbon atoms, and more preferably 8 to 20 carbon atoms.
  • aralkylcarbonyloxyalkyl group as the substituent, one hydrogen atom of the same alkyl group as that in X 1 to X 4 is substituted with the same aralkylcarbonyloxy group as the substituent.
  • Monovalent groups of the structure are mentioned.
  • aralkylcarbonyloxyalkyl group examples include, for example, a benzylcarbonyloxymethyl group, a phenethylcarbonyloxymethyl group, a 1-naphthylmethylcarbonyloxymethyl group, a 2-naphthylmethylcarbonyloxymethyl group, a benzylcarbonyloxyethyl group Phenethylcarbonyloxyethyl group, 1-naphthylmethylcarbonyloxyethyl group, 2-naphthylmethylcarbonyloxyethyl group, benzylcarbonyloxynonyl group, and the like, but are not limited thereto.
  • the aralkylcarbonyloxyalkyl group preferably has 9 to 35 carbon atoms, and more preferably 9 to 26 carbon atoms.
  • the number of the substituent is not particularly limited, but is preferably one or two, and more preferably one.
  • the bonding position of the substituent is not particularly limited. It is preferable that a substituent is bonded to the cation.
  • the terminal carbon atom on the opposite side to the bonding destination side of the unsaturated hydrocarbon group is the same as that of the adjacent carbon atom. Among them, a triple bond is formed, and the above-mentioned substituent is bonded to the terminal carbon atom.
  • X 1 and X 2 are the aforementioned alkyl groups
  • these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring .
  • the ring is a nitrogen-containing aliphatic ring containing one nitrogen atom as an atom constituting the ring skeleton.
  • the positions of the carbon atoms that are mutually bonded in the alkyl group are not particularly limited.
  • the carbon atoms bonded to each other may be terminal carbon atoms in the alkyl group or non-terminal carbon atoms.
  • the number of carbon atoms bonded to each other in the alkyl group is the same, and each may be only one, or may be two or more, but is preferably one or two. . That is, the ring may be monocyclic or polycyclic.
  • the number of ring members of the ring (the total number of carbon atoms and nitrogen atoms constituting the ring skeleton) is not particularly limited, but is preferably 5 to 10, and more preferably 5 to 8.
  • the formation of the ring described above is the same in the case of X 3 and X 4 . That is, when X 3 and X 4 are the aforementioned alkyl groups, these two alkyl groups have an oxygen atom to which each of these alkyl groups is bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded. Together with the constituent carbon atoms, they may be mutually bonded to form a ring.
  • the ring is an oxygen-containing aliphatic ring containing two oxygen atoms as atoms constituting the ring skeleton.
  • the positions of the carbon atoms that are mutually bonded in the alkyl group are not particularly limited.
  • the carbon atoms bonded to each other may be terminal carbon atoms in the alkyl group or non-terminal carbon atoms.
  • the number of carbon atoms bonded to each other in the alkyl group is the same, and each may be only one, or may be two or more, but is preferably one or two. . That is, the ring may be monocyclic or polycyclic.
  • the number of ring members of the ring (the total number of carbon atoms and oxygen atoms constituting the ring skeleton) is not particularly limited, but is preferably 5 to 10, and more preferably 5 to 8.
  • X 1 , X 2 , X 3 and X 4 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and have a substituent.
  • the substituent, the unsaturated hydrocarbon group, and the ring are as described above.
  • n 1 and n 3 are each independently 0 or 1.
  • n 1 defines the presence or absence of the bond of X 5 in the benzene ring skeleton where the group represented by the general formula —OX 3 and the group represented by the general formula —OX 4 are directly bonded.
  • n 3 defines the presence or absence of the group represented by the general formula —OX 6 in the alkylene skeleton directly bonded to the group represented by the general formula —NX 1 X 2 .
  • X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
  • X 5 is the same as the above-mentioned unsaturated hydrocarbon group for X 1 to X 4 except that the number of carbon atoms is 2 to 8 instead of 3 to 9, that is, the number of carbon atoms is 1 .
  • the terminal carbon atom on the opposite side to the bond destination side preferably forms a triple bond with an adjacent carbon atom.
  • an unsaturated hydrocarbon group which is an alkynyl group include an ethynyl group (—C ⁇ CH), a propargyl group (alias: 2-propynyl group), a 3-butynyl group, a 4-pentynyl group, and a 5-hexynyl group. Group, 6-heptynyl group and 7-octynyl group.
  • the number of substituents is not particularly limited, it is preferable that one or two, more preferably one.
  • the bonding position of the substituent is not particularly limited.
  • a substituent is preferably bonded.
  • the unsaturated hydrocarbon group for X 5 has a substituent, wherein the unsaturated terminal carbon atom of the side opposite to the coupling destination side of the hydrocarbon group, between adjacent carbon atoms Wherein a triple bond is formed, and the substituent is bonded to the terminal carbon atom.
  • a group represented by the general formula —OX 3 and a group represented by the general formula —OX 4 are directly bonded to each other,
  • the bonding position of X 5 is not particularly limited.
  • a position having an ortho-position with respect to a group represented by the general formula —OX 3 (in other words, a group represented by the general formula —OX 3 is A carbon atom adjacent to the carbon atom to which it is bonded and to which the group represented by the general formula -OX 4 is not bonded), and a position having a meta-position (in other words, a carbon atom represented by the general formula -OX 4) A carbon atom adjacent to the carbon atom to which the group is bonded and to which the group represented by the general formula -OX 3 is not bonded), or a position having a para-position relationship.
  • the bonding position of X 5 in the benzene ring skeleton is a position having a meta-position or a position having a para-position with respect to the group represented by the general formula —OX 3. It is preferable that
  • X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent. is there.
  • the unsaturated hydrocarbon group for X 6 is the same as the unsaturated hydrocarbon group for X 1 to X 4 described above.
  • the terminal carbon atom on the opposite side to the bonding destination side preferably forms a triple bond with an adjacent carbon atom.
  • Examples of such an unsaturated hydrocarbon group which is an alkynyl group include a propargyl group (alias: 2-propynyl group), a 3-butynyl group, a 4-pentynyl group, a 5-hexynyl group, a 6-heptynyl group, and a 7-heptinyl group.
  • Examples include an octynyl group and an 8-noninyl group.
  • the number of substituents is not particularly limited, but is preferably one or two, and more preferably one.
  • the bonding position of the substituent is not particularly limited, but the terminal carbon atom on the opposite side to the bonding destination side of the unsaturated hydrocarbon group is And a substituent is preferably bonded.
  • the terminal carbon atom on the side opposite to the side to which the unsaturated hydrocarbon group is bonded may be located between an adjacent carbon atom and Wherein a triple bond is formed, and the substituent is bonded to the terminal carbon atom.
  • n 2 is an integer of 1 to 5.
  • n 2 defines the number of carbon atoms of the alkylene skeleton (in other words, a chain hydrocarbon skeleton) to which the group represented by the general formula —NX 1 X 2 is directly bonded. That is, the alkylene skeleton has 2 to 6 carbon atoms.
  • n 2 may be, for example, any one of 1 or more, 2 or more, 3 or more, and 4 or more within a range of 5 or less. Further, n 2 may be, for example, any one of 5 or less, 4 or less, 3 or less, and 2 or less within a range of 1 or more.
  • the compound (I) or a salt thereof in which n 2 is 1 has the same or similar chain skeleton having the same carbon number as dopamine, noradrenaline and adrenaline, which are important as naturally-occurring nerve function regulators. And its usefulness is high. Further, the compound (I) or a salt thereof in which n 2 is 2 to 5 may be able to regulate the level of its biological activity based on the compound (I) or a salt thereof in which n 2 is 1; High usefulness.
  • n 1 when n 1 is 0 and n 3 is 1, one or two or more of X 1 , X 2 , X 3 , X 4 and X 6 Is an unsaturated hydrocarbon group (that is, an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 carbon atoms which may have a substituent).
  • n 1 when n 1 is 1 and n 3 is 0, one or two of X 1 , X 2 , X 3 , X 4 and X 5 are used.
  • the above description is based on the unsaturated hydrocarbon group (that is, an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 or 2 to 8 carbon atoms which may have a substituent). ).
  • the unsaturated hydrocarbon group that is, an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 or 2 to 8 carbon atoms which may have a substituent.
  • the unsaturated hydrocarbon group that is, an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 or 2 to 8 carbon atoms which may have a substituent.
  • the compound (I) or a salt thereof has one or two or more unsaturated hydrocarbon groups having 3 to 9 or 2 to 8 carbon atoms in total. In other words, the compound (I) or a salt thereof always contains a group having a triple bond between carbon atoms.
  • compound (I) or a salt thereof can be detected by Raman scattering spectroscopy based on this triple bond, and a label can be introduced by reacting this triple bond with another reagent. Therefore, it can be detected by this label.
  • a method for detecting compound (I) or a salt thereof will be described in detail later.
  • the salt of compound (I) is a compound in which the group capable of forming a salt in compound (I) forms a salt.
  • examples of the group capable of forming a salt include, but are not limited to, a group represented by the general formula -NX 1 X 2 in the general formula (I).
  • Examples of the salt of compound (I) include salts formed by reacting compound (I) with an acid or base.
  • examples of the salt of compound (I) include compounds having one or more salt formation sites. .
  • these two or more salts may be all the same, may be all different, or may be partially identical. Good.
  • the valence of the anion forming the salt of compound (I) is not particularly limited, and may be 1 (monovalent) or 2 (divalent) or more.
  • the valence of the cation forming the salt of the compound (I) is not particularly limited, and may be 1 (monovalent) or 2 (divalent) or more.
  • the number of cations and anions forming a salt of one molecule of compound (I) may be only one, or two or more, and when two or more, these cations or anions are used. All the anions may be the same, all may be different, or only some may be the same.
  • the salt of the compound (I) is electrically neutral as a whole molecule, that is, the total value of the valence of the cation and the total value of the valence of the anion in one molecule of the compound (I) are the same. Is preferred.
  • the anion forming the salt may be any of an inorganic anion and an organic anion.
  • Examples of the inorganic anion include a hydroxide ion, a nitrate ion, a sulfate ion, a carbonate ion, a hydrogen carbonate ion, a halide ion, and an anion of an inorganic acid.
  • Examples of the halide ion include a fluoride ion, a chloride ion, a bromide ion, and an iodide ion.
  • Examples of the anion of the inorganic acid include an anion of phosphoric acid.
  • Examples of the organic anion include an anion of an organic acid.
  • Examples of the anion of the organic acid include a carboxylic acid anion, a halogenated carboxylic acid anion, a sulfonic acid anion, and a halogenated sulfonic acid anion.
  • the anion of the carboxylic acid may be an anion of a monocarboxylic acid (monovalent carboxylic acid) or an anion of a polyvalent carboxylic acid such as dicarboxylic acid or tricarboxylic acid.
  • examples of the anion of the carboxylic acid include formate ion; acetate ion; propanoic acid (propionic acid) ion, butanoic acid (butyric acid) ion, pentanoic acid (valeric acid) ion, hexanoic acid (caproic acid) ion, and heptanoic acid ( Enanthate), octanoate (caprylate), nonanoate (pelargonate), decanoate (caprate), dodecanoate (laurate), tetradecanoate (myristate), pentadecanoate, hexadecane Acid (palmitic acid) ion, heptadecanoic acid
  • the anion of the halogenated carboxylic acid is preferably an anion of a fluorinated carboxylic acid or an anion of a chloride carboxylic acid.
  • the anion of the fluorinated carboxylic acid include, for example, anions having a structure in which one or two or more hydrogen atoms are substituted with a fluorine atom in the anion of the carboxylic acid, such as an anion of trifluoroacetic acid. May be replaced by a fluorine atom.
  • examples of the anion of the carboxylic acid chloride include anions having a structure in which one or two or more hydrogen atoms are substituted with a chlorine atom in the anion of the carboxylic acid, such as an anion of trichloroacetic acid. All hydrogen atoms may be replaced by chlorine atoms.
  • the sulfonic acid anion may be a monosulfonic acid (monovalent sulfonic acid) anion or a polyvalent sulfonic acid anion.
  • the anion of the sulfonic acid include, for example, an anion of the carboxylic acid, such as methanesulfonic acid, in which a carboxy group anion (—COO ⁇ ) is substituted with a sulfo group anion (—SO 3 ⁇ ).
  • the anion of the halogenated sulfonic acid is preferably an anion of fluorinated sulfonic acid.
  • the anion of the fluorinated sulfonic acid include, for example, an anion having a structure in which one or two or more hydrogen atoms are substituted with a fluorine atom in the anion of the sulfonic acid, such as trifluoromethanesulfonic acid and nonafluorobutanesulfonic acid. And all hydrogen atoms may be replaced by fluorine atoms.
  • the cation forming the salt may be any of an inorganic cation and an organic cation.
  • Examples of the inorganic cation include sodium ions, potassium ions, calcium ions, magnesium ions, lithium ions, barium ions, aluminum ions, zinc ions, copper ions (Cu + , Cu 2+ ), and iron ions (Fe 2+ , Fe 3+). ), Ammonium ion and the like.
  • Examples of the organic cation include a cation in which a hydrogen ion (H + ) is coordinated to a nitrogen atom of a group represented by the general formula —NX 1 X 2 in the general formula (I).
  • salt of the compound (I) include salts represented by the following general formula (Is).
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , n 1 , n 2 and n 3 represent X 1 , X 2 , X 3 in the general formula (I) , X 4 , X 5 , X 6 , n 1 , n 2 and n 3 .
  • Q 2 — is a monovalent anion, and examples thereof include monovalent inorganic anions; monocarboxylic acid anions, halogenated monocarboxylic acid anions, and monosulfones.
  • monovalent organic anions such as anions of acids and anions of halogenated monosulfonic acids are exemplified.
  • Compound (I) is a compound represented by the following general formula (I) -1 (hereinafter, may be abbreviated as “compound (I) -1” in the present specification), the following general formula (I) -2 (Herein, may be abbreviated as “compound (I) -2”), a compound represented by the following general formula (I) -3 (in the present specification, “compound (I) -2”).
  • compound (I) -4 a compound represented by the following general formula (I) -4 (herein, sometimes abbreviated as “compound (I) -4”) It is preferable that That is, compound (I) or a salt thereof is compound (I) -1 or a salt thereof, compound (I) -2 or a salt thereof, compound (I) -3 or a salt thereof, or compound (I) -4 or a salt thereof. And a salt.
  • Compound (I) -1 is included in compound (I) when n 1 is 0.
  • X 1, X 2, n 2 and n 3 are the same as general X 1 in formula (I), X 2, n 2 and n 3.
  • one or both of X 1 and X 2 have 1 to 4 triple bonds between carbon atoms and may have 3 carbon atoms which may have a substituent.
  • X 31 and X 41 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • the alkyl group having 1 to 9 carbon atoms in X 31 and X 41 is the same as the alkyl group having 1 to 9 carbon atoms in X 1 to X 4 .
  • these two alkyl groups constitute an oxygen atom to which these alkyl groups are respectively bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded.
  • the carbon atoms may be mutually bonded to form a ring.
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 3 and X 4 are an alkyl group.
  • Compound (I) -2 is included in compound (I) when n 1 is 0.
  • X 3, X 4, n 2 and n 3 are the same as X 3, X 4, n 2 and n 3 in the general formula (I).
  • one or both of X 3 and X 4 have 1 to 4 triple bonds between carbon atoms, and may have an optionally substituted carbon number. 3 to 9 unsaturated hydrocarbon groups.
  • X 11 and X 21 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • the alkyl group having 1 to 9 carbon atoms in X 11 and X 21 is the same as the alkyl group having 1 to 9 carbon atoms in X 1 to X 4 .
  • X 11 and X 21 are the aforementioned alkyl groups
  • these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring .
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 1 and X 2 are alkyl groups.
  • Compound (I) -3 is included in compound (I) when n 1 is 1.
  • X 5, n 2 and n 3 are the same as X 5, n 2 and n 3 in the general formula (I).
  • X 11 , X 21 , X 31 and X 41 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • X 11 , X 21 , X 31 and X 41 are the same as those described above.
  • these two alkyl groups are mutually bonded to form a ring.
  • the ring may be formed by bonding these two alkyl groups to each other, or X 3 and When X 4 is an alkyl group, it is the same as the ring which these two alkyl groups may form by bonding to each other.
  • Compound (I) -4 is included in compound (I) in which n 1 is 0 and n 3 is 1. In the Formula (I) -4, n 2 is the same as n 2 in the general formula (I).
  • X 11 , X 21 , X 31 and X 41 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • X 11 , X 21 , X 31 and X 41 are the same as those described above.
  • these two alkyl groups are mutually bonded to form a ring.
  • the ring may be formed by bonding these two alkyl groups to each other, or X 3 and When X 4 is an alkyl group, it is the same as the ring which these two alkyl groups may form by bonding to each other.
  • X 61 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent
  • X 1 to X 4 are the same as the C 3 to C 9 unsaturated hydrocarbon group which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
  • the compound (I) is a compound represented by the following general formula (I) -1-1 (in this specification, may be abbreviated as “compound (I) -1-1”); A compound represented by the following general formula (I) -2-1 (in some cases, abbreviated as “compound (I) -1-2”) in the present specification.
  • a compound may be abbreviated as “compound (I) -2-1” in the present specification) and a compound represented by the following general formula (I) -2-2 (in the present specification, “compound (I) -2-1” (May be abbreviated as (I) -2-2)) or a compound represented by the following general formula (I) -2-3 (in this specification, abbreviated as “compound (I) -2-3”).
  • a compound represented by the following general formula (I) -3-1 hereeinafter, abbreviated as “compound (I) -3-1”.
  • -4-1 herein, "compound (I) -4-1” It is preferable that a sometimes abbreviated as).
  • compound (I) or a salt thereof is compound (I) -1-1 or a salt thereof, compound (I) -1-2 or a salt thereof, compound (I) -2-1 or a salt thereof, or a compound (I). ) -2-2 or a salt thereof, compound (I) -2-3 or a salt thereof, compound (I) -3-1 or a salt thereof, or compound (I) -4-1 or a salt thereof.
  • Compound (I) -1-1 or a salt thereof, and compound (I) -1-2 or a salt thereof are included in compound (I) -1 or a salt thereof.
  • Compound (I) -2-1 or a salt thereof, compound (I) -2-2 or a salt thereof, and compound (I) -2-3 or a salt thereof are included in compound (I) -2 or a salt thereof. Is done.
  • Compound (I) -3-1 or a salt thereof is included in compound (I) -3 or a salt thereof.
  • Compound (I) -4-1 or a salt thereof is included in compound (I) -4 or a salt thereof.
  • R; n 3 are the same as above. )
  • n 3 is the same as n 3 in the general formula (I).
  • X 32 and X 42 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • alkyl groups having 1 to 5 carbon atoms in X 32 and X 42 of the alkyl groups having 1 to 9 carbon atoms in X 1 to X 4 (or X 31 and X 41 ), Same as the ones.
  • these two alkyl groups constitute an oxygen atom to which these alkyl groups are respectively bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded.
  • the carbon atoms may be mutually bonded to form a ring.
  • the ring is an oxygen-containing aliphatic ring containing two oxygen atoms as atoms constituting the ring skeleton.
  • the positions of the carbon atoms that are mutually bonded in the alkyl group are not particularly limited.
  • the carbon atoms bonded to each other may be terminal carbon atoms in the alkyl group or non-terminal carbon atoms.
  • the number of carbon atoms bonded to each other in the alkyl group is the same, and each may be only one, or may be two or more, but is preferably one or two. . That is, the ring may be monocyclic or polycyclic.
  • the number of ring members of the ring (the total number of carbon atoms and oxygen atoms constituting the ring skeleton) is not particularly limited, but is preferably 5 to 10, and more preferably 5 to 8.
  • G 1 represents a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group, a halogen Atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl group, hydroxy An alkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group,
  • Examples of the alkyl group for G 1 include the same alkyl groups having 1 to 9 carbon atoms as those for X 1 to X 4 , and are preferably linear or branched.
  • n 3 is the same as n 3 in the general formula (I).
  • G 2 is the same as G 1 in the general formula (I) -1-1, and G 1 and G 2 are independently determined.
  • X 32 and X 42 in the general formula (I) in -1-2 is the same as the X 32 and X 42 in the general formula (I) in -1-1.
  • n 3 is the same as n 3 in the general formula (I).
  • X 12 and X 22 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms in X 12 and X 22 includes the alkyl group having 1 to 5 carbon atoms among the alkyl groups having 1 to 9 carbon atoms in X 1 to X 4 (or X 11 and X 21 ). Same as the ones.
  • X 12 and X 22 are the aforementioned alkyl groups
  • these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring .
  • the ring is a nitrogen-containing aliphatic ring containing one nitrogen atom as an atom constituting the ring skeleton.
  • the positions of the carbon atoms that are mutually bonded in the alkyl group are not particularly limited.
  • the carbon atoms bonded to each other may be terminal carbon atoms in the alkyl group or non-terminal carbon atoms.
  • the number of carbon atoms bonded to each other in the alkyl group is the same, and each may be only one, or may be two or more, but is preferably one or two. . That is, the ring may be monocyclic or polycyclic.
  • the number of ring members of the ring (the total number of carbon atoms and nitrogen atoms constituting the ring skeleton) is not particularly limited, but is preferably 5 to 10, and more preferably 5 to 8.
  • G 3 in the general formula (I) -2-1 is the same as G 1 in the general formula (I) -1-1.
  • n 3 is the same as n 3 in the general formula (I).
  • X 12 and X 22 are the same as those described above.
  • these two alkyl groups may be bonded to each other to form a ring, and the aforementioned ring is the same as described above.
  • G 4 in the general formula (I) -2-2 is the same as G 1 in the general formula (I) -1-1.
  • n 3 is the same as n 3 in the general formula (I).
  • X 12 and X 22 are the same as those described above.
  • these two alkyl groups may be bonded to each other to form a ring, and the aforementioned ring is the same as described above.
  • G 3 and G 4 are the same as those described above.
  • X 12 , X 22 , X 32 and X 42 are the same as those described above.
  • X 12 and X 22 are the aforementioned alkyl groups, or when X 32 and X 42 are the aforementioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. Said ring may be the same as described above.
  • G 5 in the general formula (I) -3-1 is the same as G 1 in the general formula (I) -1-1.
  • G 6 in the general formula (I) -4-1 is the same as G 1 in the general formula (I) -1-1.
  • the molecular weight of compound (I) is preferably 350 or less, more preferably 300 or less, and even more preferably 250 or less.
  • the molecular weight of a naturally-occurring nerve function modulator having a physiological activity on nerve cells is usually relatively small. Therefore, by analyzing the behavior and properties of the compound (I) having a relatively small molecular weight as described above in a nerve cell, it is possible to consider the behavior and properties of a naturally-occurring nerve function regulator with high accuracy. It is possible, and the usefulness of compound (I) is higher.
  • the salt of the compound (I) may be referred to as “converted molecular weight” in the present specification when it is replaced with a salt-free state (that is, when considered as the compound (I)).
  • Such a salt of compound (I) also usually has a relatively low molecular weight, and thus has higher utility similarly to the above-mentioned compound (I) having a small molecular weight.
  • such usefulness of the compound (I) and its salt is merely an example, and the upper limit of the molecular weight of the compound (I) and the converted molecular weight of the salt of the compound (I) are limited to those shown here. Not done.
  • the lower limits of the molecular weight of compound (I) and the reduced molecular weight of the salt of compound (I) are not particularly limited.
  • the molecular weight and the reduced molecular weight are preferably 177 or more from the viewpoint of easy production of the compound (I).
  • Preferred compounds (I) are exemplified below.
  • Preferred compounds (I) also include, in addition to the above, compounds exemplified below and having the above substituent.
  • Preferred salts of compound (I) include the salts of the compounds exemplified below and the salts of the compounds exemplified below having the substituent.
  • the compound (I) of the present embodiment or a salt thereof is not limited thereto.
  • Compound (I) can be regarded as a derivative of dopamine, noradrenaline (alias: norepinephrine) or adrenaline (alias: epinephrine), which are known neuronal function modulators.
  • the term “derivative” refers to a compound having a structure in which one or more hydrogen atoms of an original compound are substituted with a group other than a hydrogen atom. Therefore, compound (I) and a salt thereof are useful for elucidating the role (in other words, biological activity) of dopamine, noradrenaline and adrenaline in nerve cells among known neuronal function regulators. .
  • the structural formulas of dopamine, noradrenaline and adrenaline are shown below.
  • the compound (I) or a salt thereof is, for example, a compound represented by the following general formula (Ia) ( In this specification, it may be referred to as “compound (Ia)” and a compound represented by the following general formula (Ic) (in this specification, it may be referred to as “compound (Ic)”).
  • X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene
  • the methylene group may be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, 1 Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring; X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atom
  • Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are each independently a hydrogen atom, an alkyl group having 1 to 9 carbon atoms or a protecting group, and when Z 1a and Z 2a are the above-mentioned alkyl groups Or when Z 3a and Z 4a are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring, provided that Z 1a , Z 2a , Z 3a , One or more of Z 4a and Z 6a are hydrogen atoms. )
  • Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are each independently a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or a protecting group.
  • the alkyl group having 1 to 9 carbon atoms in Z 1a , Z 2a , Z 3a , Z 4a and Z 6a is the same as the alkyl group having 1 to 9 carbon atoms in X 1 to X 4 .
  • Z 1a and Z 2a are the aforementioned alkyl groups
  • these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring .
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 1 and X 2 are alkyl groups.
  • these two alkyl groups constitute an oxygen atom to which these alkyl groups are respectively bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded. May be mutually bonded to form a ring.
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 3 and X 4 are an alkyl group.
  • the protecting group in Z 1a , Z 2a , Z 3a , Z 4a and Z 6a may be a known one.
  • the protecting group for Z 1a and Z 2a for example, an amino group such as a tert-butoxycarbonyl group (may be abbreviated as “Boc group” in the present specification), a trifluoromethylcarbonyl group or the like is protected.
  • Known protecting groups are mentioned.
  • Examples of the protecting group for Z 3a , Z 4a and Z 6a include known protecting groups for protecting a hydroxy group such as a Boc group.
  • the protecting group for Z 3a and Z 4a include those in which they are mutually bonded to form a ring.
  • an isopropylidene group (—C (CH 3 ) 2- ) and the like.
  • Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are hydrogen atoms.
  • X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, and X 1 wherein at ⁇ X 4 are the same as the unsaturated hydrocarbon group.
  • the unsaturated hydrocarbon group for X0a has a methylene group at the terminal on the side of the bond, the methylene group may be substituted with a carbonyl group.
  • X 0a and the methylene group at the end of the coupling destination side, a methylene group bonded to the LG 1 in the general formula (Ic).
  • LG 1 is a leaving group, and may be a known group.
  • the leaving group include a halogen atom such as a bromine atom.
  • Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are hydrogen atoms, and therefore, in the unsaturated hydrocarbon group introduction step (1), A compound having a structure in which this hydrogen atom is substituted by the above-mentioned X0a or a salt thereof is produced.
  • the amount (mol) of the compound (Ic) used is based on the amount (mol) of the hydrogen atom to be substituted with X0a in the compound (Ia). And preferably 1 to 2 times the molar amount.
  • the compound (Ia) is preferable to react the compound (Ia) with the compound (Ic) using a base.
  • a base include, but are not particularly limited to, sodium hydride (NaH), potassium carbonate (K 2 CO 3 ), N, N-diisopropylethylamine (((CH 3 ) 2 CH) 2 NC 2 H 5 ), triethylamine ( (CH 3 CH 2 ) 3 N), lithium diisopropylamide ([(CH 3 ) 2 CH] 2 NLi) and the like.
  • the amount (mol) of the base used is 1 to the amount (mol) of the hydrogen atom to be substituted with X0a in the compound (Ia). It is preferable that the molar amount is up to 3 times.
  • a solvent may or may not be used during the reaction between the compound (Ia) and the compound (Ic).
  • the solvent may be appropriately selected depending on, for example, the types of the compound (Ia) and the compound (Ic), and is not particularly limited.
  • the solvent include N, N-dimethylformamide (DMF), acetonitrile, methylene chloride, tetrahydrofuran (THF) and the like.
  • the amount of the solvent used is not particularly limited, but the total amount (parts by mass) of all components other than the solvent is It is preferably 1 to 40 times by mass, and may be 1 to 30 times by mass.
  • the reaction temperature and the reaction time between the compound (Ia) and the compound (Ic) may be appropriately adjusted so as to improve the yield of the desired product.
  • the reaction temperature may be, for example, any of 0 to 40 ° C and 10 to 40 ° C.
  • the reaction time may be, for example, 0.5 to 24 hours.
  • post-treatment may be performed, if necessary, by a known method, and the product may be taken out. That is, if necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, and column chromatography are performed.
  • the product may be taken out. Further, the product taken out may be further subjected to crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more, as needed, once.
  • purification may be performed by performing the purification twice or more.
  • the product of the reaction between the compound (Ia) and the compound (Ic) is one or two of Z 1a , Z 2a , Z 3a , Z 4a and Z 6a.
  • the compound (I A ) is a compound in which the functional group at the corresponding site is protected by the protecting group.
  • Z 1a, Z 2a, Z 3a , Z 4a and Z 6a are not both a protecting group, the product is a compound of the desired compound (I A).
  • Z 1a, Z 2a, Z 3a, the alkyl group in Z 4a and Z 6a are those corresponding to the protecting group.
  • this cyclic group is an isopropylidene group (—C (CH 3 ) 2 -) Is a protecting group as described above.
  • the product obtained in this step is considered to have a protecting group or not to have a protecting group depends on what the target product is.
  • the deprotection step (1) When the product in the unsaturated hydrocarbon group introduction step (1) is the compound (I A ) having a protective group, after the unsaturated hydrocarbon group introduction step (1), the protective group is further added. (Ie, the deprotection step (1)). By performing the deprotection step (1), the intended compound (I A) is obtained.
  • the deprotection conditions may be appropriately selected according to the type of the protecting group, and a known deprotection method can be appropriately used. For example, when the protecting group is a trifluoromethylcarbonyl group (also called a trifluoroacetyl group), the protecting group can be deprotected by a method using a base such as lithium hydroxide.
  • the protecting group When the protecting group is a Boc group, it can be deprotected by a method using an acid such as trifluoroacetic acid or hydrochloric acid. When the protecting group is an isopropylidene group, it can be deprotected by a method using an acid such as hydrochloric acid.
  • the product may be handled after the reaction as in the case of the unsaturated hydrocarbon group introduction step (1). That is, after the completion of the reaction in the deprotection step (1), post-treatment may be performed as necessary by a known method to remove the product. That is, if necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, and column chromatography are performed. For example, the product may be taken out.
  • the product taken out may be further subjected to crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more, as needed, once.
  • purification may be performed by performing the purification twice or more.
  • any of a product that does not form a salt and a product that forms a salt can be used. May be obtained. Which of these is obtained depends on the conditions of the deprotection step (1).
  • any one of Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the compound (Ia) is a hydrogen atom and a part thereof.
  • a compound having a structure in which all hydrogen atoms are substituted with X0a or a salt thereof is produced.
  • Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the compound (Ia) are alkyl groups having 1 to 9 carbon atoms. Usually does not react as it is. As a result, X 1, X 2, X 3, out of the X 4 and X 6, when that apply is an alkyl group having 1 to 9 carbon atoms, the compounds (I A) or a salt thereof to produce.
  • those which are protective groups are usually left as they are. Will not react.
  • Salt production process (1) It performs an unsaturated hydrocarbon group-introducing step (1), if necessary, by performing the deprotection step (1), and finally, the compound does not form a salt when (I A) is obtained , after the unsaturated hydrocarbon group-introducing step (1) or deprotection step (1), further, in the step (herein that the obtained compound (I a) and its salt, "salt formation step (1) by carrying out the is) called "can be prepared salts of the compounds (I a).
  • the salt formation step (1) is, for example, is reacted with an acid or a base of compound (I A), it can be carried out by known methods, depending on the type of salt of interest, by appropriately selecting the process conditions I just need. For example those cations which form salts, general formula to the nitrogen atom of the group represented by (I A) formula -NX 1 X 2 in the hydrogen ion (H +) is coordinated, when producing a salt of compound (I a), the compound (I a) may be reacted with an acid.
  • the compound (I A ) is converted to a compound of the general formula HQ (HQ is a hydrogen ion (H + ) of Q ⁇ ) , Q - are the same as described above).
  • the product is subjected to post-treatment, removal, purification, and the like in the same manner as in the unsaturated hydrocarbon group introduction step (1). Operations can be performed.
  • an optional step (1) that does not correspond to any of the unsaturated hydrocarbon group introduction step (1), the deprotection step (1), and the salt formation step (1) is performed.
  • One or two or more kinds may be performed.
  • the optional step (1) can be appropriately selected depending on the purpose, and is not particularly limited.
  • a commercially available product does not exist as the compound (Ia) used in the unsaturated hydrocarbon group introduction step (1)
  • a known method is used alone or in combination of two or more using a commercially available raw material.
  • compound (Ia) may be produced.
  • the compound (Ia) is represented by X 5 (that is, an unsaturated unsaturated group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent). (Hydrocarbon group).
  • X 5 that is, an unsaturated unsaturated group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
  • Hydrocarbon group Such a compound (Ia) can be produced, for example, by utilizing the production method (2) described below.
  • an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 carbon atoms which may have a substituent is represented by Z 1b , Z 1 2b , Z 3b , Z 4b, and Z 6b , except that the compound excluded from the options is used in place of compound (Ib) in the same manner as in production method (2) described below, when n 1 is 1.
  • Compound (Ia) can be produced. However, this is an example of a method for producing such a compound (Ia).
  • n 1 is 1, the compound (I) or a salt thereof is, for example, a compound represented by the following general formula (Ib) (in this specification, sometimes referred to as “compound (Ib)”).
  • a step of reacting a compound represented by the following general formula (Id) herein, sometimes referred to as “compound (Id)”) (in the present specification, “an unsaturated hydrocarbon group”).
  • X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group.
  • Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring;
  • X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
  • X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
  • n 3 is 0 or 1;
  • n 2 is an integer from 1 to 5;
  • LG 2 is a leaving group;
  • Z 1b , Z 2b , Z 3b , Z 4b and Z 6b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds
  • An optionally substituted unsaturated hydrocarbon group having 3 to 9 carbon atoms or a protecting group wherein Z 1b and Z 2b are the aforementioned alkyl groups, or Z 3b and Z 4b are the aforementioned alkyl groups May have the two alkyl groups linked to each other to form a ring;
  • X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
  • Z 1b , Z 2b , Z 3b , Z 4b and Z 6b each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, and 1 to 4 triple bonds between carbon atoms. And an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which may have a substituent, or a protecting group.
  • the alkyl group and the unsaturated hydrocarbon group in Z 1b , Z 2b , Z 3b , Z 4b and Z 6b are the same as the alkyl group and the unsaturated hydrocarbon group in X 1 to X 4 .
  • these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring .
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 1 and X 2 are alkyl groups.
  • these two alkyl groups constitute an oxygen atom to which these alkyl groups are respectively bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded. May be mutually bonded to form a ring.
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 3 and X 4 are an alkyl group.
  • the protective group in Z 1b , Z 2b , Z 3b , Z 4b and Z 6b is the same as the protective group in Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the general formula (Ia).
  • LG 2 is a leaving group, and may be a known group.
  • the leaving group include an iodine atom, a bromine atom, a chlorine atom, a p-toluenesulfonyl group, a trifluoromethylsulfonyl group, and the like.
  • X 0b is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 2 to 8 carbon atoms which may have a substituent, and X 5 And the same as the above-mentioned unsaturated hydrocarbon group.
  • compound (Ib) has a LG 2
  • in the unsaturated hydrocarbon group-introducing step (2) is a compound or a salt thereof, having the structure
  • the LG 2 is substituted with the X 0b generated.
  • the amount (mol) of the compound (Id) used is 1.0 to 2.0 times the molar amount of the compound (Ib) used. Is preferred.
  • the reaction of the compound (Ib) with the compound (Id) is preferably performed using a palladium catalyst, a copper catalyst, and a base. By doing so, the reaction proceeds more smoothly.
  • This reaction is a Sonogashira-Hagihara cross-coupling reaction.
  • X 0b has a carbon atom at the terminal on the bonding side, that is, at a site bonded to a hydrogen atom, and this carbon atom is adjacent to the carbon atom. This is particularly preferred when a triple bond is formed with the carbon atom to be formed.
  • the palladium catalyst examples include tetrakis (triphenylphosphine) palladium (0) and dichlorobis (triphenylphosphine) palladium (II).
  • the amount (mol) of the palladium catalyst used may be 0.05 to 0.20 times the molar amount of the compound (Ib). preferable.
  • the copper catalyst examples include copper (I) iodide (CuI) and the like.
  • the used amount (mol) of the copper catalyst may be 0.05 to 0.40 times the molar amount of the compound (Ib). preferable.
  • the base examples include diethylamine, triethylamine, diisopropylamine and the like.
  • the amount (mol) of the base used is preferably an excess with respect to the amount (mol) of the compound (Ib), for example, 1 to 100-fold molar. Preferably, it is an amount.
  • a base may be used also as a solvent.
  • a solvent may or may not be used during the reaction between the compound (Ib) and the compound (Id).
  • the solvent may be appropriately selected depending on, for example, the types of the compound (Ia) and the compound (Ic), and is not particularly limited.
  • the amount of the solvent used is 1 to 20 times the total amount (parts by mass) of all components other than the solvent. It is preferred that
  • the reaction temperature and reaction time between the compound (Ib) and the compound (Id) may be appropriately adjusted so as to improve the yield of the target product.
  • the reaction temperature may be, for example, from 10 to 80 ° C.
  • the reaction time may be, for example, from 10 to 48 hours.
  • post-treatment may be performed, if necessary, by a known method, and the product may be taken out. That is, if necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, and column chromatography are performed.
  • the product may be taken out. Further, the product taken out may be further subjected to crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more, as needed, once.
  • purification may be performed by performing the purification twice or more.
  • the product of the reaction between the compound (Ib) and the compound (Id) is one or two of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b.
  • the compound (I B ) is a compound in which the functional group at the corresponding site is protected by the protecting group.
  • Z 1b, Z 2b, Z 3b , Z 4b and Z 6b is neither a protecting group, the product is a compound of the desired compound (I B).
  • the above alkyl groups in Z 1b , Z 2b , Z 3b , Z 4b and Z 6b include those corresponding to protective groups.
  • Z 3b and Z 4b are the aforementioned alkyl groups, and these alkyl groups are bonded to each other to form a ring, this cyclic group, an isopropylidene group (—C (CH 3 ) 2 -) Is a protecting group as described above.
  • Z 1b, Z 2b, among Z 3b, Z 4b and Z 6b the one or in the case of two or more is a protecting group product, equivalent to a compound of the desired product (I B)
  • the product obtained in this step is considered to have a protecting group or not to have a protecting group depends on what the target product is.
  • [Deprotection step (2)] Products in unsaturated hydrocarbon group introducing step (2) is, when a compound having a protecting group (I B), after the unsaturated hydrocarbon group-introducing step of (2), further, the protective group (That is, the deprotection step (2)). By performing the deprotection step (2), the intended compound (I B) is obtained.
  • the deprotection conditions may be appropriately selected according to the type of the protecting group, and a known deprotection method can be appropriately used.
  • the conditions for deprotection in the deprotection step (2) may be the same as the conditions for deprotection in the above deprotection step (1).
  • the product may be handled after the reaction, as in the case of the unsaturated hydrocarbon group introduction step (2). That is, after completion of the reaction in the deprotection step (2), post-treatment may be carried out by a known method, if necessary, to remove the product. That is, if necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, and column chromatography are performed. For example, the product may be taken out.
  • the product taken out may be further subjected to crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more, as needed, once.
  • purification may be performed by performing the purification twice or more.
  • both of a product that does not form a salt and a product that forms a salt are obtained. May be obtained. Which of these is obtained depends on the conditions of the deprotection step (2).
  • any of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b in the compound (Ib) is an alkyl group having 1 to 9 carbon atoms. Usually does not react as it is.
  • a compound (I B ) or a salt thereof is produced when the corresponding one of X 1 , X 2 , X 3 , X 4 and X 6 is an alkyl group having 1 to 9 carbon atoms.
  • step (2) of introducing an unsaturated hydrocarbon group, of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b in the compound (Ib) those which are protective groups are usually left as they are. Will not react.
  • a compound having a structure in which the protective group is substituted with a hydrogen atom or a salt thereof is generated.
  • Salt-forming step (2) Performs an unsaturated hydrocarbon group-introducing step (2), if necessary, by performing the deprotection step (2), and finally, if the compound does not form a salt (I B) is obtained , after the unsaturated hydrocarbon group-introducing step (2) or deprotection step (2), furthermore, in the step (herein that the obtained compound (I B) and its salt, "salt formation step by performing the (2) "and that there is referred), it can be prepared salts of the compounds (I B).
  • the salt-forming step (1) is the same as the salt-forming step (1) except that, for example, the compound (I B ) that does not form a salt is used in place of the compound (I A ) that does not form a salt. ) Can be performed in the same manner as in the case of).
  • the product is subjected to post-treatment, removal, purification, and the like in the same manner as in the unsaturated hydrocarbon group introduction step (2). Operations can be performed.
  • an optional step (2) that does not correspond to any of the unsaturated hydrocarbon group introduction step (2), the deprotection step (2), and the salt formation step (2) is performed.
  • One or two or more kinds may be performed.
  • the optional step (2) can be appropriately selected depending on the purpose, and is not particularly limited.
  • a commercially available product does not exist as the compound (Ib) used in the unsaturated hydrocarbon group introduction step (2)
  • a known method is used alone or in combination of two or more using a commercially available raw material.
  • compound (Ib) may be produced.
  • any of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b has 1 to 4 triple bonds between carbon atoms and may have 3 to 9 carbon atoms which may have a substituent.
  • Compound (Ib) having a hydrocarbon group can be produced, for example, by utilizing the above-mentioned production method (1). That is, in the compound (Ia), except that a compound in which X 5 is LG 2 and n 1 is 1 is used instead of the compound (Ia), the same method as the above-mentioned production method (1) is used.
  • Compound (Ib) in the case where any one of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b is the unsaturated hydrocarbon group can be produced. However, this is an example of a method for producing such a compound (Ib).
  • compound (I) and salts thereof include, for example, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR), ultraviolet / visible spectroscopy (UV-VIS absorption spectrum), It can be confirmed by a known method such as elemental analysis.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • IR infrared spectroscopy
  • UV-VIS absorption spectrum ultraviolet / visible spectroscopy
  • Compound (II) or a salt thereof The compound according to one embodiment of the present invention is represented by the following general formula (II), and the salt of the compound according to one embodiment of the present invention is a salt of the compound represented by the following general formula (II).
  • the compound represented by the general formula (II) may be referred to as “compound (II)”.
  • the mere description of “compound (II)” means a compound that does not form a salt, and the compound (II) that forms a salt is referred to as “salt of compound (II)”.
  • X 01 , X 02 , X 03 and X 04 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms.
  • the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent
  • the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded
  • the methylene group is May be substituted with a carbonyl group
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more May be substituted with an oxygen atom
  • X 01 and X 02 are the alkyl groups, these two alkyl groups are bonded to each other to form a ring.
  • X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent; n 01 is 0 or 1; n 02 is an integer of 1 to 5; However, when n 01 is 0, one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups, When n 01 is 1, one or more of X 01 , X 02 , X 03 , X 04 and X 05 are the unsaturated hydrocarbon groups. )
  • Compound (II) is useful as a nerve function regulator (that is, a physiologically active substance involved in regulation of nerve function), as described later.
  • the compound (II) has a structure in which one or more of X 01 , X 02 , X 03 , X 04 and X 05 is the unsaturated hydrocarbon group, as described below. It can be detected with high accuracy and its dynamics can be easily observed.
  • the structure of compound (II) will be described in detail.
  • X 01 , X 02 , X 03 and X 04 are each independently: A hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or an unsaturated hydrocarbon group having 3 to 9 carbon atoms and having 1 to 4 triple bonds between carbon atoms and which may have a substituent; X 01 and X 02 are the same as X 1 and X 2 in the general formula (I).
  • X 01 and X 02 are the aforementioned alkyl groups, these two alkyl groups are mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring.
  • X 04 is the same as X 1 or X 2 in the general formula (I).
  • X 03 is the same as X 3 or X 4 in formula (I).
  • X 05 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 2 to 8 carbon atoms which may have a substituent.
  • X 05 is the same as X 5 in formula (I).
  • the methylene group may be substituted with a carbonyl group
  • the unsaturated hydrocarbon group represented by X 1 , X 2 , X 3 and X 4 in the general formula (I) has a methylene group at the terminal on the bonding destination, the methylene group is substituted with a carbonyl group. Means the same content.
  • the unsaturated hydrocarbon group for X 01 , X 02 , X 03 and X 04 has one or two or more methylene groups other than the terminal on the bonding side
  • one methylene group The group or the two or more methylene groups which are not adjacent to each other may be substituted with an oxygen atom, which is defined as X 1 , X 2 , X 3 and X 4 in the general formula (I).
  • the saturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, one methylene group or two or more methylene groups that are not adjacent to each other are oxygen It means the same content that it may be substituted by an atom.
  • X 01 , X 02 , X 03 and X 04 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and have a substituent.
  • the substituent, the unsaturated hydrocarbon group, and the ring are as described above.
  • n 01 is 0 or 1.
  • n 01 is in the benzene ring structure group represented by the general formula -OX 03 is directly attached, defines whether the binding of X 05.
  • the bonding position of X 05 in the benzene ring skeleton to which the group represented by the general formula —OX 03 is directly bonded in the general formula (II) is not particularly limited. against group represented by the general formula -OX 03, in other words the relationship ortho position (, of the two adjacent carbon atoms of the groups represented by the general formula -OX 03 is attached , Any one of carbon atoms) and a position having a meta-position.
  • n 02 is an integer of 1 to 5.
  • n 02 specifies the number of carbon atoms of the alkylene skeleton (in other words, a chain hydrocarbon skeleton) to which the group represented by the general formula —NX 01 X 02 is directly bonded. That is, the alkylene skeleton has 2 to 6 carbon atoms.
  • n 02 may be any one of 1 or more, 2 or more, 3 or more, and 4 or more, for example, within a range of 5 or less. Further, n 02 may be any one of 5 or less, 4 or less, 3 or less, and 2 or less within a range of 1 or more.
  • the compound (II) or a salt thereof in which n 02 is 1 has the same or similar chain skeleton having the same carbon number as serotonin which is important as a naturally-occurring neuronal function regulator, High usefulness.
  • the compound (II) or a salt thereof in which n 02 is 2 to 5 may be able to regulate the level of its biological activity based on the compound (II) or a salt thereof in which n 02 is 1; High usefulness.
  • n 01 is 0 in the general formula (II)
  • one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups (ie, An unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and optionally having 3 to 9 carbon atoms).
  • n 01 is 1, one or more of X 01 , X 02 , X 03 , X 04 and X 05 are the unsaturated hydrocarbon groups (that is, carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and optionally having 3 to 9 or 2 to 8 carbon atoms).
  • the compound (II) or a salt thereof has one or two or more unsaturated hydrocarbon groups having 3 to 9 or 2 to 8 carbon atoms in total.
  • the compound (II) or a salt thereof always contains a group having a triple bond between carbon atoms. Therefore, compound (II) or a salt thereof can be detected by Raman scattering spectroscopy based on this triple bond, and a label can be introduced by reacting this triple bond with another reagent. Therefore, it can be detected by this label.
  • a method for detecting compound (II) or a salt thereof will be described in detail later.
  • the salt of the compound (II) is a compound in which the group capable of forming a salt in the compound (II) forms a salt.
  • examples of the group capable of forming a salt include, but are not limited to, a group represented by the general formula —NX 01 X 02 in the general formula (II).
  • Examples of the salt of compound (II) include salts formed by reacting compound (II) with an acid or base.
  • examples of the salt of the compound (II) include compounds having one or two or more salt formation sites. . In a salt of compound (II) having two or more salt formation sites, these two or more salts may be all the same, may be all different, or may be partially identical. Good.
  • Examples of the cation and anion that form the salt of compound (II) include the same cations and anions that form the salt of compound (I).
  • the number of cations and anions forming a salt of one molecule of compound (II) may be only one, or two or more, and when two or more, these cations or anions may be used. All the anions may be the same, all may be different, or only some may be the same.
  • the salt of the compound (II) is electrically neutral as a whole molecule, that is, the total value of the valence of the cation and the total value of the valence of the anion in one molecule of the compound (II) are the same. Is preferred.
  • salt of compound (II) include salts represented by the following general formula (IIs) -1, (IIs) -2, or (IIs) -3.
  • X 01 , X 02 , X 03 , X 04 , X 05 , n 01 and n 02 represent X 01 , X 02 , X 03 , X 04 , X 05 in the general formula (II) , N 01 and n 02 .
  • Q 1 - and Q 2 - are each independently a monovalent anionic, Q in the general formula (Is) - it is the same as.
  • Q 1 - and Q 2 - may be the same or may be different from one another.
  • the compound (II) is a compound represented by the following general formula (II) -1 (in this specification, sometimes abbreviated as “compound (II) -1”) or the following general formula (II)- It is preferably a compound represented by Formula 2 (in this specification, may be abbreviated as “compound (II) -2”). That is, compound (II) or a salt thereof is preferably compound (II) -1 or a salt thereof, or compound (II) -2 or a salt thereof.
  • n 02 is the same as described above;
  • X 011 , X 021 and X 031 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • X 011 and X 021 are the above-mentioned alkyl groups, these two alkyl groups are May combine with each other to form a ring;
  • X 041 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent;
  • X 010 , X 020 and X 030 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and may have a substituent.
  • the unsaturated hydrocarbon group has 3 to 9 carbon atoms and the unsaturated hydrocarbon group has a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group;
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, one methylene group or two or more methylene groups that are not adjacent to each other are may be substituted with an oxygen atom, if X 010 and X 020 is the above alkyl group, these two alkyl groups may form a ring with each other, however, X 010 , One of X 020 and X 030 Species or two or more are the aforementioned unsaturated hydrocarbon groups. )
  • Compound (II) -1 is included in compound (I) when n 01 is 0.
  • n 02 is the same as n 02 in the general formula (II).
  • X 011 , X 021 and X 031 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • the alkyl group having 1 to 9 carbon atoms in X 011 , X 021 and X 031 is the same as the alkyl group having 1 to 9 carbon atoms in X 01 , X 02 and X 03 .
  • these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring .
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 01 and X 02 are alkyl groups.
  • X 041 is an unsaturated hydrocarbon group having 3 to 9 carbon atoms and having 1 to 4 triple bonds and optionally having a substituent.
  • the unsaturated hydrocarbon group for X 041 is the same as the unsaturated hydrocarbon group for X 04 .
  • Compound (II) -2 is also included in compound (I) when n 01 is 0.
  • n 02 is the same as n 02 in the general formula (II).
  • X 041 is the same as X 041 in formula (II) -1.
  • the alkyl group and the unsaturated hydrocarbon group in X 010 , X 020 and X 030 are the alkyl groups in X 01 , X 02 and X 03 in the general formula (II) And unsaturated hydrocarbon groups.
  • X 010 , X 020 and X 030 are the aforementioned unsaturated hydrocarbon groups. That is, X 010 , X 020 and X 030 are X 01 , X 02 and X 03 in the general formula (II) except that one or two or more of them are the unsaturated hydrocarbon groups. Is the same as
  • the compound (II) is a compound represented by the following general formula (II) -1-1 (in this specification, may be abbreviated as “compound (II) -1-1”), II) -2-1 (hereinafter, may be abbreviated as “compound (II) -2-1”), represented by the following general formula (II) -2-2
  • a compound may be abbreviated as “compound (II) -2-2” in the present specification), a compound represented by the following general formula (II) -2-3 (in the present specification, “compound (II) -2-2”) (II) -2-3), and a compound represented by the following formula (II) -2-4 (herein, abbreviated as “compound (II) -2-4”).
  • compound (II) -2-5 is compound (II) -1-1 or a salt thereof, compound (II) -2-1 or a salt thereof, compound (II) -2-2 or a salt thereof, or a compound (II). ) -2-3 or a salt thereof, compound (II) -2-4 or a salt thereof, or compound (II) -2-5 or a salt thereof.
  • Compound (II) -1-1 or a salt thereof is included in compound (II) -1 or a salt thereof.
  • X 012, X 022 and X 032 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, when X 012 and X 022 is the above alkyl group, these two alkyl
  • the groups may be linked to each other to form a ring;
  • G 01 , G 02 , G 03 and G 04 are each independently a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group , Halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy
  • n 02 is the same as n 02 in the general formula (II).
  • X 012 , X 022 and X 032 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms in X 012 , X 022 and X 032 is the alkyl group having 1 to 9 carbon atoms in X 01 to X 04 (or X 011 , X 021 and X 031 ) It is the same as that having 1 to 5 carbon atoms.
  • X012 and X022 are the above-mentioned alkyl groups
  • these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring.
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 01 and X 02 are alkyl groups.
  • G 04 represents a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group, a halogen Atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl group, hydroxy An alkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalky
  • n 02 is the same as n 02 in the general formula (II).
  • G 04 is the same as described above.
  • G 01 and G 03 are the same as G 1 in the general formula (I) -1-1.
  • G 01 , G 03 and G 04 are each independently determined.
  • n 02 is the same as n 02 in the general formula (II).
  • G 01 , G 03 and G 04 are the same as those described above.
  • G 02 is the same as G 1 in the general formula (I) -1-1.
  • G 01 , G 02 , G 03 and G 04 are each independently determined.
  • n 02 is the same as n 02 in the general formula (II).
  • X 012 , X 022 , G 03 and G 04 are the same as those described above.
  • X012 and X022 are the aforementioned alkyl groups
  • these two alkyl groups may be bonded to each other to form a ring, and the aforementioned ring is the same as that described above.
  • G 03 and G 04 are each independently determined.
  • n 02 is the same as n 02 in the general formula (II).
  • n 02 is the same as n 02 in the general formula (II).
  • the molecular weight of the compound (II) is preferably 350 or less, more preferably 300 or less, for example, 250 or less.
  • the molecular weight of a naturally-occurring nerve function modulator having a physiological activity on nerve cells is usually relatively small. Therefore, by analyzing the behavior and properties of the compound (II) having a relatively small molecular weight as described above in a nerve cell, it is possible to consider the behavior and properties of a naturally-occurring nerve function regulator with high accuracy. It is possible and compound (II) is more useful.
  • the molecular weight (converted molecular weight) is the same as the molecular weight of compound (II) described above.
  • Such a salt of compound (II) usually has a relatively small molecular weight, and thus has higher utility as in the case of the above-mentioned compound (II) having a small molecular weight.
  • such usefulness of the compound (II) and its salt is merely an example, and the upper limit of the molecular weight of the compound (II) and the converted molecular weight of the salt of the compound (II) are limited to those shown here. Not done.
  • the lower limits of the molecular weight of compound (II) and the reduced molecular weight of the salt of compound (II) are not particularly limited. From the viewpoint of easy production of the compound (II), the molecular weight and reduced molecular weight are preferably 177 or more.
  • Preferred compounds (II) are exemplified below.
  • Preferred compounds (II) also include, in addition to the above, compounds exemplified below and having the above substituent.
  • Preferred salts of the compound (II) include the salts of the compounds exemplified below and the salts of the compounds exemplified below having the substituent.
  • the compound (II) of the present embodiment or a salt thereof is not limited thereto.
  • Compound (II) can be regarded as a derivative of serotonin (also known as 5-hydroxytryptamine, 3- (2-aminoethyl) indol-5-ol), which is a known neuronal function regulator. Therefore, compound (II) and salts thereof are useful for elucidating the role of serotonin in nerve cells (in other words, physiological activity) among known neuronal function regulators.
  • serotonin also known as 5-hydroxytryptamine, 3- (2-aminoethyl) indol-5-ol
  • the structural formula of serotonin is shown below.
  • X 01, X 02, X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group.
  • Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups Groups may be linked to each other to form a ring ;
  • X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
  • n 01 is 0 or 1;
  • n 02 is an integer of 1 to 5;
  • X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups,
  • X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, wherein the unsaturated hydrocarbon group is When having a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group, and the unsaturated
  • one methylene group or two or more non-adjacent methylene groups may be substituted with an oxygen atom;
  • LG 1 is a leaving group;
  • Z 01a, Z 02a, Z 03a and Z 04a each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms, or a protecting group, if Z 01a and Z 02a is said alkyl group, these two alkyl groups may form a ring with each other, however, Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more is a hydrogen atom.
  • Z 01a, Z 02a, Z 03a and Z 04a each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or a protecting group.
  • Z 01a and Z 02a are the aforementioned alkyl groups
  • these two alkyl groups are mutually bonded together with the nitrogen atom to which the two alkyl groups are bonded to form a ring. Is also good.
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 01 and X 02 are alkyl groups.
  • Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more is a hydrogen atom.
  • Compound (Ic) is the same as compound (Ic) used in production method (1), which is the production method of compound (I) described above.
  • the reaction between compound (IIa) and compound (Ic) proceeds in the same manner as the reaction between compound (Ia) and compound (Ic) in production method (1) described above.
  • the unsaturated hydrocarbon group-introducing step (1 ') is A compound having a structure in which this hydrogen atom is substituted by the above-mentioned X0a or a salt thereof is produced.
  • the unsaturated hydrocarbon group introduction step (1 ′) there is a possibility that both a product that does not form a salt and a product that forms a salt are obtained. Which of these is obtained depends on the conditions of the unsaturated hydrocarbon group introduction step (1 ′).
  • the reaction between the compound (IIa) and the compound (Ic) is carried out by using the compound (Ia) and the compound (I) in the production method (1) described above except that the compound (IIa) is used instead of the compound (Ia).
  • the reaction with Ic) can be carried out in a similar manner.
  • the amount (mol) of the compound (Ic) to be used is 1 to 2 times the molar amount (mol) of the hydrogen atom to be substituted with X0a in the compound (IIa).
  • the reaction between compound (IIa) and compound (Ic) is preferably carried out using a base. In this case, the amount (mol) of the base used is the same as that for substitution of X 0a in compound (IIa).
  • the molar amount is preferably 1 to 3 times the molar amount (mol) of the target hydrogen atom.
  • a solvent may be used.
  • the amount (parts by mass) of the solvent is not particularly limited, but the total amount of all components other than the solvent is used.
  • the amount is preferably 1 to 40 times by mass, and more preferably 1 to 30 times by mass based on the amount (parts by mass).
  • the reaction temperature may be, for example, any of 0 to 40 ° C. and 10 to 40 ° C.
  • the reaction time may be, for example, 0.5. It may be up to 24 hours.
  • the unsaturated hydrocarbon group introduction step (1 ′) after the reaction is completed, post-treatment may be carried out by a known method, if necessary, and the product may be taken out. May be purified according to When another step such as a deprotection step (1 ') described later is continuously performed after the unsaturated hydrocarbon group introduction step (1'), after the completion of the reaction in the unsaturated hydrocarbon group introduction step (1 '). After the post-treatment is performed as necessary, the other steps may be continuously performed without taking out the product.
  • the product from the reaction between the compound (IIa) with the compound (Ic) can, Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more Is a compound (II A ) in which the functional group at the corresponding site is protected by this protecting group.
  • Z 01a, Z 02a, Z 03a and Z 04a is not any protecting groups, the product is a compound of the desired compound (II A).
  • the deprotection step (1 ′) is the same as the production method described above except that the compound (II A ) having a protecting group is used instead of the compound (I A ) having a protecting group as an object of deprotection. It can be carried out in the same manner as in the deprotection step (1) in the method (1). For example, the conditions for deprotection may be appropriately selected according to the type of the protecting group. In addition, in the deprotection step (1 ′), after the reaction is completed, post-treatment may be carried out by a known method, if necessary, and the product may be taken out. It may be purified.
  • the deprotection step (1 ′) as in the case of the unsaturated hydrocarbon group introduction step (1 ′), as a product, a product having no salt and a product having a salt are formed. Either can be obtained. Which of these is obtained depends on the conditions of the deprotection step (1 ').
  • the unsaturated hydrocarbon group-introducing step (1 ') for example, in the compound (IIa), Z 01a, Z 02a, either of Z 03a and Z 04a, a hydrogen atom, a part or all of A compound having a structure in which a hydrogen atom of the above is substituted with X0a or a salt thereof is produced.
  • These products are of X 01, X 02, X 03 and X 04, in the case that apply is an unsaturated hydrocarbon group, a compound (II A) or a salt thereof.
  • Salt-forming step (1 ') By performing the unsaturated hydrocarbon group introduction step (1 ′) and, if necessary, the deprotection step (1 ′), the compound (II A ) which did not form a salt was finally obtained. In some cases, after the unsaturated hydrocarbon group introduction step (1 ′) or the deprotection step (1 ′), the obtained compound (II A ) is further converted into a salt thereof (in the present specification, by performing it may be referred to as "salt forming step (1 ')”) can be prepared salts of the compounds (II a).
  • the salt formation step (1 ′) can be performed by a known method, for example, by reacting the compound (II A ) with an acid or a base, and the process conditions are appropriately selected according to the kind of the target salt. do it.
  • the cations forming the salt are the same as those in the general formula (II A ) except that the nitrogen atom of the group represented by the general formula —NX 01 X 02 and the nitrogen atom of the group represented by the general formula —NX 04 — and atoms, in either or both of the hydrogen ions (H +) in which is coordinated, in the case of producing the salt of compound (II a) is reacted compound (II a) with an acid I just need.
  • the compound (II A ) is converted to a compound represented by the general formula HQ 1 (HQ 1 is , Q 1 ⁇ and a hydrogen ion (H + ), wherein Q 1 ⁇ is the same as described above) and an acid represented by the general formula HQ 2 (HQ 2 is a hydrogen ion of Q 2 ⁇ (H + ), and Q 2 - is the same as described above).
  • the product is subjected to post-treatment, removal, Operations such as purification can be performed.
  • any step that does not correspond to any of the unsaturated hydrocarbon group introduction step (1 ′), the deprotection step (1 ′), and the salt formation step (1 ′) (1 ′) may be performed alone or in combination of two or more.
  • the optional step (1 ′) can be appropriately selected depending on the purpose, and is not particularly limited.
  • a commercially available product does not exist as the compound (IIa) used in the unsaturated hydrocarbon group introduction step (1 ′)
  • a commercially available raw material is used, and a known method is used alone or in combination of two or more. By performing the reaction, compound (IIa) may be produced.
  • the compound (IIa) is represented by X 05 (ie, an unsaturated C 2-8 unsaturated carbon atom having 1-4 carbon-carbon triple bonds and optionally having a substituent) (Hydrocarbon group).
  • X 05 ie, an unsaturated C 2-8 unsaturated carbon atom having 1-4 carbon-carbon triple bonds and optionally having a substituent
  • Such a compound (IIa) can be produced, for example, by utilizing the production method (2 ′) described below.
  • an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 carbon atoms which may have a substituent is represented by Z 01b , Z 01b
  • Z 01b Compounds in the case where n 01 is 1 by the same method as the production method (2 ′) described below except that compounds excluded from the options of 02b , Z 03b and Z 04b are used in place of compound (IIb) ( IIa) can be prepared. However, this is an example of a method for producing such a compound (IIa).
  • Z 01b , Z 02b , Z 03b and Z 04b are the following protecting groups
  • LG 3 is substituted by X 0b to obtain a compound having a structure or a salt thereof (in the present specification, “the production method (2 ′ ))).
  • Compound (II B ) is the compound (II) when n 01 is 1.
  • X 01 , X 02 , X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene
  • the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group.
  • Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups
  • the groups may be linked to each other to form a ring ;
  • X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
  • n 02 is an integer of 1 to 5;
  • LG 3 is a leaving group;
  • Z 01b , Z 02b , Z 03b and Z 04b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds between carbon atoms, and have a substituent.
  • Z 01b and Z 02b are the above-mentioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. May be;
  • X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
  • Z 01b , Z 02b , Z 03b and Z 04b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, and 1 to 4 triple bonds between carbon atoms, An unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent, or a protecting group.
  • the alkyl group and the unsaturated hydrocarbon group in Z 01b , Z 02b , Z 03b and Z 04b are the same as the alkyl group and the unsaturated hydrocarbon group in X 01 to X 04 .
  • Z 01b and Z 02b are the aforementioned alkyl groups
  • these two alkyl groups are mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring.
  • the ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 01 and X 02 are alkyl groups.
  • the protective groups in Z 01b , Z 02b , Z 03b and Z 04b are the same as the protective groups in Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the general formula (Ia).
  • LG 3 is a leaving group, and is the same as LG 2 (leaving group) in the general formula (Ib).
  • the compound (Id) is the same as the compound (Id) used in the production method (2) which is the production method of the compound (I) described above.
  • X 01, X 02, X 03, X 04 and X 05 are the same as general X 01 in formula (II), X 02, X 03, X 04 and X 05. However, the compound (II B) has been identified to have X 05. Thus, compound (II B ) is the same as compound (II) except that n 01 is limited to 1.
  • the reaction between compound (IIb) and compound (Id) proceeds in the same manner as the reaction between compound (Ib) and compound (Id) in production method (2) described above.
  • the compound (IIb) has the LG 3, in the unsaturated hydrocarbon group-introducing step (2 ') The compound or a salt of the LG 3 is substituted with the X 0b structure generated I do.
  • the unsaturated hydrocarbon group introduction step (2 ′) there is a possibility that both a product that does not form a salt and a product that forms a salt are obtained. Which of these is obtained depends on the conditions of the unsaturated hydrocarbon group introduction step (2 ′).
  • the reaction between the compound (IIb) and the compound (Id) is carried out in the same manner as in the production method (2) described above except that the compound (IIb) is used instead of the compound (Ib).
  • the reaction with Id) can be carried out in a similar manner.
  • the amount (mol) of the compound (Id) used may be 1.0 to 2.0 times the amount (mol) of the compound (IIb) used.
  • the reaction between compound (IIb) and compound (Id) may be performed using a palladium catalyst, a copper catalyst, and a base (Sonogashira-Hagihara cross-coupling reaction).
  • the amount (mol) of the palladium catalyst used may be 0.05 to 0.20 times the molar amount (mol) of the compound (IIb), and the amount (mol) of the copper catalyst may be used.
  • Mol) may be in excess, for example, 1 to 100 times the molar amount, or a base may be used also as a solvent.
  • a solvent may be used in the reaction between compound (IIb) and compound (Id).
  • the amount of the solvent used (parts by mass) is determined by the total amount of all components other than the solvent (parts by mass).
  • the reaction temperature may be, for example, 10 to 80 ° C.
  • the reaction time may be, for example, 10 to 48 hours.
  • post-treatment may be carried out by a known method, if necessary, and a product may be taken out. May be purified according to When performing other steps such as the deprotection step (2 ') described later after the unsaturated hydrocarbon group introduction step (2'), the reaction in the unsaturated hydrocarbon group introduction step (2 ') is completed. After the post-treatment is performed as necessary, the other steps may be continuously performed without taking out the product.
  • the product of the reaction between the compound (IIb) and the compound (Id) is one or more of Z 01b , Z 02b , Z 03b and Z 04b.
  • a protecting group is a compound of the state where the functional group of the corresponding portion is protected by the protecting group (II B).
  • the product is the target compound (II B ).
  • Deprotection step (2 ') as an object of deprotection, in place of the compound having a protecting group (I B), except using a compound having a protecting group (II B), prepared as described above It can be performed in the same manner as in the deprotection step (2) in the method (2).
  • the conditions for deprotection may be appropriately selected according to the type of the protecting group.
  • post-treatment may be carried out by a known method, if necessary, and the product may be taken out. It may be purified.
  • the deprotection step (2 ′) as in the case of the unsaturated hydrocarbon group introduction step (2 ′), there are two types of products, one having no salt and the other having a salt. Either can be obtained. Which of these is obtained depends on the conditions of the deprotection step (2 ').
  • the unsaturated hydrocarbon group introduction step (2 ′) for example, among Z 01b , Z 02b , Z 03b and Z 04b in the compound (IIb), those which are alkyl groups having 1 to 9 carbon atoms are Usually, it does not react as it is. As a result, when the corresponding one of X 01 , X 02 , X 03 and X 04 is an alkyl group having 1 to 9 carbon atoms, compound (II B ) or a salt thereof is produced.
  • the unsaturated hydrocarbon group introduction step (2 ′) of Z 01b , Z 02b , Z 03b and Z 04b in the compound (IIb) those which are protective groups usually react as they are. None.
  • Salt-forming step (2 ') By performing the unsaturated hydrocarbon group introduction step (2 ′) and, if necessary, the deprotection step (2 ′), a compound (II B ) that did not form a salt was finally obtained. In some cases, after the unsaturated hydrocarbon group introduction step (2 ′) or the deprotection step (2 ′), the obtained compound (II B ) is further converted into a salt thereof (in the present specification, by performing it may be referred to as "salt forming step (2 ')”) can be prepared salts of the compounds (II B).
  • the salt-forming step (2 ′) is, for example, the above-mentioned salt-forming step (2A) except that the compound (II B ) that does not form a salt is used instead of the compound (II A ) that does not form a salt. This can be done in the same manner as in 1 ').
  • the product is post-treated, taken out, and treated in the same manner as in the unsaturated hydrocarbon group introduction step (2 ′). Operations such as purification can be performed.
  • any step that does not correspond to any of the unsaturated hydrocarbon group introduction step (2 ′), the deprotection step (2 ′), and the salt formation step (2 ′) (2 ′) may be performed alone or in combination of two or more.
  • the optional step (2 ′) can be appropriately selected depending on the purpose, and is not particularly limited.
  • a commercially available raw material is used, and a known method is used alone or in combination of two or more. By performing the reaction, compound (IIb) may be produced.
  • any one of Z 01b , Z 02b , Z 03b and Z 04b has 1 to 4 triple bonds between carbon atoms, and may have a substituent, and may have 3 to 9 carbon atoms.
  • Compound (IIb) can be produced, for example, by utilizing the above-mentioned production method (1 ′). That is, in the compound (IIa), except that a compound in which X 05 is LG 3 and n 01 is 1 is used in place of the compound (IIa), the same method as the above-mentioned production method (1 ′) is used. , Z 01b , Z 02b , Z 03b and Z 04b can be used to produce the compound (IIb) in the case where the compound is the unsaturated hydrocarbon group. However, this is an example of a method for producing such a compound (IIb).
  • the structures of the compound (II) and its salt include, for example, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR), ultraviolet / visible spectroscopy (UV-VIS absorption spectrum), It can be confirmed by a known method such as elemental analysis.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • IR infrared spectroscopy
  • UV-VIS absorption spectrum ultraviolet / visible spectroscopy
  • a neurological function modulating substance includes a group having a triple bond (C ⁇ C) between carbon atoms. It is known that a group having a triple bond between carbon atoms causes specific Raman scattering in a wave number region where a living body does not generate a signal, and can be detected by Raman scattering spectroscopy using a Raman microscope. That is, since the nerve function regulating substance of the present embodiment contains a group having a triple bond between carbon atoms, it can be detected by Raman scattering spectroscopy.
  • the nerve function regulating substance can be labeled so as to emit light. Since the click reaction is highly selective and has a high reaction rate, the nerve function-regulating substance can react with various kinds of dyes having an azide group, and can be labeled in various ways.
  • a dye for example, a fluorescent label
  • the dye to be click-reacted is not particularly limited as long as it has an azide group.
  • the non-commercially available dye can be produced, for example, by azido-forming a commercially available known dye having no azido group by a known method.
  • the azidation can be performed by a known method using an azidating agent such as sodium azide and trimethylsilyl azide.
  • the neurological function-modulating substance of the present embodiment includes detection by Raman scattering spectroscopy and detection by fluorescence emission (which is a kind of the above-described electromagnetic wave emission) after labeling using a click reaction. Two types of detection are possible, and various detection methods can be applied.
  • a dye is described as a compound having an azide group
  • a click reaction can be performed by using a compound having an azide group other than the dye depending on the purpose.
  • the nerve function regulating substance of the present embodiment has a physiological activity related to regulation of nerve function. Therefore, the nerve function-modulating substance of the present embodiment is taken up into nerve cells, and after being taken up, can be directly detected by Raman scattering spectroscopy, or after labeling using a click reaction. It can also be detected by fluorescence emission, and the state of uptake into nerve cells can be easily and practically evaluated.
  • a fluorescent green dye FFN511 represented by the following formula, which is incorporated into dopamine-containing nerve cells and is detectable in these cells, is known (see Patent Document 1).
  • the molecular weight of this dye is relatively small as compared with the molecular weights of other fluorescent dyes, it is about twice as high as the molecular weight of dopamine and is still larger than the molecular weight of the target molecule.
  • this dye is considered to have no biological activity, and further absorbs light of a short wavelength, which is not always common, and emits light in a wide wavelength range, so that it is difficult to use it in combination with other dyes. And has many undesirable properties, such as the absence of alternative dyes.
  • the nerve function regulating substance of the present embodiment has a physiological activity and can be detected by various means, and thus has extremely high utility.
  • the neurological function-modulating substance of the present embodiment is a compound having a structure in which one or two or more hydrogen atoms in dopamine, noradrenaline, adrenaline or serotonin are substituted with a group having a triple bond between carbon atoms or It is preferably a salt thereof (these may be collectively referred to as "analog substance" in this specification).
  • Dopamine, noradrenaline, adrenaline, and serotonin are important as naturally-occurring nerve function regulators that act in the brain.
  • the dynamics after uptake into nerve cells are unknown, and mental disorders and other diseases are unknown. It is also unknown how they are involved in the onset of various diseases.
  • the analog substance of the present embodiment includes those contained in the compound (I) or a salt thereof described above, and those contained in the compound (II) or a salt thereof described above.
  • the position of the hydrogen atom substituted with a group having a triple bond between carbon atoms is not particularly limited.
  • the number of hydrogen atoms replaced with a group having a triple bond between carbon atoms is not particularly limited, but is preferably 1 to 6, for example, 1 to 5, Any of 1 to 4, 1 to 3, 1 or 2, and 1 may be used.
  • dopamine analog substances for example, in dopamine, one or two hydrogen atoms in a terminal amino group are substituted with a group having a triple bond between carbon atoms.
  • a salt thereof having a structure in which a hydrogen atom in one or two hydroxy groups is replaced by a group having a triple bond between carbon atoms (the number of substitutions and the substitution position at this time are not particularly limited)
  • a salt thereof among the carbon atoms constituting the benzene ring skeleton, which are located between the carbon atom to which the 2-aminoethyl group is bonded and the carbon atom at the para position thereof,
  • a structure in which a hydrogen atom bonded to one or both of two adjacent carbon atoms is substituted with a group having a triple bond between carbon atoms (the number of substitutions and substitution positions are not particularly limited.)
  • a salt thereof in any of the compounds or salts thereof in any of these three groups, a hydrogen atom which is
  • examples of the analog substance of noradrenaline include, for example, a structure in which one or two hydrogen atoms in a terminal amino group are substituted with a group having a triple bond between carbon atoms.
  • Compound or salt thereof a structure in which a hydrogen atom in one, two or three hydroxy groups is substituted with a group having a triple bond between carbon atoms (the number and position of substitution are not particularly limited)
  • a salt thereof which is located between the carbon atom to which the 2-amino-1-hydroxyethyl group is bonded and the para-position carbon atom among the carbon atoms constituting the benzene ring skeleton.
  • examples of the adrenaline analog substance include a compound having a structure in which one hydrogen atom in a terminal methylamino group is substituted with a group having a triple bond between carbon atoms or A salt thereof; a compound having a structure in which a hydrogen atom in one, two or three hydroxy groups is substituted with a group having a triple bond between carbon atoms (the number and position of substitution are not particularly limited) Or a salt thereof, among carbon atoms constituting the benzene ring skeleton, a position between the carbon atom to which the (1-hydroxy-2-methylamino) ethyl group is bonded and the carbon atom at the para position.
  • a structure in which a hydrogen atom bonded to one or both of two carbon atoms adjacent to each other is substituted with a group having a triple bond between carbon atoms (the number of substitutions and the substitution positions at this time) Is Or a salt thereof; a hydrogen atom which is not substituted with a methylamino group or a hydroxy group having a triple bond between carbon atoms in any of the compounds or salts thereof in the above three groups.
  • Is substituted with an alkyl group preferably an alkyl group having 1 to 9 carbon atoms
  • a compound having a structure are not particularly limited
  • analog substance of serotonin for example, one having one or two hydrogen atoms in a terminal amino group substituted with a group having a triple bond between carbon atoms is used.
  • Compound or salt thereof Compound having a structure in which a hydrogen atom in a hydroxy group is substituted with a group having a triple bond between carbon atoms or a salt thereof;
  • Hydrogen atom bonded to a nitrogen atom constituting a nitrogen-containing ring Is a compound having a structure substituted with a group having a triple bond between carbon atoms or a salt thereof; of the carbon atoms constituting the benzene ring skeleton, the carbon atom to which the hydroxy group is bonded is ortho-positioned Or a salt thereof, in which a hydrogen atom bonded to one or both of the two carbon atoms is replaced by a group having a triple bond between carbon atoms; or a carbon having a benzene ring skeleton.
  • the neurological function regulating substance of the present embodiment includes, for example, those comprising the above-mentioned compound (I) or a salt thereof, and those comprising the above-mentioned compound (II) or a salt thereof.
  • the compound (I) or a salt thereof, and the compound (II) or a salt thereof have a high degree of retention of a molecular structure required for recognition by a nerve cell, similarly to a naturally-occurring nerve function regulator. Therefore, it is presumed to function as a nerve function regulator.
  • the method for evaluating a nerve function-modulating substance is a method for evaluating the state of uptake of the nerve function-modulating substance into nerve cells or the state of a cellular response caused by the uptake.
  • the nerve function regulating substance of the present embodiment has a physiological activity, and is taken into a nerve cell by coexisting with the nerve cell. Then, as described above, the nerve function regulating substance in the nerve cell can be detected by, for example, Raman scattering spectroscopy or fluorescence emission after labeling using a click reaction. Therefore, when evaluating the nerve function regulating substance, the nerve function regulating substance may be allowed to coexist with a nerve cell, and then the nerve function regulating substance taken into the nerve cell may be detected.
  • to evaluate the state of uptake of a nerve function regulating substance into a nerve cell means, for example, the place (in other words, distribution) of the nerve function regulating substance uptake in a nerve cell, This means that the amount of the function-modulating substance, the place of incorporation of the substance or the change over time of the amount, and the like are specified.
  • the role (in other words, physiological activity) of the nerve function modulator in the nerve cell and the degree thereof can be evaluated by evaluating the state of uptake of the nerve function modulator into the nerve cell.
  • nerve cells may have a specific effect depending on the area.
  • the role of the nerve function modulator in the nerve cell may be specified.
  • the amount of the nerve function-regulating substance at the location of the uptake the strength of the physiological activity of the nerve function-modulating substance in the nerve cell can be specified.
  • to evaluate the state of a cellular response brought about by the uptake of a nerve function modulator into a nerve cell means, for example, in a nerve cell or outside a nerve cell, other than the nerve function modulator.
  • the role (in other words, physiological activity) of a nerve function regulator in a nerve cell may be evaluated by evaluating the state of the cell response.
  • certain neurological modulators such as dopamine and noradrenaline bind to specific receptors on the surface of nerve cells and activate these nerve cells to cause various cellular responses.
  • One such cell response that is relatively well known is intracellular signaling with increasing or decreasing concentrations of second messengers such as cyclic AMP (cAMP).
  • cAMP cyclic AMP
  • the function of a nerve function modulator in a nerve cell can be specified by specifying the change in the concentration of another substance caused by incorporating the nerve function modulator into a nerve cell and then causing the change in the concentration of another substance caused thereby.
  • this is one mode of evaluation, and the evaluation is not limited to these.
  • the present embodiment it is possible to evaluate the state of uptake of the nerve function regulating substance into the nerve cell, so that the presence or absence of the release of the nerve function regulating substance from the nerve cell can be evaluated at the same time.
  • the state of uptake of the nerve function-modulating substance and the state of the cellular response caused by the uptake the dynamics of the nerve function-modulating substance in the brain tissue after the uptake can be evaluated.
  • the state of the uptake of such a nerve function regulating substance into a nerve cell, or the state of a cellular response brought about by the uptake can be evaluated practically.
  • it is suitable for use in the development of a therapeutic drug for a mental disorder, and is useful in the fields of psychiatry and pharmacy.
  • the neurological function regulating substance used at one time in the evaluation method of the present embodiment may be only one kind, or two or more kinds, and when two or more kinds, the combination and the ratio thereof are optional. You can choose. For example, by using two or more types of neurological modulators having different detection methods in combination and simultaneously detecting these two or more types of neurological modulators, the role of these neurological modulators in nerve cells can be efficiently determined. In some cases.
  • one or two or more of these neuronal functional modulators are detected by Raman scattering spectroscopy, and the other
  • a method of detecting two or more kinds of the neuronal function regulating substances by labeling using a click reaction with a dye and then using fluorescence emission after labeling the two or more kinds of these nerve function modulators using a click reaction with a dye having a different detection wavelength is mentioned.
  • a compound represented by the following formula (I) -1-101 (which may be abbreviated as “compound (I) -1-101” in the present specification) by the following route, and a compound represented by the following formula (I)
  • a compound represented by formula (I) -1-102 (hereinafter, may be abbreviated as “compound (I) -1-102”) and a compound represented by the following formula (I) -1-103 ( In this specification, the compound may be abbreviated as “compound (I) -1-103”.
  • N-trifluoroacetyl-O, O'-isopropylidendopamine The whole amount of N-trifluoroacetyldopamine obtained above was added to a 300 mL round bottom flask without purification, and further, 2,2-dimethoxypropane (5.69 mL, 46.4 mmol), p -Toluenesulfonic acid monohydrate (0.23 g, 1.2 mmol) and benzene (120 mL) were added. Next, the round bottom flask in this state was connected to a dropping funnel filled with the molecular sieve 4A, and further connected to a condenser from which water was sufficiently removed.
  • the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.56. .
  • TLC thin-layer chromatography
  • the obtained mixture was extracted with diethyl ether (30 mL), and the organic layer was washed with water and dried over anhydrous sodium sulfate. Then, the solvent was distilled off under reduced pressure, and the obtained mixture was passed through a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). The product was obtained. Then, the obtained crude product was purified by flash chromatography.
  • N-propargyl dopamine hydrochloride ie, compound (I) -1-103
  • the NMR data and HRMS (ESI) data of the obtained compound (I) -1-103 are shown below.
  • N-Boc-dopamine was developed by thin layer chromatography (TLC) to find that the Rf value was 0.57. Met.
  • TLC thin layer chromatography
  • the obtained mixture is extracted three times with a mixed solvent (20 mL) of ethyl acetate (50% by volume) / hexane (50% by volume), and the collected organic layer is washed with water (20 mL). It was washed three times, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, the obtained crude product was purified by flash chromatography. At this time, the target substance was separated and eluted using a mixed solvent of ethyl acetate (25% by volume) / hexane (75% by volume) as a mobile phase, and the solvent was distilled off from the eluted substance under reduced pressure.
  • tert-butyl (3,4-di-2-propynyloxyphenethyl) carbamate was obtained as the target product (350 mg (1.06 mmol), 99% yield).
  • the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.37. .
  • TLC thin-layer chromatography
  • the mixture obtained by the reaction was extracted with ethyl acetate, the collected organic layers were dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product. Then, the obtained crude product was purified by flash chromatography. At this time, the target substance was separated and eluted using a mixed solvent of methanol (10% by volume) / methylene chloride (90% by volume) as a mobile phase, and the solvent was distilled off from the eluted substance under reduced pressure. As described above, N, N-dipropargyldopamine (that is, compound (I) -1-201) was obtained (20 mg (0.087 mmol), 2% yield). The NMR data of the obtained compound (I) -1-201 are shown below.
  • Example 6 Compound (I) -1-102 obtained above was dissolved in artificial cerebrospinal fluid to prepare a solution of compound (I) -1-102.
  • the artificial cerebrospinal fluid contains sodium chloride (NaCl) at a concentration of 126 mmol / L, contains sodium bicarbonate (NaHCO 3 ) at a concentration of 26 mmol / L, and has a concentration of 1 mmol / L.
  • It contains sodium dihydrogen phosphate (NaH 2 PO 4 ), contains dextrose at a concentration of 10 mmol / L, contains potassium chloride (KCl) at a concentration of 3 mmol / L, and contains 1 mmol / L.
  • PH 7.3 aqueous solution containing magnesium chloride (MgCl 2 ) and containing calcium chloride (CaCl 2 ) at a concentration of 3 mmol / L.
  • concentration of compound (I) -1-102 in this solution was 10 ⁇ mol / L.
  • a solution having a concentration of 10 ⁇ mol / L was similarly prepared for the compound (I) -1-103 obtained above.
  • Two acute brain slices were prepared from mouse cerebral cortex and used as test specimens. One test piece was immersed in a solution of compound (I) -1-102 at 37 ° C. for 30 minutes. Similarly, the remaining one test piece was immersed in a solution of compound (I) -1-103 at 37 ° C.
  • test pieces were removed from these solutions, and the test pieces were chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS).
  • the test piece was solubilized using Triton X-100 solution.
  • Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
  • the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). The results are shown in FIGS.
  • FIGS. 1A to 1C are imaging data of a test piece when compound (I) -1-102 is used, and show data at three different magnifications.
  • FIGS. 2A to 2C are imaging data of a test piece when Compound (I) -1-103 is used, and show data at three different magnifications.
  • FIGS. 1A to 1C and FIGS. 2A to 2C show that even when Compound (I) -1-102 or Compound (I) -1-103 is used, the regulation of neuronal function running in the cerebral cortex Axon-like structures of neurons containing the substance were seen. This is because compound (I) -1-102 and compound (I) -1-103 having physicochemical properties similar to endogenous dopamine are taken up in dopamine-containing neurons and stored in vesicles. In this state, a click reaction was performed to react with the fluorescent dye to which the azide group was added, labeling was performed, and the label was detected by a confocal microscope.
  • Example 7 The compound (I) -1-102 obtained above and the FFN511 fluorescent dye were dissolved in the same artificial cerebrospinal fluid as used in Example 6, and the concentration of compound (I) -1-102 was 10 ⁇ mol / L and a solution having a concentration of the FFN511 fluorescent dye of 10 ⁇ mol / L was prepared. Further, the compound (I) -1-103 obtained above and the FFN511 fluorescent dye are similarly dissolved in artificial cerebrospinal fluid, and the concentration of the compound (I) -1-103 is 10 ⁇ mol / L, and And a solution having a concentration of FFN511 fluorescent dye of 10 ⁇ mol / L was prepared.
  • FIGS. 3A to 3F are imaging data of a test piece when only the FFN511 fluorescent dye is detected.
  • FIG. 3B is a test piece when only the compound (I) -1-102 is detected in the same region as in FIG. 3A.
  • FIG. 3C shows the imaging data of the test piece when the FFN511 fluorescent dye and the compound (I) -1-102 were simultaneously detected in the same region as in FIG. 3A.
  • 3D, 3E, and 3F are imaging data obtained by magnifying the data of FIGS. 3A, 3B, and 3C five times, respectively.
  • FIG. 4A is imaging data of a test piece when only the FFN511 fluorescent dye is detected
  • FIG. 4B is a test piece when only compound (I) -1-103 is detected in the same region as in FIG. 4A.
  • 4C shows the imaging data of the test piece when the FFN511 fluorescent dye and the compound (I) -1-103 were simultaneously detected in the same region as in FIG. 4A.
  • 4D, 4E, and 4F are imaging data obtained by magnifying the data of FIGS. 4A, 4B, and 4C five times, respectively.
  • FIGS. 3B and 3E light emission by the labeled compound (I) -1-102 was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 3B and FIG. 3E, another light emitting region by the labeled compound (I) -1-102 was present. From FIG. 3B and FIG.
  • compound (I) -1-102 was incorporated into dopamine-containing nerve cells, and in this state, the compound was labeled by a click reaction by reacting with the fluorescent dye to which an azide group was added. I was able to confirm that. 3C and 3F, the FFN511 fluorescent dye and the labeled compound (I) -1-102 can be simultaneously detected, and in the dopamine-containing neurons, the compound (I) -1-102 is It was confirmed that it was selectively taken up in the same region as the FFN511 fluorescent dye or in a region closer to the nerve ending.
  • Compound (I) -1-103 also showed the same results as compound (I) -1-102. That is, in FIGS. 4A and 4D, light emission by the FFN511 fluorescent dye was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 4A and FIG. 4D, other light-emitting regions due to the FFN511 fluorescent dye were present. 4A and 4D, it was confirmed that the FFN511 fluorescent dye was incorporated into the dopamine-containing neurons, as disclosed in the known literature. In FIGS. 4B and 4E, light emission by the labeled compound (I) -1-103 was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 4B and FIG.
  • Examples 6 and 7 show that both Compound (I) -1-102 and Compound (I) -1-103 were taken up into nerve cells in the same manner as in the case of a naturally-occurring nerve function regulator. Furthermore, it has been shown that the compound can react with various azide group-added compounds in nerve cells, and that such compounds can be clearly detected in nerve cells by using a fluorescent dye.
  • Example 8 Using a kit for detecting the concentration of intracellular cAMP (cyclic AMP) (a cAMPis kit manufactured by Montana Molecular), the compound (I) -1-102 obtained above at a concentration of 5 ⁇ M was used as an extracellular solution. , A compound containing the compound (I) -1-103 obtained above at a concentration of 5 ⁇ M, and a compound containing dopamine at a concentration of 5 ⁇ M were separately prepared. Next, cultured brain cells (primary cultured astrocytes) were added as test pieces to these three extracellular fluids, and the brain cells were observed using the same confocal microscope as in Example 6, Further, a fluorescent signal indicating the presence of cAMP was detected. The results at this time are shown in FIGS.
  • FIGS. 5A to 5B show the results when compound (I) -1-102 was used
  • FIGS. 6A and 6B show the results when compound (I) -1-103 was used
  • FIG. 7 to FIG. 7B show the results when dopamine was used.
  • FIG. 5A shows the imaging data of the brain cell and its surroundings acquired at this time, and 1, 2 and 3 in FIG. 5A all indicate the brain cell.
  • FIG. 5B is a graph showing the time-dependent change in the intensity of the fluorescent signal derived from one to three brain cells. 6A and 6B are the same.
  • FIG. 6A shows the acquired imaging data of the brain cell and its surroundings, and 1, 2 and 3 in FIG. 6A all indicate the brain cell.
  • FIG. 6B is a graph showing the time-dependent change in the intensity of the fluorescent signal derived from one to three brain cells.
  • 7A and 7B are the same.
  • FIG. 7A shows the acquired imaging data of the brain cell and its surroundings, and both 1 and 2 in FIG. 7A show the brain cell.
  • FIG. 7A shows the acquired imaging data of the brain cell and its surroundings, and both 1 and 2 in FIG. 7A show the brain cell.
  • 7B is a graph showing the time-dependent change in the intensity of the fluorescent signal derived from these 1 and 2 brain cells. 5B, 6B, and 7B, the vertical axis represents “normalized fluorescence intensity”, and the horizontal axis represents “time (seconds)”.
  • the obtained mixture is extracted three times with a mixed solvent (30 mL) of ethyl acetate (50% by volume) / hexane (50% by volume), and the collected organic layer is washed with water (30 mL). It was washed three times, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a precipitate. Next, the obtained precipitate was washed with hexane and dried under reduced pressure. As a result, 3-bromo-4,5-dimethoxybenzaldehyde was obtained as the desired product (9.72 g (39.7 mmol), 92% yield).
  • the NMR data and HRMS (ESI) data of the obtained 3-bromo-4,5-dimethoxybenzaldehyde are shown below.
  • the molecular sieve 3A was removed by filtration using a filter paper, and the residue was washed with ethyl acetate. Then, the solvent is removed, and the obtained solid is washed with a small amount of ethyl acetate, filtered, and dried under reduced pressure to obtain the target compound (E) -3-bromo-4,5 as a bright yellow solid. -Dimethoxy- ⁇ -nitrostyrene was obtained (yield 10.2 g (35.5 mmol), yield 72%).
  • the NMR data of the obtained (E) -3-bromo-4,5-dimethoxy- ⁇ -nitrostyrene are shown below.
  • the crude product was added to a tube (3 cm in length) filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). Then, the solvent was removed from the eluate, and the obtained crude product was purified by flash chromatography. As described above, N-trifluoroacetyl-3-bromo-4,5-dimethoxyphenethylamine, which was the target substance, was obtained as a white solid (360 mg (1.01 mmol), 50% yield).
  • the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.39. .
  • TLC thin-layer chromatography
  • the NMR data and HRMS (ESI) data of the obtained N-trifluoroacetyl-3-bromo-4,5-dimethoxyphenethylamine are shown below.
  • N-trifluoroacetyl-5-bromodopamine (Production of N-trifluoroacetyl-5-bromodopamine)
  • N-trifluoroacetyl-3-bromo-4,5-dimethoxyphenethylamine (1.46 g, 4.10 mmol) obtained above and dry methylene chloride (30 mL) were added, Stirred at -10 ° C.
  • a methylene chloride solution of boron tribromide having a concentration of 1 M (90 mL) was added dropwise to the obtained solution, and the obtained mixture was stirred at room temperature for 2 hours to be reacted.
  • N-trifluoroacetyl-O, O'-isopropylidene-5-bromodopamine obtained above (1.16 g, total amount), 2,2-dimethoxypropane (2.0 mL, 16.4 mmol), p- Toluenesulfonic acid monohydrate (39 mg, 0.21 mmol) and benzene (40 mL) were added.
  • the round bottom flask in this state was connected to a dropping funnel filled with molecular sieve 4A, the dropping funnel was connected to a Dimroth, and the Dimroth was connected to a tube filled with calcium chloride.
  • the mixture in the round bottom flask was stirred at 100 ° C. for 20 hours, during which the solvent vaporized in the molecular sieve 4A was allowed to pass.
  • the solvent was distilled off from the obtained reaction solution under reduced pressure, the obtained reaction mixture was dissolved in ethyl acetate, and this solution was washed with a saturated aqueous solution of sodium hydrogen carbonate.
  • N-trifluoroacetyl-O, O'-isopropylidene-5-bromodopamine (1.00 g, 2.72 mmol) obtained above was placed in a 50-mL round-bottomed flask having a capacity of 50 mL, which had been dried by heat.
  • This diisopropylamine was distilled in the presence of sodium hydroxide and then stored in the presence of molecular sieve 4A.
  • the entire amount of the obtained diisopropylamine solution was transferred into a two-necked round-bottomed flask after the replacement with the above argon gas, and the obtained mixture was stirred at room temperature for 30 minutes.
  • N-trifluoroacetyl-O, O'-isopropylidene-5- (2-trimethylsilylethynyl) dopamine as a target substance was obtained as a brown oil (yield 779 mg (2.02 mmol), yield 74). %).
  • the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.56. .
  • TLC thin-layer chromatography
  • reaction solution was extracted with methylene chloride, the organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product.
  • This crude product was purified by flash chromatography. At this time, using a mixed solvent of ethyl acetate (15% by volume) / hexane (85% by volume) as a mobile phase, the target substance was separated and eluted, and the solvent was removed from the eluted substance.
  • N-trifluoroacetyl-O, O'-isopropylidene-5-ethynyldopamine as a target substance was obtained as a brown oil (yield: 65.0 mg (0.207 mmol), yield: 59%).
  • the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.48. .
  • TLC thin-layer chromatography
  • Example 10 A compound represented by the following formula (I) -1-104 (hereinafter sometimes abbreviated as “compound (I) -1-104”) was produced by the following route.
  • the obtained reaction solution is extracted with a mixed solvent of ethyl acetate (50% by volume) / hexane (50% by volume), the organic layer is dried over anhydrous sodium sulfate, and the solvent is removed.
  • a crude product was obtained. This crude product was added into a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). Then, the eluate was dried under reduced pressure. As a result, N-propargyl-N-trifluoroacetyl-O, O'-dimethyldopamine was obtained as the desired product (yield 190 mg (0.603 mmol), yield 90%).
  • Example 11 Using the following seven compounds, the following tests were performed to evaluate whether or not the compounds were taken up into nerve cells. ⁇ FFN511 -Compound (I) -1-102 obtained in Example 1 -Compound (I) -1-103 obtained in Example 1 -Compound (I) -1-104 obtained in Example 10 -Compound (I) -1-201 obtained in Example 5 -Compound (I) -2-301 obtained in Example 2 -Compound (I) -3-101 obtained in Example 9
  • PC-12 cells which are rat adrenal pheochromocytoma, are maintained in a normal medium, and then seeded on a cover glass coated with type I collagen. Differentiated into cells.
  • the normal medium contains fetal bovine serum (Fetal Bovine Serum) at a concentration of 10% by mass, horse serum (Horse Serum) at a concentration of 10% by mass, and contains penicillin and streptomycin. It is Dulbecco's modified Eagle's medium.
  • an extracellular solution containing each of the seven compounds was prepared.
  • the extracellular fluid contains sodium chloride (NaCl) at a concentration of 125 mM, potassium chloride (KCl) at a concentration of 5 mM, dextrose at a concentration of 10 mM, and It contains HEPES (2- [4- (2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid) at a concentration of 10 mM, contains magnesium chloride (MgCl 2 ) at a concentration of 1 mM, and contains 2 mM Is an aqueous solution containing calcium chloride (CaCl 2 ) at a concentration of pH 7.3. Then, the differentiated nerve cells obtained above were immersed in this extracellular solution at 37 ° C. for 30 minutes.
  • FIG. 8A is imaging data of a nerve cell using FFN511
  • FIG. 8B is imaging data of a nerve cell using Compound (I) -2-301
  • FIG. ) -1-201 shows the imaging data of nerve cells using FIG. 8D
  • FIG. 8D shows the imaging data of nerve cells using compound (I) -1-103
  • FIG. 8F is image data of a nerve cell when compound (I) -1-104 is used
  • FIG. 8G is image data of a nerve cell when compound (I) -1-104 is used.
  • Imaging data of a nerve cell when -3-101 is used.
  • Example 12 The compound (I) -3-101 obtained above and the FFN511 fluorescent dye were dissolved in the same artificial cerebrospinal fluid as used in Example 6, and the concentration of the compound (I) -3-101 was 10 ⁇ mol / ml. L and a solution having a concentration of the FFN511 fluorescent dye of 10 ⁇ mol / L was prepared. Next, a solubilized test piece was prepared in the same manner as in Example 6. Then, Alexa Fluor® 594 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
  • FIGS. 9A to 9F The test piece was observed using an 840 nm femtosecond ultrashort pulse laser (Maitai HP manufactured by Newport) and a microscope (“FV1000MPE” manufactured by Olympus). The results are shown in FIGS. 9A to 9F.
  • FIG. 9A is imaging data of a test piece when only the FFN511 fluorescent dye is detected
  • FIG. 9B is a test piece when only the compound (I) -3-101 is detected in the same region as in FIG. 9A
  • FIG. 9C shows the imaging data of the test piece when the FFN511 fluorescent dye and the compound (I) -3-101 were simultaneously detected in the same region as in FIG. 9A.
  • 9D, 9E, and 9F are image data obtained by enlarging the data of FIGS. 9A, 9B, and 9C by 2.5 times, respectively.
  • compound (I) -3-101 was incorporated into dopamine-containing neurons, and in this state, it was labeled by reacting with the azido group-added fluorescent dye by a click reaction. I was able to confirm that. 9C and 9F, the FFN511 fluorescent dye and the labeled compound (I) -3-101 can be simultaneously detected, and in the dopamine-containing neurons, the compound (I) -3-101 is It could be confirmed that the FFN511 was selectively incorporated into the same region as the fluorescent dye.
  • compound (I) -3-101 was prepared in the same manner as compound (I) -1-101 and compound (I) -1-103, and As in the case of a naturally-occurring nerve function-modulating substance, it can be taken up into nerve cells and further react with various azide-group-added compounds in the nerve cells. It was shown that the use of a dye allowed clear detection in nerve cells.
  • compound (I) -3-101 was also detected after reacting with a fluorescent dye by a click reaction, but this compound has a triple bond between carbon atoms. Therefore, this compound can also be directly detected using a Raman microscope without using a luminescent label.
  • Example 13 A compound represented by the following formula (II) -1-101 (which may be abbreviated as “compound (II) -1-101” in the present specification) was produced by the following route.
  • N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide In a 100 mL round bottom flask, the total amount of N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide obtained above, Ethyl trifluoroacetate (1.55 mL, 1.85 g, 13 mmol), N, N-diisopropylethylamine (1.75 mL, 1.29 g, 10 mmol) and methanol were added.
  • the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.4. .
  • TLC thin-layer chromatography
  • the NMR data and HRMS (ESI) data of the obtained N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide are shown below.
  • N-2- (5-tert-butyldimethylsilyloxy-1-propargyl-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide In a 100 mL round bottom flask, N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide (800 mg, 2.07 mmol), and dry THF (20 mL).
  • the obtained reaction solution was extracted with ethyl acetate, and the obtained organic layer was dried over anhydrous sodium sulfate to obtain a crude product.
  • the crude product was added into a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume).
  • the eluate was purified by flash chromatography.
  • a mixed solvent of ethyl acetate and hexane was used as a mobile phase, and the concentration of ethyl acetate was increased from 10% by volume to 30% by volume to separate and elute the target substance. Removed.
  • N-2- (5-tert-butyldimethylsilyloxy-1-propargyl-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide as a target substance was obtained as a pale white solid.
  • was obtained 180 mg (0.424 mmol), 20% yield).
  • the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.52.
  • TLC thin-layer chromatography
  • the obtained reaction mixture was extracted three times with chloroform (20 mL), the collected organic layers were dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. (1 mL). Then, the methanol solution obtained above was dropped into a diethyl ether solution (10 mL) at 0 ° C. containing hydrogen chloride at a concentration of 1 M, and after removing the solvent, the obtained residual mixture was again added to methanol (1 mL). ). Then, the methanol solution obtained above was dropped into diethyl ether (50 mL) at 0 ° C., and the precipitated crystals were separated by filtration, washed with diethyl ether, and dried under reduced pressure to obtain brown crystals.
  • Example 14 A compound represented by the following formula (II) -2-101 (which may be abbreviated as “compound (II) -2-101” in the present specification) by the following route, and a compound represented by the following formula (II) ) -2-102 (in this specification, may be abbreviated as “compound (II) -2-102”).
  • N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide (800 mg, 2.07 mmol) obtained in the previous example was added to DMF. (10 mL) to prepare a DMF solution.
  • This DMF solution is added dropwise to the 0 ° C. suspension obtained above, and the resulting solution is stirred at 0 ° C. for 30 minutes. Was added, and the resulting mixture was stirred at 0 ° C. and further stirred at room temperature for 6 hours to react.
  • a saturated ammonium chloride aqueous solution was added to the obtained reaction solution to stop the reaction.
  • the obtained reaction solution was extracted three times with methylene chloride (20 mL), and the obtained organic layer was dried over anhydrous sodium sulfate.
  • the solvent was removed from the dried organic layer, water was added, and the obtained mixture was extracted three times with diethyl ether (30 mL), and the obtained organic layer was dried over anhydrous sodium sulfate.
  • a crude product was obtained.
  • the crude product was added into a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). Then, the eluate was purified by flash chromatography.
  • Example 15 Compound (I) -1-103 was dissolved in a culture solution of N27 cells (N27 rat dopaminergic neurons, Merck Millipore) to prepare a solution of compound (I) -1-103.
  • N27 cell culture solution is obtained by adding 10% FBS (Fetal Bovine Serum) and an antibiotic (penicillin-streptomycin) to a PRMI1640 basal medium.
  • the concentration of compound (I) -1-103 in this solution was 50 ⁇ mol / L.
  • N27 cells cultured on a cover glass were immersed in a solution of compound (I) -1-103 at 37 ° C. for 30 minutes together with the cover glass.
  • test piece cover glass
  • test piece was chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS).
  • the test piece was solubilized using 0.5% Triton X-100 solution.
  • Alexa Fluor® 488, 555, 594 and 647 fluorescent dyes with added azide groups were then solubilized using Thermo Fisher's Click-iT reagent in the presence of a copper catalyst as described above. Reacted with pieces.
  • the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). The results are shown in FIG. FIG.
  • FIG. 10 shows imaging data of N27 cells in which Compound (I) -1-103 was detected using the above four types of fluorescent dyes.
  • FIG. 10A shows imaging data of N27 cells when using compound (I) -1-103 labeled with Alexa Fluor 488
  • FIG. 10B shows compound (I)-labeled with Alexa Fluor 555.
  • FIG. 10C is imaging data of N27 cells using 1-1103
  • FIG. 10C is imaging data of N27 cells using compound (I) -1-103 labeled with Alexa Fluor 594
  • 10D is imaging data of N27 cells using compound (I) -1-103 labeled with Alexa Fluor 647.
  • Example 15 The results of Example 15 showed that compound (I) -1-103 was taken up by N27 cells and could be detected by the fluorescent dye. From these results, it is considered that compound (I) -1-103 can be labeled with an arbitrary fluorescent dye and can be detected.
  • N27 cells were cultured on a cover glass, and one day after seeding, the gene was transfected using CellLight RFP-Actin (ThermoFisher). The cells were further cultured at 37 ° C. for 2 days. Thereafter, Compound (I) -1-103 was dissolved in a culture solution of N27 cells to prepare a solution of Compound (I) -1-103. The concentration of compound (I) -1-103 in this solution was 10 ⁇ mol / L. RFP-Actin-introduced N27 cells cultured on a cover glass were immersed in the solution of compound (I) -1-103 at 37 ° C. for 30 minutes together with the cover glass.
  • test piece cover glass
  • test piece was chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS).
  • the test piece was solubilized using 0.5% Triton X-100 solution.
  • Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
  • the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). The results are shown in FIG. FIG.
  • FIG. 11A shows fluorescence image data of labeled compound (I) -1-103 in RFP-Actin-transduced N27 cells
  • FIG. 11B shows fluorescence image data of RFP-Actin in the same region as FIG. 11A
  • FIG. 11C shows image data obtained by superimposing the image data of FIG. 11A and the image data of FIG. 11B.
  • Example 16 From the results of Example 16, it can be seen that the localization of these compounds can be analyzed using a combination of the labeled compound (I) -1-103 and a cell morphological marker labeled with a fluorescent protein or the like. Indicated.
  • Example 17 Compound (I) -1-103 was dissolved in artificial cerebrospinal fluid to prepare a solution of compound (I) -1-103.
  • the artificial cerebrospinal fluid contains sodium chloride (NaCl) at a concentration of 126 mmol / L, contains sodium bicarbonate (NaHCO 3 ) at a concentration of 26 mmol / L, and has a concentration of 1 mmol / L.
  • It contains sodium dihydrogen phosphate (NaH 2 PO 4 ) contains dextrose at a concentration of 10 mmol / L, contains potassium chloride (KCl) at a concentration of 3 mmol / L, and contains 1 mmol / L.
  • PH 7.3 aqueous solution containing magnesium chloride (MgCl 2 ) and containing calcium chloride (CaCl 2 ) at a concentration of 3 mmol / L.
  • concentration of compound (I) -1-103 in this solution was 10 ⁇ mol / L.
  • An acute brain slice (thickness: 300 ⁇ m) was prepared from the midbrain of the mouse and used as a test piece. The test piece was immersed in a solution of compound (I) -1-103 at 37 ° C. for 30 minutes. Thereafter, the plate was immersed in artificial cerebrospinal fluid at 37 ° C. containing no compound (I) -1-103 for 30 minutes.
  • test pieces were removed from these solutions, and the test pieces were chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS).
  • the test piece was solubilized using Triton X-100 solution.
  • Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
  • FIG. 12A shows the imaging data of the labeled compound (I) -1-103 of the test strip
  • FIG. 12B shows the imaging data of the labeled anti-Tyrosine Hydroxylase antibody of the test strip in the same region as FIG. 12A
  • FIG. 12C shows image data obtained by superimposing the image data of FIG. 12A and the image data of FIG. 12B
  • 12D, 12E, and 12F are imaging data obtained by enlarging the data of FIGS. 12A, 12B, and 12C three times, respectively.
  • Example 17 indicate that there is a site where the signal of Tyrosine @ Hydroxylase in the neurons of the midbrain that produces and releases dopamine in brain tissue coincides with the signal of compound (I) -1-103. .
  • Example 18 Rat primary cultured cerebral cortical astrocytes (Lonza) were cultured on coverslips and analyzed 6 days later.
  • Compound (I) -1-103 was dissolved in an astrocyte culture solution (Astrocyte Growth Medium, Lonza) to prepare a solution containing compound (I) -1-103 at a concentration of 100 ⁇ mol / L.
  • Compound (I) -1-103 and JHW007 (Tocris) a drug that inhibits a dopamine transporter that takes up dopamine from outside the cell, are dissolved in astrocyte culture solution to give compound (I) -1-103.
  • a solution containing 103 at a concentration of 100 ⁇ mol / L and JHW007 at a concentration of 10 ⁇ mol / L was prepared.
  • the rat primary cultured astrocytes cultured on the cover glass were immersed together with the cover glass in these solutions for 30 minutes.
  • a test piece (cover glass) was taken out from these solutions, and the test piece was chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS).
  • the test piece was solubilized using 0.5% Triton X-100 solution.
  • FIG. 13 shows the results.
  • FIG. 13A is imaging data of labeled compound (I) -1-103 in astrocyte cells immersed in a solution containing only labeled compound (I) -1-103
  • FIG. 10 is data obtained by imaging the labeled compound (I) -1-103 in astrocyte cells, which was immersed in a solution containing the labeled compound (I) -1-103 and the dopamine uptake inhibitor JHW007. .
  • Example 18 show that, first, compound (I) -1-103 is incorporated into astrocytes, glial cells of the cerebral cortex, as an analog of dopamine, and second, compound (I) This shows that uptake of -1-103 is performed via the dopamine transporter.
  • dopamine uptake inhibitors since the effects of dopamine uptake inhibitors on neurons could be visualized in this way, dopamine and other neuromodulators important for the treatment of various psychiatric disorders including Parkinson's disease and depression.
  • the present invention has been shown to be useful in the assessment of group uptake inhibitors.
  • Rat primary cultured striatal neurons and cerebral cortical astrocytes were cultured on cover glass and analyzed 28 days and 3 days after culture, respectively.
  • Compound II-1-101 was dissolved in a nerve cell culture solution (Primary Neuron Growth Medium, Lonza) and an astrocyte culture solution (Astrocyte Growth Medium, Lonza), and compound II-1-101 was dissolved at a concentration of 100 ⁇ mol / L.
  • a solution containing was prepared.
  • the rat primary cultured striatal neurons and astrocytes cultured on a cover glass were immersed together with the cover glass in these solutions for 30 minutes.
  • FIG. 14 shows the results.
  • FIG. 14A is imaging data of labeled compound II-1-101 in primary cultured striatal neurons
  • FIG. 14B is imaging data of labeled compound II-1-101 in primary cultured astrocytes. It is.
  • Example 19 The results of Example 19 show that compound II-1-101 is taken up by striatal neurons and astrocytes. It is considered that the compound II-1-101 can be used to evaluate serotonin uptake inhibitory function, which is an action of many antidepressants.
  • the present invention can be used for analyzing the action of a nerve function regulating substance in the brain.

Abstract

Provided is a compound represented by general formula (I), or a salt thereof. (In the formula, X1, X2, X3 and X4 are a hydrogen atom, a C1-9 alkyl group, or a C3-9 unsaturated hydrocarbon group which has 1-4 triple bonds between carbon atoms and which may have a substituent (when the unsaturated hydrocarbon group has a methylene group at the end of the bond, the methylene group may be substituted with a carbonyl group); X5 is a C2-8 unsaturated hydrocarbon group which has 1-4 triple bonds between carbon atoms and which may have a substituent; X6 is a hydrogen atom, or a C3-9 unsaturated hydrocarbon group which has 1-4 triple bonds between carbon atoms and which may have a substituent; n1 and n3 are 0 or 1; and n2 is an integer of 1-5.)

Description

化合物、化合物の塩、神経機能調節物質、神経機能調節物質の評価方法、化合物の製造方法、及び化合物の塩の製造方法Compound, salt of compound, neurological modulator, method for evaluating neurological modulator, method for producing compound, and method for producing salt of compound
 本発明は、化合物、化合物の塩、神経機能調節物質、神経機能調節物質の評価方法、化合物の製造方法、及び化合物の塩の製造方法に関する。
 本願は、2018年8月7日に日本に出願された特願2018-148873号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a compound, a salt of the compound, a neurological modulator, a method for evaluating a neurological modulator, a method for producing a compound, and a method for producing a salt of a compound.
Priority is claimed on Japanese Patent Application No. 2018-148873 filed on August 7, 2018, the content of which is incorporated herein by reference.
 神経機能の調節に関わる生理活性物質(本明細書においては、「神経機能調節物質」と称することがある)の脳内における作用を、分子レベル又は細胞レベルで理解することにより、医学、生物学及び薬学が大きく発展することが期待されている。 By understanding the action in the brain of a physiologically active substance involved in the regulation of nerve function (sometimes referred to as a “nerve function regulator” in the present specification) at the molecular level or the cellular level, medicine, biology, It is expected that pharmacy will greatly develop.
 例えば、現代では、全人口の1割前後の人々が、うつ病等の精神疾患を罹っているとされており、その予防や治療は、最も重要な課題の一つとなっている。うつ病の詳細な発症メカニズム等は、いまだ明らかとなっていないが、使用される薬剤の働きから、脳内における、ノルアドレナリンやセロトニン等の神経機能調節物質の質的又は量的な働きの変化が、発症原因であると考えられている。
 しかし、神経機能調節物質の神経細胞中への取り込みの状態、脳組織内における放出後の動態、取り込みによってもたらされる細胞応答の状態を評価するための実用的な方法が、十分に開発されてはおらず、このような精神疾患の治療薬の開発は、困難を極めている。
For example, at present, about 10% of the population is said to have a mental illness such as depression, and prevention and treatment thereof are one of the most important issues. Although the detailed mechanism of the onset of depression has not been elucidated yet, the effects of the drugs used may lead to changes in the qualitative or quantitative functions of neuronal function regulators such as noradrenaline and serotonin in the brain. , Is thought to be the cause.
However, practical methods have been developed to assess the state of uptake of neuromodulators into neurons, post-release kinetics in brain tissue, and the state of cellular responses resulting from uptake. Development of a therapeutic agent for such a mental illness is extremely difficult.
 ところで、生理活性の有無や、生理活性の詳細を解析する対象となる生体関連物質について、その細胞内外における動態を観察するためには、生体関連物質を高精度に検出する方法が必要となる。従来、生体関連物質の検出方法には、大別して、蛍光性物質や放射性同位体等の電磁波を放出可能なラベル(本明細書においては、「電磁波放出ラベル」と称することがある)によって生体関連物質をラベル化し、このラベルの電磁波放出によって生体関連物質を検出する方法と、このような電磁波放出ラベルを用いずに、生体関連物質を検出する方法と、の2種の方法がある。 By the way, in order to observe the dynamics inside and outside a cell of a biological substance to be analyzed for the presence or absence of the biological activity and the details of the biological activity, a method for detecting the biological substance with high accuracy is required. 2. Description of the Related Art Conventionally, a method for detecting a biological substance is roughly divided into a label capable of emitting an electromagnetic wave such as a fluorescent substance and a radioisotope (in this specification, sometimes referred to as an “electromagnetic wave emission label”). There are two methods: a method of labeling a substance and detecting a biological substance by emitting electromagnetic waves from the label, and a method of detecting a biological substance without using such an electromagnetic wave emission label.
 電磁波放出ラベルを用いて生体関連物質を検出する方法としては、放射性同位体を用いる方法、蛍光性物質を用いる方法が知られている。
 これらのうち、放射性同位体を用いる方法は、生体関連物質の生理活性が失われ難く、特異性が高い、という利点を有する。しかし、この方法は、放射性物質を用いるために、安全管理が困難であり、また、生きている組織中での観察には不向きであり、分解能と感度が低い、という欠点を有しており、実用性が低い。したがって、神経機能調節物質の検出への適用も困難である。
 蛍光性物質を用いる方法としては、蛍光色素又は蛍光タンパク質を用いる方法が実用化されているが、これらの蛍光性物質はそれ自身の分子量が大きい。したがって、これら蛍光性物質よりもはるかに分子量が小さい神経機能調節物質を蛍光性物質でラベル化すると、神経機能調節物質の挙動や性質が大きく変わってしまい、神経機能調節物質を正確に評価できない。
As a method for detecting a biological substance using an electromagnetic wave emission label, a method using a radioisotope and a method using a fluorescent substance are known.
Among them, the method using a radioisotope has the advantage that the biological activity of the biological substance is hardly lost and the specificity is high. However, this method has drawbacks that it is difficult to perform safety management due to the use of radioactive materials, is not suitable for observation in living tissue, and has low resolution and sensitivity. Low practicality. Therefore, it is also difficult to apply the method to the detection of a neurological modulator.
As a method using a fluorescent substance, a method using a fluorescent dye or a fluorescent protein has been put to practical use, but these fluorescent substances have a large molecular weight by themselves. Therefore, if a nerve function-modulating substance having a much smaller molecular weight than these fluorescent substances is labeled with a fluorescent substance, the behavior and properties of the nerve function-modulating substance will be greatly changed, and the nerve function-modulating substance cannot be accurately evaluated.
 蛍光色素としては、それ自体がドーパミン含有神経細胞中に取り込まれ、この細胞中で検出可能な蛍光緑色色素FFN511が知られている(特許文献1参照)。この蛍光色素の分子量は、上記の通常の蛍光色素や蛍光タンパク質の分子量に比べて相対的に小さいものの、それでもドーパミンの分子量の2倍程度である。したがって、FFN511は、その挙動や性質の点で、通常の観測対象分子とは大きく異なる。実際、FFN511は、生理活性を有しないと考えられ、さらに、必ずしも一般的ではない短波長の光を吸収して、幅広い波長帯の光を放出する。したがって、他の色素との併用が困難であり、代替の色素が存在しないなど、生体関連物質の研究対象として適していない。 は As a fluorescent dye, a fluorescent green dye FFN511 which is itself taken into dopamine-containing neurons and is detectable in these cells is known (see Patent Document 1). Although the molecular weight of this fluorescent dye is relatively smaller than the molecular weight of the normal fluorescent dye or fluorescent protein, it is still about twice the molecular weight of dopamine. Therefore, the FFN 511 is significantly different from a normal observation target molecule in its behavior and properties. In fact, FFN 511 is considered to have no biological activity, and further absorbs short-wavelength light, which is not always common, and emits light in a wide wavelength band. Therefore, it is difficult to use with other dyes, and there is no alternative dye.
 一方で、電磁波放出ラベルを用いずに、生体関連物質を検出する方法としては、分子中の特定の基がラマン散乱を生じることに着目して、ラマン顕微鏡を用いて検出する方法が知られている。例えば、炭素原子間の三重結合(C≡C)は、ラマン顕微鏡によって検出可能であり、このような三重結合を導入した、生体分子のアナログを検出する方法が開示されている(非特許文献1参照)。 On the other hand, as a method of detecting biological substances without using an electromagnetic wave emission label, a method of detecting using a Raman microscope is known, focusing on the fact that a specific group in a molecule causes Raman scattering. I have. For example, a triple bond between carbon atoms (C≡C) can be detected by a Raman microscope, and a method for detecting an analog of a biomolecule into which such a triple bond is introduced has been disclosed (Non-Patent Document 1). reference).
米国特許第8337941号明細書U.S. Pat. No. 8,337,941
 しかし、非特許文献1で開示されているこの分子は、神経機能調節物質とは無関係であり、これまでに、神経機能調節物質として、炭素原子間の三重結合を有するものは、報告されていない。 However, this molecule disclosed in Non-Patent Document 1 is irrelevant to a neurological function modulator, and no neuronal function modulator having a triple bond between carbon atoms has been reported so far. .
 本発明は、神経細胞中への取り込みの状態、又は、取り込みによってもたらされる細胞応答の状態を、実用的に評価可能な、新規の神経機能調節物質を提供することを課題とする。 An object of the present invention is to provide a novel nerve function-regulating substance capable of practically evaluating the state of uptake into a nerve cell or the state of a cellular response caused by the uptake.
 本発明は、以下の構成を採用する。
 [1].下記一般式(I)で表される化合物又はその塩。
The present invention employs the following configuration.
[1]. A compound represented by the following general formula (I) or a salt thereof.
Figure JPOXMLDOC01-appb-C000011
 (一般式(I)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 n及びnは、それぞれ独立に、0又は1であり;
 nは、1~5の整数であり;
 ただし、前記nが0であり、かつ前記nが1である場合には、前記X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 前記nが1であり、かつ前記nが0である場合には、前記X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 前記n及び前記nがともに0である場合には、前記X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 前記n及び前記nがともに1である場合には、前記X、X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000011
(In the general formula (I), X 1 , X 2 , X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms. When the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent, and the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group is May be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more The methylene groups which are not adjacent to each other may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or when X 3 and X 4 are the alkyl groups The two alkyl groups are bonded to each other to form a ring Well;
X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 1 and n 3 are each independently 0 or 1;
n 2 is an integer from 1 to 5;
However, when n 1 is 0 and n 3 is 1, one or more of X 1 , X 2 , X 3 , X 4, and X 6 are not the same A saturated hydrocarbon group,
When n 1 is 1 and n 3 is 0, one or more of X 1 , X 2 , X 3 , X 4 and X 5 are the unsaturated carbons. A hydrogen group,
When both n 1 and n 3 are 0, at least one of X 1 , X 2 , X 3 and X 4 is the unsaturated hydrocarbon group,
When both n 1 and n 3 are 1, one or more of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the unsaturated hydrocarbons. Group. )
 [2].前記一般式(I)で表される化合物が、下記一般式(I)-1、(I)-2、(I)-3又は(I)-4で表される化合物である、[1]に記載の化合物又はその塩。 {[2]. The compound represented by the general formula (I) is a compound represented by the following general formula (I) -1, (I) -2, (I) -3 or (I) -4, [1] Or a salt thereof.
Figure JPOXMLDOC01-appb-C000012
 (一般式(I)-1、(I)-2、(I)-3又は(I)-4中、X、X、X、X、X、n及びnは、前記と同じであり;
 X11、X21、X31及びX41は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基であり、X11及びX21が前記アルキル基である場合、又は、X31及びX41が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X61は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 ただし、一般式(I)-1中、前記X及びXのいずれか一方又は両方は、前記不飽和炭化水素基であり、
 一般式(I)-2中、前記X及びXのいずれか一方又は両方は、前記不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000012
(In general formulas (I) -1, (I) -2, (I) -3 or (I) -4, X 1 , X 2 , X 3 , X 4 , X 5 , n 2 and n 3 are The same as above;
X 11, X 21, X 31 and X 41 each independently represent a hydrogen atom or an alkyl group having 1-9 carbon atoms, when X 11 and X 21 are the alkyl group, or, X 31 and X When 41 is the above-mentioned alkyl group, these two alkyl groups may be mutually bonded to form a ring;
X 61 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and optionally having 3 to 9 carbon atoms;
However, in the general formula (I) -1, one or both of X 1 and X 2 is the unsaturated hydrocarbon group,
In formula (I) -2, one or both of X 3 and X 4 are the unsaturated hydrocarbon groups. )
 [3].前記一般式(I)-1、(I)-2、(I)-3又は(I)-4で表される化合物が、下記一般式(I)-1-1、(I)-1-2、(I)-2-1、(I)-2-2、(I)-2-3、(I)-3-1又は(I)-4-1で表される化合物である、[2]に記載の化合物又はその塩。 {[3]. Compounds represented by the general formulas (I) -1, (I) -2, (I) -3 or (I) -4 are represented by the following general formulas (I) -1-1 and (I) -1- 2, a compound represented by (I) -2-1, (I) -2-2, (I) -2-3, (I) -3-1 or (I) -4-1, 2] The compound according to [1] or a salt thereof.
Figure JPOXMLDOC01-appb-C000013
 (一般式(I)-1-1、(I)-1-2、(I)-2-1、(I)-2-2、(I)-2-3、(I)-3-1又は(I)-4-1中、X12、X22、X32及びX42は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基であり、X12及びX22が前記アルキル基である場合、又は、X32及びX42が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 G、G、G、G、G及びGは、それぞれ独立に、水素原子、アルキル基、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基であり;
 nは、前記と同じである。)
 [4].下記一般式(II)で表される化合物又はその塩。
Figure JPOXMLDOC01-appb-C000013
(General formulas (I) -1-1, (I) -1-2, (I) -2-1, (I) -2-2, (I) -2-3, (I) -3-1) Or, in (I) -4-1, X 12 , X 22 , X 32 and X 42 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X 12 and X 22 are Or when X 32 and X 42 are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring;
G 1 , G 2 , G 3 , G 4 , G 5 and G 6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a trialkyl group. Reelsilyl group, hydroxy group, halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group , A triarylsilylalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group. R;
n 3 are the same as above. )
[4]. A compound represented by the following general formula (II) or a salt thereof.
Figure JPOXMLDOC01-appb-C000014
 (一般式(II)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 n01は、0又は1であり;
 n02は、1~5の整数であり;
 ただし、前記n01が0である場合には、前記X01、X02、X03及びX04のうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 前記n01が1である場合には、前記X01、X02、X03、X04及びX05のうち、1種又は2種以上は、前記不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000014
(In the general formula (II), X 01 , X 02 , X 03 and X 04 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms. When the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent, and the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group is May be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more May be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups are bonded to each other to form a ring. May be formed;
X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 01 is 0 or 1;
n 02 is an integer of 1 to 5;
However, when n 01 is 0, one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups,
When n 01 is 1, one or more of X 01 , X 02 , X 03 , X 04 and X 05 are the unsaturated hydrocarbon groups. )
 [5].前記一般式(II)で表される化合物が、下記一般式(II)-1又は(II)-2で表される化合物である、[4]に記載の化合物又はその塩。 [5]. The compound or a salt thereof according to [4], wherein the compound represented by the general formula (II) is a compound represented by the following general formula (II) -1 or (II) -2.
Figure JPOXMLDOC01-appb-C000015
 (一般式(II)-1又は(II)-2中、n02は、前記と同じであり;
 X011、X021及びX031は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基であり、X011及びX021が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X041は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 X010、X020及びX030は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X010及びX020が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、X010、X020及びX030の1種又は2種以上は、前記不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000015
(In the general formula (II) -1 or (II) -2, n 02 is the same as described above;
X 011 , X 021 and X 031 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms. When X 011 and X 021 are the above-mentioned alkyl groups, these two alkyl groups are May combine with each other to form a ring;
X 041 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent;
X 010 , X 020 and X 030 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and may have a substituent. When the unsaturated hydrocarbon group has 3 to 9 carbon atoms and the unsaturated hydrocarbon group has a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group; When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, one methylene group or two or more methylene groups that are not adjacent to each other are may be substituted with an oxygen atom, if X 010 and X 020 is the above alkyl group, these two alkyl groups may form a ring with each other, however, X 010 , One of X 020 and X 030 Species or two or more are the aforementioned unsaturated hydrocarbon groups. )
 [6].前記一般式(II)-1又は(II)-2で表される化合物が、下記一般式(II)-1-1、(II)-2-1、(II)-2-2、(II)-2-3、(II)-2-4又は(II)-2-5で表される化合物である、[5]に記載の化合物又はその塩。 [6]. Compounds represented by the general formula (II) -1 or (II) -2 are represented by the following general formulas (II) -1-1, (II) -2-1, (II) -2-2, and (II) ) The compound according to [5], which is a compound represented by 2-3, (II) -2-4 or (II) -2-5, or a salt thereof.
Figure JPOXMLDOC01-appb-C000016
 (一般式(II)-1-1、(II)-2-1、(II)-2-2、(II)-2-3、(II)-2-4又は(II)-2-5中、X012、X022及びX032は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基であり、X012及びX022が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 G01、G02、G03及びG04は、それぞれ独立に、水素原子、アルキル基、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基であり;
 n02は、前記と同じである。)
Figure JPOXMLDOC01-appb-C000016
(General formulas (II) -1-1, (II) -2-1, (II) -2-2, (II) -2-3, (II) -2-4 or (II) -2-5) in, X 012, X 022 and X 032 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, when X 012 and X 022 is the above alkyl group, these two alkyl The groups may be linked to each other to form a ring;
G 01 , G 02 , G 03 and G 04 are each independently a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group , Halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl group A hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group;
n 02 is the same as described above. )
 [7].[1]~[6]のいずれか一項に記載の化合物又はその塩からなる、神経機能調節物質。
 [8].炭素原子間の三重結合を有する基を含む、神経機能調節物質。
 [9].前記神経機能調節物質が、ドーパミン、ノルアドレナリン、アドレナリン若しくはセロトニン中の、1個又は2個以上の水素原子が、前記炭素原子間の三重結合を有する基で置換された構造を有する化合物又はその塩である、[8]に記載の神経機能調節物質。
[7]. A neurological function modulator comprising the compound according to any one of [1] to [6] or a salt thereof.
[8]. A neurological function modulator comprising a group having a triple bond between carbon atoms.
[9]. The compound having a structure in which one or two or more hydrogen atoms in dopamine, noradrenaline, adrenaline or serotonin in the dopamine, noradrenaline, adrenaline or serotonin is replaced by a group having a triple bond between carbon atoms, or a salt thereof. The nerve function modulator according to [8].
 [10].[7]~[9]のいずれか一項に記載の神経機能調節物質の、神経細胞中への取り込みの状態、又は、取り込みによってもたらされる細胞応答の状態を評価する、神経機能調節物質の評価方法。
 [11].下記一般式(I)で表される化合物又はその塩の製造方法であって、下記一般式(Ia)で表される化合物と、下記一般式(Ic)で表される化合物と、を反応させる工程と、下記Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程と、を行うことにより、下記一般式(I)で表される化合物又はその塩として、下記一般式(Ia)で表される化合物における、下記Z1a、Z2a、Z3a、Z4a及びZ6aのうち、水素原子であるものが、下記X0aで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法。
[10]. Evaluation of a nerve function modulator, which evaluates a state of uptake of a nerve function modulator according to any one of [7] to [9] into a nerve cell or a state of a cellular response caused by the uptake. Method.
[11]. A method for producing a compound represented by the following general formula (IA) or a salt thereof, comprising reacting a compound represented by the following general formula (Ia) with a compound represented by the following general formula (Ic) And when one or more of the following Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are the following protecting groups, after the step of reacting, removing the group, by performing, as a compound represented by the following general formula (I a), in the compounds represented by the following general formula (Ia), the following Z 1a, Z 2a, Z A method for producing a compound or a salt thereof, wherein a compound having a structure in which a hydrogen atom among 3a , Z 4a and Z 6a is substituted with the following X 0a or a salt thereof is obtained.
Figure JPOXMLDOC01-appb-C000017
 (一般式(I)、(Ia)又は(Ic)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 n及びnは、それぞれ独立に、0又は1であり;
 nは、1~5の整数であり;
 ただし、前記X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 X0aは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく;
 LGは脱離基であり;
 Z1a、Z2a、Z3a、Z4a及びZ6aは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は保護基であり、Z1a及びZ2aが前記アルキル基である場合、又は、Z3a及びZ4aが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上は、水素原子である。)
Figure JPOXMLDOC01-appb-C000017
(In the general formula (I A), (Ia) or (Ic), X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When it has a group, the methylene group may be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, 1 Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring;
X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 1 and n 3 are each independently 0 or 1;
n 2 is an integer from 1 to 5;
However, one or more of X 1 , X 2 , X 3 and X 4 are the unsaturated hydrocarbon groups,
X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, wherein the unsaturated hydrocarbon group is When having a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group, and the unsaturated hydrocarbon group may have one or more than two terminals other than the terminal on the bonding side. When it has a methylene group, one methylene group or two or more non-adjacent methylene groups may be substituted with an oxygen atom;
LG 1 is a leaving group;
Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are each independently a hydrogen atom, an alkyl group having 1 to 9 carbon atoms or a protecting group, and when Z 1a and Z 2a are the above-mentioned alkyl groups Or when Z 3a and Z 4a are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring, provided that Z 1a , Z 2a , Z 3a , One or more of Z 4a and Z 6a are hydrogen atoms. )
 [12].下記一般式(I)で表される化合物又はその塩の製造方法であって、下記一般式(Ib)で表される化合物と、下記一般式(Id)で表される化合物と、を反応させる工程と、下記Z1b、Z2b、Z3b、Z4b及びZ6bのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程と、を行うことにより、下記一般式(I)で表される化合物又はその塩として、下記一般式(Ib)で表される化合物における、下記LGが、下記X0bで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法。 [12]. A compound or a salt thereof represented by the following general formula (I B), reacting the compound represented by the following general formula (Ib), a compound represented by the following general formula (Id), the And when one or more of the following Z 1b , Z 2b , Z 3b , Z 4b and Z 6b are the following protecting groups, after the step of reacting, removing the group, by performing, as a compound represented by the following general formula (I B), in the compounds represented by the following general formula (Ib), the following LG 2, following X 0b A method for producing a compound or a salt thereof, wherein the compound or a salt thereof is obtained.
Figure JPOXMLDOC01-appb-C000018
 (一般式(I)、(Ib)又は(Id)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 nは、0又は1であり;
 nは、1~5の整数であり;
 LGは脱離基であり;
 Z1b、Z2b、Z3b、Z4b及びZ6bは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基、又は保護基であり、Z1b及びZ2bが前記アルキル基である場合、又は、Z3b及びZ4bが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X0bは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000018
(In the general formula (I B), (Ib) or (Id), X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring;
X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 3 is 0 or 1;
n 2 is an integer from 1 to 5;
LG 2 is a leaving group;
Z 1b , Z 2b , Z 3b , Z 4b and Z 6b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds between carbon atoms, and have a substituent. An optionally substituted unsaturated hydrocarbon group having 3 to 9 carbon atoms or a protecting group, wherein Z 1b and Z 2b are the aforementioned alkyl groups, or Z 3b and Z 4b are the aforementioned alkyl groups May have the two alkyl groups linked to each other to form a ring;
X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent. )
 [13].下記一般式(II)で表される化合物又はその塩の製造方法であって、下記一般式(IIa)で表される化合物と、下記一般式(Ic)で表される化合物と、を反応させる工程と、下記Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程と、を行うことにより、下記一般式(II)で表される化合物又はその塩として、下記一般式(IIa)で表される化合物における、下記Z01a、Z02a、Z03a及びZ04aのうち、水素原子であるものが、下記X0aで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法。 [13]. A method for producing a compound represented by the following general formula (IIA) or a salt thereof, comprising reacting a compound represented by the following general formula (IIa) with a compound represented by the following general formula (Ic) a step of, following Z 01a, Z 02a, among the Z 03a and Z 04a, when one or more are below protecting group, after the step of the reaction, further, removing the protecting group And a salt represented by the following general formula (II A ) or a salt thereof in a compound represented by the following general formula (IIa): Z 01a , Z 02a , Z 03a and Z of 04a, it is hydrogen atom, to obtain a compound or a salt structure substituted by the following X 0a, compound or a salt thereof.
Figure JPOXMLDOC01-appb-C000019
 (一般式(II)、(IIa)又は(Ic)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 n01は、0又は1であり;
 n02は、1~5の整数であり;
 ただし、前記X01、X02、X03及びX04のうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 X0aは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく;
 LGは脱離基であり;
 Z01a、Z02a、Z03a及びZ04aは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は保護基であり、Z01a及びZ02aが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上は、水素原子である。)
Figure JPOXMLDOC01-appb-C000019
(Formula (II A), in (IIa) or (Ic), X 01, X 02, X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups Groups may be linked to each other to form a ring ;
X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 01 is 0 or 1;
n 02 is an integer of 1 to 5;
However, one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups,
X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, wherein the unsaturated hydrocarbon group is When having a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group, and the unsaturated hydrocarbon group may have one or more than two terminals other than the terminal on the bonding side. When it has a methylene group, one methylene group or two or more non-adjacent methylene groups may be substituted with an oxygen atom;
LG 1 is a leaving group;
Z 01a, Z 02a, Z 03a and Z 04a each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms, or a protecting group, if Z 01a and Z 02a is said alkyl group, these two alkyl groups may form a ring with each other, however, Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more is a hydrogen atom. )
 [14].下記一般式(II)で表される化合物又はその塩の製造方法であって、下記一般式(IIb)で表される化合物と、下記一般式(Id)で表される化合物と、を反応させる工程と、下記Z01b、Z02b、Z03b及びZ04bのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程と、を行うことにより、下記一般式(II)で表される化合物又はその塩として、下記一般式(IIb)で表される化合物における、下記LGが、下記X0bで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法。 [14]. A compound or a salt thereof represented by the following general formula (II B), reacting the compound represented by the following general formula (IIb), a compound represented by the following general formula (Id), the And when one or more of the following Z 01b , Z 02b , Z 03b and Z 04b are the following protecting groups, after the step of reacting, further removing the protecting group a step of, by performing, as a compound represented by the following general formula (II B), in the compounds represented by the following general formula (IIb), is below LG 3, is replaced by the following X 0b A method for producing a compound or a salt thereof, wherein the compound or a salt thereof is obtained.
Figure JPOXMLDOC01-appb-C000020
 (一般式(II)、(IIb)又は(Id)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 n02は、1~5の整数であり;
 LGは脱離基であり;
 Z01b、Z02b、Z03b及びZ04bは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基、又は保護基であり、Z01b及びZ02bが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X0bは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000020
(In the general formulas (II B ), (IIb) or (Id), X 01 , X 02 , X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups The groups may be linked to each other to form a ring ;
X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 02 is an integer of 1 to 5;
LG 3 is a leaving group;
Z 01b , Z 02b , Z 03b and Z 04b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds between carbon atoms, and have a substituent. When Z 01b and Z 02b are the above-mentioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. May be;
X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent. )
 本実施形態の化合物又はその塩は、神経機能調節物質として用いることができる。
 本実施形態の神経機能調節物質を用いること、又は、本実施形態の神経機能調節物質の評価方法を適用することにより、神経機能調節物質の神経細胞中への取り込みの状態、又は、取り込みによってもたらされる細胞応答の状態を、実用的に評価できる。
 本実施形態の化合物又はその塩の製造方法により、一般式(I)で表される化合物又はその塩を製造できる。
The compound of the present embodiment or a salt thereof can be used as a nerve function regulating substance.
By using the nerve function-modulating substance of the present embodiment, or by applying the neurofunction-modulating substance evaluation method of the present embodiment, the state of uptake of the nerve function-modulating substance into nerve cells, or the state brought about by the uptake. The state of the cell response can be evaluated practically.
The compound represented by the general formula (I) or a salt thereof can be produced by the method for producing a compound or a salt thereof of the present embodiment.
実施例6において、本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when the compound of the present invention is used in Example 6. FIG. 実施例6において、本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when the compound of the present invention is used in Example 6. FIG. 実施例6において、本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when the compound of the present invention is used in Example 6. FIG. 実施例6において、本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when another compound of the present invention is used in Example 6. FIG. 実施例6において、本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when another compound of the present invention is used in Example 6. FIG. 実施例6において、本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when another compound of the present invention is used in Example 6. FIG. 実施例7において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7. FIG. 実施例7において、公知の蛍光色素と本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and another compound of the present invention are used in Example 7. FIG. 実施例8において、本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when the compound of the present invention is used in Example 8. FIG. 実施例8において、本発明の化合物を用いた場合の、蛍光シグナルの強度の経時変化のデータである。FIG. 9 shows data on the time-dependent changes in the intensity of the fluorescent signal when the compound of the present invention is used in Example 8. FIG. 実施例8において、本発明の他の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when another compound of the present invention is used in Example 8. FIG. 実施例8において、本発明の他の化合物を用いた場合の、蛍光シグナルの強度の経時変化のデータである。FIG. 9 shows data on the change over time in the intensity of the fluorescence signal when another compound of the present invention was used in Example 8. FIG. 実施例8において、公知の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 9 is imaging data of a test piece with a confocal microscope when a known compound is used in Example 8. FIG. 実施例8において、公知の化合物を用いた場合の、蛍光シグナルの強度の経時変化のデータである。FIG. 9 shows data on the change over time of the intensity of the fluorescent signal when a known compound is used in Example 8. FIG. 実施例11において、公知の蛍光色素を用いた場合の、共焦点顕微鏡による神経細胞の撮像データである。FIG. 15 shows imaging data of nerve cells by a confocal microscope when a known fluorescent dye is used in Example 11. FIG. 実施例11において、本発明の化合物を用いた場合の、共焦点顕微鏡による神経細胞の撮像データである。FIG. 14 shows imaging data of nerve cells by a confocal microscope when the compound of the present invention is used in Example 11. FIG. 実施例11において、本発明の他の化合物を用いた場合の、共焦点顕微鏡による神経細胞の撮像データである。FIG. 14 shows imaging data of nerve cells by a confocal microscope when another compound of the present invention is used in Example 11. FIG. 実施例11において、本発明のさらに他の化合物を用いた場合の、共焦点顕微鏡による神経細胞の撮像データである。FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11. FIG. 実施例11において、本発明のさらに他の化合物を用いた場合の、共焦点顕微鏡による神経細胞の撮像データである。FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11. FIG. 実施例11において、本発明のさらに他の化合物を用いた場合の、共焦点顕微鏡による神経細胞の撮像データである。FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11. FIG. 実施例11において、本発明のさらに他の化合物を用いた場合の、共焦点顕微鏡による神経細胞の撮像データである。FIG. 11 shows imaging data of nerve cells by a confocal microscope when still another compound of the present invention is used in Example 11. FIG. 実施例12において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12. FIG. 実施例12において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12. FIG. 実施例12において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12. FIG. 実施例12において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12. FIG. 実施例12において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12. FIG. 実施例12において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and a compound of the present invention are used in Example 12. FIG. 実施例15において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 15. FIG. 実施例15において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 15. FIG. 実施例15において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 15. FIG. 実施例15において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 15. FIG. 実施例16において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 16. FIG. 実施例16において、公知の蛍光タンパク質を用いた場合の、共焦点顕微鏡による試験片の撮像データである。Fig. 15 shows imaging data of a test piece with a confocal microscope when a known fluorescent protein is used in Example 16. 実施例16において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece with a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 16. FIG. 実施例17において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 17. FIG. 実施例17において、公知の抗体を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known antibody is used in Example 17. FIG. 実施例17において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 17. FIG. 実施例17において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 17. FIG. 実施例17において、公知の抗体を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by a confocal microscope when a known antibody is used in Example 17. FIG. 実施例17において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 14 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 17. FIG. 実施例18において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 15 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 18. FIG. 実施例18において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 15 shows imaging data of a test piece obtained by a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 18. FIG. 実施例19において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 19 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 19. FIG. 実施例19において、公知の蛍光色素と本発明の化合物を用いた場合の、共焦点顕微鏡による試験片の撮像データである。FIG. 19 is imaging data of a test piece obtained by using a confocal microscope when a known fluorescent dye and the compound of the present invention are used in Example 19. FIG.
<<化合物(I)又はその塩>>
 本発明の一実施形態に係る化合物は、下記一般式(I)で表され、本発明の一実施形態に係る化合物の塩は、下記一般式(I)で表される化合物の塩である。本明細書においては、一般式(I)で表される化合物を、「化合物(I)」と称することがある。また、単なる「化合物(I)」との記載は、塩を形成していない化合物を意味し、塩を形成している化合物(I)は、「化合物(I)の塩」と称する。
<<< Compound (I) or a salt thereof >>>
The compound according to one embodiment of the present invention is represented by the following general formula (I), and the salt of the compound according to one embodiment of the present invention is a salt of the compound represented by the following general formula (I). In the present specification, the compound represented by the general formula (I) may be referred to as “compound (I)”. Further, the mere description of “compound (I)” means a compound that does not form a salt, and compound (I) that forms a salt is referred to as “salt of compound (I)”.
Figure JPOXMLDOC01-appb-C000021
 (一般式(I)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 n及びnは、それぞれ独立に、0又は1であり;
 nは、1~5の整数であり;
 ただし、前記nが0であり、かつ前記nが1である場合には、前記X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 前記nが1であり、かつ前記nが0である場合には、前記X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 前記n及び前記nがともに0である場合には、前記X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 前記n及び前記nがともに1である場合には、前記X、X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000021
(In the general formula (I), X 1 , X 2 , X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms. When the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent, and the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group is May be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more The methylene groups which are not adjacent to each other may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or when X 3 and X 4 are the alkyl groups The two alkyl groups are bonded to each other to form a ring Well;
X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 1 and n 3 are each independently 0 or 1;
n 2 is an integer from 1 to 5;
However, when n 1 is 0 and n 3 is 1, one or more of X 1 , X 2 , X 3 , X 4, and X 6 are not the same A saturated hydrocarbon group,
When n 1 is 1 and n 3 is 0, one or more of X 1 , X 2 , X 3 , X 4 and X 5 are the unsaturated carbons. A hydrogen group,
When both n 1 and n 3 are 0, at least one of X 1 , X 2 , X 3 and X 4 is the unsaturated hydrocarbon group,
When both n 1 and n 3 are 1, one or more of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the unsaturated hydrocarbons. Group. )
 化合物(I)は、後述するように、神経機能調節物質(すなわち、神経機能の調節に関わる生理活性物質)として有用である。
 加えて、化合物(I)は、X、X、X、X、X及びXのうち、1種又は2種以上が、前記不飽和炭化水素基であることにより、後述するように、高精度に検出可能であり、その動態を容易に観察可能である。
 以下、まず、化合物(I)の構造について、詳細に説明する。
Compound (I) is useful as a nerve function regulator (that is, a physiologically active substance involved in the regulation of nerve function), as described later.
In addition, the compound (I) will be described later because at least one of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 is the unsaturated hydrocarbon group. As described above, detection can be performed with high accuracy, and its dynamics can be easily observed.
Hereinafter, first, the structure of compound (I) will be described in detail.
 一般式(I)中、X、X、X及びX(本明細書においては、これらを包括して「X~X」と略記することがある)は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基である。
 ただし、X~Xにおける前記不飽和炭化水素基が、その結合先側の末端にメチレン基(-CH-)を有する場合、前記メチレン基はカルボニル基(-C(=O)-)で置換されていてもよい。X及びXの場合、その結合先側の末端の前記メチレン基とは、一般式(I)中の窒素原子(N)に結合しているメチレン基である。X及びXの場合、その結合先側の末端の前記メチレン基とは、一般式(I)中のベンゼン環骨格に結合している酸素原子(O)に結合しているメチレン基である。
In the general formula (I), X 1 , X 2 , X 3 and X 4 (in the present specification, these may be abbreviated as “X 1 to X 4 ”) are each independently: A hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent.
However, when the unsaturated hydrocarbon group in X 1 to X 4 has a methylene group (—CH 2 —) at the terminal on the bonding destination, the methylene group is a carbonyl group (—C (= O) —) May be substituted. In the case of X 1 and X 2, the methylene group at the terminal on the bonding destination side is a methylene group bonded to the nitrogen atom (N) in the general formula (I). In the case of X 3 and X 4 , the above-mentioned methylene group at the terminal on the bonding side is a methylene group bonded to an oxygen atom (O) bonded to a benzene ring skeleton in the general formula (I). .
 X~Xにおける前記アルキル基は、炭素数が1~9であればよいが、直鎖状又は分岐鎖状であることが好ましい。 The alkyl group in X 1 to X 4 may have 1 to 9 carbon atoms, but is preferably linear or branched.
 X~Xにおける前記アルキル基の炭素数は、1以上、2以上、3以上、4以上、5以上、6以上、7以上及び8以上のいずれであってもよく、9以下、8以下、7以下、6以下、5以下、4以下、3以下及び2以下のいずれであってもよい。 The number of carbon atoms of the alkyl group in X 1 to X 4 may be any one of 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, and 8 or more, and 9 or less, 8 or less , 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, and 2 or less.
 前記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基等が挙げられる。 Examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, and neopentyl. Tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, -Methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3,3-dimethylpentyl, 3-ethylpentyl, 2 , 2,3-trimethylbutyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, nonyl group and the like.
 X~Xにおける前記不飽和炭化水素基は、炭素数が3~9であり、炭素原子間の三重結合(C≡C)を1~4個有するものであれば、特に限定されない。例えば、前記不飽和炭化水素基は、炭素原子間の不飽和結合として、三重結合(C≡C)及び二重結合(C=C)をともに有していてもよいが、三重結合のみを有していることが好ましい。 The unsaturated hydrocarbon group for X 1 to X 4 is not particularly limited as long as it has 3 to 9 carbon atoms and has 1 to 4 triple bonds (C≡C) between carbon atoms. For example, the unsaturated hydrocarbon group may have both a triple bond (C≡C) and a double bond (C = C) as an unsaturated bond between carbon atoms, but has only a triple bond. Is preferred.
 X~Xにおける前記不飽和炭化水素基としては、例えば、炭素数3~9の前記アルキル基において、炭素原子間の単結合(C-C)が、不飽和結合で置換された構造を有するものが挙げられる。
 好ましい前記不飽和炭化水素基としては、例えば、炭素数3~9の前記アルキル基において、炭素原子間の1~4個の単結合(C-C)が、三重結合で置換された構造を有するものが挙げられる。
Examples of the unsaturated hydrocarbon group for X 1 to X 4 include a structure in which a single bond (C—C) between carbon atoms in the alkyl group having 3 to 9 carbon atoms is substituted with an unsaturated bond. Ones having.
Preferred examples of the unsaturated hydrocarbon group include a structure in which, in the alkyl group having 3 to 9 carbon atoms, 1 to 4 single bonds (C—C) between carbon atoms are replaced by triple bonds. Things.
 X~Xにおける前記不飽和炭化水素基の炭素数は、3以上、4以上、5以上、6以上、7以上及び8以上のいずれであってもよく、9以下、8以下、7以下、6以下、5以下及び4以下のいずれであってもよい。 The carbon number of the unsaturated hydrocarbon group in X 1 to X 4 may be any of 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, and 8 or more, and 9 or less, 8 or less, 7 or less. , 6 or less, 5 or less, and 4 or less.
 X~Xにおける前記不飽和炭化水素基において、炭素原子間の三重結合の数は、1個以上、2個以上及び3個以上のいずれであってもよいし、4個以下、3個以下及び2個以下のいずれであってもよい。 In the unsaturated hydrocarbon group for X 1 to X 4, the number of triple bonds between carbon atoms may be any one or more, two or more, and three or more, or four or less, three or less. Any of the following and two or less may be used.
 前記不飽和炭化水素基において、炭素原子間の三重結合の数が1個である(すなわち、前記不飽和炭化水素基がアルキニル基である)場合の化合物(I)は、その製造が容易である点で好ましい。 Compound (I) in which the number of triple bonds between carbon atoms in the unsaturated hydrocarbon group is one (that is, the unsaturated hydrocarbon group is an alkynyl group) is easy to produce. It is preferred in that respect.
 X~Xにおける前記不飽和炭化水素基において、炭素原子間の三重結合及び二重結合の位置は、特に限定されない。
 ただし、X~X中の、その結合先側の末端の炭素原子は、隣り合う炭素原子との間で不飽和結合を形成していないことが好ましい。X及びXの場合、その結合先側の末端の前記炭素原子とは、一般式(I)中の窒素原子(N)に結合している炭素原子である。X及びXの場合、その結合先側の末端の前記炭素原子とは、一般式(I)中のベンゼン環骨格に結合している酸素原子(O)に結合している炭素原子である。
 また、X~X中、炭素原子間の不飽和結合が2個以上である場合、1個の炭素原子が、2個の不飽和結合を形成していない(換言すると、これら不飽和結合は、X~X中で隣接していない)ことが好ましい。
In the unsaturated hydrocarbon groups for X 1 to X 4, the positions of triple bonds and double bonds between carbon atoms are not particularly limited.
However, it is preferable that the terminal carbon atom on the bonding destination side in X 1 to X 4 does not form an unsaturated bond with an adjacent carbon atom. In the case of X 1 and X 2 , the above-mentioned carbon atom at the terminal on the bonding destination side is a carbon atom bonded to the nitrogen atom (N) in the general formula (I). In the case of X 3 and X 4 , the above-mentioned carbon atom at the terminal on the bonding side is a carbon atom bonded to an oxygen atom (O) bonded to a benzene ring skeleton in the general formula (I). .
In the case where there are two or more unsaturated bonds between carbon atoms in X 1 to X 4 , one carbon atom does not form two unsaturated bonds (in other words, these unsaturated bonds Are not adjacent in X 1 to X 4 ).
 X~Xにおける前記不飽和炭化水素基は、その結合先側とは反対側の末端の炭素原子が、隣接する炭素原子との間で、三重結合を形成していることが好ましい。
 このような不飽和炭化水素基でアルキニル基であるものとしては、プロパルギル基(別名:2-プロピニル基、-CH-C≡CH)、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基、6-ヘプチニル基、7-オクチニル基、8-ノニニル基が挙げられる。
In the unsaturated hydrocarbon group for X 1 to X 4, the terminal carbon atom on the side opposite to the bond destination side preferably forms a triple bond with an adjacent carbon atom.
Examples of such an unsaturated hydrocarbon group which is an alkynyl group include a propargyl group (alias: 2-propynyl group, —CH 2 —C≡CH), a 3-butynyl group, a 4-pentynyl group, and a 5-hexynyl group. , 6-heptynyl group, 7-octynyl group and 8-noninyl group.
 X~Xにおける前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基は、酸素原子(-O-)で置換されていてもよいし、2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよい。ここで、前記不飽和炭化水素基の結合先側の末端とは、メチレン基を例に挙げて先に説明したものと同じである。すなわち、X及びXの場合、一般式(I)中の窒素原子(N)に結合している基であり、X及びXの場合、一般式(I)中のベンゼン環骨格に結合している酸素原子(O)に結合している基である。 When the unsaturated hydrocarbon group for X 1 to X 4 has one or two or more methylene groups other than the terminal at the bonding destination, one methylene group is an oxygen atom (—O— ), Or two or more non-adjacent methylene groups may be substituted with an oxygen atom. Here, the terminus on the bonding destination side of the unsaturated hydrocarbon group is the same as that described above with reference to a methylene group as an example. That is, in the case of X 1 and X 2 , it is a group bonded to the nitrogen atom (N) in the general formula (I), and in the case of X 3 and X 4 , the benzene ring skeleton in the general formula (I) It is a group bonded to a bonded oxygen atom (O).
 より具体的には、前記不飽和炭化水素基が、その結合先側の末端以外に、1個のメチレン基を有する場合、この1個のメチレン基は、酸素原子で置換されていてもよい。
 前記不飽和炭化水素基が、その結合先側の末端以外に、2個以上のメチレン基を有する場合、これらメチレン基のうち、2個以上の互いに隣接していないものは、酸素原子で置換されていてもよい。
 なお、本明細書においては、前記不飽和炭化水素基が、炭素数2以上のアルキレン基を有する場合、このアルキレン基を、このアルキレン基の炭素数の分だけメチレン基が連結しているものとみなす。したがって、2個以上の互いに隣接していないメチレン基の一部又は全ては、このようなアルキレン基からも選択できる。
More specifically, when the unsaturated hydrocarbon group has one methylene group other than the terminal at the bonding destination, this one methylene group may be substituted with an oxygen atom.
When the unsaturated hydrocarbon group has two or more methylene groups in addition to the terminal on the bonding destination side, two or more non-adjacent methylene groups are substituted with an oxygen atom. It may be.
In the present specification, when the unsaturated hydrocarbon group has an alkylene group having 2 or more carbon atoms, the alkylene group is connected to a methylene group by the number of carbon atoms of the alkylene group. I reckon. Thus, some or all of the two or more non-adjacent methylene groups can be selected from such alkylene groups.
 前記不飽和炭化水素基において、前記メチレン基が酸素原子で置換されている場合、その置換位置は、先の条件を満たせば、特に限定されないが、炭素原子間の三重結合を形成している炭素原子に隣接してない炭素原子であることが好ましい。 In the unsaturated hydrocarbon group, when the methylene group is substituted with an oxygen atom, the substitution position is not particularly limited as long as the above conditions are satisfied, and the carbon atom forming a triple bond between carbon atoms is not particularly limited. Preferably, it is a carbon atom that is not adjacent to an atom.
 前記不飽和炭化水素基において、酸素原子で置換されている前記メチレン基は、1個又は2個であることが好ましく、1個であることが好ましい。 に お い て In the unsaturated hydrocarbon group, the number of the methylene groups substituted with an oxygen atom is preferably one or two, and more preferably one.
 前記メチレン基が酸素原子で置換されている不飽和炭化水素基で、好ましいものとしては、例えば、炭素数5~9の前記不飽和炭化水素基において、1個の前記メチレン基が酸素原子で置換されているものが挙げられる。 The unsaturated hydrocarbon group in which the methylene group is substituted with an oxygen atom is preferable. For example, in the unsaturated hydrocarbon group having 5 to 9 carbon atoms, one methylene group is substituted with an oxygen atom. That have been included.
 X~Xにおける前記不飽和炭化水素基は、その結合先側の末端のメチレン基がカルボニル基で置換され、かつ、その結合先側の末端以外の、1個又は2個以上のメチレン基が酸素原子で置換されていてもよい。
 このような不飽和炭化水素基で、好ましいものとしては、例えば、炭素数5~9の前記不飽和炭化水素基において、その結合先側の末端のメチレン基がカルボニル基で置換され、かつ、その結合先側の末端以外の1個のメチレン基が酸素原子で置換されているものが挙げられる。
 このような不飽和炭化水素基の具体例としては、式CH≡C-CH-O-CHCH-C(=O)-で表される基が挙げられる。ただし、これは前記不飽和炭化水素基の一例である。
In the unsaturated hydrocarbon group for X 1 to X 4, the terminal methylene group on the bonding destination is substituted with a carbonyl group, and one or more methylene groups other than the terminal on the bonding destination are substituted. May be substituted with an oxygen atom.
Among such unsaturated hydrocarbon groups, preferred are, for example, the above-mentioned unsaturated hydrocarbon groups having 5 to 9 carbon atoms, wherein the terminal methylene group on the bonding side is substituted with a carbonyl group, and One in which one methylene group other than the terminal on the bonding side is substituted with an oxygen atom is exemplified.
Specific examples of such unsaturated hydrocarbon groups include groups represented by the formula CH 式 C—CH 2 —O—CH 2 CH 2 —C (= O) —. However, this is an example of the unsaturated hydrocarbon group.
 X~Xにおける前記不飽和炭化水素基は、置換基を有していてもよい。
 ここで、「不飽和炭化水素基が置換基を有していてもよい」とは、「不飽和炭化水素基中の1個又は2個以上の水素原子が、水素原子以外の基で置換されていてもよい」ことを意味する。なお、本明細書において、「基」とは、複数個の原子が結合してなる原子団だけでなく、1個の原子も包含するものとする。
The unsaturated hydrocarbon group for X 1 to X 4 may have a substituent.
Here, “the unsaturated hydrocarbon group may have a substituent” means that one or more hydrogen atoms in the unsaturated hydrocarbon group are substituted with a group other than a hydrogen atom. May be ". In this specification, the term “group” includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
 X~Xが有していてもよい前記置換基としては、例えば、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基(-OH)、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基等が挙げられる。 Examples of the substituent which X 1 to X 4 may have include, for example, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group (—OH ), Halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl Groups, hydroxyalkyl groups, halogenated alkyl groups, alkoxyalkyl groups, alkylcarbonyloxyalkyl groups, arylcarbonyloxyalkyl groups, aralkylcarbonyloxyalkyl groups, and the like.
 前記置換基であるアリール基(芳香族炭化水素基)は、単環状及び多環状のいずれであってもよい。
 前記アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、o-トリル基、m-トリル基、p-トリル基、キシリル基(ジメチルフェニル基)等が挙げられ、これらアリール基の1個又は2個以上の水素原子が、さらにこれらアリール基、又はX~Xにおけるものと同様のアルキル基、で置換されたものも挙げられる。これら置換基を有するアリール基は、置換基も含めて炭素数が6~20であることが好ましい。
 前記アリール基の炭素数は、6~20であることが好ましく、6~10であることがより好ましい。置換基を有するアリール基は、置換基も含めて炭素数が7~20であることが好ましい。
The aryl group (aromatic hydrocarbon group) as the substituent may be monocyclic or polycyclic.
Examples of the aryl group include a phenyl group, 1-naphthyl group, 2-naphthyl group, o-tolyl group, m-tolyl group, p-tolyl group, xylyl group (dimethylphenyl group) and the like. Examples include groups in which one or more hydrogen atoms of the group are further substituted with an aryl group or an alkyl group similar to those in X 1 to X 4 . The aryl group having such a substituent preferably has 6 to 20 carbon atoms including the substituent.
The aryl group preferably has 6 to 20 carbon atoms, and more preferably 6 to 10 carbon atoms. The aryl group having a substituent preferably has 7 to 20 carbon atoms including the substituent.
 前記置換基であるトリアルキルシリル基としては、シリル基(-SiH)の3個の水素原子が、X~Xにおけるものと同様のアルキル基で置換された構造の1価の基が挙げられる。
 トリアルキルシリル基中のケイ素原子に結合している3個のアルキル基は、すべて同一であってもよいし、すべて異なっていてもよいし、一部(より具体的には2個)のみ同一であってもよい。そして、互いに異なるアルキル基の組み合わせは、任意に選択でき、特に限定されない。
 前記トリアルキルシリル基としては、例えば、トリメチルシリル基、エチルジメチルシリル基、ジエチルメチルシリル基、tert-ブチルジメチルシリル基等が挙げられるが、これらに限定されない。
 前記トリアルキルシリル基の炭素数は、3~20であることが好ましい。
The trialkylsilyl group as the substituent is a monovalent group having a structure in which three hydrogen atoms of a silyl group (—SiH 3 ) are substituted with the same alkyl groups as those in X 1 to X 4 . No.
The three alkyl groups bonded to the silicon atom in the trialkylsilyl group may be all the same, may be different from each other, or only a part (more specifically, two) may be the same. It may be. The combination of different alkyl groups can be arbitrarily selected and is not particularly limited.
Examples of the trialkylsilyl group include, but are not limited to, a trimethylsilyl group, an ethyldimethylsilyl group, a diethylmethylsilyl group, a tert-butyldimethylsilyl group, and the like.
The trialkylsilyl group preferably has 3 to 20 carbon atoms.
 前記置換基であるジアルキルモノアリールシリル基としては、シリル基(-SiH)の2個の水素原子が、X~Xにおけるものと同様のアルキル基で置換され、1個の水素原子が、前記置換基であるものと同様のアリール基で置換された構造の1価の基が挙げられる。
 ジアルキルモノアリールシリル基中のケイ素原子に結合している2個のアルキル基は、互いに同一であってもよいし、互いに異なっていてもよい。そして、互いに異なるアルキル基の組み合わせは、任意に選択でき、特に限定されない。
 前記ジアルキルモノアリールシリル基としては、例えば、ジメチルフェニルシリル基、ジエチルフェニルシリル基等が挙げられるが、これらに限定されない。
 前記ジアルキルモノアリールシリル基の炭素数は、8~30であることが好ましい。
In the dialkylmonoarylsilyl group as the substituent, two hydrogen atoms of a silyl group (—SiH 3 ) are substituted with the same alkyl groups as those in X 1 to X 4 , and one hydrogen atom is substituted. And a monovalent group having a structure substituted with the same aryl group as the above-mentioned substituent.
The two alkyl groups bonded to the silicon atom in the dialkylmonoarylsilyl group may be the same or different. The combination of different alkyl groups can be arbitrarily selected and is not particularly limited.
Examples of the dialkylmonoarylsilyl group include, but are not limited to, a dimethylphenylsilyl group and a diethylphenylsilyl group.
The dialkylmonoarylsilyl group preferably has 8 to 30 carbon atoms.
 前記置換基であるモノアルキルジアリールシリル基としては、シリル基(-SiH)の1個の水素原子が、X~Xにおけるものと同様のアルキル基で置換され、2個の水素原子が、前記置換基であるものと同様のアリール基で置換された構造の1価の基が挙げられる。
 モノアルキルジアリールシリル基中のケイ素原子に結合している2個のアリール基は、互いに同一であってもよいし、互いに異なっていてもよい。そして、互いに異なるアリール基の組み合わせは、任意に選択でき、特に限定されない。
 前記モノアルキルジアリールシリル基としては、例えば、メチルジフェニルシリル基、エチルジフェニルシリル基、tert-ブチルジフェニルシリル基等が挙げられるが、これらに限定されない。
 前記モノアルキルジアリールシリル基の炭素数は、13~30であることが好ましい。
In the monoalkyldiarylsilyl group as the substituent, one hydrogen atom of the silyl group (—SiH 3 ) is substituted with the same alkyl group as that in X 1 to X 4 and two hydrogen atoms are And a monovalent group having a structure substituted with the same aryl group as the above-mentioned substituent.
The two aryl groups bonded to the silicon atom in the monoalkyldiarylsilyl group may be the same or different from each other. The combination of different aryl groups can be arbitrarily selected and is not particularly limited.
Examples of the monoalkyldiarylsilyl group include, but are not limited to, a methyldiphenylsilyl group, an ethyldiphenylsilyl group, and a tert-butyldiphenylsilyl group.
The monoalkyldiarylsilyl group preferably has 13 to 30 carbon atoms.
 前記置換基であるトリアリールシリル基としては、シリル基(-SiH)の3個の水素原子が、前記置換基であるものと同様のアリール基で置換された構造の1価の基が挙げられる。
 トリアリールシリル基中のケイ素原子に結合している3個のアリール基は、すべて同一であってもよいし、すべて異なっていてもよいし、一部(より具体的には2個)のみ同一であってもよい。そして、互いに異なるアリール基の組み合わせは、任意に選択でき、特に限定されない。
 前記トリアリールシリル基としては、例えば、トリフェニルシリル基等が挙げられるが、これに限定されない。
 前記トリアリールシリル基の炭素数は、18~30であることが好ましい。
Examples of the triarylsilyl group as the substituent include a monovalent group having a structure in which three hydrogen atoms of a silyl group (—SiH 3 ) are substituted with the same aryl group as the substituent. Can be
The three aryl groups bonded to the silicon atom in the triarylsilyl group may be all the same, may be different, or may be partially (more specifically, two) identical. It may be. The combination of different aryl groups can be arbitrarily selected and is not particularly limited.
Examples of the triarylsilyl group include, but are not limited to, a triphenylsilyl group.
The triarylsilyl group preferably has 18 to 30 carbon atoms.
 前記置換基であるハロゲン原子としては、例えば、フッ素原子(-F)、塩素原子(-Cl)、臭素原子(-Br)、ヨウ素原子(-I)が挙げられる。 ハ ロ ゲ ン Examples of the halogen atom as the substituent include a fluorine atom (—F), a chlorine atom (—Cl), a bromine atom (—Br), and an iodine atom (—I).
 前記置換基であるアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ノニルオキシ基等、X~Xにおけるものと同様のアルキル基が、酸素原子に結合した構造の1価の基が挙げられる。
 前記アルコキシ基の炭素数は、1~9であることが好ましい。
Examples of the alkoxy group as the substituent include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, nonyloxy, and the like. A monovalent group having a structure in which an alkyl group similar to that in 1 to X 4 is bonded to an oxygen atom is exemplified.
The alkoxy group preferably has 1 to 9 carbon atoms.
 前記置換基であるアルキルカルボニルオキシ基としては、例えば、メチルカルボニルオキシ基(別名:アセトキシ基)、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、イソブチルカルボニルオキシ基、sec-ブチルカルボニルオキシ基、tert-ブチルカルボニルオキシ基、ノニルカルボニルオキシ基等、X~Xにおけるものと同様のアルキル基が、カルボニルオキシ基(-C(=O)-O-)中の炭素原子に結合した構造の1価の基が挙げられる。
 前記アルキルカルボニルオキシ基の炭素数は、2~10であることが好ましい。
Examples of the alkylcarbonyloxy group as the substituent include a methylcarbonyloxy group (also called an acetoxy group), an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group, and isobutyl. Alkyl groups similar to those in X 1 to X 4 such as carbonyloxy group, sec-butylcarbonyloxy group, tert-butylcarbonyloxy group, nonylcarbonyloxy group, etc. are substituted with carbonyloxy group (—C (= O) —O And-) a monovalent group having a structure bonded to the carbon atom in ()).
The alkylcarbonyloxy group preferably has 2 to 10 carbon atoms.
 前記置換基であるアリールカルボニルオキシ基としては、例えば、フェニルカルボニルオキシ基、1-ナフチルカルボニルオキシ基、2-ナフチルカルボニルオキシ基、o-トリルカルボニルオキシ基、m-トリルカルボニルオキシ基、p-トリルカルボニルオキシ基、キシリルカルボニルオキシ基(ジメチルフェニルカルボニルオキシ基)等、前記置換基であるものと同様のアリール基が、カルボニルオキシ基(-C(=O)-O-)中の炭素原子に結合した構造の1価の基が挙げられる。
 前記アリールカルボニルオキシ基の炭素数は、7~21であることが好ましく、7~11であることがより好ましい。
The arylcarbonyloxy group as the substituent includes, for example, phenylcarbonyloxy group, 1-naphthylcarbonyloxy group, 2-naphthylcarbonyloxy group, o-tolylcarbonyloxy group, m-tolylcarbonyloxy group, p-tolyl An aryl group similar to the above substituent such as a carbonyloxy group or a xylylcarbonyloxy group (dimethylphenylcarbonyloxy group) is added to a carbon atom in the carbonyloxy group (—C (= O) —O—). Examples include a monovalent group having a bonded structure.
The arylcarbonyloxy group preferably has 7 to 21 carbon atoms, and more preferably 7 to 11 carbon atoms.
 前記置換基であるアラルキル基としては、例えば、ベンジル基(別名:フェニルメチル基)、フェネチル基(別名:2-フェニルエチル基)、1-ナフチルメチル基、2-ナフチルメチル基、2-(1-ナフチル)エチル基、2-(2-ナフチル)メチル基、フェニルノニル基等、X~Xにおけるものと同様のアルキル基において、1個の水素原子が、前記置換基であるものと同様のアリール基で置換された構造の1価の基が挙げられる。
 前記アラルキル基の炭素数は、7~29であることが好ましく、7~19であることがより好ましい。
Examples of the aralkyl group as the substituent include a benzyl group (alias: phenylmethyl group), a phenethyl group (alias: 2-phenylethyl group), a 1-naphthylmethyl group, a 2-naphthylmethyl group, a 2- (1 In the same alkyl groups as those in X 1 to X 4 such as —naphthyl) ethyl group, 2- (2-naphthyl) methyl group and phenylnonyl group, one hydrogen atom is the same as the above-mentioned substituent. And a monovalent group having a structure substituted with an aryl group.
The aralkyl group preferably has 7 to 29 carbon atoms, and more preferably 7 to 19 carbon atoms.
 前記置換基であるアラルキルカルボニルオキシ基としては、例えば、ベンジルカルボニルオキシ基(CCH-C(=O)-O-)、フェネチルカルボニルオキシ基(CCHCH-C(=O)-O-)、1-ナフチルメチルカルボニルオキシ基(C10CH-C(=O)-O-)、2-ナフチルメチルカルボニルオキシ基(C10CH-C(=O)-O-)、2-(1-ナフチル)エチルカルボニルオキシ基(C10CHCH-C(=O)-O-)、2-(2-ナフチル)エチルカルボニルオキシ基(C10CHCH-C(=O)-O-)、フェニルノニルカルボニルオキシ基(C18-C(=O)-O-)等、前記置換基であるアラルキル基がカルボニルオキシ基(-C(=O)-O-)中の炭素原子に結合した構造の1価の基が挙げられる。
 前記アラルキルカルボニルオキシ基の炭素数は、8~30であることが好ましく、8~20であることがより好ましい。
Examples of the aralkylcarbonyloxy group as the substituent include a benzylcarbonyloxy group (C 6 H 6 CH 2 —C (= O) —O—) and a phenethylcarbonyloxy group (C 6 H 6 CH 2 CH 2 — C (= O) —O—), 1-naphthylmethylcarbonyloxy group (C 10 H 7 CH 2 —C (= O) —O—), 2-naphthylmethylcarbonyloxy group (C 10 H 7 CH 2 — C (= O) —O—), 2- (1-naphthyl) ethylcarbonyloxy group (C 10 H 7 CH 2 CH 2 —C (= O) —O—), 2- (2-naphthyl) ethylcarbonyl The above substituents such as an oxy group (C 10 H 7 CH 2 CH 2 —C (= O) —O—) and a phenylnonylcarbonyloxy group (C 6 H 5 C 9 H 18 —C (= O) —O—); Aralkyl, the base There include monovalent groups of the bound structure to a carbon atom in the carbonyl group (-C (= O) -O-).
The aralkylcarbonyloxy group preferably has 8 to 30 carbon atoms, and more preferably 8 to 20 carbon atoms.
 前記置換基であるトリアルキルシリルアルキル基としては、X~Xにおけるものと同様のアルキル基の1個の水素原子が、前記置換基であるものと同様のトリアルキルシリル基で置換された構造の1価の基が挙げられる。
 前記置換基であるトリアルキルシリルアルキル基としては、例えば、トリメチルシリルメチル基、エチルジメチルシリルメチル基、ジエチルメチルシリルメチル基、tert-ブチルジメチルシリルメチル基等が挙げられるが、これらに限定されない。
 前記トリアルキルシリルアルキル基の炭素数は、4~25であることが好ましい。
In the trialkylsilylalkyl group as the substituent, one hydrogen atom in the same alkyl group as that in X 1 to X 4 is substituted with the same trialkylsilyl group as the substituent. Monovalent groups of the structure are mentioned.
Examples of the trialkylsilylalkyl group as the substituent include, but are not limited to, a trimethylsilylmethyl group, an ethyldimethylsilylmethyl group, a diethylmethylsilylmethyl group, and a tert-butyldimethylsilylmethyl group.
The trialkylsilylalkyl group preferably has 4 to 25 carbon atoms.
 前記置換基であるジアルキルモノアリールシリルアルキル基としては、X~Xにおけるものと同様のアルキル基の1個の水素原子が、前記置換基であるものと同様のジアルキルモノアリールシリル基で置換された構造の1価の基が挙げられる。
 前記置換基であるジアルキルモノアリールシリルアルキル基としては、例えば、ジメチルフェニルシリルメチル基、ジエチルフェニルシリルメチル基等が挙げられるが、これらに限定されない。
 前記ジアルキルモノアリールシリルアルキル基の炭素数は、9~35であることが好ましい。
Examples of the dialkyl monoaryl silylalkyl group is a substituent, one of the hydrogen atoms of the same alkyl group as in X 1 ~ X 4 is substituted with the same dialkylamino monoaryl silyl group as being the substituent And a monovalent group having the following structure.
Examples of the dialkylmonoarylsilylalkyl group as the substituent include, but are not limited to, a dimethylphenylsilylmethyl group and a diethylphenylsilylmethyl group.
The dialkylmonoarylsilylalkyl group preferably has 9 to 35 carbon atoms.
 前記置換基であるモノアルキルジアリールシリルアルキル基としては、X~Xにおけるものと同様のアルキル基の1個の水素原子が、前記置換基であるものと同様のモノアルキルジアリールシリル基で置換された構造の1価の基が挙げられる。
 前記置換基であるジアルキルモノアリールシリルアルキル基としては、例えば、メチルジフェニルシリルメチル基、エチルジフェニルシリルメチル基、tert-ブチルジフェニルシリルメチル基等が挙げられるが、これらに限定されない。
 前記モノアルキルジアリールシリルアルキル基の炭素数は、14~35であることが好ましい。
Examples of the monoalkyl diaryl silylalkyl group is a substituent, one of the hydrogen atoms of the same alkyl group as in X 1 ~ X 4 is substituted with the same mono alkyldiarylsilyl groups and those that are the substituent And a monovalent group having the following structure.
Examples of the dialkylmonoarylsilylalkyl group as the substituent include, but are not limited to, a methyldiphenylsilylmethyl group, an ethyldiphenylsilylmethyl group, and a tert-butyldiphenylsilylmethyl group.
The monoalkyldiarylsilylalkyl group preferably has 14 to 35 carbon atoms.
 前記置換基であるトリアリールシリルアルキル基としては、上述のトリアルキルシリル基中のものと同様のアルキル基の1個の水素原子が、前記置換基であるものと同様のトリアリールシリル基で置換された構造の1価の基が挙げられる。
 前記置換基であるトリアリールシリルアルキル基としては、例えば、トリフェニルシリルメチル基等が挙げられるが、これに限定されない。
 前記トリアリールシリルアルキル基の炭素数は、19~35であることが好ましい。
As the triarylsilylalkyl group as the substituent, one hydrogen atom of the same alkyl group as that in the above-described trialkylsilyl group is substituted with the same triarylsilyl group as the above-described substituent. And a monovalent group having the following structure.
Examples of the triarylsilylalkyl group as the substituent include, but are not limited to, a triphenylsilylmethyl group.
The triarylsilylalkyl group preferably has 19 to 35 carbon atoms.
 前記置換基であるヒドロキシアルキル基としては、X~Xにおけるものと同様のアルキル基の1個の水素原子が、ヒドロキシ基で置換された構造の1価の基が挙げられる。
 前記置換基であるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、3-ヒドロキシ-n-プロピル基、2-ヒドロキシ-1-メチルエチル基、1-ヒドロキシ-1-メチルエチル基、ヒドロキシノニル基等が挙げられるが、これらに限定されない。
 前記ヒドロキシアルキル基の炭素数は、1~9であることが好ましい。
Examples of the hydroxyalkyl group as the substituent include a monovalent group having a structure in which one hydrogen atom of the same alkyl group as in X 1 to X 4 is substituted with a hydroxy group.
Examples of the hydroxyalkyl group as the substituent include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 3-hydroxy-n-propyl group, a 2-hydroxy-1-methylethyl group, Examples include, but are not limited to, a hydroxy-1-methylethyl group and a hydroxynonyl group.
The hydroxyalkyl group preferably has 1 to 9 carbon atoms.
 前記置換基であるハロゲン化アルキル基としては、X~Xにおけるものと同様のアルキル基の1個又は2個以上の水素原子が、ハロゲン原子で置換された構造の1価の基が挙げられ、例えば、パーハロアルキル基(すべての水素原子が、ハロゲン原子で置換された構造の1価の基)であってもよい。
 前記水素原子を置換する前記ハロゲン原子としては、前記置換基であるハロゲン原子と同様のものが挙げられる。
 前記ハロゲン化アルキル基中のハロゲン原子が2個以上である場合、これら2個以上のハロゲン原子は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。そして、互いに異なるハロゲン原子の組み合わせは、任意に選択でき、特に限定されない。
 前記置換基であるハロゲン化アルキル基としては、例えば、モノクロロメチル基、ジクロロメチル基、トリクロロメチル基、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、モノクロロノニル基等が挙げられるが、これらに限定されない。
 前記ハロゲン化アルキル基の炭素数は、1~9であることが好ましい。
Examples of the halogenated alkyl group as the substituent include a monovalent group having a structure in which one or more hydrogen atoms of the same alkyl group as those in X 1 to X 4 are substituted with a halogen atom. For example, a perhaloalkyl group (a monovalent group having a structure in which all hydrogen atoms are substituted with halogen atoms) may be used.
Examples of the halogen atom that replaces the hydrogen atom include the same halogen atom as the substituent.
When the halogenated alkyl group has two or more halogen atoms, these two or more halogen atoms may be all the same, may be all different, or may be partially the same. Is also good. The combination of different halogen atoms can be arbitrarily selected and is not particularly limited.
Examples of the halogenated alkyl group as the substituent include, for example, a monochloromethyl group, a dichloromethyl group, a trichloromethyl group, a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a monochlorononyl group, and the like. It is not limited to.
The halogenated alkyl group preferably has 1 to 9 carbon atoms.
 前記置換基であるアルコキシアルキル基としては、X~Xにおけるものと同様のアルキル基の1個の水素原子が、前記置換基であるものと同様のアルコキシ基で置換された構造の1価の基が挙げられる。
 前記置換基であるアルコキシアルキル基としては、例えば、メトキシメチル基、エトキシメチル基、n-プロポキシメチル基、イソプロポキシメチル基、メトキシエチル基、エトキシエチル基、n-プロポキシエチル基、イソプロポキシエチル基、ノニルオキシメチル基、ノニルオキシエチル基等が挙げられるが、これらに限定されない。
 前記アルコキシアルキル基の炭素数は、2~18であることが好ましい。
The alkoxyalkyl group as the substituent is a monovalent structure having the same alkyl group as that in X 1 to X 4 in which one hydrogen atom is substituted with the same alkoxy group as the substituent. The group of is mentioned.
Examples of the alkoxyalkyl group as the substituent include a methoxymethyl group, an ethoxymethyl group, an n-propoxymethyl group, an isopropoxymethyl group, a methoxyethyl group, an ethoxyethyl group, an n-propoxyethyl group, and an isopropoxyethyl group. , A nonyloxymethyl group, a nonyloxyethyl group, and the like, but are not limited thereto.
The alkoxyalkyl group preferably has 2 to 18 carbon atoms.
 前記置換基であるアルキルカルボニルオキシアルキル基としては、X~Xにおけるものと同様のアルキル基の1個の水素原子が、前記置換基であるものと同様のアルキルカルボニルオキシ基で置換された構造の1価の基が挙げられる。
 前記置換基であるアルキルカルボニルオキシアルキル基としては、例えば、メチルカルボニルオキシメチル基(別名:アセトキシメチル基)、エチルカルボニルオキシメチル基、n-プロピルカルボニルオキシメチル基、イソプロピルカルボニルオキシメチル基、ノニルカルボニルオキシメチル基、メチルカルボニルオキシエチル基(別名:アセトキシエチル基)、エチルカルボニルオキシエチル基、n-プロピルカルボニルオキシエチル基、イソプロピルカルボニルオキシエチル基、ノニルカルボニルオキシエチル基、メチルカルボニルオキシノニル基(別名:アセトキシノニル基)等が挙げられるが、これらに限定されない。
 前記アルキルカルボニルオキシアルキル基の炭素数は、3~19であることが好ましい。
In the alkylcarbonyloxyalkyl group as the substituent, one hydrogen atom of the same alkyl group as that in X 1 to X 4 is substituted with the same alkylcarbonyloxy group as the above substituent. Monovalent groups of the structure are mentioned.
Examples of the alkylcarbonyloxyalkyl group as the substituent include a methylcarbonyloxymethyl group (alias: acetoxymethyl group), an ethylcarbonyloxymethyl group, an n-propylcarbonyloxymethyl group, an isopropylcarbonyloxymethyl group, a nonylcarbonyl Oxymethyl group, methylcarbonyloxyethyl group (alias: acetoxyethyl group), ethylcarbonyloxyethyl group, n-propylcarbonyloxyethyl group, isopropylcarbonyloxyethyl group, nonylcarbonyloxyethyl group, methylcarbonyloxynonyl group (alias) : Acetoxynonyl group) and the like, but are not limited thereto.
The alkylcarbonyloxyalkyl group preferably has 3 to 19 carbon atoms.
 前記置換基であるアリールカルボニルオキシアルキル基としては、X~Xにおけるものと同様のアルキル基の1個の水素原子が、前記置換基であるものと同様のアリールカルボニルオキシ基で置換された構造の1価の基が挙げられる。
 前記置換基であるアリールカルボニルオキシアルキル基としては、例えば、フェニルカルボニルオキシメチル基、1-ナフチルカルボニルオキシメチル基、2-ナフチルカルボニルオキシメチル基、フェニルカルボニルオキシエチル基、1-ナフチルカルボニルオキシエチル基、2-ナフチルカルボニルオキシエチル基、フェニルカルボニルオキシノニル等が挙げられるが、これらに限定されない。
 前記アリールカルボニルオキシアルキル基の炭素数は、8~30であることが好ましく、8~20であることがより好ましい。
In the arylcarbonyloxyalkyl group as the substituent, one hydrogen atom of the same alkyl group as that in X 1 to X 4 is substituted with the same arylcarbonyloxy group as the above substituent. Monovalent groups of the structure are mentioned.
Examples of the arylcarbonyloxyalkyl group as the substituent include a phenylcarbonyloxymethyl group, a 1-naphthylcarbonyloxymethyl group, a 2-naphthylcarbonyloxymethyl group, a phenylcarbonyloxyethyl group, and a 1-naphthylcarbonyloxyethyl group. , 2-naphthylcarbonyloxyethyl group, phenylcarbonyloxynonyl, and the like, but are not limited thereto.
The arylcarbonyloxyalkyl group preferably has 8 to 30 carbon atoms, and more preferably 8 to 20 carbon atoms.
 前記置換基であるアラルキルカルボニルオキシアルキル基としては、X~Xにおけるものと同様のアルキル基の1個の水素原子が、前記置換基であるものと同様のアラルキルカルボニルオキシ基で置換された構造の1価の基が挙げられる。
 前記置換基であるアラルキルカルボニルオキシアルキル基としては、例えば、ベンジルカルボニルオキシメチル基、フェネチルカルボニルオキシメチル基、1-ナフチルメチルカルボニルオキシメチル基、2-ナフチルメチルカルボニルオキシメチル基、ベンジルカルボニルオキシエチル基、フェネチルカルボニルオキシエチル基、1-ナフチルメチルカルボニルオキシエチル基、2-ナフチルメチルカルボニルオキシエチル基、ベンジルカルボニルオキシノニル基等が挙げられるが、これらに限定されない。
 前記アラルキルカルボニルオキシアルキル基の炭素数は、9~35であることが好ましく、9~26であることがより好ましい。
In the aralkylcarbonyloxyalkyl group as the substituent, one hydrogen atom of the same alkyl group as that in X 1 to X 4 is substituted with the same aralkylcarbonyloxy group as the substituent. Monovalent groups of the structure are mentioned.
Examples of the aralkylcarbonyloxyalkyl group as the substituent include, for example, a benzylcarbonyloxymethyl group, a phenethylcarbonyloxymethyl group, a 1-naphthylmethylcarbonyloxymethyl group, a 2-naphthylmethylcarbonyloxymethyl group, a benzylcarbonyloxyethyl group Phenethylcarbonyloxyethyl group, 1-naphthylmethylcarbonyloxyethyl group, 2-naphthylmethylcarbonyloxyethyl group, benzylcarbonyloxynonyl group, and the like, but are not limited thereto.
The aralkylcarbonyloxyalkyl group preferably has 9 to 35 carbon atoms, and more preferably 9 to 26 carbon atoms.
 X~Xにおける前記不飽和炭化水素基が置換基を有する場合、置換基の数は、特に限定されないが、1個又は2個であることが好ましく、1個であることがより好ましい。
 X~Xにおける前記不飽和炭化水素基が置換基を有する場合、置換基の結合位置は、特に限定されないが、前記不飽和炭化水素基の結合先側とは反対側の末端の炭素原子に、置換基が結合していることが好ましい。
 X~Xにおける、置換基を有する前記不飽和炭化水素基の好ましい一例としては、前記不飽和炭化水素基の結合先側とは反対側の末端の炭素原子が、隣接する炭素原子との間で、三重結合を形成しており、かつ、この末端の炭素原子に前記置換基が結合しているものが挙げられる。
When the unsaturated hydrocarbon group in X 1 to X 4 has a substituent, the number of the substituent is not particularly limited, but is preferably one or two, and more preferably one.
When the unsaturated hydrocarbon group in X 1 to X 4 has a substituent, the bonding position of the substituent is not particularly limited. It is preferable that a substituent is bonded to the cation.
As a preferable example of the unsaturated hydrocarbon group having a substituent in X 1 to X 4 , the terminal carbon atom on the opposite side to the bonding destination side of the unsaturated hydrocarbon group is the same as that of the adjacent carbon atom. Among them, a triple bond is formed, and the above-mentioned substituent is bonded to the terminal carbon atom.
 X及びXが前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、その環骨格を構成する原子として1個の窒素原子を含む、含窒素脂肪族環である。
 前記アルキル基の相互に結合する炭素原子の位置は、特に限定されない。例えば、相互に結合する前記炭素原子は、アルキル基中の末端の炭素原子であってもよいし、非末端部の炭素原子であってもよい。
 前記アルキル基の相互に結合する炭素原子の数は、互いに同じであり、それぞれ1個のみであってもよいし、2個以上であってもよいが、1個又は2個であることが好ましい。
 すなわち、前記環は、単環状及び多環状のいずれであってもよい。
 前記環の環員数(環骨格を構成している炭素原子及び窒素原子の総数)は、特に限定されないが、5~10であることが好ましく、5~8であることがより好ましい。
When X 1 and X 2 are the aforementioned alkyl groups, these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring . The ring is a nitrogen-containing aliphatic ring containing one nitrogen atom as an atom constituting the ring skeleton.
The positions of the carbon atoms that are mutually bonded in the alkyl group are not particularly limited. For example, the carbon atoms bonded to each other may be terminal carbon atoms in the alkyl group or non-terminal carbon atoms.
The number of carbon atoms bonded to each other in the alkyl group is the same, and each may be only one, or may be two or more, but is preferably one or two. .
That is, the ring may be monocyclic or polycyclic.
The number of ring members of the ring (the total number of carbon atoms and nitrogen atoms constituting the ring skeleton) is not particularly limited, but is preferably 5 to 10, and more preferably 5 to 8.
 上述の環の形成は、X及びXの場合も同様である。
 すなわち、X及びXが前記アルキル基である場合、これら2個のアルキル基は、これらアルキル基がそれぞれ結合している酸素原子と、これら酸素原子がそれぞれ結合している、ベンゼン環骨格を構成している炭素原子と、ともに、相互に結合して、環を形成していてもよい。前記環は、その環骨格を構成する原子として2個の酸素原子を含む、含酸素脂肪族環である。
 前記アルキル基の相互に結合する炭素原子の位置は、特に限定されない。例えば、相互に結合する前記炭素原子は、アルキル基中の末端の炭素原子であってもよいし、非末端部の炭素原子であってもよい。
 前記アルキル基の相互に結合する炭素原子の数は、互いに同じであり、それぞれ1個のみであってもよいし、2個以上であってもよいが、1個又は2個であることが好ましい。
 すなわち、前記環は、単環状及び多環状のいずれであってもよい。
 前記環の環員数(環骨格を構成している炭素原子及び酸素原子の総数)は、特に限定されないが、5~10であることが好ましく、5~8であることがより好ましい。
The formation of the ring described above is the same in the case of X 3 and X 4 .
That is, when X 3 and X 4 are the aforementioned alkyl groups, these two alkyl groups have an oxygen atom to which each of these alkyl groups is bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded. Together with the constituent carbon atoms, they may be mutually bonded to form a ring. The ring is an oxygen-containing aliphatic ring containing two oxygen atoms as atoms constituting the ring skeleton.
The positions of the carbon atoms that are mutually bonded in the alkyl group are not particularly limited. For example, the carbon atoms bonded to each other may be terminal carbon atoms in the alkyl group or non-terminal carbon atoms.
The number of carbon atoms bonded to each other in the alkyl group is the same, and each may be only one, or may be two or more, but is preferably one or two. .
That is, the ring may be monocyclic or polycyclic.
The number of ring members of the ring (the total number of carbon atoms and oxygen atoms constituting the ring skeleton) is not particularly limited, but is preferably 5 to 10, and more preferably 5 to 8.
 X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であることが好ましく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよい。ここで、置換基、不飽和炭化水素基、及び環は、先に説明したものである。 X 1 , X 2 , X 3 and X 4 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and have a substituent. Is preferably an unsaturated hydrocarbon group having 3 to 9 carbon atoms, and when X 1 and X 2 are the aforementioned alkyl groups, or when X 3 and X 4 are the aforementioned alkyl groups, These two alkyl groups may be bonded to each other to form a ring. Here, the substituent, the unsaturated hydrocarbon group, and the ring are as described above.
 一般式(I)中、n及びnは、それぞれ独立に、0又は1である。
 nは、一般式-OXで表される基と、一般式-OXで表される基と、が直接結合しているベンゼン環骨格における、Xの結合の有無を規定している。
 nは、一般式-NXで表される基が直接結合しているアルキレン骨格における、一般式-OXで表される基の結合の有無を規定している。
In the general formula (I), n 1 and n 3 are each independently 0 or 1.
n 1 defines the presence or absence of the bond of X 5 in the benzene ring skeleton where the group represented by the general formula —OX 3 and the group represented by the general formula —OX 4 are directly bonded. .
n 3 defines the presence or absence of the group represented by the general formula —OX 6 in the alkylene skeleton directly bonded to the group represented by the general formula —NX 1 X 2 .
 一般式(I)中、Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基である。
 Xは、炭素数が3~9ではなく2~8である点、換言すると、炭素数が1だけ少ない点を除けば、上述のX~Xにおける不飽和炭化水素基と同じである。
In the general formula (I), X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
X 5 is the same as the above-mentioned unsaturated hydrocarbon group for X 1 to X 4 except that the number of carbon atoms is 2 to 8 instead of 3 to 9, that is, the number of carbon atoms is 1 .
 例えば、Xにおける前記不飽和炭化水素基は、その結合先側とは反対側の末端の炭素原子が、隣接する炭素原子との間で、三重結合を形成していることが好ましい。
 このような不飽和炭化水素基でアルキニル基であるものとしては、エチニル基(-C≡CH)、プロパルギル基(別名:2-プロピニル基)、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基、6-ヘプチニル基、7-オクチニル基が挙げられる。
For example, in the unsaturated hydrocarbon group for X 5 , the terminal carbon atom on the opposite side to the bond destination side preferably forms a triple bond with an adjacent carbon atom.
Examples of such an unsaturated hydrocarbon group which is an alkynyl group include an ethynyl group (—C≡CH), a propargyl group (alias: 2-propynyl group), a 3-butynyl group, a 4-pentynyl group, and a 5-hexynyl group. Group, 6-heptynyl group and 7-octynyl group.
 例えば、Xにおける前記不飽和炭化水素基が置換基を有する場合、置換基の数は、特に限定されないが、1個又は2個であることが好ましく、1個であることがより好ましい。
 例えば、Xにおける前記不飽和炭化水素基が置換基を有する場合、置換基の結合位置は、特に限定されないが、前記不飽和炭化水素基の結合先側とは反対側の末端の炭素原子に、置換基が結合していることが好ましい。
 例えば、Xにおける、置換基を有する前記不飽和炭化水素基の好ましい一例としては、前記不飽和炭化水素基の結合先側とは反対側の末端の炭素原子が、隣接する炭素原子との間で、三重結合を形成しており、かつ、この末端の炭素原子に前記置換基が結合しているものが挙げられる。
For example, if the in X 5 is an unsaturated hydrocarbon group having a substituent, the number of substituents is not particularly limited, it is preferable that one or two, more preferably one.
For example, when the unsaturated hydrocarbon group for X 5 has a substituent, the bonding position of the substituent is not particularly limited. And a substituent is preferably bonded.
For example, in X 5, as a preferred example of the unsaturated hydrocarbon group having a substituent, wherein the unsaturated terminal carbon atom of the side opposite to the coupling destination side of the hydrocarbon group, between adjacent carbon atoms Wherein a triple bond is formed, and the substituent is bonded to the terminal carbon atom.
 nが1である場合、一般式(I)において、一般式-OXで表される基と、一般式-OXで表される基と、が直接結合しているベンゼン環骨格における、Xの結合位置は、特に限定されず、例えば、一般式-OXで表される基に対して、オルト位の関係となる位置(換言すると、一般式-OXで表される基が結合している炭素原子に隣接し、かつ、一般式-OXで表される基が結合していない炭素原子)、メタ位の関係となる位置(換言すると、一般式-OXで表される基が結合している炭素原子に隣接し、かつ、一般式-OXで表される基が結合していない炭素原子)、及びパラ位の関係となる位置、のいずれであってもよい。
 なかでも、前記ベンゼン環骨格における、Xの結合位置は、一般式-OXで表される基に対して、メタ位の関係となる位置であるか、又は、パラ位の関係となる位置であることが好ましい。
When n 1 is 1, in the general formula (I), a group represented by the general formula —OX 3 and a group represented by the general formula —OX 4 are directly bonded to each other, The bonding position of X 5 is not particularly limited. For example, a position having an ortho-position with respect to a group represented by the general formula —OX 3 (in other words, a group represented by the general formula —OX 3 is A carbon atom adjacent to the carbon atom to which it is bonded and to which the group represented by the general formula -OX 4 is not bonded), and a position having a meta-position (in other words, a carbon atom represented by the general formula -OX 4) A carbon atom adjacent to the carbon atom to which the group is bonded and to which the group represented by the general formula -OX 3 is not bonded), or a position having a para-position relationship. .
Among them, the bonding position of X 5 in the benzene ring skeleton is a position having a meta-position or a position having a para-position with respect to the group represented by the general formula —OX 3. It is preferable that
 一般式(I)中、Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基である。
 Xにおける前記不飽和炭化水素基は、上述のX~Xにおける不飽和炭化水素基と同じである。
 例えば、Xにおける前記不飽和炭化水素基は、その結合先側とは反対側の末端の炭素原子が、隣接する炭素原子との間で、三重結合を形成していることが好ましい。
 このような不飽和炭化水素基でアルキニル基であるものとしては、プロパルギル基(別名:2-プロピニル基)、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基、6-ヘプチニル基、7-オクチニル基、8-ノニニル基が挙げられる。
In the general formula (I), X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent. is there.
The unsaturated hydrocarbon group for X 6 is the same as the unsaturated hydrocarbon group for X 1 to X 4 described above.
For example, in the unsaturated hydrocarbon group for X 6 , the terminal carbon atom on the opposite side to the bonding destination side preferably forms a triple bond with an adjacent carbon atom.
Examples of such an unsaturated hydrocarbon group which is an alkynyl group include a propargyl group (alias: 2-propynyl group), a 3-butynyl group, a 4-pentynyl group, a 5-hexynyl group, a 6-heptynyl group, and a 7-heptinyl group. Examples include an octynyl group and an 8-noninyl group.
 例えば、Xにおける前記不飽和炭化水素基が置換基を有する場合、置換基の数は、特に限定されないが、1個又は2個であることが好ましく、1個であることがより好ましい。
 例えば、Xにおける前記不飽和炭化水素基が置換基を有する場合、置換基の結合位置は、特に限定されないが、前記不飽和炭化水素基の結合先側とは反対側の末端の炭素原子に、置換基が結合していることが好ましい。
 例えば、Xにおける、置換基を有する前記不飽和炭化水素基の好ましい一例としては、前記不飽和炭化水素基の結合先側とは反対側の末端の炭素原子が、隣接する炭素原子との間で、三重結合を形成しており、かつ、この末端の炭素原子に前記置換基が結合しているものが挙げられる。
For example, when the unsaturated hydrocarbon group for X 6 has a substituent, the number of substituents is not particularly limited, but is preferably one or two, and more preferably one.
For example, when the unsaturated hydrocarbon group in X 6 has a substituent, the bonding position of the substituent is not particularly limited, but the terminal carbon atom on the opposite side to the bonding destination side of the unsaturated hydrocarbon group is And a substituent is preferably bonded.
For example, as a preferable example of the unsaturated hydrocarbon group having a substituent in X 6 , the terminal carbon atom on the side opposite to the side to which the unsaturated hydrocarbon group is bonded may be located between an adjacent carbon atom and Wherein a triple bond is formed, and the substituent is bonded to the terminal carbon atom.
 一般式(I)中、nは、1~5の整数である。
 nは、一般式-NXで表される基が直接結合しているアルキレン骨格(換言すると、鎖状炭化水素骨格)の炭素数を規定している。すなわち、前記アルキレン骨格の炭素数は、2~6である。
 nは、例えば、5以下の範囲内で、1以上、2以上、3以上及び4以上のいずれであってもよい。また、nは、例えば、1以上の範囲内で、5以下、4以下、3以下及び2以下のいずれであってもよい。
 例えば、nが1である化合物(I)又はその塩は、天然由来の神経機能調節物質として重要なドーパミン、ノルアドレナリン及びアドレナリンと、炭素数が同じである同一の又は類似の鎖状骨格を有しており、有用性が高い。
 また、nが2~5である化合物(I)又はその塩は、nが1である化合物(I)又はその塩を基準として、その生理活性の強弱を調節できる可能性があり、やはり有用性が高い。
In the general formula (I), n 2 is an integer of 1 to 5.
n 2 defines the number of carbon atoms of the alkylene skeleton (in other words, a chain hydrocarbon skeleton) to which the group represented by the general formula —NX 1 X 2 is directly bonded. That is, the alkylene skeleton has 2 to 6 carbon atoms.
n 2 may be, for example, any one of 1 or more, 2 or more, 3 or more, and 4 or more within a range of 5 or less. Further, n 2 may be, for example, any one of 5 or less, 4 or less, 3 or less, and 2 or less within a range of 1 or more.
For example, the compound (I) or a salt thereof in which n 2 is 1 has the same or similar chain skeleton having the same carbon number as dopamine, noradrenaline and adrenaline, which are important as naturally-occurring nerve function regulators. And its usefulness is high.
Further, the compound (I) or a salt thereof in which n 2 is 2 to 5 may be able to regulate the level of its biological activity based on the compound (I) or a salt thereof in which n 2 is 1; High usefulness.
 ただし、一般式(I)中、nが0であり、かつnが1である場合には、X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基(すなわち、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基)である。
 また、一般式(I)中、nが1であり、かつnが0である場合には、前記X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基(すなわち、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9又は2~8の不飽和炭化水素基)である。
 また、一般式(I)中、n及びnがともに0である場合には、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基(すなわち、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基)である。
 また、一般式(I)中、n及びnがともに1である場合には、X、X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基(すなわち、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9又は2~8の不飽和炭化水素基)である。
 このように、化合物(I)又はその塩は、炭素数が3~9又は2~8である前記不飽和炭化水素基を合計で、1個又は2個以上有する。換言すると、化合物(I)又はその塩は、炭素原子間の三重結合を有する基を必ず含んでいる。したがって、化合物(I)又はその塩は、この三重結合に基づいて、ラマン散乱分光法によって検出可能となっており、また、この三重結合を他の試薬と反応させることで、ラベルを導入可能であって、このラベルによっても、検出可能となっている。化合物(I)又はその塩の、このような検出方法については、後ほど詳しく説明する。
However, in the general formula (I), when n 1 is 0 and n 3 is 1, one or two or more of X 1 , X 2 , X 3 , X 4 and X 6 Is an unsaturated hydrocarbon group (that is, an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 carbon atoms which may have a substituent).
In the general formula (I), when n 1 is 1 and n 3 is 0, one or two of X 1 , X 2 , X 3 , X 4 and X 5 are used. The above description is based on the unsaturated hydrocarbon group (that is, an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 or 2 to 8 carbon atoms which may have a substituent). ).
In the general formula (I), when n 1 and n 3 are both 0, one or more of X 1 , X 2 , X 3 and X 4 are the unsaturated hydrocarbons. (Ie, an unsaturated hydrocarbon group having 3 to 9 carbon atoms and having 1 to 4 triple bonds between carbon atoms and optionally having a substituent).
In the general formula (I), when n 1 and n 3 are both 1, one or more of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are The unsaturated hydrocarbon group (that is, an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 or 2 to 8 carbon atoms which may have a substituent); is there.
As described above, the compound (I) or a salt thereof has one or two or more unsaturated hydrocarbon groups having 3 to 9 or 2 to 8 carbon atoms in total. In other words, the compound (I) or a salt thereof always contains a group having a triple bond between carbon atoms. Therefore, compound (I) or a salt thereof can be detected by Raman scattering spectroscopy based on this triple bond, and a label can be introduced by reacting this triple bond with another reagent. Therefore, it can be detected by this label. Such a method for detecting compound (I) or a salt thereof will be described in detail later.
 化合物(I)の塩は、化合物(I)中の塩を形成し得る基が、塩を形成した状態の化合物である。ここで、塩を形成し得る基としては、例えば、一般式(I)中の一般式-NXで表される基が挙げられるが、これに限定されない。 The salt of compound (I) is a compound in which the group capable of forming a salt in compound (I) forms a salt. Here, examples of the group capable of forming a salt include, but are not limited to, a group represented by the general formula -NX 1 X 2 in the general formula (I).
 化合物(I)の塩としては、例えば、化合物(I)の酸又は塩基との反応によって形成される塩が挙げられる。
 化合物(I)が、その1分子中に、塩を形成し得る基を2個以上有する場合、化合物(I)の塩としては、塩の形成部位を1箇所又は2箇所以上有する化合物が挙げられる。
 塩の形成部位を2箇所以上有する化合物(I)の塩において、これら2箇所以上の塩は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。
Examples of the salt of compound (I) include salts formed by reacting compound (I) with an acid or base.
When compound (I) has two or more groups capable of forming a salt in one molecule, examples of the salt of compound (I) include compounds having one or more salt formation sites. .
In a salt of compound (I) having two or more salt formation sites, these two or more salts may be all the same, may be all different, or may be partially identical. Good.
 化合物(I)の塩を形成しているアニオンの価数は特に限定されず、1(1価)であってもよいし、2(2価)以上であってもよい。
 同様に、化合物(I)の塩を形成しているカチオンの価数は特に限定されず、1(1価)であってもよいし、2(2価)以上であってもよい。
 1分子の化合物(I)の塩を形成しているカチオン及びアニオンは、いずれも1個のみであってもよいし、2個以上であってもよく、2個以上である場合、これらカチオン又はアニオンは、いずれも、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。
 ただし、化合物(I)の塩は、分子全体として電気的に中性であること、すなわち、化合物(I)1分子中のカチオンの価数の合計値とアニオンの価数の合計値とが同じであること、が好ましい。
The valence of the anion forming the salt of compound (I) is not particularly limited, and may be 1 (monovalent) or 2 (divalent) or more.
Similarly, the valence of the cation forming the salt of the compound (I) is not particularly limited, and may be 1 (monovalent) or 2 (divalent) or more.
The number of cations and anions forming a salt of one molecule of compound (I) may be only one, or two or more, and when two or more, these cations or anions are used. All the anions may be the same, all may be different, or only some may be the same.
However, the salt of the compound (I) is electrically neutral as a whole molecule, that is, the total value of the valence of the cation and the total value of the valence of the anion in one molecule of the compound (I) are the same. Is preferred.
 化合物(I)の塩において、塩を形成しているアニオンは、無機アニオン及び有機アニオンのいずれであってもよい。 に お い て In the salt of compound (I), the anion forming the salt may be any of an inorganic anion and an organic anion.
 前記無機アニオンとしては、例えば、水酸化物イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、ハロゲン化物イオン、無機酸のアニオン等が挙げられる。
 前記ハロゲン化物イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等が挙げられる。
 前記無機酸のアニオンとしては、例えば、リン酸のアニオン等が挙げられる。
Examples of the inorganic anion include a hydroxide ion, a nitrate ion, a sulfate ion, a carbonate ion, a hydrogen carbonate ion, a halide ion, and an anion of an inorganic acid.
Examples of the halide ion include a fluoride ion, a chloride ion, a bromide ion, and an iodide ion.
Examples of the anion of the inorganic acid include an anion of phosphoric acid.
 前記有機アニオンとしては、例えば、有機酸のアニオン等が挙げられる。
 前記有機酸のアニオンとしては、例えば、カルボン酸のアニオン、ハロゲン化カルボン酸のアニオン、スルホン酸のアニオン、ハロゲン化スルホン酸のアニオン等が挙げられる。
Examples of the organic anion include an anion of an organic acid.
Examples of the anion of the organic acid include a carboxylic acid anion, a halogenated carboxylic acid anion, a sulfonic acid anion, and a halogenated sulfonic acid anion.
 前記カルボン酸のアニオンは、モノカルボン酸(1価カルボン酸)のアニオンであってもよいし、ジカルボン酸、トリカルボン酸等の多価カルボン酸のアニオンであってもよい。
 前記カルボン酸のアニオンとしては、例えば、ギ酸イオン;酢酸イオン;プロパン酸(プロピオン酸)イオン、ブタン酸(酪酸)イオン、ペンタン酸(吉草酸)イオン、ヘキサン酸(カプロン酸)イオン、ヘプタン酸(エナント酸)イオン、オクタン酸(カプリル酸)イオン、ノナン酸(ペラルゴン酸)イオン、デカン酸(カプリン酸)イオン、ドデカン酸(ラウリン酸)イオン、テトラデカン酸(ミリスチン酸)イオン、ペンタデカン酸イオン、ヘキサデカン酸(パルミチン酸)イオン、ヘプタデカン酸イオン、オクタデカン酸(ステアリン酸)イオン、エイコサン酸(アラキジン酸)イオン、cis-9-オクタデセン酸(オレイン酸)イオン、cis,cis-9,12-オクタデカジエン酸(リノール酸)イオン、cis,cis,cis-9,12,15-オクタデカトリエン酸(α-リノレン酸)イオン、all-cis-6,9,12-オクタデカトリエン酸(γ-リノレン酸)イオン、(5Z,8Z,11Z,14Z)-イコサ-5,8,11,14-テトラエン酸(アラキドン酸)イオン等の炭素数3以上の飽和又は不飽和鎖状脂肪酸のアニオン;シュウ酸イオン、マロン酸イオン、コハク酸イオン、グルタル酸イオン、アジピン酸イオン、フマル酸イオン、マレイン酸イオン等の炭素数2以上の飽和又は不飽和ジカルボン酸のアニオン;クエン酸イオン、酒石酸イオン等のヒドロキシ酸のアニオン等が挙げられる。
 なお、本明細書において「脂肪酸」とは、特に断りのない限り、モノカルボン酸のうち、鎖状構造を有するものを意味する。
The anion of the carboxylic acid may be an anion of a monocarboxylic acid (monovalent carboxylic acid) or an anion of a polyvalent carboxylic acid such as dicarboxylic acid or tricarboxylic acid.
Examples of the anion of the carboxylic acid include formate ion; acetate ion; propanoic acid (propionic acid) ion, butanoic acid (butyric acid) ion, pentanoic acid (valeric acid) ion, hexanoic acid (caproic acid) ion, and heptanoic acid ( Enanthate), octanoate (caprylate), nonanoate (pelargonate), decanoate (caprate), dodecanoate (laurate), tetradecanoate (myristate), pentadecanoate, hexadecane Acid (palmitic acid) ion, heptadecanoic acid ion, octadecanoic acid (stearic acid) ion, eicosanoic acid (arachidic acid) ion, cis-9-octadecenoic acid (oleic acid) ion, cis, cis-9,12-octadecadien Acid (linoleic acid) ion, cis, cis, is-9,12,15-octadecatrienoate (α-linolenate) ion, all-cis-6,9,12-octadecatrienoate (γ-linolenate) ion, (5Z, 8Z, 11Z, 14Z ) -Icosa-5,8,11,14-tetraenoic acid (arachidonic acid) ion or other anion of a saturated or unsaturated chain fatty acid having 3 or more carbon atoms; oxalate ion, malonate ion, succinate ion, glutaric acid Anion of a saturated or unsaturated dicarboxylic acid having 2 or more carbon atoms such as anion, adipate ion, fumarate ion and maleate ion; anion of hydroxy acid such as citrate ion and tartrate ion.
In this specification, “fatty acid” means a monocarboxylic acid having a chain structure, unless otherwise specified.
 前記ハロゲン化カルボン酸のアニオンは、フッ化カルボン酸のアニオン、又は塩化カルボン酸のアニオンであることが好ましい。
 前記フッ化カルボン酸のアニオンとしては、例えば、トリフルオロ酢酸のアニオン等、前記カルボン酸のアニオンにおいて、1個又は2個以上の水素原子がフッ素原子で置換された構造のアニオンが挙げられ、すべての水素原子がフッ素原子で置換されていてもよい。
 同様に、前記塩化カルボン酸のアニオンとしては、例えば、トリクロロ酢酸のアニオン等、前記カルボン酸のアニオンにおいて、1個又は2個以上の水素原子が塩素原子で置換された構造のアニオンが挙げられ、すべての水素原子が塩素原子で置換されていてもよい。
The anion of the halogenated carboxylic acid is preferably an anion of a fluorinated carboxylic acid or an anion of a chloride carboxylic acid.
Examples of the anion of the fluorinated carboxylic acid include, for example, anions having a structure in which one or two or more hydrogen atoms are substituted with a fluorine atom in the anion of the carboxylic acid, such as an anion of trifluoroacetic acid. May be replaced by a fluorine atom.
Similarly, examples of the anion of the carboxylic acid chloride include anions having a structure in which one or two or more hydrogen atoms are substituted with a chlorine atom in the anion of the carboxylic acid, such as an anion of trichloroacetic acid. All hydrogen atoms may be replaced by chlorine atoms.
 前記スルホン酸のアニオンは、モノスルホン酸(1価スルホン酸)のアニオンであってもよいし、多価スルホン酸のアニオンであってもよい。
 前記スルホン酸のアニオンとしては、例えば、メタンスルホン酸等、前記カルボン酸のアニオンにおいて、カルボキシ基のアニオン(-COO)がスルホ基のアニオン(-SO )で置換された構造のアニオンが挙げられる。
The sulfonic acid anion may be a monosulfonic acid (monovalent sulfonic acid) anion or a polyvalent sulfonic acid anion.
Examples of the anion of the sulfonic acid include, for example, an anion of the carboxylic acid, such as methanesulfonic acid, in which a carboxy group anion (—COO ) is substituted with a sulfo group anion (—SO 3 ). No.
 前記ハロゲン化スルホン酸のアニオンは、フッ化スルホン酸のアニオンであることが好ましい。
 前記フッ化スルホン酸のアニオンとしては、例えば、トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸等、前記スルホン酸のアニオンにおいて、1個又は2個以上の水素原子がフッ素原子で置換された構造のアニオンが挙げられ、すべての水素原子がフッ素原子で置換されていてもよい。
The anion of the halogenated sulfonic acid is preferably an anion of fluorinated sulfonic acid.
Examples of the anion of the fluorinated sulfonic acid include, for example, an anion having a structure in which one or two or more hydrogen atoms are substituted with a fluorine atom in the anion of the sulfonic acid, such as trifluoromethanesulfonic acid and nonafluorobutanesulfonic acid. And all hydrogen atoms may be replaced by fluorine atoms.
 化合物(I)の塩において、塩を形成しているカチオンは、無機カチオン及び有機カチオンのいずれであってもよい。 に お い て In the salt of compound (I), the cation forming the salt may be any of an inorganic cation and an organic cation.
 前記無機カチオンとしては、例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、リチウムイオン、バリウムイオン、アルミニウムイオン、亜鉛イオン、銅イオン(Cu、Cu2+)、鉄イオン(Fe2+、Fe3+)、アンモニウムイオン等が挙げられる。 Examples of the inorganic cation include sodium ions, potassium ions, calcium ions, magnesium ions, lithium ions, barium ions, aluminum ions, zinc ions, copper ions (Cu + , Cu 2+ ), and iron ions (Fe 2+ , Fe 3+). ), Ammonium ion and the like.
 前記有機カチオンとしては、例えば、一般式(I)中の一般式-NXで表される基の窒素原子に、水素イオン(H)が配位した状態のカチオン等が挙げられる。 Examples of the organic cation include a cation in which a hydrogen ion (H + ) is coordinated to a nitrogen atom of a group represented by the general formula —NX 1 X 2 in the general formula (I).
 化合物(I)の塩で好ましいものとしては、下記一般式(Is)で表される塩が挙げられる。 好 ま し い Preferred examples of the salt of the compound (I) include salts represented by the following general formula (Is).
Figure JPOXMLDOC01-appb-C000022
 (一般式(Is)中、X、X、X、X、X、X、n、n及びnは、前記と同じであり;Qは1価のアニオンである。)
Figure JPOXMLDOC01-appb-C000022
(In the general formula (Is), X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , n 1 , n 2 and n 3 are the same as described above; Q is a monovalent anion. is there.)
 一般式(Is)中、X、X、X、X、X、X、n、n及びnは、一般式(I)中のX、X、X、X、X、X、n、n及びnと同じである。 In the general formula (Is), X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , n 1 , n 2 and n 3 represent X 1 , X 2 , X 3 in the general formula (I) , X 4 , X 5 , X 6 , n 1 , n 2 and n 3 .
 一般式(Is)中、Qは1価のアニオンであり、その例としては、上述のアニオンのうち、1価の無機アニオン;モノカルボン酸のアニオン、ハロゲン化モノカルボン酸のアニオン、モノスルホン酸のアニオン、ハロゲン化モノスルホン酸のアニオン等の1価の有機アニオン等が挙げられる。 In the general formula (Is), Q 2 is a monovalent anion, and examples thereof include monovalent inorganic anions; monocarboxylic acid anions, halogenated monocarboxylic acid anions, and monosulfones. Monovalent organic anions such as anions of acids and anions of halogenated monosulfonic acids are exemplified.
 化合物(I)は、下記一般式(I)-1で表される化合物(本明細書においては、「化合物(I)-1」と略記することがある)、下記一般式(I)-2で表される化合物(本明細書においては、「化合物(I)-2」と略記することがある)、下記一般式(I)-3で表される化合物(本明細書においては、「化合物(I)-3」と略記することがある)、又は下記一般式(I)-4で表される化合物(本明細書においては、「化合物(I)-4」と略記することがある)であることが好ましい。
 すなわち、化合物(I)又はその塩は、化合物(I)-1若しくはその塩、化合物(I)-2若しくはその塩、化合物(I)-3若しくはその塩、又は化合物(I)-4若しくはその塩、であることが好ましい。
Compound (I) is a compound represented by the following general formula (I) -1 (hereinafter, may be abbreviated as “compound (I) -1” in the present specification), the following general formula (I) -2 (Herein, may be abbreviated as “compound (I) -2”), a compound represented by the following general formula (I) -3 (in the present specification, “compound (I) -2”). (Sometimes abbreviated as (I) -3)) or a compound represented by the following general formula (I) -4 (herein, sometimes abbreviated as “compound (I) -4”) It is preferable that
That is, compound (I) or a salt thereof is compound (I) -1 or a salt thereof, compound (I) -2 or a salt thereof, compound (I) -3 or a salt thereof, or compound (I) -4 or a salt thereof. And a salt.
Figure JPOXMLDOC01-appb-C000023
 (一般式(I)-1、(I)-2、(I)-3又は(I)-4中、X、X、X、X、X、n及びnは、前記と同じであり;
 X11、X21、X31及びX41は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基であり、X11及びX21が前記アルキル基である場合、又は、X31及びX41が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X61は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 ただし、一般式(I)-1中、前記X及びXのいずれか一方又は両方は、前記不飽和炭化水素基であり、
 一般式(I)-2中、前記X及びXのいずれか一方又は両方は、前記不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000023
(In general formulas (I) -1, (I) -2, (I) -3 or (I) -4, X 1 , X 2 , X 3 , X 4 , X 5 , n 2 and n 3 are The same as above;
X 11, X 21, X 31 and X 41 each independently represent a hydrogen atom or an alkyl group having 1-9 carbon atoms, when X 11 and X 21 are the alkyl group, or, X 31 and X When 41 is the above-mentioned alkyl group, these two alkyl groups may be mutually bonded to form a ring;
X 61 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and optionally having 3 to 9 carbon atoms;
However, in the general formula (I) -1, one or both of X 1 and X 2 is the unsaturated hydrocarbon group,
In formula (I) -2, one or both of X 3 and X 4 are the unsaturated hydrocarbon groups. )
<化合物(I)-1>
 化合物(I)-1は、nが0である場合の化合物(I)に包含される。
 一般式(I)-1中、X、X、n及びnは、一般式(I)中のX、X、n及びnと同じである。
 ただし、一般式(I)-1中、X及びXのいずれか一方又は両方は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基である。
<Compound (I) -1>
Compound (I) -1 is included in compound (I) when n 1 is 0.
In the Formula (I) -1, X 1, X 2, n 2 and n 3 are the same as general X 1 in formula (I), X 2, n 2 and n 3.
However, in the general formula (I) -1, one or both of X 1 and X 2 have 1 to 4 triple bonds between carbon atoms and may have 3 carbon atoms which may have a substituent. To 9 unsaturated hydrocarbon groups.
 一般式(I)-1中、X31及びX41は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基である。
 X31及びX41における、炭素数1~9のアルキル基は、X~Xにおける、炭素数1~9のアルキル基と同じである。
In the general formula (I) -1, X 31 and X 41 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
The alkyl group having 1 to 9 carbon atoms in X 31 and X 41 is the same as the alkyl group having 1 to 9 carbon atoms in X 1 to X 4 .
 X31及びX41が前記アルキル基である場合、これら2個のアルキル基は、これらアルキル基がそれぞれ結合している酸素原子と、これら酸素原子がそれぞれ結合している、ベンゼン環骨格を構成している炭素原子と、ともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。 When X 31 and X 41 are the above-mentioned alkyl groups, these two alkyl groups constitute an oxygen atom to which these alkyl groups are respectively bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded. And the carbon atoms may be mutually bonded to form a ring. The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 3 and X 4 are an alkyl group.
<化合物(I)-2>
 化合物(I)-2は、nが0である場合の化合物(I)に包含される。
 一般式(I)-2中、X、X、n及びnは、一般式(I)中のX、X、n及びnと同じである。
 ただし、一般式(I)-2中、前記X及びXのいずれか一方又は両方は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基である。
<Compound (I) -2>
Compound (I) -2 is included in compound (I) when n 1 is 0.
In the Formula (I) -2, X 3, X 4, n 2 and n 3 are the same as X 3, X 4, n 2 and n 3 in the general formula (I).
However, in the general formula (I) -2, one or both of X 3 and X 4 have 1 to 4 triple bonds between carbon atoms, and may have an optionally substituted carbon number. 3 to 9 unsaturated hydrocarbon groups.
 一般式(I)-2中、X11及びX21は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基である。
 X11及びX21における、炭素数1~9のアルキル基は、X~Xにおける、炭素数1~9のアルキル基と同じである。
In the general formula (I) -2, X 11 and X 21 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
The alkyl group having 1 to 9 carbon atoms in X 11 and X 21 is the same as the alkyl group having 1 to 9 carbon atoms in X 1 to X 4 .
 X11及びX21が前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。 When X 11 and X 21 are the aforementioned alkyl groups, these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring . The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 1 and X 2 are alkyl groups.
<化合物(I)-3>
 化合物(I)-3は、nが1である場合の化合物(I)に包含される。
 一般式(I)-3中、X、n及びnは、一般式(I)中のX、n及びnと同じである。
<Compound (I) -3>
Compound (I) -3 is included in compound (I) when n 1 is 1.
In the Formula (I) -3, X 5, n 2 and n 3 are the same as X 5, n 2 and n 3 in the general formula (I).
 一般式(I)-3中、X11、X21、X31及びX41は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基である。
 X11、X21、X31及びX41は、先に説明したものと同じである。
 例えば、X11及びX21が前記アルキル基である場合、又は、X31及びX41が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、前記環は、先に説明した、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環、又は、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。
In the general formula (I) -3, X 11 , X 21 , X 31 and X 41 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
X 11 , X 21 , X 31 and X 41 are the same as those described above.
For example, when X 11 and X 21 are the aforementioned alkyl groups, or when X 31 and X 41 are the aforementioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. And when X 1 and X 2 are an alkyl group as described above, the ring may be formed by bonding these two alkyl groups to each other, or X 3 and When X 4 is an alkyl group, it is the same as the ring which these two alkyl groups may form by bonding to each other.
<化合物(I)-4>
 化合物(I)-4は、nが0であり、かつ、nが1である場合の化合物(I)に包含される。
 一般式(I)-4中、nは、一般式(I)中のnと同じである。
<Compound (I) -4>
Compound (I) -4 is included in compound (I) in which n 1 is 0 and n 3 is 1.
In the Formula (I) -4, n 2 is the same as n 2 in the general formula (I).
 一般式(I)-4中、X11、X21、X31及びX41は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基である。
 X11、X21、X31及びX41は、先に説明したものと同じである。
 例えば、X11及びX21が前記アルキル基である場合、又は、X31及びX41が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、前記環は、先に説明した、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環、又は、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。
In the general formula (I) -4, X 11 , X 21 , X 31 and X 41 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
X 11 , X 21 , X 31 and X 41 are the same as those described above.
For example, when X 11 and X 21 are the aforementioned alkyl groups, or when X 31 and X 41 are the aforementioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. And when X 1 and X 2 are an alkyl group as described above, the ring may be formed by bonding these two alkyl groups to each other, or X 3 and When X 4 is an alkyl group, it is the same as the ring which these two alkyl groups may form by bonding to each other.
 一般式(I)-4中、X61は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、X~Xにおける、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基と同じである。 In the general formula (I) -4, X 61 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, X 1 to X 4 are the same as the C 3 to C 9 unsaturated hydrocarbon group which has 1 to 4 triple bonds between carbon atoms and may have a substituent.
 化合物(I)は、下記一般式(I)-1-1で表される化合物(本明細書においては、「化合物(I)-1-1」と略記することがある)、下記一般式(I)-1-2で表される化合物(本明細書においては、「化合物(I)-1-2」と略記することがある)、下記一般式(I)-2-1で表される化合物(本明細書においては、「化合物(I)-2-1」と略記することがある)、下記一般式(I)-2-2で表される化合物(本明細書においては、「化合物(I)-2-2」と略記することがある)、下記一般式(I)-2-3で表される化合物(本明細書においては、「化合物(I)-2-3」と略記することがある)、下記一般式(I)-3-1で表される化合物(本明細書においては、「化合物(I)-3-1」と略記することがある)、又は下記一般式(I)-4-1で表される化合物(本明細書においては、「化合物(I)-4-1」と略記することがある)であることが好ましい。
 すなわち、化合物(I)又はその塩は、化合物(I)-1-1若しくはその塩、化合物(I)-1-2若しくはその塩、化合物(I)-2-1若しくはその塩、化合物(I)-2-2若しくはその塩、化合物(I)-2-3若しくはその塩、化合物(I)-3-1若しくはその塩、又は化合物(I)-4-1若しくはその塩、であることが好ましい。
 化合物(I)-1-1若しくはその塩、並びに、化合物(I)-1-2若しくはその塩は、化合物(I)-1若しくはその塩に包含される。
 化合物(I)-2-1若しくはその塩、化合物(I)-2-2若しくはその塩、並びに、化合物(I)-2-3若しくはその塩は、化合物(I)-2若しくはその塩に包含される。
 化合物(I)-3-1若しくはその塩は、化合物(I)-3若しくはその塩に包含される。
 化合物(I)-4-1若しくはその塩は、化合物(I)-4若しくはその塩に包含される。
The compound (I) is a compound represented by the following general formula (I) -1-1 (in this specification, may be abbreviated as “compound (I) -1-1”); A compound represented by the following general formula (I) -2-1 (in some cases, abbreviated as "compound (I) -1-2") in the present specification. A compound (may be abbreviated as “compound (I) -2-1” in the present specification) and a compound represented by the following general formula (I) -2-2 (in the present specification, “compound (I) -2-1” (May be abbreviated as (I) -2-2)) or a compound represented by the following general formula (I) -2-3 (in this specification, abbreviated as "compound (I) -2-3"). A compound represented by the following general formula (I) -3-1 (hereinafter, abbreviated as “compound (I) -3-1”). There), or the following general formula (I) compound represented by -4-1 (herein, "compound (I) -4-1" It is preferable that a sometimes abbreviated as).
That is, compound (I) or a salt thereof is compound (I) -1-1 or a salt thereof, compound (I) -1-2 or a salt thereof, compound (I) -2-1 or a salt thereof, or a compound (I). ) -2-2 or a salt thereof, compound (I) -2-3 or a salt thereof, compound (I) -3-1 or a salt thereof, or compound (I) -4-1 or a salt thereof. preferable.
Compound (I) -1-1 or a salt thereof, and compound (I) -1-2 or a salt thereof are included in compound (I) -1 or a salt thereof.
Compound (I) -2-1 or a salt thereof, compound (I) -2-2 or a salt thereof, and compound (I) -2-3 or a salt thereof are included in compound (I) -2 or a salt thereof. Is done.
Compound (I) -3-1 or a salt thereof is included in compound (I) -3 or a salt thereof.
Compound (I) -4-1 or a salt thereof is included in compound (I) -4 or a salt thereof.
Figure JPOXMLDOC01-appb-C000024
 (一般式(I)-1-1、(I)-1-2、(I)-2-1、(I)-2-2、(I)-2-3、(I)-3-1又は(I)-4-1中、X12、X22、X32及びX42は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基であり、X12及びX22が前記アルキル基である場合、又は、X32及びX42が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 G、G、G、G、G及びGは、それぞれ独立に、水素原子、アルキル基、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基であり;
 nは、前記と同じである。)
Figure JPOXMLDOC01-appb-C000024
(General formulas (I) -1-1, (I) -1-2, (I) -2-1, (I) -2-2, (I) -2-3, (I) -3-1) Or, in (I) -4-1, X 12 , X 22 , X 32 and X 42 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X 12 and X 22 are Or when X 32 and X 42 are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring;
G 1 , G 2 , G 3 , G 4 , G 5 and G 6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a trialkyl group. Reelsilyl group, hydroxy group, halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group , A triarylsilylalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group. R;
n 3 are the same as above. )
[化合物(I)-1-1]
 一般式(I)-1-1中、nは、一般式(I)中のnと同じである。
[Compound (I) -1-1]
In the Formula (I) -1-1, n 3 is the same as n 3 in the general formula (I).
 一般式(I)-1-1中、X32及びX42は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基である。
 X32及びX42における、炭素数1~5のアルキル基は、X~X(又は、X31及びX41)における、炭素数1~9のアルキル基のうち、炭素数1~5のものと同じである。
In the general formula (I) -1-1, X 32 and X 42 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
Among the alkyl groups having 1 to 5 carbon atoms in X 32 and X 42, of the alkyl groups having 1 to 9 carbon atoms in X 1 to X 4 (or X 31 and X 41 ), Same as the ones.
 X32及びX42が前記アルキル基である場合、これら2個のアルキル基は、これらアルキル基がそれぞれ結合している酸素原子と、これら酸素原子がそれぞれ結合している、ベンゼン環骨格を構成している炭素原子と、ともに、相互に結合して、環を形成していてもよい。前記環は、その環骨格を構成する原子として2個の酸素原子を含む、含酸素脂肪族環である。
 前記アルキル基の相互に結合する炭素原子の位置は、特に限定されない。例えば、相互に結合する前記炭素原子は、アルキル基中の末端の炭素原子であってもよいし、非末端部の炭素原子であってもよい。
 前記アルキル基の相互に結合する炭素原子の数は、互いに同じであり、それぞれ1個のみであってもよいし、2個以上であってもよいが、1個又は2個であることが好ましい。
 すなわち、前記環は、単環状及び多環状のいずれであってもよい。
 前記環の環員数(環骨格を構成している炭素原子及び酸素原子の総数)は、特に限定されないが、5~10であることが好ましく、5~8であることがより好ましい。
When X 32 and X 42 are the aforementioned alkyl groups, these two alkyl groups constitute an oxygen atom to which these alkyl groups are respectively bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded. And the carbon atoms may be mutually bonded to form a ring. The ring is an oxygen-containing aliphatic ring containing two oxygen atoms as atoms constituting the ring skeleton.
The positions of the carbon atoms that are mutually bonded in the alkyl group are not particularly limited. For example, the carbon atoms bonded to each other may be terminal carbon atoms in the alkyl group or non-terminal carbon atoms.
The number of carbon atoms bonded to each other in the alkyl group is the same, and each may be only one, or may be two or more, but is preferably one or two. .
That is, the ring may be monocyclic or polycyclic.
The number of ring members of the ring (the total number of carbon atoms and oxygen atoms constituting the ring skeleton) is not particularly limited, but is preferably 5 to 10, and more preferably 5 to 8.
 一般式(I)-1-1中、Gは、水素原子、アルキル基、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基である。
 Gにおける、水素原子及びアルキル基、以外の基は、先に説明した、X~Xにおける前記不飽和炭化水素基が有していてもよい置換基と同じである。
In the general formula (I) -1-1, G 1 represents a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group, a halogen Atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl group, hydroxy An alkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group.
The groups other than the hydrogen atom and the alkyl group in G 1 are the same as the above-described substituents which the unsaturated hydrocarbon group in X 1 to X 4 may have.
 Gにおける前記アルキル基としては、X~Xにおけるものと同様の、炭素数1~9のアルキル基が挙げられ、直鎖状又は分岐鎖状であることが好ましい。 Examples of the alkyl group for G 1 include the same alkyl groups having 1 to 9 carbon atoms as those for X 1 to X 4 , and are preferably linear or branched.
[化合物(I)-1-2]
 一般式(I)-1-2中、nは、一般式(I)中のnと同じである。
[Compound (I) -1-2]
In the Formula (I) -1-2, n 3 is the same as n 3 in the general formula (I).
 一般式(I)-1-2中、Gは、一般式(I)-1-1中におけるGと同様のものであり、G及びGは、それぞれ独立に決定される。 In the general formula (I) -1-2, G 2 is the same as G 1 in the general formula (I) -1-1, and G 1 and G 2 are independently determined.
 一般式(I)-1-2中におけるX32及びX42は、一般式(I)-1-1中におけるX32及びX42と同様のものである。 X 32 and X 42 in the general formula (I) in -1-2 is the same as the X 32 and X 42 in the general formula (I) in -1-1.
[化合物(I)-2-1]
 一般式(I)-2-1中、nは、一般式(I)中のnと同じである。
[Compound (I) -2-1]
In the Formula (I) -2-1, n 3 is the same as n 3 in the general formula (I).
 一般式(I)-2-1中、X12及びX22は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基である。
 X12及びX22における、炭素数1~5のアルキル基は、X~X(又は、X11及びX21)における、炭素数1~9のアルキル基のうち、炭素数1~5のものと同じである。
In the general formula (I) -2-1, X 12 and X 22 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
The alkyl group having 1 to 5 carbon atoms in X 12 and X 22 includes the alkyl group having 1 to 5 carbon atoms among the alkyl groups having 1 to 9 carbon atoms in X 1 to X 4 (or X 11 and X 21 ). Same as the ones.
 X12及びX22が前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、その環骨格を構成する原子として1個の窒素原子を含む、含窒素脂肪族環である。
 前記アルキル基の相互に結合する炭素原子の位置は、特に限定されない。例えば、相互に結合する前記炭素原子は、アルキル基中の末端の炭素原子であってもよいし、非末端部の炭素原子であってもよい。
 前記アルキル基の相互に結合する炭素原子の数は、互いに同じであり、それぞれ1個のみであってもよいし、2個以上であってもよいが、1個又は2個であることが好ましい。
 すなわち、前記環は、単環状及び多環状のいずれであってもよい。
 前記環の環員数(環骨格を構成している炭素原子及び窒素原子の総数)は、特に限定されないが、5~10であることが好ましく、5~8であることがより好ましい。
When X 12 and X 22 are the aforementioned alkyl groups, these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring . The ring is a nitrogen-containing aliphatic ring containing one nitrogen atom as an atom constituting the ring skeleton.
The positions of the carbon atoms that are mutually bonded in the alkyl group are not particularly limited. For example, the carbon atoms bonded to each other may be terminal carbon atoms in the alkyl group or non-terminal carbon atoms.
The number of carbon atoms bonded to each other in the alkyl group is the same, and each may be only one, or may be two or more, but is preferably one or two. .
That is, the ring may be monocyclic or polycyclic.
The number of ring members of the ring (the total number of carbon atoms and nitrogen atoms constituting the ring skeleton) is not particularly limited, but is preferably 5 to 10, and more preferably 5 to 8.
 一般式(I)-2-1中におけるGは、一般式(I)-1-1中におけるGと同様のものである。 G 3 in the general formula (I) -2-1 is the same as G 1 in the general formula (I) -1-1.
[化合物(I)-2-2]
 一般式(I)-2-2中、nは、一般式(I)中のnと同じである。
[Compound (I) -2-2]
In the Formula (I) -2-2, n 3 is the same as n 3 in the general formula (I).
 一般式(I)-2-2中、X12及びX22は、先に説明したものと同じである。
 例えば、X12及びX22が前記アルキル基である場合、これら2個のアルキル基は相互に結合して環を形成していてもよく、前記環は、先に説明したものと同じである。
In the general formula (I) -2-2, X 12 and X 22 are the same as those described above.
For example, when X 12 and X 22 are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring, and the aforementioned ring is the same as described above.
 一般式(I)-2-2中におけるGは、一般式(I)-1-1中におけるGと同様のものである。 G 4 in the general formula (I) -2-2 is the same as G 1 in the general formula (I) -1-1.
[化合物(I)-2-3]
 一般式(I)-2-3中、nは、一般式(I)中のnと同じである。
[Compound (I) -2-3]
In the Formula (I) -2-3, n 3 is the same as n 3 in the general formula (I).
 一般式(I)-2-3中、X12及びX22は、先に説明したものと同じである。
 例えば、X12及びX22が前記アルキル基である場合、これら2個のアルキル基は相互に結合して環を形成していてもよく、前記環は、先に説明したものと同じである。
In the general formula (I) -2-3, X 12 and X 22 are the same as those described above.
For example, when X 12 and X 22 are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring, and the aforementioned ring is the same as described above.
 一般式(I)-2-3中、G及びGは、先に説明したものと同じである。 In the general formula (I) -2-3, G 3 and G 4 are the same as those described above.
[化合物(I)-3-1]
 一般式(I)-3-1中、nは、一般式(I)中のnと同じである。
[Compound (I) -3-1]
In formula (I) -3-1, n 3 is the same as n 3 in formula (I).
 一般式(I)-3-1中、X12、X22、X32及びX42は、先に説明したものと同じである。
 例えば、X12及びX22が前記アルキル基である場合、又は、X32及びX42が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、前記環は、先に説明したものと同じである。
In the general formula (I) -3-1, X 12 , X 22 , X 32 and X 42 are the same as those described above.
For example, when X 12 and X 22 are the aforementioned alkyl groups, or when X 32 and X 42 are the aforementioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. Said ring may be the same as described above.
 一般式(I)-3-1中におけるGは、一般式(I)-1-1中におけるGと同様のものである。 G 5 in the general formula (I) -3-1 is the same as G 1 in the general formula (I) -1-1.
[化合物(I)-4-1]
 一般式(I)-4-1中、X12、X22、X32及びX42は、先に説明したものと同じである。
 例えば、X12及びX22が前記アルキル基である場合、又は、X32及びX42が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、前記環は、先に説明したものと同じである。
[Compound (I) -4-1]
In the general formula (I) -4-1, X 12 , X 22 , X 32 and X 42 are the same as those described above.
For example, when X 12 and X 22 are the aforementioned alkyl groups, or when X 32 and X 42 are the aforementioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. Said ring may be the same as described above.
 一般式(I)-4-1中におけるGは、一般式(I)-1-1中におけるGと同様のものである。 G 6 in the general formula (I) -4-1 is the same as G 1 in the general formula (I) -1-1.
 化合物(I)の分子量は、350以下であることが好ましく、300以下であることがより好ましく、250以下であることがさらに好ましい。神経細胞に対して生理活性を有する天然由来の神経機能調節物質の分子量は、通常、比較的小さい。したがって、神経細胞中での、上記のように分子量が比較的小さい化合物(I)の挙動や性質を分析することで、天然由来の神経機能調節物質の挙動や性質を高精度に考察することが可能であり、化合物(I)の有用性がより高い。
 一方、化合物(I)の塩は、塩を形成していない状態に置き換えたとき(すなわち、化合物(I)として考えたとき)の分子量(本明細書においては、「換算分子量」と称することがある)が、上述の化合物(I)の分子量と同様であることが好ましい。このような化合物(I)の塩も、通常はその分子量が比較的小さいため、上述の分子量が小さい化合物(I)と同様に有用性がより高い。
 ただし、化合物(I)及びその塩のこのような有用性は一例であり、化合物(I)の分子量と、化合物(I)の塩の換算分子量と、の上限値は、ここに示すものに限定されない。
The molecular weight of compound (I) is preferably 350 or less, more preferably 300 or less, and even more preferably 250 or less. The molecular weight of a naturally-occurring nerve function modulator having a physiological activity on nerve cells is usually relatively small. Therefore, by analyzing the behavior and properties of the compound (I) having a relatively small molecular weight as described above in a nerve cell, it is possible to consider the behavior and properties of a naturally-occurring nerve function regulator with high accuracy. It is possible, and the usefulness of compound (I) is higher.
On the other hand, the salt of the compound (I) may be referred to as “converted molecular weight” in the present specification when it is replaced with a salt-free state (that is, when considered as the compound (I)). Is preferably the same as the molecular weight of the compound (I) described above. Such a salt of compound (I) also usually has a relatively low molecular weight, and thus has higher utility similarly to the above-mentioned compound (I) having a small molecular weight.
However, such usefulness of the compound (I) and its salt is merely an example, and the upper limit of the molecular weight of the compound (I) and the converted molecular weight of the salt of the compound (I) are limited to those shown here. Not done.
 化合物(I)の分子量と、化合物(I)の塩の換算分子量と、の下限値は、特に限定されない。化合物(I)の製造のし易さの点では、前記分子量及び換算分子量は、177以上であることが好ましい。 下限 The lower limits of the molecular weight of compound (I) and the reduced molecular weight of the salt of compound (I) are not particularly limited. The molecular weight and the reduced molecular weight are preferably 177 or more from the viewpoint of easy production of the compound (I).
 好ましい化合物(I)を、以下に例示する。好ましい化合物(I)としては、これら以外にも、以下に例示する化合物で前記置換基を有するものも、挙げられる。好ましい化合物(I)の塩としては、以下に例示する化合物の塩、及び、以下に例示する化合物で前記置換基を有するものの塩、が挙げられる。
 ただし、本実施形態の化合物(I)又はその塩は、これらに限定されない。
Preferred compounds (I) are exemplified below. Preferred compounds (I) also include, in addition to the above, compounds exemplified below and having the above substituent. Preferred salts of compound (I) include the salts of the compounds exemplified below and the salts of the compounds exemplified below having the substituent.
However, the compound (I) of the present embodiment or a salt thereof is not limited thereto.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 化合物(I)は、公知の神経機能調節物質である、ドーパミン、ノルアドレナリン(別名:ノルエピネフリン)又はアドレナリン(別名:エピネフリン)の誘導体とみなすことができる。本明細書において、「誘導体」とは、元の化合物の1個又は2個以上の水素原子が、水素原子以外の基で置換された構造の化合物を意味する。
 したがって、化合物(I)及びその塩は、公知の神経機能調節物質の中でも、特に、ドーパミン、ノルアドレナリン及びアドレナリンの、神経細胞中での役割(換言すると生理活性)を解明するのに、有用である。
 ドーパミン、ノルアドレナリン及びアドレナリンの構造式を以下に示す。
Compound (I) can be regarded as a derivative of dopamine, noradrenaline (alias: norepinephrine) or adrenaline (alias: epinephrine), which are known neuronal function modulators. As used herein, the term “derivative” refers to a compound having a structure in which one or more hydrogen atoms of an original compound are substituted with a group other than a hydrogen atom.
Therefore, compound (I) and a salt thereof are useful for elucidating the role (in other words, biological activity) of dopamine, noradrenaline and adrenaline in nerve cells among known neuronal function regulators. .
The structural formulas of dopamine, noradrenaline and adrenaline are shown below.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
<<化合物(I)又はその塩の製造方法>>
 化合物(I)又はその塩は、X、X、X、X、X及びXのいずれが、上述の不飽和炭化水素基であるかにより、その製造方法が異なる。以下、このような化合物(I)又はその塩の製造方法について、順次説明する。
<< Method for producing compound (I) or a salt thereof >>
The production method of compound (I) or a salt thereof varies depending on which of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 is the above-mentioned unsaturated hydrocarbon group. Hereinafter, a method for producing such a compound (I) or a salt thereof will be sequentially described.
<製造方法(1)>
 X、X、X及びXのいずれかが、上述の不飽和炭化水素基である場合の化合物(I)又はその塩は、例えば、下記一般式(Ia)で表される化合物(本明細書においては、「化合物(Ia)」と称することがある)と、下記一般式(Ic)で表される化合物(本明細書においては、「化合物(Ic)」と称することがある)と、を反応させる工程(本明細書においては、「不飽和炭化水素基導入工程(1)」と称することがある)と、下記Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程(本明細書においては、「脱保護工程(1)」と称することがある)と、を行うことにより、下記一般式(I)で表される化合物(本明細書においては、「化合物(I)」と称することがある)又はその塩として、下記一般式(Ia)で表される化合物における、下記Z1a、Z2a、Z3a、Z4a及びZ6aのうち、水素原子であるものが、下記X0aで置換された構造の化合物又はその塩を得る製造方法(本明細書においては、「製造方法(1)」と称することがある)により、製造できる。
 化合物(I)は、X、X、X及びXのいずれかが、上述の不飽和炭化水素基である場合の化合物(I)である。
<Manufacturing method (1)>
When any of X 1 , X 2 , X 3 and X 4 is the above-mentioned unsaturated hydrocarbon group, the compound (I) or a salt thereof is, for example, a compound represented by the following general formula (Ia) ( In this specification, it may be referred to as “compound (Ia)” and a compound represented by the following general formula (Ic) (in this specification, it may be referred to as “compound (Ic)”). (In the present specification, it may be referred to as “unsaturated hydrocarbon group introduction step (1)”) and the following Z 1a , Z 2a , Z 3a , Z 4a and Z 6a When one or more of the protective groups are the following protective groups, after the step of reacting, a step of further removing the protective groups (in the present specification, a “deprotection step (1)” By the following formula (I A ) (As used herein, "compound (I A)" is sometimes referred to as) a compound represented as or a salt thereof, in the compound represented by the following general formula (Ia), the following Z 1a, Z 2a, Z Among the 3a , Z 4a and Z 6a, a method for obtaining a compound having a structure in which a hydrogen atom is a hydrogen atom substituted with the following X 0a or a salt thereof (hereinafter referred to as “production method (1)”) In some cases).
Compound (I A) can be any of X 1, X 2, X 3 and X 4 is a compound where an unsaturated hydrocarbon group as described above (I).
Figure JPOXMLDOC01-appb-C000043
 (一般式(I)、(Ia)又は(Ic)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 n及びnは、それぞれ独立に、0又は1であり;
 nは、1~5の整数であり;
 ただし、前記X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 X0aは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく;
 LGは脱離基であり;
 Z1a、Z2a、Z3a、Z4a及びZ6aは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は保護基であり、Z1a及びZ2aが前記アルキル基である場合、又は、Z3a及びZ4aが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上は、水素原子である。)
Figure JPOXMLDOC01-appb-C000043
(In the general formula (I A), (Ia) or (Ic), X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When it has a group, the methylene group may be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, 1 Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring;
X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 1 and n 3 are each independently 0 or 1;
n 2 is an integer from 1 to 5;
However, one or more of X 1 , X 2 , X 3 and X 4 are the unsaturated hydrocarbon groups,
X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, wherein the unsaturated hydrocarbon group is When having a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group, and the unsaturated hydrocarbon group may have one or more than two terminals other than the terminal on the bonding side. When it has a methylene group, one methylene group or two or more non-adjacent methylene groups may be substituted with an oxygen atom;
LG 1 is a leaving group;
Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are each independently a hydrogen atom, an alkyl group having 1 to 9 carbon atoms or a protecting group, and when Z 1a and Z 2a are the above-mentioned alkyl groups Or when Z 3a and Z 4a are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring, provided that Z 1a , Z 2a , Z 3a , One or more of Z 4a and Z 6a are hydrogen atoms. )
[不飽和炭化水素基導入工程(1)]
 前記不飽和炭化水素基導入工程(1)においては、化合物(Ia)と、化合物(Ic)と、を反応させる。
 一般式(Ia)中、X、n、n及びnは、一般式(I)中のX、n、n及びnと同じである。
[Unsaturated hydrocarbon group introduction step (1)]
In the unsaturated hydrocarbon group introduction step (1), the compound (Ia) is reacted with the compound (Ic).
In the general formula (Ia), X 5, n 1, n 2 and n 3 are the same as X 5, n 1, n 2 and n 3 in the general formula (I).
 一般式(Ia)中、Z1a、Z2a、Z3a、Z4a及びZ6aは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は保護基である。
 Z1a、Z2a、Z3a、Z4a及びZ6aにおける炭素数1~9のアルキル基は、X~Xにおける炭素数1~9のアルキル基と同じである。
In the general formula (Ia), Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are each independently a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or a protecting group.
The alkyl group having 1 to 9 carbon atoms in Z 1a , Z 2a , Z 3a , Z 4a and Z 6a is the same as the alkyl group having 1 to 9 carbon atoms in X 1 to X 4 .
 Z1a及びZ2aが前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。 When Z 1a and Z 2a are the aforementioned alkyl groups, these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring . The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 1 and X 2 are alkyl groups.
 Z3a及びZ4aが前記アルキル基である場合、これら2個のアルキル基は、これらアルキル基がそれぞれ結合している酸素原子と、これら酸素原子がそれぞれ結合している、ベンゼン環骨格を構成している炭素原子と、ともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。 When Z 3a and Z 4a are the above-mentioned alkyl groups, these two alkyl groups constitute an oxygen atom to which these alkyl groups are respectively bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded. May be mutually bonded to form a ring. The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 3 and X 4 are an alkyl group.
 Z1a、Z2a、Z3a、Z4a及びZ6aにおける前記保護基は、公知のものでよい。
 Z1a及びZ2aにおける保護基としては、例えば、tert-ブトキシカルボニル基(本明細書においては、「Boc基」と略記することがある)、トリフルオロメチルカルボニル基等の、アミノ基を保護する公知の保護基が挙げられる。
 Z3a、Z4a及びZ6aにおける保護基としては、Boc基等の、ヒドロキシ基を保護する公知の保護基が挙げられる。また、Z3a及びZ4aにおける保護基としては、これらが相互に結合して環を形成しているものも挙げられ、このような環状の保護基としては、イソプロピリデン基(-C(CH-)等が挙げられる。
The protecting group in Z 1a , Z 2a , Z 3a , Z 4a and Z 6a may be a known one.
As the protecting group for Z 1a and Z 2a , for example, an amino group such as a tert-butoxycarbonyl group (may be abbreviated as “Boc group” in the present specification), a trifluoromethylcarbonyl group or the like is protected. Known protecting groups are mentioned.
Examples of the protecting group for Z 3a , Z 4a and Z 6a include known protecting groups for protecting a hydroxy group such as a Boc group. Examples of the protecting group for Z 3a and Z 4a include those in which they are mutually bonded to form a ring. As such a cyclic protecting group, an isopropylidene group (—C (CH 3 ) 2- ) and the like.
 ただし、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上は、水素原子である。 However, one or more of Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are hydrogen atoms.
 一般式(Ic)中、X0aは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、X~Xにおける前記不飽和炭化水素基と同じである。例えば、X0aにおける不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよい。X0aの場合、その結合先側の末端の前記メチレン基とは、一般式(Ic)中のLGに結合しているメチレン基である。 In the general formula (Ic), X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, and X 1 wherein at ~ X 4 are the same as the unsaturated hydrocarbon group. For example, when the unsaturated hydrocarbon group for X0a has a methylene group at the terminal on the side of the bond, the methylene group may be substituted with a carbonyl group. For X 0a, and the methylene group at the end of the coupling destination side, a methylene group bonded to the LG 1 in the general formula (Ic).
 一般式(Ic)中、LGは脱離基であり、公知のものでよい。
 前記脱離基としては、例えば、臭素原子等のハロゲン原子が挙げられる。
In the general formula (Ic), LG 1 is a leaving group, and may be a known group.
Examples of the leaving group include a halogen atom such as a bromine atom.
 一般式(I)中、X、X、X、X、X、X、n、n及びnは、一般式(I)中のX、X、X、X、X、X、n、n及びnと同じである。
 ただし、前記X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基である。
 このように、前記不飽和炭化水素基を有する部位が限定されている点を除けば、化合物(I)は化合物(I)と同じである。
In the general formula (I A), X 1, X 2, X 3, X 4, X 5, X 6, n 1, n 2 and n 3, X 1 in the general formula (I), X 2, X 3 , X 4 , X 5 , X 6 , n 1 , n 2 and n 3 .
However, one or more of X 1 , X 2 , X 3 and X 4 are the unsaturated hydrocarbon groups.
Thus, except that the site with the unsaturated hydrocarbon group is limited, Compound (I A) is the same as compound (I).
 化合物(Ia)中、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上は、水素原子であるため、不飽和炭化水素基導入工程(1)においては、この水素原子が前記X0aで置換された構造の化合物又はその塩が生成する。 In the compound (Ia), one or more of Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are hydrogen atoms, and therefore, in the unsaturated hydrocarbon group introduction step (1), A compound having a structure in which this hydrogen atom is substituted by the above-mentioned X0a or a salt thereof is produced.
 不飽和炭化水素基導入工程(1)においては、生成物として、塩を形成していないものと、塩を形成しているものと、のいずれもが得られる可能性がある。これらのいずれが得られるかは、不飽和炭化水素基導入工程(1)の条件に依存する。 (4) In the unsaturated hydrocarbon group introduction step (1), there is a possibility that both a product that does not form a salt and a product that forms a salt are obtained. Which of these is obtained depends on the conditions of the unsaturated hydrocarbon group introduction step (1).
 不飽和炭化水素基導入工程(1)において、化合物(Ic)の使用量(モル)は、化合物(Ia)中の、前記X0aでの置換対象である水素原子の量(モル)に対して、1~2倍モル量であることが好ましい。 In the unsaturated hydrocarbon group introduction step (1), the amount (mol) of the compound (Ic) used is based on the amount (mol) of the hydrogen atom to be substituted with X0a in the compound (Ia). And preferably 1 to 2 times the molar amount.
 不飽和炭化水素基導入工程(1)においては、塩基を用いて、化合物(Ia)と化合物(Ic)との反応を行うことが好ましい。このようにすることで、反応がより円滑に進行する。
 前記塩基としては、特に限定されないが、水素化ナトリウム(NaH)、炭酸カリウム(KCO)、N,N-ジイソプロピルエチルアミン(((CHCH)NC)、トリエチルアミン((CHCHN)、リチウムジイソプロピルアミド([(CHCH]NLi)等が挙げられる。
 不飽和炭化水素基導入工程(1)において、前記塩基の使用量(モル)は、化合物(Ia)中の、前記X0aでの置換対象である水素原子の量(モル)に対して、1~3倍モル量であることが好ましい。
In the step of introducing an unsaturated hydrocarbon group (1), it is preferable to react the compound (Ia) with the compound (Ic) using a base. By doing so, the reaction proceeds more smoothly.
Examples of the base include, but are not particularly limited to, sodium hydride (NaH), potassium carbonate (K 2 CO 3 ), N, N-diisopropylethylamine (((CH 3 ) 2 CH) 2 NC 2 H 5 ), triethylamine ( (CH 3 CH 2 ) 3 N), lithium diisopropylamide ([(CH 3 ) 2 CH] 2 NLi) and the like.
In the unsaturated hydrocarbon group introduction step (1), the amount (mol) of the base used is 1 to the amount (mol) of the hydrogen atom to be substituted with X0a in the compound (Ia). It is preferable that the molar amount is up to 3 times.
 不飽和炭化水素基導入工程(1)においては、化合物(Ia)と化合物(Ic)との反応時に、溶媒を用いてもよいし、用いなくてもよい。
 前記溶媒は、例えば、化合物(Ia)及び化合物(Ic)の種類に応じて、適宜選択すればよく、特に限定されない。前記溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、アセトニトリル、塩化メチレン、テトラヒドロフラン(THF)等が挙げられる。
 不飽和炭化水素基導入工程(1)において、溶媒を用いる場合、溶媒の使用量(質量部)は、特に限定されないが、溶媒以外のすべての成分の合計使用量(質量部)に対して、1~40質量倍であることが好ましく、1~30質量倍であってもよい。
In the unsaturated hydrocarbon group introduction step (1), a solvent may or may not be used during the reaction between the compound (Ia) and the compound (Ic).
The solvent may be appropriately selected depending on, for example, the types of the compound (Ia) and the compound (Ic), and is not particularly limited. Examples of the solvent include N, N-dimethylformamide (DMF), acetonitrile, methylene chloride, tetrahydrofuran (THF) and the like.
In the case where a solvent is used in the unsaturated hydrocarbon group introduction step (1), the amount of the solvent used (parts by mass) is not particularly limited, but the total amount (parts by mass) of all components other than the solvent is It is preferably 1 to 40 times by mass, and may be 1 to 30 times by mass.
 不飽和炭化水素基導入工程(1)において、化合物(Ia)と化合物(Ic)との反応温度、及び反応時間は、いずれも、目的物の収率が向上するように適宜調節すればよく、特に限定されない。
 反応温度は、例えば、0~40℃、及び10~40℃のいずれであってもよい。
 反応時間は、例えば、0.5~24時間であってもよい。
In the unsaturated hydrocarbon group introduction step (1), the reaction temperature and the reaction time between the compound (Ia) and the compound (Ic) may be appropriately adjusted so as to improve the yield of the desired product. There is no particular limitation.
The reaction temperature may be, for example, any of 0 to 40 ° C and 10 to 40 ° C.
The reaction time may be, for example, 0.5 to 24 hours.
 不飽和炭化水素基導入工程(1)においては、反応終了後、公知の手法によって、必要に応じて後処理を行い、生成物を取り出せばよい。すなわち、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、生成物を取り出せばよい。また、取り出した生成物は、さらに必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて、1回又は2回以上行うことで、精製してもよい。
 不飽和炭化水素基導入工程(1)後に、後述する脱保護工程(1)等、他の工程を引き続き行う場合には、不飽和炭化水素基導入工程(1)での反応終了後に、必要に応じて後処理を行った後、生成物を取り出すことなく、引き続き前記他の工程を行ってもよい。
In the unsaturated hydrocarbon group introduction step (1), after the reaction is completed, post-treatment may be performed, if necessary, by a known method, and the product may be taken out. That is, if necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, and column chromatography are performed. For example, the product may be taken out. Further, the product taken out may be further subjected to crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more, as needed, once. Alternatively, purification may be performed by performing the purification twice or more.
In the case where another step such as the deprotection step (1) described later is continuously performed after the unsaturated hydrocarbon group introduction step (1), it is necessary to complete the reaction in the unsaturated hydrocarbon group introduction step (1). After the post-processing is performed accordingly, the above-mentioned other steps may be continuously performed without taking out the product.
 不飽和炭化水素基導入工程(1)において、化合物(Ia)と化合物(Ic)との反応による生成物は、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上が保護基である場合には、この保護基で該当箇所の官能基が保護された状態の化合物(I)である。一方、Z1a、Z2a、Z3a、Z4a及びZ6aがいずれも保護基でない場合には、前記生成物は、目的物の化合物(I)である。
 なお、Z1a、Z2a、Z3a、Z4a及びZ6aにおける前記アルキル基には、保護基に相当するものがある。例えば、Z3a及びZ4aが前記アルキル基であり、これらアルキル基が相互に結合して環を形成している場合の、この環状の基である、イソプロピリデン基(-C(CH-)は、先の説明のとおり保護基である。換言すると、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上が保護基である場合の生成物には、目的物の化合物(I)に相当するものもある。本工程で得られた生成物が、保護基を有しているとみなすか、又は、保護基を有していないとみなすかは、目的物が何であるかに依存する。
In the unsaturated hydrocarbon group introduction step (1), the product of the reaction between the compound (Ia) and the compound (Ic) is one or two of Z 1a , Z 2a , Z 3a , Z 4a and Z 6a. When at least one species is a protecting group, the compound (I A ) is a compound in which the functional group at the corresponding site is protected by the protecting group. On the other hand, when Z 1a, Z 2a, Z 3a , Z 4a and Z 6a are not both a protecting group, the product is a compound of the desired compound (I A).
Incidentally, Z 1a, Z 2a, Z 3a, the alkyl group in Z 4a and Z 6a are those corresponding to the protecting group. For example, when Z 3a and Z 4a are the aforementioned alkyl groups, and these alkyl groups are bonded to each other to form a ring, this cyclic group is an isopropylidene group (—C (CH 3 ) 2 -) Is a protecting group as described above. In other words, Z 1a, Z 2a, Z 3a, among the Z 4a and Z 6a, the one or product when it is two or more protecting groups, equivalent to a compound of the desired product (I A) There is also. Whether the product obtained in this step is considered to have a protecting group or not to have a protecting group depends on what the target product is.
[脱保護工程(1)]
 不飽和炭化水素基導入工程(1)での生成物が、保護基を有する化合物(I)である場合には、不飽和炭化水素基導入工程(1)の後で、さらに、前記保護基を除去する工程(すなわち、脱保護工程(1))を行う。脱保護工程(1)を行うことにより、目的物である化合物(I)が得られる。
 脱保護の条件は、保護基の種類に応じて適宜選択すればよく、公知の脱保護方法を適宜利用できる。例えば、保護基がトリフルオロメチルカルボニル基(別名;トリフルオロアセチル基)である場合には、水酸化リチウム等の塩基を用いる方法によって、脱保護できる。保護基がBoc基である場合には、トリフルオロ酢酸、塩酸等の酸を用いる方法によって、脱保護できる。保護基がイソプロピリデン基である場合には、塩酸等の酸を用いる方法によって、脱保護できる。
[Deprotection step (1)]
When the product in the unsaturated hydrocarbon group introduction step (1) is the compound (I A ) having a protective group, after the unsaturated hydrocarbon group introduction step (1), the protective group is further added. (Ie, the deprotection step (1)). By performing the deprotection step (1), the intended compound (I A) is obtained.
The deprotection conditions may be appropriately selected according to the type of the protecting group, and a known deprotection method can be appropriately used. For example, when the protecting group is a trifluoromethylcarbonyl group (also called a trifluoroacetyl group), the protecting group can be deprotected by a method using a base such as lithium hydroxide. When the protecting group is a Boc group, it can be deprotected by a method using an acid such as trifluoroacetic acid or hydrochloric acid. When the protecting group is an isopropylidene group, it can be deprotected by a method using an acid such as hydrochloric acid.
 製造方法(1)の脱保護工程(1)においては、反応終了後、不飽和炭化水素基導入工程(1)の場合と同様に、生成物を取り扱えばよい。
 すなわち、脱保護工程(1)での反応終了後、公知の手法によって、必要に応じて後処理を行い、生成物を取り出せばよい。すなわち、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、生成物を取り出せばよい。また、取り出した生成物は、さらに必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて、1回又は2回以上行うことで、精製してもよい。
In the deprotection step (1) of the production method (1), the product may be handled after the reaction as in the case of the unsaturated hydrocarbon group introduction step (1).
That is, after the completion of the reaction in the deprotection step (1), post-treatment may be performed as necessary by a known method to remove the product. That is, if necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, and column chromatography are performed. For example, the product may be taken out. Further, the product taken out may be further subjected to crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more, as needed, once. Alternatively, purification may be performed by performing the purification twice or more.
 脱保護工程(1)においても、不飽和炭化水素基導入工程(1)の場合と同様に、生成物として、塩を形成していないものと、塩を形成しているものと、のいずれもが得られる可能性がある。これらのいずれが得られるかは、脱保護工程(1)の条件に依存する。 Also in the deprotection step (1), as in the case of the unsaturated hydrocarbon group introduction step (1), as a product, any of a product that does not form a salt and a product that forms a salt can be used. May be obtained. Which of these is obtained depends on the conditions of the deprotection step (1).
 不飽和炭化水素基導入工程(1)においては、例えば、化合物(Ia)中の、Z1a、Z2a、Z3a、Z4a及びZ6aのいずれかは、水素原子であって、その一部又はすべての水素原子がX0aで置換された構造の化合物又はその塩が生成する。これらの生成物は、X、X、X、X及びXのうち、該当するものが不飽和炭化水素基である場合の、化合物(I)又はその塩である。
 また、不飽和炭化水素基導入工程(1)においては、化合物(Ia)中の、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、炭素数1~9のアルキル基であるものは、通常、そのままで反応することはない。その結果、X、X、X、X及びXのうち、該当するものが炭素数1~9のアルキル基である場合の、化合物(I)又はその塩が生成する。
 また、不飽和炭化水素基導入工程(1)においては、化合物(Ia)中の、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、保護基であるものは、通常、そのままで反応することはない。そこで、脱保護工程(1)を行うことにより、前記保護基が水素原子で置換された構造の化合物又はその塩が生成する。これらの生成物は、X、X、X、X及びXのうち、該当するものが水素原子である場合の、化合物(I)又はその塩である。
In the unsaturated hydrocarbon group introduction step (1), for example, any one of Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the compound (Ia) is a hydrogen atom and a part thereof. Alternatively, a compound having a structure in which all hydrogen atoms are substituted with X0a or a salt thereof is produced. These products, X 1, X 2, X 3, out of the X 4 and X 6, when that apply is an unsaturated hydrocarbon group, a compound (I A) or a salt thereof.
In the step (1) of introducing an unsaturated hydrocarbon group, Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the compound (Ia) are alkyl groups having 1 to 9 carbon atoms. Usually does not react as it is. As a result, X 1, X 2, X 3, out of the X 4 and X 6, when that apply is an alkyl group having 1 to 9 carbon atoms, the compounds (I A) or a salt thereof to produce.
In the step (1) of introducing an unsaturated hydrocarbon group, of Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the compound (Ia), those which are protective groups are usually left as they are. Will not react. Thus, by performing the deprotection step (1), a compound having a structure in which the protective group is substituted with a hydrogen atom or a salt thereof is generated. These products, X 1, X 2, X 3, out of the X 4 and X 6, when that apply is a hydrogen atom, a compound (I A) or a salt thereof.
[造塩工程(1)]
 不飽和炭化水素基導入工程(1)を行い、必要に応じて、脱保護工程(1)を行うことで、最終的に、塩を形成していない化合物(I)が得られた場合には、不飽和炭化水素基導入工程(1)又は脱保護工程(1)の後で、さらに、得られた化合物(I)をその塩とする工程(本明細書においては、「造塩工程(1)」と称することがある)を行うことにより、化合物(I)の塩を製造できる。
[Salt production process (1)]
It performs an unsaturated hydrocarbon group-introducing step (1), if necessary, by performing the deprotection step (1), and finally, the compound does not form a salt when (I A) is obtained , after the unsaturated hydrocarbon group-introducing step (1) or deprotection step (1), further, in the step (herein that the obtained compound (I a) and its salt, "salt formation step (1) by carrying out the is) called "can be prepared salts of the compounds (I a).
 前記造塩工程(1)は、例えば、化合物(I)を酸又は塩基と反応させるなど、公知の方法で行うことができ、目的とする塩の種類に応じて、工程条件を適宜選択すればよい。
 例えば、塩を形成しているカチオンが、一般式(I)中の一般式-NXで表される基の窒素原子に、水素イオン(H)が配位したものである、化合物(I)の塩を製造する場合には、化合物(I)を酸と反応させればよい。
 例えば、前記一般式(Is)で表される塩を製造する場合には、化合物(I)を、一般式HQ(HQは、Qの水素イオン(H)との結合物であり、、Qは前記と同じである)で表される酸と反応させればよい。  
The salt formation step (1) is, for example, is reacted with an acid or a base of compound (I A), it can be carried out by known methods, depending on the type of salt of interest, by appropriately selecting the process conditions I just need.
For example those cations which form salts, general formula to the nitrogen atom of the group represented by (I A) formula -NX 1 X 2 in the hydrogen ion (H +) is coordinated, when producing a salt of compound (I a), the compound (I a) may be reacted with an acid.
For example, when producing the salt represented by the general formula (Is), the compound (I A ) is converted to a compound of the general formula HQ (HQ is a hydrogen ion (H + ) of Q ) , Q - are the same as described above).
 製造方法(1)の前記造塩工程(1)においては、反応終了後、不飽和炭化水素基導入工程(1)の場合と同様に、生成物に対して、後処理、取り出し、精製等の操作を行うことができる。 In the salt formation step (1) of the production method (1), after the reaction is completed, the product is subjected to post-treatment, removal, purification, and the like in the same manner as in the unsaturated hydrocarbon group introduction step (1). Operations can be performed.
[任意の工程(1)]
 製造方法(1)においては、不飽和炭化水素基導入工程(1)と、脱保護工程(1)と、造塩工程(1)と、のいずれにも該当しない、任意の工程(1)を、1種又は2種以上行ってもよい。
[Optional step (1)]
In the production method (1), an optional step (1) that does not correspond to any of the unsaturated hydrocarbon group introduction step (1), the deprotection step (1), and the salt formation step (1) is performed. One or two or more kinds may be performed.
 前記任意の工程(1)は、目的に応じて適宜選択でき、特に限定されない。
 例えば、不飽和炭化水素基導入工程(1)で用いる化合物(Ia)として、市販品が存在しない場合には、市販品の原料を用い、公知の方法を単独で、又は2種以上組み合わせて行うことにより、化合物(Ia)を製造すればよい。
The optional step (1) can be appropriately selected depending on the purpose, and is not particularly limited.
For example, when a commercially available product does not exist as the compound (Ia) used in the unsaturated hydrocarbon group introduction step (1), a known method is used alone or in combination of two or more using a commercially available raw material. Thus, compound (Ia) may be produced.
 nが1である場合の化合物(Ia)は、X(すなわち、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基)を有する。このような化合物(Ia)は、例えば、後述する製造方法(2)を利用することにより、製造できる。すなわち、化合物(Ib)において、「炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基」を、Z1b、Z2b、Z3b、Z4b及びZ6bの選択肢から外した化合物を、化合物(Ib)に代えて用いる点以外は、後述する製造方法(2)と同じ方法によって、nが1である場合の化合物(Ia)を製造できる。ただし、これは、このような化合物(Ia)の製造方法の一例である。 When n 1 is 1, the compound (Ia) is represented by X 5 (that is, an unsaturated unsaturated group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent). (Hydrocarbon group). Such a compound (Ia) can be produced, for example, by utilizing the production method (2) described below. That is, in the compound (Ib), “an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 carbon atoms which may have a substituent” is represented by Z 1b , Z 1 2b , Z 3b , Z 4b, and Z 6b , except that the compound excluded from the options is used in place of compound (Ib) in the same manner as in production method (2) described below, when n 1 is 1. Compound (Ia) can be produced. However, this is an example of a method for producing such a compound (Ia).
<製造方法(2)>
 nが1である場合の化合物(I)又はその塩は、例えば、下記一般式(Ib)で表される化合物(本明細書においては、「化合物(Ib)」と称することがある)と、下記一般式(Id)で表される化合物(本明細書においては、「化合物(Id)」と称することがある)と、を反応させる工程(本明細書においては、「不飽和炭化水素基導入工程(2)」と称することがある)と、下記Z1b、Z2b、Z3b、Z4b及びZ6bのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程(本明細書においては、「脱保護工程(2)」と称することがある)と、を行うことにより、下記一般式(I)で表される化合物(本明細書においては、「化合物(I)」と称することがある)又はその塩として、下記一般式(Ib)で表される化合物における、下記LGが、下記X0bで置換された構造の化合物又はその塩を得る製造方法(本明細書においては、「製造方法(2)」と称することがある)により、製造できる。
 化合物(I)は、nが1である場合の化合物(I)である。
<Production method (2)>
When n 1 is 1, the compound (I) or a salt thereof is, for example, a compound represented by the following general formula (Ib) (in this specification, sometimes referred to as “compound (Ib)”). A step of reacting a compound represented by the following general formula (Id) (herein, sometimes referred to as “compound (Id)”) (in the present specification, “an unsaturated hydrocarbon group”). Introduction step (2) "), and when one or more of the following Z 1b , Z 2b , Z 3b , Z 4b and Z 6b are the following protecting groups, the reaction after the step of, further, (herein sometimes referred to as "deprotection step (2)") removing the protecting group and, by performing the following general formula (I B) compound represented by (herein, "compound (I B)" Or a salt thereof, a method for obtaining a compound of the structure represented by the following formula (Ib) in which the following LG 2 is substituted by the following X 0b or a salt thereof (the present specification). , May be referred to as “manufacturing method (2)”).
Compound (I B) is a compound where n 1 is 1 (I).
Figure JPOXMLDOC01-appb-C000044
 (一般式(I)、(Ib)又は(Id)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 nは、0又は1であり;
 nは、1~5の整数であり;
 LGは脱離基であり;
 Z1b、Z2b、Z3b、Z4b及びZ6bは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基、又は保護基であり、Z1b及びZ2bが前記アルキル基である場合、又は、Z3b及びZ4bが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X0bは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000044
(In the general formula (I B), (Ib) or (Id), X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring;
X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 3 is 0 or 1;
n 2 is an integer from 1 to 5;
LG 2 is a leaving group;
Z 1b , Z 2b , Z 3b , Z 4b and Z 6b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds between carbon atoms, and have a substituent. An optionally substituted unsaturated hydrocarbon group having 3 to 9 carbon atoms or a protecting group, wherein Z 1b and Z 2b are the aforementioned alkyl groups, or Z 3b and Z 4b are the aforementioned alkyl groups May have the two alkyl groups linked to each other to form a ring;
X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent. )
[不飽和炭化水素基導入工程(2)]
 前記不飽和炭化水素基導入工程(2)においては、化合物(Ib)と、化合物(Id)と、を反応させる。
 一般式(Ib)中、n及びnは、一般式(I)中のn及びnと同じである。
[Unsaturated hydrocarbon group introduction step (2)]
In the unsaturated hydrocarbon group introduction step (2), the compound (Ib) is reacted with the compound (Id).
In the general formula (Ib), n 2 and n 3 are the same as n 2 and n 3 in the general formula (I).
 一般式(Ib)中、Z1b、Z2b、Z3b、Z4b及びZ6bは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基、又は保護基である。
 Z1b、Z2b、Z3b、Z4b及びZ6bにおける前記アルキル基及び不飽和炭化水素基は、X~Xにおける前記アルキル基及び不飽和炭化水素基と同じである。
In the general formula (Ib), Z 1b , Z 2b , Z 3b , Z 4b and Z 6b each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, and 1 to 4 triple bonds between carbon atoms. And an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which may have a substituent, or a protecting group.
The alkyl group and the unsaturated hydrocarbon group in Z 1b , Z 2b , Z 3b , Z 4b and Z 6b are the same as the alkyl group and the unsaturated hydrocarbon group in X 1 to X 4 .
 Z1b及びZ2bが前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。 When Z 1b and Z 2b are the aforementioned alkyl groups, these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring . The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 1 and X 2 are alkyl groups.
 Z3b及びZ4bが前記アルキル基である場合、これら2個のアルキル基は、これらアルキル基がそれぞれ結合している酸素原子と、これら酸素原子がそれぞれ結合している、ベンゼン環骨格を構成している炭素原子と、ともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X及びXがアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。 When Z 3b and Z 4b are the above-mentioned alkyl groups, these two alkyl groups constitute an oxygen atom to which these alkyl groups are respectively bonded and a benzene ring skeleton to which these oxygen atoms are respectively bonded. May be mutually bonded to form a ring. The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 3 and X 4 are an alkyl group.
 Z1b、Z2b、Z3b、Z4b及びZ6bにおける前記保護基は、一般式(Ia)中のZ1a、Z2a、Z3a、Z4a及びZ6aにおける前記保護基と同様である。 The protective group in Z 1b , Z 2b , Z 3b , Z 4b and Z 6b is the same as the protective group in Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the general formula (Ia).
 一般式(Ib)中、LGは脱離基であり、公知のものでよい。
 前記脱離基としては、例えば、ヨウ素原子、臭素原子、塩素原子、p-トルエンスルホニル基、トリフルオロメチルスルホニル基等が挙げられる。
In the general formula (Ib), LG 2 is a leaving group, and may be a known group.
Examples of the leaving group include an iodine atom, a bromine atom, a chlorine atom, a p-toluenesulfonyl group, a trifluoromethylsulfonyl group, and the like.
 一般式(Id)中、X0bは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり、Xにおける前記不飽和炭化水素基と同じである。 In the general formula (Id), X 0b is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 2 to 8 carbon atoms which may have a substituent, and X 5 And the same as the above-mentioned unsaturated hydrocarbon group.
 一般式(I)中、X、X、X、X、X、X、n及びnは、一般式(I)中のX、X、X、X、X、X、n及びnと同じである。
 ただし、化合物(I)は、Xを有することが特定されている。
 このように、nが1に限定されている点を除けば、化合物(I)は化合物(I)と同じである。
In the general formula (I B), X 1, X 2, X 3, X 4, X 5, X 6, n 2 and n 3, X 1 in the general formula (I), X 2, X 3, X 4 , X 5 , X 6 , n 2 and n 3 .
However, the compound (I B) has been identified to have X 5.
Thus, except that n 1 is limited to 1, the compound (I B) is the same as compound (I).
 化合物(Ib)がLGを有していることにより、不飽和炭化水素基導入工程(2)においては、このLGが前記X0bで置換された構造の化合物又はその塩が生成する。 By compound (Ib) has a LG 2, in the unsaturated hydrocarbon group-introducing step (2) is a compound or a salt thereof, having the structure The LG 2 is substituted with the X 0b generated.
 不飽和炭化水素基導入工程(2)においては、生成物として、塩を形成していないものと、塩を形成しているものと、のいずれもが得られる可能性がある。これらのいずれが得られるかは、不飽和炭化水素基導入工程(2)の条件に依存する。 (4) In the unsaturated hydrocarbon group introduction step (2), there is a possibility that both a product that does not form a salt and a product that forms a salt are obtained. Which of these is obtained depends on the conditions of the unsaturated hydrocarbon group introduction step (2).
 不飽和炭化水素基導入工程(2)において、化合物(Id)の使用量(モル)は、化合物(Ib)の使用量(モル)に対して、1.0~2.0倍モル量であることが好ましい。 In the unsaturated hydrocarbon group introduction step (2), the amount (mol) of the compound (Id) used is 1.0 to 2.0 times the molar amount of the compound (Ib) used. Is preferred.
 不飽和炭化水素基導入工程(2)においては、パラジウム触媒と、銅触媒と、塩基と、を用いて、化合物(Ib)と化合物(Id)との反応を行うことが好ましい。このようにすることで、反応がより円滑に進行する。この反応は、Sonogashira-Hagiharaクロスカップリング反応であり、特に、X0bが、その結合先側の末端、すなわち、水素原子に結合している部位に、炭素原子を有し、この炭素原子が隣接する炭素原子との間で三重結合を形成している場合に、特に好適である。 In the unsaturated hydrocarbon group introduction step (2), the reaction of the compound (Ib) with the compound (Id) is preferably performed using a palladium catalyst, a copper catalyst, and a base. By doing so, the reaction proceeds more smoothly. This reaction is a Sonogashira-Hagihara cross-coupling reaction. In particular, X 0b has a carbon atom at the terminal on the bonding side, that is, at a site bonded to a hydrogen atom, and this carbon atom is adjacent to the carbon atom. This is particularly preferred when a triple bond is formed with the carbon atom to be formed.
 前記パラジウム触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)等が挙げられる。
 不飽和炭化水素基導入工程(2)において、パラジウム触媒の使用量(モル)は、化合物(Ib)の使用量(モル)に対して、0.05~0.20倍モル量であることが好ましい。
Examples of the palladium catalyst include tetrakis (triphenylphosphine) palladium (0) and dichlorobis (triphenylphosphine) palladium (II).
In the unsaturated hydrocarbon group introduction step (2), the amount (mol) of the palladium catalyst used may be 0.05 to 0.20 times the molar amount of the compound (Ib). preferable.
 前記銅触媒としては、例えば、ヨウ化銅(I)(CuI)等が挙げられる。
 不飽和炭化水素基導入工程(2)において、銅触媒の使用量(モル)は、化合物(Ib)の使用量(モル)に対して、0.05~0.40倍モル量であることが好ましい。
Examples of the copper catalyst include copper (I) iodide (CuI) and the like.
In the unsaturated hydrocarbon group introduction step (2), the used amount (mol) of the copper catalyst may be 0.05 to 0.40 times the molar amount of the compound (Ib). preferable.
 前記塩基としては、例えば、ジエチルアミン、トリエチルアミン、ジイソプロピルアミン等が挙げられる。
 不飽和炭化水素基導入工程(2)において、塩基の使用量(モル)は、化合物(Ib)の使用量(モル)に対して、過剰量であることが好ましく、例えば、1~100倍モル量であることが好ましい。本工程においては、溶媒を兼ねて塩基を用いてもよい。
Examples of the base include diethylamine, triethylamine, diisopropylamine and the like.
In the unsaturated hydrocarbon group introduction step (2), the amount (mol) of the base used is preferably an excess with respect to the amount (mol) of the compound (Ib), for example, 1 to 100-fold molar. Preferably, it is an amount. In this step, a base may be used also as a solvent.
 不飽和炭化水素基導入工程(2)においては、化合物(Ib)と化合物(Id)との反応時に、溶媒を用いてもよいし、用いなくてもよい。
 前記溶媒は、例えば、化合物(Ia)及び化合物(Ic)の種類に応じて、適宜選択すればよく、特に限定されない。
 不飽和炭化水素基導入工程(2)において、溶媒を用いる場合、溶媒の使用量(質量部)は、溶媒以外のすべての成分の合計使用量(質量部)に対して、1~20質量倍であることが好ましい。
In the unsaturated hydrocarbon group introduction step (2), a solvent may or may not be used during the reaction between the compound (Ib) and the compound (Id).
The solvent may be appropriately selected depending on, for example, the types of the compound (Ia) and the compound (Ic), and is not particularly limited.
In the case where a solvent is used in the unsaturated hydrocarbon group introduction step (2), the amount of the solvent used (parts by mass) is 1 to 20 times the total amount (parts by mass) of all components other than the solvent. It is preferred that
 不飽和炭化水素基導入工程(2)において、化合物(Ib)と化合物(Id)との反応温度、及び反応時間は、いずれも、目的物の収率が向上するように適宜調節すればよく、特に限定されない。
 反応温度は、例えば、10~80℃であってもよい。
 反応時間は、例えば、10~48時間であってもよい。
In the unsaturated hydrocarbon group introduction step (2), the reaction temperature and reaction time between the compound (Ib) and the compound (Id) may be appropriately adjusted so as to improve the yield of the target product. There is no particular limitation.
The reaction temperature may be, for example, from 10 to 80 ° C.
The reaction time may be, for example, from 10 to 48 hours.
 不飽和炭化水素基導入工程(2)においては、反応終了後、公知の手法によって、必要に応じて後処理を行い、生成物を取り出せばよい。すなわち、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、生成物を取り出せばよい。また、取り出した生成物は、さらに必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて、1回又は2回以上行うことで、精製してもよい。
 不飽和炭化水素基導入工程(2)後に、後述する脱保護工程(2)など、他の工程を引き続き行う場合には、不飽和炭化水素基導入工程(2)での反応終了後に、必要に応じて後処理を行った後、生成物を取り出すことなく、引き続き前記他の工程を行ってもよい。
In the unsaturated hydrocarbon group introduction step (2), after the reaction is completed, post-treatment may be performed, if necessary, by a known method, and the product may be taken out. That is, if necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, and column chromatography are performed. For example, the product may be taken out. Further, the product taken out may be further subjected to crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more, as needed, once. Alternatively, purification may be performed by performing the purification twice or more.
In the case where another step such as the deprotection step (2) described later is continuously performed after the unsaturated hydrocarbon group introduction step (2), it is necessary to complete the reaction in the unsaturated hydrocarbon group introduction step (2). After the post-processing is performed accordingly, the above-mentioned other steps may be continuously performed without taking out the product.
 不飽和炭化水素基導入工程(2)において、化合物(Ib)と化合物(Id)との反応による生成物は、Z1b、Z2b、Z3b、Z4b及びZ6bのうち、1種又は2種以上が保護基である場合には、この保護基で該当箇所の官能基が保護された状態の化合物(I)である。一方、Z1b、Z2b、Z3b、Z4b及びZ6bがいずれも保護基でない場合には、前記生成物は、目的物の化合物(I)である。
 なお、Z1b、Z2b、Z3b、Z4b及びZ6bにおける前記アルキル基には、保護基に相当するものがある。例えば、Z3b及びZ4bが前記アルキル基であり、これらアルキル基が相互に結合して環を形成している場合の、この環状の基である、イソプロピリデン基(-C(CH-)は、先の説明のとおり保護基である。換言すると、Z1b、Z2b、Z3b、Z4b及びZ6bのうち、1種又は2種以上が保護基である場合の生成物には、目的物の化合物(I)に相当するものもある。本工程で得られた生成物が、保護基を有しているとみなすか、又は、保護基を有していないとみなすかは、目的物が何であるかに依存する。
In the unsaturated hydrocarbon group introduction step (2), the product of the reaction between the compound (Ib) and the compound (Id) is one or two of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b. When at least one species is a protecting group, the compound (I B ) is a compound in which the functional group at the corresponding site is protected by the protecting group. On the other hand, when Z 1b, Z 2b, Z 3b , Z 4b and Z 6b is neither a protecting group, the product is a compound of the desired compound (I B).
The above alkyl groups in Z 1b , Z 2b , Z 3b , Z 4b and Z 6b include those corresponding to protective groups. For example, when Z 3b and Z 4b are the aforementioned alkyl groups, and these alkyl groups are bonded to each other to form a ring, this cyclic group, an isopropylidene group (—C (CH 3 ) 2 -) Is a protecting group as described above. In other words, Z 1b, Z 2b, among Z 3b, Z 4b and Z 6b, the one or in the case of two or more is a protecting group product, equivalent to a compound of the desired product (I B) There is also. Whether the product obtained in this step is considered to have a protecting group or not to have a protecting group depends on what the target product is.
[脱保護工程(2)]
 不飽和炭化水素基導入工程(2)での生成物が、保護基を有する化合物(I)である場合には、不飽和炭化水素基導入工程(2)の後で、さらに、前記保護基を除去する工程(すなわち、脱保護工程(2))を行う。脱保護工程(2)を行うことにより、目的物である化合物(I)が得られる。
 脱保護の条件は、保護基の種類に応じて適宜選択すればよく、公知の脱保護方法を適宜利用できる。例えば、脱保護工程(2)における脱保護の条件は、上述の脱保護工程(1)における脱保護の条件と同じであってよい。
[Deprotection step (2)]
Products in unsaturated hydrocarbon group introducing step (2) is, when a compound having a protecting group (I B), after the unsaturated hydrocarbon group-introducing step of (2), further, the protective group (That is, the deprotection step (2)). By performing the deprotection step (2), the intended compound (I B) is obtained.
The deprotection conditions may be appropriately selected according to the type of the protecting group, and a known deprotection method can be appropriately used. For example, the conditions for deprotection in the deprotection step (2) may be the same as the conditions for deprotection in the above deprotection step (1).
 製造方法(2)の脱保護工程(2)においては、反応終了後、不飽和炭化水素基導入工程(2)の場合と同様に、生成物を取り扱えばよい。
 すなわち、脱保護工程(2)での反応終了後、公知の手法によって、必要に応じて後処理を行い、生成物を取り出せばよい。すなわち、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、生成物を取り出せばよい。また、取り出した生成物は、さらに必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて、1回又は2回以上行うことで、精製してもよい。
In the deprotection step (2) of the production method (2), the product may be handled after the reaction, as in the case of the unsaturated hydrocarbon group introduction step (2).
That is, after completion of the reaction in the deprotection step (2), post-treatment may be carried out by a known method, if necessary, to remove the product. That is, if necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, and column chromatography are performed. For example, the product may be taken out. Further, the product taken out may be further subjected to crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more, as needed, once. Alternatively, purification may be performed by performing the purification twice or more.
 脱保護工程(2)においても、不飽和炭化水素基導入工程(2)の場合と同様に、生成物として、塩を形成していないものと、塩を形成しているものと、のいずれもが得られる可能性がある。これらのいずれが得られるかは、脱保護工程(2)の条件に依存する。 In the deprotection step (2) as well, as in the case of the unsaturated hydrocarbon group introduction step (2), both of a product that does not form a salt and a product that forms a salt are obtained. May be obtained. Which of these is obtained depends on the conditions of the deprotection step (2).
 不飽和炭化水素基導入工程(2)においては、化合物(Ib)中のLGがX0bで置換された構造の化合物又はその塩が生成する。これらの生成物は、化合物(I)又はその塩である。
 また、不飽和炭化水素基導入工程(2)においては、化合物(Ib)中の、Z1b、Z2b、Z3b、Z4b及びZ6bのうち、炭素数1~9のアルキル基であるものは、通常、そのままで反応することはない。その結果、X、X、X、X及びXのうち、該当するものが炭素数1~9のアルキル基である場合の、化合物(I)又はその塩が生成する。
 また、不飽和炭化水素基導入工程(2)においては、化合物(Ib)中の、Z1b、Z2b、Z3b、Z4b及びZ6bのうち、保護基であるものは、通常、そのままで反応することはない。そこで、脱保護工程(2)を行うことにより、前記保護基が水素原子で置換された構造の化合物又はその塩が生成する。これらの生成物は、X、X、X、X及びXのうち、該当するものが水素原子である場合の、化合物(I)又はその塩である。
In the unsaturated hydrocarbon group introduction step (2), a compound having a structure in which LG 2 in compound (Ib) is substituted with X 0b or a salt thereof is produced. These products are compound (I B) or a salt thereof.
In the step (2) of introducing an unsaturated hydrocarbon group, any of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b in the compound (Ib) is an alkyl group having 1 to 9 carbon atoms. Usually does not react as it is. As a result, a compound (I B ) or a salt thereof is produced when the corresponding one of X 1 , X 2 , X 3 , X 4 and X 6 is an alkyl group having 1 to 9 carbon atoms.
In the step (2) of introducing an unsaturated hydrocarbon group, of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b in the compound (Ib), those which are protective groups are usually left as they are. Will not react. Then, by performing the deprotection step (2), a compound having a structure in which the protective group is substituted with a hydrogen atom or a salt thereof is generated. These products, X 1, X 2, X 3, out of the X 4 and X 6, when that apply is a hydrogen atom, a compound (I B) or a salt thereof.
[造塩工程(2)]
 不飽和炭化水素基導入工程(2)を行い、必要に応じて、脱保護工程(2)を行うことで、最終的に、塩を形成していない化合物(I)が得られた場合には、不飽和炭化水素基導入工程(2)又は脱保護工程(2)の後で、さらに、得られた化合物(I)をその塩とする工程(本明細書においては、「造塩工程(2)」と称することがある)を行うことにより、化合物(I)の塩を製造できる。
[Salt-forming step (2)]
Performs an unsaturated hydrocarbon group-introducing step (2), if necessary, by performing the deprotection step (2), and finally, if the compound does not form a salt (I B) is obtained , after the unsaturated hydrocarbon group-introducing step (2) or deprotection step (2), furthermore, in the step (herein that the obtained compound (I B) and its salt, "salt formation step by performing the (2) "and that there is referred), it can be prepared salts of the compounds (I B).
 前記造塩工程(2)は、例えば、塩を形成していない化合物(I)に代えて、塩を形成していない化合物(I)を用いる点以外は、上述の造塩工程(1)の場合と同じ方法で行うことができる。 The salt-forming step (1) is the same as the salt-forming step (1) except that, for example, the compound (I B ) that does not form a salt is used in place of the compound (I A ) that does not form a salt. ) Can be performed in the same manner as in the case of).
 製造方法(2)の前記造塩工程(2)においては、反応終了後、不飽和炭化水素基導入工程(2)の場合と同様に、生成物に対して、後処理、取り出し、精製等の操作を行うことができる。 In the salt formation step (2) of the production method (2), after the reaction is completed, the product is subjected to post-treatment, removal, purification, and the like in the same manner as in the unsaturated hydrocarbon group introduction step (2). Operations can be performed.
[任意の工程(2)]
 製造方法(2)においては、不飽和炭化水素基導入工程(2)と、脱保護工程(2)と、造塩工程(2)と、のいずれにも該当しない、任意の工程(2)を、1種又は2種以上行ってもよい。
[Optional step (2)]
In the production method (2), an optional step (2) that does not correspond to any of the unsaturated hydrocarbon group introduction step (2), the deprotection step (2), and the salt formation step (2) is performed. One or two or more kinds may be performed.
 前記任意の工程(2)は、目的に応じて適宜選択でき、特に限定されない。
 例えば、不飽和炭化水素基導入工程(2)で用いる化合物(Ib)として、市販品が存在しない場合には、市販品の原料を用い、公知の方法を単独で、又は2種以上組み合わせて行うことにより、化合物(Ib)を製造すればよい。
The optional step (2) can be appropriately selected depending on the purpose, and is not particularly limited.
For example, when a commercially available product does not exist as the compound (Ib) used in the unsaturated hydrocarbon group introduction step (2), a known method is used alone or in combination of two or more using a commercially available raw material. Thus, compound (Ib) may be produced.
 Z1b、Z2b、Z3b、Z4b及びZ6bのいずれかが、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基である場合の化合物(Ib)は、例えば、上述の製造方法(1)を利用することにより、製造できる。すなわち、化合物(Ia)において、XをLGとし、かつ、nを1とした化合物を、化合物(Ia)に代えて用いる点以外は、上述の製造方法(1)と同じ方法によって、Z1b、Z2b、Z3b、Z4b及びZ6bのいずれかが前記不飽和炭化水素基である場合の化合物(Ib)を製造できる。ただし、これは、このような化合物(Ib)の製造方法の一例である。 Any of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b has 1 to 4 triple bonds between carbon atoms and may have 3 to 9 carbon atoms which may have a substituent. Compound (Ib) having a hydrocarbon group can be produced, for example, by utilizing the above-mentioned production method (1). That is, in the compound (Ia), except that a compound in which X 5 is LG 2 and n 1 is 1 is used instead of the compound (Ia), the same method as the above-mentioned production method (1) is used. Compound (Ib) in the case where any one of Z 1b , Z 2b , Z 3b , Z 4b and Z 6b is the unsaturated hydrocarbon group can be produced. However, this is an example of a method for producing such a compound (Ib).
<<化合物(I)の塩の製造方法>>
 ここまでは、化合物(I)の塩の製造方法として、前記製造方法(1)又は(2)において、造塩工程(1)又は(2)を行うことなく、化合物(I)の塩又は化合物(I)の塩を製造する方法と、造塩工程(1)又は(2)を行うことにより、化合物(I)の塩又は化合物(I)の塩を製造する方法、について説明した。ただし、造塩工程(1)又は(2)での塩の形成方法は、製造方法(1)又は(2)によって製造された化合物(I)への適用に限定されず、他の方法で製造された化合物(I)に対して、適用してもよい。
<< Method for producing salt of compound (I) >>
So far, as a method salt of Compound (I), wherein the manufacturing method (1) or (2), without performing the salt formation step (1) or (2), the salts of the compounds (I A) or a method for producing a salt of a compound (I B), by performing a salt formation step (1) or (2) a process for producing a salt of a compound salt or compounds of (I a) (I B), description did. However, the method of forming a salt in the salt formation step (1) or (2) is not limited to the application to the compound (I) produced by the production method (1) or (2), but may be produced by another method. May be applied to the compound (I).
 化合物(I)及びその塩の構造は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)、紫外・可視分光法(UV-VIS吸収スペクトル)、元素分析法等の公知の手法によって、確認できる。 The structures of compound (I) and salts thereof include, for example, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR), ultraviolet / visible spectroscopy (UV-VIS absorption spectrum), It can be confirmed by a known method such as elemental analysis.
<<化合物(II)又はその塩>>
 本発明の一実施形態に係る化合物は、下記一般式(II)で表され、本発明の一実施形態に係る化合物の塩は、下記一般式(II)で表される化合物の塩である。本明細書においては、一般式(II)で表される化合物を、「化合物(II)」と称することがある。また、単なる「化合物(II)」との記載は、塩を形成していない化合物を意味し、塩を形成している化合物(II)は、「化合物(II)の塩」と称する。
<< Compound (II) or a salt thereof >>
The compound according to one embodiment of the present invention is represented by the following general formula (II), and the salt of the compound according to one embodiment of the present invention is a salt of the compound represented by the following general formula (II). In the present specification, the compound represented by the general formula (II) may be referred to as “compound (II)”. Further, the mere description of “compound (II)” means a compound that does not form a salt, and the compound (II) that forms a salt is referred to as “salt of compound (II)”.
Figure JPOXMLDOC01-appb-C000045
 (一般式(II)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 n01は、0又は1であり;
 n02は、1~5の整数であり;
 ただし、前記n01が0である場合には、前記X01、X02、X03及びX04のうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 前記n01が1である場合には、前記X01、X02、X03、X04及びX05のうち、1種又は2種以上は、前記不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000045
(In the general formula (II), X 01 , X 02 , X 03 and X 04 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms. When the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent, and the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group is May be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more May be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups are bonded to each other to form a ring. May be formed;
X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 01 is 0 or 1;
n 02 is an integer of 1 to 5;
However, when n 01 is 0, one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups,
When n 01 is 1, one or more of X 01 , X 02 , X 03 , X 04 and X 05 are the unsaturated hydrocarbon groups. )
 化合物(II)は、後述するように、神経機能調節物質(すなわち、神経機能の調節に関わる生理活性物質)として有用である。
 加えて、化合物(II)は、X01、X02、X03、X04及びX05のうち、1種又は2種以上が、前記不飽和炭化水素基であることにより、後述するように、高精度に検出可能であり、その動態を容易に観察可能である。
 以下、化合物(II)の構造について、詳細に説明する。
Compound (II) is useful as a nerve function regulator (that is, a physiologically active substance involved in regulation of nerve function), as described later.
In addition, the compound (II) has a structure in which one or more of X 01 , X 02 , X 03 , X 04 and X 05 is the unsaturated hydrocarbon group, as described below. It can be detected with high accuracy and its dynamics can be easily observed.
Hereinafter, the structure of compound (II) will be described in detail.
 一般式(II)中、X01、X02、X03及びX04(本明細書においては、これらを包括して「X01~X04」と略記することがある)は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基である。
 X01及びX02は、一般式(I)中のX及びXと同じである。例えば、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して環を形成していてもよい。
 X04は、一般式(I)中のX又はXと同じである。
 X03は、一般式(I)中のX又はXと同じである。
In the general formula (II), X 01 , X 02 , X 03 and X 04 (in this specification, these may be abbreviated as “X 01 to X 04 ”) are each independently: A hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or an unsaturated hydrocarbon group having 3 to 9 carbon atoms and having 1 to 4 triple bonds between carbon atoms and which may have a substituent;
X 01 and X 02 are the same as X 1 and X 2 in the general formula (I). For example, when X 01 and X 02 are the aforementioned alkyl groups, these two alkyl groups are mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring. You may.
X 04 is the same as X 1 or X 2 in the general formula (I).
X 03 is the same as X 3 or X 4 in formula (I).
 一般式(II)中、X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基である。
 X05は、一般式(I)中のXと同じである。
In the general formula (II), X 05 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 2 to 8 carbon atoms which may have a substituent.
X 05 is the same as X 5 in formula (I).
 X01、X02、X03及びX04における前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよい、とは、一般式(I)中のX、X、X及びXにおける前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよい、ということと同じ内容を意味する。
 同様に、X01、X02、X03及びX04における前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよい、とは、一般式(I)中のX、X、X及びXにおける前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよい、ということと同じ内容を意味する。
When the unsaturated hydrocarbon group for X 01 , X 02 , X 03 and X 04 has a methylene group at the terminal on the bonding destination, the methylene group may be substituted with a carbonyl group, When the unsaturated hydrocarbon group represented by X 1 , X 2 , X 3 and X 4 in the general formula (I) has a methylene group at the terminal on the bonding destination, the methylene group is substituted with a carbonyl group. Means the same content.
Similarly, when the unsaturated hydrocarbon group for X 01 , X 02 , X 03 and X 04 has one or two or more methylene groups other than the terminal on the bonding side, one methylene group The group or the two or more methylene groups which are not adjacent to each other may be substituted with an oxygen atom, which is defined as X 1 , X 2 , X 3 and X 4 in the general formula (I). When the saturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, one methylene group or two or more methylene groups that are not adjacent to each other are oxygen It means the same content that it may be substituted by an atom.
 X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であることが好ましく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよい。ここで、置換基、不飽和炭化水素基、及び環は、先に説明したものである。 X 01 , X 02 , X 03 and X 04 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and have a substituent. Is preferably an unsaturated hydrocarbon group having 3 to 9 carbon atoms, and when X 01 and X 02 are the aforementioned alkyl groups, these two alkyl groups are mutually bonded to form a ring It may be. Here, the substituent, the unsaturated hydrocarbon group, and the ring are as described above.
 一般式(II)中、n01は、0又は1である。
 n01は、一般式-OX03で表される基が直接結合しているベンゼン環骨格における、X05の結合の有無を規定している。
In the general formula (II), n 01 is 0 or 1.
n 01 is in the benzene ring structure group represented by the general formula -OX 03 is directly attached, defines whether the binding of X 05.
 n01が1である場合、一般式(II)において、一般式-OX03で表される基が直接結合しているベンゼン環骨格における、X05の結合位置は、特に限定されず、例えば、一般式-OX03で表される基に対して、オルト位の関係となる位置(換言すると、一般式-OX03で表される基が結合している炭素原子に隣接する2個のうちの、いずれかの炭素原子)、及びメタ位の関係となる位置、のいずれであってもよい。 When n 01 is 1, the bonding position of X 05 in the benzene ring skeleton to which the group represented by the general formula —OX 03 is directly bonded in the general formula (II) is not particularly limited. against group represented by the general formula -OX 03, in other words the relationship ortho position (, of the two adjacent carbon atoms of the groups represented by the general formula -OX 03 is attached , Any one of carbon atoms) and a position having a meta-position.
 一般式(II)中、n02は、1~5の整数である。
 n02は、一般式-NX0102で表される基が直接結合しているアルキレン骨格(換言すると、鎖状炭化水素骨格)の炭素数を規定している。すなわち、前記アルキレン骨格の炭素数は、2~6である。
 n02は、例えば、5以下の範囲内で、1以上、2以上、3以上及び4以上のいずれであってもよい。また、n02は、例えば、1以上の範囲内で、5以下、4以下、3以下及び2以下のいずれであってもよい。
 例えば、n02が1である化合物(II)又はその塩は、天然由来の神経機能調節物質として重要なセロトニンと、炭素数が同じである同一の又は類似の鎖状骨格を有しており、有用性が高い。
 また、n02が2~5である化合物(II)又はその塩は、n02が1である化合物(II)又はその塩を基準として、その生理活性の強弱を調節できる可能性があり、やはり有用性が高い。
In the general formula (II), n 02 is an integer of 1 to 5.
n 02 specifies the number of carbon atoms of the alkylene skeleton (in other words, a chain hydrocarbon skeleton) to which the group represented by the general formula —NX 01 X 02 is directly bonded. That is, the alkylene skeleton has 2 to 6 carbon atoms.
n 02 may be any one of 1 or more, 2 or more, 3 or more, and 4 or more, for example, within a range of 5 or less. Further, n 02 may be any one of 5 or less, 4 or less, 3 or less, and 2 or less within a range of 1 or more.
For example, the compound (II) or a salt thereof in which n 02 is 1 has the same or similar chain skeleton having the same carbon number as serotonin which is important as a naturally-occurring neuronal function regulator, High usefulness.
Further, the compound (II) or a salt thereof in which n 02 is 2 to 5 may be able to regulate the level of its biological activity based on the compound (II) or a salt thereof in which n 02 is 1; High usefulness.
 ただし、一般式(II)中、n01が0である場合には、X01、X02、X03及びX04のうち、1種又は2種以上は、前記不飽和炭化水素基(すなわち、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基)である。
 また、n01が1である場合には、前記X01、X02、X03、X04及びX05のうち、1種又は2種以上は、前記不飽和炭化水素基(すなわち、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9又は2~8の不飽和炭化水素基)である。
 このように、化合物(II)又はその塩は、炭素数が3~9又は2~8である前記不飽和炭化水素基を合計で、1個又は2個以上有する。換言すると、化合物(II)又はその塩は、炭素原子間の三重結合を有する基を必ず含んでいる。したがって、化合物(II)又はその塩は、この三重結合に基づいて、ラマン散乱分光法によって検出可能となっており、また、この三重結合を他の試薬と反応させることで、ラベルを導入可能であって、このラベルによっても、検出可能となっている。化合物(II)又はその塩の、このような検出方法については、後ほど詳しく説明する。
However, when n 01 is 0 in the general formula (II), one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups (ie, An unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and optionally having 3 to 9 carbon atoms).
When n 01 is 1, one or more of X 01 , X 02 , X 03 , X 04 and X 05 are the unsaturated hydrocarbon groups (that is, carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and optionally having 3 to 9 or 2 to 8 carbon atoms).
As described above, the compound (II) or a salt thereof has one or two or more unsaturated hydrocarbon groups having 3 to 9 or 2 to 8 carbon atoms in total. In other words, the compound (II) or a salt thereof always contains a group having a triple bond between carbon atoms. Therefore, compound (II) or a salt thereof can be detected by Raman scattering spectroscopy based on this triple bond, and a label can be introduced by reacting this triple bond with another reagent. Therefore, it can be detected by this label. Such a method for detecting compound (II) or a salt thereof will be described in detail later.
 化合物(II)の塩は、化合物(II)中の塩を形成し得る基が、塩を形成した状態の化合物である。ここで、塩を形成し得る基としては、例えば、一般式(II)中の一般式-NX0102で表される基が挙げられるが、これに限定されない。 The salt of the compound (II) is a compound in which the group capable of forming a salt in the compound (II) forms a salt. Here, examples of the group capable of forming a salt include, but are not limited to, a group represented by the general formula —NX 01 X 02 in the general formula (II).
 化合物(II)の塩としては、例えば、化合物(II)の酸又は塩基との反応によって形成される塩が挙げられる。
 化合物(II)が、その1分子中に、塩を形成し得る基を2個以上有する場合、化合物(II)の塩としては、塩の形成部位を1箇所又は2箇所以上有する化合物が挙げられる。
 塩の形成部位を2箇所以上有する化合物(II)の塩において、これら2箇所以上の塩は、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。
Examples of the salt of compound (II) include salts formed by reacting compound (II) with an acid or base.
When the compound (II) has two or more groups capable of forming a salt in one molecule, examples of the salt of the compound (II) include compounds having one or two or more salt formation sites. .
In a salt of compound (II) having two or more salt formation sites, these two or more salts may be all the same, may be all different, or may be partially identical. Good.
 化合物(II)の塩を形成しているカチオン及びアニオンとしては、化合物(I)の塩を形成しているカチオン及びアニオンと同じものが挙げられる。
 1分子の化合物(II)の塩を形成しているカチオン及びアニオンは、いずれも1個のみであってもよいし、2個以上であってもよく、2個以上である場合、これらカチオン又はアニオンは、いずれも、すべて同一であってもよいし、すべて異なっていてもよいし、一部のみ同一であってもよい。
 ただし、化合物(II)の塩は、分子全体として電気的に中性であること、すなわち、化合物(II)1分子中のカチオンの価数の合計値とアニオンの価数の合計値とが同じであること、が好ましい。
Examples of the cation and anion that form the salt of compound (II) include the same cations and anions that form the salt of compound (I).
The number of cations and anions forming a salt of one molecule of compound (II) may be only one, or two or more, and when two or more, these cations or anions may be used. All the anions may be the same, all may be different, or only some may be the same.
However, the salt of the compound (II) is electrically neutral as a whole molecule, that is, the total value of the valence of the cation and the total value of the valence of the anion in one molecule of the compound (II) are the same. Is preferred.
 化合物(II)の塩で好ましいものとしては、下記一般式(IIs)-1、(IIs)-2、又は(IIs)-3で表される塩が挙げられる。 好 ま し い Preferred examples of the salt of compound (II) include salts represented by the following general formula (IIs) -1, (IIs) -2, or (IIs) -3.
Figure JPOXMLDOC01-appb-C000046
 (一般式(IIs)-1、(IIs)-2、又は(IIs)-3中、X01、X02、X03、X04、X05、n01及びn02は、前記と同じであり;Q 及びQ は、それぞれ独立に、1価のアニオンである。)
Figure JPOXMLDOC01-appb-C000046
(In the general formula (IIs) -1, (IIs) -2, or (IIs) -3, X 01 , X 02 , X 03 , X 04 , X 05 , n 01 and n 02 are the same as described above.) Q 1 - and Q 2 - are each independently a monovalent anion.)
 一般式(IIs)中、X01、X02、X03、X04、X05、n01及びn02は、一般式(II)中のX01、X02、X03、X04、X05、n01及びn02と同じである。
 一般式(IIs)中、Q 及びQ は、それぞれ独立に、1価のアニオンであり、一般式(Is)中のQと同じである。Q 及びQ は、互いに同一であってもよいし、異なっていてもよい。
In the general formula (IIs), X 01 , X 02 , X 03 , X 04 , X 05 , n 01 and n 02 represent X 01 , X 02 , X 03 , X 04 , X 05 in the general formula (II) , N 01 and n 02 .
In the general formula (IIs), Q 1 - and Q 2 - are each independently a monovalent anionic, Q in the general formula (Is) - it is the same as. Q 1 - and Q 2 - may be the same or may be different from one another.
 化合物(II)は、下記一般式(II)-1で表される化合物(本明細書においては、「化合物(II)-1」と略記することがある)、又は下記一般式(II)-2で表される化合物(本明細書においては、「化合物(II)-2」と略記することがある)であることが好ましい。
 すなわち、化合物(II)又はその塩は、化合物(II)-1若しくはその塩、又は化合物(II)-2若しくはその塩、であることが好ましい。
The compound (II) is a compound represented by the following general formula (II) -1 (in this specification, sometimes abbreviated as “compound (II) -1”) or the following general formula (II)- It is preferably a compound represented by Formula 2 (in this specification, may be abbreviated as “compound (II) -2”).
That is, compound (II) or a salt thereof is preferably compound (II) -1 or a salt thereof, or compound (II) -2 or a salt thereof.
Figure JPOXMLDOC01-appb-C000047
 (一般式(II)-1又は(II)-2中、n02は、前記と同じであり;
 X011、X021及びX031は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基であり、X011及びX021が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X041は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
 X010、X020及びX030は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X010及びX020が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、X010、X020及びX030の1種又は2種以上は、前記不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000047
(In the general formula (II) -1 or (II) -2, n 02 is the same as described above;
X 011 , X 021 and X 031 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms. When X 011 and X 021 are the above-mentioned alkyl groups, these two alkyl groups are May combine with each other to form a ring;
X 041 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent;
X 010 , X 020 and X 030 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and may have a substituent. When the unsaturated hydrocarbon group has 3 to 9 carbon atoms and the unsaturated hydrocarbon group has a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group; When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, one methylene group or two or more methylene groups that are not adjacent to each other are may be substituted with an oxygen atom, if X 010 and X 020 is the above alkyl group, these two alkyl groups may form a ring with each other, however, X 010 , One of X 020 and X 030 Species or two or more are the aforementioned unsaturated hydrocarbon groups. )
<化合物(II)-1>
 化合物(II)-1は、n01が0である場合の化合物(I)に包含される。
 一般式(II)-1中、n02は、一般式(II)中のn02と同じである。
<Compound (II) -1>
Compound (II) -1 is included in compound (I) when n 01 is 0.
In the Formula (II) -1, n 02 is the same as n 02 in the general formula (II).
 一般式(II)-1中、X011、X021及びX031は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基である。
 X011、X021及びX031における、炭素数1~9のアルキル基は、X01、X02及びX03における、炭素数1~9のアルキル基と同じである。
In the general formula (II) -1, X 011 , X 021 and X 031 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
The alkyl group having 1 to 9 carbon atoms in X 011 , X 021 and X 031 is the same as the alkyl group having 1 to 9 carbon atoms in X 01 , X 02 and X 03 .
 X011及びX021が前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X01及びX02がアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。 When X 011 and X 021 are the aforementioned alkyl groups, these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring . The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 01 and X 02 are alkyl groups.
 一般式(II)-1中、X041は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基である。
 X041における前記不飽和炭化水素基は、X04における前記不飽和炭化水素基と同じである。
In the general formula (II) -1, X 041 is an unsaturated hydrocarbon group having 3 to 9 carbon atoms and having 1 to 4 triple bonds and optionally having a substituent.
The unsaturated hydrocarbon group for X 041 is the same as the unsaturated hydrocarbon group for X 04 .
<化合物(II)-2>
 化合物(II)-2も、n01が0である場合の化合物(I)に包含される。
 一般式(II)-2中、n02は、一般式(II)中のn02と同じである。
 また、X041は、一般式(II)-1中のX041と同じである。
<Compound (II) -2>
Compound (II) -2 is also included in compound (I) when n 01 is 0.
In the Formula (II) -2, n 02 is the same as n 02 in the general formula (II).
X 041 is the same as X 041 in formula (II) -1.
 一般式(II)-2中、X010、X020及びX030における、前記アルキル基及び不飽和炭化水素基は、一般式(II)中のX01、X02及びX03における、前記アルキル基及び不飽和炭化水素基と同じである。例えば、X010及びX020が前記アルキル基である場合には、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して環を形成していてもよい。
 ただし、X010、X020及びX030の1種又は2種以上は、前記不飽和炭化水素基である。すなわち、X010、X020及びX030は、これらの1種又は2種以上が、前記不飽和炭化水素基である点を除けば、一般式(II)中のX01、X02及びX03と同じである。
In the general formula (II) -2, the alkyl group and the unsaturated hydrocarbon group in X 010 , X 020 and X 030 are the alkyl groups in X 01 , X 02 and X 03 in the general formula (II) And unsaturated hydrocarbon groups. For example, when X010 and X020 are the above-mentioned alkyl groups, these two alkyl groups are mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring. You may.
However, one or more of X 010 , X 020 and X 030 are the aforementioned unsaturated hydrocarbon groups. That is, X 010 , X 020 and X 030 are X 01 , X 02 and X 03 in the general formula (II) except that one or two or more of them are the unsaturated hydrocarbon groups. Is the same as
 化合物(II)は、下記一般式(II)-1-1で表される化合物(本明細書においては、「化合物(II)-1-1」と略記することがある)、下記一般式(II)-2-1で表される化合物(本明細書においては、「化合物(II)-2-1」と略記することがある)、下記一般式(II)-2-2で表される化合物(本明細書においては、「化合物(II)-2-2」と略記することがある)、下記一般式(II)-2-3で表される化合物(本明細書においては、「化合物(II)-2-3」と略記することがある)、下記一般式(II)-2-4で表される化合物(本明細書においては、「化合物(II)-2-4」と略記することがある)、又は下記一般式(II)-2-5で表される化合物(本明細書においては、「化合物(II)-2-5」と略記することがある)であることが好ましい。
 すなわち、化合物(I)又はその塩は、化合物(II)-1-1若しくはその塩、化合物(II)-2-1若しくはその塩、化合物(II)-2-2若しくはその塩、化合物(II)-2-3若しくはその塩、化合物(II)-2-4若しくはその塩、又は化合物(II)-2-5若しくはその塩、であることが好ましい。
 化合物(II)-1-1若しくはその塩は、化合物(II)-1若しくはその塩に包含される。
 化合物(II)-2-1若しくはその塩、化合物(II)-2-2若しくはその塩、化合物(II)-2-3若しくはその塩、化合物(II)-2-4若しくはその塩、並びに、化合物(II)-2-5若しくはその塩は、化合物(II)-2若しくはその塩に包含される。
The compound (II) is a compound represented by the following general formula (II) -1-1 (in this specification, may be abbreviated as “compound (II) -1-1”), II) -2-1 (hereinafter, may be abbreviated as “compound (II) -2-1”), represented by the following general formula (II) -2-2 A compound (may be abbreviated as “compound (II) -2-2” in the present specification), a compound represented by the following general formula (II) -2-3 (in the present specification, “compound (II) -2-2”) (II) -2-3), and a compound represented by the following formula (II) -2-4 (herein, abbreviated as “compound (II) -2-4”). Or a compound represented by the following general formula (II) -2-5 (in the present specification, “compound ( It is preferred that it is there) abbreviated as I) -2-5 '.
That is, compound (I) or a salt thereof is compound (II) -1-1 or a salt thereof, compound (II) -2-1 or a salt thereof, compound (II) -2-2 or a salt thereof, or a compound (II). ) -2-3 or a salt thereof, compound (II) -2-4 or a salt thereof, or compound (II) -2-5 or a salt thereof.
Compound (II) -1-1 or a salt thereof is included in compound (II) -1 or a salt thereof.
Compound (II) -2-1 or a salt thereof, Compound (II) -2-2 or a salt thereof, Compound (II) -2-3 or a salt thereof, Compound (II) -2-4 or a salt thereof, and Compound (II) -2-5 or a salt thereof is included in compound (II) -2 or a salt thereof.
Figure JPOXMLDOC01-appb-C000048
 (一般式(II)-1-1、(II)-2-1、(II)-2-2、(II)-2-3、(II)-2-4又は(II)-2-5中、X012、X022及びX032は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基であり、X012及びX022が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 G01、G02、G03及びG04は、それぞれ独立に、水素原子、アルキル基、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基であり;
 n02は、前記と同じである。)
Figure JPOXMLDOC01-appb-C000048
(General formulas (II) -1-1, (II) -2-1, (II) -2-2, (II) -2-3, (II) -2-4 or (II) -2-5) in, X 012, X 022 and X 032 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, when X 012 and X 022 is the above alkyl group, these two alkyl The groups may be linked to each other to form a ring;
G 01 , G 02 , G 03 and G 04 are each independently a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group , Halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl group A hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group;
n 02 is the same as described above. )
[化合物(II)-1-1]
 一般式(II)-1-1中、n02は、一般式(II)中のn02と同じである。
[Compound (II) -1-1]
In the Formula (II) -1-1, n 02 is the same as n 02 in the general formula (II).
 一般式(II)-1-1中、X012、X022及びX032は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基である。
 X012、X022及びX032における、炭素数1~5のアルキル基は、X01~X04(又は、X011、X021及びX031)における、炭素数1~9のアルキル基のうち、炭素数1~5のものと同じである。
In the general formula (II) -1-1, X 012 , X 022 and X 032 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
The alkyl group having 1 to 5 carbon atoms in X 012 , X 022 and X 032 is the alkyl group having 1 to 9 carbon atoms in X 01 to X 04 (or X 011 , X 021 and X 031 ) It is the same as that having 1 to 5 carbon atoms.
 X012及びX022が前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X01及びX02がアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。 When X012 and X022 are the above-mentioned alkyl groups, these two alkyl groups may be mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring. . The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 01 and X 02 are alkyl groups.
 一般式(II)-1-1中、G04は、水素原子、アルキル基、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基である。
 G04は、一般式(I)-1-1中のGと同じである。
In the general formula (II) -1-1, G 04 represents a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group, a halogen Atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl group, hydroxy An alkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group.
G 04 is the same as G 1 in formula (I) -1-1.
[化合物(II)-2-1]
 一般式(II)-2-1中、n02は、一般式(II)中のn02と同じである。
[Compound (II) -2-1]
In the Formula (II) -2-1, n 02 is the same as n 02 in the general formula (II).
 一般式(II)-2-1中、G04は、先に説明したものと同じである。
 一般式(II)-2-1中、G01及びG03は、一般式(I)-1-1中におけるGと同様のものである。
 一般式(II)-2-1中、G01、G03及びG04は、それぞれ独立に決定される。
In the Formula (II) -2-1, G 04 is the same as described above.
In the general formula (II) -2-1, G 01 and G 03 are the same as G 1 in the general formula (I) -1-1.
In the general formula (II) -2-1, G 01 , G 03 and G 04 are each independently determined.
[化合物(II)-2-2]
 一般式(II)-2-2中、n02は、一般式(II)中のn02と同じである。
[Compound (II) -2-2]
In the Formula (II) -2-2, n 02 is the same as n 02 in the general formula (II).
 一般式(II)-2-2中、G01、G03及びG04は、先に説明したものと同じである。
 一般式(II)-2-2中、G02は、一般式(I)-1-1中におけるGと同様のものである。
 一般式(II)-2-2中、G01、G02、G03及びG04は、それぞれ独立に決定される。
In the general formula (II) -2-2, G 01 , G 03 and G 04 are the same as those described above.
In the general formula (II) -2-2, G 02 is the same as G 1 in the general formula (I) -1-1.
In the general formula (II) -2-2, G 01 , G 02 , G 03 and G 04 are each independently determined.
[化合物(II)-2-3]
 一般式(II)-2-3中、n02は、一般式(II)中のn02と同じである。
[Compound (II) -2-3]
In the Formula (II) -2-3, n 02 is the same as n 02 in the general formula (II).
 一般式(II)-2-3中、X012、X022、G03及びG04は、先に説明したものと同じである。
 例えば、X012及びX022が前記アルキル基である場合、これら2個のアルキル基は相互に結合して環を形成していてもよく、前記環は、先に説明したものと同じである。
 一般式(II)-2-3中、G03及びG04は、それぞれ独立に決定される。
In the general formula (II) -2-3, X 012 , X 022 , G 03 and G 04 are the same as those described above.
For example, when X012 and X022 are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring, and the aforementioned ring is the same as that described above.
In the general formula (II) -2-3, G 03 and G 04 are each independently determined.
[化合物(II)-2-4]
 一般式(II)-2-4中、n02は、一般式(II)中のn02と同じである。
[Compound (II) -2-4]
In the Formula (II) -2-4, n 02 is the same as n 02 in the general formula (II).
 一般式(II)-2-4中、X032、G01及びG04は、先に説明したものと同じである。
 一般式(II)-2-4中、G01及びG04は、それぞれ独立に決定される。
In the general formula (II) -2-4, X 032 , G 01 and G 04 are the same as those described above.
In the general formula (II) -2-4, G 01 and G 04 are each independently determined.
[化合物(II)-2-5]
 一般式(II)-2-5中、n02は、一般式(II)中のn02と同じである。
[Compound (II) -2-5]
In the Formula (II) -2-5, n 02 is the same as n 02 in the general formula (II).
 一般式(II)-2-5中、X032、G01、G02及びG04は、先に説明したものと同じである。
 一般式(II)-2-5中、G01、G02及びG04は、それぞれ独立に決定される。
In the general formula (II) -2-5, X 032 , G 01 , G 02 and G 04 are the same as those described above.
In the general formula (II) -2-5, G 01 , G 02 and G 04 are each independently determined.
 化合物(II)の分子量は、350以下であることが好ましく、300以下であることがより好ましく、例えば、250以下であってもよい。神経細胞に対して生理活性を有する天然由来の神経機能調節物質の分子量は、通常、比較的小さい。したがって、神経細胞中での、上記のように分子量が比較的小さい化合物(II)の挙動や性質を分析することで、天然由来の神経機能調節物質の挙動や性質を高精度に考察することが可能であり、化合物(II)の有用性がより高い。
 一方、化合物(II)の塩は、塩を形成していない状態に置き換えたとき(すなわち、化合物(II)として考えたとき)の分子量(換算分子量)が、上述の化合物(II)の分子量と同様であることが好ましい。このような化合物(II)の塩も、通常はその分子量が比較的小さいため、上述の分子量が小さい化合物(II)と同様に有用性がより高い。
 ただし、化合物(II)及びその塩のこのような有用性は一例であり、化合物(II)の分子量と、化合物(II)の塩の換算分子量と、の上限値は、ここに示すものに限定されない。
The molecular weight of the compound (II) is preferably 350 or less, more preferably 300 or less, for example, 250 or less. The molecular weight of a naturally-occurring nerve function modulator having a physiological activity on nerve cells is usually relatively small. Therefore, by analyzing the behavior and properties of the compound (II) having a relatively small molecular weight as described above in a nerve cell, it is possible to consider the behavior and properties of a naturally-occurring nerve function regulator with high accuracy. It is possible and compound (II) is more useful.
On the other hand, when the salt of compound (II) is replaced with a state in which no salt is formed (that is, when considered as compound (II)), the molecular weight (converted molecular weight) is the same as the molecular weight of compound (II) described above. The same is preferred. Such a salt of compound (II) usually has a relatively small molecular weight, and thus has higher utility as in the case of the above-mentioned compound (II) having a small molecular weight.
However, such usefulness of the compound (II) and its salt is merely an example, and the upper limit of the molecular weight of the compound (II) and the converted molecular weight of the salt of the compound (II) are limited to those shown here. Not done.
 化合物(II)の分子量と、化合物(II)の塩の換算分子量と、の下限値は、特に限定されない。化合物(II)の製造のし易さの点では、前記分子量及び換算分子量は、177以上であることが好ましい。 下限 The lower limits of the molecular weight of compound (II) and the reduced molecular weight of the salt of compound (II) are not particularly limited. From the viewpoint of easy production of the compound (II), the molecular weight and reduced molecular weight are preferably 177 or more.
 好ましい化合物(II)を、以下に例示する。好ましい化合物(II)としては、これら以外にも、以下に例示する化合物で前記置換基を有するものも、挙げられる。好ましい化合物(II)の塩としては、以下に例示する化合物の塩、及び、以下に例示する化合物で前記置換基を有するものの塩、が挙げられる。
 ただし、本実施形態の化合物(II)又はその塩は、これらに限定されない。
Preferred compounds (II) are exemplified below. Preferred compounds (II) also include, in addition to the above, compounds exemplified below and having the above substituent. Preferred salts of the compound (II) include the salts of the compounds exemplified below and the salts of the compounds exemplified below having the substituent.
However, the compound (II) of the present embodiment or a salt thereof is not limited thereto.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 化合物(II)は、公知の神経機能調節物質であるセロトニン(別名:5-ヒドロキシトリプタミン、3-(2-アミノエチル)インドール-5-オール)の誘導体とみなすことができる。
 したがって、化合物(II)及びその塩は、公知の神経機能調節物質の中でも、特に、セロトニンの神経細胞中での役割(換言すると生理活性)を解明するのに、有用である。
 セロトニンの構造式を以下に示す。
Compound (II) can be regarded as a derivative of serotonin (also known as 5-hydroxytryptamine, 3- (2-aminoethyl) indol-5-ol), which is a known neuronal function regulator.
Therefore, compound (II) and salts thereof are useful for elucidating the role of serotonin in nerve cells (in other words, physiological activity) among known neuronal function regulators.
The structural formula of serotonin is shown below.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
<<化合物(II)又はその塩の製造方法>>
 化合物(II)又はその塩は、X01、X02、X03、X04及びX05のいずれが、上述の不飽和炭化水素基であるかにより、その製造方法が異なる。以下、このような化合物(II)又はその塩の製造方法について、順次説明する。
<< Method for producing compound (II) or a salt thereof >>
The production method of compound (II) or a salt thereof differs depending on which of X 01 , X 02 , X 03 , X 04 and X 05 is the above-mentioned unsaturated hydrocarbon group. Hereinafter, a method for producing such a compound (II) or a salt thereof will be sequentially described.
<製造方法(1’)>
 X01、X02、X03及びX04のいずれかが、上述の不飽和炭化水素基である場合の化合物(II)又はその塩は、例えば、下記一般式(IIa)で表される化合物(本明細書においては、「化合物(IIa)」と称することがある)と、下記一般式(Ic)で表される化合物(化合物(Ic))と、を反応させる工程(本明細書においては、「不飽和炭化水素基導入工程(1’)」と称することがある)と、下記Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程(本明細書においては、「脱保護工程(1’)」と称することがある)と、を行うことにより、下記一般式(II)で表される化合物(本明細書においては、「化合物(II)」と称することがある)又はその塩として、下記一般式(IIa)で表される化合物における、下記Z01a、Z02a、Z03a及びZ04aのうち、水素原子であるものが、下記X0aで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法(本明細書においては、「製造方法(1’)」と称することがある)により、製造できる。
 化合物(II)は、X01、X02、X03及びX04のいずれかが、上述の不飽和炭化水素基である場合の化合物(II)である。
<Production method (1 ')>
When any of X 01 , X 02 , X 03 and X 04 is the aforementioned unsaturated hydrocarbon group, the compound (II) or a salt thereof is, for example, a compound represented by the following general formula (IIa) ( In the present specification, a step of reacting a compound (may be referred to as “compound (IIa)”) with a compound represented by the following general formula (Ic) (compound (Ic)) (in the present specification, and may be referred to as "unsaturated hydrocarbon group-introducing step (1 ')"), the following Z 01a, Z 02a, among the Z 03a and Z 04a, when one or more are below protecting group After the step of reacting, a step of removing the protecting group (hereinafter, may be referred to as a “deprotection step (1 ′)” in the present specification) is further performed, whereby A compound represented by the formula (II A ) Oite as is) or a salt thereof may be referred to as "compound (II A)" in the compound represented by the following general formula (IIa), following Z 01a, Z 02a, among the Z 03a and Z 04a, A method for producing a compound or a salt thereof, which obtains a compound or a salt thereof having a structure in which a hydrogen atom is substituted by the following X 0a (in the present specification, this may be referred to as “production method (1 ′)”). ).
The compound (II A ) is the compound (II) in which any of X 01 , X 02 , X 03 and X 04 is the above-mentioned unsaturated hydrocarbon group.
Figure JPOXMLDOC01-appb-C000054
 (一般式(II)、(IIa)又は(Ic)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 n01は、0又は1であり;
 n02は、1~5の整数であり;
 ただし、前記X01、X02、X03及びX04のうち、1種又は2種以上は、前記不飽和炭化水素基であり、
 X0aは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく;
 LGは脱離基であり;
 Z01a、Z02a、Z03a及びZ04aは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は保護基であり、Z01a及びZ02aが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上は、水素原子である。)
Figure JPOXMLDOC01-appb-C000054
(Formula (II A), in (IIa) or (Ic), X 01, X 02, X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups Groups may be linked to each other to form a ring ;
X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 01 is 0 or 1;
n 02 is an integer of 1 to 5;
However, one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups,
X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, wherein the unsaturated hydrocarbon group is When having a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group, and the unsaturated hydrocarbon group may have one or more than two terminals other than the terminal on the bonding side. When it has a methylene group, one methylene group or two or more non-adjacent methylene groups may be substituted with an oxygen atom;
LG 1 is a leaving group;
Z 01a, Z 02a, Z 03a and Z 04a each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms, or a protecting group, if Z 01a and Z 02a is said alkyl group, these two alkyl groups may form a ring with each other, however, Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more is a hydrogen atom. )
[不飽和炭化水素基導入工程(1’)]
 不飽和炭化水素基導入工程(1’)においては、化合物(IIa)と、化合物(Ic)と、を反応させる。
 一般式(IIa)中、X05、n01及びn02は、一般式(II)中のX05、n01及びn02と同じである。
[Unsaturated hydrocarbon group introduction step (1 ')]
In the unsaturated hydrocarbon group introduction step (1 ′), the compound (IIa) is reacted with the compound (Ic).
In the general formula (IIa), X 05, n 01 and n 02 are the same as X 05, n 01 and n 02 in the general formula (II).
 一般式(IIa)中、Z01a、Z02a、Z03a及びZ04aは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は保護基である。
 Z01a、Z02a、Z03a及びZ04aにおける、炭素数1~9のアルキル基、及び保護基は、一般式(Ia)中のZ1a、Z2a、Z3a、Z4a及びZ6aにおける、炭素数1~9のアルキル基、及び保護基と同じである。
 例えば、Z01a及びZ02aが前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X01及びX02がアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。
In the general formula (IIa), Z 01a, Z 02a, Z 03a and Z 04a each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or a protecting group.
Z 01a, Z 02a, the Z 03a and Z 04a, alkyl group having 1-9 carbon atoms, and protecting groups, Z 1a in the general formula (Ia), Z 2a, Z 3a, in Z 4a and Z 6a, It is the same as an alkyl group having 1 to 9 carbon atoms and a protecting group.
For example, when Z 01a and Z 02a are the aforementioned alkyl groups, these two alkyl groups are mutually bonded together with the nitrogen atom to which the two alkyl groups are bonded to form a ring. Is also good. The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 01 and X 02 are alkyl groups.
 ただし、Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上は、水素原子である。 However, Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more is a hydrogen atom.
 化合物(Ic)は、先に説明した化合物(I)の製造方法である製造方法(1)で用いる化合物(Ic)と同じである。 Compound (Ic) is the same as compound (Ic) used in production method (1), which is the production method of compound (I) described above.
 化合物(IIa)と化合物(Ic)との反応は、先に説明した製造方法(1)における、化合物(Ia)と化合物(Ic)との反応と、同様の形式で進行する。
 例えば、化合物(IIa)中、Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上は、水素原子であるため、不飽和炭化水素基導入工程(1’)においては、この水素原子が前記X0aで置換された構造の化合物又はその塩が生成する。
 また、不飽和炭化水素基導入工程(1’)においては、生成物として、塩を形成していないものと、塩を形成しているものと、のいずれもが得られる可能性がある。これらのいずれが得られるかは、不飽和炭化水素基導入工程(1’)の条件に依存する。
The reaction between compound (IIa) and compound (Ic) proceeds in the same manner as the reaction between compound (Ia) and compound (Ic) in production method (1) described above.
For example, in the compound (IIa), Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more are the hydrogen atom, the unsaturated hydrocarbon group-introducing step (1 ') is A compound having a structure in which this hydrogen atom is substituted by the above-mentioned X0a or a salt thereof is produced.
In addition, in the unsaturated hydrocarbon group introduction step (1 ′), there is a possibility that both a product that does not form a salt and a product that forms a salt are obtained. Which of these is obtained depends on the conditions of the unsaturated hydrocarbon group introduction step (1 ′).
 化合物(IIa)と化合物(Ic)との反応は、化合物(Ia)に代えて化合物(IIa)を用いる点を除けば、先に説明した製造方法(1)における、化合物(Ia)と化合物(Ic)との反応と、同様の方法で行うことができる。
 例えば、化合物(Ic)の使用量(モル)は、化合物(IIa)中の、前記X0aでの置換対象である水素原子の量(モル)に対して、1~2倍モル量であることが好ましい。
 また、化合物(IIa)と化合物(Ic)との反応は、塩基を用いて行うことが好ましく、その場合、塩基の使用量(モル)は、化合物(IIa)中の、前記X0aでの置換対象である水素原子の量(モル)に対して、1~3倍モル量であることが好ましい。
 また、化合物(IIa)と化合物(Ic)との反応時には、溶媒を用いてもよく、その場合、溶媒の使用量(質量部)は、特に限定されないが、溶媒以外のすべての成分の合計使用量(質量部)に対して、1~40質量倍であることが好ましく、1~30質量倍であってもよい。
 また、化合物(IIa)と化合物(Ic)との反応時において、反応温度は、例えば、0~40℃、及び10~40℃のいずれであってもよく、反応時間は、例えば、0.5~24時間であってもよい。
 また、不飽和炭化水素基導入工程(1’)においては、反応終了後、公知の手法によって、必要に応じて後処理を行い、生成物を取り出すことができ、取り出した生成物は、さらに必要に応じて、精製してもよい。不飽和炭化水素基導入工程(1’)後に、後述する脱保護工程(1’)等、他の工程を引き続き行う場合には、不飽和炭化水素基導入工程(1’)での反応終了後に、必要に応じて後処理を行った後、生成物を取り出すことなく、引き続き前記他の工程を行ってもよい。
The reaction between the compound (IIa) and the compound (Ic) is carried out by using the compound (Ia) and the compound (I) in the production method (1) described above except that the compound (IIa) is used instead of the compound (Ia). The reaction with Ic) can be carried out in a similar manner.
For example, the amount (mol) of the compound (Ic) to be used is 1 to 2 times the molar amount (mol) of the hydrogen atom to be substituted with X0a in the compound (IIa). Is preferred.
The reaction between compound (IIa) and compound (Ic) is preferably carried out using a base. In this case, the amount (mol) of the base used is the same as that for substitution of X 0a in compound (IIa). The molar amount is preferably 1 to 3 times the molar amount (mol) of the target hydrogen atom.
In the reaction of the compound (IIa) with the compound (Ic), a solvent may be used. In such a case, the amount (parts by mass) of the solvent is not particularly limited, but the total amount of all components other than the solvent is used. The amount is preferably 1 to 40 times by mass, and more preferably 1 to 30 times by mass based on the amount (parts by mass).
In the reaction between the compound (IIa) and the compound (Ic), the reaction temperature may be, for example, any of 0 to 40 ° C. and 10 to 40 ° C., and the reaction time may be, for example, 0.5. It may be up to 24 hours.
In addition, in the unsaturated hydrocarbon group introduction step (1 ′), after the reaction is completed, post-treatment may be carried out by a known method, if necessary, and the product may be taken out. May be purified according to When another step such as a deprotection step (1 ') described later is continuously performed after the unsaturated hydrocarbon group introduction step (1'), after the completion of the reaction in the unsaturated hydrocarbon group introduction step (1 '). After the post-treatment is performed as necessary, the other steps may be continuously performed without taking out the product.
 不飽和炭化水素基導入工程(1’)において、化合物(IIa)と化合物(Ic)との反応による生成物は、Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上が保護基である場合には、この保護基で該当箇所の官能基が保護された状態の化合物(II)である。一方、Z01a、Z02a、Z03a及びZ04aがいずれも保護基でない場合には、前記生成物は、目的物の化合物(II)である。 In the unsaturated hydrocarbon group-introducing step (1 '), the product from the reaction between the compound (IIa) with the compound (Ic) can, Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more Is a compound (II A ) in which the functional group at the corresponding site is protected by this protecting group. On the other hand, when Z 01a, Z 02a, Z 03a and Z 04a is not any protecting groups, the product is a compound of the desired compound (II A).
[脱保護工程(1’)]
 不飽和炭化水素基導入工程(1’)での生成物が、保護基を有する化合物(II)である場合には、不飽和炭化水素基導入工程(1’)の後で、さらに、前記保護基を除去する工程(すなわち、脱保護工程(1’))を行う。脱保護工程(1’)を行うことにより、目的物である化合物(II)が得られる。
[Deprotection step (1 ')]
When the product in the unsaturated hydrocarbon group introduction step (1 ′) is the compound (II A ) having a protecting group, the compound is further added after the unsaturated hydrocarbon group introduction step (1 ′). The step of removing the protecting group (ie, the deprotection step (1 ′)) is performed. The target compound (II A ) is obtained by performing the deprotection step (1 ′).
 脱保護工程(1’)は、脱保護の対象物として、保護基を有する化合物(I)に代えて、保護基を有する化合物(II)を用いる点を除けば、先に説明した製造方法(1)における、脱保護工程(1)と、同様の方法で行うことができる。
 例えば、脱保護の条件は、保護基の種類に応じて適宜選択すればよい。
 また、脱保護工程(1’)においては、反応終了後、公知の手法によって、必要に応じて後処理を行い、生成物を取り出すことができ、取り出した生成物は、さらに必要に応じて、精製してもよい。
The deprotection step (1 ′) is the same as the production method described above except that the compound (II A ) having a protecting group is used instead of the compound (I A ) having a protecting group as an object of deprotection. It can be carried out in the same manner as in the deprotection step (1) in the method (1).
For example, the conditions for deprotection may be appropriately selected according to the type of the protecting group.
In addition, in the deprotection step (1 ′), after the reaction is completed, post-treatment may be carried out by a known method, if necessary, and the product may be taken out. It may be purified.
 脱保護工程(1’)においても、不飽和炭化水素基導入工程(1’)の場合と同様に、生成物として、塩を形成していないものと、塩を形成しているものと、のいずれもが得られる可能性がある。これらのいずれが得られるかは、脱保護工程(1’)の条件に依存する。 In the deprotection step (1 ′), as in the case of the unsaturated hydrocarbon group introduction step (1 ′), as a product, a product having no salt and a product having a salt are formed. Either can be obtained. Which of these is obtained depends on the conditions of the deprotection step (1 ').
 不飽和炭化水素基導入工程(1’)においては、例えば、化合物(IIa)中の、Z01a、Z02a、Z03a及びZ04aのいずれかは、水素原子であって、その一部又はすべての水素原子がX0aで置換された構造の化合物又はその塩が生成する。これらの生成物は、X01、X02、X03及びX04のうち、該当するものが不飽和炭化水素基である場合の、化合物(II)又はその塩である。
 また、不飽和炭化水素基導入工程(1’)においては、化合物(IIa)中の、Z01a、Z02a、Z03a及びZ04aのうち、炭素数1~9のアルキル基であるものは、通常、そのままで反応することはない。その結果、X01、X02、X03及びX04のうち、該当するものが炭素数1~9のアルキル基である場合の、化合物(II)又はその塩が生成する。
 また、不飽和炭化水素基導入工程(1’)においては、化合物(IIa)中の、Z01a、Z02a、Z03a及びZ04aのうち、保護基であるものは、通常、そのままで反応することはない。そこで、脱保護工程(1’)を行うことにより、前記保護基が水素原子で置換された構造の化合物又はその塩が生成する。これらの生成物は、X01、X02、X03及びX04のうち、該当するものが水素原子である場合の、化合物(II)又はその塩である。
In the unsaturated hydrocarbon group-introducing step (1 '), for example, in the compound (IIa), Z 01a, Z 02a, either of Z 03a and Z 04a, a hydrogen atom, a part or all of A compound having a structure in which a hydrogen atom of the above is substituted with X0a or a salt thereof is produced. These products are of X 01, X 02, X 03 and X 04, in the case that apply is an unsaturated hydrocarbon group, a compound (II A) or a salt thereof.
Also, in the unsaturated hydrocarbon group-introducing step (1 '), in the compound (IIa), Z 01a, Z 02a, among the Z 03a and Z 04a, as an alkyl group having 1-9 carbon atoms, Usually, it does not react as it is. As a result, when the corresponding one of X 01 , X 02 , X 03 and X 04 is an alkyl group having 1 to 9 carbon atoms, compound (II A ) or a salt thereof is formed.
Also, in the unsaturated hydrocarbon group-introducing step (1 '), in the compound (IIa), Z 01a, Z 02a, among the Z 03a and Z 04a, what is a protecting group, typically, reacts in situ Never. Then, by performing the deprotection step (1 ′), a compound having a structure in which the protective group is substituted with a hydrogen atom or a salt thereof is generated. These products are of X 01, X 02, X 03 and X 04, in the case that apply is a hydrogen atom, a compound (II A) or a salt thereof.
[造塩工程(1’)]
 不飽和炭化水素基導入工程(1’)を行い、必要に応じて、脱保護工程(1’)を行うことで、最終的に、塩を形成していない化合物(II)が得られた場合には、不飽和炭化水素基導入工程(1’)又は脱保護工程(1’)の後で、さらに、得られた化合物(II)をその塩とする工程(本明細書においては、「造塩工程(1’)」と称することがある)を行うことにより、化合物(II)の塩を製造できる。
[Salt-forming step (1 ')]
By performing the unsaturated hydrocarbon group introduction step (1 ′) and, if necessary, the deprotection step (1 ′), the compound (II A ) which did not form a salt was finally obtained. In some cases, after the unsaturated hydrocarbon group introduction step (1 ′) or the deprotection step (1 ′), the obtained compound (II A ) is further converted into a salt thereof (in the present specification, by performing it may be referred to as "salt forming step (1 ')") can be prepared salts of the compounds (II a).
 前記造塩工程(1’)は、例えば、化合物(II)を酸又は塩基と反応させるなど、公知の方法で行うことができ、目的とする塩の種類に応じて、工程条件を適宜選択すればよい。
 例えば、塩を形成しているカチオンが、一般式(II)中の、一般式-NX0102で表される基の窒素原子と、一般式-NX04-で表される基の窒素原子と、のいずれか一方又は両方に、水素イオン(H)が配位したものである、化合物(II)の塩を製造する場合には、化合物(II)を酸と反応させればよい。
 例えば、前記一般式(IIs)-1、(IIs)-2、又は(IIs)-3で表される塩を製造する場合には、化合物(II)を、一般式HQ(HQは、Q の水素イオン(H)との結合物であり、Q は前記と同じである)で表される酸と、一般式HQ(HQは、Q の水素イオン(H)との結合物であり、Q は前記と同じである)で表される酸と、のいずれか一方又は両方と、反応させればよい。
The salt formation step (1 ′) can be performed by a known method, for example, by reacting the compound (II A ) with an acid or a base, and the process conditions are appropriately selected according to the kind of the target salt. do it.
For example, the cations forming the salt are the same as those in the general formula (II A ) except that the nitrogen atom of the group represented by the general formula —NX 01 X 02 and the nitrogen atom of the group represented by the general formula —NX 04 — and atoms, in either or both of the hydrogen ions (H +) in which is coordinated, in the case of producing the salt of compound (II a) is reacted compound (II a) with an acid I just need.
For example, when producing a salt represented by the general formula (IIs) -1, (IIs) -2, or (IIs) -3, the compound (II A ) is converted to a compound represented by the general formula HQ 1 (HQ 1 is , Q 1 − and a hydrogen ion (H + ), wherein Q 1 is the same as described above) and an acid represented by the general formula HQ 2 (HQ 2 is a hydrogen ion of Q 2 (H + ), and Q 2 - is the same as described above).
 製造方法(1’)の前記造塩工程(1’)においては、反応終了後、不飽和炭化水素基導入工程(1’)の場合と同様に、生成物に対して、後処理、取り出し、精製等の操作を行うことができる。 In the salt formation step (1 ′) of the production method (1 ′), after the reaction is completed, as in the case of the unsaturated hydrocarbon group introduction step (1 ′), the product is subjected to post-treatment, removal, Operations such as purification can be performed.
[任意の工程(1’)]
 製造方法(1’)においては、不飽和炭化水素基導入工程(1’)と、脱保護工程(1’)と、造塩工程(1’)と、のいずれにも該当しない、任意の工程(1’)を、1種又は2種以上行ってもよい。
[Optional step (1 ')]
In the production method (1 ′), any step that does not correspond to any of the unsaturated hydrocarbon group introduction step (1 ′), the deprotection step (1 ′), and the salt formation step (1 ′) (1 ′) may be performed alone or in combination of two or more.
 前記任意の工程(1’)は、目的に応じて適宜選択でき、特に限定されない。
 例えば、不飽和炭化水素基導入工程(1’)で用いる化合物(IIa)として、市販品が存在しない場合には、市販品の原料を用い、公知の方法を単独で、又は2種以上組み合わせて行うことにより、化合物(IIa)を製造すればよい。
The optional step (1 ′) can be appropriately selected depending on the purpose, and is not particularly limited.
For example, when a commercially available product does not exist as the compound (IIa) used in the unsaturated hydrocarbon group introduction step (1 ′), a commercially available raw material is used, and a known method is used alone or in combination of two or more. By performing the reaction, compound (IIa) may be produced.
 n01が1である場合の化合物(IIa)は、X05(すなわち、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基)を有する。このような化合物(IIa)は、例えば、後述する製造方法(2’)を利用することにより、製造できる。すなわち、化合物(IIb)において、「炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基」を、Z01b、Z02b、Z03b及びZ04bの選択肢から外した化合物を、化合物(IIb)に代えて用いる点以外は、後述する製造方法(2’)と同じ方法によって、n01が1である場合の化合物(IIa)を製造できる。ただし、これは、このような化合物(IIa)の製造方法の一例である。 When n 01 is 1, the compound (IIa) is represented by X 05 (ie, an unsaturated C 2-8 unsaturated carbon atom having 1-4 carbon-carbon triple bonds and optionally having a substituent) (Hydrocarbon group). Such a compound (IIa) can be produced, for example, by utilizing the production method (2 ′) described below. That is, in the compound (IIb), “an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and 3 to 9 carbon atoms which may have a substituent” is represented by Z 01b , Z 01b Compounds in the case where n 01 is 1 by the same method as the production method (2 ′) described below except that compounds excluded from the options of 02b , Z 03b and Z 04b are used in place of compound (IIb) ( IIa) can be prepared. However, this is an example of a method for producing such a compound (IIa).
<製造方法(2’)>
 n01が1である場合の化合物(II)又はその塩は、例えば、下記一般式(IIb)で表される化合物(本明細書においては、「化合物(IIb)」と称することがある)と、下記一般式(Id)で表される化合物(化合物(Id))と、を反応させる工程(本明細書においては、「不飽和炭化水素基導入工程(2’)」と称することがある)と、下記Z01b、Z02b、Z03b及びZ04bのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程(本明細書においては、「脱保護工程(2’)」と称することがある)と、を行うことにより、下記一般式(II)で表される化合物(本明細書においては、「化合物(II)」と称することがある)又はその塩として、下記一般式(IIb)で表される化合物における、下記LGが、下記X0bで置換された構造の化合物又はその塩を得る製造方法(本明細書においては、「製造方法(2’)」と称することがある)により、製造できる。
 化合物(II)は、n01が1である場合の化合物(II)である。
<Production method (2 ')>
When n 01 is 1, the compound (II) or a salt thereof is, for example, a compound represented by the following general formula (IIb) (in this specification, sometimes referred to as “compound (IIb)”). With a compound represented by the following general formula (Id) (compound (Id)) (in the present specification, this may be referred to as “unsaturated hydrocarbon group introduction step (2 ′)”). And when one or more of the following Z 01b , Z 02b , Z 03b and Z 04b are the following protecting groups, after the step of reacting, further removing the protecting group (In this specification, it may be referred to as “deprotection step (2 ′)”) to obtain a compound represented by the following general formula (II B ) (in this specification, “compound” (II B) "and that there is referred) or a salt thereof In a compound represented by the following general formula (IIb), the following LG 3 is substituted by X 0b to obtain a compound having a structure or a salt thereof (in the present specification, “the production method (2 ′ ))).
Compound (II B ) is the compound (II) when n 01 is 1.
Figure JPOXMLDOC01-appb-C000055
 (一般式(II)、(IIb)又は(Id)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
 n02は、1~5の整数であり;
 LGは脱離基であり;
 Z01b、Z02b、Z03b及びZ04bは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基、又は保護基であり、Z01b及びZ02bが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
 X0bは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基である。)
Figure JPOXMLDOC01-appb-C000055
(In the general formulas (II B ), (IIb) or (Id), X 01 , X 02 , X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups The groups may be linked to each other to form a ring ;
X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
n 02 is an integer of 1 to 5;
LG 3 is a leaving group;
Z 01b , Z 02b , Z 03b and Z 04b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds between carbon atoms, and have a substituent. When Z 01b and Z 02b are the above-mentioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. May be;
X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent. )
[不飽和炭化水素基導入工程(2’)]
 前記不飽和炭化水素基導入工程(2’)においては、化合物(IIb)と、化合物(Id)と、を反応させる。
 一般式(IIb)中、n02は、一般式(II)中のn02と同じである。
[Unsaturated hydrocarbon group introduction step (2 ')]
In the unsaturated hydrocarbon group introduction step (2 ′), the compound (IIb) is reacted with the compound (Id).
In the general formula (IIb), n 02 is the same as n 02 in the general formula (II).
 一般式(IIb)中、Z01b、Z02b、Z03b及びZ04bは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基、又は保護基である。
 Z01b、Z02b、Z03b及びZ04bにおける前記アルキル基及び不飽和炭化水素基は、X01~X04における前記アルキル基及び不飽和炭化水素基と同じである。
 例えば、Z01b及びZ02bが前記アルキル基である場合、これら2個のアルキル基は、これら2個のアルキル基が結合している窒素原子とともに、相互に結合して、環を形成していてもよい。前記環は、先に説明した、X01及びX02がアルキル基である場合に、これら2個のアルキル基が相互に結合して形成していてもよい環と同じである。
In the general formula (IIb), Z 01b , Z 02b , Z 03b and Z 04b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, and 1 to 4 triple bonds between carbon atoms, An unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent, or a protecting group.
The alkyl group and the unsaturated hydrocarbon group in Z 01b , Z 02b , Z 03b and Z 04b are the same as the alkyl group and the unsaturated hydrocarbon group in X 01 to X 04 .
For example, when Z 01b and Z 02b are the aforementioned alkyl groups, these two alkyl groups are mutually bonded together with the nitrogen atom to which these two alkyl groups are bonded to form a ring. Is also good. The ring is the same as the above-described ring which may be formed by bonding these two alkyl groups to each other when X 01 and X 02 are alkyl groups.
 Z01b、Z02b、Z03b及びZ04bにおける前記保護基は、一般式(Ia)中のZ1a、Z2a、Z3a、Z4a及びZ6aにおける前記保護基と同様である。 The protective groups in Z 01b , Z 02b , Z 03b and Z 04b are the same as the protective groups in Z 1a , Z 2a , Z 3a , Z 4a and Z 6a in the general formula (Ia).
 一般式(IIb)中、LGは脱離基であり、一般式(Ib)中のLG(脱離基)と同様である。 In the general formula (IIb), LG 3 is a leaving group, and is the same as LG 2 (leaving group) in the general formula (Ib).
 化合物(Id)は、先に説明した化合物(I)の製造方法である製造方法(2)で用いる化合物(Id)と同じである。 The compound (Id) is the same as the compound (Id) used in the production method (2) which is the production method of the compound (I) described above.
 一般式(II)中、X01、X02、X03、X04及びX05は、一般式(II)中のX01、X02、X03、X04及びX05と同じである。
 ただし、化合物(II)は、X05を有することが特定されている。
 このように、n01が1に限定されている点を除けば、化合物(II)は化合物(II)と同じである。
In the general formula (II B), X 01, X 02, X 03, X 04 and X 05 are the same as general X 01 in formula (II), X 02, X 03, X 04 and X 05.
However, the compound (II B) has been identified to have X 05.
Thus, compound (II B ) is the same as compound (II) except that n 01 is limited to 1.
 化合物(IIb)と化合物(Id)との反応は、先に説明した製造方法(2)における、化合物(Ib)と化合物(Id)との反応と、同様の形式で進行する。
 例えば、化合物(IIb)がLGを有していることにより、不飽和炭化水素基導入工程(2’)においては、このLGが前記X0bで置換された構造の化合物又はその塩が生成する。
 また、不飽和炭化水素基導入工程(2’)においては、生成物として、塩を形成していないものと、塩を形成しているものと、のいずれもが得られる可能性がある。これらのいずれが得られるかは、不飽和炭化水素基導入工程(2’)の条件に依存する。
The reaction between compound (IIb) and compound (Id) proceeds in the same manner as the reaction between compound (Ib) and compound (Id) in production method (2) described above.
For example, the compound (IIb) has the LG 3, in the unsaturated hydrocarbon group-introducing step (2 ') The compound or a salt of the LG 3 is substituted with the X 0b structure generated I do.
In addition, in the unsaturated hydrocarbon group introduction step (2 ′), there is a possibility that both a product that does not form a salt and a product that forms a salt are obtained. Which of these is obtained depends on the conditions of the unsaturated hydrocarbon group introduction step (2 ′).
 化合物(IIb)と化合物(Id)との反応は、化合物(Ib)に代えて化合物(IIb)を用いる点を除けば、先に説明した製造方法(2)における、化合物(Ib)と化合物(Id)との反応と、同様の方法で行うことができる。
 例えば、化合物(Id)の使用量(モル)は、化合物(IIb)の使用量(モル)に対して、1.0~2.0倍モル量であってもよい。
 また、化合物(IIb)と化合物(Id)との反応は、パラジウム触媒と、銅触媒と、塩基と、を用いて行ってもよい(Sonogashira-Hagiharaクロスカップリング反応)。その場合、パラジウム触媒の使用量(モル)は、化合物(IIb)の使用量(モル)に対して、0.05~0.20倍モル量であってもよく、銅触媒の使用量(モル)は、化合物(IIb)の使用量(モル)に対して、0.05~0.40倍モル量であってもよく、塩基の使用量(モル)は、化合物(IIb)の使用量(モル)に対して、過剰量であってもよく、例えば、1~100倍モル量であってもよいし、溶媒を兼ねて塩基を用いてもよい。
 また、化合物(IIb)と化合物(Id)との反応時には、溶媒を用いてもよく、その場合、溶媒の使用量(質量部)は、溶媒以外のすべての成分の合計使用量(質量部)に対して、1~20質量倍であってもよい。
 また、化合物(IIb)と化合物(Id)との反応時において、反応温度は、例えば、10~80℃であってもよく、反応時間は、例えば、10~48時間であってもよい。
 また、不飽和炭化水素基導入工程(2’)においては、反応終了後、公知の手法によって、必要に応じて後処理を行い、生成物を取り出すことができ、取り出した生成物は、さらに必要に応じて、精製してもよい。不飽和炭化水素基導入工程(2’)後に、後述する脱保護工程(2’)等、他の工程を引き続き行う場合には、不飽和炭化水素基導入工程(2’)での反応終了後に、必要に応じて後処理を行った後、生成物を取り出すことなく、引き続き前記他の工程を行ってもよい。
The reaction between the compound (IIb) and the compound (Id) is carried out in the same manner as in the production method (2) described above except that the compound (IIb) is used instead of the compound (Ib). The reaction with Id) can be carried out in a similar manner.
For example, the amount (mol) of the compound (Id) used may be 1.0 to 2.0 times the amount (mol) of the compound (IIb) used.
The reaction between compound (IIb) and compound (Id) may be performed using a palladium catalyst, a copper catalyst, and a base (Sonogashira-Hagihara cross-coupling reaction). In this case, the amount (mol) of the palladium catalyst used may be 0.05 to 0.20 times the molar amount (mol) of the compound (IIb), and the amount (mol) of the copper catalyst may be used. ) May be 0.05 to 0.40 times the molar amount of the compound (IIb), and the amount (mol) of the base is the amount (mol) of the compound (IIb). Mol), may be in excess, for example, 1 to 100 times the molar amount, or a base may be used also as a solvent.
In the reaction between compound (IIb) and compound (Id), a solvent may be used. In this case, the amount of the solvent used (parts by mass) is determined by the total amount of all components other than the solvent (parts by mass). May be 1 to 20 times by mass.
In the reaction between compound (IIb) and compound (Id), the reaction temperature may be, for example, 10 to 80 ° C., and the reaction time may be, for example, 10 to 48 hours.
In addition, in the unsaturated hydrocarbon group introduction step (2 ′), after the reaction is completed, post-treatment may be carried out by a known method, if necessary, and a product may be taken out. May be purified according to When performing other steps such as the deprotection step (2 ') described later after the unsaturated hydrocarbon group introduction step (2'), the reaction in the unsaturated hydrocarbon group introduction step (2 ') is completed. After the post-treatment is performed as necessary, the other steps may be continuously performed without taking out the product.
 不飽和炭化水素基導入工程(2’)において、化合物(IIb)と化合物(Id)との反応による生成物は、Z01b、Z02b、Z03b及びZ04bのうち、1種又は2種以上が保護基である場合には、この保護基で該当箇所の官能基が保護された状態の化合物(II)である。一方、Z01b、Z02b、Z03b及びZ04bがいずれも保護基でない場合には、前記生成物は、目的物の化合物(II)である。 In the unsaturated hydrocarbon group introduction step (2 ′), the product of the reaction between the compound (IIb) and the compound (Id) is one or more of Z 01b , Z 02b , Z 03b and Z 04b. There when a protecting group is a compound of the state where the functional group of the corresponding portion is protected by the protecting group (II B). On the other hand, when none of Z 01b , Z 02b , Z 03b and Z 04b is a protecting group, the product is the target compound (II B ).
[脱保護工程(2’)]
 不飽和炭化水素基導入工程(2’)での生成物が、保護基を有する化合物(II)である場合には、不飽和炭化水素基導入工程(2’)の後で、さらに、前記保護基を除去する工程(すなわち、脱保護工程(2’))を行う。脱保護工程(2’)を行うことにより、目的物である化合物(II)が得られる。
[Deprotection step (2 ')]
When the product in the unsaturated hydrocarbon group introduction step (2 ′) is the compound (II B ) having a protecting group, the compound is further added after the unsaturated hydrocarbon group introduction step (2 ′). The step of removing the protecting group (ie, the deprotection step (2 ′)) is performed. By performing the deprotection step (2 ′), the target compound (II B ) is obtained.
 脱保護工程(2’)は、脱保護の対象物として、保護基を有する化合物(I)に代えて、保護基を有する化合物(II)を用いる点を除けば、先に説明した製造方法(2)における、脱保護工程(2)と、同様の方法で行うことができる。
 例えば、脱保護の条件は、保護基の種類に応じて適宜選択すればよい。
 また、脱保護工程(2’)においては、反応終了後、公知の手法によって、必要に応じて後処理を行い、生成物を取り出すことができ、取り出した生成物は、さらに必要に応じて、精製してもよい。
Deprotection step (2 ') as an object of deprotection, in place of the compound having a protecting group (I B), except using a compound having a protecting group (II B), prepared as described above It can be performed in the same manner as in the deprotection step (2) in the method (2).
For example, the conditions for deprotection may be appropriately selected according to the type of the protecting group.
In addition, in the deprotection step (2 ′), after the reaction is completed, post-treatment may be carried out by a known method, if necessary, and the product may be taken out. It may be purified.
 脱保護工程(2’)においても、不飽和炭化水素基導入工程(2’)の場合と同様に、生成物として、塩を形成していないものと、塩を形成しているものと、のいずれもが得られる可能性がある。これらのいずれが得られるかは、脱保護工程(2’)の条件に依存する。 In the deprotection step (2 ′), as in the case of the unsaturated hydrocarbon group introduction step (2 ′), there are two types of products, one having no salt and the other having a salt. Either can be obtained. Which of these is obtained depends on the conditions of the deprotection step (2 ').
 不飽和炭化水素基導入工程(2’)においては、例えば、化合物(IIb)中の、Z01b、Z02b、Z03b及びZ04bのうち、炭素数1~9のアルキル基であるものは、通常、そのままで反応することはない。その結果、X01、X02、X03及びX04のうち、該当するものが炭素数1~9のアルキル基である場合の、化合物(II)又はその塩が生成する。
 また、不飽和炭化水素基導入工程(2’)においては、化合物(IIb)中の、Z01b、Z02b、Z03b及びZ04bのうち、保護基であるものは、通常、そのままで反応することはない。そこで、脱保護工程(2’)を行うことにより、前記保護基が水素原子で置換された構造の化合物又はその塩が生成する。これらの生成物は、X01、X02、X03及びX04のうち、該当するものが水素原子である場合の、化合物(II)又はその塩である。
In the unsaturated hydrocarbon group introduction step (2 ′), for example, among Z 01b , Z 02b , Z 03b and Z 04b in the compound (IIb), those which are alkyl groups having 1 to 9 carbon atoms are Usually, it does not react as it is. As a result, when the corresponding one of X 01 , X 02 , X 03 and X 04 is an alkyl group having 1 to 9 carbon atoms, compound (II B ) or a salt thereof is produced.
In addition, in the unsaturated hydrocarbon group introduction step (2 ′), of Z 01b , Z 02b , Z 03b and Z 04b in the compound (IIb), those which are protective groups usually react as they are. Never. Thus, by performing the deprotection step (2 ′), a compound having a structure in which the protective group is substituted with a hydrogen atom or a salt thereof is generated. These products are of X 01, X 02, X 03 and X 04, in the case that apply is a hydrogen atom, a compound (II B) or a salt thereof.
[造塩工程(2’)]
 不飽和炭化水素基導入工程(2’)を行い、必要に応じて、脱保護工程(2’)を行うことで、最終的に、塩を形成していない化合物(II)が得られた場合には、不飽和炭化水素基導入工程(2’)又は脱保護工程(2’)の後で、さらに、得られた化合物(II)をその塩とする工程(本明細書においては、「造塩工程(2’)」と称することがある)を行うことにより、化合物(II)の塩を製造できる。
[Salt-forming step (2 ')]
By performing the unsaturated hydrocarbon group introduction step (2 ′) and, if necessary, the deprotection step (2 ′), a compound (II B ) that did not form a salt was finally obtained. In some cases, after the unsaturated hydrocarbon group introduction step (2 ′) or the deprotection step (2 ′), the obtained compound (II B ) is further converted into a salt thereof (in the present specification, by performing it may be referred to as "salt forming step (2 ')") can be prepared salts of the compounds (II B).
 前記造塩工程(2’)は、例えば、塩を形成していない化合物(II)に代えて、塩を形成していない化合物(II)を用いる点以外は、上述の造塩工程(1’)の場合と同じ方法で行うことができる。 The salt-forming step (2 ′) is, for example, the above-mentioned salt-forming step (2A) except that the compound (II B ) that does not form a salt is used instead of the compound (II A ) that does not form a salt. This can be done in the same manner as in 1 ').
 製造方法(2’)の前記造塩工程(2’)においては、反応終了後、不飽和炭化水素基導入工程(2’)の場合と同様に、生成物に対して、後処理、取り出し、精製等の操作を行うことができる。 In the salt formation step (2 ′) of the production method (2 ′), after the reaction is completed, the product is post-treated, taken out, and treated in the same manner as in the unsaturated hydrocarbon group introduction step (2 ′). Operations such as purification can be performed.
[任意の工程(2’)]
 製造方法(2’)においては、不飽和炭化水素基導入工程(2’)と、脱保護工程(2’)と、造塩工程(2’)と、のいずれにも該当しない、任意の工程(2’)を、1種又は2種以上行ってもよい。
[Optional step (2 ')]
In the production method (2 ′), any step that does not correspond to any of the unsaturated hydrocarbon group introduction step (2 ′), the deprotection step (2 ′), and the salt formation step (2 ′) (2 ′) may be performed alone or in combination of two or more.
 前記任意の工程(2’)は、目的に応じて適宜選択でき、特に限定されない。
 例えば、不飽和炭化水素基導入工程(2’)で用いる化合物(IIb)として、市販品が存在しない場合には、市販品の原料を用い、公知の方法を単独で、又は2種以上組み合わせて行うことにより、化合物(IIb)を製造すればよい。
The optional step (2 ′) can be appropriately selected depending on the purpose, and is not particularly limited.
For example, when there is no commercial product as the compound (IIb) used in the unsaturated hydrocarbon group introduction step (2 ′), a commercially available raw material is used, and a known method is used alone or in combination of two or more. By performing the reaction, compound (IIb) may be produced.
 Z01b、Z02b、Z03b及びZ04bのいずれかが、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基である場合の化合物(IIb)は、例えば、上述の製造方法(1’)を利用することにより、製造できる。すなわち、化合物(IIa)において、X05をLGとし、かつ、n01を1とした化合物を、化合物(IIa)に代えて用いる点以外は、上述の製造方法(1’)と同じ方法によって、Z01b、Z02b、Z03b及びZ04bのいずれかが前記不飽和炭化水素基である場合の化合物(IIb)を製造できる。ただし、これは、このような化合物(IIb)の製造方法の一例である。 Any one of Z 01b , Z 02b , Z 03b and Z 04b has 1 to 4 triple bonds between carbon atoms, and may have a substituent, and may have 3 to 9 carbon atoms. Compound (IIb) can be produced, for example, by utilizing the above-mentioned production method (1 ′). That is, in the compound (IIa), except that a compound in which X 05 is LG 3 and n 01 is 1 is used in place of the compound (IIa), the same method as the above-mentioned production method (1 ′) is used. , Z 01b , Z 02b , Z 03b and Z 04b can be used to produce the compound (IIb) in the case where the compound is the unsaturated hydrocarbon group. However, this is an example of a method for producing such a compound (IIb).
<<化合物(II)の塩の製造方法>>
 ここまでは、化合物(II)の塩の製造方法として、前記製造方法(1’)又は(2’)において、造塩工程(1’)又は(2’)を行うことなく、化合物(II)の塩又は化合物(II)の塩を製造する方法と、造塩工程(1’)又は(2’)を行うことにより、化合物(II)の塩又は化合物(II)の塩を製造する方法、について説明した。ただし、造塩工程(1’)又は(2’)での塩の形成方法は、製造方法(1’)又は(2’)によって製造された化合物(II)への適用に限定されず、他の方法で製造された化合物(II)に対して、適用してもよい。
<< Method for producing salt of compound (II) >>
So far, as a method for producing a salt of compound (II), wherein in the production process (1 ') or (2'), a salt formation step (1 ') or (2') without performing, Compound (II A ) Or a salt of compound (II B ) and the salt-forming step (1 ′) or (2 ′) to obtain a salt of compound (II A ) or a salt of compound (II B ). The manufacturing method has been described. However, the method of forming a salt in the salt formation step (1 ′) or (2 ′) is not limited to the application to the compound (II) produced by the production method (1 ′) or (2 ′). May be applied to compound (II) produced by the method of (1).
 化合物(II)及びその塩の構造は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)、紫外・可視分光法(UV-VIS吸収スペクトル)、元素分析法等の公知の手法によって、確認できる。 The structures of the compound (II) and its salt include, for example, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR), ultraviolet / visible spectroscopy (UV-VIS absorption spectrum), It can be confirmed by a known method such as elemental analysis.
<<神経機能調節物質>>
 本発明の一実施形態に係る神経機能調節物質は、炭素原子間の三重結合(C≡C)を有する基を含む。
 炭素原子間の三重結合を有する基は、生体がシグナルを発生さない波数領域に、特異的なラマン散乱を生じることが知られており、ラマン顕微鏡を用い、ラマン散乱分光法によって検出できる。すなわち、本実施形態の神経機能調節物質は、炭素原子間の三重結合を有する基を含んでいるため、ラマン散乱分光法によって検出可能である。
<<<< neuronal function regulator >>
A neurological function modulating substance according to an embodiment of the present invention includes a group having a triple bond (C 炭素 C) between carbon atoms.
It is known that a group having a triple bond between carbon atoms causes specific Raman scattering in a wave number region where a living body does not generate a signal, and can be detected by Raman scattering spectroscopy using a Raman microscope. That is, since the nerve function regulating substance of the present embodiment contains a group having a triple bond between carbon atoms, it can be detected by Raman scattering spectroscopy.
 一方、末端部に炭素原子間の三重結合(C≡C)を有する化合物と、アジド基(-N=N=N)を有する化合物と、を反応させると、これら三重結合とアジド基との、[3+2]双極子付加環化反応により、高選択的に高反応率で、安定性の高い1,2,3-トリアゾール環を形成する。この反応はクリックケミストリー(Click Chemistry)を実現する手法の1種であり、クリック反応(Click Reaction)ともいわれる。
 本実施形態の神経機能調節物質のうち、末端部に炭素原子間の三重結合を有するものは、アジド基を有する化合物と、クリック反応させることが可能である。したがって、アジド基を有する化合物として色素(例えば蛍光ラベル)を用いることにより、前記神経機能調節物質を発光可能にラベル化できる。クリック反応は、高選択的かつ高反応率であるため、前記神経機能調節物質は、アジド基を有する色素として、多種類のものと反応可能であって、多様なラベル化が可能である。
On the other hand, when a compound having a triple bond between carbon atoms (C≡C) at the terminal and a compound having an azide group (—N = N + = N ) are reacted, these triple bond and azide group By this [3 + 2] dipolar cycloaddition reaction, a 1,2,3-triazole ring with high selectivity and high reaction rate and high stability is formed. This reaction is one type of technique for achieving click chemistry, and is also referred to as click reaction.
Among the nerve function regulating substances of the present embodiment, those having a triple bond between carbon atoms at the terminal can be click-reacted with a compound having an azide group. Therefore, by using a dye (for example, a fluorescent label) as the compound having an azide group, the nerve function regulating substance can be labeled so as to emit light. Since the click reaction is highly selective and has a high reaction rate, the nerve function-regulating substance can react with various kinds of dyes having an azide group, and can be labeled in various ways.
 クリック反応させる前記色素は、アジド基を有するものであれば、特に限定されない。市販品ではない前記色素は、例えば、アジド基を有しない市販品の公知の色素を、公知の方法でアジド化することで、製造できる。アジド化は、例えば、アジ化ナトリウム、トリメチルシリルアジド等のアジド化剤を用いる公知の方法で、行うことができる。 The dye to be click-reacted is not particularly limited as long as it has an azide group. The non-commercially available dye can be produced, for example, by azido-forming a commercially available known dye having no azido group by a known method. The azidation can be performed by a known method using an azidating agent such as sodium azide and trimethylsilyl azide.
 このように、本実施形態の神経機能調節物質は、ラマン散乱分光法による検出と、クリック反応を利用してラベル化した後の蛍光発光(上述の電磁波放出の一種である)による検出と、の2とおりの検出が可能であって、種々の検出法を適用できる。 As described above, the neurological function-modulating substance of the present embodiment includes detection by Raman scattering spectroscopy and detection by fluorescence emission (which is a kind of the above-described electromagnetic wave emission) after labeling using a click reaction. Two types of detection are possible, and various detection methods can be applied.
 なお、ここでは、アジド基を有する化合物として色素を挙げたが、目的に応じて、色素以外のアジド基を有する化合物を用いても、クリック反応を行うことが可能である。 Here, although a dye is described as a compound having an azide group, a click reaction can be performed by using a compound having an azide group other than the dye depending on the purpose.
 本実施形態の神経機能調節物質は、神経機能の調節に関わる生理活性を有する。したがって、本実施形態の神経機能調節物質は、神経細胞中へ取り込まれ、取り込まれた後は、そのままラマン散乱分光法によって検出可能であるし、又は、クリック反応を利用してラベル化した後の蛍光発光によっても検出可能であって、神経細胞への取り込みの状態を、簡便かつ実用的に評価できる。 神 経 The nerve function regulating substance of the present embodiment has a physiological activity related to regulation of nerve function. Therefore, the nerve function-modulating substance of the present embodiment is taken up into nerve cells, and after being taken up, can be directly detected by Raman scattering spectroscopy, or after labeling using a click reaction. It can also be detected by fluorescence emission, and the state of uptake into nerve cells can be easily and practically evaluated.
 神経細胞中に取り込まれる色素としては、ドーパミン含有神経細胞中に取り込まれ、この細胞中で検出可能な、下記式で表される蛍光緑色色素FFN511が知られている(特許文献1参照)。この色素の分子量は、他の蛍光色素の分子量と比べると比較的小さいものの、ドーパミンの分子量の約2倍程度であって、標的分子の分子量と比べるとまだ大きい。また、この色素は、生理活性を有しないと考えられ、さらに、必ずしも一般的ではない短波長の光を吸収して、幅広い波長帯の光を放出するため、他の色素との併用が困難であり、代替の色素が存在しないなど、好ましくない特性を多く有している。
 これに対して、本実施形態の神経機能調節物質は、上述のとおり、生理活性を有し、種々の手段で検出できるため、極めて有用性が高い。
As a dye incorporated into nerve cells, a fluorescent green dye FFN511 represented by the following formula, which is incorporated into dopamine-containing nerve cells and is detectable in these cells, is known (see Patent Document 1). Although the molecular weight of this dye is relatively small as compared with the molecular weights of other fluorescent dyes, it is about twice as high as the molecular weight of dopamine and is still larger than the molecular weight of the target molecule. In addition, this dye is considered to have no biological activity, and further absorbs light of a short wavelength, which is not always common, and emits light in a wide wavelength range, so that it is difficult to use it in combination with other dyes. And has many undesirable properties, such as the absence of alternative dyes.
On the other hand, as described above, the nerve function regulating substance of the present embodiment has a physiological activity and can be detected by various means, and thus has extremely high utility.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 本実施形態の神経機能調節物質は、ドーパミン、ノルアドレナリン、アドレナリン若しくはセロトニン中の、1個又は2個以上の水素原子が、前記炭素原子間の三重結合を有する基で置換された構造を有する化合物又はその塩(本明細書においては、これらを包括して「アナログ物質」と称することがある)であることが好ましい。ドーパミン、ノルアドレナリン、アドレナリン及びセロトニンは、脳内で作用する天然由来の神経機能調節物質として重要であり、しかも、神経細胞への取り込み以降の動態について、詳細は不明であって、精神疾患をはじめとする各種疾病の発症への関わり方も不明である。したがって、これらのアナログである、上述の化合物又はその塩は、これら不明点を解消するための手段を提供するものであって、極めて有用性が高い。
 本実施形態の前記アナログ物質には、先に説明した化合物(I)又はその塩に包含されるもの、及び、先に説明した化合物(II)又はその塩に包含されるもの、がある。
The neurological function-modulating substance of the present embodiment is a compound having a structure in which one or two or more hydrogen atoms in dopamine, noradrenaline, adrenaline or serotonin are substituted with a group having a triple bond between carbon atoms or It is preferably a salt thereof (these may be collectively referred to as "analog substance" in this specification). Dopamine, noradrenaline, adrenaline, and serotonin are important as naturally-occurring nerve function regulators that act in the brain.Moreover, the dynamics after uptake into nerve cells are unknown, and mental disorders and other diseases are unknown. It is also unknown how they are involved in the onset of various diseases. Therefore, the above-mentioned compounds or salts thereof, which are analogs thereof, provide a means for solving these unknown points, and have extremely high utility.
The analog substance of the present embodiment includes those contained in the compound (I) or a salt thereof described above, and those contained in the compound (II) or a salt thereof described above.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 本実施形態の前記アナログ物質において、炭素原子間の三重結合を有する基で置換される水素原子の位置は、特に限定されない。
 本実施形態の前記アナログ物質において、炭素原子間の三重結合を有する基で置換される水素原子の数は、特に限定されないが、1~6個であることが好ましく、例えば、1~5個、1~4個、1~3個、1又は2個、及び1個、のいずれであってもよい。
In the analog substance of the present embodiment, the position of the hydrogen atom substituted with a group having a triple bond between carbon atoms is not particularly limited.
In the analog substance of the present embodiment, the number of hydrogen atoms replaced with a group having a triple bond between carbon atoms is not particularly limited, but is preferably 1 to 6, for example, 1 to 5, Any of 1 to 4, 1 to 3, 1 or 2, and 1 may be used.
 本実施形態の前記アナログ物質のうち、ドーパミンのアナログ物質としては、例えば、ドーパミンにおいて、末端のアミノ基中の1個若しくは2個の水素原子が、炭素原子間の三重結合を有する基で置換された構造の化合物又はその塩;1個又は2個のヒドロキシ基中の水素原子が、炭素原子間の三重結合を有する基で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩;ベンゼン環骨格を構成している炭素原子のうち、2-アミノエチル基が結合している炭素原子と、そのパラ位の炭素原子と、の間に位置している、互いに隣接する2個の炭素原子のいずれか一方又は両方に結合している水素原子が、炭素原子間の三重結合を有する基で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩;これら3群中のいずれかの化合物又はその塩において、前記アミノ基又はヒドロキシ基のうち、炭素原子間の三重結合を有する基で置換されていない水素原子が、アルキル基(好ましくは炭素数1~9のアルキル基)で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩等が挙げられる。 Among the analog substances of the present embodiment, as dopamine analog substances, for example, in dopamine, one or two hydrogen atoms in a terminal amino group are substituted with a group having a triple bond between carbon atoms. Or a salt thereof having a structure in which a hydrogen atom in one or two hydroxy groups is replaced by a group having a triple bond between carbon atoms (the number of substitutions and the substitution position at this time are not particularly limited) Or a salt thereof, among the carbon atoms constituting the benzene ring skeleton, which are located between the carbon atom to which the 2-aminoethyl group is bonded and the carbon atom at the para position thereof, A structure in which a hydrogen atom bonded to one or both of two adjacent carbon atoms is substituted with a group having a triple bond between carbon atoms (the number of substitutions and substitution positions are not particularly limited.) Or a salt thereof; in any of the compounds or salts thereof in any of these three groups, a hydrogen atom which is not substituted with a group having a triple bond between carbon atoms in the amino group or the hydroxy group, A compound having a structure substituted with an alkyl group (preferably an alkyl group having 1 to 9 carbon atoms) (the number and position of substitution at this time are not particularly limited), a salt thereof, and the like.
 本実施形態の前記アナログ物質のうち、ノルアドレナリンのアナログ物質としては、例えば、末端のアミノ基中の1個若しくは2個の水素原子が、炭素原子間の三重結合を有する基で置換された構造の化合物又はその塩;1個、2個又は3個のヒドロキシ基中の水素原子が、炭素原子間の三重結合を有する基で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩;ベンゼン環骨格を構成している炭素原子のうち、2-アミノ-1-ヒドロキシエチル基が結合している炭素原子と、そのパラ位の炭素原子と、の間に位置している、互いに隣接する2個の炭素原子のいずれか一方又は両方に結合している水素原子が、炭素原子間の三重結合を有する基で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩;これら3群中のいずれかの化合物又はその塩において、前記アミノ基又はヒドロキシ基のうち、炭素原子間の三重結合を有する基で置換されていない水素原子が、アルキル基(好ましくは炭素数1~9のアルキル基)で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩等が挙げられる。 Among the analog substances of the present embodiment, examples of the analog substance of noradrenaline include, for example, a structure in which one or two hydrogen atoms in a terminal amino group are substituted with a group having a triple bond between carbon atoms. Compound or salt thereof; a structure in which a hydrogen atom in one, two or three hydroxy groups is substituted with a group having a triple bond between carbon atoms (the number and position of substitution are not particularly limited) Or a salt thereof, which is located between the carbon atom to which the 2-amino-1-hydroxyethyl group is bonded and the para-position carbon atom among the carbon atoms constituting the benzene ring skeleton. A structure in which a hydrogen atom bonded to one or both of two carbon atoms adjacent to each other is replaced with a group having a triple bond between carbon atoms (the number of substitutions and the substitution position at this time are Or a salt thereof; in any of these three groups or a salt thereof, a hydrogen atom which is not substituted with a group having a triple bond between carbon atoms in the amino group or the hydroxy group And a compound having a structure substituted with an alkyl group (preferably an alkyl group having 1 to 9 carbon atoms) (the number and position of substitution are not particularly limited) or a salt thereof.
 本実施形態の前記アナログ物質のうち、アドレナリンのアナログ物質としては、例えば、末端のメチルアミノ基中の1個の水素原子が、炭素原子間の三重結合を有する基で置換された構造の化合物又はその塩;1個、2個又は3個のヒドロキシ基中の水素原子が、炭素原子間の三重結合を有する基で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩;ベンゼン環骨格を構成している炭素原子のうち、(1-ヒドロキシ-2-メチルアミノ)エチル基が結合している炭素原子と、そのパラ位の炭素原子と、の間に位置している、互いに隣接する2個の炭素原子のいずれか一方又は両方に結合している水素原子が、炭素原子間の三重結合を有する基で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩;これら3群中のいずれかの化合物又はその塩において、メチルアミノ基又は前記ヒドロキシ基のうち、炭素原子間の三重結合を有する基で置換されていない水素原子が、アルキル基(好ましくは炭素数1~9のアルキル基)で置換された構造(このときの置換数及び置換位置は特に限定されない)の化合物又はその塩等が挙げられる。 Among the analog substances of the present embodiment, examples of the adrenaline analog substance include a compound having a structure in which one hydrogen atom in a terminal methylamino group is substituted with a group having a triple bond between carbon atoms or A salt thereof; a compound having a structure in which a hydrogen atom in one, two or three hydroxy groups is substituted with a group having a triple bond between carbon atoms (the number and position of substitution are not particularly limited) Or a salt thereof, among carbon atoms constituting the benzene ring skeleton, a position between the carbon atom to which the (1-hydroxy-2-methylamino) ethyl group is bonded and the carbon atom at the para position. A structure in which a hydrogen atom bonded to one or both of two carbon atoms adjacent to each other is substituted with a group having a triple bond between carbon atoms (the number of substitutions and the substitution positions at this time) Is Or a salt thereof; a hydrogen atom which is not substituted with a methylamino group or a hydroxy group having a triple bond between carbon atoms in any of the compounds or salts thereof in the above three groups. Is substituted with an alkyl group (preferably an alkyl group having 1 to 9 carbon atoms), and a compound having a structure (the number and position of substitution at this time are not particularly limited) or a salt thereof.
 本実施形態の前記アナログ物質のうち、セロトニンのアナログ物質としては、例えば、末端のアミノ基中の1個若しくは2個の水素原子が、炭素原子間の三重結合を有する基で置換された構造の化合物又はその塩;ヒドロキシ基中の水素原子が、炭素原子間の三重結合を有する基で置換された構造の化合物又はその塩;含窒素環を構成している窒素原子に結合している水素原子が、炭素原子間の三重結合を有する基で置換された構造の化合物又はその塩;ベンゼン環骨格を構成している炭素原子のうち、ヒドロキシ基が結合している炭素原子に対して、オルト位の2個の炭素原子のいずれか一方又は両方に結合している水素原子が、炭素原子間の三重結合を有する基で置換された構造の化合物又はその塩;ベンゼン環骨格を構成している炭素原子のうち、ヒドロキシ基が結合している炭素原子に対して、メタ位の炭素原子に結合している水素原子が、炭素原子間の三重結合を有する基で置換された構造の化合物又はその塩等が挙げられる。 Among the analog substances of the present embodiment, as the analog substance of serotonin, for example, one having one or two hydrogen atoms in a terminal amino group substituted with a group having a triple bond between carbon atoms is used. Compound or salt thereof; Compound having a structure in which a hydrogen atom in a hydroxy group is substituted with a group having a triple bond between carbon atoms or a salt thereof; Hydrogen atom bonded to a nitrogen atom constituting a nitrogen-containing ring Is a compound having a structure substituted with a group having a triple bond between carbon atoms or a salt thereof; of the carbon atoms constituting the benzene ring skeleton, the carbon atom to which the hydroxy group is bonded is ortho-positioned Or a salt thereof, in which a hydrogen atom bonded to one or both of the two carbon atoms is replaced by a group having a triple bond between carbon atoms; or a carbon having a benzene ring skeleton. A compound having a structure in which a hydrogen atom bonded to a carbon atom at a meta position with respect to a carbon atom bonded to a hydroxy group is replaced by a group having a triple bond between carbon atoms, or a salt thereof. And the like.
 本実施形態の神経機能調節物質としては、例えば、上述の化合物(I)又はその塩からなるもの、及び、上述の化合物(II)又はその塩からなるもの、が挙げられる。化合物(I)又はその塩、及び、化合物(II)又はその塩は、天然由来の神経機能調節物質と同様に、神経細胞に認識されるために必要とされる分子構造を、高度に保持しているため、神経機能調節物質として機能すると推測される。 神 経 The neurological function regulating substance of the present embodiment includes, for example, those comprising the above-mentioned compound (I) or a salt thereof, and those comprising the above-mentioned compound (II) or a salt thereof. The compound (I) or a salt thereof, and the compound (II) or a salt thereof have a high degree of retention of a molecular structure required for recognition by a nerve cell, similarly to a naturally-occurring nerve function regulator. Therefore, it is presumed to function as a nerve function regulator.
<<神経機能調節物質の評価方法>>
 本発明の一実施形態に係る神経機能調節物質の評価方法は、前記神経機能調節物質の、神経細胞中への取り込みの状態、又は、取り込みによってもたらされる細胞応答の状態を評価する方法である。
 上述の本実施形態の神経機能調節物質は、先の説明のとおり、生理活性を有しており、神経細胞と共存させておくことで、神経細胞中に取り込まれる。そして、神経細胞中の前記神経機能調節物質は、先の説明のとおり、例えば、ラマン散乱分光法か、又は、クリック反応を利用してラベル化した後の蛍光発光によって、検出できる。
 したがって、前記神経機能調節物質を評価するときには、前記神経機能調節物質を神経細胞と共存させておき、次いで、神経細胞中に取り込まれた前記神経機能調節物質を検出すればよい。
<< Evaluation method for neurological function modulator >>
The method for evaluating a nerve function-modulating substance according to one embodiment of the present invention is a method for evaluating the state of uptake of the nerve function-modulating substance into nerve cells or the state of a cellular response caused by the uptake.
As described above, the nerve function regulating substance of the present embodiment has a physiological activity, and is taken into a nerve cell by coexisting with the nerve cell. Then, as described above, the nerve function regulating substance in the nerve cell can be detected by, for example, Raman scattering spectroscopy or fluorescence emission after labeling using a click reaction.
Therefore, when evaluating the nerve function regulating substance, the nerve function regulating substance may be allowed to coexist with a nerve cell, and then the nerve function regulating substance taken into the nerve cell may be detected.
 本実施形態において、神経機能調節物質の神経細胞中への取り込みの状態を評価する、とは、例えば、神経細胞中での神経機能調節物質の取り込み場所(換言すると分布)、前記取り込み場所における神経機能調節物質の量、これら取り込み場所又は量の経時変化等、を特定することを意味する。
 本実施形態によって、神経機能調節物質の神経細胞中への取り込みの状態を評価することにより、神経細胞中での神経機能調節物質の役割(換言すると生理活性)と、その程度を評価できる場合がある。例えば、神経細胞は、その領域によって、特有の作用を示すことがある。そこで、神経細胞中に取り込ませた神経機能調節物質の神経細胞中における検出箇所(換言すると取り込み場所)を特定することにより、この神経機能調節物質の神経細胞中における役割を特定できる場合がある。また、前記取り込み場所における神経機能調節物質の量を特定することにより、神経細胞中での神経機能調節物質の生理活性の強さを特定できる場合がある。
 ただし、これらは、評価の一態様であり、評価はこれらに限定されない。
In the present embodiment, to evaluate the state of uptake of a nerve function regulating substance into a nerve cell means, for example, the place (in other words, distribution) of the nerve function regulating substance uptake in a nerve cell, This means that the amount of the function-modulating substance, the place of incorporation of the substance or the change over time of the amount, and the like are specified.
According to this embodiment, the role (in other words, physiological activity) of the nerve function modulator in the nerve cell and the degree thereof can be evaluated by evaluating the state of uptake of the nerve function modulator into the nerve cell. is there. For example, nerve cells may have a specific effect depending on the area. Therefore, by specifying a detection site (in other words, an uptake site) in the nerve cell of the nerve function modulator incorporated in the nerve cell, the role of the nerve function modulator in the nerve cell may be specified. In some cases, by specifying the amount of the nerve function-regulating substance at the location of the uptake, the strength of the physiological activity of the nerve function-modulating substance in the nerve cell can be specified.
However, these are one mode of evaluation, and the evaluation is not limited to these.
 本実施形態において、神経機能調節物質の神経細胞中への取り込みによってもたらされる細胞応答の状態を評価する、とは、例えば、神経細胞中又は神経細胞外における、この神経機能調節物質以外の他の物質の濃度変化等を特定することを意味する。
 本実施形態によって、前記細胞応答の状態を評価することにより、神経細胞中での神経機能調節物質の役割(換言すると生理活性)を評価できる場合がある。例えば、ドーパミンやノルアドレナリン等のある種の神経機能調節物質は、神経細胞の表面に存在する特定種の受容体に結合し、この神経細胞を活性化することで、種々の細胞応答を引き起こす。このような細胞応答の1種で比較的よく知られているものとしては、サイクリックAMP(cAMP)等のセカンドメッセンジャーの濃度の増減を伴う細胞内情報伝達がある。そこで、例えば、神経機能調節物質を神経細胞中に取り込ませた後、これによって引き起こされる、他の物質の濃度変化を特定することにより、この神経機能調節物質の神経細胞中における役割を特定できる場合がある。
 ただし、これは、評価の一態様であり、評価はこれらに限定されない。
In the present embodiment, to evaluate the state of a cellular response brought about by the uptake of a nerve function modulator into a nerve cell means, for example, in a nerve cell or outside a nerve cell, other than the nerve function modulator. This means specifying changes in the concentration of a substance.
According to the present embodiment, the role (in other words, physiological activity) of a nerve function regulator in a nerve cell may be evaluated by evaluating the state of the cell response. For example, certain neurological modulators such as dopamine and noradrenaline bind to specific receptors on the surface of nerve cells and activate these nerve cells to cause various cellular responses. One such cell response that is relatively well known is intracellular signaling with increasing or decreasing concentrations of second messengers such as cyclic AMP (cAMP). Therefore, for example, when the function of a nerve function modulator in a nerve cell can be specified by specifying the change in the concentration of another substance caused by incorporating the nerve function modulator into a nerve cell and then causing the change in the concentration of another substance caused thereby. There is.
However, this is one mode of evaluation, and the evaluation is not limited to these.
 本実施形態によれば、神経機能調節物質の、神経細胞中への取り込みの状態を評価可能であるため、神経機能調節物質の、神経細胞中からの放出の有無も同時に評価可能である。また、神経機能調節物質の取り込みの状態や、取り込みによってもたらされる細胞応答の状態を評価することで、取り込み後の脳組織内における神経機能調節物質の動態を評価できる。 According to the present embodiment, it is possible to evaluate the state of uptake of the nerve function regulating substance into the nerve cell, so that the presence or absence of the release of the nerve function regulating substance from the nerve cell can be evaluated at the same time. In addition, by evaluating the state of uptake of the nerve function-modulating substance and the state of the cellular response caused by the uptake, the dynamics of the nerve function-modulating substance in the brain tissue after the uptake can be evaluated.
 本実施形態の評価方法によれば、このような神経機能調節物質の神経細胞への取り込みの状態、又は、取り込みによってもたらされる細胞応答の状態を、実用的に評価できるため、この評価方法は、例えば、精神疾患の治療薬の開発への利用に好適であり、精神医学及び薬学の分野で有用である。 According to the evaluation method of the present embodiment, the state of the uptake of such a nerve function regulating substance into a nerve cell, or the state of a cellular response brought about by the uptake, can be evaluated practically. For example, it is suitable for use in the development of a therapeutic drug for a mental disorder, and is useful in the fields of psychiatry and pharmacy.
 本実施形態の評価方法で一度に用いる神経機能調節物質は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 例えば、検出方法が異なる2種以上の神経機能調節物質を併用し、これら2種以上の神経機能調節物質を同時に検出することにより、これら神経機能調節物質の神経細胞中での役割を、効率的に特定できる場合がある。
The neurological function regulating substance used at one time in the evaluation method of the present embodiment may be only one kind, or two or more kinds, and when two or more kinds, the combination and the ratio thereof are optional. You can choose.
For example, by using two or more types of neurological modulators having different detection methods in combination and simultaneously detecting these two or more types of neurological modulators, the role of these neurological modulators in nerve cells can be efficiently determined. In some cases.
 検出方法が異なる2種以上の神経機能調節物質を同時に検出する方法としては、例えば、これら神経機能調節物質のうち、1種又は2種以上をラマン散乱分光法によって検出し、他の1種又は2種以上を、色素とのクリック反応を利用してラベル化した後の蛍光発光によって検出する方法;2種以上のこれら神経機能調節物質を、検出波長が互いに異なる色素とのクリック反応を利用して、それぞれラベル化した後に、波長が異なる蛍光の発光によって検出する方法等が挙げられる。 As a method for simultaneously detecting two or more types of neurological modulators having different detection methods, for example, one or two or more of these neuronal functional modulators are detected by Raman scattering spectroscopy, and the other A method of detecting two or more kinds of the neuronal function regulating substances by labeling using a click reaction with a dye and then using fluorescence emission after labeling the two or more kinds of these nerve function modulators using a click reaction with a dye having a different detection wavelength. Then, after labeling each, a method of detecting by fluorescence emission of different wavelengths, and the like can be mentioned.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は以下に示す実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples described below.
 なお、以下の実施例で記載している各略号は、それぞれ以下の意味である。
 Me:メチル基
 Et:エチル基
 Pr:イソプロピル基(別名:1-メチルエチル基)
 Ac:アセチル基
 Ts:p-トルエンスルホニル基
 Boc:tert-ブトキシカルボニル基
 DMF:N,N-ジメチルホルムアミド
 THF:テトラヒドロフラン
 TFA:2,2,2-トリフルオロ酢酸
 DMAP:N,N-ジメチル-4-アミノピリジン
 LDA:リチウムジイソプロピルアミド
The abbreviations described in the following examples have the following meanings.
Me: methyl group Et: ethyl group i Pr: isopropyl group (alias: 1-methylethyl group)
Ac: acetyl group Ts: p-toluenesulfonyl group Boc: tert-butoxycarbonyl group DMF: N, N-dimethylformamide THF: tetrahydrofuran TFA: 2,2,2-trifluoroacetic acid DMAP: N, N-dimethyl-4- Aminopyridine LDA: lithium diisopropylamide
<<化合物(I)の製造>>
[実施例1]
 以下に示す経路で、下記式(I)-1-101で表される化合物(本明細書においては、「化合物(I)-1-101」と略記することがある)、下記式(I)-1-102で表される化合物(本明細書においては、「化合物(I)-1-102」と略記することがある)、及び下記式(I)-1-103で表される化合物(本明細書においては、「化合物(I)-1-103」と略記することがある)を製造した。
<< Production of Compound (I) >>
[Example 1]
A compound represented by the following formula (I) -1-101 (which may be abbreviated as “compound (I) -1-101” in the present specification) by the following route, and a compound represented by the following formula (I) A compound represented by formula (I) -1-102 (hereinafter, may be abbreviated as “compound (I) -1-102”) and a compound represented by the following formula (I) -1-103 ( In this specification, the compound may be abbreviated as “compound (I) -1-103”.
<化合物(I)-1-101の製造>
(N-トリフルオロアセチルドーパミンの製造)
 容量100mLの丸底フラスコ中で、ドーパミン塩酸塩(2.20g、11.6mmol)、及びメタノール(12mL)を混合し、窒素ガスを30分流通させることで、得られた混合物を脱気した。
 次いで、この脱気済みの混合物に、トリフルオロ酢酸エチル(2.0mL、16.8mmol)、及びN,N-ジイソプロピルエチルアミン(2.0mL、11.6mmol)を添加し、室温下で30時間撹拌して、反応させた。
 次いで、得られた反応液に1N塩酸を加えて、反応を停止させた。そして、酢酸エチルで抽出を行い、集められた有機層を無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去することにより、白色個体として、N-トリフルオロアセチルドーパミンを得た。
<Production of Compound (I) -1-101>
(Production of N-trifluoroacetyldopamine)
In a round bottom flask having a capacity of 100 mL, dopamine hydrochloride (2.20 g, 11.6 mmol) and methanol (12 mL) were mixed, and nitrogen gas was allowed to flow for 30 minutes to degas the resulting mixture.
Next, ethyl trifluoroacetate (2.0 mL, 16.8 mmol) and N, N-diisopropylethylamine (2.0 mL, 11.6 mmol) were added to the degassed mixture, and the mixture was stirred at room temperature for 30 hours. And reacted.
Next, 1N hydrochloric acid was added to the obtained reaction solution to stop the reaction. Then, extraction was performed with ethyl acetate, the collected organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain N-trifluoroacetyldopamine as a white solid.
(N-トリフルオロアセチル-O,O’-イソプロピリデンドーパミンの製造)
 容量300mLの丸底フラスコ中に、上記で得られたN-トリフルオロアセチルドーパミンの全量を精製することなく添加し、さらに、2,2-ジメトキシプロパン(5.69 mL、46.4mmol)、p-トルエンスルホン酸・一水和物(0.23g、1.2mmol)、及びベンゼン(120mL)を添加した。
 次いで、この状態の丸底フラスコを、モレキュラーシーブ4Aを充填した滴下漏斗と接続し、さらに、水分を十分に除去したコンデンサーと接続した。
 次いで、この状態で、丸底フラスコ中の混合物を105℃で39時間撹拌し、室温下で溶媒を減圧留去した。
 次いで、得られた粗生成物を塩化メチレン中で溶解させ、得られた溶液を用いて、シリカゲルを充填した管(長さ3cm)の内部を通過させた。
 次いで、溶媒を除去し、析出した黄色味がかった固体をろ別して、ヘキサンで洗浄し、乾燥させることで、目的物として、N-トリフルオロアセチル-O,O’-イソプロピリデンドーパミンを得た(収量2.50g(8.64mmol)、2工程合計収率75%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.56であった。
 得られたN-トリフルオロアセチル-O,O’-イソプロピリデンドーパミンのNMRデータを以下に示す。
(Production of N-trifluoroacetyl-O, O'-isopropylidendopamine)
The whole amount of N-trifluoroacetyldopamine obtained above was added to a 300 mL round bottom flask without purification, and further, 2,2-dimethoxypropane (5.69 mL, 46.4 mmol), p -Toluenesulfonic acid monohydrate (0.23 g, 1.2 mmol) and benzene (120 mL) were added.
Next, the round bottom flask in this state was connected to a dropping funnel filled with the molecular sieve 4A, and further connected to a condenser from which water was sufficiently removed.
Next, in this state, the mixture in the round bottom flask was stirred at 105 ° C. for 39 hours, and the solvent was distilled off under reduced pressure at room temperature.
Next, the obtained crude product was dissolved in methylene chloride, and the obtained solution was used to pass through a tube (3 cm in length) filled with silica gel.
Next, the solvent was removed, and the deposited yellowish solid was filtered off, washed with hexane, and dried to obtain N-trifluoroacetyl-O, O'-isopropylidendopamine as a target substance ( Yield 2.50 g (8.64 mmol), total yield of two steps 75%).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.56. .
The NMR data of the obtained N-trifluoroacetyl-O, O'-isopropylidendopamine are shown below.
 1H NMR (400 MHz, CDCl3) δ1.67 (s, 6 H), 2.77-2.80 (m, 2 H), 3.54-3.59 (m, 2 H), 6.35 (br, 1 H), 6.58-6.59 (m, 2 H), 6.67-6.69 (m, 1 H). 1 H NMR (400 MHz, CDCl 3 ) δ1.67 (s, 6 H), 2.77-2.80 (m, 2 H), 3.54-3.59 (m, 2 H), 6.35 (br, 1 H), 6.58- 6.59 (m, 2 H), 6.67-6.69 (m, 1 H).
(N-プロパルギル-N-トリフルオロアセチル-O,O’-イソプロピリデンドーパミンの製造)
 容量50mLの丸底フラスコ中に、水素化ナトリウム(濃度60質量%、55mg(水素化ナトリウムとして33mg)、1.38mmol)を加えた。この水素化ナトリウムは、ヘキサン(10mL)で3回洗浄したものである。そして、残留しているヘキサンを減圧留去し、DMF(5mL)を加えて,得られた懸濁液を0℃で撹拌した。
 次いで、ここに、上記で得られたN-トリフルオロアセチル-O,O’-イソプロピリデンドーパミン(289mg、1.00mmol)のDMF溶液(5mL)を添加し、得られた混合物を0℃で4時間撹拌した。
 次いで、ここにプロパルギルブロミド(88μL、1.1mmol)を添加し、得られた混合物を室温下で14時間撹拌して、反応させた。
 次いで、得られた反応液を0℃に冷却し、これに水を加えて、反応を停止させた。そして、得られた混合液に対して、ジエチルエーテル(30mL)で抽出を行い、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥させた。
 次いで、溶媒を減圧留去し、得られた混合物を用いて、シリカゲルを充填した管の内部を通過させ、酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒で溶出させ、粗生成物を得た。
 次いで、得られた粗生成物をフラッシュクロマトグラフィーにより、精製した。このとき、移動相としては、酢酸エチルとヘキサンとの混合溶媒を用い、酢酸エチルの濃度を10体積%から20体積%まで増大させて、目的物を分離し、溶出させ、溶出物から溶媒を減圧留去した。
 以上により、薄黄色油状物として、目的物であるN-プロパルギル-N-トリフルオロアセチル-O,O’-イソプロピリデンドーパミンを得た(収量300mg(0.917mmol)、収率92%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.67であった。
 得られたN-プロパルギル-N-トリフルオロアセチル-O,O’-イソプロピリデンドーパミンのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of N-propargyl-N-trifluoroacetyl-O, O'-isopropylidendopamine)
Sodium hydride (concentration: 60% by mass, 55 mg (33 mg as sodium hydride), 1.38 mmol) was added to a 50 mL round bottom flask. This sodium hydride was washed three times with hexane (10 mL). Then, the remaining hexane was distilled off under reduced pressure, DMF (5 mL) was added, and the resulting suspension was stirred at 0 ° C.
Then, a DMF solution (5 mL) of the N-trifluoroacetyl-O, O'-isopropylidendopamine (289 mg, 1.00 mmol) obtained above was added thereto, and the resulting mixture was added at 0 ° C for 4 hours. Stirred for hours.
Next, propargyl bromide (88 μL, 1.1 mmol) was added thereto, and the resulting mixture was stirred at room temperature for 14 hours to be reacted.
Next, the obtained reaction solution was cooled to 0 ° C., and water was added thereto to stop the reaction. Then, the obtained mixture was extracted with diethyl ether (30 mL), and the organic layer was washed with water and dried over anhydrous sodium sulfate.
Then, the solvent was distilled off under reduced pressure, and the obtained mixture was passed through a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). The product was obtained.
Then, the obtained crude product was purified by flash chromatography. At this time, using a mixed solvent of ethyl acetate and hexane as the mobile phase, increasing the concentration of ethyl acetate from 10% by volume to 20% by volume, separating and eluting the target substance, and removing the solvent from the eluate The solvent was distilled off under reduced pressure.
Thus, N-propargyl-N-trifluoroacetyl-O, O'-isopropylidendopamine, which was the target substance, was obtained as a pale yellow oil (yield 300 mg (0.917 mmol), yield 92%).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.67. .
The NMR data and HRMS (ESI) data of the obtained N-propargyl-N-trifluoroacetyl-O, O'-isopropylidendopamine are shown below.
 1H NMR (400 MHz, CDCl3) δ1.67 (s, 6 H), 2.35-2.37 (m, 1 H), 2.86 (t, J = 7.6 Hz, 2 H), 3.68-3.73 (m, 2 H), 4.04 and 4.28 (rotameric d, J = 2.0 Hz, 2 H), 6.60-6.68 (m, 3 H).
 13C NMR (100 MHz, CDCl3, mixture of two rotamers) δ25.70 and 25.73 (two methyl carbons of the isopropylidene moiety were overlapping), 32.6 and 34.8, 36.0 and 37.8 (q for δ37.8 peak, J = 3.7 Hz), 48.8 and 49.2 (q for δ48.8 peak, J = 2.8 Hz), 73.4 and 73.6, 76.7 and 76.8, 108.2 and 108.3, 108.7 and 108.8, 116.1 and 116.3 (q, J = 292 Hz), 117.9 and 118.0, 120.98 and 121.00, 129.9 and 130.8, 146.2 and 146.4, 147.6 and 147.7, 156.2 and 156.6 (q, J = 37.0 Hz).
 HRMS (ESI) calcd for C16H17F3NO3 [M + H]+: 328.1155, found: 328.1168.
1 H NMR (400 MHz, CDCl 3 ) δ1.67 (s, 6 H), 2.35-2.37 (m, 1 H), 2.86 (t, J = 7.6 Hz, 2 H), 3.68-3.73 (m, 2 H), 4.04 and 4.28 (rotameric d, J = 2.0 Hz, 2 H), 6.60-6.68 (m, 3 H).
13 C NMR (100 MHz, CDCl 3 , mixture of two rotamers) δ25.70 and 25.73 (two methyl carbons of the isopropylidene moiety were overlapping), 32.6 and 34.8, 36.0 and 37.8 (q for δ37.8 peak, J = 3.7 Hz), 48.8 and 49.2 (q for δ48.8 peak, J = 2.8 Hz), 73.4 and 73.6, 76.7 and 76.8, 108.2 and 108.3, 108.7 and 108.8, 116.1 and 116.3 (q, J = 292 Hz), 117.9 and 118.0, 120.98 and 121.00, 129.9 and 130.8, 146.2 and 146.4, 147.6 and 147.7, 156.2 and 156.6 (q, J = 37.0 Hz).
HRMS (ESI) calcd for C 16 H 17 F 3 NO 3 [M + H] + : 328.1155, found: 328.1168.
(化合物(I)-1-101の製造)
 容量50mLの丸底フラスコ中で、N-プロパルギル-N-トリフルオロアセチル-O,O’-イソプロピリデンドーパミン(350mg、1.07mmol)、及びTHF(7mL)を混合した。
 次いで、得られた混合液に、水酸化リチウム水溶液(濃度1M、2.1mL)を添加し、得られた混合物を室温下で15時間撹拌して、反応させた。
 次いで、得られた反応液を0℃に冷却し、ここに1N塩酸を加えて、反応を停止させた。さらに塩化メチレンを加えて、得られた混合物に対して、水で抽出を行い、水層を塩化メチレンで洗浄した。さらに、飽和炭酸水素ナトリウム水溶液を用いて、水層を塩基性とし、この水層に対して、酢酸エチルで抽出を行い、有機層を無水硫酸ナトリウムで乾燥させ、減圧濃縮することにより、薄黄色油状物として、N-プロパルギル-O,O’-イソプロピリデンドーパミン(すなわち、化合物(I)-1-101)を得た(収量220mg(0.951mmol)、収率89%)。
 得られた化合物(I)-1-101のNMRデータ、HRMS(ESI)データを以下に示す。
(Production of Compound (I) -1-101)
In a 50 mL round bottom flask, N-propargyl-N-trifluoroacetyl-O, O'-isopropylidendopamine (350 mg, 1.07 mmol) and THF (7 mL) were mixed.
Next, an aqueous solution of lithium hydroxide (concentration 1M, 2.1 mL) was added to the obtained mixture, and the obtained mixture was stirred at room temperature for 15 hours to be reacted.
Next, the obtained reaction solution was cooled to 0 ° C., and 1N hydrochloric acid was added thereto to stop the reaction. Methylene chloride was further added, and the obtained mixture was extracted with water, and the aqueous layer was washed with methylene chloride. Further, the aqueous layer was made basic with a saturated aqueous solution of sodium hydrogencarbonate, the aqueous layer was extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a light yellow color. N-propargyl-O, O'-isopropylidendopamine (ie, compound (I) -1-101) was obtained as an oil (yield 220 mg (0.951 mmol), 89%).
The NMR data and HRMS (ESI) data of the obtained compound (I) -1-101 are shown below.
 1H NMR (400 MHz, CDCl3) δ1.67 (s, 6 H), 2.21 (t, J = 2.4 Hz, 1 H), 2.72 (t, J = 7.2 Hz, 2 H), 2.92 (t, J = 7.2 Hz, 2 H), 3.44 (d, J = 2.8 Hz, 2 H), 6.60-6.66 (m, 3 H).
 13C NMR (100 MHz, CDCl3) δ25.9 (two methyl carbons of the isopropylidene moiety were overlapping), 35.8, 38.1, 50.0, 71.3, 82.1, 108.0, 108.8, 117.7, 120.9, 132.8, 145.8, 147.5.
 HRMS (ESI) calcd for C14H18NO2 [M + H]+: 232.1332, found: 232.1332.
1 H NMR (400 MHz, CDCl 3 ) δ1.67 (s, 6 H), 2.21 (t, J = 2.4 Hz, 1 H), 2.72 (t, J = 7.2 Hz, 2 H), 2.92 (t, J = 7.2 Hz, 2 H), 3.44 (d, J = 2.8 Hz, 2 H), 6.60-6.66 (m, 3 H).
13 C NMR (100 MHz, CDCl 3 ) δ25.9 (two methyl carbons of the isopropylidene moiety were overlapping), 35.8, 38.1, 50.0, 71.3, 82.1, 108.0, 108.8, 117.7, 120.9, 132.8, 145.8, 147.5.
HRMS (ESI) calcd for C 14 H 18 NO 2 [M + H] + : 232.1332, found: 232.1332.
<化合物(I)-1-102の製造>
 容量10mLのサンプルバイアルに、上記で得られた化合物(I)-1-101(すなわち、N-プロパルギル-O,O’-イソプロピリデンドーパミン)(20mg、0.086mmol)、及びジエチルエーテル(1mL)を添加し、得られた混合物を撹拌して、不要物が残存していない溶液を得た。
 次いで、室温下でこの溶液に、塩化水素を1Mの濃度で含むジエチルエーテル溶液(10滴)を添加したところ、直ちに白色の析出物が生じたので、この析出物をろ別し、ジエチルエーテルで洗浄し、乾燥させることにより、白色固体として、N-プロパルギル-O,O’-イソプロピリデンドーパミン塩酸塩(すなわち、化合物(I)-1-102)を得た(収量22mg(0.0822mmol)、収率96%)。
 得られた化合物(I)-1-102のNMRデータ、HRMS(ESI)データを以下に示す。
<Production of Compound (I) -1-102>
In a sample vial having a capacity of 10 mL, compound (I) -1-101 obtained above (that is, N-propargyl-O, O′-isopropylidendopamine) (20 mg, 0.086 mmol), and diethyl ether (1 mL) Was added and the resulting mixture was stirred to obtain a solution free of unnecessary substances.
Then, a diethyl ether solution containing hydrogen chloride at a concentration of 1 M (10 drops) was added to the solution at room temperature, and a white precipitate was immediately formed. After washing and drying, N-propargyl-O, O'-isopropylidendopamine hydrochloride (ie, compound (I) -1-102) was obtained as a white solid (yield 22 mg (0.0822 mmol), Yield 96%).
The NMR data and HRMS (ESI) data of the obtained compound (I) -1-102 are shown below.
 1H NMR (400 MHz, D2O) δ1.66 (s, 6 H), 2.91-2.95 (m, 3 H), 3.36 (t, J = 7.2 Hz, 2 H), 3.88 (d, J = 2.0 Hz, 2 H), 6.75-6.80 (m, 3 H).
 13C NMR (100 MHz, D2O) δ25.3 (two methyl groups of isopropylidene moiety were overlapping), 32.1, 37.1, 48.5, 73.8, 78.5, 109.5, 109.8, 119.7, 122.4, 130.4, 146.5, 147.8.
 HRMS (ESI) calcd for C14H18NO2 [M - Cl]+: 232.1332, found: 232.1334.
1 H NMR (400 MHz, D 2 O) δ 1.66 (s, 6 H), 2.91-2.95 (m, 3 H), 3.36 (t, J = 7.2 Hz, 2 H), 3.88 (d, J = 2.0 Hz, 2 H), 6.75-6.80 (m, 3 H).
13 C NMR (100 MHz, D 2 O) δ25.3 (two methyl groups of isopropylidene moiety were overlapping), 32.1, 37.1, 48.5, 73.8, 78.5, 109.5, 109.8, 119.7, 122.4, 130.4, 146.5, 147.8.
HRMS (ESI) calcd for C 14 H 18 NO 2 [M-Cl] + : 232.1332, found: 232.1334.
<化合物(I)-1-103の製造>
 容量30mLの丸底フラスコ中に、上記で得られた化合物(I)-1-101(すなわち、N-プロパルギル-O,O’-イソプロピリデンドーパミン)(100mg、0.432mmol)、及びジオキサン(5mL))を添加し、得られた混合物を、不要物が消失するまで室温下で撹拌した。
 次いで、得られた溶液に、塩化水素を4Nの濃度で含むジオキサン溶液(0.5mL)を添加したところ、白色の析出物が生じたので、この析出物が完全に溶解するまでメタノールを添加し、さらに塩酸(濃度12N、1mL)を添加して、室温下で16時間撹拌した。ここで、反応液をNMRで分析することにより、反応が完了していることを確認した。
 次いで、得られた反応液から溶媒を減圧留去し、得られた油状の粗生成物を少量のメタノールに溶解させ、得られたメタノール溶液を、ジエチルエーテル中に滴下していくことにより、白色の析出物を生じさせた。そして、この析出物をろ別し、ジエチルエーテルで洗浄し、乾燥させることにより、白色固体として、N-プロパルギルドーパミン塩酸塩(すなわち、化合物(I)-1-103)を得た(収量80mg(0.416mmol)、収率96%)。
 得られた化合物(I)-1-103のNMRデータ、HRMS(ESI)データを以下に示す。
<Production of Compound (I) -1-103>
Compound (I) -1-101 (ie, N-propargyl-O, O′-isopropylidendopamine) (100 mg, 0.432 mmol) obtained above and dioxane (5 mL) were placed in a 30 mL round bottom flask. )) Was added and the resulting mixture was stirred at room temperature until the unwanted material disappeared.
Then, a dioxane solution (0.5 mL) containing hydrogen chloride at a concentration of 4N was added to the resulting solution, and a white precipitate was formed. Methanol was added until the precipitate was completely dissolved. Further, hydrochloric acid (concentration: 12N, 1 mL) was added, and the mixture was stirred at room temperature for 16 hours. Here, it was confirmed that the reaction was completed by analyzing the reaction solution by NMR.
Next, the solvent was distilled off under reduced pressure from the obtained reaction solution, the obtained oily crude product was dissolved in a small amount of methanol, and the obtained methanol solution was dropped into diethyl ether to give a white solution. A precipitate was formed. The precipitate was separated by filtration, washed with diethyl ether, and dried to obtain N-propargyl dopamine hydrochloride (ie, compound (I) -1-103) as a white solid (yield: 80 mg ( 0.416 mmol), 96% yield).
The NMR data and HRMS (ESI) data of the obtained compound (I) -1-103 are shown below.
 1H NMR (400 MHz, D2O) δ2.88 (t, J = 7.2 Hz, 2 H), 2.93 (t, J = 2.8 Hz, 1 H), 3.35 (t, J = 7.2 Hz, 2 H), 3.86 (d, J = 2.4 Hz, 2 H), 6.72 (dd, J = 2.0, 8.4 Hz, 1 H), 6.81 (d, J = 2.0 Hz, 1 H), 6.86 (d, J = 8.4 Hz, 1 H).
 13C NMR (100 MHz, D2O) δ31.5, 37.1, 48.5, 73.6, 78.7, 117.1, 117.2, 121.8, 129.4, 143.8, 144.9.
 HRMS (ESI) calcd for C11H14NO2 [M - Cl]+: 192.1019, found: 192.1025.
1 H NMR (400 MHz, D 2 O) δ 2.88 (t, J = 7.2 Hz, 2 H), 2.93 (t, J = 2.8 Hz, 1 H), 3.35 (t, J = 7.2 Hz, 2 H ), 3.86 (d, J = 2.4 Hz, 2 H), 6.72 (dd, J = 2.0, 8.4 Hz, 1 H), 6.81 (d, J = 2.0 Hz, 1 H), 6.86 (d, J = 8.4) Hz, 1 H).
13 C NMR (100 MHz, D 2 O) δ31.5, 37.1, 48.5, 73.6, 78.7, 117.1, 117.2, 121.8, 129.4, 143.8, 144.9.
HRMS (ESI) calcd for C 11 H 14 NO 2 [M-Cl] + : 192.1019, found: 192.1025.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
[実施例2]
<化合物(I)-2-301の製造>
 以下に示す経路で、下記式(I)-2-301で表される化合物(本明細書においては、「化合物(I)-2-301」と略記することがある)を製造した。
[Example 2]
<Production of compound (I) -2-301>
A compound represented by the following formula (I) -2-301 (which may be abbreviated as “compound (I) -2-301” in the present specification) was produced by the following route.
(ドーパミン臭化水素酸塩の製造)
 容量100mLの丸底フラスコ中で、ホモベラトリルアミン(別名:2-(3,4-ジメトキシフェニル)エチルアミン、931mg、5.14mmol)、及び塩化メチレン(50mL)を混合し、得られた溶液を-78℃まで冷却した。
 次いで、三臭化ホウ素の塩化メチレン溶液(濃度約1M、11.3mL)を、上記の冷却した溶液にゆっくりと添加し、得られた混合物を室温下で3時間撹拌した。
 次いで、得られた反応液にメタノールを加えて、反応を停止させ、溶媒を減圧留去した。そして、析出した固体をジエチルエーテルで洗浄し、乾燥させることで、ドーパミン臭化水素酸塩を得た(収量830mg(3.55mmol)、収率69%)。
 得られたドーパミン臭化水素酸塩のNMRデータを以下に示す。
(Production of dopamine hydrobromide)
In a round bottom flask having a capacity of 100 mL, homoveratrylamine (also known as 2- (3,4-dimethoxyphenyl) ethylamine, 931 mg, 5.14 mmol) and methylene chloride (50 mL) were mixed, and the resulting solution was mixed. Cooled to -78 ° C.
Next, a solution of boron tribromide in methylene chloride (concentration: about 1 M, 11.3 mL) was slowly added to the cooled solution, and the resulting mixture was stirred at room temperature for 3 hours.
Next, methanol was added to the obtained reaction solution to stop the reaction, and the solvent was distilled off under reduced pressure. The precipitated solid was washed with diethyl ether and dried to obtain dopamine hydrobromide (830 mg (3.55 mmol), 69% yield).
The NMR data of the obtained dopamine hydrobromide are shown below.
 1H NMR (400 MHz, CD3OD) δ2.79 (t, J = 7.6 Hz, 2 H), 3.09 (t, J = 7.6 Hz, 2 H), 
6.58 (dd, J = 2.4, 8.0 Hz, 1 H), 6.69-6.74 (m, 2 H).
1 H NMR (400 MHz, CD 3 OD) δ2.79 (t, J = 7.6 Hz, 2 H), 3.09 (t, J = 7.6 Hz, 2 H),
6.58 (dd, J = 2.4, 8.0 Hz, 1 H), 6.69-6.74 (m, 2 H).
(N-Boc-ドーパミンの製造)
 容量100mLの丸底フラスコ中で、上記で得られたドーパミン臭化水素酸塩(468 mg、2.00mmol)、ジ-tert-ブチルジカーボネート(別名:BocO、468mg、2.00mmol)、N,N-ジイソプロピルエチルアミン(1.0 mL、5.73mmol)、及びDMF(5mL)を混合し、室温下で3時間撹拌して、反応させた。
 次いで、得られた反応液に水を添加し、得られた混合液に対して、酢酸エチル(50体積%)/ヘキサン(50体積%)の混合溶媒(30mL)で3回抽出を行い、集められた有機層を、水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。
 次いで、得られた粗生成物をフラッシュクロマトグラフィーにより、精製した。このとき、移動相としては、メタノールと塩化メチレンとの混合溶媒を用い、メタノールの濃度を5体積%から10体積%まで増大させて、目的物を分離し、溶出させ、溶出物から溶媒を減圧留去した。
 以上により、tert-ブチル(3,4-ジヒドロキシフェネチル)カルバメート(本明細書においては「N-Boc-ドーパミン」と略記することがある)を得た(収量380mg(1.22mmol)、収率61%)。
 メタノール(10体積%)/塩化メチレン(90体積%)の混合溶媒を展開溶媒として用い、得られたN-Boc-ドーパミンを薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.57であった。
 得られたN-Boc-ドーパミンのNMRデータを以下に示す。
(Production of N-Boc-dopamine)
In a 100 mL round bottom flask, dopamine hydrobromide obtained above (468 mg, 2.00 mmol), di-tert-butyl dicarbonate (alias: Boc 2 O, 468 mg, 2.00 mmol), N, N-diisopropylethylamine (1.0 mL, 5.73 mmol) and DMF (5 mL) were mixed and reacted at room temperature for 3 hours with stirring.
Next, water was added to the obtained reaction solution, and the obtained mixture was extracted three times with a mixed solvent of ethyl acetate (50% by volume) / hexane (50% by volume) (30 mL), and collected. The obtained organic layer was washed with water (20 mL), dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
Then, the obtained crude product was purified by flash chromatography. At this time, a mixed solvent of methanol and methylene chloride was used as a mobile phase, and the concentration of methanol was increased from 5% by volume to 10% by volume to separate and elute the target substance. Distilled off.
As described above, tert-butyl (3,4-dihydroxyphenethyl) carbamate (abbreviated as “N-Boc-dopamine” in this specification) was obtained (yield 380 mg (1.22 mmol), yield 61). %).
Using a mixed solvent of methanol (10% by volume) / methylene chloride (90% by volume) as a developing solvent, the obtained N-Boc-dopamine was developed by thin layer chromatography (TLC) to find that the Rf value was 0.57. Met.
The NMR data of the obtained N-Boc-dopamine are shown below.
 1H NMR (400 MHz, CDCl3) δ1.44 (s, 9 H), 2.65 (br, 2 H), 3.32 (br, 2 H), 6.57-6.80 (m, 3 H). 1 H NMR (400 MHz, CDCl 3 ) δ1.44 (s, 9 H), 2.65 (br, 2 H), 3.32 (br, 2 H), 6.57-6.80 (m, 3 H).
(tert-ブチル(3,4-ジ-2-プロピニルオキシフェネチル)カルバメートの製造)
 容量30mLの丸底フラスコ中に、上記で得られたN-Boc-ドーパミン(300mg、1.07 mmol)、炭酸カリウム(443mg、3.21mmol)、及びDMF(5mL)を添加し、ここにさらに、プロパルギルブロミド(0.18mL、2.45mmol)を添加して、得られた混合物を室温下で12時間撹拌して、反応させた。
 次いで、得られた反応液に水を加えて、反応を停止させた。そして、得られた混合液に対して、酢酸エチル(50体積%)/ヘキサン(50体積%)の混合溶媒(20mL)で3回抽出を行い、集められた有機層を、水(20mL)で3回洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。
 次いで、得られた粗生成物をフラッシュクロマトグラフィーにより、精製した。このとき、移動相としては、酢酸エチル(25体積%)/ヘキサン(75体積%)の混合溶媒を用いて、目的物を分離し、溶出させ、溶出物から溶媒を減圧留去した。
 以上により、目的物として、tert-ブチル(3,4-ジ-2-プロピニルオキシフェネチル)カルバメートを得た(収量350mg(1.06mmol)、収率99%)。
 メタノール(30体積%)/塩化メチレン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.37であった。
 得られた目的物のNMRデータを以下に示す。
(Production of tert-butyl (3,4-di-2-propynyloxyphenethyl) carbamate)
In a 30 mL round bottom flask, N-Boc-dopamine obtained above (300 mg, 1.07 mmol), potassium carbonate (443 mg, 3.21 mmol), and DMF (5 mL) were added, and further added thereto. , Propargyl bromide (0.18 mL, 2.45 mmol) was added, and the resulting mixture was stirred and reacted at room temperature for 12 hours.
Next, water was added to the obtained reaction solution to stop the reaction. The obtained mixture is extracted three times with a mixed solvent (20 mL) of ethyl acetate (50% by volume) / hexane (50% by volume), and the collected organic layer is washed with water (20 mL). It was washed three times, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
Then, the obtained crude product was purified by flash chromatography. At this time, the target substance was separated and eluted using a mixed solvent of ethyl acetate (25% by volume) / hexane (75% by volume) as a mobile phase, and the solvent was distilled off from the eluted substance under reduced pressure.
As a result, tert-butyl (3,4-di-2-propynyloxyphenethyl) carbamate was obtained as the target product (350 mg (1.06 mmol), 99% yield).
Using a mixed solvent of methanol (30% by volume) / methylene chloride (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.37. .
The NMR data of the obtained target product is shown below.
 1H NMR (400 MHz, CDCl3) δ1.44 (s, 9 H), 2.53 (m, 2 H), 2.75 (br, 2 H), 3.37 (br, 2 H), 4.74 (dd, J = 2.0, 6.8 Hz, 4 H), 6.79-6.81 (m, 1 H), 6.89 (br, 1 H), 7.00 (d, J = 8.4 Hz, 1 H). 1 H NMR (400 MHz, CDCl 3 ) δ1.44 (s, 9 H), 2.53 (m, 2 H), 2.75 (br, 2 H), 3.37 (br, 2 H), 4.74 (dd, J = 2.0, 6.8 Hz, 4 H), 6.79-6.81 (m, 1 H), 6.89 (br, 1 H), 7.00 (d, J = 8.4 Hz, 1 H).
(化合物(I)-2-301の製造)
 容量50mLの丸底フラスコ中に、上記で得られたtert-ブチル(3,4-ジ-2-プロピニルオキシフェネチル)カルバメート(296mg、0.90mmol)、TFA(0.5mL)及び塩化メチレン(5mL)を添加し、得られた混合物を室温下で14時間撹拌して、反応させた。ここで、反応液をNMRで分析することにより、Boc基を取り除く脱保護が完了していることを確認した。
 次いで、得られた反応液に炭酸水素ナトリウム水溶液を加えて、反応を停止させた。そして、得られた混合液に対して、塩化メチレン(20mL)で3回抽出を行い、集められた有機層を、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去し、黄色油状の粗生成物を得た(収量97mg)。
 次いで、容量50mLの丸底フラスコ中に、上記で得られた粗生成物の全量と、ジエチルエーテル(1mL)と、塩化水素を1Mの濃度で含むジエチルエーテル溶液(1mL)と、を添加し、得られた混合物を室温下で4時間撹拌した。
 次いで、フィルターを用いて固体をろ別し、この固体をジエチルエーテルで洗浄し、乾燥させることで、O,O’-ジプロパルギルドーパミン塩酸塩(すなわち、化合物(I)-2-301)を得た(収量87mg(0.33mmol)、収率37%)。
 得られた化合物(I)-2-301のNMRデータ、HRMS(ESI)データを以下に示す。
(Production of Compound (I) -2-301)
In a 50 mL round bottom flask, tert-butyl (3,4-di-2-propynyloxyphenethyl) carbamate (296 mg, 0.90 mmol) obtained above, TFA (0.5 mL) and methylene chloride (5 mL) ) Was added and the resulting mixture was stirred at room temperature for 14 hours to react. Here, by analyzing the reaction solution by NMR, it was confirmed that deprotection for removing the Boc group was completed.
Next, an aqueous solution of sodium hydrogen carbonate was added to the obtained reaction solution to stop the reaction. The obtained mixture was extracted three times with methylene chloride (20 mL), and the collected organic layers were dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a yellow oily crude product. Was obtained (yield 97 mg).
Next, in a round bottom flask having a capacity of 50 mL, the whole amount of the crude product obtained above, diethyl ether (1 mL), and a diethyl ether solution (1 mL) containing hydrogen chloride at a concentration of 1 M were added, The resulting mixture was stirred at room temperature for 4 hours.
Then, the solid is filtered off using a filter, and the solid is washed with diethyl ether and dried to obtain O, O'-dipropargyldopamine hydrochloride (that is, compound (I) -2-301). (87 mg (0.33 mmol), 37% yield).
The NMR data and HRMS (ESI) data of the obtained compound (I) -2-301 are shown below.
 1H NMR (400 MHz, CD3OD) δ2.92 (t, J = 8.0 Hz, 2 H), 2.96 (dt, J = 10.8, 2.4 Hz, 2 H), 3.16 (dd, J = 6.8, 8.4 Hz, 2 H), 4.74 (t, J = 2.0 Hz, 2 H), 4.78 (t, J = 2.0 Hz, 2 H), 6.89 (d, J = 8.0 Hz, 1 H), 7.02 (m, 1 H), 7.06-7.08 (m, 1 H).
 13C NMR (100 MHz, CD3OD) δ34.0, 42.0, 57.9 (two peaks overlapping), 77.0, 77.1, 79.71, 79.74, 117.0, 117.1, 123.3, 131.8, 148.3, 149.3.
 HRMS (ESI) calcd for C14H16NO2 [M - Cl]+: 230.1176, found: 230.1173.
1 H NMR (400 MHz, CD 3 OD) δ2.92 (t, J = 8.0 Hz, 2 H), 2.96 (dt, J = 10.8, 2.4 Hz, 2 H), 3.16 (dd, J = 6.8, 8.4 Hz, 2 H), 4.74 (t, J = 2.0 Hz, 2 H), 4.78 (t, J = 2.0 Hz, 2 H), 6.89 (d, J = 8.0 Hz, 1 H), 7.02 (m, 1 H), 7.06-7.08 (m, 1 H).
13 C NMR (100 MHz, CD 3 OD) δ 34.0, 42.0, 57.9 (two peaks overlapping), 77.0, 77.1, 79.71, 79.74, 117.0, 117.1, 123.3, 131.8, 148.3, 149.3.
HRMS (ESI) calcd for C 14 H 16 NO 2 [M-Cl] + : 230.1176, found: 230.1173.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
[実施例3]
<化合物(I)-2-302の製造>
 以下に示す経路で、下記式(I)-2-302で表される化合物(本明細書においては、「化合物(I)-2-302」と略記することがある)を製造した。
[Example 3]
<Production of Compound (I) -2-302>
A compound represented by the following formula (I) -2-302 (which may be abbreviated as “compound (I) -2-302” in the present specification) was produced by the following route.
((RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジヒドロキシフェニル)エチルカルバメートの製造)
 容量30mLの丸底フラスコ中で、DL-ノルエピネフリン塩酸塩(103mg、0.5mmol)、ジ-tert-ブチルジカーボネート(別名:BocO、240mg、1.10mmol)、DMAP(24mg、0.2mmol)、N,N-ジイソプロピルエチルアミン(1mL、5.76mmol)、及びDMF(10mL)を混合し、室温下で18時間撹拌して、反応させた。
 次いで、得られた反応液に水を加えて、反応を停止させた。そして、得られた混合液に対して、酢酸エチル(50体積%)/ヘキサン(50体積%)の混合溶媒(20mL)で3回抽出を行い、集められた有機層を、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去することにより、粗生成物を得た。
 次いで、得られた粗生成物をフラッシュクロマトグラフィーにより、精製した。このとき、移動相としては、酢酸エチルとヘキサンとの混合溶媒を用い、酢酸エチルの濃度を25体積%から50体積%まで増大させて、目的物を分離し、溶出させ、溶出物から溶媒を減圧留去した。
 以上により、目的物として、(RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジヒドロキシフェニル)エチルカルバメートを得た(収量74mg(0.20mmol)、収率40%)。
 メタノール(10体積%)/塩化メチレン(90体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.58であった。また、酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.07であった。
 得られた(RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジヒドロキシフェニル)エチルカルバメートのNMRデータを以下に示す。
(Production of (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-dihydroxyphenyl) ethyl carbamate)
In a 30 mL round bottom flask, DL-norepinephrine hydrochloride (103 mg, 0.5 mmol), di-tert-butyl dicarbonate (also called Boc 2 O, 240 mg, 1.10 mmol), DMAP (24 mg, 0.2 mmol) ), N, N-diisopropylethylamine (1 mL, 5.76 mmol) and DMF (10 mL) were mixed and reacted at room temperature for 18 hours.
Next, water was added to the obtained reaction solution to stop the reaction. The obtained mixture is extracted three times with a mixed solvent (20 mL) of ethyl acetate (50% by volume) / hexane (50% by volume), and the collected organic layer is dried over anhydrous sodium sulfate. Then, the solvent was distilled off under reduced pressure to obtain a crude product.
Then, the obtained crude product was purified by flash chromatography. At this time, a mixed solvent of ethyl acetate and hexane was used as the mobile phase, and the concentration of ethyl acetate was increased from 25% by volume to 50% by volume to separate and elute the target substance. The solvent was distilled off under reduced pressure.
As a result, (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-dihydroxyphenyl) ethylcarbamate was obtained as the desired product (yield 74 mg (0.20 mmol). Rate 40%).
Using a mixed solvent of methanol (10% by volume) / methylene chloride (90% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.58. . When the obtained target product was developed by thin layer chromatography (TLC) using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the Rf value was 0.07. there were.
The NMR data of the obtained (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-dihydroxyphenyl) ethyl carbamate are shown below.
 1H NMR (400 MHz, CDCl3) δ2.29 (s, 2 H), 2.61-2.69 (m, 2 H), 2.76-2.80 (m, 2 H), 3.495 (s, 2 H), 3.500 (s, 2 H), 5.63 (br, 2 H), 6.56 (d, J = 8.0 Hz, 1 H), 6.69 (s, 1 H), 6.75 (d, J = 2 H). 1 H NMR (400 MHz, CDCl 3 ) δ 2.29 (s, 2 H), 2.61-2.69 (m, 2 H), 2.76-2.80 (m, 2 H), 3.495 (s, 2 H), 3.500 ( s, 2 H), 5.63 (br, 2 H), 6.56 (d, J = 8.0 Hz, 1 H), 6.69 (s, 1 H), 6.75 (d, J = 2 H).
((RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジ-2-プロピニルオキシフェニル)エチルカルバメートの製造)
 容量50mLの丸底フラスコ中に、上記で得られた(RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジヒドロキシフェニル)エチルカルバメート(74mg、0.200mmol)、炭酸カリウム(110mg、0.8mmol)、及びDMF(5mL)を添加し、ここにさらに、プロパルギルブロミド(40μL、60mg、0.5mmol)を添加して、得られた懸濁液を室温下で3時間撹拌して、反応させた。ここで、薄層クロマトグラフィー(TLC)により分析で、原料の消失を確認した。
 次いで、得られた反応液に水を加えて、反応を停止させた。そして、得られた混合液に対して、酢酸エチル(50体積%)/ヘキサン(50体積%)の混合溶媒で抽出を行い、集められた有機層を、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去することにより、粗生成物を得た。
 次いで、得られた粗生成物をフラッシュクロマトグラフィーにより、精製した。このとき、移動相としては、酢酸エチルとヘキサンとの混合溶媒を用い、酢酸エチルの濃度を25体積%から50体積%まで増大させて、目的物を分離し、溶出させ、溶出物から溶媒を減圧留去した。
 以上により、目的物として、(RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジ-2-プロピニルオキシフェニル)エチルカルバメートを得た(収量77mg(0.19mmol)、収率95%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.13であった。
 得られた(RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジ-2-プロピニルオキシフェニル)エチルカルバメートのNMRデータを以下に示す。
(Production of (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-di-2-propynyloxyphenyl) ethyl carbamate)
In a 50 mL round bottom flask, (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-dihydroxyphenyl) ethylcarbamate (74 mg, 0.200 mmol) obtained above ), Potassium carbonate (110 mg, 0.8 mmol) and DMF (5 mL) were added, and propargyl bromide (40 μL, 60 mg, 0.5 mmol) was further added thereto. And reacted for 3 hours. Here, analysis by thin layer chromatography (TLC) confirmed the disappearance of the raw materials.
Next, water was added to the obtained reaction solution to stop the reaction. The obtained mixture is extracted with a mixed solvent of ethyl acetate (50% by volume) / hexane (50% by volume), and the collected organic layers are washed with saturated saline and dried over anhydrous sodium sulfate. And the solvent was distilled off under reduced pressure to obtain a crude product.
Then, the obtained crude product was purified by flash chromatography. At this time, a mixed solvent of ethyl acetate and hexane was used as the mobile phase, and the concentration of ethyl acetate was increased from 25% by volume to 50% by volume to separate and elute the target substance. The solvent was distilled off under reduced pressure.
As a result, (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-di-2-propynyloxyphenyl) ethylcarbamate was obtained as the desired product (yield 77 mg (0%)). .19 mmol), yield 95%).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.13. .
The NMR data of the obtained (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-di-2-propynyloxyphenyl) ethyl carbamate are shown below.
 1H NMR (400 MHz, CDCl3) δ1.44 (d, J = 2.0 Hz, 9 H), 1.55 (d, J = 1.2 Hz, 9 H), 2.52 (q, J = 2.4 Hz, 1 H), 3.14-3.22 (m, 1 H), 3.39-3.47 (m, 2 H), 3.58 (br, 1 H), 4.71 (dd, J = 2.4, 4.4 Hz, 2 H), 4.70-4.78 (br, 1 H), 5.03 (br, 1 H), 6.93-7.18 (m, 3 H). 1 H NMR (400 MHz, CDCl 3 ) δ1.44 (d, J = 2.0 Hz, 9 H), 1.55 (d, J = 1.2 Hz, 9 H), 2.52 (q, J = 2.4 Hz, 1 H) , 3.14-3.22 (m, 1 H), 3.39-3.47 (m, 2 H), 3.58 (br, 1 H), 4.71 (dd, J = 2.4, 4.4 Hz, 2 H), 4.70-4.78 (br, 1 H), 5.03 (br, 1 H), 6.93-7.18 (m, 3 H).
(化合物(I)-2-302の製造)
 容量50mLの丸底フラスコ中に、上記で得られた(RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジ-2-プロピニルオキシフェニル)エチルカルバメート(77mg、0.19mmol)、及びジエチルエーテル(0.5mL)を添加し、得られた溶液にさらに、塩化水素を1Mの濃度で含むジエチルエーテル溶液(2mL)を添加して、得られた混合物を室温下で48時間撹拌して、反応させた。ここで、チューインガム状の固体が析出したので、これをろ別し、ジエチルエーテルで洗浄し、乾燥させることで、(RS)-1-(2-アミノ-1-ヒドロキシエチル)-3,4-ビス(2-プロピニルオキシ)ベンゼン塩酸塩(すなわち、化合物(I)-2-302)を得た(収量10mg(0.035mmol)、収率19%)。
 得られた化合物(I)-2-302のNMRデータを以下に示す。
(Production of Compound (I) -2-302)
In a 50 mL round bottom flask, (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-di-2-propynyloxyphenyl) ethyl carbamate ( 77 mg, 0.19 mmol), and diethyl ether (0.5 mL), and a diethyl ether solution (2 mL) containing hydrogen chloride at a concentration of 1 M was added to the obtained solution. The mixture was stirred and reacted at room temperature for 48 hours. Here, a chewing gum-like solid precipitated, which was filtered off, washed with diethyl ether, and dried to give (RS) -1- (2-amino-1-hydroxyethyl) -3,4-. Bis (2-propynyloxy) benzene hydrochloride (that is, compound (I) -2-302) was obtained (10 mg (0.035 mmol), 19% yield).
The NMR data of the obtained compound (I) -2-302 are shown below.
 1H NMR (400 MHz, CD3OD) δ2.93-2.97 (m, 2 H), 2.99-3.11 (m, 2 H), 4.79 (dd, J = 2.4, 8.0 Hz, 4 H), 4.87 (s, 1 H), 6.82-6.93 (m, 3 H). 1 H NMR (400 MHz, CD 3 OD) δ 2.93-2.97 (m, 2 H), 2.99-3.11 (m, 2 H), 4.79 (dd, J = 2.4, 8.0 Hz, 4 H), 4.87 ( s, 1 H), 6.82-6.93 (m, 3 H).
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
[実施例4]
<化合物(I)-2-303の製造>
 以下に示す経路で、下記式(I)-2-303で表される化合物(本明細書においては、「化合物(I)-2-303」と略記することがある)を製造した。
[Example 4]
<Production of Compound (I) -2-303>
A compound represented by the following formula (I) -2-303 (in this specification, sometimes abbreviated as “compound (I) -2-303”) was produced by the following route.
 実施例3の場合と同じ方法で、(RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジ-2-プロピニルオキシフェニル)エチルカルバメートを製造した。 ((RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-di-2-propynyloxyphenyl) ethyl carbamate was produced in the same manner as in Example 3.
 容量100mLの丸底フラスコ中に、上記で得られた(RS)-tert-ブチル-2-(tert-ブトキシカルボニルオキシ)-2-(3,4-ジ-2-プロピニルオキシフェニル)エチルカルバメート(61mg、0.15mmol)、及び塩化メチレン(5mL)を添加し、得られた溶液にさらにTFA(0.1mL、0.13mmol)を添加して、得られた混合物を室温下で20時間撹拌して、反応させた。ここで、反応液をNMRで分析したところ、当初の量に対して20モル%のBoc基が取り除かれずに、原料中に残存していることを確認した。そこで、さらにTFA(0.1mL、0.13mmol)を反応液に添加し、室温下で19時間撹拌して、反応させた。ここで、反応液をNMRで分析することにより、Boc基を取り除く脱保護が完了していることを確認した。
 次いで、溶媒を減圧留去したところ、チューインガム状の固体が析出したので、これをろ別し、ジエチルエーテルで洗浄し、乾燥させることで、(RS)-1-(2-アミノ-1-ヒドロキシエチル)-3,4-ビス(2-プロピニルオキシ)ベンゼントリフルオロ酢酸塩(すなわち、化合物(I)-2-303)を得た(収量20mg(0.056mmol)、収率37%)。
 得られた化合物(I)-2-303のNMRデータを以下に示す。
In a 100 mL round bottom flask, (RS) -tert-butyl-2- (tert-butoxycarbonyloxy) -2- (3,4-di-2-propynyloxyphenyl) ethylcarbamate ( 61 mg, 0.15 mmol) and methylene chloride (5 mL), further TFA (0.1 mL, 0.13 mmol) was added to the resulting solution, and the resulting mixture was stirred at room temperature for 20 hours. And reacted. Here, when the reaction solution was analyzed by NMR, it was confirmed that 20 mol% of the Boc group based on the initial amount was not removed and remained in the raw material. Therefore, TFA (0.1 mL, 0.13 mmol) was further added to the reaction solution, and the mixture was stirred at room temperature for 19 hours to be reacted. Here, by analyzing the reaction solution by NMR, it was confirmed that deprotection for removing the Boc group was completed.
Then, the solvent was distilled off under reduced pressure. As a result, a chewing gum-like solid was precipitated. Ethyl) -3,4-bis (2-propynyloxy) benzenetrifluoroacetate (namely, compound (I) -2-303) was obtained (20 mg (0.056 mmol), 37% yield).
The NMR data of the obtained compound (I) -2-303 are shown below.
 1H NMR (400 MHz, CD3OD) δ2.86 (t, J = 2.4 Hz, 1 H), 2.88 (t, J = 2.4 Hz, 1 H), 2.90-3.03 (m, 2 H), 4.79 (dd, J = 2.4, 8.0 Hz, 4 H), 4.87 (s, 1 H), 6.73-6.78 (m, 2 H), 6.81-6.84 (m, 1 H). 1 H NMR (400 MHz, CD 3 OD) δ 2.86 (t, J = 2.4 Hz, 1 H), 2.88 (t, J = 2.4 Hz, 1 H), 2.90-3.03 (m, 2 H), 4.79 (dd, J = 2.4, 8.0 Hz, 4 H), 4.87 (s, 1 H), 6.73-6.78 (m, 2 H), 6.81-6.84 (m, 1 H).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
[実施例5]
<化合物(I)-1-201の製造>
 以下に示す経路で、下記式(I)-1-201で表される化合物(本明細書においては、「化合物(I)-1-201」と略記することがある)を製造した。
[Example 5]
<Production of Compound (I) -1-201>
A compound represented by the following formula (I) -1-201 (which may be abbreviated as “compound (I) -1-201” in the present specification) was produced by the following route.
 実施例2の場合と同じ方法で、ドーパミン臭化水素酸塩を製造した。 ド ー Dopamine hydrobromide was produced in the same manner as in Example 2.
 容量100mLの丸底フラスコ中に、上記で得られたドーパミン臭化水素酸塩(936mg、4.00mmol)、N,N-ジイソプロピルエチルアミン(2.4mL、14mmol)、及びアセトニトリル(20mL)を添加し、得られた懸濁液を室温下で撹拌した。
 次いで、ここにプロパルギルブロミド(0.64mL、8.0mmol)を添加し、得られた混合物を室温下で1時間撹拌して、反応させた。
 次いで、得られた反応液を濃縮し、ここに酢酸エチル及び水を添加した。そして、反応で得られた混合物を酢酸エチルで抽出し、集められた有機層を無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去することにより、粗生成物を得た。
 次いで、得られた粗生成物をフラッシュクロマトグラフィーにより、精製した。このとき、移動相としては、メタノール(10体積%)/塩化メチレン(90体積%)の混合溶媒を用いて、目的物を分離し、溶出させ、溶出物から溶媒を減圧留去した。
 以上により、N,N-ジプロパルギルドーパミン(すなわち、化合物(I)-1-201)を得た(収量20mg(0.087mmol)、収率2%)。
 得られた化合物(I)-1-201のNMRデータを以下に示す。
In a 100 mL round bottom flask, the dopamine hydrobromide obtained above (936 mg, 4.00 mmol), N, N-diisopropylethylamine (2.4 mL, 14 mmol), and acetonitrile (20 mL) were added. The resulting suspension was stirred at room temperature.
Next, propargyl bromide (0.64 mL, 8.0 mmol) was added thereto, and the resulting mixture was stirred at room temperature for 1 hour to be reacted.
Then, the obtained reaction solution was concentrated, and ethyl acetate and water were added thereto. Then, the mixture obtained by the reaction was extracted with ethyl acetate, the collected organic layers were dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product.
Then, the obtained crude product was purified by flash chromatography. At this time, the target substance was separated and eluted using a mixed solvent of methanol (10% by volume) / methylene chloride (90% by volume) as a mobile phase, and the solvent was distilled off from the eluted substance under reduced pressure.
As described above, N, N-dipropargyldopamine (that is, compound (I) -1-201) was obtained (20 mg (0.087 mmol), 2% yield).
The NMR data of the obtained compound (I) -1-201 are shown below.
 1H NMR (400 MHz, CDCl3) δ2.29 (s, 2 H), 2.61-2.69 (m, 2 H), 2.76-2.80 (m, 2 H), 3.495 (s, 2 H), 3.500 (s, 2 H), 5.63 (br, 2 H), 6.56 (d, J = 8.0 Hz, 1 H), 6.69 (s, 1 H), 6.75 (d, J = 2 H). 1 H NMR (400 MHz, CDCl 3 ) δ 2.29 (s, 2 H), 2.61-2.69 (m, 2 H), 2.76-2.80 (m, 2 H), 3.495 (s, 2 H), 3.500 ( s, 2 H), 5.63 (br, 2 H), 6.56 (d, J = 8.0 Hz, 1 H), 6.69 (s, 1 H), 6.75 (d, J = 2 H).
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
<<神経機能調節物質の評価>>
 上記で得られた化合物(I)-1-102、化合物(I)-1-103を用いて、化合物の神経細胞内への取り込みの有無を評価する、以下に示す試験を行った。なお、本実施例に限らず、以降に示す各化合物の評価時においては、便宜上、各化合物をこの評価に供した当初の状態で特定しており、評価中の各化合物が、この当初の状態のままであるか否かは、定かではない。例えば、各評価に関する記載は、評価に供した当初の状態が塩であった化合物が、必ずしも、評価中も塩であることを意味する訳ではなく、同様に、評価に供した当初の状態が塩ではなかった化合物が、必ずしも、評価中も塩ではないことを意味する訳ではない。
<< Evaluation of neurological modulator >>
Using Compound (I) -1-102 and Compound (I) -1-103 obtained as described above, the following test was performed to evaluate whether or not the compound was taken up into nerve cells. The present invention is not limited to this example, but at the time of evaluation of each compound shown below, for convenience, each compound is specified in the initial state subjected to this evaluation, and each compound under evaluation is identified in the initial state. It is uncertain whether it will remain. For example, the description regarding each evaluation does not necessarily mean that the compound that was initially in a salt state during the evaluation was a salt during the evaluation. A compound that was not a salt does not necessarily mean that it is not a salt during the evaluation.
[実施例6]
 上記で得られた化合物(I)-1-102を人工脳脊髄液に溶解させ、化合物(I)-1-102の溶液を調製した。ここで、人工脳脊髄液とは、126mmol/Lの濃度で塩化ナトリウム(NaCl)を含有し、かつ26mmol/Lの濃度で炭酸水素ナトリウム(NaHCO)を含有し、かつ1mmol/Lの濃度でリン酸二水素ナトリウム(NaHPO)を含有し、かつ10mmol/Lの濃度でデキストロースを含有し、かつ3mmol/Lの濃度で塩化カリウム(KCl)を含有し、かつ1mmol/Lの濃度で塩化マグネシウム(MgCl)を含有し、かつ3mmol/L の濃度で塩化カルシウム(CaCl)を含有する、pH7.3の水溶液である。この溶液の化合物(I)-1-102の濃度は、10μmol/Lとした。
 また、上記で得られた化合物(I)-1-103についても、同様に、その濃度が10μmol/Lである溶液を調製した。
 マウスの大脳皮質から急性脳スライス(厚さ300μm)を2枚作製し、これを試験片とした。
 37℃の化合物(I)-1-102の溶液に、1枚の試験片を30分浸漬した。同様に、37℃の化合物(I)-1-103の溶液に、残りの1枚の試験片を30分浸漬した。
 次いで、これら溶液から試験片を取り出し、濃度が4質量%であるパラホルムアルデヒドのリン酸緩衝生理食塩水(Phosphate Buffered Saline, PBS)を用いて、試験片を化学固定し、さらに、0.5% Triton X-100溶液を用いて、この試験片を可溶化した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 488蛍光色素を、上記の可溶化した試験片と反応させた。
 次いで、共焦点顕微鏡(オリンパス社製「FV1000」)を用い、反応後の試験片を観察した。結果を図1A~図1C、図2A~図2Cに示す。図1A~図1Cは、化合物(I)-1-102を用いた場合の試験片の撮像データであり、3つの異なる倍率でのデータを示している。図2A~図2Cは、化合物(I)-1-103を用いた場合の試験片の撮像データであり、3つの異なる倍率でのデータを示している。
[Example 6]
Compound (I) -1-102 obtained above was dissolved in artificial cerebrospinal fluid to prepare a solution of compound (I) -1-102. Here, the artificial cerebrospinal fluid contains sodium chloride (NaCl) at a concentration of 126 mmol / L, contains sodium bicarbonate (NaHCO 3 ) at a concentration of 26 mmol / L, and has a concentration of 1 mmol / L. It contains sodium dihydrogen phosphate (NaH 2 PO 4 ), contains dextrose at a concentration of 10 mmol / L, contains potassium chloride (KCl) at a concentration of 3 mmol / L, and contains 1 mmol / L. PH 7.3 aqueous solution containing magnesium chloride (MgCl 2 ) and containing calcium chloride (CaCl 2 ) at a concentration of 3 mmol / L. The concentration of compound (I) -1-102 in this solution was 10 μmol / L.
In addition, a solution having a concentration of 10 μmol / L was similarly prepared for the compound (I) -1-103 obtained above.
Two acute brain slices (thickness: 300 μm) were prepared from mouse cerebral cortex and used as test specimens.
One test piece was immersed in a solution of compound (I) -1-102 at 37 ° C. for 30 minutes. Similarly, the remaining one test piece was immersed in a solution of compound (I) -1-103 at 37 ° C. for 30 minutes.
Next, the test pieces were removed from these solutions, and the test pieces were chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS). The test piece was solubilized using Triton X-100 solution.
Then, Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
Next, the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). The results are shown in FIGS. 1A to 1C and FIGS. 2A to 2C. FIGS. 1A to 1C are imaging data of a test piece when compound (I) -1-102 is used, and show data at three different magnifications. FIGS. 2A to 2C are imaging data of a test piece when Compound (I) -1-103 is used, and show data at three different magnifications.
 図1A~図1C、図2A~図2Cから、化合物(I)-1-102及び化合物(I)-1-103のいずれを用いた場合であっても、大脳皮質を走行する、神経機能調節物質を含有する神経細胞の軸索様の構造が見られた。これは、内在性のドーパミンに類似した物理化学的性質を有する、化合物(I)-1-102及び化合物(I)-1-103が、ドーパミン含有神経細胞中に取り込まれ、小胞に貯蔵されており、この状態でクリック反応によって、アジド基が付加された前記蛍光色素と反応してラベル化され、共焦点顕微鏡によって検出されたことを示していた。 FIGS. 1A to 1C and FIGS. 2A to 2C show that even when Compound (I) -1-102 or Compound (I) -1-103 is used, the regulation of neuronal function running in the cerebral cortex Axon-like structures of neurons containing the substance were seen. This is because compound (I) -1-102 and compound (I) -1-103 having physicochemical properties similar to endogenous dopamine are taken up in dopamine-containing neurons and stored in vesicles. In this state, a click reaction was performed to react with the fluorescent dye to which the azide group was added, labeling was performed, and the label was detected by a confocal microscope.
[実施例7]
 上記で得られた化合物(I)-1-102と、FFN511蛍光色素を、実施例6で用いたものと同じ人工脳脊髄液に溶解させ、化合物(I)-1-102の濃度が10μmol/Lであり、かつ、FFN511蛍光色素の濃度が10μmol/Lである溶液を調製した。また、上記で得られた化合物(I)-1-103と、FFN511蛍光色素を、同様に人工脳脊髄液に溶解させ、化合物(I)-1-103の濃度が10μmol/Lであり、かつ、FFN511蛍光色素の濃度が10μmol/Lである溶液を調製した。
 次いで、実施例6の場合と同じ方法で、可溶化した試験片を作製した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 594蛍光色素を、上記の可溶化した試験片と反応させた。
 840nmのフェムト秒超短パルスレーザー(Newport社製MaitaiHP)と顕微鏡(オリンパス社製「FV1000MPE」)を用い、これら2種の試験片を観察した。結果を図3A~図3F、図4A~図4Fに示す。
 図3Aは、FFN511蛍光色素のみを検出した場合の試験片の撮像データであり、図3Bは、図3Aの場合と同じ領域で、化合物(I)-1-102のみを検出した場合の試験片の撮像データであり、図3Cは、図3Aの場合と同じ領域で、FFN511蛍光色素と化合物(I)-1-102を同時に検出した場合の試験片の撮像データである。また、図3D、図3E及び図3Fは、それぞれ、図3A、図3B及び図3Cのデータを5倍に拡大した撮像データである。
 図4Aは、FFN511蛍光色素のみを検出した場合の試験片の撮像データであり、図4Bは、図4Aの場合と同じ領域で、化合物(I)-1-103のみを検出した場合の試験片の撮像データであり、図4Cは、図4Aの場合と同じ領域で、FFN511蛍光色素と化合物(I)-1-103を同時に検出した場合の試験片の撮像データである。また、図4D、図4E及び図4Fは、それぞれ、図4A、図4B及び図4Cのデータを5倍に拡大した撮像データである。
[Example 7]
The compound (I) -1-102 obtained above and the FFN511 fluorescent dye were dissolved in the same artificial cerebrospinal fluid as used in Example 6, and the concentration of compound (I) -1-102 was 10 μmol / L and a solution having a concentration of the FFN511 fluorescent dye of 10 μmol / L was prepared. Further, the compound (I) -1-103 obtained above and the FFN511 fluorescent dye are similarly dissolved in artificial cerebrospinal fluid, and the concentration of the compound (I) -1-103 is 10 μmol / L, and And a solution having a concentration of FFN511 fluorescent dye of 10 μmol / L was prepared.
Next, a solubilized test piece was prepared in the same manner as in Example 6.
Then, Alexa Fluor® 594 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
These two types of test pieces were observed using an 840 nm femtosecond ultrashort pulse laser (Maitai HP manufactured by Newport) and a microscope (“FV1000MPE” manufactured by Olympus). The results are shown in FIGS. 3A to 3F and FIGS. 4A to 4F.
FIG. 3A is imaging data of a test piece when only the FFN511 fluorescent dye is detected, and FIG. 3B is a test piece when only the compound (I) -1-102 is detected in the same region as in FIG. 3A. FIG. 3C shows the imaging data of the test piece when the FFN511 fluorescent dye and the compound (I) -1-102 were simultaneously detected in the same region as in FIG. 3A. 3D, 3E, and 3F are imaging data obtained by magnifying the data of FIGS. 3A, 3B, and 3C five times, respectively.
FIG. 4A is imaging data of a test piece when only the FFN511 fluorescent dye is detected, and FIG. 4B is a test piece when only compound (I) -1-103 is detected in the same region as in FIG. 4A. FIG. 4C shows the imaging data of the test piece when the FFN511 fluorescent dye and the compound (I) -1-103 were simultaneously detected in the same region as in FIG. 4A. 4D, 4E, and 4F are imaging data obtained by magnifying the data of FIGS. 4A, 4B, and 4C five times, respectively.
 図3A及び図3D中には、FFN511蛍光色素による発光が確認された。その発光領域の一部を、丸囲みによって示している。図3A及び図3D中には、他にもFFN511蛍光色素による発光領域が存在していた。図3A及び図3Dから、公知文献で公開されているとおり、FFN511蛍光色素がドーパミン含有神経細胞中に取り込まれていることを確認できた。
 また、図3B及び図3E中には、ラベル化された化合物(I)-1-102による発光が確認された。その発光領域の一部を、丸囲みによって示している。図3B及び図3E中には、他にもラベル化された化合物(I)-1-102による発光領域が存在していた。図3B及び図3Eから、化合物(I)-1-102が、ドーパミン含有神経細胞中に取り込まれ、この状態でクリック反応によって、アジド基が付加された前記蛍光色素と反応してラベル化されたことを確認できた。
 そして、図3C及び図3Fから、FFN511蛍光色素と、ラベル化された化合物(I)-1-102と、を同時に検出でき、ドーパミン含有神経細胞中で、化合物(I)-1-102は、FFN511蛍光色素と同様の領域か、又は、より神経終末に近い領域に選択的に取り込まれていることを確認できた。
3A and 3D, light emission by the FFN511 fluorescent dye was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 3A and FIG. 3D, there were other light-emitting regions by the FFN511 fluorescent dye. 3A and 3D, it was confirmed that the FFN511 fluorescent dye was incorporated into dopamine-containing neurons, as disclosed in the known literature.
In FIGS. 3B and 3E, light emission by the labeled compound (I) -1-102 was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 3B and FIG. 3E, another light emitting region by the labeled compound (I) -1-102 was present. From FIG. 3B and FIG. 3E, compound (I) -1-102 was incorporated into dopamine-containing nerve cells, and in this state, the compound was labeled by a click reaction by reacting with the fluorescent dye to which an azide group was added. I was able to confirm that.
3C and 3F, the FFN511 fluorescent dye and the labeled compound (I) -1-102 can be simultaneously detected, and in the dopamine-containing neurons, the compound (I) -1-102 is It was confirmed that it was selectively taken up in the same region as the FFN511 fluorescent dye or in a region closer to the nerve ending.
 化合物(I)-1-103も化合物(I)-1-102と同様の結果を示した。
 すなわち、図4A及び図4D中には、FFN511蛍光色素による発光が確認された。その発光領域の一部を、丸囲みによって示している。図4A及び図4D中には、他にもFFN511蛍光色素による発光領域が存在していた。図4A及び図4Dから、公知文献で公開されているとおり、FFN511蛍光色素がドーパミン含有神経細胞中に取り込まれていることを確認できた。
 また、図4B及び図4E中には、ラベル化された化合物(I)-1-103による発光が確認された。その発光領域の一部を、丸囲みによって示している。図4B及び図4E中には、他にもラベル化された化合物(I)-1-103による発光領域が存在していた。図4B及び図4Eから、化合物(I)-1-103が、ドーパミン含有神経細胞中に取り込まれ、この状態でクリック反応によって、アジド基が付加された前記蛍光色素と反応してラベル化されたことを確認できた。
 そして、図4C及び図4Fから、FFN511蛍光色素と、ラベル化された化合物(I)-1-103と、を同時に検出でき、ドーパミン含有神経細胞中で、化合物(I)-1-103は、FFN511蛍光色素と同様の領域か、又は、より神経終末に近い領域に選択的に取り込まれていることを確認できた。
Compound (I) -1-103 also showed the same results as compound (I) -1-102.
That is, in FIGS. 4A and 4D, light emission by the FFN511 fluorescent dye was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 4A and FIG. 4D, other light-emitting regions due to the FFN511 fluorescent dye were present. 4A and 4D, it was confirmed that the FFN511 fluorescent dye was incorporated into the dopamine-containing neurons, as disclosed in the known literature.
In FIGS. 4B and 4E, light emission by the labeled compound (I) -1-103 was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 4B and FIG. 4E, another light emitting region by the labeled compound (I) -1-103 was present. From FIG. 4B and FIG. 4E, compound (I) -1-103 was taken up into dopamine-containing neurons, and in this state, it was labeled by reacting with the azido group-added fluorescent dye by a click reaction. I was able to confirm that.
4C and 4F, the FFN511 fluorescent dye and the labeled compound (I) -1-103 can be simultaneously detected, and in the dopamine-containing neurons, the compound (I) -1-103 is It was confirmed that it was selectively taken up in the same region as the FFN511 fluorescent dye or in a region closer to the nerve ending.
 実施例6~7の結果は、化合物(I)-1-102と化合物(I)-1-103が、いずれも、天然由来の神経機能調節物質の場合と同様に、神経細胞中に取り込まれ、さらに、神経細胞中で、種々のアジド基が付加された化合物と反応可能であって、このような化合物として蛍光色素を用いることで、神経細胞中で明瞭に検出できることを示していた。 The results of Examples 6 and 7 show that both Compound (I) -1-102 and Compound (I) -1-103 were taken up into nerve cells in the same manner as in the case of a naturally-occurring nerve function regulator. Furthermore, it has been shown that the compound can react with various azide group-added compounds in nerve cells, and that such compounds can be clearly detected in nerve cells by using a fluorescent dye.
 なお、実施例6~7においては、化合物(I)-1-102と、化合物(I)-1-103について、クリック反応により、蛍光色素と反応させてから検出したが、これら化合物は、炭素原子間の三重結合を有している。したがって、これら化合物は、ラマン顕微鏡を用いて、発光ラベルを用いずに直接検出することが可能である。 In Examples 6 and 7, Compound (I) -1-102 and Compound (I) -1-103 were detected after reacting with a fluorescent dye by a click reaction. It has a triple bond between atoms. Therefore, these compounds can be directly detected using a Raman microscope without using a luminescent label.
[実施例8]
 細胞内のcAMP(サイクリックAMP)の濃度を検出するためのキット(Montana Molecular社製cAMPisキット)を用い、細胞外液として、上記で得られた化合物(I)-1-102を5μMの濃度で含有するものと、上記で得られた化合物(I)-1-103を5μMの濃度で含有するものと、ドーパミンを5μMの濃度で含有するものと、をそれぞれ別々に調製した。
 次いで、これら3種の細胞外液中に、試験片として、培養した脳細胞(初代培養アストロサイト)を添加し、実施例6の場合と同じ共焦点顕微鏡を用いて、脳細胞を観察し、さらに、cAMPの存在を示す蛍光シグナルを検出した。このときの結果を、図5A~図5B、図6A~図6B、及び図7A~図7Bに示す。図5A~図5Bは、化合物(I)-1-102を用いた場合の結果を示し、図6A~図6Bは、化合物(I)-1-103を用いた場合の結果を示し、図7A~図7Bは、ドーパミンを用いた場合の結果を示す。
Example 8
Using a kit for detecting the concentration of intracellular cAMP (cyclic AMP) (a cAMPis kit manufactured by Montana Molecular), the compound (I) -1-102 obtained above at a concentration of 5 μM was used as an extracellular solution. , A compound containing the compound (I) -1-103 obtained above at a concentration of 5 μM, and a compound containing dopamine at a concentration of 5 μM were separately prepared.
Next, cultured brain cells (primary cultured astrocytes) were added as test pieces to these three extracellular fluids, and the brain cells were observed using the same confocal microscope as in Example 6, Further, a fluorescent signal indicating the presence of cAMP was detected. The results at this time are shown in FIGS. 5A to 5B, FIGS. 6A to 6B, and FIGS. 7A to 7B. FIGS. 5A and 5B show the results when compound (I) -1-102 was used, and FIGS. 6A and 6B show the results when compound (I) -1-103 was used. FIG. 7 to FIG. 7B show the results when dopamine was used.
 より具体的には、図5Aは、このとき取得した、脳細胞とその周辺の撮像データであり、図5A中の1、2及び3は、いずれも脳細胞を示す。そして、図5Bは、これら1~3の脳細胞に由来する蛍光シグナルの強度の経時変化を表すグラフである。
 図6A~図6Bも同様であり、図6Aは、このとき取得した、脳細胞とその周辺の撮像データであり、図6A中の1、2及び3は、いずれも脳細胞を示す。そして、図6Bは、これら1~3の脳細胞に由来する蛍光シグナルの強度の経時変化を表すグラフである。
 図7A~図7Bも同様であり、図7Aは、このとき取得した、脳細胞とその周辺の撮像データであり、図7A中の1及び2は、いずれも脳細胞を示す。そして、図7Bは、これら1及び2の脳細胞に由来する蛍光シグナルの強度の経時変化を表すグラフである。
 なお、図5B、図6B及び図7B中、縦軸は、「標準化蛍光強度」を表し、横軸は「時間(秒)」を表す。
More specifically, FIG. 5A shows the imaging data of the brain cell and its surroundings acquired at this time, and 1, 2 and 3 in FIG. 5A all indicate the brain cell. FIG. 5B is a graph showing the time-dependent change in the intensity of the fluorescent signal derived from one to three brain cells.
6A and 6B are the same. FIG. 6A shows the acquired imaging data of the brain cell and its surroundings, and 1, 2 and 3 in FIG. 6A all indicate the brain cell. FIG. 6B is a graph showing the time-dependent change in the intensity of the fluorescent signal derived from one to three brain cells.
7A and 7B are the same. FIG. 7A shows the acquired imaging data of the brain cell and its surroundings, and both 1 and 2 in FIG. 7A show the brain cell. FIG. 7B is a graph showing the time-dependent change in the intensity of the fluorescent signal derived from these 1 and 2 brain cells.
5B, 6B, and 7B, the vertical axis represents “normalized fluorescence intensity”, and the horizontal axis represents “time (seconds)”.
 図5A~図5B、図6A~図6B、図7A~図7Bから、化合物(I)-1-102を用いた場合と、化合物(I)-1-103を用いた場合と、のいずれにおいても、ドーパミンを用いた場合と同様に、蛍光強度の変化が認められた。すなわち、化合物(I)-1-102及び化合物(I)-1-103のいずれも、ドーパミンと同様に、細胞表面のGタンパク質共役型受容体に結合し、セカンドメッセンジャーであるcAMPの濃度変化をもたらしたこと、換言すると、天然由来のドーパミンと同様の生理活性を有していることを確認できた。 From FIGS. 5A to 5B, FIGS. 6A to 6B, and FIGS. 7A to 7B, in each of the case using compound (I) -1-102 and the case using compound (I) -1-103 Also, as in the case of using dopamine, a change in the fluorescence intensity was observed. That is, similarly to dopamine, both compound (I) -1-102 and compound (I) -1-103 bind to the G protein-coupled receptor on the cell surface, and change the concentration of cAMP which is a second messenger. It was confirmed that it had the same physiological activity as that of naturally occurring dopamine.
<<化合物(I)の製造>>
[実施例9]
<化合物(I)-3-101の製造>
 以下に示す経路で、下記式(I)-3-101で表される化合物(本明細書においては、「化合物(I)-3-101」と略記することがある)を製造した。
<< Production of Compound (I) >>
[Example 9]
<Production of compound (I) -3-101>
A compound represented by the following formula (I) -3-101 (which may be abbreviated as “compound (I) -3-101” in the present specification) was produced by the following route.
(3-ブロモ-4,5-ジメトキシベンズアルデヒドの製造)
 雰囲気が窒素ガスで置換された、容量100mLの丸底フラスコ中に、5-ブロモバニリン(10.0g、43.3mmol)、炭酸カリウム(8.97g、64.9mmol)及びDMF(40mL)を添加し、室温下で撹拌した。
 次いで、得られた懸濁液に、ヨードメタン(4.04mL、9.22g、64.9mmol)を添加し、得られた混合物を室温下で19時間撹拌し、反応させた。
 次いで、得られた反応液に水を加えて、反応を停止させた。そして、得られた混合液に対して、酢酸エチル(50体積%)/ヘキサン(50体積%)の混合溶媒(30mL)で3回抽出を行い、集められた有機層を、水(30mL)で3回洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去することにより、沈殿物を得た。
 次いで、得られた沈殿物をヘキサンで洗浄し、減圧乾燥させた。
 以上により、目的物として、3-ブロモ-4,5-ジメトキシベンズアルデヒドを得た(収量9.72g(39.7mmol)、収率92%)。
 得られた3-ブロモ-4,5-ジメトキシベンズアルデヒドのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of 3-bromo-4,5-dimethoxybenzaldehyde)
5-bromovanillin (10.0 g, 43.3 mmol), potassium carbonate (8.97 g, 64.9 mmol) and DMF (40 mL) were added to a 100-mL round bottom flask whose atmosphere was replaced with nitrogen gas. And stirred at room temperature.
Next, iodomethane (4.04 mL, 9.22 g, 64.9 mmol) was added to the obtained suspension, and the obtained mixture was stirred at room temperature for 19 hours to be reacted.
Next, water was added to the obtained reaction solution to stop the reaction. Then, the obtained mixture is extracted three times with a mixed solvent (30 mL) of ethyl acetate (50% by volume) / hexane (50% by volume), and the collected organic layer is washed with water (30 mL). It was washed three times, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a precipitate.
Next, the obtained precipitate was washed with hexane and dried under reduced pressure.
As a result, 3-bromo-4,5-dimethoxybenzaldehyde was obtained as the desired product (9.72 g (39.7 mmol), 92% yield).
The NMR data and HRMS (ESI) data of the obtained 3-bromo-4,5-dimethoxybenzaldehyde are shown below.
 1H NMR (400 MHz, CDCl3) δ2.89 (s, 3 H), 3.24 (s, 3 H), 7.29 (d, J = 1.6 Hz, 1 H), 7.55 (d, J = 1.6 Hz, 1 H), 9.75 (s, 1 H).
 13C NMR (100 MHz, CDCl3) 56.1, 60.7, 110.0, 117.7, 128.5, 132.9, 151.6, 154.0, 189.7.
 HRMS (ESI) calcd for C9H10BrO3 [M + H]+: 244.9808, 246.9787, found: 244.9885, 246.9775; calcd for C9H9BrO3Na [M + Na]+: 266.9627, 268.9607, found: 266.9612, 268.9594.
1 H NMR (400 MHz, CDCl 3 ) δ 2.89 (s, 3 H), 3.24 (s, 3 H), 7.29 (d, J = 1.6 Hz, 1 H), 7.55 (d, J = 1.6 Hz, 1 H), 9.75 (s, 1 H).
13 C NMR (100 MHz, CDCl 3 ) 56.1, 60.7, 110.0, 117.7, 128.5, 132.9, 151.6, 154.0, 189.7.
HRMS (ESI) calcd for C 9 H 10 BrO 3 [M + H] + : 244.9808, 246.9787, found: 244.9885, 246.9775; calcd for C 9 H 9 BrO 3 Na [M + Na] +: 266.9627, 268.9607, found : 266.9612, 268.9594.
((E)-3-ブロモ-4,5-ジメトキシ-β-ニトロスチレンの製造)
 雰囲気が窒素ガスで置換され、ジムロートが装着された容量200mLの丸底フラスコ中に、上記で得られた3-ブロモ-4,5-ジメトキシベンズアルデヒド(12.0g、49.0mmol)、酢酸アンモニウム(3.80g、49.3mmol)、モレキュラーシーブ3A(6.0g)、ニトロメタン(12mL)及び酢酸(36mL)を添加した。
 次いで、得られた混合物を100℃で2時間加熱し、温度が室温になるまで冷却した。
 次いで、ろ紙を用いて、モレキュラーシーブ3Aをろ別して取り除いた後、残渣を酢酸エチルで洗浄した。
 次いで、溶媒を除去し、得られた固体を少量の酢酸エチルで洗浄し、ろ過して、減圧乾燥させることで、鮮黄色固体として、目的物である(E)-3-ブロモ-4,5-ジメトキシ-β-ニトロスチレンを得た(収量10.2g(35.5mmol)、収率72%)。
 得られた(E)-3-ブロモ-4,5-ジメトキシ-β-ニトロスチレンのNMRデータを以下に示す。
(Production of (E) -3-bromo-4,5-dimethoxy-β-nitrostyrene)
The atmosphere obtained was replaced with nitrogen gas, and the obtained 3-bromo-4,5-dimethoxybenzaldehyde (12.0 g, 49.0 mmol) and ammonium acetate (200 g) were placed in a 200-mL round bottom flask equipped with a Dimroth. 3.80 g, 49.3 mmol), molecular sieve 3A (6.0 g), nitromethane (12 mL) and acetic acid (36 mL) were added.
Then, the resulting mixture was heated at 100 ° C. for 2 hours and cooled to room temperature.
Next, the molecular sieve 3A was removed by filtration using a filter paper, and the residue was washed with ethyl acetate.
Then, the solvent is removed, and the obtained solid is washed with a small amount of ethyl acetate, filtered, and dried under reduced pressure to obtain the target compound (E) -3-bromo-4,5 as a bright yellow solid. -Dimethoxy-β-nitrostyrene was obtained (yield 10.2 g (35.5 mmol), yield 72%).
The NMR data of the obtained (E) -3-bromo-4,5-dimethoxy-β-nitrostyrene are shown below.
 1H NMR (400 MHz, CDCl3) δ3.92 (s, 3 H), 3.93 (s, 3 H), 6.98 (d, J = 2.0 Hz, 1 H), 7.38 (d, J = 2.0 Hz, 1 H), 7.51 (d, J = 13.6 Hz, 1 H), 7.89 (d, j = 13.6 Hz, 1 H). 1 H NMR (400 MHz, CDCl 3 ) δ3.92 (s, 3 H), 3.93 (s, 3 H), 6.98 (d, J = 2.0 Hz, 1 H), 7.38 (d, J = 2.0 Hz, 1 H), 7.51 (d, J = 13.6 Hz, 1 H), 7.89 (d, j = 13.6 Hz, 1 H).
(3-ブロモ-4,5-ジメトキシフェネチルアミンの製造)
 容量100mLの丸底フラスコ中に、上記で得られた(E)-3-ブロモ-4,5-ジメトキシ-β-ニトロスチレン(2.10g、7.29mmol)、亜鉛粉末(5.7g、87.5mmol)及びメタノール(15mL)を添加し、-10℃で撹拌した。
 次いで、得られた混合物に、塩酸(濃度12N、15mL)を滴下して、-10℃で6時間撹拌し、反応させた。
 ここまでの操作で得られた反応混合物と同じものを、さらにもう一つ調製し、これら2つの反応混合物を混合した。
 得られた混合物をろ紙でろ過し、残渣をメタノールで洗浄した。
 次いで、得られた溶液を-10℃で再度撹拌し、pHが11となるまで、飽和水酸化ナトリウム水溶液を添加した。
 次いで、得られた反応溶液に対して、水を添加した後、クロロホルムで抽出を行い、抽出物を無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。
 以上により、赤みを帯びた油状物として、目的物である3-ブロモ-4,5-ジメトキシフェネチルアミンを定量的収率(3.82g、14.7mmol)で得た。
 得られた3-ブロモ-4,5-ジメトキシフェネチルアミンのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of 3-bromo-4,5-dimethoxyphenethylamine)
In a 100 mL round bottom flask, (E) -3-bromo-4,5-dimethoxy-β-nitrostyrene (2.10 g, 7.29 mmol) obtained above and zinc powder (5.7 g, 87 .5 mmol) and methanol (15 mL) were added and stirred at -10.degree.
Next, hydrochloric acid (concentration: 12N, 15 mL) was added dropwise to the obtained mixture, and the mixture was stirred at -10 ° C for 6 hours to be reacted.
Another one of the same reaction mixture obtained by the above-mentioned operations was further prepared, and these two reaction mixtures were mixed.
The obtained mixture was filtered with filter paper, and the residue was washed with methanol.
Then, the resulting solution was stirred again at −10 ° C., and a saturated aqueous sodium hydroxide solution was added until the pH reached 11.
Next, water was added to the obtained reaction solution, followed by extraction with chloroform. The extract was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
As a result, the target substance, 3-bromo-4,5-dimethoxyphenethylamine, was obtained as a reddish oil in a quantitative yield (3.82 g, 14.7 mmol).
The NMR data and HRMS (ESI) data of the obtained 3-bromo-4,5-dimethoxyphenethylamine are shown below.
 1H NMR (400 MHz, CDCl3) δ2.67 (t, J = 6.8 Hz, 2 H), 2.95 (t, J = 6.8 Hz, 2 H), 3.84 8s, 3 H), 3.86 (s, 3 H), 6.70 (d, J = 1.6 Hz, 1 H), 6.98 (d, J = 2.0 Hz).
 13C NMR (100 MHz, CDCl3) 38.8, 42.9, 55.9, 60.4, 112.2, 117.3, 124.5, 136.7, 144.6, 153.4.
 HRMS (ESI) calcd for C10H15BrNO2 [M + H]+: 260.0281, 262.0260, found: 260.0249, 262.0228.
1 H NMR (400 MHz, CDCl 3 ) δ 2.67 (t, J = 6.8 Hz, 2 H), 2.95 (t, J = 6.8 Hz, 2 H), 3.84 8s, 3 H), 3.86 (s, 3 H), 6.70 (d, J = 1.6 Hz, 1 H), 6.98 (d, J = 2.0 Hz).
13 C NMR (100 MHz, CDCl 3 ) 38.8, 42.9, 55.9, 60.4, 112.2, 117.3, 124.5, 136.7, 144.6, 153.4.
HRMS (ESI) calcd for C 10 H 15 BrNO 2 [M + H] + : 260.0281, 262.0260, found: 260.0249, 262.0228.
(N-トリフルオロアセチル-3-ブロモ-4,5-ジメトキシフェネチルアミンの製造)
 容量50mLの丸底フラスコ中に、上記で得られた3-ブロモ-4,5-ジメトキシフェネチルアミン(530mg、2.04mmol)、トリフルオロ酢酸エチル(0.27mL、2.24mmol)、N,N-ジイソプロピルエチルアミン(0.36mL、2.04mmol)及びメタノール(5mL)を添加し、室温下で21時間撹拌した。
 次いで、得られた反応液から溶媒を減圧留去し、粗生成物を得た。シリカゲルを充填した管(長さ3cm)の内部に、この粗生成物を添加し、酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒で溶出させた。そして、溶出物から溶媒を除去し、得られた粗生成物を、フラッシュクロマトグラフィーにより精製した。
 以上により、白色固体として、目的物であるN-トリフルオロアセチル-3-ブロモ-4,5-ジメトキシフェネチルアミンを得た(収量360mg(1.01mmol)、収率50%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.39であった。
 得られたN-トリフルオロアセチル-3-ブロモ-4,5-ジメトキシフェネチルアミンのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of N-trifluoroacetyl-3-bromo-4,5-dimethoxyphenethylamine)
In a 50 mL round bottom flask, 3-bromo-4,5-dimethoxyphenethylamine obtained above (530 mg, 2.04 mmol), ethyl trifluoroacetate (0.27 mL, 2.24 mmol), N, N- Diisopropylethylamine (0.36 mL, 2.04 mmol) and methanol (5 mL) were added, and the mixture was stirred at room temperature for 21 hours.
Next, the solvent was distilled off from the obtained reaction solution under reduced pressure to obtain a crude product. The crude product was added to a tube (3 cm in length) filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). Then, the solvent was removed from the eluate, and the obtained crude product was purified by flash chromatography.
As described above, N-trifluoroacetyl-3-bromo-4,5-dimethoxyphenethylamine, which was the target substance, was obtained as a white solid (360 mg (1.01 mmol), 50% yield).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.39. .
The NMR data and HRMS (ESI) data of the obtained N-trifluoroacetyl-3-bromo-4,5-dimethoxyphenethylamine are shown below.
 1H NMR (400 MHz, CDCl3) δ2.80 (t, J = 7.2 Hz, 2 H), 3.56 (dd, J = 6.8, 13.6 Hz, 2 H), 3.81 (s, 3 H), 3.84 (s, 3 H), 6.67 (d, J = 1.6 Hz, 1 H), 6.94 (d, J = 2.0 Hz, 1 H), 7.10 (br, 1 H).
 13C NMR (100 MHz, CDCl3) δ34.2, 40.8, 55.8, 60.4, 112.1, 115.8 (q, J = 287 Hz), 117.6, 124.5, 135.1, 145.0, 153.7, 157.4 (J = 36.9 Hz).
 HRMS (ESI) calcd for C12H13BrF3NO3Na [M + Na]+: 377.9923, 379.9903, found: 377.9864, 379.9845.
1 H NMR (400 MHz, CDCl 3 ) δ 2.80 (t, J = 7.2 Hz, 2 H), 3.56 (dd, J = 6.8, 13.6 Hz, 2 H), 3.81 (s, 3 H), 3.84 ( s, 3 H), 6.67 (d, J = 1.6 Hz, 1 H), 6.94 (d, J = 2.0 Hz, 1 H), 7.10 (br, 1 H).
13 C NMR (100 MHz, CDCl 3 ) δ34.2, 40.8, 55.8, 60.4, 112.1, 115.8 (q, J = 287 Hz), 117.6, 124.5, 135.1, 145.0, 153.7, 157.4 (J = 36.9 Hz).
HRMS (ESI) calcd for C 12 H 13 BrF 3 NO 3 Na [M + Na] + : 377.9923, 379.9903, found: 377.9864, 379.9845.
(N-トリフルオロアセチル-5-ブロモドーパミンの製造)
 容量100mLの丸底フラスコ中に、上記で得られたN-トリフルオロアセチル-3-ブロモ-4,5-ジメトキシフェネチルアミン(1.46g、4.10mmol)及び乾燥塩化メチレン(30mL)を添加し、-10℃で撹拌した。
 次いで、得られた溶液に、濃度が1Mである三臭化ホウ素の塩化メチレン溶液(90mL)を滴下し、得られた混合物を室温下で2時間撹拌し、反応させた。
 次いで、得られた反応液にメタノールを加えて、反応を停止させ、溶媒を減圧留去し、粗生成物を得た。
 次いで、得られた粗生成物を酢酸エチルに溶解させ、有機層を飽和炭酸水素ナトリウム水溶液で洗浄した。洗浄後の有機層を無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去することにより、茶色油状物として、目的物であるN-トリフルオロアセチル-5-ブロモドーパミンを得た(収量1.16g)。
 得られたN-トリフルオロアセチル-5-ブロモドーパミンのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of N-trifluoroacetyl-5-bromodopamine)
In a 100 mL round bottom flask, N-trifluoroacetyl-3-bromo-4,5-dimethoxyphenethylamine (1.46 g, 4.10 mmol) obtained above and dry methylene chloride (30 mL) were added, Stirred at -10 ° C.
Next, a methylene chloride solution of boron tribromide having a concentration of 1 M (90 mL) was added dropwise to the obtained solution, and the obtained mixture was stirred at room temperature for 2 hours to be reacted.
Next, methanol was added to the obtained reaction solution to stop the reaction, and the solvent was distilled off under reduced pressure to obtain a crude product.
Next, the obtained crude product was dissolved in ethyl acetate, and the organic layer was washed with a saturated aqueous solution of sodium hydrogen carbonate. The washed organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain N-trifluoroacetyl-5-bromodopamine as a brown oily substance (yield 1.16 g). .
The NMR data and HRMS (ESI) data of the obtained N-trifluoroacetyl-5-bromodopamine are shown below.
 1H NMR (400 MHz, CDCl3) δ2.67 (t, J = 7.2 Hz, 2 H), 3.48 (dd, J = 6.8, 13.6 Hz, 2 H), 6.64 (d, J = 2.0 Hz, 1 H), 6.77 (d, J = 2.0 Hz, 1 H), 7.31 (br, 1 H).
 HRMS (ESI) calcd for C10H9BrF3NO3Na [M + Na]+: 349.9610, 351.9610, found: 349.9566, 351.9555.
1 H NMR (400 MHz, CDCl 3 ) δ2.67 (t, J = 7.2 Hz, 2 H), 3.48 (dd, J = 6.8, 13.6 Hz, 2 H), 6.64 (d, J = 2.0 Hz, 1 H), 6.77 (d, J = 2.0 Hz, 1 H), 7.31 (br, 1 H).
HRMS (ESI) calcd for C 10 H 9 BrF 3 NO 3 Na [M + Na] +: 349.9610, 351.9610, found: 349.9566, 351.9555.
(N-トリフルオロアセチル-O,O’-イソプロピリデン-5-ブロモドーパミンの製造)
 容量100mLの丸底フラスコ中に、上記で得られたN-トリフルオロアセチル-5-ブロモドーパミン(1.16g、全量)、2,2-ジメトキシプロパン(2.0mL、16.4mmol)、p-トルエンスルホン酸・一水和物(39mg、0.21mmol)及びベンゼン(40mL)を添加した。
 次いで、この状態の丸底フラスコを、モレキュラーシーブ4Aを充填した滴下漏斗と接続し、この滴下漏斗をジムロートと接続し、塩化カルシウムを充填した管にこのジムロートを接続した。
 次いで、この状態で、丸底フラスコ中の混合物を100℃で20時間撹拌し、この間、モレキュラーシーブ4A中を気化した溶媒が通過するようにした。
 次いで、得られた反応液から溶媒を減圧留去し、得られた反応混合物を酢酸エチルに溶解させ、この溶液を飽和炭酸水素ナトリウム水溶液で洗浄した。洗浄後の有機層を無水硫酸ナトリウムで乾燥させ、溶媒を除去することにより、粗生成物を得た。
 この粗生成物を、フラッシュクロマトグラフィーにより精製した。このとき、移動相としては、酢酸エチル(20体積%)/ヘキサン(80体積%)の混合溶媒を用いて、目的物を分離し、溶出させ、溶出物から溶媒を除去した。
 以上により、目的物として、N-トリフルオロアセチル-O,O’-イソプロピリデン-5-ブロモドーパミンを得た(収量1.31g(3.56mmol)、2工程合計収率87%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.71であった。
 得られたN-トリフルオロアセチル-O,O’-イソプロピリデン-5-ブロモドーパミンのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of N-trifluoroacetyl-O, O'-isopropylidene-5-bromodopamine)
In a 100 mL round bottom flask, the N-trifluoroacetyl-5-bromodopamine obtained above (1.16 g, total amount), 2,2-dimethoxypropane (2.0 mL, 16.4 mmol), p- Toluenesulfonic acid monohydrate (39 mg, 0.21 mmol) and benzene (40 mL) were added.
Then, the round bottom flask in this state was connected to a dropping funnel filled with molecular sieve 4A, the dropping funnel was connected to a Dimroth, and the Dimroth was connected to a tube filled with calcium chloride.
Next, in this state, the mixture in the round bottom flask was stirred at 100 ° C. for 20 hours, during which the solvent vaporized in the molecular sieve 4A was allowed to pass.
Next, the solvent was distilled off from the obtained reaction solution under reduced pressure, the obtained reaction mixture was dissolved in ethyl acetate, and this solution was washed with a saturated aqueous solution of sodium hydrogen carbonate. The washed organic layer was dried over anhydrous sodium sulfate, and the solvent was removed to obtain a crude product.
This crude product was purified by flash chromatography. At this time, using a mixed solvent of ethyl acetate (20% by volume) / hexane (80% by volume) as a mobile phase, the target product was separated and eluted, and the solvent was removed from the eluate.
As a result, N-trifluoroacetyl-O, O'-isopropylidene-5-bromodopamine was obtained as the desired product (yield 1.31 g (3.56 mmol), total yield of two steps 87%).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.71. .
The NMR data and HRMS (ESI) data of the obtained N-trifluoroacetyl-O, O'-isopropylidene-5-bromodopamine are shown below.
 1H NMR (400 MHz, CDCl3) δ1.71 (s, 6 H), 2.77 (t, J = 7.2 Hz, 2 H), 3.54 (dd, J = 6.8, 13.6 Hz, 2 H), 6.52 (d, J = 1.6 Hz, 1 H), 6.75 (d, J = 1.6 Hz, 2 H).
 HRMS (ESI) calcd for C13H14BrF3NO3 [M + H]+: 368.0104, found: 368.0438.
1 H NMR (400 MHz, CDCl 3 ) δ1.71 (s, 6 H), 2.77 (t, J = 7.2 Hz, 2 H), 3.54 (dd, J = 6.8, 13.6 Hz, 2 H), 6.52 ( d, J = 1.6 Hz, 1 H), 6.75 (d, J = 1.6 Hz, 2 H).
HRMS (ESI) calcd for C 13 H 14 BrF 3 NO 3 [M + H] + : 368.0104, found: 368.0438.
(N-トリフルオロアセチル-O,O’-イソプロピリデン-5-(2-トリメチルシリルエチニル)ドーパミンの製造)
 ジムロートが装着され、火力乾燥された、容量50mLの二口丸底フラスコ中に、ビス(トリフェニルホスフィン)パラジウム(II)ジクロライド(190mg、0.27mmol)、ヨウ化銅(104mg、0.55mmol)及びトリフェニルホスフィン(69mg、0.26mmol)を添加した。そして、フラスコ内部の雰囲気を吸引してから、フラスコ内部にアルゴンガスを流し込む、という操作を繰り返すことにより、フラスコ内部の雰囲気をアルゴンガスで置換した。
 別途、火力乾燥された容量50mLの二口丸底フラスコ中に、上記で得られたN-トリフルオロアセチル-O,O’-イソプロピリデン-5-ブロモドーパミン(1.00g、2.72mmol)を添加し、ジイソプロピルアミン(20mL)に溶解させた。このジイソプロピルアミンは、水酸化ナトリウム存在下で蒸留した後、モレキュラーシーブ4Aの共存化で保管したものである。
 得られたジイソプロピルアミン溶液の全量を、上記のアルゴンガスで置換後の二口丸底フラスコ中に移液し、得られた混合物を室温下で30分撹拌した。
 次いで、得られた混合物に、トリメチルシリルアセチレン(0.5mL、3.53mmol)を添加し、これにより得られた混合物を75℃で36時間撹拌した。
 次いで、反応液を室温になるまで冷却した後、濃縮して、粗生成物を得た。シリカゲルを充填した管の内部に、この粗生成物を添加し、酢酸エチルで溶出させた。そして、溶出物を減圧濃縮し、得られた混合物を、再度、シリカゲルを充填した管の内部に添加し、酢酸エチル(50体積%)/ヘキサン(50体積%)の混合溶媒で溶出させた。そして、この溶出物を、フラッシュクロマトグラフィーにより精製した。
 以上により、茶色油状物として、目的物であるN-トリフルオロアセチル-O,O’-イソプロピリデン-5-(2-トリメチルシリルエチニル)ドーパミンを得た(収量779mg(2.02mmol)、収率74%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.56であった。
 得られたN-トリフルオロアセチル-O,O’-イソプロピリデン-5-(2-トリメチルシリルエチニル)ドーパミンのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of N-trifluoroacetyl-O, O'-isopropylidene-5- (2-trimethylsilylethynyl) dopamine)
Bis (triphenylphosphine) palladium (II) dichloride (190 mg, 0.27 mmol), copper iodide (104 mg, 0.55 mmol) in a 50 mL two-necked round bottom flask equipped with a Dimroth and heat-dried And triphenylphosphine (69 mg, 0.26 mmol) were added. Then, the operation of sucking the atmosphere inside the flask and then flowing argon gas into the flask was repeated, thereby replacing the atmosphere inside the flask with argon gas.
Separately, N-trifluoroacetyl-O, O'-isopropylidene-5-bromodopamine (1.00 g, 2.72 mmol) obtained above was placed in a 50-mL round-bottomed flask having a capacity of 50 mL, which had been dried by heat. Was added and dissolved in diisopropylamine (20 mL). This diisopropylamine was distilled in the presence of sodium hydroxide and then stored in the presence of molecular sieve 4A.
The entire amount of the obtained diisopropylamine solution was transferred into a two-necked round-bottomed flask after the replacement with the above argon gas, and the obtained mixture was stirred at room temperature for 30 minutes.
Then, to the resulting mixture was added trimethylsilylacetylene (0.5 mL, 3.53 mmol) and the resulting mixture was stirred at 75 ° C. for 36 hours.
Next, the reaction solution was cooled to room temperature and concentrated to obtain a crude product. This crude product was added inside a tube filled with silica gel and eluted with ethyl acetate. The eluate was concentrated under reduced pressure, and the obtained mixture was added again to the inside of a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (50% by volume) / hexane (50% by volume). Then, the eluate was purified by flash chromatography.
As a result, N-trifluoroacetyl-O, O'-isopropylidene-5- (2-trimethylsilylethynyl) dopamine as a target substance was obtained as a brown oil (yield 779 mg (2.02 mmol), yield 74). %).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.56. .
The NMR data and HRMS (ESI) data of the obtained N-trifluoroacetyl-O, O'-isopropylidene-5- (2-trimethylsilylethynyl) dopamine are shown below.
 1H NMR (400 MHz, CDCl3) δ0.26 (s, 9 H), 1.70 (s, 6 H), 2.74 (t, J = 7.2 Hz, 2 H), 3.55 (dd, J = 6.8, 13.2 Hz, 2 H), 6.40 (br, 1 H), 6.52 (d, J = 1.6 Hz, 1 H), 6.68 (d, J = 1.2 Hz, 1 H).
 13C NMR (100 MHz, CDCl3) δ-0.2 (three trimethylsilyl carbons), 25.9 (two isopropyliden methyl carbons), 34.4, 40.9, 98.7, 98.8, 104.3, 109.0, 115.8 (q, J = 286 Hz), 119.3, 124.7, 130.3, 147.9, 148.0, 157.3 (q, J = 36.4 Hz).
 HRMS (ESI) calcd for C18H23F3NO3Si [M + H]+: 386.1394, found: 386.1353; calcd for C18H22F3NO3SiNa [M + Na]+: 408.1213, found: 408.1164.
1 H NMR (400 MHz, CDCl 3 ) δ 0.26 (s, 9 H), 1.70 (s, 6 H), 2.74 (t, J = 7.2 Hz, 2 H), 3.55 (dd, J = 6.8, 13.2 Hz, 2 H), 6.40 (br, 1 H), 6.52 (d, J = 1.6 Hz, 1 H), 6.68 (d, J = 1.2 Hz, 1 H).
13 C NMR (100 MHz, CDCl 3 ) δ-0.2 (three trimethylsilyl carbons), 25.9 (two isopropyliden methyl carbons), 34.4, 40.9, 98.7, 98.8, 104.3, 109.0, 115.8 (q, J = 286 Hz), 119.3 , 124.7, 130.3, 147.9, 148.0, 157.3 (q, J = 36.4 Hz).
HRMS (ESI) calcd for C 18 H 23 F 3 NO 3 Si [M + H] + : 386.1394, found: 386.1353; calcd for C 18 H 22 F 3 NO 3 SiNa [M + Na] + : 408.1213, found: 408.1164.
(N-トリフルオロアセチル-O,O’-イソプロピリデン-5-エチニルドーパミンの製造)
 容量50mLの丸底フラスコ中に、上記で得られたN-トリフルオロアセチル-O,O’-イソプロピリデン-5-(2-トリメチルシリルエチニル)ドーパミン(136mg、0.353mmol)、炭酸カリウム(10mg、0.071mmol)及びメタノール(2mL)を添加した。
 次いで、得られた混合物を室温下で22時間撹拌し、反応させた。
 次いで、得られた反応液に飽和炭酸水素ナトリウム水溶液を加えて、反応を停止させた。そして、得られた反応液に対して、塩化メチレンで抽出を行い、有機層を無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去することにより、粗生成物を得た。
 この粗生成物を、フラッシュクロマトグラフィーにより精製した。このとき、移動相としては、酢酸エチル(15体積%)/ヘキサン(85体積%)の混合溶媒を用いて、目的物を分離し、溶出させ、溶出物から溶媒を除去した。
 以上により、茶色油状物として、目的物であるN-トリフルオロアセチル-O,O’-イソプロピリデン-5-エチニルドーパミンを得た(収量65.0mg(0.207mmol)、収率59%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.48であった。
 得られたN-トリフルオロアセチル-O,O’-イソプロピリデン-5-エチニルドーパミンのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of N-trifluoroacetyl-O, O'-isopropylidene-5-ethynyldopamine)
In a 50 mL round bottom flask, N-trifluoroacetyl-O, O'-isopropylidene-5- (2-trimethylsilylethynyl) dopamine (136 mg, 0.353 mmol) obtained above, potassium carbonate (10 mg, 0.071 mmol) and methanol (2 mL) were added.
Next, the resulting mixture was stirred at room temperature for 22 hours to react.
Next, a saturated aqueous sodium hydrogen carbonate solution was added to the obtained reaction solution to stop the reaction. Then, the obtained reaction solution was extracted with methylene chloride, the organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product.
This crude product was purified by flash chromatography. At this time, using a mixed solvent of ethyl acetate (15% by volume) / hexane (85% by volume) as a mobile phase, the target substance was separated and eluted, and the solvent was removed from the eluted substance.
As a result, N-trifluoroacetyl-O, O'-isopropylidene-5-ethynyldopamine as a target substance was obtained as a brown oil (yield: 65.0 mg (0.207 mmol), yield: 59%).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.48. .
The NMR data and HRMS (ESI) data of the obtained N-trifluoroacetyl-O, O'-isopropylidene-5-ethynyldopamine are shown below.
 1H NMR (400 MHz, CDCl3) δ1.71 (s, 6 H), 2.76 (t, J = 7.2 Hz, 2 H), 3.28 (s, 1 H), 3.56 (dd, J = 6.8, 13.6 Hz, 2 H), 6.57 (d, J = 1.2 Hz, 2 H), 6.70 (d, J = 1.2 Hz, 1 H).
 13C NMR (100 MHz, CDCl3) δ25.8 (two isopropyliden methyl carbons), 34.4, 40.9, 77.8, 81.2, 103.0, 109.4, 115.8 (q, J = 286 Hz), 119.5, 124.3, 130.7, 148.0, 148.4, 157.3 (q, J = 36.6 Hz).
 HRMS (ESI) calcd for C15H14F3NO3Na [M + Na]+: 336.0818, found: 336.0721.
1 H NMR (400 MHz, CDCl 3 ) δ1.71 (s, 6 H), 2.76 (t, J = 7.2 Hz, 2 H), 3.28 (s, 1 H), 3.56 (dd, J = 6.8, 13.6 Hz, 2 H), 6.57 (d, J = 1.2 Hz, 2 H), 6.70 (d, J = 1.2 Hz, 1 H).
13 C NMR (100 MHz, CDCl 3 ) δ25.8 (two isopropyliden methyl carbons), 34.4, 40.9, 77.8, 81.2, 103.0, 109.4, 115.8 (q, J = 286 Hz), 119.5, 124.3, 130.7, 148.0, 148.4, 157.3 (q, J = 36.6 Hz).
HRMS (ESI) calcd for C 15 H 14 F 3 NO 3 Na [M + Na] + : 336.0818, found: 336.0721.
(化合物(I)-3-101の製造)
 容量30mLの丸底フラスコ中に、上記で得られたN-トリフルオロアセチル-O,O’-イソプロピリデン-5-エチニルドーパミン(65.0mg、0.207mmol)、濃度が1Mである水酸化リチウム水溶液(0.4mL)及びテトラヒドロフラン(0.9 mL)を添加した。
 次いで、得られた混合物を室温下で7時間撹拌し、反応させた。
 次いで、得られた反応液に水を加え、得られた混合液に対して、ジエチルエーテルで抽出を行い、有機層を無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。
 以上により、黄色油状物として、目的物であるO,O’-イソプロピリデン-5-エチニルドーパミン(すなわち、化合物(I)-3-101)を得た(収量40.2mg(0.184mmol)、収率89%)。
 得られた化合物(I)-3-101のNMRデータ、HRMS(ESI)データを以下に示す。
(Production of Compound (I) -3-101)
N-trifluoroacetyl-O, O'-isopropylidene-5-ethynyldopamine (65.0 mg, 0.207 mmol) obtained above in a round bottom flask having a capacity of 30 mL, lithium hydroxide having a concentration of 1 M An aqueous solution (0.4 mL) and tetrahydrofuran (0.9 mL) were added.
Next, the obtained mixture was stirred at room temperature for 7 hours to be reacted.
Next, water was added to the obtained reaction solution, the obtained mixture was extracted with diethyl ether, the organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
As a result, O, O'-isopropylidene-5-ethynyldopamine (namely, compound (I) -3-101) was obtained as a yellow oil (yield: 40.2 mg (0.184 mmol); 89%).
The NMR data and HRMS (ESI) data of the obtained compound (I) -3-101 are shown below.
 1H NMR (400 MHz, CDCl3) δ1.66 (br, 2 H), 1.71 (s, 6 H), 2.62 (t, J = 6.8 Hz, 2 H), 2.91 (t, J = 6.8 Hz, 2 H), 3.27 (s, 1 H), 6.59 (d, J = 1.2 Hz, 1 H), 6.72 (d, J = 1.2 Hz, 1 H).
 13C NMR (100 MHz, CDCl3) δ25.8 (two isopropyliden methyl carbons), 39.4, 43.3, 78.2, 80.8, 102.6, 109.7, 119.1, 124.4, 132.9, 147.6, 147.7.
 HRMS (ESI) calcd for C13H16NO2 [M + H]+: 218.1176, found 218.1179.
1 H NMR (400 MHz, CDCl 3 ) δ 1.66 (br, 2 H), 1.71 (s, 6 H), 2.62 (t, J = 6.8 Hz, 2 H), 2.91 (t, J = 6.8 Hz, 2 H), 3.27 (s, 1 H), 6.59 (d, J = 1.2 Hz, 1 H), 6.72 (d, J = 1.2 Hz, 1 H).
13 C NMR (100 MHz, CDCl 3 ) δ25.8 (two isopropyliden methyl carbons), 39.4, 43.3, 78.2, 80.8, 102.6, 109.7, 119.1, 124.4, 132.9, 147.6, 147.7.
HRMS (ESI) calcd for C 13 H 16 NO 2 [M + H] + : 218.1176, found 218.1179.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
[実施例10]
 以下に示す経路で、下記式(I)-1-104で表される化合物(本明細書においては、「化合物(I)-1-104」と略記することがある)を製造した。
[Example 10]
A compound represented by the following formula (I) -1-104 (hereinafter sometimes abbreviated as “compound (I) -1-104”) was produced by the following route.
<化合物(I)-1-104の製造>
(N-プロパルギル-N-トリフルオロアセチル-O,O’-ジメチルドーパミンの製造)
 容量50mLの丸底フラスコ中に、N-プロパルギル-N-トリフルオロアセチル-O,O’-イソプロピリデンドーパミン(220mg、0.672mmol)、トリフルオロ酢酸(26μL、0.336mmol)及び塩化メチレン(3mL)を添加した。N-プロパルギル-N-トリフルオロアセチル-O,O’-イソプロピリデンドーパミンは、実施例1の場合と同じ方法で製造した。
 次いで、得られた混合物を室温下で43時間撹拌し、反応させた。
 次いで、得られた反応液に水を加えて、反応を停止させた。そして、得られた反応液に対して、塩化メチレンで抽出を行い、有機層を無水硫酸ナトリウムで乾燥させ、溶媒を除去することにより、粗生成物を得た。
 この粗生成物を、DMF(3mL)に溶解させ、ここへヨードメタン (0.13mL、2.02mmol)及び炭酸カリウム(280mg、2.02mmol)を添加し、得られた混合物を室温下で24時間撹拌し、反応させた。
 次いで、得られた反応液に水を加えて、反応を停止させた。そして、得られた反応液に対して、酢酸エチル(50体積%)/ヘキサン(50体積%)の混合溶媒で抽出を行い、有機層を無水硫酸ナトリウムで乾燥させ、溶媒を除去することにより、粗生成物を得た。シリカゲルを充填した管の内部に、この粗生成物を添加し、酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒で溶出させた。そして、溶出物を減圧乾燥させた。
 以上により、目的物として、N-プロパルギル-N-トリフルオロアセチル-O,O’-ジメチルドーパミンを得た(収量190mg(0.603mmol)、収率90%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.31であった。
 得られたN-プロパルギル-N-トリフルオロアセチル-O,O’-ジメチルドーパミンのNMRデータ、HRMS(ESI)データを以下に示す。
<Production of Compound (I) -1-104>
(Production of N-propargyl-N-trifluoroacetyl-O, O'-dimethyldopamine)
In a 50 mL round bottom flask, N-propargyl-N-trifluoroacetyl-O, O'-isopropylidendopamine (220 mg, 0.672 mmol), trifluoroacetic acid (26 μL, 0.336 mmol) and methylene chloride (3 mL) ) Was added. N-propargyl-N-trifluoroacetyl-O, O'-isopropylidendopamine was prepared in the same manner as in Example 1.
Next, the obtained mixture was stirred at room temperature for 43 hours to be reacted.
Next, water was added to the obtained reaction solution to stop the reaction. Then, the obtained reaction solution was extracted with methylene chloride, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed to obtain a crude product.
This crude product was dissolved in DMF (3 mL), to which iodomethane (0.13 mL, 2.02 mmol) and potassium carbonate (280 mg, 2.02 mmol) were added, and the resulting mixture was allowed to stand at room temperature for 24 hours. Stir and react.
Next, water was added to the obtained reaction solution to stop the reaction. The obtained reaction solution is extracted with a mixed solvent of ethyl acetate (50% by volume) / hexane (50% by volume), the organic layer is dried over anhydrous sodium sulfate, and the solvent is removed. A crude product was obtained. This crude product was added into a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). Then, the eluate was dried under reduced pressure.
As a result, N-propargyl-N-trifluoroacetyl-O, O'-dimethyldopamine was obtained as the desired product (yield 190 mg (0.603 mmol), yield 90%).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.31. .
The NMR data and HRMS (ESI) data of the obtained N-propargyl-N-trifluoroacetyl-O, O'-dimethyldopamine are shown below.
 1H NMR (400 MHz, CDCl3, mixture of rotamers) δ2.28-2.29 (m, 1 H), 2.82 (t, J = 7.6 Hz, 2 H), 3.63-3.68 (m, 2 H), 3.77-3.79 (m, 6 H), 3.89 and 4.17 (rotameric d, J = 2.0 Hz, 2 H), 6.63-6.69 (m, 2 H), 6.72-6.75 (m, 1 H).
 13C NMR (100 MHz, CDCl3, mixture of two rotamers) δ32.4 and 32.5, 35.9 and 37.7 (q forδ37.7 peak, J = 4.1 Hz), 48.6 and 48.9 (q forδ48.6 peak, J = 2.1 Hz), 55.60 and 55.65 (two methoxy carbon peaks are overlapping), 73.31 and 73.35, 76.6 and 76.8, 111.2 and 111.3, 111.6 and 111.7, 116.0 and 116.2 (q, J = 292 Hz), 120.5, 129.4 and 130.2, 147.7 and 147.9, 148.9 and 149.0, 156.1 and 156.4 (q, J = 37.0 Hz).
 HRMS (ESI) calcd for C15H17F3NO3 [M + H]+: 316.1155, found: 316.1140; calcd for C15H16F3NO3Na [M + Na]+: 338.0974, found: 338.0960.
1 H NMR (400 MHz, CDCl 3 , mixture of rotamers) δ2.28-2.29 (m, 1 H), 2.82 (t, J = 7.6 Hz, 2 H), 3.63-3.68 (m, 2 H), 3.77 -3.79 (m, 6 H), 3.89 and 4.17 (rotameric d, J = 2.0 Hz, 2 H), 6.63-6.69 (m, 2 H), 6.72-6.75 (m, 1 H).
13 C NMR (100 MHz, CDCl 3 , mixture of two rotamers) δ32.4 and 32.5, 35.9 and 37.7 (q for δ37.7 peak, J = 4.1 Hz), 48.6 and 48.9 (q for δ48.6 peak, J = 2.1 Hz), 55.60 and 55.65 (two methoxy carbon peaks are overlapping), 73.31 and 73.35, 76.6 and 76.8, 111.2 and 111.3, 111.6 and 111.7, 116.0 and 116.2 (q, J = 292 Hz), 120.5, 129.4 and 130.2, 147.7 and 147.9, 148.9 and 149.0, 156.1 and 156.4 (q, J = 37.0 Hz).
HRMS (ESI) calcd for C 15 H 17 F 3 NO 3 [M + H] + : 316.1155, found: 316.1140; calcd for C 15 H 16 F 3 NO 3 Na [M + Na] + : 338.0974, found: 338.0960 .
(化合物(I)-1-104の製造)
 容量100mLの丸底フラスコ中に、上記で得られたN-プロパルギル-N-トリフルオロアセチル-O,O’-ジメチルドーパミン(190mg、0.603mmol)、濃度が1Mである水酸化リチウム水溶液(1.3mL)及びTHF(4mL)を添加した。
 次いで、得られた混合物を室温下で12日撹拌し、反応させた。
 次いで、得られた反応液を0℃に冷却し、ここに1N塩酸を加えて、反応を停止させた。そして、得られた反応液に対して、塩化メチレンを添加し、水で抽出を行い、水層を塩化メチレンで洗浄した。この洗浄後の水層のpHが11になるまで、この水層に炭酸水素ナトリウム水溶液を添加し、得られた混合物に対して、酢酸エチルで抽出を行い、有機層を無水硫酸ナトリウムで乾燥させ、溶媒を除去することにより、粗生成物を得た。
 容量10mLの丸底フラスコ中で、この粗生成物を、ジエチルエーテル(1mL)に溶解させ、ここに、塩化水素を1Mの濃度で含むジエチルエーテル溶液(1mL)を添加した。そして、これにより生じた固体をろ別し、ジエチルエーテルで洗浄して、減圧乾燥させた。
 以上により、薄茶色固体として、目的物であるO,O’-ジメチル-N-プロパルギルドーパミン塩酸塩(すなわち、化合物(I)-1-104)を得た(収量98mg(0.383mmol)、収率64%)。
 得られた化合物(I)-1-104のNMRデータ、HRMS(ESI)データを以下に示す。
(Production of Compound (I) -1-104)
The N-propargyl-N-trifluoroacetyl-O, O'-dimethyldopamine (190 mg, 0.603 mmol) obtained above in a round-bottomed flask having a capacity of 100 mL and a 1 M aqueous lithium hydroxide solution (1 .3 mL) and THF (4 mL).
Next, the obtained mixture was stirred at room temperature for 12 days to be reacted.
Next, the obtained reaction solution was cooled to 0 ° C., and 1N hydrochloric acid was added thereto to stop the reaction. Then, methylene chloride was added to the obtained reaction solution, extraction was performed with water, and the aqueous layer was washed with methylene chloride. An aqueous sodium hydrogen carbonate solution was added to the aqueous layer until the pH of the washed aqueous layer reached 11, and the obtained mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate. By removing the solvent, a crude product was obtained.
The crude product was dissolved in diethyl ether (1 mL) in a 10 mL round bottom flask, to which was added a 1 M solution of hydrogen chloride in diethyl ether (1 mL). Then, the resulting solid was separated by filtration, washed with diethyl ether, and dried under reduced pressure.
Thus, O, O'-dimethyl-N-propargyldopamine hydrochloride (namely, compound (I) -1-104) was obtained as a light brown solid (yield 98 mg (0.383 mmol). Rate 64%).
The NMR data and HRMS (ESI) data of the obtained compound (I) -1-104 are shown below.
 1H NMR (400 MHz, CD3OD) δ2.92 (t, J = 8.0 Hz, 2 H), 3.22 (t, J = 2.8 Hz, 1 H), 3.26-3.28 (m, 2 H), 3.917 (s, 3 H), 3.294 (s, 3 H), 3.92 (d, J = 2.8 Hz, 2 H), 6.79 (dd, J = 2.0, 8.4 Hz, 1 H), 6.87-6.90 (m, 2 H).
 13C NMR (100 MHz, CD3OD) δ32.7, 37.4, 49.8, 56.5 (two MeO carbons were overlapping), 74.5, 79.3, 113.4, 113.6, 122.2, 130.1, 149.9, 150.9.
 HRMS (ESI) calcd for C13H18NO2 [M + H]+: 220.1332, found: 220.1303.
1 H NMR (400 MHz, CD 3 OD) δ2.92 (t, J = 8.0 Hz, 2 H), 3.22 (t, J = 2.8 Hz, 1 H), 3.26-3.28 (m, 2 H), 3.917 (s, 3 H), 3.294 (s, 3 H), 3.92 (d, J = 2.8 Hz, 2 H), 6.79 (dd, J = 2.0, 8.4 Hz, 1 H), 6.87-6.90 (m, 2 H).
13 C NMR (100 MHz, CD 3 OD) δ 32.7, 37.4, 49.8, 56.5 (two MeO carbons were overlapping), 74.5, 79.3, 113.4, 113.6, 122.2, 130.1, 149.9, 150.9.
HRMS (ESI) calcd for C 13 H 18 NO 2 [M + H] + : 220.1332, found: 220.1303.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
<<神経機能調節物質の評価>>
[実施例11]
 下記7種の化合物を用いて、化合物の神経細胞内への取り込みの有無を評価する、以下に示す試験を行った。
 ・FFN511
 ・実施例1で得られた化合物(I)-1-102
 ・実施例1で得られた化合物(I)-1-103
 ・実施例10で得られた化合物(I)-1-104
 ・実施例5で得られた化合物(I)-1-201
 ・実施例2で得られた化合物(I)-2-301
 ・実施例9で得られた化合物(I)-3-101
<< Evaluation of neurological modulator >>
[Example 11]
Using the following seven compounds, the following tests were performed to evaluate whether or not the compounds were taken up into nerve cells.
・ FFN511
-Compound (I) -1-102 obtained in Example 1
-Compound (I) -1-103 obtained in Example 1
-Compound (I) -1-104 obtained in Example 10
-Compound (I) -1-201 obtained in Example 5
-Compound (I) -2-301 obtained in Example 2
-Compound (I) -3-101 obtained in Example 9
 すなわち、ラット副腎褐色細胞腫であるPC-12細胞を、通常培地で維持した後、I型コラーゲンでコートしたカバーガラスに播種し、濃度が10ng/mLであるラットβ-NGFを用いて、神経細胞へ分化させた。ここで、通常培地とは、ウシ胎児血清(Fetal Bovine Serum)を10質量%の濃度で含有し、かつ、ウマ血清(Horse Serum)を10質量%の濃度で含有し、かつ、ペニシリン及びストレプトマイシンを含有する、ダルベッコ改変イーグル培地である。
 次いで、前記7種の化合物を1種ずつ含有する細胞外液を調製した。ここで、細胞外液とは、125mMの濃度で塩化ナトリウム(NaCl)を含有し、かつ、5mMの濃度で塩化カリウム(KCl)を含有し、かつ、10mMの濃度でデキストロースを含有し、かつ、10mMの濃度でHEPES(2-[4-(2-ヒドロキシエチル)ピペラジン-1-イル]エタンスルホン酸)を含有し、かつ、1mMの濃度で塩化マグネシウム(MgCl)を含有し、かつ、2mMの濃度で塩化カルシウム(CaCl)を含有する、pH7.3の水溶液である。そして、この細胞外液に、37℃30分、上記で得られた分化後の神経細胞を浸漬した。そして、この浸漬後の神経細胞を化学固定した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 488蛍光色素を、この固定後の神経細胞と反応させた。なお、この反応に供した固定後の神経細胞は、前記7種の化合物のうち、FFN511以外の6種の化合物を含有する細胞外液に浸漬したものである。
 次いで、反応後の神経細胞と、FFN511を含有する細胞外液に浸漬し、固定した神経細胞(すなわち、未反応の神経細胞)とを、共焦点顕微鏡(オリンパス社製「FV1000」)を用いて、10倍、60倍の対物レンズにより観察した。結果を図8A~図8Gに示す。図8Aは、FFN511を用いた場合の神経細胞の撮像データであり、図8Bは、化合物(I)-2-301を用いた場合の神経細胞の撮像データであり、図8Cは、化合物(I)-1-201を用いた場合の神経細胞の撮像データであり、図8Dは、化合物(I)-1-103を用いた場合の神経細胞の撮像データであり、図8Eは、化合物(I)-1-102を用いた場合の神経細胞の撮像データであり、図8Fは、化合物(I)-1-104を用いた場合の神経細胞の撮像データであり、図8Gは、化合物(I)-3-101を用いた場合の神経細胞の撮像データである。
That is, PC-12 cells, which are rat adrenal pheochromocytoma, are maintained in a normal medium, and then seeded on a cover glass coated with type I collagen. Differentiated into cells. Here, the normal medium contains fetal bovine serum (Fetal Bovine Serum) at a concentration of 10% by mass, horse serum (Horse Serum) at a concentration of 10% by mass, and contains penicillin and streptomycin. It is Dulbecco's modified Eagle's medium.
Next, an extracellular solution containing each of the seven compounds was prepared. Here, the extracellular fluid contains sodium chloride (NaCl) at a concentration of 125 mM, potassium chloride (KCl) at a concentration of 5 mM, dextrose at a concentration of 10 mM, and It contains HEPES (2- [4- (2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid) at a concentration of 10 mM, contains magnesium chloride (MgCl 2 ) at a concentration of 1 mM, and contains 2 mM Is an aqueous solution containing calcium chloride (CaCl 2 ) at a concentration of pH 7.3. Then, the differentiated nerve cells obtained above were immersed in this extracellular solution at 37 ° C. for 30 minutes. Then, the immersed nerve cells were chemically fixed.
Then, Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the immobilized nerve cells using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst. The fixed nerve cells subjected to this reaction were immersed in an extracellular solution containing six compounds other than FFN511 among the seven compounds.
Next, the nerve cells after the reaction and the nerve cells fixed by immersion in an extracellular solution containing FFN511 (that is, unreacted nerve cells) are confocal microscope (Olympus “FV1000”). Observation was performed with a 10 × or 60 × objective lens. The results are shown in FIGS. 8A to 8G. FIG. 8A is imaging data of a nerve cell using FFN511, FIG. 8B is imaging data of a nerve cell using Compound (I) -2-301, and FIG. ) -1-201 shows the imaging data of nerve cells using FIG. 8D, FIG. 8D shows the imaging data of nerve cells using compound (I) -1-103, and FIG. FIG. 8F is image data of a nerve cell when compound (I) -1-104 is used, and FIG. 8G is image data of a nerve cell when compound (I) -1-104 is used. 2) Imaging data of a nerve cell when -3-101 is used.
 図8A~図8Gから、FFN511以外の6種の化合物がすべて、FFN511と同様に、PC-12細胞から分化した神経細胞中に取り込まれ、この状態でクリック反応によって、アジド基が付加された前記蛍光色素と反応してラベル化され、共焦点顕微鏡によって検出されたことを確認できた。
 これら6種の本発明の化合物は、神経細胞中での局在を評価可能であり、特に、化合物(I)-1-102、化合物(I)-1-103、化合物(I)-1-104、及び化合物(I)-3-101は、FFN511の場合と類似の細胞内分布を示すことを確認できた。
From FIGS. 8A to 8G, all the six compounds other than FFN511 were taken into neurons differentiated from PC-12 cells in the same manner as FFN511, and in this state, the azide group was added by a click reaction. It was confirmed that the label was reacted with the fluorescent dye and detected by a confocal microscope.
These six compounds of the present invention can be evaluated for their localization in nerve cells. In particular, compound (I) -1-102, compound (I) -1-103, and compound (I) -1- 104 and Compound (I) -3-101 could be confirmed to exhibit similar intracellular distribution to that of FFN511.
[実施例12]
 上記で得られた化合物(I)-3-101と、FFN511蛍光色素を、実施例6で用いたものと同じ人工脳脊髄液に溶解させ、化合物(I)-3-101の濃度が10μmol/Lであり、かつ、FFN511蛍光色素の濃度が10μmol/Lである溶液を調製した。
 次いで、実施例6の場合と同じ方法で、可溶化した試験片を作製した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 594蛍光色素を、上記の可溶化した試験片と反応させた。
 840nmのフェムト秒超短パルスレーザー(Newport社製MaitaiHP)と顕微鏡(オリンパス社製「FV1000MPE」)を用い、この試験片を観察した。結果を図9A~図9Fに示す。
 図9Aは、FFN511蛍光色素のみを検出した場合の試験片の撮像データであり、図9Bは、図9Aの場合と同じ領域で、化合物(I)-3-101のみを検出した場合の試験片の撮像データであり、図9Cは、図9Aの場合と同じ領域で、FFN511蛍光色素と化合物(I)-3-101を同時に検出した場合の試験片の撮像データである。また、図9D、図9E及び図9Fは、それぞれ、図9A、図9B及び図9Cのデータを2.5倍に拡大した撮像データである。
[Example 12]
The compound (I) -3-101 obtained above and the FFN511 fluorescent dye were dissolved in the same artificial cerebrospinal fluid as used in Example 6, and the concentration of the compound (I) -3-101 was 10 μmol / ml. L and a solution having a concentration of the FFN511 fluorescent dye of 10 μmol / L was prepared.
Next, a solubilized test piece was prepared in the same manner as in Example 6.
Then, Alexa Fluor® 594 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
The test piece was observed using an 840 nm femtosecond ultrashort pulse laser (Maitai HP manufactured by Newport) and a microscope (“FV1000MPE” manufactured by Olympus). The results are shown in FIGS. 9A to 9F.
FIG. 9A is imaging data of a test piece when only the FFN511 fluorescent dye is detected, and FIG. 9B is a test piece when only the compound (I) -3-101 is detected in the same region as in FIG. 9A. FIG. 9C shows the imaging data of the test piece when the FFN511 fluorescent dye and the compound (I) -3-101 were simultaneously detected in the same region as in FIG. 9A. 9D, 9E, and 9F are image data obtained by enlarging the data of FIGS. 9A, 9B, and 9C by 2.5 times, respectively.
 図9A及び図9D中には、FFN511蛍光色素による発光が確認された。その発光領域の一部を、丸囲みによって示している。図9A及び図9D中には、他にもFFN511蛍光色素による発光領域が存在していた。図9A及び図9Dから、公知文献で公開されているとおり、FFN511蛍光色素がドーパミン含有神経細胞中に取り込まれていることを確認できた。
 また、図9B及び図9E中には、ラベル化された化合物(I)-3-101による発光が確認された。その発光領域の一部を、丸囲みによって示している。図9B及び図9E中には、他にもラベル化された化合物(I)-3-101による発光領域が存在していた。図9B及び図9Eから、化合物(I)-3-101が、ドーパミン含有神経細胞中に取り込まれ、この状態でクリック反応によって、アジド基が付加された前記蛍光色素と反応してラベル化されたことを確認できた。
 そして、図9C及び図9Fから、FFN511蛍光色素と、ラベル化された化合物(I)-3-101と、を同時に検出でき、ドーパミン含有神経細胞中で、化合物(I)-3-101は、FFN511蛍光色素と同様の領域に、選択的に取り込まれていることを確認できた。
9A and 9D, light emission by the FFN511 fluorescent dye was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 9A and FIG. 9D, other light emitting regions by the FFN511 fluorescent dye were present. 9A and 9D, it was confirmed that the FFN511 fluorescent dye was incorporated into the dopamine-containing neurons, as disclosed in the known literature.
9B and 9E, light emission by the labeled compound (I) -3-101 was confirmed. A part of the light emitting region is indicated by a circle. In FIG. 9B and FIG. 9E, another light emitting region by the labeled compound (I) -3-101 was present. From FIG. 9B and FIG. 9E, compound (I) -3-101 was incorporated into dopamine-containing neurons, and in this state, it was labeled by reacting with the azido group-added fluorescent dye by a click reaction. I was able to confirm that.
9C and 9F, the FFN511 fluorescent dye and the labeled compound (I) -3-101 can be simultaneously detected, and in the dopamine-containing neurons, the compound (I) -3-101 is It could be confirmed that the FFN511 was selectively incorporated into the same region as the fluorescent dye.
 本実施例と実施例7との比較から明らかなように、化合物(I)-3-101も、化合物(I)-1-101及び化合物(I)-1-103の場合と同様に、そして、天然由来の神経機能調節物質の場合と同様に、神経細胞中に取り込まれ、さらに、神経細胞中で、種々のアジド基が付加された化合物と反応可能であって、このような化合物として蛍光色素を用いることで、神経細胞中で明瞭に検出できることを示していた。 As is clear from the comparison between this example and Example 7, compound (I) -3-101 was prepared in the same manner as compound (I) -1-101 and compound (I) -1-103, and As in the case of a naturally-occurring nerve function-modulating substance, it can be taken up into nerve cells and further react with various azide-group-added compounds in the nerve cells. It was shown that the use of a dye allowed clear detection in nerve cells.
 なお、本実施例においても、化合物(I)-3-101について、クリック反応により、蛍光色素と反応させてから検出したが、この化合物は、炭素原子間の三重結合を有している。したがって、この化合物も、ラマン顕微鏡を用いて、発光ラベルを用いずに直接検出することが可能である。 In this example, compound (I) -3-101 was also detected after reacting with a fluorescent dye by a click reaction, but this compound has a triple bond between carbon atoms. Therefore, this compound can also be directly detected using a Raman microscope without using a luminescent label.
<<化合物(II)の製造>>
[実施例13]
 以下に示す経路で、下記式(II)-1-101で表される化合物(本明細書においては、「化合物(II)-1-101」と略記することがある)を製造した。
<< Production of Compound (II) >>
Example 13
A compound represented by the following formula (II) -1-101 (which may be abbreviated as “compound (II) -1-101” in the present specification) was produced by the following route.
<化合物(II)-1-101の製造>
(2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチルアミンの製造)
 容量100mLの丸底フラスコ中に、セロトニン塩酸塩(2.12g、10mmol)、イミダゾール(2.24g、33mmol)、tert-ブチルジメチルクロロシラン(3.32g、22mmol)、及びTHF(50mL)を添加した。
 次いで、これらの混合物を室温下で24時間撹拌して、反応させた。
 次いで、析出物をろ別し、この析出物を塩化メチレン(20mL)で3回洗浄し、0.5M水酸化ナトリウム(100mL)中で溶解させた。
 次いで、得られた水溶液に対して、ジエチルエーテル(30mL)で3回抽出を行い、集められた有機層を水(30mL)で3回洗浄し、無水硫酸ナトリウムで乾燥させた。
 次いで、溶媒を除去することにより、白色個体として、2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチルアミンを得た。
 得られた2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチルアミンのNMRデータを以下に示す。
<Production of Compound (II) -1-101>
(Production of 2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethylamine)
In a 100 mL round bottom flask, serotonin hydrochloride (2.12 g, 10 mmol), imidazole (2.24 g, 33 mmol), tert-butyldimethylchlorosilane (3.32 g, 22 mmol), and THF (50 mL) were added. .
Next, these mixtures were stirred at room temperature for 24 hours to react.
Next, the precipitate was separated by filtration, washed with methylene chloride (20 mL) three times, and dissolved in 0.5 M sodium hydroxide (100 mL).
Next, the obtained aqueous solution was extracted three times with diethyl ether (30 mL), and the collected organic layers were washed three times with water (30 mL) and dried over anhydrous sodium sulfate.
Then, the solvent was removed to obtain 2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethylamine as a white solid.
The NMR data of the obtained 2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethylamine are shown below.
 1H NMR (400 MHz, CD3OD) δ0.18 (s, 6 H), 1.01 (s, 9 H), 2.82-2.92 (m, 4 H), 6.67 (dd, J = 2.0, 8.8 Hz, 1 H), 6.96 (d, J = 2.4 Hz, 1 H), 7.04 (s, 1 H), 7.19 (d, J = 8.8 Hz, 1 H). 1 H NMR (400 MHz, CD 3 OD) δ 0.18 (s, 6 H), 1.01 (s, 9 H), 2.82-2.92 (m, 4 H), 6.67 (dd, J = 2.0, 8.8 Hz, 1H), 6.96 (d, J = 2.4 Hz, 1 H), 7.04 (s, 1 H), 7.19 (d, J = 8.8 Hz, 1 H).
(N-2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミドの製造)
 容量100mLの丸底フラスコ中に、上記で得られたN-2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミドの全量、トリフルオロ酢酸エチル(1.55mL、1.85g、13mmol)、N,N-ジイソプロピルエチルアミン(1.75mL、1.29g、10mmol)、及びメタノールを添加した。
 次いで、これらの混合物を室温下で48時間撹拌して、反応させた。
 次いで、得られた反応液に水を加えて、反応を停止させた。そして、反応混合物を酢酸エチル(30mL)で3回抽出し、集められた有機層を水で洗浄し、無水硫酸ナトリウムで乾燥させた。
 次いで、溶媒を除去した後、析出した固体をヘキサンで洗浄し、減圧乾燥させることにより、白色個体として、N-2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミドを得た(収量3g(7.76mmol)、収率78%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.4であった。
 得られたN-2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミドのNMRデータ、HRMS(ESI)データを以下に示す。
(Production of N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide)
In a 100 mL round bottom flask, the total amount of N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide obtained above, Ethyl trifluoroacetate (1.55 mL, 1.85 g, 13 mmol), N, N-diisopropylethylamine (1.75 mL, 1.29 g, 10 mmol) and methanol were added.
Next, these mixtures were stirred at room temperature for 48 hours to be reacted.
Next, water was added to the obtained reaction solution to stop the reaction. Then, the reaction mixture was extracted three times with ethyl acetate (30 mL), and the collected organic layers were washed with water and dried over anhydrous sodium sulfate.
Next, after removing the solvent, the precipitated solid was washed with hexane and dried under reduced pressure to give N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl as a white solid. -2,2,2-trifluoroacetamide was obtained (3 g (7.76 mmol), 78% yield).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.4. .
The NMR data and HRMS (ESI) data of the obtained N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide are shown below.
 1H NMR (400 MHz, CDCl3) δ0.21 (s, 6 H), 1.02 (s, 9 H),2 .98 (t, J = 6.8 Hz, 2 H), 3.66 (dd, J = 6.8, 12.8 Hz, 2 H), 6.38 (br, 1 H), 6.79 (dd, J = 2.0, 8.8 Hz, 1 H), 6.98 (dt, J = 2.4, 0.4 Hz, 1 H), 6.99 (d, J = 2.4 Hz, 1 H), 7.22 (d, J = 8.8 Hz, 1  H), 8.00 (br, 1 H).
 13C NMR (100 MHz, CDCl3) δ-4.45, 18.2, 24.7, 25.8, 39.9, 107.9, 111.2, 111.4, 111.7, 115.8 (q, J = 292 Hz), 117.3, 123.0, 127.6, 132.0, 149.4, 157.1 (q, J = 37.8 Hz).
 HRMS (ESI) calcd for C18H26F3N2O2Si [M + H]+: 387.1710, found: 387.1724.
1 H NMR (400 MHz, CDCl 3 ) δ 0.21 (s, 6 H), 1.02 (s, 9 H), 2.98 (t, J = 6.8 Hz, 2 H), 3.66 (dd, J = 6.8 , 12.8 Hz, 2 H), 6.38 (br, 1 H), 6.79 (dd, J = 2.0, 8.8 Hz, 1 H), 6.98 (dt, J = 2.4, 0.4 Hz, 1 H), 6.99 (d, J = 2.4 Hz, 1 H), 7.22 (d, J = 8.8 Hz, 1 H), 8.00 (br, 1 H).
13 C NMR (100 MHz, CDCl 3 ) δ-4.45, 18.2, 24.7, 25.8, 39.9, 107.9, 111.2, 111.4, 111.7, 115.8 (q, J = 292 Hz), 117.3, 123.0, 127.6, 132.0, 149.4, 157.1 (q, J = 37.8 Hz).
HRMS (ESI) calcd for C 18 H 26 F 3 N 2 O 2 Si [M + H] + : 387.1710, found: 387.1724.
(N-2-(5-tert-ブチルジメチルシリルオキシ-1-プロパルギル-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミドの製造)
 容量100mLの丸底フラスコ中に、上記で得られたN-2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミド(800mg、2.07mmol)、及び乾燥THF(20mL)を添加した。
 次いで、得られた溶液を0℃で撹拌し、ここにリチウムジイソプロピルアミドのTHF溶液(濃度1.5M、1.5mL、リチウムジイソプロピルアミドとして2.25mmol)を添加し、得られた混合物を0℃で1時間撹拌した。ここにプロパルギルブロミド(0.17mL、253mmg、2.13mmol)を添加し、得られた混合物を0℃で撹拌し、さらに室温下で18時間撹拌して、反応させた。
 次いで、得られた反応液に、飽和塩化アンモニウム水溶液を加えて、反応を停止させた。そして、得られた反応液に対して、酢酸エチルで抽出を行い、得られた有機層を無水硫酸ナトリウムで乾燥させることにより、粗生成物を得た。
 次いで、シリカゲルを充填した管の内部に、この粗生成物を添加し、酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒で溶出させた。そして、この溶出物を、フラッシュクロマトグラフィーにより精製した。このとき、移動相としては、酢酸エチルとヘキサンとの混合溶媒を用い、酢酸エチルの濃度を10体積%から30体積%まで増大させて、目的物を分離し、溶出させ、溶出物から溶媒を除去した。
 以上により、淡い白色固体として、目的物であるN-2-(5-tert-ブチルジメチルシリルオキシ-1-プロパルギル-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミドを得た(収量180mg(0.424mmol)、収率20%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.52であった。
 得られた化合物(II)-1-101のNMRデータ、HRMS(ESI)データを以下に示す。
(Production of N-2- (5-tert-butyldimethylsilyloxy-1-propargyl-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide)
In a 100 mL round bottom flask, N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide (800 mg, 2.07 mmol), and dry THF (20 mL).
Then, the obtained solution was stirred at 0 ° C, and a THF solution of lithium diisopropylamide (concentration: 1.5 M, 1.5 mL, 2.25 mmol as lithium diisopropylamide) was added thereto, and the resulting mixture was cooled to 0 ° C. For 1 hour. To this, propargyl bromide (0.17 mL, 253 mmg, 2.13 mmol) was added, and the resulting mixture was stirred at 0 ° C. and further stirred at room temperature for 18 hours to react.
Next, a saturated ammonium chloride aqueous solution was added to the obtained reaction solution to stop the reaction. Then, the obtained reaction solution was extracted with ethyl acetate, and the obtained organic layer was dried over anhydrous sodium sulfate to obtain a crude product.
Next, the crude product was added into a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). Then, the eluate was purified by flash chromatography. At this time, a mixed solvent of ethyl acetate and hexane was used as a mobile phase, and the concentration of ethyl acetate was increased from 10% by volume to 30% by volume to separate and elute the target substance. Removed.
As described above, N-2- (5-tert-butyldimethylsilyloxy-1-propargyl-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide as a target substance was obtained as a pale white solid. Was obtained (180 mg (0.424 mmol), 20% yield).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.52. .
The NMR data and HRMS (ESI) data of the obtained compound (II) -1-101 are shown below.
 1H NMR (400 MHz, CDCl3) δ0.20 (s, 6 H), 1.01 (s, 9 H), 2.39 (dt, J = 0.4, 2.4 Hz, 1 H), 2.96 (t, J = 6.8 Hz, 2 H), 3.63 (dd, J = 6.8, 13.2 Hz, 2 H), 4.77 (d, J = 2.8 Hz, 2 H), 6.50 (br, 1 H), 6.83 (dd, J = 2.0, 8.8 Hz, 1 H), 6.97 (d, J = 2.4 Hz, 1 H), 7.00 (s, 1 H), 7.22 (d, J = 9.2 Hz, 1 H).
 13C NMR (100 MHz, CDCl3) δ-4.45, 18.1, 24.5, 25.7, 35.7, 39.9, 73.5, 77.6, 108.3, 109.9, 110.6, 115.8 (q, J = 292 Hz), 116.5, 125.8, 128.5, 131.9, 149.5, 157.1 (q, J = 37.3 Hz).
 HRMS (ESI) calcd for C21H27F3N2O2SiNa [M + Na]+: 447.1686, found: 447.1656.
1 H NMR (400 MHz, CDCl 3 ) δ0.20 (s, 6 H), 1.01 (s, 9 H), 2.39 (dt, J = 0.4, 2.4 Hz, 1 H), 2.96 (t, J = 6.8 Hz, 2 H), 3.63 (dd, J = 6.8, 13.2 Hz, 2 H), 4.77 (d, J = 2.8 Hz, 2 H), 6.50 (br, 1 H), 6.83 (dd, J = 2.0, 8.8 Hz, 1 H), 6.97 (d, J = 2.4 Hz, 1 H), 7.00 (s, 1 H), 7.22 (d, J = 9.2 Hz, 1 H).
13 C NMR (100 MHz, CDCl 3 ) δ-4.45, 18.1, 24.5, 25.7, 35.7, 39.9, 73.5, 77.6, 108.3, 109.9, 110.6, 115.8 (q, J = 292 Hz), 116.5, 125.8, 128.5, 131.9, 149.5, 157.1 (q, J = 37.3 Hz).
HRMS (ESI) calcd for C 21 H 27 F 3 N 2 O 2 SiNa [M + Na] + : 447.1686, found: 447.1656.
(化合物(II)-1-101の製造)
 容量50mLの丸底フラスコ中に、上記で得られたN-2-(5-tert-ブチルジメチルシリルオキシ-1-プロパルギル-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミド(180mg、0.424mmol)、水酸化リチウム水溶液(濃度1M、0.85mL)及びTHF(2.8mL)を添加した。
 次いで、得られた混合物を室温下で12時間撹拌し、ここに水(20mL)を添加した。
 次いで、得られた反応混合物に対して、クロロホルム(20mL)で3回抽出を行い、集められた有機層を無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去し、得られた残留混合物を、メタノール(1mL)中に溶解させた。そして、塩化水素を1Mの濃度で含む0℃のジエチルエーテル溶液(10mL)中へ、上記で得られたメタノール溶液を滴下し、溶媒を除去した後、得られた残留混合物を、再度メタノール(1mL)中に溶解させた。そして、0℃のジエチルエーテル(50mL)中へ、上記で得られたメタノール溶液を滴下し、析出した結晶をろ別し、ジエチルエーテルで洗浄した後、減圧乾燥させることにより、茶色の結晶として、目的物である1-プロパルギルセロトニン塩酸塩(すなわち、化合物(II)-1-101)を得た(収量30mg(0.12mmol)、収率28%)。
 得られた化合物(II)-1-101のNMRデータ、HRMS(ESI)データを以下に示す。
(Production of Compound (II) -1-101)
The above obtained N-2- (5-tert-butyldimethylsilyloxy-1-propargyl-1H-indol-3-yl) ethyl-2,2,2-trifluoro was placed in a 50 mL round bottom flask. Acetamide (180 mg, 0.424 mmol), aqueous lithium hydroxide solution (concentration 1 M, 0.85 mL) and THF (2.8 mL) were added.
Then, the obtained mixture was stirred at room temperature for 12 hours, and water (20 mL) was added thereto.
Next, the obtained reaction mixture was extracted three times with chloroform (20 mL), the collected organic layers were dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. (1 mL). Then, the methanol solution obtained above was dropped into a diethyl ether solution (10 mL) at 0 ° C. containing hydrogen chloride at a concentration of 1 M, and after removing the solvent, the obtained residual mixture was again added to methanol (1 mL). ). Then, the methanol solution obtained above was dropped into diethyl ether (50 mL) at 0 ° C., and the precipitated crystals were separated by filtration, washed with diethyl ether, and dried under reduced pressure to obtain brown crystals. Thus, 1-propargyl serotonin hydrochloride (the compound (II) -1-101), which was the target product, was obtained (30 mg (0.12 mmol), 28% yield).
The NMR data and HRMS (ESI) data of the obtained compound (II) -1-101 are shown below.
 1H NMR (400 MHz, CD3OD) δ2.76 (dt, J = 1.2, 2.4 Hz, 1 H), 2.80-2.83 (m, 2 H), 2.89-2.93 (m, 2 H), 4.85-4.86 (br, 2 H), 6.74 (dd, J = 2.0, 8.8 Hz, 1 H), 6.93 (d, J = 2.0 Hz, 1 H), 7.04 (s, 1 H), 7.24 (d, J = 8.8 Hz, 1 H).
 13C NMR (100 MHz, CD3OD) δ29.4, 36.2, 42.8, 74.0, 79.7, 104.1, 111.2, 112.7, 113.0, 127.3, 130.5, 132.9, 151.8.
 HRMS (ESI) calcd for C13H15N2O [M + H]+: 215.1179, found: 215.1165.
1 H NMR (400 MHz, CD 3 OD) δ2.76 (dt, J = 1.2, 2.4 Hz, 1 H), 2.80-2.83 (m, 2 H), 2.89-2.93 (m, 2 H), 4.85- 4.86 (br, 2 H), 6.74 (dd, J = 2.0, 8.8 Hz, 1 H), 6.93 (d, J = 2.0 Hz, 1 H), 7.04 (s, 1 H), 7.24 (d, J = (8.8 Hz, 1 H).
13 C NMR (100 MHz, CD 3 OD) δ 29.4, 36.2, 42.8, 74.0, 79.7, 104.1, 111.2, 112.7, 113.0, 127.3, 130.5, 132.9, 151.8.
HRMS (ESI) calcd for C 13 H 15 N 2 O [M + H] +: 215.1179, found: 215.1165.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
[実施例14]
 以下に示す経路で、下記式(II)-2-101で表される化合物(本明細書においては、「化合物(II)-2-101」と略記することがある)、及び下記式(II)-2-102で表される化合物(本明細書においては、「化合物(II)-2-102」と略記することがある)を製造した。
[Example 14]
A compound represented by the following formula (II) -2-101 (which may be abbreviated as “compound (II) -2-101” in the present specification) by the following route, and a compound represented by the following formula (II) ) -2-102 (in this specification, may be abbreviated as “compound (II) -2-102”).
<化合物(II)-2-101の製造>
(N-2-(1-プロパルギル-5-プロパルギルオキシ-1H-インドール-3-イル)エチル-N-プロパルギル-2,2,2-トリフルオロアセトアミドの製造)
 容量100mLの丸底フラスコ中に、78mgのオイル中に浸漬した52mgの水素化ナトリウム(2.17mmol)を加えた。この水素化ナトリウムは、ヘキサン(10mL)で3回洗浄したものである。そして、残留しているヘキサンを減圧留去し、丸底フラスコ内の雰囲気を窒素ガスで置換し、さらに丸底フラスコ中に乾燥DMF(30mL)を加えて,得られた懸濁液を0℃で撹拌した。
 先の実施例で得られたN-2-(5-tert-ブチルジメチルシリルオキシ-1H-インドール-3-イル)エチル-2,2,2-トリフルオロアセトアミド(800mg、2.07mmol)をDMF(10mL)に溶解させることにより、DMF溶液を調製した。このDMF溶液を、上記で得られた0℃の懸濁液に滴下し、得られた溶液を0℃で30分撹拌し、さらにここに、プロパルギルブロミド(0.17mL、253mmg、2.13mmol)を添加し、得られた混合物を0℃で撹拌し、さらに室温下で6時間撹拌して、反応させた。
 次いで、得られた反応液に、飽和塩化アンモニウム水溶液を加えて、反応を停止させた。そして、得られた反応液に対して、塩化メチレン(20mL)で3回抽出を行い、得られた有機層を無水硫酸ナトリウムで乾燥させた。
 次いで、この乾燥後の有機層から溶媒を除去し、水を添加して、得られた混合物に対して、ジエチルエーテル(30mL)で3回抽出を行い、得られた有機層を無水硫酸ナトリウムで乾燥させることにより、粗生成物を得た。
 次いで、シリカゲルを充填した管の内部に、この粗生成物を添加し、酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒で溶出させた。そして、この溶出物を、フラッシュクロマトグラフィーにより精製した。このとき、移動相としては、酢酸エチルとヘキサンとの混合溶媒を用い、酢酸エチルの濃度を5体積%から20体積%まで増大させて、目的物を分離し、溶出させ、溶出物から溶媒を除去した。
 以上により、N-2-(1-プロパルギル-5-プロパルギルオキシ-1H-インドール-3-イル)エチル-N-プロパルギル-2,2,2-トリフルオロアセトアミドを得た(収量70mg(0.181mmol)、収率9%)。
 酢酸エチル(30体積%)/ヘキサン(70体積%)の混合溶媒を展開溶媒として用い、得られた目的物を薄層クロマトグラフィー(TLC)で展開したところ、Rf値は0.46であった。
 得られたN-2-(1-プロパルギル-5-プロパルギルオキシ-1H-インドール-3-イル)エチル-N-プロパルギル-2,2,2-トリフルオロアセトアミドのNMRデータ、HRMS(ESI)データを以下に示す。
<Production of compound (II) -2-101>
(Production of N-2- (1-propargyl-5-propargyloxy-1H-indol-3-yl) ethyl-N-propargyl-2,2,2-trifluoroacetamide)
In a 100 mL round bottom flask was added 52 mg of sodium hydride (2.17 mmol) immersed in 78 mg of oil. This sodium hydride was washed three times with hexane (10 mL). Then, the remaining hexane was distilled off under reduced pressure, the atmosphere in the round bottom flask was replaced with nitrogen gas, and dry DMF (30 mL) was further added to the round bottom flask. And stirred.
N-2- (5-tert-butyldimethylsilyloxy-1H-indol-3-yl) ethyl-2,2,2-trifluoroacetamide (800 mg, 2.07 mmol) obtained in the previous example was added to DMF. (10 mL) to prepare a DMF solution. This DMF solution is added dropwise to the 0 ° C. suspension obtained above, and the resulting solution is stirred at 0 ° C. for 30 minutes. Was added, and the resulting mixture was stirred at 0 ° C. and further stirred at room temperature for 6 hours to react.
Next, a saturated ammonium chloride aqueous solution was added to the obtained reaction solution to stop the reaction. Then, the obtained reaction solution was extracted three times with methylene chloride (20 mL), and the obtained organic layer was dried over anhydrous sodium sulfate.
Next, the solvent was removed from the dried organic layer, water was added, and the obtained mixture was extracted three times with diethyl ether (30 mL), and the obtained organic layer was dried over anhydrous sodium sulfate. By drying, a crude product was obtained.
Next, the crude product was added into a tube filled with silica gel, and eluted with a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume). Then, the eluate was purified by flash chromatography. At this time, a mixed solvent of ethyl acetate and hexane was used as a mobile phase, and the concentration of ethyl acetate was increased from 5% by volume to 20% by volume to separate and elute the target substance. Removed.
Thus, N-2- (1-propargyl-5-propargyloxy-1H-indol-3-yl) ethyl-N-propargyl-2,2,2-trifluoroacetamide was obtained (yield 70 mg (0.181 mmol). ), 9% yield).
Using a mixed solvent of ethyl acetate (30% by volume) / hexane (70% by volume) as a developing solvent, the obtained target product was developed by thin-layer chromatography (TLC) to find that the Rf value was 0.46. .
NMR data and HRMS (ESI) data of the obtained N-2- (1-propargyl-5-propargyloxy-1H-indol-3-yl) ethyl-N-propargyl-2,2,2-trifluoroacetamide were obtained. It is shown below.
 1H NMR (400 MHz, CDCl3 mixture of rotamers) δ2.35 and 2.37 (rotameric t, J = 2.4 Hz, 1 H), 2.39 and 2.41 (rotameric t, J = 2.4 Hz, 1 H), 2.53 (t, J = 2.4 Hz, 1 H), 3.08 (t, J = 8.0 Hz, 2 H), 3.80 (q, J = 8.0 Hz, 2 ), 4.06 and 4.32 (rotameric d, J = 2.0 Hz for δ4.07 peak and J = 2.8 Hz for δ4.32 Hz, 2 H), 4.74 (t, J = 2.4 Hz, 2 H), 4.78 and 4.80 (rotameric d, J = 6.8 Hz, 2 H), 6.98 (dt, J = 9.2, 2.8 Hz, 1 H), 7.04 (d, J = 6.8 Hz, 1 H), 7.14 and 7.22 (rotameric d, J = 2.4 Hz, 1 H), 7.28 and 7.30 (rotameric d, J = 9.2 Hz, 1 H).
 13C NMR (100 MHz, CDCl3 mixture of rotamers) δ22.6 and 24.7, 35.8 and 35.9, 36.2 and 37.9 (q for δ37.9 peak, J = 4.3 Hz), 47.8 and 48.2 (q for δ47.8 peak, J = 3.1 Hz), 56.8 and 56.9, 73.4 and 73.6, 73.6 and 73.7, 75.27 and 75.35, 77.0, 77.6 and 77.7, 79.0 and 79.2, 102.8 and 103.1, 110.4 and 110.5, 110.6 and 111.3, 113.0 and 113.1, 116.2 and 116.4 (q, J = 292 Hz), 126.2, 128.2 and 128.4, 131.9 and 132.0, 152.2 and 152.3, 156.3 and 156.7 (q, J = 37.0 Hz).
 HRMS (ESI) calcd for C21H18F3N2O3 [M + H]+: 387.1315, found: 387.1320.
1 H NMR (400 MHz, CDCl 3 mixture of rotamers) δ 2.35 and 2.37 (rotameric t, J = 2.4 Hz, 1 H), 2.39 and 2.41 (rotameric t, J = 2.4 Hz, 1 H), 2.53 (t , J = 2.4 Hz, 1 H), 3.08 (t, J = 8.0 Hz, 2 H), 3.80 (q, J = 8.0 Hz, 2), 4.06 and 4.32 (rotameric d, J = 2.0 Hz for δ4.07 peak and J = 2.8 Hz for δ4.32 Hz, 2 H), 4.74 (t, J = 2.4 Hz, 2 H), 4.78 and 4.80 (rotameric d, J = 6.8 Hz, 2 H), 6.98 (dt, J = 9.2, 2.8 Hz, 1 H), 7.04 (d, J = 6.8 Hz, 1 H), 7.14 and 7.22 (rotameric d, J = 2.4 Hz, 1 H), 7.28 and 7.30 (rotameric d, J = 9.2 Hz , 1H).
13 C NMR (100 MHz, CDCl 3 mixture of rotamers) δ22.6 and 24.7, 35.8 and 35.9, 36.2 and 37.9 (q for δ37.9 peak, J = 4.3 Hz), 47.8 and 48.2 (q for δ47.8 peak , J = 3.1 Hz), 56.8 and 56.9, 73.4 and 73.6, 73.6 and 73.7, 75.27 and 75.35, 77.0, 77.6 and 77.7, 79.0 and 79.2, 102.8 and 103.1, 110.4 and 110.5, 110.6 and 111.3, 113.0 and 113.1, 116.2 and 116.4 (q, J = 292 Hz), 126.2, 128.2 and 128.4, 131.9 and 132.0, 152.2 and 152.3, 156.3 and 156.7 (q, J = 37.0 Hz).
HRMS (ESI) calcd for C 21 H 18 F 3 N 2 O 3 [M + H] + : 387.1315, found: 387.1320.
(化合物(II)-2-101の製造)
 容量50mLの丸底フラスコ中に、上記で得られたN-2-(1-プロパルギル-5-プロパルギルオキシ-1H-インドール-3-イル)エチル-N-プロパルギル-2,2,2-トリフルオロアセトアミド(70mg、0.181mmol)、水酸化リチウム水溶液(濃度1M、0.3mL)及びTHF(1mL)を添加した。
 次いで、得られた混合物を室温下で12時間撹拌し、ここに水(20mL)を添加した。
 次いで、得られた反応混合物に対して、クロロホルム(20mL)で3回抽出を行い、集められた有機層を無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去することにより、目的物であるN-プロパルギル-2-(1-プロパルギル-5-プロパルギルオキシ-1H-インドール-3-イル)エチルアミン(すなわち、化合物(II)-2-101)を得た(収量30mg(0.103mmol)、収率57%)。
 得られた化合物(II)-2-101のNMRデータ、HRMS(ESI)データを以下に示す。
(Production of Compound (II) -2-101)
In a 50 mL round bottom flask, the N-2- (1-propargyl-5-propargyloxy-1H-indol-3-yl) ethyl-N-propargyl-2,2,2-trifluoro obtained above was added. Acetamide (70 mg, 0.181 mmol), aqueous lithium hydroxide solution (concentration 1 M, 0.3 mL) and THF (1 mL) were added.
Then, the obtained mixture was stirred at room temperature for 12 hours, and water (20 mL) was added thereto.
Next, the obtained reaction mixture is extracted three times with chloroform (20 mL), the collected organic layers are dried over anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure to obtain the desired N- compound. Propargyl-2- (1-propargyl-5-propargyloxy-1H-indol-3-yl) ethylamine (that is, compound (II) -2-101) was obtained (yield 30 mg (0.103 mmol), yield 57). %).
The NMR data and HRMS (ESI) data of the obtained compound (II) -2-101 are shown below.
 1H NMR of neutral compound (400 MHz, CDCl3) δ1.16 (br, 1 H), 2.20 (t, J = 2.4 Hz, 1 H), 2.38 (dd, J = 2.4, 2.8 Hz, 1 H), 2.51 (t, J = 2.4 Hz, 1 H), 2.93 (t, J = 6.8 Hz, 2 H), 3.02 (t, J = 6.8 Hz, 2 H), 3.50 (d, J = 2.4 Hz, 2 H), 4.73 (d, J = 2.4 Hz, 2 H), 4.79 (d, J = 2.4 Hz, 2 H), 6.97 (dd, J = 2.4, 9.2 Hz, 1 H), 7.04 (s, 1 H), 7.17 (d, J = 2.4 Hz, 1 H), 7.28 (d, J = 9.2 Hz, 1 H).
 13C NMR of neutral compound (100 MHz, CDCl3) δ25.5, 35.8, 38.1, 48.6, 56.9, 71.3, 73.4, 75.1, 77.8, 79.2, 82.1, 103.4, 110.1, 112.7, 113.0, 126.0, 128.6, 132.0, 151.9.
 HRMS (ESI) calcd for C19H18N2ONa [M + Na]+: 313.1311, found: 313.1322.
1 H NMR of neutral compound (400 MHz, CDCl 3 ) δ 1.16 (br, 1 H), 2.20 (t, J = 2.4 Hz, 1 H), 2.38 (dd, J = 2.4, 2.8 Hz, 1 H) , 2.51 (t, J = 2.4 Hz, 1 H), 2.93 (t, J = 6.8 Hz, 2 H), 3.02 (t, J = 6.8 Hz, 2 H), 3.50 (d, J = 2.4 Hz, 2 H), 4.73 (d, J = 2.4 Hz, 2 H), 4.79 (d, J = 2.4 Hz, 2 H), 6.97 (dd, J = 2.4, 9.2 Hz, 1 H), 7.04 (s, 1 H) ), 7.17 (d, J = 2.4 Hz, 1 H), 7.28 (d, J = 9.2 Hz, 1 H).
13 C NMR of neutral compound (100 MHz, CDCl 3 ) δ25.5, 35.8, 38.1, 48.6, 56.9, 71.3, 73.4, 75.1, 77.8, 79.2, 82.1, 103.4, 110.1, 112.7, 113.0, 126.0, 128.6, 132.0 , 151.9.
HRMS (ESI) calcd for C 19 H 18 N 2 ONa [M + Na] + : 313.1311, found: 313.1322.
<化合物(II)-2-102の製造>
 上記で得られた化合物(II)-2-101を、メタノール中に溶解させ、このメタノール溶液を0℃に冷却し、ここへ、塩化水素を1Mの濃度で含むジエチルエーテル溶液(20mL)を滴下した。
 次いで、析出した固体をろ別し、減圧乾燥させることにより、目的物であるN-プロパルギル-2-(1-プロパルギル-5-プロパルギルオキシ-1H-インドール-3-イル)エチルアミン塩酸塩(すなわち、化合物(II)-2-102)を得た(収量20mg)。
 得られた化合物(II)-2-102のNMRデータを以下に示す。
<Production of compound (II) -2-102>
The compound (II) -2-101 obtained above is dissolved in methanol, the methanol solution is cooled to 0 ° C., and a diethyl ether solution (20 mL) containing hydrogen chloride at a concentration of 1 M is added dropwise thereto. did.
Next, the precipitated solid is separated by filtration and dried under reduced pressure to obtain N-propargyl-2- (1-propargyl-5-propargyloxy-1H-indol-3-yl) ethylamine hydrochloride (namely, the target substance) Compound (II) -2-102) was obtained (yield 20 mg).
The NMR data of the obtained compound (II) -2-102 are shown below.
 1H NMR of HCl salt (400 MHz, CD3OD) δ2.84 (t, J = 2.8 Hz, 1 H), 2.92 (t, J = 3.2 Hz, 1 H), 3.13 (t, J = 8.0 Hz, 2 H), 3.23-3.26 (m, 1 H), 3.41 (t, J = 8.0 Hz, 2 H), 3.96 (t, J = 2.4 Hz, 2 H), 4.75-4.76 (m, 2 H), 4.93-4.94 (m, 2 H), 6.95 (dd, J = 2.4, 9.2 Hz, 1 H), 7.19 (d, J = 2.4 Hz, 1 H), 7.23 (s, 1 H), 7.40 (d, J = 9.2 Hz, 1 H). 1 H NMR of HCl salt (400 MHz, CD 3 OD) δ 2.84 (t, J = 2.8 Hz, 1 H), 2.92 (t, J = 3.2 Hz, 1 H), 3.13 (t, J = 8.0 Hz , 2 H), 3.23-3.26 (m, 1 H), 3.41 (t, J = 8.0 Hz, 2 H), 3.96 (t, J = 2.4 Hz, 2 H), 4.75-4.76 (m, 2 H) , 4.93-4.94 (m, 2 H), 6.95 (dd, J = 2.4, 9.2 Hz, 1 H), 7.19 (d, J = 2.4 Hz, 1 H), 7.23 (s, 1 H), 7.40 (d , J = 9.2 Hz, 1 H).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
[実施例15]
 化合物(I)-1-103をN27細胞(N27ラットドーパミン産生神経細胞、Merck Millipore社)の培養液に溶解させ、化合物(I)-1-103の溶液を作成した。ここで、N27細胞培養液とは10%FBS(Fetal Bovine Serum)、抗生物質(ペニシリン・ストレプトマイシン)をPRMI1640基礎培地に加えたものである。この溶液の化合物(I)-1-103の濃度は、50μmol/Lとした。37℃の化合物(I)-1-103の溶液に、カバーガラス上で培養したN27細胞をカバーガラスごと30分浸漬した。
 次いで、これら溶液から試験片(カバーガラス)を取り出し、濃度が4質量%であるパラホルムアルデヒドのリン酸緩衝生理食塩水(Phosphate Buffered Saline, PBS)を用いて、試験片を化学固定し、さらに、0.5% Triton X-100溶液を用いて、この試験片を可溶化した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 488、555、594および647蛍光色素を、上記の可溶化した試験片と反応させた。
 次いで、共焦点顕微鏡(オリンパス社製「FV1000」)を用い、反応後の試験片を観察した。結果を図10に示す。
 図10は、化合物(I)-1-103を上記4種の蛍光色素により検出したN27細胞の撮像データである。図10Aは、Alexa Fluor 488によりラベル化された化合物(I)-1-103を用いた場合のN27細胞の撮像データであり、図10Bは、Alexa Fluor 555によりラベル化された化合物(I)-1-103を用いた場合のN27細胞の撮像データであり、図10Cは、Alexa Fluor 594によりラベル化された化合物(I)-1-103を用いた場合のN27細胞の撮像データであり、図10Dは、Alexa Fluor 647によりラベル化された化合物(I)-1-103を用いた場合のN27細胞の撮像データである。
[Example 15]
Compound (I) -1-103 was dissolved in a culture solution of N27 cells (N27 rat dopaminergic neurons, Merck Millipore) to prepare a solution of compound (I) -1-103. Here, the N27 cell culture solution is obtained by adding 10% FBS (Fetal Bovine Serum) and an antibiotic (penicillin-streptomycin) to a PRMI1640 basal medium. The concentration of compound (I) -1-103 in this solution was 50 μmol / L. N27 cells cultured on a cover glass were immersed in a solution of compound (I) -1-103 at 37 ° C. for 30 minutes together with the cover glass.
Next, a test piece (cover glass) was taken out of these solutions, and the test piece was chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS). The test piece was solubilized using 0.5% Triton X-100 solution.
Alexa Fluor® 488, 555, 594 and 647 fluorescent dyes with added azide groups were then solubilized using Thermo Fisher's Click-iT reagent in the presence of a copper catalyst as described above. Reacted with pieces.
Next, the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). The results are shown in FIG.
FIG. 10 shows imaging data of N27 cells in which Compound (I) -1-103 was detected using the above four types of fluorescent dyes. FIG. 10A shows imaging data of N27 cells when using compound (I) -1-103 labeled with Alexa Fluor 488, and FIG. 10B shows compound (I)-labeled with Alexa Fluor 555. FIG. 10C is imaging data of N27 cells using 1-1103, and FIG. 10C is imaging data of N27 cells using compound (I) -1-103 labeled with Alexa Fluor 594. 10D is imaging data of N27 cells using compound (I) -1-103 labeled with Alexa Fluor 647.
 実施例15の結果から、化合物(I)-1-103が、N27細胞に取り込まれ、これを前記蛍光色素により検出できることが示された。この結果から、任意の蛍光色素により化合物(I)-1-103をラベル化することができ、これを検出できると考えられる。 結果 The results of Example 15 showed that compound (I) -1-103 was taken up by N27 cells and could be detected by the fluorescent dye. From these results, it is considered that compound (I) -1-103 can be labeled with an arbitrary fluorescent dye and can be detected.
[実施例16]
 N27細胞をカバーガラス上で培養し、播種1日後にCellLight RFP-Actin(ThermoFisher社)を用いて遺伝子導入した。更に37℃で2日間培養した。その後、化合物(I)-1-103をN27細胞の培養液に溶解させ、化合物(I)-1-103の溶液を作成した。この溶液の化合物(I)-1-103の濃度は、10μmol/Lとした。37℃の化合物(I)-1-103の溶液に、カバーガラス上で培養したRFP-Actin導入N27細胞をカバーガラスごと30分浸漬した。
 次いで、これら溶液から試験片(カバーガラス)を取り出し、濃度が4質量%であるパラホルムアルデヒドのリン酸緩衝生理食塩水(Phosphate Buffered Saline, PBS)を用いて、試験片を化学固定し、さらに、0.5% Triton X-100溶液を用いて、この試験片を可溶化した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 488蛍光色素を、上記の可溶化した試験片と反応させた。
 次いで、共焦点顕微鏡(オリンパス社製「FV1000」)を用い、反応後の試験片を観察した。結果を図11に示す。図11Aは、RFP-Actin導入N27細胞におけるラベル化された化合物(I)-1-103の蛍光の撮像データであり、図11Bは、図11Aと同じ領域におけるRFP-Actinの蛍光の撮像データであり、図11Cは、図11Aの撮像データと図11Bの撮像データとを重ねあわせた撮像データである。
[Example 16]
N27 cells were cultured on a cover glass, and one day after seeding, the gene was transfected using CellLight RFP-Actin (ThermoFisher). The cells were further cultured at 37 ° C. for 2 days. Thereafter, Compound (I) -1-103 was dissolved in a culture solution of N27 cells to prepare a solution of Compound (I) -1-103. The concentration of compound (I) -1-103 in this solution was 10 μmol / L. RFP-Actin-introduced N27 cells cultured on a cover glass were immersed in the solution of compound (I) -1-103 at 37 ° C. for 30 minutes together with the cover glass.
Next, a test piece (cover glass) was taken out from these solutions, and the test piece was chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS). The test piece was solubilized using 0.5% Triton X-100 solution.
Then, Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
Next, the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). The results are shown in FIG. FIG. 11A shows fluorescence image data of labeled compound (I) -1-103 in RFP-Actin-transduced N27 cells, and FIG. 11B shows fluorescence image data of RFP-Actin in the same region as FIG. 11A. FIG. 11C shows image data obtained by superimposing the image data of FIG. 11A and the image data of FIG. 11B.
 実施例16の結果から、ラベル化された化合物(I)-1-103と、蛍光タンパク質等によりラベルされた細胞形態マーカーと、を組み合わせて用いて、これらの局在を解析することができることが示された。 From the results of Example 16, it can be seen that the localization of these compounds can be analyzed using a combination of the labeled compound (I) -1-103 and a cell morphological marker labeled with a fluorescent protein or the like. Indicated.
[実施例17]
 化合物(I)-1-103を人工脳脊髄液に溶解させ、化合物(I)-1-103の溶液を調製した。ここで、人工脳脊髄液とは、126mmol/Lの濃度で塩化ナトリウム(NaCl)を含有し、かつ26mmol/Lの濃度で炭酸水素ナトリウム(NaHCO)を含有し、かつ1mmol/Lの濃度でリン酸二水素ナトリウム(NaHPO)を含有し、かつ10mmol/Lの濃度でデキストロースを含有し、かつ3mmol/Lの濃度で塩化カリウム(KCl)を含有し、かつ1mmol/Lの濃度で塩化マグネシウム(MgCl)を含有し、かつ3mmol/L の濃度で塩化カルシウム(CaCl)を含有する、pH7.3の水溶液である。この溶液の化合物(I)-1-103の濃度は、10μmol/Lとした。
 マウスの中脳から急性脳スライス(厚さ300μm)を作製し、これを試験片とした。
 37℃の化合物(I)-1-103の溶液に、試験片を30分浸漬した。その後、化合物(I)-1-103を含まない37℃の人工脳脊髄液に30分浸漬した。
 次いで、これら溶液から試験片を取り出し、濃度が4質量%であるパラホルムアルデヒドのリン酸緩衝生理食塩水(Phosphate Buffered Saline, PBS)を用いて、試験片を化学固定し、さらに、0.5% Triton X-100溶液を用いて、この試験片を可溶化した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 488蛍光色素を、上記の可溶化した試験片と反応させた。
 次いで、これをドーパミンを産生・放出する細胞が特異的に有するTyrosine Hydroxylase(チロシン水酸化酵素)を特異的に認識する抗体(抗Tyrosine Hydroxylase抗体、Merck Millipore社)を溶解した抗体溶液と反応させ、更にこの試験片を、Alexa Fluor(登録商標) 555蛍光色素が付加され抗Tyrosine Hydroxylase抗体を認識する抗体溶液と反応させ、細胞が発現するTyrosine Hydroxylaseを蛍光標識した。
 次いで、共焦点顕微鏡(オリンパス社製「FV1000」)を用い、反応後の試験片を観察した。結果を図12に示す。図12Aは、試験片のラベル化された化合物(I)-1-103の撮像データであり、図12Bは、図12Aと同じ領域における試験片のラベル化された抗Tyrosine Hydroxylase抗体の撮像データであり、図12Cは、図12Aの撮像データと図12Bの撮像データとを重ねあわせた撮像データである。図12D、図12E及び図12Fは、それぞれ、図12A、図12B及び図12Cのデータを3倍に拡大した撮像データである。
[Example 17]
Compound (I) -1-103 was dissolved in artificial cerebrospinal fluid to prepare a solution of compound (I) -1-103. Here, the artificial cerebrospinal fluid contains sodium chloride (NaCl) at a concentration of 126 mmol / L, contains sodium bicarbonate (NaHCO 3 ) at a concentration of 26 mmol / L, and has a concentration of 1 mmol / L. It contains sodium dihydrogen phosphate (NaH 2 PO 4 ), contains dextrose at a concentration of 10 mmol / L, contains potassium chloride (KCl) at a concentration of 3 mmol / L, and contains 1 mmol / L. PH 7.3 aqueous solution containing magnesium chloride (MgCl 2 ) and containing calcium chloride (CaCl 2 ) at a concentration of 3 mmol / L. The concentration of compound (I) -1-103 in this solution was 10 μmol / L.
An acute brain slice (thickness: 300 μm) was prepared from the midbrain of the mouse and used as a test piece.
The test piece was immersed in a solution of compound (I) -1-103 at 37 ° C. for 30 minutes. Thereafter, the plate was immersed in artificial cerebrospinal fluid at 37 ° C. containing no compound (I) -1-103 for 30 minutes.
Next, the test pieces were removed from these solutions, and the test pieces were chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS). The test piece was solubilized using Triton X-100 solution.
Then, Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
Next, this is reacted with an antibody solution in which an antibody (anti-Tyrosine Hydroxylase antibody, Merck Millipore) that specifically recognizes Tyrosine Hydroxylase (tyrosine hydroxylase), which is specifically possessed by cells that produce and release dopamine, is dissolved. Further, this test piece was reacted with an antibody solution to which Alexa Fluor (registered trademark) 555 fluorescent dye was added and which recognizes an anti-Tyrosine Hydroxylase antibody, and Tyrosine Hydroxylase expressed by cells was fluorescently labeled.
Next, the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). The result is shown in FIG. FIG. 12A shows the imaging data of the labeled compound (I) -1-103 of the test strip, and FIG. 12B shows the imaging data of the labeled anti-Tyrosine Hydroxylase antibody of the test strip in the same region as FIG. 12A. FIG. 12C shows image data obtained by superimposing the image data of FIG. 12A and the image data of FIG. 12B. 12D, 12E, and 12F are imaging data obtained by enlarging the data of FIGS. 12A, 12B, and 12C three times, respectively.
 実施例17の結果は、脳組織中のドーパミンを産生し放出する中脳の神経細胞におけるTyrosine Hydroxylaseのシグナルが、化合物(I)-1-103のシグナルと一致する部位があることを示している。この結果から、中脳のドーパミン産生神経細胞が化合物(I)-1-103を取り込むことが明らかになった。すなわち、これらの細胞、生体組織において、化合物(I)-1-103はドーパミンのアナログとして認識されていることが明らかになった。また、ラベル化された化合物(I)-1-103は、ドーパミン産生神経細胞を特異的に検出するプローブとして用いることができるを示している。 The results of Example 17 indicate that there is a site where the signal of Tyrosine @ Hydroxylase in the neurons of the midbrain that produces and releases dopamine in brain tissue coincides with the signal of compound (I) -1-103. . The results revealed that dopaminergic neurons in the midbrain take up compound (I) -1-103. That is, it was revealed that compound (I) -1-103 was recognized as an analog of dopamine in these cells and living tissues. It also shows that the labeled compound (I) -1-103 can be used as a probe for specifically detecting dopaminergic neurons.
[実施例18]
 ラット初代培養大脳皮質アストロサイト(Lonza社)をカバーガラス上で培養し、6日後に解析した。
 化合物(I)-1-103をアストロサイト培養液(Lonza社Astrocyte Growth Medium)に溶解させ、化合物(I)-1-103を100μmol/Lの濃度で含有する溶液を作成した。また、化合物(I)-1-103と、細胞外からドーパミンを取り込むドーパミン輸送体を阻害する薬剤であるJHW007(Tocris社)とをアストロサイト培養液に溶解させて、化合物(I)-1-103を100μmol/Lの濃度で含有し、かつ、JHW007を10μmol/Lの濃度で含有する溶液を作成した。次に、カバーガラス上で培養したラット初代培養アストロサイトをカバーガラスごとこれらの溶液に30分浸漬した。
 次いで、これら溶液から試験片(カバーガラス)を取り出し、濃度が4質量%であるパラホルムアルデヒドのリン酸緩衝生理食塩水(Phosphate Buffered Saline, PBS)を用いて、試験片を化学固定し、さらに、0.5% Triton X-100溶液を用いて、この試験片を可溶化した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 488蛍光色素を、上記の可溶化した試験片と反応させた。
 次いで、共焦点顕微鏡(オリンパス社製「FV1000」)を用い、反応後の試験片を観察した。結果を図13に示す。図13Aは、ラベル化された化合物(I)-1-103のみを含有する溶液に浸した、アストロサイト細胞におけるラベル化された化合物(I)-1-103の撮像データであり、図13Bは、ラベル化された化合物(I)-1-103と、ドーパミン取込み阻害剤JHW007とを含む溶液に浸した、アストロサイト細胞におけるラベル化された化合物(I)-1-103を撮像したデータである。
[Example 18]
Rat primary cultured cerebral cortical astrocytes (Lonza) were cultured on coverslips and analyzed 6 days later.
Compound (I) -1-103 was dissolved in an astrocyte culture solution (Astrocyte Growth Medium, Lonza) to prepare a solution containing compound (I) -1-103 at a concentration of 100 μmol / L. Compound (I) -1-103 and JHW007 (Tocris), a drug that inhibits a dopamine transporter that takes up dopamine from outside the cell, are dissolved in astrocyte culture solution to give compound (I) -1-103. A solution containing 103 at a concentration of 100 μmol / L and JHW007 at a concentration of 10 μmol / L was prepared. Next, the rat primary cultured astrocytes cultured on the cover glass were immersed together with the cover glass in these solutions for 30 minutes.
Next, a test piece (cover glass) was taken out from these solutions, and the test piece was chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS). The test piece was solubilized using 0.5% Triton X-100 solution.
Then, Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
Next, the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). FIG. 13 shows the results. FIG. 13A is imaging data of labeled compound (I) -1-103 in astrocyte cells immersed in a solution containing only labeled compound (I) -1-103, and FIG. 10 is data obtained by imaging the labeled compound (I) -1-103 in astrocyte cells, which was immersed in a solution containing the labeled compound (I) -1-103 and the dopamine uptake inhibitor JHW007. .
 実施例18の結果は、第一に、化合物(I)-1-103がドーパミンのアナログとして大脳皮質のグリア細胞であるアストロサイトに取り込まれることを示しており、第二に、化合物(I)-1-103の取込みがドーパミン輸送体を介して行われることを示している。また、このように神経細胞におけるドーパミン取込み阻害剤の効果を可視化することができたことから、パーキンソン病やうつ病をはじめとする種々の精神疾患の治療に重要であるドーパミンおよび他の神経調節物質群の取込み阻害剤の評価において、本発明が有用であることが示された。 The results of Example 18 show that, first, compound (I) -1-103 is incorporated into astrocytes, glial cells of the cerebral cortex, as an analog of dopamine, and second, compound (I) This shows that uptake of -1-103 is performed via the dopamine transporter. In addition, since the effects of dopamine uptake inhibitors on neurons could be visualized in this way, dopamine and other neuromodulators important for the treatment of various psychiatric disorders including Parkinson's disease and depression. The present invention has been shown to be useful in the assessment of group uptake inhibitors.
[実施例19]
 ラット初代培養線条体神経細胞及び大脳皮質アストロサイト(Lonza社)をカバーガラス上で培養し、それぞれ培養28日、3日後に解析した。
 化合物II-1-101を、神経細胞培養液(Lonza社Primary Neuron Growth Medium)及びアストロサイト培養液(Lonza社Astrocyte Growth Medium)に溶解させて、化合物II-1-101を100μmol/Lの濃度で含有する溶液を作製した。次に、カバーガラス上で培養したラット初代培養線条体神経細胞及びアストロサイトをカバーガラスごとこれらの溶液に30分浸漬した。
 次いで、これら溶液から試験片(カバーガラス)を取り出し、濃度が4質量%であるパラホルムアルデヒドのリン酸緩衝生理食塩水(Phosphate Buffered Saline, PBS)を用いて、試験片を化学固定し、さらに、0.5% Triton X-100溶液を用いて、この試験片を可溶化した。
 次いで、Thermo Fisher社のClick-iT反応試薬を用い、銅触媒の存在下で、アジド基が付加されたAlexa Fluor(登録商標) 488蛍光色素を、上記の可溶化した試験片と反応させた。
 次いで、共焦点顕微鏡(オリンパス社製「FV1000」)を用い、反応後の試験片を観察した。結果を図14に示す。図14Aは、初代培養線条体神経細胞におけるラベル化された化合物II-1-101の撮像データであり、図14Bは、初代培養アストロサイトにおけるラベル化された化合物II-1-101の撮像データである。
[Example 19]
Rat primary cultured striatal neurons and cerebral cortical astrocytes (Lonza) were cultured on cover glass and analyzed 28 days and 3 days after culture, respectively.
Compound II-1-101 was dissolved in a nerve cell culture solution (Primary Neuron Growth Medium, Lonza) and an astrocyte culture solution (Astrocyte Growth Medium, Lonza), and compound II-1-101 was dissolved at a concentration of 100 μmol / L. A solution containing was prepared. Next, the rat primary cultured striatal neurons and astrocytes cultured on a cover glass were immersed together with the cover glass in these solutions for 30 minutes.
Next, a test piece (cover glass) was taken out from these solutions, and the test piece was chemically fixed using a phosphate buffered saline of paraformaldehyde having a concentration of 4% by mass (Phosphate Buffered Saline, PBS). The test piece was solubilized using 0.5% Triton X-100 solution.
Then, Alexa Fluor® 488 fluorescent dye to which an azide group was added was reacted with the solubilized test piece using a Click-iT reaction reagent manufactured by Thermo Fisher in the presence of a copper catalyst.
Next, the test piece after the reaction was observed using a confocal microscope (“FV1000” manufactured by Olympus Corporation). FIG. 14 shows the results. FIG. 14A is imaging data of labeled compound II-1-101 in primary cultured striatal neurons, and FIG. 14B is imaging data of labeled compound II-1-101 in primary cultured astrocytes. It is.
 実施例19の結果は、化合物II-1-101が線条体神経細胞及びアストロサイトに取り込まれることを示している。化合物II-1-101を利用することで、多くの抗うつ薬の作用であるセロトニンの取込み阻害機能等を評価できると考えられる。 結果 The results of Example 19 show that compound II-1-101 is taken up by striatal neurons and astrocytes. It is considered that the compound II-1-101 can be used to evaluate serotonin uptake inhibitory function, which is an action of many antidepressants.
 本発明は、脳内における神経機能調節物質の作用の解析に利用可能である。 The present invention can be used for analyzing the action of a nerve function regulating substance in the brain.

Claims (14)

  1.  下記一般式(I):
    Figure JPOXMLDOC01-appb-C000001
     (一般式(I)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
     Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
     n及びnは、それぞれ独立に、0又は1であり;
     nは、1~5の整数であり;
     ただし、前記nが0であり、かつ前記nが1である場合には、前記X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
     前記nが1であり、かつ前記nが0である場合には、前記X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
     前記n及び前記nがともに0である場合には、前記X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
     前記n及び前記nがともに1である場合には、前記X、X、X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基である。)
    で表される化合物又はその塩。
    The following general formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (I), X 1 , X 2 , X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms. When the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent, and the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group is May be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more The methylene groups which are not adjacent to each other may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or when X 3 and X 4 are the alkyl groups The two alkyl groups are bonded to each other to form a ring Well;
    X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    n 1 and n 3 are each independently 0 or 1;
    n 2 is an integer from 1 to 5;
    However, when n 1 is 0 and n 3 is 1, one or more of X 1 , X 2 , X 3 , X 4, and X 6 are not the same A saturated hydrocarbon group,
    When n 1 is 1 and n 3 is 0, one or more of X 1 , X 2 , X 3 , X 4 and X 5 are the unsaturated carbons. A hydrogen group,
    When both n 1 and n 3 are 0, at least one of X 1 , X 2 , X 3 and X 4 is the unsaturated hydrocarbon group,
    When both n 1 and n 3 are 1, one or more of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the unsaturated hydrocarbons. Group. )
    Or a salt thereof.
  2.  前記一般式(I)で表される化合物が、下記一般式(I)-1、(I)-2、(I)-3又は(I)-4:
    Figure JPOXMLDOC01-appb-C000002
     (一般式(I)-1、(I)-2、(I)-3又は(I)-4中、X、X、X、X、X、n及びnは、前記と同じであり;
     X11、X21、X31及びX41は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基であり、X11及びX21が前記アルキル基である場合、又は、X31及びX41が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     X61は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
     ただし、一般式(I)-1中、前記X及びXのいずれか一方又は両方は、前記不飽和炭化水素基であり、
     一般式(I)-2中、前記X及びXのいずれか一方又は両方は、前記不飽和炭化水素基である。)
    で表される化合物である、請求項1に記載の化合物又はその塩。
    The compound represented by the general formula (I) is represented by the following general formula (I) -1, (I) -2, (I) -3 or (I) -4:
    Figure JPOXMLDOC01-appb-C000002
    (In general formulas (I) -1, (I) -2, (I) -3 or (I) -4, X 1 , X 2 , X 3 , X 4 , X 5 , n 2 and n 3 are The same as above;
    X 11, X 21, X 31 and X 41 each independently represent a hydrogen atom or an alkyl group having 1-9 carbon atoms, when X 11 and X 21 are the alkyl group, or, X 31 and X When 41 is the above-mentioned alkyl group, these two alkyl groups may be mutually bonded to form a ring;
    X 61 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and optionally having 3 to 9 carbon atoms;
    However, in the general formula (I) -1, one or both of X 1 and X 2 is the unsaturated hydrocarbon group,
    In formula (I) -2, one or both of X 3 and X 4 are the unsaturated hydrocarbon groups. )
    The compound according to claim 1, which is a compound represented by the formula: or a salt thereof.
  3.  前記一般式(I)-1、(I)-2、(I)-3又は(I)-4で表される化合物が、下記一般式(I)-1-1、(I)-1-2、(I)-2-1、(I)-2-2、(I)-2-3、(I)-3-1又は(I)-4-1:
    Figure JPOXMLDOC01-appb-C000003
     (一般式(I)-1-1、(I)-1-2、(I)-2-1、(I)-2-2、(I)-2-3、(I)-3-1又は(I)-4-1中、X12、X22、X32及びX42は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基であり、X12及びX22が前記アルキル基である場合、又は、X32及びX42が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     G、G、G、G、G及びGは、それぞれ独立に、水素原子、アルキル基、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基であり;
     nは、前記と同じである。)
    で表される化合物である、請求項2に記載の化合物又はその塩。
    Compounds represented by the general formulas (I) -1, (I) -2, (I) -3 or (I) -4 are represented by the following general formulas (I) -1-1 and (I) -1- 2, (I) -2-1, (I) -2-2, (I) -2-3, (I) -3-1 or (I) -4-1:
    Figure JPOXMLDOC01-appb-C000003
    (General formulas (I) -1-1, (I) -1-2, (I) -2-1, (I) -2-2, (I) -2-3, (I) -3-1) Or, in (I) -4-1, X 12 , X 22 , X 32 and X 42 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X 12 and X 22 are Or when X 32 and X 42 are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring;
    G 1 , G 2 , G 3 , G 4 , G 5 and G 6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a trialkyl group. Reelsilyl group, hydroxy group, halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group , A triarylsilylalkyl group, a hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group. R;
    n 3 are the same as above. )
    The compound according to claim 2, which is a compound represented by the formula: or a salt thereof.
  4.  下記一般式(II):
    Figure JPOXMLDOC01-appb-C000004
     (一般式(II)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
     n01は、0又は1であり;
     n02は、1~5の整数であり;
     ただし、前記n01が0である場合には、前記X01、X02、X03及びX04のうち、1種又は2種以上は、前記不飽和炭化水素基であり、
     前記n01が1である場合には、前記X01、X02、X03、X04及びX05のうち、1種又は2種以上は、前記不飽和炭化水素基である。)
    で表される化合物又はその塩。
    The following general formula (II):
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (II), X 01 , X 02 , X 03 and X 04 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms. When the unsaturated hydrocarbon group is an unsaturated hydrocarbon group having 3 to 9 carbon atoms which may have a substituent, and the unsaturated hydrocarbon group has a methylene group at a terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group is May be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the bonding end, one methylene group or two or more May be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups are bonded to each other to form a ring. May be formed;
    X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    n 01 is 0 or 1;
    n 02 is an integer of 1 to 5;
    However, when n 01 is 0, one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups,
    When n 01 is 1, one or more of X 01 , X 02 , X 03 , X 04 and X 05 are the unsaturated hydrocarbon groups. )
    Or a salt thereof.
  5.  前記一般式(II)で表される化合物が、下記一般式(II)-1又は(II)-2:
    Figure JPOXMLDOC01-appb-C000005
     (一般式(II)-1又は(II)-2中、n02は、前記と同じであり;
     X011、X021及びX031は、それぞれ独立に、水素原子又は炭素数1~9のアルキル基であり、X011及びX021が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     X041は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
     X010、X020及びX030は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X010及びX020が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、X010、X020及びX030の1種又は2種以上は、前記不飽和炭化水素基である。)
    で表される化合物である、請求項4に記載の化合物又はその塩。
    The compound represented by the general formula (II) is represented by the following general formula (II) -1 or (II) -2:
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (II) -1 or (II) -2, n 02 is the same as described above;
    X 011 , X 021 and X 031 are each independently a hydrogen atom or an alkyl group having 1 to 9 carbon atoms. When X 011 and X 021 are the above-mentioned alkyl groups, these two alkyl groups are May combine with each other to form a ring;
    X 041 is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent;
    X 010 , X 020 and X 030 each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or 1 to 4 triple bonds between carbon atoms, and may have a substituent. When the unsaturated hydrocarbon group has 3 to 9 carbon atoms and the unsaturated hydrocarbon group has a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group; When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, one methylene group or two or more methylene groups that are not adjacent to each other are may be substituted with an oxygen atom, if X 010 and X 020 is the above alkyl group, these two alkyl groups may form a ring with each other, however, X 010 , One of X 020 and X 030 Species or two or more are the aforementioned unsaturated hydrocarbon groups. )
    The compound according to claim 4, which is a compound represented by the formula: or a salt thereof.
  6.  前記一般式(II)-1又は(II)-2で表される化合物が、下記一般式(II)-1-1、(II)-2-1、(II)-2-2、(II)-2-3、(II)-2-4又は(II)-2-5:
    Figure JPOXMLDOC01-appb-C000006
     (一般式(II)-1-1、(II)-2-1、(II)-2-2、(II)-2-3、(II)-2-4又は(II)-2-5中、X012、X022及びX032は、それぞれ独立に、水素原子又は炭素数1~5のアルキル基であり、X012及びX022が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     G01、G02、G03及びG04は、それぞれ独立に、水素原子、アルキル基、アリール基、トリアルキルシリル基、ジアルキルモノアリールシリル基、モノアルキルジアリールシリル基、トリアリールシリル基、ヒドロキシ基、ハロゲン原子、アルコキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基、アラルキル基、トリアルキルシリルアルキル基、ジアルキルモノアリールシリルアルキル基、モノアルキルジアリールシリルアルキル基、トリアリールシリルアルキル基、ヒドロキシアルキル基、ハロゲン化アルキル基、アルコキシアルキル基、アルキルカルボニルオキシアルキル基、アリールカルボニルオキシアルキル基又はアラルキルカルボニルオキシアルキル基であり;
     n02は、前記と同じである。)
    で表される化合物である、請求項5に記載の化合物又はその塩。
    Compounds represented by the general formula (II) -1 or (II) -2 are represented by the following general formulas (II) -1-1, (II) -2-1, (II) -2-2, and (II) ) -2-3, (II) -2-4 or (II) -2-5:
    Figure JPOXMLDOC01-appb-C000006
    (General formulas (II) -1-1, (II) -2-1, (II) -2-2, (II) -2-3, (II) -2-4 or (II) -2-5) in, X 012, X 022 and X 032 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, when X 012 and X 022 is the above alkyl group, these two alkyl The groups may be linked to each other to form a ring;
    G 01 , G 02 , G 03 and G 04 are each independently a hydrogen atom, an alkyl group, an aryl group, a trialkylsilyl group, a dialkylmonoarylsilyl group, a monoalkyldiarylsilyl group, a triarylsilyl group, a hydroxy group , Halogen atom, alkoxy group, alkylcarbonyloxy group, arylcarbonyloxy group, aralkylcarbonyloxy group, aralkyl group, trialkylsilylalkyl group, dialkylmonoarylsilylalkyl group, monoalkyldiarylsilylalkyl group, triarylsilylalkyl group A hydroxyalkyl group, a halogenated alkyl group, an alkoxyalkyl group, an alkylcarbonyloxyalkyl group, an arylcarbonyloxyalkyl group or an aralkylcarbonyloxyalkyl group;
    n 02 is the same as described above. )
    The compound according to claim 5, which is a compound represented by the formula: or a salt thereof.
  7.  請求項1~6のいずれか一項に記載の化合物又はその塩からなる、神経機能調節物質。 神 経 A neurological function regulating substance comprising the compound according to any one of claims 1 to 6 or a salt thereof.
  8.  炭素原子間の三重結合を有する基を含む、神経機能調節物質。 (4) A nerve function regulating substance containing a group having a triple bond between carbon atoms.
  9.  前記神経機能調節物質が、ドーパミン、ノルアドレナリン、アドレナリン若しくはセロトニン中の、1個又は2個以上の水素原子が、前記炭素原子間の三重結合を有する基で置換された構造を有する化合物又はその塩である、請求項8に記載の神経機能調節物質。 The compound having a structure in which one or more hydrogen atoms in dopamine, noradrenaline, adrenaline or serotonin are substituted with a group having a triple bond between carbon atoms, or a salt thereof, The nerve function modulator according to claim 8, which is present.
  10.  請求項7~9のいずれか一項に記載の神経機能調節物質の、神経細胞中への取り込みの状態、又は、取り込みによってもたらされる細胞応答の状態を評価する、神経機能調節物質の評価方法。 A method for evaluating a nerve function-regulating substance, comprising evaluating the state of uptake of a nerve function-modulating substance according to any one of claims 7 to 9 into a nerve cell, or the state of a cellular response caused by the uptake.
  11.  下記一般式(I)で表される化合物又はその塩の製造方法であって、
     下記一般式(Ia)で表される化合物と、下記一般式(Ic)で表される化合物と、を反応させる工程と、
     下記Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程と、
     を行うことにより、下記一般式(I)で表される化合物又はその塩として、下記一般式(Ia)で表される化合物における、下記Z1a、Z2a、Z3a、Z4a及びZ6aのうち、水素原子であるものが、下記X0aで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法。
    Figure JPOXMLDOC01-appb-C000007
     (一般式(I)、(Ia)又は(Ic)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
     Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
     n及びnは、それぞれ独立に、0又は1であり;
     nは、1~5の整数であり;
     ただし、前記X、X、X及びXのうち、1種又は2種以上は、前記不飽和炭化水素基であり、
     X0aは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく;
     LGは脱離基であり;
     Z1a、Z2a、Z3a、Z4a及びZ6aは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は保護基であり、Z1a及びZ2aが前記アルキル基である場合、又は、Z3a及びZ4aが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、Z1a、Z2a、Z3a、Z4a及びZ6aのうち、1種又は2種以上は、水素原子である。)
    A method for producing a compound represented by the following general formula (IA) or a salt thereof,
    Reacting a compound represented by the following general formula (Ia) with a compound represented by the following general formula (Ic);
    When one or more of the following Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are the following protecting groups, the protecting group is further removed after the step of reacting. Process and
    By performing, as a compound represented by the following general formula (I A), in the compound represented by the following general formula (Ia), the following Z 1a, Z 2a, Z 3a , Z 4a and Z 6a Among them, a method for producing a compound or a salt thereof, wherein a compound having a structure in which a hydrogen atom is substituted by the following X 0a or a salt thereof is obtained.
    Figure JPOXMLDOC01-appb-C000007
    (In the general formula (I A), (Ia) or (Ic), X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When it has a group, the methylene group may be substituted with a carbonyl group, and when the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the bonding side, 1 Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring;
    X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    n 1 and n 3 are each independently 0 or 1;
    n 2 is an integer from 1 to 5;
    However, one or more of X 1 , X 2 , X 3 and X 4 are the unsaturated hydrocarbon groups,
    X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, wherein the unsaturated hydrocarbon group is When having a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group, and the unsaturated hydrocarbon group may have one or more than two terminals other than the terminal on the bonding side. When it has a methylene group, one methylene group or two or more non-adjacent methylene groups may be substituted with an oxygen atom;
    LG 1 is a leaving group;
    Z 1a , Z 2a , Z 3a , Z 4a and Z 6a are each independently a hydrogen atom, an alkyl group having 1 to 9 carbon atoms or a protecting group, and when Z 1a and Z 2a are the above-mentioned alkyl groups Or when Z 3a and Z 4a are the aforementioned alkyl groups, these two alkyl groups may be bonded to each other to form a ring, provided that Z 1a , Z 2a , Z 3a , One or more of Z 4a and Z 6a are hydrogen atoms. )
  12.  下記一般式(I)で表される化合物又はその塩の製造方法であって、
     下記一般式(Ib)で表される化合物と、下記一般式(Id)で表される化合物と、を反応させる工程と、
     下記Z1b、Z2b、Z3b、Z4b及びZ6bのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程と、
     を行うことにより、下記一般式(I)で表される化合物又はその塩として、下記一般式(Ib)で表される化合物における、下記LGが、下記X0bで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法。
    Figure JPOXMLDOC01-appb-C000008
     (一般式(I)、(Ib)又は(Id)中、X、X、X及びXは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X及びXが前記アルキル基である場合、又は、X及びXが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     Xは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
     Xは、水素原子、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり;
     nは、0又は1であり;
     nは、1~5の整数であり;
     LGは脱離基であり;
     Z1b、Z2b、Z3b、Z4b及びZ6bは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基、又は保護基であり、Z1b及びZ2bが前記アルキル基である場合、又は、Z3b及びZ4bが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     X0bは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基である。)
    A compound or a salt thereof represented by the following general formula (I B),
    Reacting a compound represented by the following general formula (Ib) with a compound represented by the following general formula (Id);
    When one or more of the following Z 1b , Z 2b , Z 3b , Z 4b and Z 6b are the following protecting groups, the protecting group is further removed after the step of reacting. Process and
    By performing, as a compound represented by the following general formula (I B), in the compound represented by the following general formula (Ib), the following LG 2 is a compound of structure substituted by the following X 0b Or a method for producing a compound or a salt thereof to obtain a salt thereof.
    Figure JPOXMLDOC01-appb-C000008
    (In the general formula (I B), (Ib) or (Id), X 1, X 2, X 3 and X 4 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 1 and X 2 are the alkyl groups, or X 3 and X 4 Is a said alkyl group, these two alkyl groups It may bond to form a ring;
    X 5 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    X 6 is a hydrogen atom or an unsaturated hydrocarbon group having 3 to 9 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    n 3 is 0 or 1;
    n 2 is an integer from 1 to 5;
    LG 2 is a leaving group;
    Z 1b , Z 2b , Z 3b , Z 4b and Z 6b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds between carbon atoms, and have a substituent. An optionally substituted unsaturated hydrocarbon group having 3 to 9 carbon atoms or a protecting group, wherein Z 1b and Z 2b are the aforementioned alkyl groups, or Z 3b and Z 4b are the aforementioned alkyl groups May have the two alkyl groups linked to each other to form a ring;
    X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent. )
  13.  下記一般式(II)で表される化合物又はその塩の製造方法であって、
     下記一般式(IIa)で表される化合物と、下記一般式(Ic)で表される化合物と、を反応させる工程と、
     下記Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程と、
     を行うことにより、下記一般式(II)で表される化合物又はその塩として、下記一般式(IIa)で表される化合物における、下記Z01a、Z02a、Z03a及びZ04aのうち、水素原子であるものが、下記X0aで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法。
    Figure JPOXMLDOC01-appb-C000009
     (一般式(II)、(IIa)又は(Ic)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
     n01は、0又は1であり;
     n02は、1~5の整数であり;
     ただし、前記X01、X02、X03及びX04のうち、1種又は2種以上は、前記不飽和炭化水素基であり、
     X0aは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく;
     LGは脱離基であり;
     Z01a、Z02a、Z03a及びZ04aは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は保護基であり、Z01a及びZ02aが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく、ただし、Z01a、Z02a、Z03a及びZ04aのうち、1種又は2種以上は、水素原子である。)
    A method for producing a compound represented by the following general formula (II A ) or a salt thereof,
    Reacting a compound represented by the following general formula (IIa) with a compound represented by the following general formula (Ic);
    Below Z 01a, Z 02a, among the Z 03a and Z 04a, when one or more are below protecting group, after the step of the reaction, further, removing the protecting group,
    By performing, as a compound represented by the following general formula (II A), in the compounds represented by the following general formula (IIa), following Z 01a, Z 02a, among the Z 03a and Z 04a, A method for producing a compound or a salt thereof, wherein a compound or a salt thereof having a structure in which a hydrogen atom is substituted by the following X0a is obtained.
    Figure JPOXMLDOC01-appb-C000009
    (Formula (II A), in (IIa) or (Ic), X 01, X 02, X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms or between carbon atoms Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups Groups may be linked to each other to form a ring ;
    X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    n 01 is 0 or 1;
    n 02 is an integer of 1 to 5;
    However, one or more of X 01 , X 02 , X 03 and X 04 are the unsaturated hydrocarbon groups,
    X 0a is an unsaturated hydrocarbon group having 1 to 4 triple bonds between carbon atoms and having 3 to 9 carbon atoms which may have a substituent, wherein the unsaturated hydrocarbon group is When having a methylene group at the terminal on the bonding side, the methylene group may be substituted with a carbonyl group, and the unsaturated hydrocarbon group may have one or more than two terminals other than the terminal on the bonding side. When it has a methylene group, one methylene group or two or more non-adjacent methylene groups may be substituted with an oxygen atom;
    LG 1 is a leaving group;
    Z 01a, Z 02a, Z 03a and Z 04a each independently represent a hydrogen atom, an alkyl group having 1-9 carbon atoms, or a protecting group, if Z 01a and Z 02a is said alkyl group, these two alkyl groups may form a ring with each other, however, Z 01a, Z 02a, among the Z 03a and Z 04a, 1 or 2 or more is a hydrogen atom. )
  14.  下記一般式(II)で表される化合物又はその塩の製造方法であって、
     下記一般式(IIb)で表される化合物と、下記一般式(Id)で表される化合物と、を反応させる工程と、
     下記Z01b、Z02b、Z03b及びZ04bのうち、1種又は2種以上が下記保護基である場合には、前記反応させる工程の後で、さらに、前記保護基を除去する工程と、
     を行うことにより、下記一般式(II)で表される化合物又はその塩として、下記一般式(IIb)で表される化合物における、下記LGが、下記X0bで置換された構造の化合物又はその塩を得る、化合物又はその塩の製造方法。
    Figure JPOXMLDOC01-appb-C000010
     (一般式(II)、(IIb)又は(Id)中、X01、X02、X03及びX04は、それぞれ独立に、水素原子、炭素数1~9のアルキル基、又は炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基であり、前記不飽和炭化水素基が、その結合先側の末端にメチレン基を有する場合、前記メチレン基はカルボニル基で置換されていてもよく、前記不飽和炭化水素基が、その結合先側の末端以外に、1個又は2個以上のメチレン基を有する場合、1個の前記メチレン基又は2個以上の互いに隣接していない前記メチレン基は、酸素原子で置換されていてもよく、X01及びX02が前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     X05は、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基であり;
     n02は、1~5の整数であり;
     LGは脱離基であり;
     Z01b、Z02b、Z03b及びZ04bは、それぞれ独立に、水素原子、炭素数1~9のアルキル基、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数3~9の不飽和炭化水素基、又は保護基であり、Z01b及びZ02bが前記アルキル基である場合には、これら2個のアルキル基は相互に結合して環を形成していてもよく;
     X0bは、炭素原子間の三重結合を1~4個有し、置換基を有していてもよい炭素数2~8の不飽和炭化水素基である。)
    A method for producing a compound represented by the following general formula (II B ) or a salt thereof,
    Reacting a compound represented by the following general formula (IIb) with a compound represented by the following general formula (Id);
    When one or more of the following Z 01b , Z 02b , Z 03b and Z 04b are the following protective groups, after the step of reacting, further removing the protective groups;
    By carrying out, as a compound represented by the following general formula (II B ) or a salt thereof, a compound having a structure in which the following LG 3 in the compound represented by the following general formula (IIb) is substituted by the following X 0b Or a method for producing a compound or a salt thereof to obtain a salt thereof.
    Figure JPOXMLDOC01-appb-C000010
    (In the general formulas (II B ), (IIb) or (Id), X 01 , X 02 , X 03 and X 04 each independently represent a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, or Is an unsaturated hydrocarbon group having 1 to 4 triple bonds and having 3 to 9 carbon atoms, which may have a substituent, wherein the unsaturated hydrocarbon group has methylene When the unsaturated hydrocarbon group has one or two or more methylene groups other than the terminal on the side to which the unsaturated hydrocarbon group is bonded, the methylene group may be substituted with a carbonyl group. Two methylene groups or two or more non-adjacent methylene groups may be substituted with an oxygen atom, and when X 01 and X 02 are the alkyl groups, these two alkyl groups The groups may be linked to each other to form a ring ;
    X 05 is an unsaturated hydrocarbon group having 2 to 8 carbon atoms, which has 1 to 4 triple bonds between carbon atoms and may have a substituent;
    n 02 is an integer of 1 to 5;
    LG 3 is a leaving group;
    Z 01b , Z 02b , Z 03b and Z 04b each independently have a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, 1 to 4 triple bonds between carbon atoms, and have a substituent. When Z 01b and Z 02b are the above-mentioned alkyl groups, these two alkyl groups are mutually bonded to form a ring. May be;
    X 0b is an unsaturated hydrocarbon group having 2 to 8 carbon atoms which has 1 to 4 triple bonds between carbon atoms and may have a substituent. )
PCT/JP2019/031022 2018-08-07 2019-08-07 Compound, salt of compound, neuromodulation agent, method for evaluating neuromodulation agent, method for producing compound, and method for producing salt of compound WO2020032080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020535822A JP7456621B2 (en) 2018-08-07 2019-08-07 Agent for detecting dynamics of neuromodulatory substance and method for detecting neuromodulatory substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-148873 2018-08-07
JP2018148873 2018-08-07

Publications (1)

Publication Number Publication Date
WO2020032080A1 true WO2020032080A1 (en) 2020-02-13

Family

ID=69414879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031022 WO2020032080A1 (en) 2018-08-07 2019-08-07 Compound, salt of compound, neuromodulation agent, method for evaluating neuromodulation agent, method for producing compound, and method for producing salt of compound

Country Status (2)

Country Link
JP (1) JP7456621B2 (en)
WO (1) WO2020032080A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179871A (en) * 1986-07-01 1988-07-23 Shionogi & Co Ltd Substituted isoquinoline derivative and antiulcer agent
JP2005527517A (en) * 2002-03-14 2005-09-15 ビーエーエスエフ アクチェンゲゼルシャフト Z-substituted acrylamides, their preparation, and compositions containing them
JP2007515444A (en) * 2003-12-22 2007-06-14 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Substituted heterocyclic amides with bactericidal effects
WO2012041934A1 (en) * 2010-09-28 2012-04-05 Katholieke Universiteit Leuven Polysubstituted 2-aminoimidazoles for controlling biofilms and process for their production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0508318D0 (en) 2005-04-25 2005-06-01 Novartis Ag Organic compounds
EE200600030A (en) 2006-08-15 2008-04-15 Tartu �likool Protein kinase fluorescence probe
US7678819B2 (en) 2006-12-07 2010-03-16 The Trustees Of The University Of Pennsylvania Acetylene derivatives and their use for binding and imaging amyloid plaques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179871A (en) * 1986-07-01 1988-07-23 Shionogi & Co Ltd Substituted isoquinoline derivative and antiulcer agent
JP2005527517A (en) * 2002-03-14 2005-09-15 ビーエーエスエフ アクチェンゲゼルシャフト Z-substituted acrylamides, their preparation, and compositions containing them
JP2007515444A (en) * 2003-12-22 2007-06-14 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Substituted heterocyclic amides with bactericidal effects
WO2012041934A1 (en) * 2010-09-28 2012-04-05 Katholieke Universiteit Leuven Polysubstituted 2-aminoimidazoles for controlling biofilms and process for their production

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
ALVAREZ-PEREZ, ANDREA ET AL.: "Catalytic Cyclization of o-Alkynyl Phenethylamines via Osmacyclopropene Intermediates: Direct Access to Dopaminergic 3-Benzazepines", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 54, no. 45, 2015, pages 13357 - 13361, XP055685713 *
ARCADI, ANTONIO ET AL.: "The reaction of acetylenic amines with tetraethylammonium carbonate and hydrogen carbonate", SYNTHESIS OF 5-METHYLENE-1,3-OXAZOLIDIN-2-ONES , SYNLETT, vol. 1, 2005, pages 67 - 70, XP055685687 *
CIOC, RAZVAN C. ET AL.: "One-pot synthesis of N-substituted beta -amino alcohols from aldehydes and isocyanides", CHEMISTRY - A EUROPEAN JOURNAL, vol. 21, no. 21, 2015, pages 7808 - 7813, XP055531412, DOI: 10.1002/chem.201500210 *
DATABASE CAS 14 July 2006 (2006-07-14), Database accession no. 892596-62-2 *
DATABASE REGISTRY [online] 16 February 1990 (1990-02-16), retrieved from STN Database accession no. 125436-87-5 *
DATABASE REGISTRY [online] 22 June 2001 (2001-06-22), retrieved from STN Database accession no. 342880-45-9 *
ERMOLAT'EV, DENIS S. ET AL.: "Concise and Diversity-Oriented Route toward Polysubstituted 2-Aminoimidazole Alkaloids and Their Analogues", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 49, no. 49, 2010, pages 9465 - 9468, XP055011731, DOI: 10.1002/anie.201004256 *
GOLDMANN, ANJA S. ET AL.: "Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe304 Nanoparticles", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 31, no. 18, 2010, pages 1608 - 1615, XP055685698 *
JACKMAN, G. B. ET AL.: "Some tryptamine derivatives: 1-aryloxy-3-[(2-indol-3-ylethyl)-amino]propan-2-ols", JOURNAL OF PHARMACY AND PHARMACOLOGY, vol. 17, no. 11, 1965, pages 742 - 746 *
JAYAKUMAR, JAYACHANDRAN ET AL.: "Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Ste p", CHEMISTRY - A EUROPEAN JOURNAL, vol. 22, no. 5, 2016, pages 1800 - 1804, XP055685714 *
KANG, DO HYUN ET AL.: "Mussel-Inspired Universal Bioconjugation of Polydiacetylene Liposome for Droplet-Array Biosensors", ACS APPLIED MATERIALS & INTERFACES, vol. 9, no. 48, 2017, pages 42210 - 42216, XP055685720 *
LAMBERTH, CLEMENS ET AL.: "Synthesis and fungicidal activity of N-2-(3-methoxy-4-propargyloxy)phenethyl amides. Part 3: Stretched and heterocyclic mandelamide oomyceticides", PEST MANAGEMENT SCIENCE, vol. 63, no. 1, 2007, pages 57 - 62, XP055685692 *
LIN, JASON CHING-YAO ET AL.: "Characterization of Protein Serotonylation via Bioorthogonal Labeling and Enrichment", JOURNAL OF PROTEOME RESEARCH, vol. 13, no. 8, 2014, pages 3523 - 3529, XP055685707 *
MAGNE, VALENTIN ET AL.: "Synthesis of Spiroindolenines via Regioselective Gold(I)-Catalyzed Cyclizations of N-Propargyl Tryptamines", ADVANCED SYNTHESIS & CATALYSIS, vol. 359, no. 22, 2017, pages 4036 - 4042, XP055685715 *
MANONI, E. ET AL.: "Organocatalytic enantioselective synthesis of 1-vinyl tetrahydroisoquinolines through allenamide activation with chiral Bronsted acids", RSC ADVANCES, vol. 5, 2015, pages 10546 - 10550, XP055685710 *
MITACHI, KATSUHIKO ET AL.: "Synthesis and structure-activity relationship of disubstituted benzamides as a novel class of antimalarial agents", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 22, no. 14, 2012, pages 4536 - 4539, XP028504396 *
PEREGO, LUCA ALESSANDRO ET AL.: "Copper-Catalyzed Hydroamination of Allenes: from Mechanistic Understanding to Methodology Development", ACS CATALYSIS, vol. 7, no. 7, 2017, pages 4253 - 4264, XP055629283, DOI: 10.1021/acscatal.7b00911 *
WANG, ZHENJUN ET AL.: "Synthesis and bioactivity of novel 1-substituted-1H-1,2,3-triazole-4-carboxamide", YOUJI HUAXUE, vol. 31, no. 3, 2011, pages 317 - 323, XP008162447 *

Also Published As

Publication number Publication date
JPWO2020032080A1 (en) 2021-08-26
JP7456621B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP3340409B2 (en) 2-Amino-bicyclo [3.1.0] hexane-2,6-dicarboxylic acid derivatives and methods for producing them
JP2010530428A (en) Method for synthesizing cinacalcet and its salts
Smith et al. Syntheses of (−)-oleocanthal, a natural NSAID found in extra virgin olive oil, the (−)-deacetoxy-oleuropein aglycone, and related analogues
Arancibia et al. Synthesis, characterization and anti-Trypanosoma cruzi evaluation of ferrocenyl and cyrhetrenyl imines derived from 5-nitrofurane
RU2660433C2 (en) Chiral 4-boronophenylalanine (bpa) derivative and method for producing same, and method for producing 18f-labeled bpa using said derivative
TWI640496B (en) Method for producing 2-fluoro-4-borono-l-phenylalanine, and a derivative of 2-fluoro-4-borono-l-phenylalanine
Chernyshev et al. Metal complexes of new photochromic chelator: Structure, stability and photodissociation
US7160732B2 (en) Fluorescein-based metal sensors, and methods of making and using the same
Nguyen et al. Synthesis and properties of B-cyano-BODIPYs
WO2020032080A1 (en) Compound, salt of compound, neuromodulation agent, method for evaluating neuromodulation agent, method for producing compound, and method for producing salt of compound
KR101171919B1 (en) Fluorescein derivatives having selectivity for thiol and method for in vivo monitoring thiol using the same
Khanvilkar et al. Synthesis and characterization of chiral aza-macrocycles and study of their enantiomer recognition ability for organo-phosphoric acid and phosphonic acid derivatives by 31 P NMR and fluorescence spectroscopy
JP5119149B2 (en) Substituted cyclohexanone
Easson et al. Synthesis and in vitro properties of trimethylamine-and phosphonate-substituted carboranylporphyrins for application in BNCT
Bhalla et al. Stereoselective synthesis of all stereoisomers of vicinal and distal bis (O-2-aminoethyl)-p-tert-butylthiacalix [4] arene
EP1517882A1 (en) Amide linker peroxisome proliferator activated receptor modulators
US20230331652A1 (en) Trans-cyclooctenes with high reactivity and favorable physiochemical properties
KR101171802B1 (en) Pyrene derivatives having mercury ion selectivity, and fluorescent chemodosimeter using the same
Wong et al. Isolation and enantiostability of the B-chiral bis (salicylato) borate anions [BR (Sal) 2] and [BS (Sal) 2]
Fiandanese et al. Stereoselective total synthesis of (S)-Virol C and (S)-1-dehydroxyvirol A
Błocka et al. Structural and electronic effects of oxazolidine ligands derived from (1R, 2S)-ephedrine in the asymmetric addition of diethylzinc to aldehydes
Ibe et al. Design, synthesis, and properties of des-D-ring interphenylene derivatives of 1α, 25-Dihydroxyvitamin D3
CN1501938A (en) Dicarba-closo-dodecaborane derivatives
Marchal et al. Prodigiosenes conjugated to tamoxifen and estradiol
EP3072873B1 (en) Vitamin d analogues of pharmaceutical interest

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847494

Country of ref document: EP

Kind code of ref document: A1