WO2020032055A1 - Water level detection device and humidification device - Google Patents

Water level detection device and humidification device Download PDF

Info

Publication number
WO2020032055A1
WO2020032055A1 PCT/JP2019/030958 JP2019030958W WO2020032055A1 WO 2020032055 A1 WO2020032055 A1 WO 2020032055A1 JP 2019030958 W JP2019030958 W JP 2019030958W WO 2020032055 A1 WO2020032055 A1 WO 2020032055A1
Authority
WO
WIPO (PCT)
Prior art keywords
water level
water
light
value
level detection
Prior art date
Application number
PCT/JP2019/030958
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 森田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201980045791.0A priority Critical patent/CN112534217A/en
Priority to JP2020535806A priority patent/JP7143418B2/en
Publication of WO2020032055A1 publication Critical patent/WO2020032055A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet

Definitions

  • One embodiment of the present invention relates to a water level detection device that detects a water level in a container.
  • Patent Literature 1 discloses a technique for determining whether or not a water level is equal to or higher than a predetermined water level by a simple configuration of a water level detection device.
  • An object of one embodiment of the present invention is to detect a water level more accurately than in a conventional water level detection device.
  • a water level detection device is a water level detection device that detects a water level in a container, and emits detection light to a predetermined position on a water surface in the container.
  • the water level detection device According to the water level detection device according to one embodiment of the present invention, the water level can be detected more accurately than in the past.
  • FIG. 9 is a diagram illustrating an example of a shift value setting table.
  • A) And (b) is a figure for each explaining the result of one study by the inventor.
  • A)-(c) is a figure for each explaining another examination result by the inventor.
  • FIG. 1 is a diagram showing an outline of the humidifying device 1.
  • FIG. 2 is a functional block diagram illustrating a configuration of a main part of the humidifying device 1.
  • the upward direction in the drawing and the downward direction in the drawing of FIG. 1 are referred to as a vertical upward direction and a vertical downward direction, respectively.
  • the position and the arrangement direction of each part of the humidifier 1 are not limited to the example of FIG.
  • the humidifying device 1 includes a distance measuring sensor 10 (water level detecting device) and a water storage tray 90 (container).
  • the water storage tray 90 is an example of a container that receives the water WT.
  • the water storage tray 90 is housed in the housing 80 of the humidifier 1.
  • the distance measuring sensor 10 optically detects the water level (WL in FIG. 1) of the water WT in the water storage tray 90.
  • the distance measuring sensor 10 is arranged at a predetermined position in the housing 80. More specifically, the distance measuring sensor 10 is arranged at a position higher than the top of the housing 80 with reference to the bottom surface inside the housing 80.
  • H in FIG. 1 shows the height of the distance measurement sensor 10 with reference to the bottom surface inside the housing 80. H is set as a value larger than the height of the housing 80.
  • the housing 80 is provided with a water supply port 81, a water supply path 82, and a discharge port 83.
  • a fan 71 is provided in the housing 80.
  • a humidification filter 72 is provided in the water storage tray 90.
  • the humidification filter 72 absorbs a part of the water WT in the water storage tray 90.
  • the wind WD can be generated in the housing 80.
  • the wind WD passes through the humidification filter 72, a part of the water WT contained in the humidification filter 72 is released into the air blown by the fan 71. That is, the air can be humidified.
  • the wind WD that has passed through the humidification filter 72 (that is, the air after humidification) is discharged to the outside of the humidification device 1 through the discharge port 83.
  • the humidifier according to one embodiment of the present invention is not limited to a vaporizing humidifier.
  • the humidifier may be a steam humidifier that generates steam by heating water WT.
  • the humidifier may be an ultrasonic humidifier that atomizes and discharges the water WT.
  • the humidifying device includes any electric device having a humidifying function (eg, home electric appliance).
  • the humidifying device includes an air purifier or an air conditioner having a humidifying function.
  • the distance measuring sensor 10 includes a first control unit 15 (computing device), a light emitting unit 110, and a light receiving unit 120.
  • the humidifying device 1 further includes a fan motor 70 (motor for driving the fan 71) and a second control unit 75.
  • the first control unit 15 controls each unit of the distance measuring sensor 10 as a whole.
  • the first control unit 15 includes a distance calculation unit 150, a water level calculation unit 151, an air volume stage detection unit 152, and a water level correction unit 153.
  • the second control unit 75 controls each unit of the humidifier 1.
  • the first control unit 15 and the second control unit 75 can be provided as an integrated control unit.
  • the function of the first control unit 15 may be integrated with the second control unit 75. Therefore, the second control unit 75 can also function as an arithmetic device.
  • the second control unit 75 controls the fan motor 70.
  • the fan 71 By rotating the fan motor 70 at a predetermined rotation speed (rotation speed) (unit: rpm) by the second control unit 75, the fan 71 can be rotated at the same rotation speed. Therefore, the fan 71 can generate a predetermined air volume (a predetermined amount of wind WT) (unit: m 3 / min).
  • the rotation speed of the fan 71 will be simply referred to as the rotation speed.
  • the air volume (hereinafter, Q) mainly depends on the rotational speed and the mechanical structure of the humidifier 1 (particularly, the structure of a portion that defines the path of the wind WD).
  • the distance measuring sensor 10 optically measures the distance (d in FIG. 1) between the distance measuring sensor 10 (strictly, the light receiving surface of the distance measuring sensor 10) and the water surface of the water WT (hereinafter simply referred to as the water surface). To be detected.
  • the light emitting unit 110 emits the detection light L1 (eg, infrared light) to a predetermined position on the water surface.
  • the light emitting unit 110 is an LED (Light Emitting Diode).
  • the reflected light L2 in FIG. 1 is light obtained by reflecting the detection light L1 at the predetermined position.
  • the light receiving unit 120 receives the reflected light L2.
  • the light receiving unit 120 is a photoelectric conversion element (light receiving element) that can detect the reflected light L2 (eg, infrared light). Note that, in FIG. 1, for convenience, the detection light L1 and the reflected light L2 are illustrated so as not to overlap.
  • the distance calculation unit 150 calculates d based on the detection light L1 and the reflected light L2. Any method may be used as a method for calculating d in distance calculating section 150. As an example, the distance calculation unit 150 calculates d by comparing the phase difference between the detection light L1 emitted by the light emitting unit 110 and the reflected light L2 received by the light receiving unit 120.
  • the water level calculation unit 151 calculates (detects) the water level (WL) of the water WT in the water storage tray 90 based on d.
  • the water level of the water WT in the water storage tray 90 is, specifically, the height of the water surface of the water WT with reference to the bottom surface in the housing 80.
  • the true value of the water level of the water WT is referred to as a true water level value.
  • the water level of the water WT in the water storage tray 90 calculated by the water level calculation unit 151 is also referred to as a water level detection value.
  • WL is a water level detection value unless otherwise specified.
  • the water level calculation unit 151 WL Hd (1) Is calculated as WL.
  • the value of H is preset in the water level calculator 151.
  • the distance measurement sensor 10 can also calculate WL based on the detection light L1 and the reflected light L2.
  • the water level calculation section 151 calculates a water level level (hereinafter, WLEVEL).
  • the water level calculation unit 151 detects (determines) a water level stage.
  • the water level stage is an index indicating the level of WLEVEL.
  • the water level calculation unit 151 ⁇ Water level stage 0: Water level level 0-4%; ⁇ Water level 1: Water level 5-14%; -Water level stage 2: Water level 15-24%; -Water level stage 3: Water level 25-34%; -Water level stage 4: Water level 35-44%; ⁇ Water level 5: Water level 45-54%; ⁇ Water level stage 6: Water level 55-64%; -Water level stage 7: Water level 65-74%; -Water level stage 8: Water level 75-84%; ⁇ Water level 9: Water level 85-94%; ⁇ Water level stage 10: Water level 95-104%; ⁇ Water level 11: Water level 105-114%; -Water level stage 12: Water level level 115%; The water level stages are classified into 13 ways (see also FIG. 4 described later).
  • “A to B” means “A or more and B or less”
  • the air volume stage detection unit 152 detects (determines) the air volume stage.
  • the air volume stage is an index indicating the size of Q (how large the air volume in the water storage tray 90 is).
  • the air volume stage is also referred to as a notch.
  • the notch is set in association with the rotation speed.
  • the air volume stage detection unit 152 classifies notches into four types of notches 0 to 3 (see also FIG. 4 described later).
  • Notch 0 air volume stage 0
  • Notch 1 air flow stage 1
  • Notch 2 air flow stage 2
  • 1050 rpm 1.09 m 3 / min
  • Notch 3 air flow stage 3
  • 1400 rpm 1.80 m 3 / min
  • the fan motor 70 may be provided with a sensor (not shown) for detecting the number of rotations.
  • the air volume stage detection unit 152 may acquire the rotation speed from the sensor and determine a notch according to the rotation speed.
  • the air volume stage detection unit 152 may estimate the number of rotations according to the operation state (operation mode) of the humidifier 1. In this case, it is not necessary to provide the fan motor 70 with the sensor.
  • the number of the notch (the number of notches) may be set so as to increase as the rotation speed increases.
  • Q increases as the number of notches (number of airflow stages) increases.
  • the number of rotations corresponding to the predetermined number of notches may be different depending on the water level stage. Therefore, the Q corresponding to the predetermined number of notches may be different depending on the water level stage.
  • Q 0 at any water level stage.
  • FIG. 3 is a diagram for explaining a relationship between Q and the measurement accuracy of the distance measurement sensor 10.
  • FIG. 3B shows a case where Q ⁇ 0 (that is, a case where the fan 71 is driven).
  • some members shown in FIG. 1 are not shown for simplicity.
  • the detection accuracy of d in the distance measurement sensor 10 is reduced.
  • the optical path length of the reflected light L2 incident on the light receiving unit 120 is equal to or larger than the average water level of the case of FIG. It is longer than in the case of FIG. Therefore, the distance measuring sensor 10 detects a distance longer than the true distance value as d.
  • the WL detection accuracy of the distance measurement sensor 10 also decreases. For example, a WL (water level lower than the true water level) that is different from the true water level is detected by the distance measurement sensor 10.
  • Q may be changed according to the water level in the water storage tray 90. For example, when WL is small, Q is set to be large in order to more effectively humidify the air by the humidification filter 72 than when WL is large. Based on this point, the inventor has conceived a further concept of "it is preferable to consider WL in order to prevent a decrease in the measurement accuracy of the distance measurement sensor 10".
  • Water level correction unit 153 The inventor has conceived a concept of “providing a water level correction unit 153 in the distance measurement sensor 10” in order to solve the above problem.
  • the water level correction unit 153 corrects the WL according to the notch (air volume stage) and the water level stage. In other words, the water level correction unit 153 corrects the WL according to (i) the air volume (Q) in the water storage tray 90 and (ii) the water level (in other words, WL) in the water storage tray 90. However, the water level correction unit 153 may correct the WL according to only the notch (only according to Q).
  • the corrected WL is referred to as WLS.
  • WLS may be referred to as a corrected water level detection value.
  • the water level correction unit 153 WLS WL-PSHIFT (2) Is calculated as WLS. That is, the water level correction unit 153 subtracts (shifts) the value of WL by PSHIFT.
  • PSHIFT is also called a shift value (shift amount).
  • WL, WLS, and PSHIFT are all arbitrary units. As an example, the units for WL, WLS, and PSHIFT may be mm.
  • the water level correction unit 153 sets PSHIFT with reference to the shift value setting table.
  • the shift value setting table is a table in which PSHIFT values corresponding to each notch and each water level stage are set in advance.
  • FIG. 4 is a diagram illustrating an example of the shift value setting table.
  • the shift value setting table of FIG. 4 is used will be exemplified.
  • another method may be applied as the setting method of PSHIFT by the water level correction unit 153.
  • the PSHIFT is set to increase as the number of notches increases (more precisely, PSHIFT increases monotonically in a broad sense). That is, as Q increases, WLS is calculated as a smaller value (WL is corrected to a smaller value). As described above, when Q is large, the sway of the water surface can be remarkable. Therefore, in order to effectively cancel the influence of the water surface sway according to Q, it is preferable to increase PSHIFT as Q increases.
  • the water level correction unit 153 may supply the WLS to the second control unit 75 as the water level detection result.
  • the second control unit 75 may selectively notify the user of a predetermined notification mode based on the WLS. For example, when WLS is smaller than a predetermined threshold value (hereinafter, a notification threshold value), the second control unit 75 may notify the user to prompt the user to supply water to the water storage tray 90.
  • the second control unit 75 operates a notifying unit (not shown) provided in the humidifying device 1 to cause the user to notify.
  • the notification unit includes at least one of a lamp, an alarm, and a display panel.
  • the water level correction unit 153 may detect the corrected water level and the water level stage based on the WLS. Further, the water level correction unit 153 may calculate the corrected water amount based on the WLS.
  • the water level correction unit 153 can correct WL in consideration of Q. That is, even when the water surface sways due to the wind WD (when WL can deviate from the true water level), the WL can be corrected. Therefore, a corrected value (ie, WLS) closer to the true water level value can be output as a detection result. Thus, according to the distance measuring sensor 10, the water level can be detected more accurately (accurately) than before.
  • Q can change according to the water level in the water storage tray 90.
  • the water level correction unit 153 can further correct the WL in accordance with the WL (one of the detected water level before correction and one of the numerical values related to the true water level). For this reason, it becomes possible to further improve the detection accuracy of the water level.
  • FIG. 5 is a diagram for explaining one study result by the inventor. Specifically, FIG. 5A shows a graph illustrating an example of the relationship between the air volume and the shift value (shift amount). It can be said that the shift value is an example of an index indicating the degree of water surface sway.
  • FIG. 5B shows a graph illustrating an example of the relationship between the rotation speed and the air flow at each water level (more specifically, at each water level).
  • Each graph in FIG. 5 is a conceptual diagram for explaining an example of a trend. Therefore, no unit is described in each graph.
  • the inventor confirmed the tendency that “the shift value depends on the air volume”. Further, the inventor has stated that, in the case of a low water level, the water amount (WV) of the water WT in the water storage tray 90 is small. It can be smaller. "
  • the inventor confirmed the tendency that “the larger the rotation speed, the larger the air volume.” Furthermore, the inventor has confirmed the tendency that "the lower the water level, the greater the air volume.”
  • the setting method of the PSHIFT is arbitrary, but it is considered that it is preferable to set the PSHIFT (for example, a water level correction table is created) based on such a tendency.
  • the humidifier 1 may be provided with an air volume sensor for measuring Q.
  • the air volume sensor may be provided at a predetermined position in the housing 80.
  • the water level correction unit 153 may correct the WL according to the Q measured by the air volume sensor.
  • the air flow stage detection unit 152 can be omitted from the first control unit 15.
  • the distance measurement sensor 10 has detected the WL to be relatively large (that is, to have detected d to be small), a state in which the water WT has actually disappeared from the water storage tray 90 (when the water level is actually 0). %), A water level higher than 0% (eg, a water level of 5%) is detected. Therefore, the user cannot be properly notified.
  • the notification threshold is generally set to a value slightly larger than the value corresponding to the water level 0%.
  • the notification threshold is set to a value corresponding to a water level of 10%.
  • the notification threshold value is set as described above, the notification that prompts the user to supply water is performed even though the water WT remains in the water storage tray 90 to some extent. As a result, it is not possible to sufficiently reduce the user's labor for supplying water. Based on this point, the inventor further studied conditions for notifying the user.
  • FIG. 6 is a diagram for explaining the result of the study by the inventor.
  • a state where the water WT is not contained in the water storage tray 90 is referred to as a “waterless state”.
  • a state in which the water WT is contained in the water storage tray 90 is referred to as a “water presence state”.
  • the graph of FIG. 6A illustrates an example of a temporal change in the detection result of the distance measuring sensor 10 when the state of the water storage tray 90 changes from a state without water to a state with water.
  • the horizontal axis represents time (unit: seconds) (hereinafter, t), and the vertical axis represents the average value (hereinafter, dm) of d detected by each of the plurality of distance measurement sensors 10.
  • the distance measurement sensor 10 is also called a tof sensor (time of flight) sensor. For this reason, dm may be referred to as a tof average value.
  • FIG. 6B is an enlarged graph of the portion D1 of FIG. 6A.
  • the graph of FIG. 6B shows an example of the time change of dm in the waterless state.
  • FIG. 6C is an enlarged graph of the portion D2 of FIG.
  • the graph of (c) of FIG. 6 shows an example of a state of a temporal change of dm in the state with water.
  • the distance measuring sensor 10 detects the distance between the distance measuring sensor 10 and the bottom surface of the water storage tray 90 as d. Since the bottom surface of the water storage tray 90 is solid unlike the water WT, it has relatively high rigidity. Therefore, even when the humidifier 1 is operating (even when Q ⁇ 0), the shape of the bottom surface of the water storage tray 90 does not change due to the influence of the wind WD. Therefore, the actual distance between the distance measuring sensor 10 and the bottom surface of the water storage tray 90 does not change. Therefore, as shown in FIG. 6B, the change (variation) of dm with time is relatively small in the absence of water.
  • the second control unit 75 determines that the water level has reached the notification threshold (a value corresponding to a water level of 10%). Then, the second control unit 75 continues the operation of the humidifier 1 for a predetermined operation allowable time (eg, one hour) from the time when the determination is made.
  • a predetermined operation allowable time eg, one hour
  • the second control unit 75 calculates a parameter indicating the magnitude of the change (fluctuation) of d at every predetermined time period (for example, 30 seconds).
  • dmax is the maximum value of d in the time period
  • dmin is the minimum value of d in the time period.
  • is one of the indices (parameters) indicating the magnitude of the change of d in the time period.
  • the second control unit 75 performs a magnitude comparison between ⁇ and a predetermined threshold (hereinafter, dth). dth is also called a fluctuation threshold. Specifically, the second control unit 75 determines whether ⁇ ⁇ dth.
  • the second control unit 75 may detect a waterless state (may determine that the water storage tray 90 is in the waterless state). When detecting the absence of water, the second control unit 75 notifies the user to prompt for water supply. When detecting the absence of water, the second control unit 75 may stop the operation of the humidifier 1 even before the allowable operation time has expired.
  • the second control unit 75 may detect the presence of water (may determine that the water storage tray 90 is in the presence of water). When detecting the water presence state, the second control unit 75 does not notify the user.
  • the second control unit 75 may determine whether or not to notify the user based on the notification threshold and the variation threshold.
  • the fluctuation threshold value By introducing the fluctuation threshold value, the waterless state can be determined with higher accuracy than when only the notification threshold value is used. As a result, it is possible to effectively reduce the user's labor for supplying water while taking into account variations in the accuracy of the distance measurement sensor 10.
  • control blocks (especially the first control unit 15 and the second control unit 75) of the humidifier 1 may be realized by a logic circuit (hardware) formed on an integrated circuit (IC chip) or the like, or may be realized by software. May be.
  • the humidifying device 1 includes a computer that executes instructions of a program that is software for realizing each function.
  • This computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium storing the program. Then, in the computer, the object of one embodiment of the present invention is achieved when the processor reads the program from the recording medium and executes the program.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium include “temporary tangible media” such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits. Further, a RAM (Random Access Memory) for expanding the program may be further provided.
  • the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program.
  • a transmission medium a communication network, a broadcast wave, or the like
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • the water level detection device is a water level detection device that detects a water level in a container, and a light emitting unit that emits detection light to a predetermined position on a water surface in the container, wherein the detection light is A light receiving unit that receives reflected light that is light reflected at a predetermined position; and a computing device, wherein the computing device is configured to detect a water level that is a detection value of the water level based on the detection light and the reflected light. A detection value is calculated, and the water level detection value is corrected according to the air volume in the container.
  • the water level detection value is corrected in consideration of the air volume in the container (that is, in consideration of the influence of the water surface sway caused by the wind in the container). it can. Therefore, the water level can be detected more accurately than before.
  • the arithmetic unit further corrects the water level detection value according to the water level detection value before correction.
  • the air volume in the container can change according to the water level in the container. Therefore, according to the above configuration, the water level detection value can be corrected by further considering the water level in the container. For this reason, the detection accuracy of the water level can be further improved.
  • the arithmetic unit corrects the water level detection value to a smaller value as the air volume increases.
  • the water level detection value can be corrected so as to cancel the influence of the water surface sway corresponding to the increase in the air volume. For this reason, the detection accuracy of the water level can be further improved.
  • a humidifying device includes the water level detection device according to any one of the first to third aspects, and the container that receives water, wherein the water level detection device detects the water level. Is preferred.
  • Humidifier 10
  • Distance measuring sensor water level detector
  • First control unit arithmetic unit
  • Second control unit arithmetic unit
  • water storage tray 10
  • Light emitting unit 120
  • Distance calculating unit 151
  • Water level calculating unit 152
  • Air volume stage detecting unit 153
  • Water level correcting unit L1 Detected light
  • L2 Reflected light WD Wind WT Water WL Water level

Abstract

This water level detection device is capable of detecting a water level more accurately than conventional products. In a range sensor (10), a light-emitting part (110) emits detection light (L1) to a prescribed position on the surface of water in a water storage tray (90). A light-receiving part (120) receives reflection light (L2) of the detection light (L1) reflected at the prescribed position. A first control unit (15) calculates, on the basis of the detection light (L1) and the reflection light (L2), a water level detection value which is a value of the water level detected in the water storage tray (90). The first control unit (15) further corrects the water level detection value in accordance with the rate of air flow in the water storage tray (90).

Description

水位検知装置および加湿装置Water level detector and humidifier
 本発明の一態様は、容器内の水位を検知する水位検知装置に関する。 の 一 One embodiment of the present invention relates to a water level detection device that detects a water level in a container.
 近年、水位検知装置の構成について、様々な提案がなされている。例えば、特許文献1には、簡単な水位検知装置の構成によって、水位が所定水位以上であるか否かを判定する技術が開示されている。 In recent years, various proposals have been made regarding the configuration of the water level detection device. For example, Patent Literature 1 discloses a technique for determining whether or not a water level is equal to or higher than a predetermined water level by a simple configuration of a water level detection device.
日本国公開特許公報「特開2016-99256号公報」Japanese Unexamined Patent Publication "JP-A-2016-99256"
 但し、後述するように、水位検知装置の検知精度を向上させるための工夫点には、なお改善の余地がある。本発明の一態様は、水位検知装置において、従来よりも正確に水位を検知することを目的とする。 However, as will be described later, there is still room for improvement in improving the detection accuracy of the water level detection device. An object of one embodiment of the present invention is to detect a water level more accurately than in a conventional water level detection device.
 上記の課題を解決するために、本発明の一態様に係る水位検知装置は、容器内の水位を検知する水位検知装置であって、上記容器内の水面の所定の位置に検知光を出射する発光部と、上記検知光が上記所定の位置において反射された光である反射光を受光する受光部と、演算装置と、を備え、上記演算装置は、上記検知光と上記反射光とに基づき、上記水位の検知値である水位検知値を算出し、上記容器内の風量に応じて、上記水位検知値を補正する。 In order to solve the above problems, a water level detection device according to one embodiment of the present invention is a water level detection device that detects a water level in a container, and emits detection light to a predetermined position on a water surface in the container. A light-emitting unit, a light-receiving unit that receives reflected light that is light in which the detection light is reflected at the predetermined position, and a calculation device, wherein the calculation device is based on the detection light and the reflection light. Then, a water level detection value, which is a detection value of the water level, is calculated, and the water level detection value is corrected according to the air volume in the container.
 本発明の一態様に係る水位検知装置によれば、従来よりも正確に水位を検知できる。 According to the water level detection device according to one embodiment of the present invention, the water level can be detected more accurately than in the past.
実施形態1の加湿装置の概要を示す図である。It is a figure showing the outline of the humidification device of Embodiment 1. 図1の加湿装置の要部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the principal part of the humidifier of FIG. (a)および(b)はそれぞれ、風量と測距センサの測定精度との間の関係について説明するための図である。(A) And (b) is a figure for demonstrating the relationship between the air volume and the measurement accuracy of a distance measuring sensor, respectively. シフト値設定テーブルの一例を示す図である。FIG. 9 is a diagram illustrating an example of a shift value setting table. (a)および(b)はそれぞれ、発明者による一検討結果について説明するための図である。(A) And (b) is a figure for each explaining the result of one study by the inventor. (a)~(c)はそれぞれ、発明者による別の検討結果について説明するための図である。(A)-(c) is a figure for each explaining another examination result by the inventor.
 〔実施形態1〕
 実施形態1の加湿装置1について、以下に説明する。説明の便宜上、以降の各実施形態では、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。また、公知技術と同様の事項については、説明を適宜省略する。各図面は、各部材の形状、構造、および位置関係等を概略的に説明することを目的としたものであり、必ずしもスケール通りに描かれていないことに留意されたい。
[Embodiment 1]
The humidifier 1 according to the first embodiment will be described below. For convenience of description, in the following embodiments, members having the same functions as the members described in Embodiment 1 will be denoted by the same reference numerals, and description thereof will not be repeated. In addition, description of the same matters as those in the known art will be appropriately omitted. It should be noted that each drawing is intended to schematically explain the shape, structure, positional relationship, and the like of each member, and is not necessarily drawn to scale.
 (加湿装置1)
 図1は、加湿装置1の概要を示す図である。図2は、加湿装置1の要部の構成を示す機能ブロック図である。以下の説明では、図1の紙面上方向および紙面下方向をそれぞれ、鉛直上方向および鉛直下方向とする。但し、加湿装置1の各部の位置および配置方向は、図1の例に限定されない。
(Humidifier 1)
FIG. 1 is a diagram showing an outline of the humidifying device 1. FIG. 2 is a functional block diagram illustrating a configuration of a main part of the humidifying device 1. In the following description, the upward direction in the drawing and the downward direction in the drawing of FIG. 1 are referred to as a vertical upward direction and a vertical downward direction, respectively. However, the position and the arrangement direction of each part of the humidifier 1 are not limited to the example of FIG.
 加湿装置1は、測距センサ10(水位検知装置)および貯水トレイ90(容器)を備える。貯水トレイ90は、水WTを受容する容器の一例である。貯水トレイ90は、加湿装置1の筐体80内に収容されている。以下に述べるように、測距センサ10は、貯水トレイ90内の水WTの水位(図1のWL)を、光学的に検知する。測距センサ10は、筐体80内の所定の位置に配置されている。より具体的には、測距センサ10は、筐体80内の底面を基準として、当該筐体80の最上部よりも高い位置に配置されている。図1のHは、筐体80内の底面を基準とした場合の、測距センサ10の高さを示す。Hは、筐体80の高さよりも大きい値として設定されている。 The humidifying device 1 includes a distance measuring sensor 10 (water level detecting device) and a water storage tray 90 (container). The water storage tray 90 is an example of a container that receives the water WT. The water storage tray 90 is housed in the housing 80 of the humidifier 1. As described below, the distance measuring sensor 10 optically detects the water level (WL in FIG. 1) of the water WT in the water storage tray 90. The distance measuring sensor 10 is arranged at a predetermined position in the housing 80. More specifically, the distance measuring sensor 10 is arranged at a position higher than the top of the housing 80 with reference to the bottom surface inside the housing 80. H in FIG. 1 shows the height of the distance measurement sensor 10 with reference to the bottom surface inside the housing 80. H is set as a value larger than the height of the housing 80.
 筐体80には、給水口81と給水経路82と放出口83とが設けられている。加湿装置1のユーザが給水口81に水WTを注ぐことにより、給水経路82を介して、当該水WTを貯水トレイ90内に補充できる。加湿装置1において、筐体80内には、ファン71が設けられている。また、貯水トレイ90内には、加湿フィルタ72が設けられている。加湿フィルタ72は、貯水トレイ90内の水WTの一部を吸収する。ファン71を動作させることにより、筐体80内に風WDを発生させることができる。風WDが加湿フィルタ72を通過することにより、ファン71によって送風される空気中に、加湿フィルタ72内に含有された水WTの一部が放湿される。つまり、空気を加湿できる。加湿フィルタ72を通過した風WD(つまり、加湿後の空気)は、放出口83を通って、加湿装置1の外部へと放出される。 The housing 80 is provided with a water supply port 81, a water supply path 82, and a discharge port 83. When the user of the humidifier 1 pours the water WT into the water supply port 81, the water WT can be refilled into the water storage tray 90 via the water supply path 82. In the humidifier 1, a fan 71 is provided in the housing 80. A humidification filter 72 is provided in the water storage tray 90. The humidification filter 72 absorbs a part of the water WT in the water storage tray 90. By operating the fan 71, the wind WD can be generated in the housing 80. When the wind WD passes through the humidification filter 72, a part of the water WT contained in the humidification filter 72 is released into the air blown by the fan 71. That is, the air can be humidified. The wind WD that has passed through the humidification filter 72 (that is, the air after humidification) is discharged to the outside of the humidification device 1 through the discharge port 83.
 図1の例では、気化式の加湿装置1の一構成例が示されている。但し、本発明の一態様に係る加湿装置は、気化式の加湿装置に限定されない。当該加湿装置は、水WTを加熱することによって蒸気を発生させるスチーム式の加湿装置であってもよい。あるいは、当該加湿装置は、水WTを微粒子化して放出する超音波式の加湿器であってもよい。 で は In the example of FIG. 1, one configuration example of the vaporizing humidifier 1 is shown. Note that the humidifier according to one embodiment of the present invention is not limited to a vaporizing humidifier. The humidifier may be a steam humidifier that generates steam by heating water WT. Alternatively, the humidifier may be an ultrasonic humidifier that atomizes and discharges the water WT.
 また、本発明の一態様に係る加湿装置には、加湿機能を有する任意の電気機器(例:家電機器)が含まれる。例えば、当該加湿装置には、加湿機能を有する空気清浄機または空気調和機が含まれる。 加 Further, the humidifying device according to one embodiment of the present invention includes any electric device having a humidifying function (eg, home electric appliance). For example, the humidifying device includes an air purifier or an air conditioner having a humidifying function.
 図2に示されるように、測距センサ10は、第1制御部15(演算装置)、発光部110、受光部120を備える。加湿装置1は、ファンモータ70(ファン71を駆動するモータ)および第2制御部75をさらに備える。第1制御部15は、測距センサ10の各部を統括的に制御する。第1制御部15は、距離算出部150、水位算出部151、風量ステージ検知部152、および水位補正部153を備える。第2制御部75は、加湿装置1の各部を制御する。なお、第1制御部15と第2制御部75とを、一体の制御部として設けることもできる。例えば、第2制御部75に、第1制御部15の機能を統合されてもよい。従って、第2制御部75を演算装置として機能させることもできる。 As shown in FIG. 2, the distance measuring sensor 10 includes a first control unit 15 (computing device), a light emitting unit 110, and a light receiving unit 120. The humidifying device 1 further includes a fan motor 70 (motor for driving the fan 71) and a second control unit 75. The first control unit 15 controls each unit of the distance measuring sensor 10 as a whole. The first control unit 15 includes a distance calculation unit 150, a water level calculation unit 151, an air volume stage detection unit 152, and a water level correction unit 153. The second control unit 75 controls each unit of the humidifier 1. Note that the first control unit 15 and the second control unit 75 can be provided as an integrated control unit. For example, the function of the first control unit 15 may be integrated with the second control unit 75. Therefore, the second control unit 75 can also function as an arithmetic device.
 一例として、第2制御部75は、ファンモータ70を制御する。第2制御部75によってファンモータ70を所定の回転数(回転速度)(単位:rpm)で回転させることにより、ファン71を同回転数で回転させることができる。このため、ファン71によって所定の風量(所定の量の風WT)(単位:m/min)を発生させることができる。以下、ファン71の回転数を、単に回転数と称する。風量(以下、Q)は、主に、回転数と加湿装置1の機械的構造(特に、風WDの経路を規定する部分の構造)とに依存する。 As an example, the second control unit 75 controls the fan motor 70. By rotating the fan motor 70 at a predetermined rotation speed (rotation speed) (unit: rpm) by the second control unit 75, the fan 71 can be rotated at the same rotation speed. Therefore, the fan 71 can generate a predetermined air volume (a predetermined amount of wind WT) (unit: m 3 / min). Hereinafter, the rotation speed of the fan 71 will be simply referred to as the rotation speed. The air volume (hereinafter, Q) mainly depends on the rotational speed and the mechanical structure of the humidifier 1 (particularly, the structure of a portion that defines the path of the wind WD).
 (測距センサ10の処理の概要)
 測距センサ10における、水位補正部153を除いた各部の処理について述べる。測距センサ10は、当該測距センサ10(厳密には、測距センサ10の受光面)と水WTの水面(以下、単に水面)との間の距離(図1のd)を、光学的に検知する。発光部110は、水面の所定の位置に、検知光L1(例:赤外光)を出射する。一例として、発光部110は、LED(Light Emitting Diode)である。図1の反射光L2は、検知光L1が上記所定の位置において反射された光である。受光部120は、反射光L2を受光する。一例として、受光部120は、反射光L2(例:赤外光)を検知可能な光電変換素子(受光素子)である。なお、図1では、便宜上、検知光L1と反射光L2とが重ならないように図示されていることに留意されたい。
(Outline of processing of distance measuring sensor 10)
The processing of each unit in the distance measuring sensor 10 except for the water level correction unit 153 will be described. The distance measuring sensor 10 optically measures the distance (d in FIG. 1) between the distance measuring sensor 10 (strictly, the light receiving surface of the distance measuring sensor 10) and the water surface of the water WT (hereinafter simply referred to as the water surface). To be detected. The light emitting unit 110 emits the detection light L1 (eg, infrared light) to a predetermined position on the water surface. As an example, the light emitting unit 110 is an LED (Light Emitting Diode). The reflected light L2 in FIG. 1 is light obtained by reflecting the detection light L1 at the predetermined position. The light receiving unit 120 receives the reflected light L2. As an example, the light receiving unit 120 is a photoelectric conversion element (light receiving element) that can detect the reflected light L2 (eg, infrared light). Note that, in FIG. 1, for convenience, the detection light L1 and the reflected light L2 are illustrated so as not to overlap.
 距離算出部150は、検知光L1と反射光L2とに基づいて、dを算出する。距離算出部150におけるdの算出方法としては、任意の方法が使用されてよい。一例として、距離算出部150は、発光部110によって出射された検知光L1と受光部120によって受光された反射光L2との間の位相差を比較することにより、dを算出する。 The distance calculation unit 150 calculates d based on the detection light L1 and the reflected light L2. Any method may be used as a method for calculating d in distance calculating section 150. As an example, the distance calculation unit 150 calculates d by comparing the phase difference between the detection light L1 emitted by the light emitting unit 110 and the reflected light L2 received by the light receiving unit 120.
 水位算出部151は、dに基づいて、貯水トレイ90内の水WTの水位(WL)を算出(検知)する。貯水トレイ90内の水WTの水位とは、具体的には、筐体80内の底面を基準とした場合の、水WTの水面の高さである。本明細書では、水WTの水位の真値を、水位真値と称する。これに対し、水位算出部151によって算出された、貯水トレイ90内の水WTの水位を、水位検知値とも称する。以下の説明では、特に明示されない限り、WLは水位検知値であるものとする。一例として、水位算出部151は、
  WL=H-d…(1)
として、WLを算出する。Hの値は、水位算出部151において予め設定されている。このように、測距センサ10は、検知光L1および反射光L2に基づいて、WLを算出することもできる。
The water level calculation unit 151 calculates (detects) the water level (WL) of the water WT in the water storage tray 90 based on d. The water level of the water WT in the water storage tray 90 is, specifically, the height of the water surface of the water WT with reference to the bottom surface in the housing 80. In this specification, the true value of the water level of the water WT is referred to as a true water level value. On the other hand, the water level of the water WT in the water storage tray 90 calculated by the water level calculation unit 151 is also referred to as a water level detection value. In the following description, WL is a water level detection value unless otherwise specified. As an example, the water level calculation unit 151
WL = Hd (1)
Is calculated as WL. The value of H is preset in the water level calculator 151. As described above, the distance measurement sensor 10 can also calculate WL based on the detection light L1 and the reflected light L2.
 さらに、水位算出部151は、水位レベル(以下、WLEVEL)を算出する。水位レベルとは、WLを%単位で表現した量である、一例として、貯水トレイ90内に水WTが入っていない状態(つまり、WL=0の状態)を、水位レベル0%とする。これに対し、貯水トレイ90内が満水の状態(水位WLが予め規定された水位WL0に達した状態)を、水位レベル100%とする。この場合、水位算出部151は、WLEVEL=(WL/WL0)×100として、水位レベルを算出する。一例として、水位算出部151は、WLEVELを整数値として算出する。 Furthermore, the water level calculation section 151 calculates a water level level (hereinafter, WLEVEL). The water level is an amount expressed in units of% of WL. For example, a state in which the water WT is not contained in the water storage tray 90 (that is, a state of WL = 0) is set to 0%. On the other hand, a state where the inside of the water storage tray 90 is full (a state where the water level WL has reached a predetermined water level WL0) is set to a water level level of 100%. In this case, the water level calculation unit 151 calculates the water level by setting WLEVEL = (WL / WL0) × 100. As an example, the water level calculator 151 calculates WLEVEL as an integer value.
 また、水位算出部151は、水位ステージを検知(判定)する。水位ステージとは、WLEVELの程度を示す指標である。一例として、水位算出部151は、
  ・水位ステージ0:水位レベル0~4%;
  ・水位ステージ1:水位レベル5~14%;
  ・水位ステージ2:水位レベル15~24%;
  ・水位ステージ3:水位レベル25~34%;
  ・水位ステージ4:水位レベル35~44%;
  ・水位ステージ5:水位レベル45~54%;
  ・水位ステージ6:水位レベル55~64%;
  ・水位ステージ7:水位レベル65~74%;
  ・水位ステージ8:水位レベル75~84%;
  ・水位ステージ9:水位レベル85~94%;
  ・水位ステージ10:水位レベル95~104%;
  ・水位ステージ11:水位レベル105~114%;
  ・水位ステージ12:水位レベル115%;
として、13通りに水位ステージを分類する(後述の図4も参照)。なお、本明細書では、特に明示されない限り、「A~B」とは、「A以上かつB以下」を意味するものとする。このように、水位ステージ数が大きくなるほど、水位レベルがより大きくなる。
Further, the water level calculation unit 151 detects (determines) a water level stage. The water level stage is an index indicating the level of WLEVEL. As an example, the water level calculation unit 151
・ Water level stage 0: Water level level 0-4%;
・ Water level 1: Water level 5-14%;
-Water level stage 2: Water level 15-24%;
-Water level stage 3: Water level 25-34%;
-Water level stage 4: Water level 35-44%;
・ Water level 5: Water level 45-54%;
・ Water level stage 6: Water level 55-64%;
-Water level stage 7: Water level 65-74%;
-Water level stage 8: Water level 75-84%;
・ Water level 9: Water level 85-94%;
・ Water level stage 10: Water level 95-104%;
・ Water level 11: Water level 105-114%;
-Water level stage 12: Water level level 115%;
The water level stages are classified into 13 ways (see also FIG. 4 described later). In this specification, “A to B” means “A or more and B or less” unless otherwise specified. Thus, as the number of water level stages increases, the water level increases.
 なお、水位算出部151は、WLに基づいて、貯水トレイ90内の水WTの水量(以下、WV)を算出することもできる。一例として、水位算出部151は、WV=WL×Sとして、WVを算出する。Sは、貯水トレイ90の底面積である。Sの値は、水位算出部151において予め設定されている。 The water level calculation unit 151 can also calculate the amount of water WT (hereinafter, WV) in the water storage tray 90 based on the WL. As an example, the water level calculation unit 151 calculates WV as WV = WL × S. S is the bottom area of the water storage tray 90. The value of S is preset in the water level calculator 151.
 風量ステージ検知部152は、風量ステージを検知(判定)する。風量ステージとは、Qの大きさ(貯水トレイ90内の風量がどの程度大きいか)を示す指標である。本明細書では、風量ステージを、ノッチとも称する。ノッチは、回転数に関連付けられて設定されている。一例として、風量ステージ検知部152は、ノッチ0~3の4通りにノッチを分類する(後述の図4も参照)。 The air volume stage detection unit 152 detects (determines) the air volume stage. The air volume stage is an index indicating the size of Q (how large the air volume in the water storage tray 90 is). In this specification, the air volume stage is also referred to as a notch. The notch is set in association with the rotation speed. As an example, the air volume stage detection unit 152 classifies notches into four types of notches 0 to 3 (see also FIG. 4 described later).
 後述の図4の例について、ノッチ数と回転数とQとの間の関係の一部の例を挙げると次の通りである。例えば、水位ステージ0(例:水位レベル0%)の場合、
  ・ノッチ0(風量ステージ0):0rpm(回転無)(Q=0m/min);
  ・ノッチ1(風量ステージ1):600rpm(Q=0.77m/min);
  ・ノッチ2(風量ステージ2):950rpm(Q=0.96m/min);
  ・ノッチ3(風量ステージ3):1370rpm(Q=1.76m/min);
である。
A part of the relationship between the number of notches, the number of rotations, and Q in the example of FIG. 4 described below is as follows. For example, in the case of water level stage 0 (example: water level 0%),
Notch 0 (air volume stage 0): 0rpm (rotation-free) (Q = 0m 3 / min );
Notch 1 (air flow stage 1): 600 rpm (Q = 0.77 m 3 / min);
Notch 2 (air flow stage 2): 950 rpm (Q = 0.96 m 3 / min);
・ Notch 3 (air flow stage 3): 1370 rpm (Q = 1.76 m 3 / min);
It is.
 また、水位ステージ10(例:水位レベル100%)の場合、
  ・ノッチ0(風量ステージ0):0rpm(回転無)(Q=0m/min);
  ・ノッチ1(風量ステージ1):650rpm(Q=0.84m/min);
  ・ノッチ2(風量ステージ2):1050rpm(Q=1.09m/min);
  ・ノッチ3(風量ステージ3):1400rpm(Q=1.80m/min);
である。
In addition, in the case of the water level stage 10 (example: water level 100%),
Notch 0 (air volume stage 0): 0rpm (rotation-free) (Q = 0m 3 / min );
・ Notch 1 (air flow stage 1): 650 rpm (Q = 0.84 m 3 / min);
・ Notch 2 (air flow stage 2): 1050 rpm (Q = 1.09 m 3 / min);
・ Notch 3 (air flow stage 3): 1400 rpm (Q = 1.80 m 3 / min);
It is.
 一例として、ファンモータ70には、回転数を検知するためのセンサ(不図示)が設けられてよい。風量ステージ検知部152は、当該センサから回転数を取得し、当該回転数に応じたノッチを判定してよい。あるいは、風量ステージ検知部152は、加湿装置1の運転状態(動作モード)に応じて、回転数を推定してもよい。この場合、ファンモータ70に、上記センサを設けることが不要となる。 As an example, the fan motor 70 may be provided with a sensor (not shown) for detecting the number of rotations. The air volume stage detection unit 152 may acquire the rotation speed from the sensor and determine a notch according to the rotation speed. Alternatively, the air volume stage detection unit 152 may estimate the number of rotations according to the operation state (operation mode) of the humidifier 1. In this case, it is not necessary to provide the fan motor 70 with the sensor.
 一般に、回転数が増加する程、Qは大きくなる傾向にある(後述の図5も参照)。この点を鑑み、上述の通り、ノッチの番号(ノッチ数)は、回転数の増加に伴って、より大きくなるように設定されてよい。この場合、ノッチ数(風量ステージ数)が大きくなるほど、Qがより大きくなる。なお、所定のノッチ数に対応する回転数は、水位ステージに応じて相違しうる。従って、所定のノッチ数に対応するQも、水位ステージに応じて相違しうる。但し、ノッチ0の場合には、いずれの水位ステージにおいても、Q=0である。 QGenerally, Q tends to increase as the number of rotations increases (see also FIG. 5 described later). In view of this point, as described above, the number of the notch (the number of notches) may be set so as to increase as the rotation speed increases. In this case, Q increases as the number of notches (number of airflow stages) increases. Note that the number of rotations corresponding to the predetermined number of notches may be different depending on the water level stage. Therefore, the Q corresponding to the predetermined number of notches may be different depending on the water level stage. However, in the case of the notch 0, Q = 0 at any water level stage.
 (Qと測距センサ10の測定精度との間の関係)
 図3は、Qと測距センサ10の測定精度との間の関係について説明するための図である。図3の(a)には、Q=0である場合(つまり、ファン71が停止されている場合)が示されている。これに対し、図3の(b)には、Q≠0である場合(つまり、ファン71が駆動されている場合)が示されている。なお、図3では、図示の簡便化のため、図1に示された一部の部材の図示が省略されている。
(Relationship between Q and measurement accuracy of distance measuring sensor 10)
FIG. 3 is a diagram for explaining a relationship between Q and the measurement accuracy of the distance measurement sensor 10. FIG. 3A shows a case where Q = 0 (that is, a case where the fan 71 is stopped). On the other hand, FIG. 3B shows a case where Q ≠ 0 (that is, a case where the fan 71 is driven). In FIG. 3, some members shown in FIG. 1 are not shown for simplicity.
 図3の(a)に示されるように、Q=0である場合には、風WDが発生しないため、水面には揺れがほぼ生じない。このため、水面はほぼ平坦な面となる。この場合、以下に述べる図3の(b)の場合とは異なり、水面において検知光L1の乱反射が生じない。それゆえ、反射光L2の経路は、ほぼ一定となる。この場合、測距センサ10によって、dを適切に検知できる。つまり、dは、測距センサ10と水面との間の実際の距離(以下、距離真値)に十分に近い値として検知される。この場合、測距センサ10によって検知されるWLは、水位真値に十分に近い値となる。 (3) As shown in FIG. 3A, when Q = 0, the wind WD is not generated, so that the water surface hardly shakes. For this reason, the water surface becomes a substantially flat surface. In this case, unlike the case of FIG. 3B described below, irregular reflection of the detection light L1 does not occur on the water surface. Therefore, the path of the reflected light L2 is substantially constant. In this case, d can be appropriately detected by the distance measuring sensor 10. That is, d is detected as a value sufficiently close to the actual distance between the distance measuring sensor 10 and the water surface (hereinafter, a true distance value). In this case, the WL detected by the distance measuring sensor 10 is a value sufficiently close to the true water level value.
 これに対し、図3の(b)に示されるように、Q≠0である場合には、風WDの影響によって、水面に揺れが生じる。このため、図3の(a)の場合とは異なり、水面に波立ちが生じる。つまり、水面に局所的な高低差が発生する。その結果、水面において検知光L1の乱反射が生じる、このため、反射光L2の経路が、乱反射によって変化しうる。 On the other hand, as shown in FIG. 3B, when Q ≠ 0, the water surface shakes due to the influence of the wind WD. For this reason, unlike the case of FIG. 3A, a ripple occurs on the water surface. That is, a local height difference occurs on the water surface. As a result, irregular reflection of the detection light L1 occurs on the water surface, so that the path of the reflected light L2 may change due to irregular reflection.
 それゆえ、測距センサ10における、dの検知精度が低下してしまう。例えば、図3の(b)の場合には、平均的な水位は図3の(a)の場合と同程度であるにも関わらず、受光部120に入射する反射光L2の光路長が、図3の(a)の場合に比べて長くなっている。それゆえ、測距センサ10によって、距離真値よりも長い距離が、dとして検知されてしまう。その結果、測距センサ10における、WLの検知精度も低下する。例えば、水位真値とは乖離したWL(水位真値よりも低い水位)が、測距センサ10によって検知される。 Therefore, the detection accuracy of d in the distance measurement sensor 10 is reduced. For example, in the case of FIG. 3B, the optical path length of the reflected light L2 incident on the light receiving unit 120 is equal to or larger than the average water level of the case of FIG. It is longer than in the case of FIG. Therefore, the distance measuring sensor 10 detects a distance longer than the true distance value as d. As a result, the WL detection accuracy of the distance measurement sensor 10 also decreases. For example, a WL (water level lower than the true water level) that is different from the true water level is detected by the distance measurement sensor 10.
 さらに、Qが大きくなるにつれて、水面の揺れが顕著となる。このため、Qが大きい場合には、dの検知精度が大きく低下しうる。このように、本願の発明者(以下、発明者)は、「風WDによる水面の揺れに起因して、測距センサ10の測定精度が低下する」という課題を新たに見出した。この点を踏まえ、発明者は、「風WDの影響を考慮することにより、測距センサ10の測定精度の低下を防止する」という、新たなコンセプトに想到した。これに対し、従来技術(例:特許文献1)では、上記課題について何ら考慮されていない。それゆえ、従来技術では、当該課題を解決するための具体的な構成についても、何ら教示されていない。 Furthermore, as Q increases, the sway of the water surface becomes remarkable. For this reason, when Q is large, the detection accuracy of d may be greatly reduced. Thus, the inventor of the present application (hereinafter, the inventor) has newly found a problem that “the measurement accuracy of the distance measurement sensor 10 is reduced due to the fluctuation of the water surface due to the wind WD”. Based on this point, the inventor has come up with a new concept of “preventing a decrease in the measurement accuracy of the distance measurement sensor 10 by considering the influence of the wind WD”. On the other hand, in the related art (eg, Patent Document 1), the above problem is not considered at all. Therefore, the related art does not teach any specific configuration for solving the problem.
 また、Qは、貯水トレイ90内の水位に応じて変更される場合もある。例えば、WLが小さい場合には、WLが大きい場合に比べて、加湿フィルタ72による空気の加湿をより効果的に行うために、Qが大きく設定される。この点を踏まえ、発明者は、「測距センサ10の測定精度の低下を防止するためには、WLについても考慮することが好ましい」という、さらなるコンセプトに想到した。 Q In addition, Q may be changed according to the water level in the water storage tray 90. For example, when WL is small, Q is set to be large in order to more effectively humidify the air by the humidification filter 72 than when WL is large. Based on this point, the inventor has conceived a further concept of "it is preferable to consider WL in order to prevent a decrease in the measurement accuracy of the distance measurement sensor 10".
 (水位補正部153)
 発明者は、上記課題を解決するために、「測距センサ10に水位補正部153を設ける」というコンセプトに想到した。水位補正部153は、ノッチ(風量ステージ)および水位ステージに応じて、WLを補正する。換言すれば、水位補正部153は、(i)貯水トレイ90内の風量(Q)、および、(ii)当該貯水トレイ90内の水位(換言すればWL)に応じて、WLを補正する。但し、水位補正部153は、ノッチのみに応じて(Qのみに応じて)、WLを補正してもよい。
(Water level correction unit 153)
The inventor has conceived a concept of “providing a water level correction unit 153 in the distance measurement sensor 10” in order to solve the above problem. The water level correction unit 153 corrects the WL according to the notch (air volume stage) and the water level stage. In other words, the water level correction unit 153 corrects the WL according to (i) the air volume (Q) in the water storage tray 90 and (ii) the water level (in other words, WL) in the water storage tray 90. However, the water level correction unit 153 may correct the WL according to only the notch (only according to Q).
 以下、補正後のWLを、WLSと称する。WLSは、補正後水位検知値と称されてもよい。一例として、水位補正部153は、
  WLS=WL-PSHIFT…(2)
として、WLSを算出する。つまり、水位補正部153は、WLの値をPSHIFTだけ減算(シフト)する。PSHIFTは、シフト値(シフト量)とも称される。WL、WLS、およびPSHIFTはいずれも、任意単位である。一例として、WL、WLS、およびPSHIFTの単位は、mmであってよい。
Hereinafter, the corrected WL is referred to as WLS. WLS may be referred to as a corrected water level detection value. As an example, the water level correction unit 153
WLS = WL-PSHIFT (2)
Is calculated as WLS. That is, the water level correction unit 153 subtracts (shifts) the value of WL by PSHIFT. PSHIFT is also called a shift value (shift amount). WL, WLS, and PSHIFT are all arbitrary units. As an example, the units for WL, WLS, and PSHIFT may be mm.
 一例として、水位補正部153は、シフト値設定テーブルを参照し、PSHIFTを設定する。シフト値設定テーブルとは、各ノッチおよび各水位ステージに応じたPSHIFTの値が、予め設定されたテーブルである。図4は、シフト値設定テーブルの一例を示す図である。以下、図4のシフト値設定テーブルを用いる場合を例示する。但し、水位補正部153によるPSHIFTの設定方法として、他の方法が適用されてもよい。 As an example, the water level correction unit 153 sets PSHIFT with reference to the shift value setting table. The shift value setting table is a table in which PSHIFT values corresponding to each notch and each water level stage are set in advance. FIG. 4 is a diagram illustrating an example of the shift value setting table. Hereinafter, a case where the shift value setting table of FIG. 4 is used will be exemplified. However, as the setting method of PSHIFT by the water level correction unit 153, another method may be applied.
 一例として、「ノッチ1、水位ステージ3」である場合を考える。この場合、水位補正部153は、図4のシフト値設定テーブルを参照し、PSHIFT=6として設定する。そして、水位補正部153は、WLS=WL-6として設定する。つまり、水位補正部153は、WLSを、WLよりも6だけ小さい値として算出する。すなわち、水位補正部153によって、WLは、6(例:6mm)だけ低い水位へと補正される。 考 え る As an example, consider the case of “notch 1, water level stage 3”. In this case, the water level correction unit 153 sets PSHIFT = 6 with reference to the shift value setting table of FIG. Then, the water level correction unit 153 sets WLS = WL−6. That is, the water level correction unit 153 calculates WLS as a value smaller by 6 than WL. That is, the water level correction unit 153 corrects the WL to a lower water level by 6 (eg, 6 mm).
 なお、図4に示されるように、ノッチ0の場合には、いずれの水位ステージにおいても、PSHIFT=0に設定される。上述の通り、Q=0の場合には、風WDによる水面の揺れが生じないためである。このように、Q=0の場合には、WLは補正されなくともよい。 (4) As shown in FIG. 4, in the case of the notch 0, PSHIFT = 0 is set at any of the water level stages. As described above, when Q = 0, the water surface does not shake due to the wind WD. Thus, when Q = 0, WL need not be corrected.
 また、各水位ステージでは、ノッチ数が大きくなるにつれて、PSHIFTがより大きくなるように(より厳密には、PSHIFTが広義の単調増加をするように)設定される。つまり、Qが大きくなるにつれて、WLSがより小さい値として算出される(WLがより小さい値へと補正される)。上述の通り、Qが大きい場合には、水面の揺れが顕著となりうる。そこで、Qに応じた水面の揺れの影響を効果的に相殺するためには、Qの増加に伴ってPSHIFTを増加させることが好ましい。 Also, at each water level stage, the PSHIFT is set to increase as the number of notches increases (more precisely, PSHIFT increases monotonically in a broad sense). That is, as Q increases, WLS is calculated as a smaller value (WL is corrected to a smaller value). As described above, when Q is large, the sway of the water surface can be remarkable. Therefore, in order to effectively cancel the influence of the water surface sway according to Q, it is preferable to increase PSHIFT as Q increases.
 水位補正部153は、水位の検知結果として、WLSを第2制御部75に供給してよい。この場合、第2制御部75は、WLSに基づいて、所定の報知態様による報知をユーザに選択的に行ってよい。例えば、第2制御部75は、WLSが所定の閾値(以下、報知閾値)よりも小さい場合、貯水トレイ90への給水を促すように、ユーザに報知してよい。例えば、第2制御部75は、加湿装置1に設けられた報知部(不図示)を動作させ、ユーザに報知を行わせる。一例として、報知部には、ランプ、アラーム、および表示パネルの少なくともいずれかが含まれる。WLに替えてWLSに基づく報知を行うことにより、誤判定に基づく報知を避けることができるので、ユーザの利便性を向上させることが可能となる。 The water level correction unit 153 may supply the WLS to the second control unit 75 as the water level detection result. In this case, the second control unit 75 may selectively notify the user of a predetermined notification mode based on the WLS. For example, when WLS is smaller than a predetermined threshold value (hereinafter, a notification threshold value), the second control unit 75 may notify the user to prompt the user to supply water to the water storage tray 90. For example, the second control unit 75 operates a notifying unit (not shown) provided in the humidifying device 1 to cause the user to notify. As an example, the notification unit includes at least one of a lamp, an alarm, and a display panel. By performing the notification based on the WLS instead of the WL, the notification based on the erroneous determination can be avoided, so that the convenience for the user can be improved.
 なお、水位補正部153は、WLSに基づいて、補正後の水位レベルおよび水位ステージを検知してもよい。また、水位補正部153は、WLSに基づいて、補正後の水量を算出してもよい。 The water level correction unit 153 may detect the corrected water level and the water level stage based on the WLS. Further, the water level correction unit 153 may calculate the corrected water amount based on the WLS.
 (効果)
 測距センサ10では、水位補正部153によって、Qを考慮してWLを補正できる。すなわち、風WDによる水面の揺れが生じている場合(WLが水位真値と乖離しうる場合)であっても、WLを補正できる。それゆえ、水位真値により近い補正後の値(すなわちWLS)を、検知結果として出力できる。このように、測距センサ10によれば、従来よりも高精度に(正確に)水位を検知できる。
(effect)
In the distance measurement sensor 10, the water level correction unit 153 can correct WL in consideration of Q. That is, even when the water surface sways due to the wind WD (when WL can deviate from the true water level), the WL can be corrected. Therefore, a corrected value (ie, WLS) closer to the true water level value can be output as a detection result. Thus, according to the distance measuring sensor 10, the water level can be detected more accurately (accurately) than before.
 ところで、上述の通り、Qは、貯水トレイ90内の水位に応じて変化しうる。この点を踏まえ、水位補正部153は、さらに、WL(補正前の水位検知値,水位真値に関連する数値の1つ)に応じて、当該WLを補正することもできる。このため、水位の検知精度をさらに向上させることが可能となる。 By the way, as described above, Q can change according to the water level in the water storage tray 90. Based on this point, the water level correction unit 153 can further correct the WL in accordance with the WL (one of the detected water level before correction and one of the numerical values related to the true water level). For this reason, it becomes possible to further improve the detection accuracy of the water level.
 (補足事項)
 図5は、発明者による一検討結果について説明するための図である。具体的には、図5の(a)には風量とシフト値(シフト量)との間の関係の一例を示すグラフが示されている。シフト値は、水面の揺れの程度を示す指標の一例であると言える。図5の(b)には、各水位(より具体的には、各水位レベル)における回転数と風量との間の関係の一例を示すグラフが示されている。なお、図5の各グラフは、トレンドの一例を説明するための概念図である。このため、各グラフには単位は記載されていない。
(Supplementary information)
FIG. 5 is a diagram for explaining one study result by the inventor. Specifically, FIG. 5A shows a graph illustrating an example of the relationship between the air volume and the shift value (shift amount). It can be said that the shift value is an example of an index indicating the degree of water surface sway. FIG. 5B shows a graph illustrating an example of the relationship between the rotation speed and the air flow at each water level (more specifically, at each water level). Each graph in FIG. 5 is a conceptual diagram for explaining an example of a trend. Therefore, no unit is described in each graph.
 図5の(a)のグラフに基づき、発明者は、「シフト値は、風量に依存する」という傾向を確認した。さらに、発明者は、「低水位の場合、貯水トレイ90内の水WTの水量(WV)が少ない。その結果、低水位の場合(例:風量大の場合の一例)には、シフト値が小さくなりうる。」と考察した。 基 づ き Based on the graph of FIG. 5A, the inventor confirmed the tendency that “the shift value depends on the air volume”. Further, the inventor has stated that, in the case of a low water level, the water amount (WV) of the water WT in the water storage tray 90 is small. It can be smaller. "
 続いて、図5の(b)のグラフに基づき、発明者は、「回転数が大きいほど、風量が大きくなる」という傾向を確認した。さらに、発明者は、「水位が低いほど、風量が大きくなる」という傾向を確認した。上述の通り、PSHIFTの設定方法は任意であるが、こうした傾向を踏まえ、PSHIFTが設定される(例:水位補正テーブルが作成される)ことが好ましいと考えられる。 Subsequently, based on the graph of FIG. 5B, the inventor confirmed the tendency that “the larger the rotation speed, the larger the air volume.” Furthermore, the inventor has confirmed the tendency that "the lower the water level, the greater the air volume." As described above, the setting method of the PSHIFT is arbitrary, but it is considered that it is preferable to set the PSHIFT (for example, a water level correction table is created) based on such a tendency.
 〔実施形態2〕
 加湿装置1に、Qを測定する風量センサを設けてもよい。風量センサは、筐体80内の所定に位置に設けられてよい。この場合、水位補正部153は、風量センサによって測定されたQに応じて、WLを補正してもよい。加湿装置1に風量センサを設けた場合、第1制御部15から風量ステージ検知部152を省略できる。
[Embodiment 2]
The humidifier 1 may be provided with an air volume sensor for measuring Q. The air volume sensor may be provided at a predetermined position in the housing 80. In this case, the water level correction unit 153 may correct the WL according to the Q measured by the air volume sensor. When the humidifier 1 is provided with an air flow sensor, the air flow stage detection unit 152 can be omitted from the first control unit 15.
 〔実施形態3〕
 加湿装置1を運転させた場合、時間経過に伴って水位レベルが低下する。そこで、上述の通り、水位レベルが低くなった場合には、給水を促すようユーザへの報知を行うことが好ましい。ユーザの給水の手間を最大限に削減する観点からは、理想的には、水位レベルが0%に達した時点で、ユーザへの報知を行うことが好ましい。但し、測距センサ10の精度のばらつきを考慮すると、水位レベル0%に対応する値に報知閾値を設定することは現実的ではない。
[Embodiment 3]
When the humidifier 1 is operated, the water level decreases with time. Therefore, as described above, when the water level becomes low, it is preferable to notify the user to urge water supply. From the viewpoint of reducing the user's labor for supplying water to the maximum, it is ideally desirable to notify the user when the water level reaches 0%. However, it is not realistic to set the notification threshold to a value corresponding to the water level 0% in consideration of the variation in the accuracy of the distance measurement sensor 10.
 例えば、測距センサ10がWLを大きめに検知してしまった(つまり、dを小さめに検知してしまった)場合、実際に貯水トレイ90から水WTが無くなった状態(実際に水位レベルが0%に達した状態)においても、0%よりも高い水位レベル(例:水位レベル5%)が検知される。従って、ユーザへの報知を適切に行うことができない。 For example, when the distance measurement sensor 10 has detected the WL to be relatively large (that is, to have detected d to be small), a state in which the water WT has actually disappeared from the water storage tray 90 (when the water level is actually 0). %), A water level higher than 0% (eg, a water level of 5%) is detected. Therefore, the user cannot be properly notified.
 この点を鑑み、加湿装置1では、報知閾値は、水位レベル0%に対応する値よりもやや大きい値に設定されることが一般的である。例えば、報知閾値は、水位レベル10%に対応する値に設定される。但し、このように報知閾値を設定した場合、貯水トレイ90内に水WTがある程度残っているにも関わらず、ユーザに給水を促す報知が行われることとなる。その結果、ユーザの給水の手間を十分に削減できるには至らない。この点を踏まえ、発明者は、ユーザへの報知を行う条件について、さらなる検討を行った。 In view of this point, in the humidifier 1, the notification threshold is generally set to a value slightly larger than the value corresponding to the water level 0%. For example, the notification threshold is set to a value corresponding to a water level of 10%. However, when the notification threshold value is set as described above, the notification that prompts the user to supply water is performed even though the water WT remains in the water storage tray 90 to some extent. As a result, it is not possible to sufficiently reduce the user's labor for supplying water. Based on this point, the inventor further studied conditions for notifying the user.
 (発明者による一検討)
 図6は、発明者による検討結果について説明するための図である。以下の説明では、貯水トレイ90内に水WTが含まれていない状態を「水無状態」と称する。また、貯水トレイ90内に水WTが含まれている状態を、「水有状態」と称する。図6の(a)のグラフは、貯水トレイ90の状態が水無状態から水有状態へと移行した場合における、測距センサ10の検知結果の時間変化の様子の一例を示す。当該グラフにおいて、横軸は時間(単位:秒)(以下、t)を、縦軸は複数の測距センサ10のそれぞれによって検知されたdの平均値(以下、dm)を、それぞれ示す。測距センサ10は、tofセンサ(time of flight)センサとも称される。このため、dmは、tof平均値と称されてもよい。
(One study by the inventor)
FIG. 6 is a diagram for explaining the result of the study by the inventor. In the following description, a state where the water WT is not contained in the water storage tray 90 is referred to as a “waterless state”. In addition, a state in which the water WT is contained in the water storage tray 90 is referred to as a “water presence state”. The graph of FIG. 6A illustrates an example of a temporal change in the detection result of the distance measuring sensor 10 when the state of the water storage tray 90 changes from a state without water to a state with water. In the graph, the horizontal axis represents time (unit: seconds) (hereinafter, t), and the vertical axis represents the average value (hereinafter, dm) of d detected by each of the plurality of distance measurement sensors 10. The distance measurement sensor 10 is also called a tof sensor (time of flight) sensor. For this reason, dm may be referred to as a tof average value.
 図6の(a)のグラフでは、t=100の直前の時点において、dmが顕著に変化(より具体的には、減少)している。つまり、当該時点において、水無状態から水有状態へと、貯水トレイ90の状態が変化している。図6の(b)は、図6の(a)の部分D1を拡大したグラフである。図6の(b)のグラフは、水無状態におけるdmの時間変化の様子の一例を示す。これに対し、図6の(c)は、図6の(a)の部分D2を拡大したグラフである。図6の(c)のグラフは、水有状態におけるdmの時間変化の様子の一例を示す。 グ ラ フ In the graph of (a) of FIG. 6, dm has changed remarkably (more specifically, decreased) immediately before t = 100. That is, at this point, the state of the water storage tray 90 has changed from the waterless state to the water-present state. FIG. 6B is an enlarged graph of the portion D1 of FIG. 6A. The graph of FIG. 6B shows an example of the time change of dm in the waterless state. On the other hand, FIG. 6C is an enlarged graph of the portion D2 of FIG. The graph of (c) of FIG. 6 shows an example of a state of a temporal change of dm in the state with water.
 水無状態では、測距センサ10は、当該測距センサ10と貯水トレイ90の底面との間の距離を、dとして検知する。貯水トレイ90の底面は、水WTとは異なり固体であるので、比較的高い剛性を有する。このため、加湿装置1が運転中であっても(Q≠0であっても)、風WDの影響によって貯水トレイ90の底面の形状は変化しない。従って、測距センサ10と貯水トレイ90の底面との間の実際の距離も変化しない。このため、図6の(b)に示されるように、水無状態において、時間変化に伴うdmの変化(ばらつき)は比較的小さい。 In the absence of water, the distance measuring sensor 10 detects the distance between the distance measuring sensor 10 and the bottom surface of the water storage tray 90 as d. Since the bottom surface of the water storage tray 90 is solid unlike the water WT, it has relatively high rigidity. Therefore, even when the humidifier 1 is operating (even when Q ≠ 0), the shape of the bottom surface of the water storage tray 90 does not change due to the influence of the wind WD. Therefore, the actual distance between the distance measuring sensor 10 and the bottom surface of the water storage tray 90 does not change. Therefore, as shown in FIG. 6B, the change (variation) of dm with time is relatively small in the absence of water.
 これに対し、水有状態では、上述の通り、Q≠0である場合には、風WDの影響によって、水面に揺れが生じる。つまり、Q≠0である場合には、水面の形状は様々に変化する。つまり、測距センサ10と水面との間の実際の距離が変化する。このため、図6の(c)に示されるように、水有状態では、水無状態に比べ、時間変化に伴うdmの変化は大きい。 On the other hand, in the presence of water, when Q ≠ 0 as described above, the water surface sways due to the effect of the wind WD. That is, when Q ≠ 0, the shape of the water surface changes variously. That is, the actual distance between the distance measuring sensor 10 and the water surface changes. For this reason, as shown in FIG. 6C, the change in dm with the time change is greater in the state with water than in the state without water.
 (実施形態3における判定処理)
 まず、第2制御部75は、水位レベルが報知閾値(水位レベル10%に対応する値)に達したことを判定する。そして、第2制御部75は、当該判定がなされた時点から、所定の運転許容時間(例:1時間)に亘り、加湿装置1の運転を継続させる。
(Determination processing in Embodiment 3)
First, the second control unit 75 determines that the water level has reached the notification threshold (a value corresponding to a water level of 10%). Then, the second control unit 75 continues the operation of the humidifier 1 for a predetermined operation allowable time (eg, one hour) from the time when the determination is made.
 続いて、第2制御部75は、所定の時間周期(例:30秒)ごとに、dの変化(変動)の大きさを示すパラメータを算出する。一例として、第2制御部75は、Δ=dmax-dminを算出する。dmaxは上記時間周期におけるdの最大値であり、dminは上記時間周期におけるdの最小値である。Δは、上記時間周期におけるdの変化の大きさを示す指標(パラメータ)の1つである。 Next, the second control unit 75 calculates a parameter indicating the magnitude of the change (fluctuation) of d at every predetermined time period (for example, 30 seconds). As an example, the second control unit 75 calculates Δ = dmax−dmin. dmax is the maximum value of d in the time period, and dmin is the minimum value of d in the time period. Δ is one of the indices (parameters) indicating the magnitude of the change of d in the time period.
 続いて、第2制御部75は、Δと所定の閾値(以下、dth)との大小比較を行う。dthは、変動閾値とも称される。具体的には、第2制御部75は、Δ≦dthであるか否かを判定する。dthの値は、事前に取得された実験結果(例:図6の(b)および(c)のグラフ)に基づいて、加湿装置1の設計者によって設定されてよい。一例として、dth=1と設定されてよい。 Next, the second control unit 75 performs a magnitude comparison between Δ and a predetermined threshold (hereinafter, dth). dth is also called a fluctuation threshold. Specifically, the second control unit 75 determines whether Δ ≦ dth. The value of dth may be set by the designer of the humidifier 1 based on the experimental results obtained in advance (eg, the graphs of FIGS. 6B and 6C). As an example, dth = 1 may be set.
 Δ≦dthである場合(例えば、図6の(b)の例の場合)、dの変動は比較的小さいと言える。つまり、測距センサ10と貯水トレイ90の底面との間の距離が、dとして検知されていると期待される。そこで、第2制御部75は、Δ≦dthである場合、水無状態を検知してよい(貯水トレイ90が水無状態であると判定してよい)。水無状態を検知した場合、第2制御部75は、給水を促すようユーザに報知する。なお、水無状態を検知した場合、第2制御部75は、運転許容時間が満了する前であっても、加湿装置1の運転を停止させてもよい。 When Δ ≦ dth (for example, in the case of the example of FIG. 6B), it can be said that the fluctuation of d is relatively small. That is, it is expected that the distance between the distance measuring sensor 10 and the bottom surface of the water storage tray 90 is detected as d. Therefore, when Δ ≦ dth, the second control unit 75 may detect a waterless state (may determine that the water storage tray 90 is in the waterless state). When detecting the absence of water, the second control unit 75 notifies the user to prompt for water supply. When detecting the absence of water, the second control unit 75 may stop the operation of the humidifier 1 even before the allowable operation time has expired.
 これに対し、Δ>dthである場合(例えば、図6の(c)の例の場合)、dの変動はあまり小さくないと言える。このため、第2制御部75は、Δ>dthである場合、水有状態を検知してよい(貯水トレイ90が水有状態であると判定してよい)。水有状態を検知した場合、第2制御部75は、ユーザへの報知を行わない。 On the other hand, when Δ> dth (for example, in the example of FIG. 6C), it can be said that the fluctuation of d is not so small. For this reason, when Δ> dth, the second control unit 75 may detect the presence of water (may determine that the water storage tray 90 is in the presence of water). When detecting the water presence state, the second control unit 75 does not notify the user.
 このように、第2制御部75は、報知閾値と変動閾値とに基づいて、ユーザへの報知を行うか否かを判定してもよい。変動閾値を導入することにより、報知閾値のみを用いた場合に比べ、水無状態をより高精度に判定できる。その結果、測距センサ10の精度のばらつきを考慮しつつ、ユーザの給水の手間を効果的に削減することが可能となる。 As described above, the second control unit 75 may determine whether or not to notify the user based on the notification threshold and the variation threshold. By introducing the fluctuation threshold value, the waterless state can be determined with higher accuracy than when only the notification threshold value is used. As a result, it is possible to effectively reduce the user's labor for supplying water while taking into account variations in the accuracy of the distance measurement sensor 10.
 〔ソフトウェアによる実現例〕
 加湿装置1の制御ブロック(特に第1制御部15および第2制御部75)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (especially the first control unit 15 and the second control unit 75) of the humidifier 1 may be realized by a logic circuit (hardware) formed on an integrated circuit (IC chip) or the like, or may be realized by software. May be.
 後者の場合、加湿装置1は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の一態様の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the humidifying device 1 includes a computer that executes instructions of a program that is software for realizing each function. This computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium storing the program. Then, in the computer, the object of one embodiment of the present invention is achieved when the processor reads the program from the recording medium and executes the program. As the processor, for example, a CPU (Central Processing Unit) can be used. Examples of the recording medium include “temporary tangible media” such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits. Further, a RAM (Random Access Memory) for expanding the program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係る水位検知装置は、容器内の水位を検知する水位検知装置であって、上記容器内の水面の所定の位置に検知光を出射する発光部と、上記検知光が上記所定の位置において反射された光である反射光を受光する受光部と、演算装置と、を備え、上記演算装置は、上記検知光と上記反射光とに基づき、上記水位の検知値である水位検知値を算出し、上記容器内の風量に応じて、上記水位検知値を補正する。
[Summary]
The water level detection device according to aspect 1 of the present invention is a water level detection device that detects a water level in a container, and a light emitting unit that emits detection light to a predetermined position on a water surface in the container, wherein the detection light is A light receiving unit that receives reflected light that is light reflected at a predetermined position; and a computing device, wherein the computing device is configured to detect a water level that is a detection value of the water level based on the detection light and the reflected light. A detection value is calculated, and the water level detection value is corrected according to the air volume in the container.
 上記の構成によれば、従来の水位検知装置とは異なり、容器内の風量を考慮して(つまり、容器内の風に起因する水面の揺れの影響を考慮して)、水位検知値を補正できる。それゆえ、従来よりも正確に水位を検知できる。 According to the above configuration, unlike the conventional water level detection device, the water level detection value is corrected in consideration of the air volume in the container (that is, in consideration of the influence of the water surface sway caused by the wind in the container). it can. Therefore, the water level can be detected more accurately than before.
 本発明の態様2に係る水位検知装置では、上記態様1において、上記演算装置は、さらに、補正前の上記水位検知値に応じて、当該水位検知値を補正することが好ましい。 で は In the water level detection device according to the second aspect of the present invention, in the first aspect, it is preferable that the arithmetic unit further corrects the water level detection value according to the water level detection value before correction.
 上述の通り、容器内の風量は、当該容器内の水位に応じて変化しうる。そこで、上記の構成によれば、容器内の水位をさらに考慮して、水位検知値を補正できる。このため、水位の検知精度をさらに向上させることができる。 の 通 り As described above, the air volume in the container can change according to the water level in the container. Therefore, according to the above configuration, the water level detection value can be corrected by further considering the water level in the container. For this reason, the detection accuracy of the water level can be further improved.
 本発明の態様3に係る水位検知装置では、上記態様1または2において、上記演算装置は、上記風量が大きくなるにつれて、上記水位検知値をより小さい値へと補正することが好ましい。 In the water level detection device according to the third aspect of the present invention, in the first or second aspect, it is preferable that the arithmetic unit corrects the water level detection value to a smaller value as the air volume increases.
 上記の構成によれば、風量の増加に応じた水面の揺れの影響を相殺するように、水位検知値を補正できる。このため、水位の検知精度をさらに向上させることができる。 According to the above configuration, the water level detection value can be corrected so as to cancel the influence of the water surface sway corresponding to the increase in the air volume. For this reason, the detection accuracy of the water level can be further improved.
 本発明の態様4に係る加湿装置は、上記態様1から3のいずれか1つに係る水位検知装置と、水を受容する上記容器と、を備え、上記水位検知装置が上記水位を検知することが好ましい。 A humidifying device according to a fourth aspect of the present invention includes the water level detection device according to any one of the first to third aspects, and the container that receives water, wherein the water level detection device detects the water level. Is preferred.
 〔付記事項〕
 本発明の一態様は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても。本発明の一態様の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成できる。
[Appendix]
One aspect of the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and the technical means disclosed in the different embodiments may be appropriately combined. Also about the obtained embodiment. It is included in the technical scope of one embodiment of the present invention. Further, new technical features can be formed by combining the technical means disclosed in each embodiment.
 1 加湿装置
 10 測距センサ(水位検知装置)
 15 第1制御部(演算装置)
 75 第2制御部(演算装置)
 90 貯水トレイ(容器)
 110 発光部
 120 受光部
 150 距離算出部
 151 水位算出部
 152 風量ステージ検知部
 153 水位補正部
 L1 検知光
 L2 反射光
 WD 風
 WT 水
 WL 水位
1 Humidifier 10 Distance measuring sensor (water level detector)
15 First control unit (arithmetic unit)
75 Second control unit (arithmetic unit)
90 water storage tray (container)
110 Light emitting unit 120 Light receiving unit 150 Distance calculating unit 151 Water level calculating unit 152 Air volume stage detecting unit 153 Water level correcting unit L1 Detected light L2 Reflected light WD Wind WT Water WL Water level

Claims (4)

  1.  容器内の水位を検知する水位検知装置であって、
     上記容器内の水面の所定の位置に検知光を出射する発光部と、
     上記検知光が上記所定の位置において反射された光である反射光を受光する受光部と、
     演算装置と、を備え、
     上記演算装置は、
      上記検知光と上記反射光とに基づき、上記水位の検知値である水位検知値を算出し、
      上記容器内の風量に応じて、上記水位検知値を補正する、水位検知装置。
    A water level detection device for detecting a water level in the container,
    A light emitting unit that emits detection light to a predetermined position on the water surface in the container,
    A light-receiving unit that receives reflected light, which is light that is the detection light reflected at the predetermined position;
    And an arithmetic unit,
    The arithmetic unit is
    Based on the detection light and the reflected light, calculate a water level detection value that is a detection value of the water level,
    A water level detection device that corrects the water level detection value according to an air volume in the container.
  2.  上記演算装置は、さらに、補正前の上記水位検知値に応じて、当該水位検知値を補正する、請求項1に記載の水位検知装置。 The water level detection device according to claim 1, wherein the arithmetic unit further corrects the water level detection value according to the water level detection value before correction.
  3.  上記演算装置は、上記風量が大きくなるにつれて、上記水位検知値をより小さい値へと補正する、請求項1または2に記載の水位検知装置。 The water level detection device according to claim 1 or 2, wherein the arithmetic unit corrects the water level detection value to a smaller value as the air volume increases.
  4.  請求項1から3のいずれか1項に記載の水位検知装置と、
     水を受容する上記容器と、を備え、
     上記水位検知装置が上記水位を検知する、加湿装置。
    A water level detection device according to any one of claims 1 to 3,
    And a container for receiving water,
    A humidifier, wherein the water level detecting device detects the water level.
PCT/JP2019/030958 2018-08-10 2019-08-06 Water level detection device and humidification device WO2020032055A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980045791.0A CN112534217A (en) 2018-08-10 2019-08-06 Water level detection device and humidification device
JP2020535806A JP7143418B2 (en) 2018-08-10 2019-08-06 Water level detector and humidifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151492 2018-08-10
JP2018-151492 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020032055A1 true WO2020032055A1 (en) 2020-02-13

Family

ID=69414757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030958 WO2020032055A1 (en) 2018-08-10 2019-08-06 Water level detection device and humidification device

Country Status (3)

Country Link
JP (1) JP7143418B2 (en)
CN (1) CN112534217A (en)
WO (1) WO2020032055A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083222A (en) * 2020-11-24 2022-06-03 Necプラットフォームズ株式会社 Determination device, determination system, determination method, and program
JP7161801B1 (en) 2022-01-05 2022-10-27 エタックエンジニアリング株式会社 Environment-forming device and program for environment-forming device
CN115486682A (en) * 2021-06-18 2022-12-20 佛山市顺德区美的电热电器制造有限公司 Control method and device of cooking equipment, cooking equipment and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145477A (en) * 2011-01-13 2012-08-02 Panasonic Corp Non-contact fluid detection configuration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162614A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Optical wavefront measuring apparatus
AU2010335072B2 (en) * 2009-12-23 2016-03-03 Fisher & Paykel Healthcare Limited Humidified gases delivery apparatus and methods for controlling same
JP5739753B2 (en) * 2011-07-08 2015-06-24 株式会社 ニコンビジョン Distance measuring device
JP5817082B2 (en) * 2013-11-07 2015-11-18 株式会社 メカトロ技研 Measuring method of water surface behavior from a position separated from the waterfront
JP6460118B2 (en) * 2014-11-21 2019-01-30 富士通株式会社 Water volume measuring device and water volume monitoring system
JP2016099256A (en) * 2014-11-21 2016-05-30 シャープ株式会社 Water level detection device and humidifying device
WO2017098623A1 (en) * 2015-12-10 2017-06-15 三菱電機株式会社 Laser radar apparatus
CN205879298U (en) * 2016-07-11 2017-01-11 广东美的制冷设备有限公司 Water storage device and clarifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145477A (en) * 2011-01-13 2012-08-02 Panasonic Corp Non-contact fluid detection configuration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083222A (en) * 2020-11-24 2022-06-03 Necプラットフォームズ株式会社 Determination device, determination system, determination method, and program
JP7268823B2 (en) 2020-11-24 2023-05-08 Necプラットフォームズ株式会社 Determination device, determination system, determination method, and program
CN115486682A (en) * 2021-06-18 2022-12-20 佛山市顺德区美的电热电器制造有限公司 Control method and device of cooking equipment, cooking equipment and storage medium
JP7161801B1 (en) 2022-01-05 2022-10-27 エタックエンジニアリング株式会社 Environment-forming device and program for environment-forming device
JP2023100187A (en) * 2022-01-05 2023-07-18 エタックエンジニアリング株式会社 Environment formation device and program for environment formation device

Also Published As

Publication number Publication date
JP7143418B2 (en) 2022-09-28
CN112534217A (en) 2021-03-19
JPWO2020032055A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2020032055A1 (en) Water level detection device and humidification device
CN106524373B (en) Humidifying method, humidifying device and aromatherapy machine
US7123996B2 (en) Thermal management set-temperature correction for individual system
US6882963B1 (en) Computer system monitoring
CN110425692B (en) Air conditioner control method, air conditioner and computer readable storage medium
CN107255341B (en) Control method, control device, air conditioner, and computer-readable storage medium
US11306935B2 (en) Method and system for controlling air flow within a ventilation system
US20060016901A1 (en) Cooling system with a variable maximum operation level
JP6073613B2 (en) Electronic device and temperature control method for electronic device
TW201341998A (en) System monitor device and control method thereof
JP2010004047A (en) Method for controlling fan correspond to position of device and device and device to realize it
CN112815472A (en) Air conditioner filth blockage detection method and device and air conditioner
CN105676573A (en) Laser projection device and cooling method
US20130056615A1 (en) Optical fault monitoring
JP2020051718A (en) Humidifying device
CN110925948B (en) Detection method and system and air conditioner
CN113834180B (en) Self-adaptive method, device and system for multi-split long-connected pipe output
CN111023421B (en) Static pressure self-adjustment control method and device and air conditioner
US9208017B2 (en) Server and method for protecting against fan failure therein
CN115823713A (en) Air detection method based on computer control
US8823650B2 (en) Computing device and method for adjusting display parameters of monitor
US9651320B2 (en) ICT equipment
JP2018176111A (en) Blower
JP2004177063A (en) Air conditioner
CN111425377A (en) Fan and control method and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847493

Country of ref document: EP

Kind code of ref document: A1