WO2020032010A1 - Vehicle continuously-variable transmission control device and vehicle continuously-variable transmission control method - Google Patents

Vehicle continuously-variable transmission control device and vehicle continuously-variable transmission control method Download PDF

Info

Publication number
WO2020032010A1
WO2020032010A1 PCT/JP2019/030851 JP2019030851W WO2020032010A1 WO 2020032010 A1 WO2020032010 A1 WO 2020032010A1 JP 2019030851 W JP2019030851 W JP 2019030851W WO 2020032010 A1 WO2020032010 A1 WO 2020032010A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic pressure
oil
hydraulic
variable transmission
Prior art date
Application number
PCT/JP2019/030851
Other languages
French (fr)
Japanese (ja)
Inventor
先華 許
可部 智昭
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Publication of WO2020032010A1 publication Critical patent/WO2020032010A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures

Definitions

  • the present invention relates to a control device for a continuously variable transmission for a vehicle and a control method for a continuously variable transmission for a vehicle.
  • It has a primary pulley that is drivingly connected to a drive source, a secondary pulley that is drivingly connected to driving wheels, and an endless belt that is wound around these pulleys, and each pulley applies a thrust to pinch the belt by hydraulic pressure.
  • a hydraulic type continuously variable transmission for vehicles In such a continuously variable transmission, if the thrust for pinching the belt is insufficient, slippage occurs between the belt and the pulley, resulting in deterioration or damage of the belt. Therefore, the hydraulic pressure is controlled so that the thrust is not insufficient.
  • Patent Literature 1 discloses a vehicle having a continuously variable transmission for a vehicle in which hydraulic fluid is supplied to each pulley by an oil pump driven by a driving source, on an irregular road (for example, off-road without pavement). At the time of traveling, the hydraulic pressure of the hydraulic oil supplied to the secondary pulley is increased from that at the time of traveling on a good road to increase the thrust for clamping the belt, and the rotation speed of the primary pulley is controlled to be equal to or higher than the set lower limit rotation speed. Techniques are disclosed.
  • the rotation speed of the primary pulley is set to be equal to or higher than the lower limit rotation speed in order to secure a discharge amount and a discharge pressure of a hydraulic oil of an oil pump driven by a driving source. And the thrust for clamping the belt can be increased to suppress occurrence of belt slippage.
  • the hydraulic pressure of the hydraulic oil of each pulley of the continuously variable transmission is usually performed using feedback control.
  • a hydraulic pressure target value for each pulley it is necessary to set a hydraulic pressure target value for each pulley, control the hydraulic pressure of hydraulic fluid for each pulley by feedback control based on the hydraulic pressure, and change the gear ratio.
  • the target gear ratio is changed to the high side, but the command pressure of the secondary pulley becomes too high.
  • the hydraulic pressure of the primary pulley cannot be increased to the hydraulic pressure that can change the actual gear ratio to the target gear ratio, and the difference between the target value and the actual value of the gear ratio due to the shift of the gear ratio on the low side continues. Accumulation of the correction amount leads to unstable behavior of the gear ratio, and due to this, the occurrence of insufficient hydraulic pressure of the secondary pulley, thereby causing the possibility of belt slippage.
  • the present invention has been made in view of such a problem, and in a hydraulic vehicle continuously variable transmission, when a wheel spin occurs in a drive wheel, the hydraulic pressure of a secondary pulley is increased to suppress belt slippage.
  • Control device for a continuously variable transmission for a vehicle which can suppress occurrence of unstable behavior of a gear ratio and occurrence of insufficient hydraulic pressure of a secondary pulley even when a foot is released from an accelerator pedal. It is intended to provide.
  • a control device for a continuously variable transmission for a vehicle includes a primary pulley that is drivingly connected to a driving source, a secondary pulley that is drivingly connected to driving wheels, the primary pulley and the primary pulley.
  • a control device for a continuously variable transmission for a vehicle comprising: controlling a hydraulic pressure of hydraulic oil supplied to each of the oil chambers according to a traveling state of the vehicle to control the thrust, thereby performing a shift.
  • a shift control unit that controls a ratio, and a spin determination unit that determines whether or not wheel spin occurs in the drive wheels, wherein the shift control unit includes the spin determination unit. If it is determined that the wheel spin has occurred, the hydraulic pressure command value for controlling the hydraulic pressure of the hydraulic oil for applying the thrust is set to a value equal to or higher than the lower limit hydraulic pressure for avoiding slippage of the belt, and The hydraulic pressure is controlled based on the hydraulic pressure command value by setting the hydraulic pressure to a value equal to or less than a first upper limit hydraulic pressure so as not to prevent the change.
  • the shift control unit when the spin determination unit determines that the wheel spin is occurring, sets the hydraulic pressure command value equal to or higher than a lower limit hydraulic pressure for avoiding slippage of the belt and prevents a change in a gear ratio. It is preferable to set a value that is not more than the upper limit oil pressure for avoiding the oil pressure and is not more than the second upper limit oil pressure that does not exceed the oil pressure balance limit.
  • the shift control unit applies the thrust by controlling a secondary hydraulic pressure, which is a hydraulic pressure of hydraulic oil in an oil chamber of the secondary pulley, and changes a primary hydraulic pressure, which is a hydraulic pressure of hydraulic oil in an oil chamber of the primary pulley, to the secondary hydraulic pressure.
  • the speed ratio is controlled by controlling the hydraulic pressure, and when it is determined that the wheel spin is occurring, the secondary hydraulic pressure is preferably controlled based on the hydraulic pressure command value.
  • the primary pulley drivingly connected to the driving source, the secondary pulley drivingly connected to the driving wheels, and the primary pulley and the secondary pulley are wound around the primary pulley.
  • a vehicle comprising: an endless belt; and an oil pump that is driven by the drive source and supplies hydraulic oil for applying a thrust for clamping the belt to each oil chamber of the primary pulley and the secondary pulley.
  • a method of controlling a continuously variable transmission wherein a gear ratio is controlled by controlling a hydraulic pressure of hydraulic oil supplied to each of the oil chambers according to a traveling state of a vehicle to control the thrust, and If it is determined that wheel spin has occurred, the hydraulic command value for controlling the hydraulic pressure of the hydraulic oil for applying the thrust is set to a lower limit for avoiding slippage of the belt. Is set to the first limit oil pressure or less is the value for allowing changes of gear ratio even on pressure or, for controlling the hydraulic pressure based on the hydraulic pressure command value.
  • the hydraulic pressure command value for controlling the hydraulic pressure of the hydraulic oil for applying the thrust is not less than the lower limit hydraulic pressure for preventing the belt from slipping, and the speed change is performed. Since the hydraulic pressure is controlled by setting it to a value equal to or less than the first upper limit hydraulic pressure so as not to hinder the change of the ratio, when wheel spin occurs in the drive wheel, the hydraulic pressure of the secondary pulley is increased to suppress belt slippage, Even if the accelerator pedal is released, the hydraulic pressure of the secondary pulley is set to a value equal to or lower than the first upper limit hydraulic pressure so as not to hinder the change of the gear ratio. The occurrence of insufficient hydraulic pressure of the pulley can be suppressed.
  • FIG. 1 is a configuration diagram of a vehicle drive system, a vehicle continuously variable transmission, and a control device thereof according to an embodiment of the present invention. It is a block diagram showing composition of a control device of a continuously variable transmission for vehicles concerning one embodiment of the present invention.
  • 5 is a time chart illustrating an example of a state that is an object of the present invention. 4 is a graph showing a relationship between a shift stroke speed and a decrease in oil pressure of the vehicle continuously variable transmission according to one embodiment of the present invention.
  • 5 is a time chart showing a hydraulic pressure reduction mechanism in the vehicle continuously variable transmission according to one embodiment of the present invention, wherein (a) relates to hydraulic pressure, and (b) shows a gear ratio and a stroke speed.
  • 4 is a diagram illustrating setting of a hydraulic command value used during wheel spin suppression control in the control device for a continuously variable transmission for a vehicle according to an embodiment of the present invention.
  • 4 is a flowchart illustrating wheel spin suppression control of a control device for a continuously variable transmission for a vehicle according to an embodiment of the present invention.
  • 5 is a time chart showing the effect of the wheel spin suppression control of the control device for a continuously variable transmission for a vehicle according to one embodiment of the present invention, wherein (a) shows the characteristics of a comparative example, and (b) shows the characteristics of the present embodiment. Show characteristics.
  • FIG. 1 is a configuration diagram showing a main part of a continuously variable transmission for a vehicle and a control device thereof according to the present embodiment.
  • a continuously variable transmission (CVT) 1 is an input shaft that is drivingly connected (drivably connected) to an output shaft 10a of an engine (internal combustion engine) 10 that is a driving source via a torque converter 11.
  • an output shaft 3 which is arranged in parallel with the input shaft 2 and is drivingly connected (drivably connected) via a drive wheel 12 via a speed reducer 13 and a differential mechanism 14, and a primary shaft which is connected to the input shaft 2.
  • a pulley 4, a secondary pulley 5 connected to the output shaft 3, and an endless belt 6 wound around the primary pulley 4 and the secondary pulley 5 are provided.
  • the primary pulley 4 has a fixed sheave 41, a movable sheave 42, and a primary oil chamber 43 for moving the movable sheave 42 in the axial direction.
  • the secondary pulley 5 has a fixed sheave 51, a movable sheave 52, and a secondary oil chamber 53 for moving the movable sheave 52 in the axial direction.
  • the continuously variable transmission 1 uses an oil pump 61 driven by the engine 10 and a hydraulic oil discharged from the oil pump 61 at a predetermined line pressure to supply hydraulic oil to the primary oil chamber 43 and the secondary oil chamber 53.
  • a pressure control valve 64 for adjusting the pressure to PL.
  • Each of the control valves 62, 63, and 64 is a control valve operated by a solenoid, and a CVT ECU (CVT electronic control unit) 7 controls the current to each of the solenoids 62a, 63a, and 64a to adjust the output hydraulic pressure. Is done.
  • CVT ECU CVT electronic control unit
  • the CVT ECU 7 detects the rotation speed (unit time rotation speed, primary pulley rotation speed) Npri of the primary pulley 4 and the rotation speed (unit time rotation speed, secondary pulley rotation speed) Nsec of the secondary pulley 5.
  • Various sensors such as a secondary rotation sensor 82 for detecting the pressure (primary pressure) Ppri of the primary oil chamber 43, a primary pressure sensor 83 for detecting the pressure (secondary pressure) Psec of the secondary oil chamber 53, and a secondary pressure sensor 84 for detecting the pressure (secondary pressure) Psec of the secondary oil chamber 53 are connected.
  • the sensor information and the switch information are input.
  • the CVT ECU 7 is connected to an engine ECU (engine electronic control unit) 8 so that information can be transmitted.
  • the actual primary pressure Ppri detected by the primary pressure sensor 83 is referred to as primary actual pressure Ppri_r
  • the actual secondary pressure Psec detected by the secondary pressure sensor 84 is referred to as secondary actual pressure Psec_r.
  • the continuously variable transmission 1 applies thrusts as low as possible to the pulleys 4 and 5 within a range in which no slippage occurs between the belt 6 and the pulleys 4 and 5, and when changing the speed ratio R, the primary pulley 4
  • the movable sheaves 42 and 52 are driven in the axial direction so that the target speed ratio R_t is achieved by applying a differential thrust between the movable sheaves and the secondary pulley 5.
  • the thrust and the difference thrust are performed by controlling the primary pressure Ppri and the secondary pressure Psec by the CVT ECU 7.
  • the CVTECU 7 has a line pressure control unit 71 that controls the line pressure PL, a primary pressure control unit 72 that controls the primary pressure Ppri, and a secondary pressure control unit 73 that controls the secondary pressure Psec. Transmission control means) 7A.
  • the CVT ECU 7 includes a speed ratio calculation unit 74 that calculates the actual speed ratio R_r from the primary pulley rotation speed Npri and the secondary pulley rotation speed Nsec.
  • the line pressure control unit 71 outputs a predetermined control command (line pressure instruction value) to the line pressure solenoid 62a.
  • the primary pressure control unit 72 outputs a control command (primary pressure instruction value Ppri_d) for obtaining a predetermined primary pressure target value Ppri_t to the primary hydraulic solenoid 63a.
  • Secondary pressure controller 73 outputs a control command (secondary pressure command value Psec_d) for obtaining predetermined secondary pressure target value Psec_t to secondary hydraulic solenoid 64a.
  • the secondary pressure control unit 73 controls the torque capacity transmitted by the continuously variable transmission 1 based on the output information from the engine ECU 8 and the output information calculated by the CVT ECU 7 based on the vehicle speed from the secondary rotation sensor 82. (Required torque transmission capacity) is calculated, and a secondary pressure target value Psec_t corresponding to a required thrust is derived from the transmission torque capacity to set a secondary pressure instruction value Psec_d.
  • the secondary pressure command value Psec_d is set by adding a feedback correction amount based on the secondary actual pressure Psec_r to the secondary pressure target value Psec_t. Therefore, the secondary pressure Psec is controlled by feedback control (here, PID control) based on the secondary actual pressure Psec_r.
  • the primary pressure control unit 72 calculates the target speed ratio R_t obtained from the engine ECU 8, the actual speed ratio R_r calculated by the speed ratio calculation unit 74, and the secondary pressure command value (secondary command pressure) Psec_d.
  • a primary pressure target value Ppri_t is set, and a primary pressure instruction value (primary instruction pressure) Ppri_d is set from the primary pressure target value Ppri_t and the primary actual pressure Ppri_r. That is, in the primary pressure control unit 72, the relationship between the secondary pressure instruction value Psec_d and the secondary pressure instruction value Psec_d is determined by feedback control (here, PID control) based on the deviation (R_t ⁇ R_r) between the target speed ratio R_t and the actual speed ratio R_r.
  • a primary pressure target value Ppri_t corresponding to the thrust is given, and a primary pressure instruction value Ppri_d is set while considering the primary actual pressure Ppri_r.
  • the line pressure control unit 71 Based on the secondary pressure command value Psec_d and the primary pressure command value Ppri_d, the line pressure control unit 71 sets the secondary pressure command value Psec_d and the primary pressure command value such that the secondary pressure command value Psec_d and the primary pressure command value Ppri_d can be achieved.
  • a line pressure command value PL_d higher by a margin (differential pressure ⁇ P0) than the larger one of Ppri_d is set.
  • the CVT ECU 7 is provided with a spin determination unit (spin determination means) 75 for determining that wheel spin is occurring in the drive wheel.
  • spin determination unit 75 determines that wheel spin is occurring, the secondary is determined.
  • the pressure control unit 73 performs the spin recovery control.
  • FIG. 3 is a time chart showing an example of a simulation result when spin recovery control for maximizing the secondary command pressure Psec_d with respect to occurrence of wheel spin is performed.
  • the accelerator opening, the engine speed, the vehicle speed, and the secondary command are shown. 7 shows changes in the pressure P, the secondary actual pressure Psec_r, the target speed ratio R_t, and the actual speed ratio R_r.
  • the actual speed ratio R_r is shifted to an increasing side (low side) with respect to the target speed ratio R_t immediately after the release of the foot from the accelerator pedal, and then approaches the target speed ratio R_t, and then is shifted to the target speed ratio R_t.
  • a phenomenon of shifting to an increasing side (low side) with respect to the target speed ratio R_t is repeated (reference numerals * 6 to * 9). (See the intersection of the lines), and the target speed ratio R_t or its vicinity is not stable.
  • the cause of the fluctuation of the actual speed ratio R_r with respect to the target speed ratio R_t is that the secondary command pressure Psec_d is set to an excessively high pressure. That is, when the foot is released from the accelerator pedal, the target speed ratio R_t is normally maintained or changed to a higher side than the current state.
  • the target gear ratio it is necessary to maintain the thrust balance by adjusting the primary pressure Ppri in relation to the secondary pressure Psec.
  • the primary pressure Ppri is increased. It is necessary to increase and change the thrust balance.
  • the secondary actual pressure Psec_r is increased in response to the excessively high secondary command pressure Psec_d, the primary pressure Ppri that can maintain or change the thrust balance cannot be secured immediately, and the feedback correction amount is accumulated. Increase.
  • the actual speed ratio R_r reaches the target speed ratio R_t with a time delay, but the actual speed ratio R_r is not stabilized at or near the target speed ratio R_t due to an increase due to accumulation of the feedback correction amount. Fluctuates.
  • the secondary for spin recovery control is controlled so that the correction amount of the speed ratio feedback control relating to the primary pressure Ppri of the primary pulley 4 is not excessively accumulated. It is effective to suppress the increase in the command pressure Psec_d.
  • FIG. 4 is a graph showing the relationship between the shift stroke speed and the oil pressure decrease
  • FIG. 5 is a time chart corresponding to FIG. 3, showing the oil pressure decrease mechanism.
  • the symbols * 1 to * 5 in FIG. 5 correspond to the symbols * 1 to * 5 in FIG.
  • the stroke speed (line g) fluctuates finely, it becomes a large value on the low side or high side at the timing when the secondary actual pressure Psec_r decreases.
  • the available hydraulic pressure (line a) fluctuates in synchronization with the fluctuation of the stroke speed.
  • the hydraulic pressure that can be generated is limited by the hydraulic pressure (line b) at the steady balance limit (the hydraulic pressure limit determined from the relationship between the discharge hydraulic pressure of the pump and the discharge oil amount). It is conceivable that such a change in the hydraulic pressure that can be generated is such that when the stroke speed increases, the amount of hydraulic oil that is increased or decreased increases, and the hydraulic pressure that can be generated decreases by that much. Further, after the foot is released from the accelerator pedal, the possible hydraulic pressure decreases due to a decrease in the discharge pressure of the oil pump accompanying a decrease in the engine speed.
  • the secondary actual pressure Psec_r Since the secondary actual pressure Psec_r is limited by the possible hydraulic pressure, the secondary actual pressure Psec_r also decreases with a decrease in the possible hydraulic pressure (see symbols * 1 to * 5). Therefore, the amount of decrease in the secondary actual pressure Psec_r has a characteristic proportional to the magnitude of the stroke speed, as shown in FIG.
  • the secondary command pressure Psec_d being set to a value exceeding the possible hydraulic pressure is also a cause of the decrease of the secondary actual pressure Psec_r. Since the possible hydraulic pressure is limited by the hydraulic pressure at the hydraulic balance limit, it is effective to set the secondary command pressure Psec_d so as not to exceed at least the hydraulic balance limit in order to suppress a decrease in the secondary actual pressure Psec_r.
  • the transmission control unit 7A of the present apparatus sets the secondary command pressure Psec_d to a range (secondary pressure) that satisfies all of the conditions 1 to 3 as shown in FIG. Control area). That is, it must be equal to or higher than the lower limit hydraulic pressure (minimum hydraulic pressure required for belt protection) P1 for avoiding belt slippage necessary for spin recovery control (condition 1).
  • a first upper limit oil pressure upper limit oil pressure for preventing a low shift of the actual speed ratio R_r and preventing poor gear shifting
  • P3 so as not to hinder a change in the speed ratio even if the accelerator pedal is released during the spin recovery control. The following (condition 2).
  • the lower limit oil pressure P1, the first upper limit oil pressure P3, and the second upper limit oil pressure P2 can be set according to the running state of the vehicle based on test results or simulation results according to the running state of the vehicle.
  • control device for a continuously variable transmission for a vehicle is configured as described above, for example, the processing as shown in the flowchart of FIG. 7 is performed to determine the wheel spin and perform the spin recovery control.
  • the control of the secondary pressure Psec including the above can be performed.
  • step S40 it is determined that the wheel is in the spin state (step S40), and the spin recovery control in steps S50 to S70 is performed. If none of the above conditions are satisfied, it is determined that the vehicle is not in the wheel spin state, and the normal command oil pressure (command pressure) Pnor is set as the command value of the secondary pressure Psec (step S80).
  • command pressure command pressure
  • the lower limit hydraulic pressure (the minimum hydraulic pressure required for protecting the belt) P1 is set as the hydraulic pressure for avoiding the slippage of the belt required for the spin recovery control (step S50).
  • the lower limit hydraulic pressure P1 regulated by the second upper limit hydraulic pressure P2 that does not exceed the hydraulic balance limit is set as the command pressure Pa (step S60). If the lower limit hydraulic pressure P1 for avoiding the belt slip is equal to or less than the second upper limit hydraulic pressure P2 which is the hydraulic balance limit, the lower limit hydraulic pressure P1 is set to the command pressure Pa, but the second lower limit hydraulic pressure P1 is the hydraulic balance limit. If it is higher than the upper limit oil pressure P2, the second upper limit oil pressure P2 is set to the command pressure Pa.
  • the command pressure Pa which is regulated by the first upper limit oil pressure P3 for preventing shift failure, is set as the command pressure Pb (step S70). If the command pressure Pa is equal to or lower than the first upper limit hydraulic pressure P3 for preventing shift failure, the command pressure Pa is set to the final command pressure Pb, but the command pressure Pa is set to the first upper limit hydraulic pressure P3 for preventing shift failure. If it is larger than the first upper limit hydraulic pressure P3, the first upper limit hydraulic pressure P3 is set to the final command pressure Pb. As a result, if the wheel is in the wheel spin state, the final command pressure is set to Pb, and if not, the final command pressure is set to Pnor (step S90).
  • the secondary command pressure Psec_d is set to a value within the range of the secondary pressure control region that satisfies the conditions 1 to 3 during the spin recovery control, so that the belt slip when the wheel spin occurs occurs. For example, as shown in FIG. 8 in comparison with the comparative example, even if the foot is released from the accelerator pedal during the spin recovery control, the reduction in the secondary actual pressure Psec_r is suppressed, and the shift failure is suppressed. Can be prevented.
  • the secondary actual pressure Psec_r decreases (see * 10), and the actual speed change occurs.
  • a predetermined shift cannot be performed due to a large deviation of the ratio R_r from the target speed ratio R_t (see the broken line)
  • the secondary command pressure Psec_d is set to a value that satisfies the conditions 1 to 3, FIG.
  • the occurrence of a decrease in the secondary actual pressure Psec_r is also suppressed, and a large deviation of the actual speed ratio R_r from the target speed ratio R_t is suppressed (see the broken line), whereby a predetermined speed change can be performed.
  • belt slippage can also be suppressed.
  • the secondary command pressure Psec_d is set to a value within a range satisfying the conditions 1 to 3, but a value within a range satisfying only the conditions 1 and 2, that is, a belt required for spin recovery control.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Provided is a control device for a vehicle continuously-variable transmission (1), the control device comprising an oil pump that is driven by a drive source and that supplies a hydraulic oil for imparting, to the oil chambers of a primary pulley and a secondary pulley, thrust that compresses a belt, wherein the control device is provided with a speed-change control unit (7A) that, when wheel spin is occurring in a drive wheel (12), sets an oil pressure command value, which controls the oil pressure of the hydraulic oil for imparting thrust, to a value that is equal to or greater than the lower limit oil pressure for avoiding belt slippage and equal to or less than a first upper limit oil pressure for not obstructing a change in the speed-change ratio, and that controls the oil pressure on the basis of the oil pressure command value.

Description

車両用無段変速機の制御装置及び車両用無段変速機の制御方法Control device for continuously variable transmission for vehicle and control method for continuously variable transmission for vehicle
 本発明は、車両用無段変速機の制御装置及び車両用無段変速機の制御方法に関するものである。 The present invention relates to a control device for a continuously variable transmission for a vehicle and a control method for a continuously variable transmission for a vehicle.
 駆動源に駆動連結されたプライマリプーリと、駆動輪に駆動連結されたセカンダリプーリと、これらのプーリに巻き掛けられた無端状のベルトとを備え、各プーリが油圧によってベルトを挟圧する推力を付与される油圧式の車両用無段変速機が知られている。このような無段変速機では、ベルトを挟圧する推力が不足するとベルトとプーリとの間に滑りが生じてベルトの劣化や損傷を招くので推力が不足しないように油圧が制御される。 It has a primary pulley that is drivingly connected to a drive source, a secondary pulley that is drivingly connected to driving wheels, and an endless belt that is wound around these pulleys, and each pulley applies a thrust to pinch the belt by hydraulic pressure. There is known a hydraulic type continuously variable transmission for vehicles. In such a continuously variable transmission, if the thrust for pinching the belt is insufficient, slippage occurs between the belt and the pulley, resulting in deterioration or damage of the belt. Therefore, the hydraulic pressure is controlled so that the thrust is not insufficient.
 特許文献1には、駆動源で駆動されるオイルポンプによって各プーリに作動油が供給される車両用無段変速機を備えた車両において、非良路(例えば、舗装がされていないオフロード)走行時には、セカンダリプーリに供給する作動油の油圧を良路走行時よりも高めてベルトを挟圧する推力を大きくすると共に、プライマリプーリの回転速度を設定された下限回転速度以上になるように制御する技術が開示されている。 Patent Literature 1 discloses a vehicle having a continuously variable transmission for a vehicle in which hydraulic fluid is supplied to each pulley by an oil pump driven by a driving source, on an irregular road (for example, off-road without pavement). At the time of traveling, the hydraulic pressure of the hydraulic oil supplied to the secondary pulley is increased from that at the time of traveling on a good road to increase the thrust for clamping the belt, and the rotation speed of the primary pulley is controlled to be equal to or higher than the set lower limit rotation speed. Techniques are disclosed.
 つまり、非良路走行時には、駆動輪のスリップ(ホイールスピン)が発生し易く、駆動輪にホイールスピンが発生し、その後にグリップ力が回復する場合、駆動輪は路面から反力トルクを受けながらスリップを解消することになる。この駆動輪が路面から受ける反力トルクがセカンダリプーリに入力されると、セカンダリプーリとベルトとの間の滑りを誘発する。 In other words, when driving on an irregular road, slipping of the driving wheels (wheel spin) is likely to occur, and when wheel spin occurs in the driving wheels and the grip force subsequently recovers, the driving wheels receive reaction torque from the road surface. Slip will be eliminated. When the reaction torque received by the drive wheels from the road surface is input to the secondary pulley, it induces slippage between the secondary pulley and the belt.
 プライマリプーリの回転速度を下限回転速度以上にするのは、駆動源で駆動されるオイルポンプの作動油の吐出量や吐出圧を確保するためであり、これによりセカンダリプーリに供給する作動油の油圧を高めることができ、ベルトを挟圧する推力を大きくしてベルトの滑りの発生を抑制することができる。 The rotation speed of the primary pulley is set to be equal to or higher than the lower limit rotation speed in order to secure a discharge amount and a discharge pressure of a hydraulic oil of an oil pump driven by a driving source. And the thrust for clamping the belt can be increased to suppress occurrence of belt slippage.
 ところで、無段変速機の各プーリの作動油の油圧は通常フィードバック制御を用いて行う。例えば、ベルトを挟圧する推力を所定の大きさに制御するには、各プーリの油圧目標値を設定し油圧に基づくフィードバック制御により各プーリの作動油の油圧を制御し、変速比を変更するには、変速比目標値(目標変速比)を設定し実変速比との差に基づくフィードバック制御によりプーリの作動油の油圧を制御して推力比を操作する。 By the way, the hydraulic pressure of the hydraulic oil of each pulley of the continuously variable transmission is usually performed using feedback control. For example, in order to control the thrust for pinching the belt to a predetermined magnitude, it is necessary to set a hydraulic pressure target value for each pulley, control the hydraulic pressure of hydraulic fluid for each pulley by feedback control based on the hydraulic pressure, and change the gear ratio. Sets the gear ratio target value (target gear ratio) and controls the hydraulic pressure of the hydraulic fluid of the pulley by feedback control based on the difference from the actual gear ratio to operate the thrust ratio.
 しかしながら、特許文献1に記載されているように、ホイールスピン中にセカンダリプーリに供給する油圧の指示圧を単純に高くすると、セカンダリプーリの指示圧が高くなり過ぎて、変速比を維持するための油圧や変速比を変更する(実変速比を目標変速比に変更する)ための油圧までプライマリプーリに供給する油圧を高めることが困難になり、変速比に基づくフィードバック制御では推力比を操作しきれずに、変速不良〔変速比のロー側へのズレ(以下、ロー側ズレと言う)〕が発生する。 However, as described in Patent Literature 1, if the command pressure of the hydraulic pressure supplied to the secondary pulley is simply increased during the wheel spin, the command pressure of the secondary pulley becomes too high, and the gear ratio for maintaining the speed ratio is reduced. It becomes difficult to increase the hydraulic pressure supplied to the primary pulley to the hydraulic pressure for changing the hydraulic pressure or the gear ratio (changing the actual gear ratio to the target gear ratio), and the thrust ratio cannot be fully operated by the feedback control based on the gear ratio. Then, a shift failure [shift of the gear ratio to the low side (hereinafter, referred to as low side shift)] occurs.
 例えば、アクセルペダルの踏み込みによって発生したホイールスピン中にアクセルペダルからの足離し(踏み込み解除)を行うと、目標変速比がハイ側に変更されるが、セカンダリプーリの指示圧が高くなり過ぎてしまうと、実変速比を目標変速比に変更できる油圧までプライマリプーリの油圧を高められなくなり、変速比のロー側ズレによる変速比の目標値と実際値との乖離が続くことからハイ側へのフィードバック補正量が累積し、変速比の不安定な挙動を招くこと、及び、これに起因してセカンダリプーリの油圧不足の発生を招くことから、ベルト滑りの可能性が発生する。 For example, if the foot is released (depressed) from the accelerator pedal during wheel spin caused by the depression of the accelerator pedal, the target gear ratio is changed to the high side, but the command pressure of the secondary pulley becomes too high. In addition, the hydraulic pressure of the primary pulley cannot be increased to the hydraulic pressure that can change the actual gear ratio to the target gear ratio, and the difference between the target value and the actual value of the gear ratio due to the shift of the gear ratio on the low side continues. Accumulation of the correction amount leads to unstable behavior of the gear ratio, and due to this, the occurrence of insufficient hydraulic pressure of the secondary pulley, thereby causing the possibility of belt slippage.
 本発明は、このような課題に着目して創案されたもので、油圧式の車両用無段変速機において、駆動輪にホイールスピンが生じた場合にセカンダリプーリの油圧を高めてベルト滑りを抑制しつつ、アクセルペダルからの足離しを行っても、変速比の不安定な挙動の発生やセカンダリプーリの油圧不足の発生を抑制することができるようにした、車両用無段変速機の制御装置を提供することを目的としている。 The present invention has been made in view of such a problem, and in a hydraulic vehicle continuously variable transmission, when a wheel spin occurs in a drive wheel, the hydraulic pressure of a secondary pulley is increased to suppress belt slippage. Control device for a continuously variable transmission for a vehicle, which can suppress occurrence of unstable behavior of a gear ratio and occurrence of insufficient hydraulic pressure of a secondary pulley even when a foot is released from an accelerator pedal. It is intended to provide.
国際公開第2015/133257号WO 2015/133257
 上記の目的を達成するために、本発明の車両用無段変速機の制御装置は、駆動源に駆動連結されたプライマリプーリと、駆動輪に駆動連結されたセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられた無端状のベルトと、前記駆動源によって駆動され、前記プライマリプーリ及び前記セカンダリプーリの各油室に前記ベルトを挟圧する推力を付与するための作動油を供給するオイルポンプと、を備えた車両用無段変速機の制御装置であって、車両の走行状態に応じて、前記各油室に供給する作動油の油圧を制御して前記推力を制御することにより、変速比を制御する変速制御部と、前記駆動輪にホイールスピンが生じているか否かを判定するスピン判定部と、を備え、前記変速制御部は、前記スピン判定部により前記ホイールスピンが生じていると判定されたら、前記推力を付与するための作動油の油圧を制御する油圧指令値を、前記ベルトの滑りを回避するための下限油圧以上であって変速比の変更を妨げないための第1上限油圧以下である値に設定して、前記油圧指令値に基づいて前記油圧を制御する。 In order to achieve the above object, a control device for a continuously variable transmission for a vehicle according to the present invention includes a primary pulley that is drivingly connected to a driving source, a secondary pulley that is drivingly connected to driving wheels, the primary pulley and the primary pulley. An endless belt wound around a secondary pulley, and an oil pump driven by the drive source and supplying hydraulic oil for applying a thrust for clamping the belt to each oil chamber of the primary pulley and the secondary pulley. A control device for a continuously variable transmission for a vehicle, comprising: controlling a hydraulic pressure of hydraulic oil supplied to each of the oil chambers according to a traveling state of the vehicle to control the thrust, thereby performing a shift. A shift control unit that controls a ratio, and a spin determination unit that determines whether or not wheel spin occurs in the drive wheels, wherein the shift control unit includes the spin determination unit. If it is determined that the wheel spin has occurred, the hydraulic pressure command value for controlling the hydraulic pressure of the hydraulic oil for applying the thrust is set to a value equal to or higher than the lower limit hydraulic pressure for avoiding slippage of the belt, and The hydraulic pressure is controlled based on the hydraulic pressure command value by setting the hydraulic pressure to a value equal to or less than a first upper limit hydraulic pressure so as not to prevent the change.
 前記変速制御部は、前記スピン判定部により前記ホイールスピンが生じていると判定されたら、前記油圧指令値を、前記ベルトの滑りを回避するための下限油圧以上であって変速比の変更を妨げないための上限油圧以下であり、且つ、油圧収支限界を超えない第2上限油圧以下である値に設定することが好ましい。
 前記変速制御部は、前記セカンダリプーリの油室の作動油の油圧であるセカンダリ油圧を制御することにより前記推力を付与し、前記プライマリプーリの油室の作動油の油圧であるプライマリ油圧を前記セカンダリ油圧に対して制御することにより前記変速比を制御し、前記ホイールスピンが生じていると判定されたときには、前記セカンダリ油圧を前記油圧指令値に基づいて制御することが好ましい。
 また、本発明の車両用無段変速機の制御方法は、駆動源に駆動連結されたプライマリプーリと、駆動輪に駆動連結されたセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられた無端状のベルトと、前記駆動源によって駆動され、前記プライマリプーリ及び前記セカンダリプーリの各油室に前記ベルトを挟圧する推力を付与するための作動油を供給するオイルポンプと、を備えた車両用無段変速機の制御方法であって、変速比は、車両の走行状態に応じて前記各油室に供給する作動油の油圧を制御して前記推力を制御することにより制御され、前記駆動輪にホイールスピンが生じていると判定されたら、前記推力を付与するための作動油の油圧を制御する油圧指令値を、前記ベルトの滑りを回避するための下限油圧以上であって変速比の変更を妨げないための第1上限油圧以下である値に設定して、前記油圧指令値に基づいて前記油圧を制御する。
The shift control unit, when the spin determination unit determines that the wheel spin is occurring, sets the hydraulic pressure command value equal to or higher than a lower limit hydraulic pressure for avoiding slippage of the belt and prevents a change in a gear ratio. It is preferable to set a value that is not more than the upper limit oil pressure for avoiding the oil pressure and is not more than the second upper limit oil pressure that does not exceed the oil pressure balance limit.
The shift control unit applies the thrust by controlling a secondary hydraulic pressure, which is a hydraulic pressure of hydraulic oil in an oil chamber of the secondary pulley, and changes a primary hydraulic pressure, which is a hydraulic pressure of hydraulic oil in an oil chamber of the primary pulley, to the secondary hydraulic pressure. Preferably, the speed ratio is controlled by controlling the hydraulic pressure, and when it is determined that the wheel spin is occurring, the secondary hydraulic pressure is preferably controlled based on the hydraulic pressure command value.
Further, in the control method of the continuously variable transmission for a vehicle according to the present invention, the primary pulley drivingly connected to the driving source, the secondary pulley drivingly connected to the driving wheels, and the primary pulley and the secondary pulley are wound around the primary pulley. A vehicle comprising: an endless belt; and an oil pump that is driven by the drive source and supplies hydraulic oil for applying a thrust for clamping the belt to each oil chamber of the primary pulley and the secondary pulley. A method of controlling a continuously variable transmission, wherein a gear ratio is controlled by controlling a hydraulic pressure of hydraulic oil supplied to each of the oil chambers according to a traveling state of a vehicle to control the thrust, and If it is determined that wheel spin has occurred, the hydraulic command value for controlling the hydraulic pressure of the hydraulic oil for applying the thrust is set to a lower limit for avoiding slippage of the belt. Is set to the first limit oil pressure or less is the value for allowing changes of gear ratio even on pressure or, for controlling the hydraulic pressure based on the hydraulic pressure command value.
 本発明によれば、ホイールスピンが生じていると判定されたら、推力を付与するための作動油の油圧を制御する油圧指令値を、ベルトの滑りを回避するための下限油圧以上であって変速比の変更を妨げないための第1上限油圧以下である値に設定して油圧を制御するので、駆動輪にホイールスピンが生じた場合にセカンダリプーリの油圧を高めてベルト滑りを抑制しつつ、アクセルペダルからの足離しを行っても、セカンダリプーリの油圧を、変速比の変更を妨げないための第1上限油圧以下の値にしていることから、変速比の不安定な挙動の発生やセカンダリプーリの油圧不足の発生を抑制することができるようにすることができる。 According to the present invention, when it is determined that the wheel spin has occurred, the hydraulic pressure command value for controlling the hydraulic pressure of the hydraulic oil for applying the thrust is not less than the lower limit hydraulic pressure for preventing the belt from slipping, and the speed change is performed. Since the hydraulic pressure is controlled by setting it to a value equal to or less than the first upper limit hydraulic pressure so as not to hinder the change of the ratio, when wheel spin occurs in the drive wheel, the hydraulic pressure of the secondary pulley is increased to suppress belt slippage, Even if the accelerator pedal is released, the hydraulic pressure of the secondary pulley is set to a value equal to or lower than the first upper limit hydraulic pressure so as not to hinder the change of the gear ratio. The occurrence of insufficient hydraulic pressure of the pulley can be suppressed.
本発明の一実施形態にかかる車両の駆動系及び車両用無段変速機並びにその制御装置の構成図である。1 is a configuration diagram of a vehicle drive system, a vehicle continuously variable transmission, and a control device thereof according to an embodiment of the present invention. 本発明の一実施形態にかかる車両用無段変速機の制御装置の構成を示すブロック図である。It is a block diagram showing composition of a control device of a continuously variable transmission for vehicles concerning one embodiment of the present invention. 本発明の課題となる状態の一例を示すタイムチャートである。5 is a time chart illustrating an example of a state that is an object of the present invention. 本発明の一実施形態にかかる車両用無段変速機の変速ストローク速度と油圧低下の関係を示すグラフである。4 is a graph showing a relationship between a shift stroke speed and a decrease in oil pressure of the vehicle continuously variable transmission according to one embodiment of the present invention. 本発明の一実施形態にかかる車両用無段変速機における油圧低下メカニズムを示すタイムチャートであり、(a)は油圧に関し、(b)は変速比及びストローク速度を示す。5 is a time chart showing a hydraulic pressure reduction mechanism in the vehicle continuously variable transmission according to one embodiment of the present invention, wherein (a) relates to hydraulic pressure, and (b) shows a gear ratio and a stroke speed. 本発明の一実施形態にかかる車両用無段変速機の制御装置でホイールスピン抑制制御時に用いる油圧指令値の設定を説明する図である。FIG. 4 is a diagram illustrating setting of a hydraulic command value used during wheel spin suppression control in the control device for a continuously variable transmission for a vehicle according to an embodiment of the present invention. 本発明の一実施形態にかかる車両用無段変速機の制御装置のホイールスピン抑制制御を示すフローチャートである。4 is a flowchart illustrating wheel spin suppression control of a control device for a continuously variable transmission for a vehicle according to an embodiment of the present invention. 本発明の一実施形態にかかる車両用無段変速機の制御装置のホイールスピン抑制制御による効果を示すタイムチャートであり、(a)は比較例の特性を示し、(b)は本実施形態の特性を示す。5 is a time chart showing the effect of the wheel spin suppression control of the control device for a continuously variable transmission for a vehicle according to one embodiment of the present invention, wherein (a) shows the characteristics of a comparative example, and (b) shows the characteristics of the present embodiment. Show characteristics.
 以下、図面を参照して本発明の実施形態を説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することや適宜組み合わせることが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the embodiments described below are merely examples, and there is no intention to exclude various modifications and application of technology not explicitly described in the following embodiments. Each configuration of the following embodiments can be variously modified and implemented without departing from the spirit thereof, and can be selected or appropriately combined as needed.
 [全体システム構成]
 図1は本実施形態に係る車両用無段変速機とその制御装置の要部を示す構成図である。
 図1に示すように、無段変速機(CVT)1は、駆動源であるエンジン(内燃機関)10の出力軸10aとトルクコンバータ11を介して駆動連結(駆動可能に連結)された入力軸2と、入力軸2と平行に配置され、駆動輪12と減速機13及び差動機構14を介して駆動連結(駆動可能に連結)された出力軸3と、入力軸2と連結されたプライマリプーリ4と、出力軸3と連結されたセカンダリプーリ5と、プライマリプーリ4とセカンダリプーリ5とに巻き掛けられた無端状のベルト6と、を備えている。
[Overall system configuration]
FIG. 1 is a configuration diagram showing a main part of a continuously variable transmission for a vehicle and a control device thereof according to the present embodiment.
As shown in FIG. 1, a continuously variable transmission (CVT) 1 is an input shaft that is drivingly connected (drivably connected) to an output shaft 10a of an engine (internal combustion engine) 10 that is a driving source via a torque converter 11. 2, an output shaft 3 which is arranged in parallel with the input shaft 2 and is drivingly connected (drivably connected) via a drive wheel 12 via a speed reducer 13 and a differential mechanism 14, and a primary shaft which is connected to the input shaft 2. A pulley 4, a secondary pulley 5 connected to the output shaft 3, and an endless belt 6 wound around the primary pulley 4 and the secondary pulley 5 are provided.
 プライマリプーリ4は、固定シーブ41と、可動シーブ42と、可動シーブ42を軸方向に移動させるプライマリ油室43とを有する。
 セカンダリプーリ5は、固定シーブ51と、可動シーブ52と、可動シーブ52を軸方向に移動させるセカンダリ油室53とを有する。
The primary pulley 4 has a fixed sheave 41, a movable sheave 42, and a primary oil chamber 43 for moving the movable sheave 42 in the axial direction.
The secondary pulley 5 has a fixed sheave 51, a movable sheave 52, and a secondary oil chamber 53 for moving the movable sheave 52 in the axial direction.
 無段変速機1は、プライマリ油室43及びセカンダリ油室53に作動油を供給するために、エンジン10で駆動されるオイルポンプ61と、オイルポンプ61から吐出された作動油を所定のライン圧PLに調圧するライン圧制御弁(プレッシャレギュレータ弁)62と、ライン圧PLを元圧としてプライマリ圧Ppriに調圧するプライマリ圧制御弁63と、ライン圧PLを元圧としてセカンダリ圧Psecに調圧するセカンダリ圧制御弁64とを備えている。各制御弁62,63,64はソレノイドで作動する制御弁であって、CVTECU(CVT電子制御ユニット)7によって、各ソレノイド62a,63a,64aへの電流を制御することにより、出力する油圧が調整される。 The continuously variable transmission 1 uses an oil pump 61 driven by the engine 10 and a hydraulic oil discharged from the oil pump 61 at a predetermined line pressure to supply hydraulic oil to the primary oil chamber 43 and the secondary oil chamber 53. A line pressure control valve (pressure regulator valve) 62 for adjusting the pressure to PL, a primary pressure control valve 63 for adjusting the line pressure PL to the primary pressure Ppri, and a secondary pressure for adjusting the line pressure PL to the primary pressure Psec. And a pressure control valve 64. Each of the control valves 62, 63, and 64 is a control valve operated by a solenoid, and a CVT ECU (CVT electronic control unit) 7 controls the current to each of the solenoids 62a, 63a, and 64a to adjust the output hydraulic pressure. Is done.
 CVTECU7には、プライマリプーリ4の回転速度(単位時間回転数、プライマリプーリ回転数)Npriを検出するプライマリ回転センサ81、セカンダリプーリ5の回転速度(単位時間回転数、セカンダリプーリ回転数)Nsecを検出するセカンダリ回転センサ82、プライマリ油室43の圧力(プライマリ圧)Ppriを検出するプライマリ圧センサ83、セカンダリ油室53の圧力(セカンダリ圧)Psecを検出するセカンダリ圧センサ84等の各種センサが接続され、これらのセンサ情報やスイッチ情報が入力される。また、CVTECU7は、エンジンECU(エンジン電子制御ユニット)8と情報伝達可能に接続されている。なお、プライマリ圧センサ83で検出した実際のプライマリ圧Ppriについてはプライマリ実圧Ppri_rと称し、セカンダリ圧センサ84で検出した実際のセカンダリ圧Psecについてはセカンダリ実圧Psec_rと称する。 The CVT ECU 7 detects the rotation speed (unit time rotation speed, primary pulley rotation speed) Npri of the primary pulley 4 and the rotation speed (unit time rotation speed, secondary pulley rotation speed) Nsec of the secondary pulley 5. Various sensors such as a secondary rotation sensor 82 for detecting the pressure (primary pressure) Ppri of the primary oil chamber 43, a primary pressure sensor 83 for detecting the pressure (secondary pressure) Psec of the secondary oil chamber 53, and a secondary pressure sensor 84 for detecting the pressure (secondary pressure) Psec of the secondary oil chamber 53 are connected. The sensor information and the switch information are input. The CVT ECU 7 is connected to an engine ECU (engine electronic control unit) 8 so that information can be transmitted. The actual primary pressure Ppri detected by the primary pressure sensor 83 is referred to as primary actual pressure Ppri_r, and the actual secondary pressure Psec detected by the secondary pressure sensor 84 is referred to as secondary actual pressure Psec_r.
 無段変速機1は、ベルト6とプーリ4,5との間で滑りが発生しない範囲でできるだけ低い推力を各プーリ4,5に付与し、変速比Rを変更する際には、プライマリプーリ4とセカンダリプーリ5との間に差推力を加えて目標変速比R_tが達成されるように各可動シーブ42,52を軸方向に駆動する。これらの推力及び差推力は、CVTECU7によってプライマリ圧Ppri及びセカンダリ圧Psecを制御することによって行う。 The continuously variable transmission 1 applies thrusts as low as possible to the pulleys 4 and 5 within a range in which no slippage occurs between the belt 6 and the pulleys 4 and 5, and when changing the speed ratio R, the primary pulley 4 The movable sheaves 42 and 52 are driven in the axial direction so that the target speed ratio R_t is achieved by applying a differential thrust between the movable sheaves and the secondary pulley 5. The thrust and the difference thrust are performed by controlling the primary pressure Ppri and the secondary pressure Psec by the CVT ECU 7.
 [油圧制御系の構成]
 このため、CVTECU7は、ライン圧PLを制御するライン圧制御部71と、プライマリ圧Ppriを制御するプライマリ圧制御部72と、セカンダリ圧Psecを制御するセカンダリ圧制御部73とを有する変速制御部(変速制御手段)7Aを備えている。
 また、CVTECU7は、プライマリプーリ回転数Npri及びセカンダリプーリ回転数Nsecから実変速比R_rを算出する変速比演算部74を備えている。
[Configuration of hydraulic control system]
For this reason, the CVTECU 7 has a line pressure control unit 71 that controls the line pressure PL, a primary pressure control unit 72 that controls the primary pressure Ppri, and a secondary pressure control unit 73 that controls the secondary pressure Psec. Transmission control means) 7A.
In addition, the CVT ECU 7 includes a speed ratio calculation unit 74 that calculates the actual speed ratio R_r from the primary pulley rotation speed Npri and the secondary pulley rotation speed Nsec.
 ライン圧制御部71は、所定の制御指令(ライン圧指示値)をライン圧ソレノイド62aに出力する。
 プライマリ圧制御部72は、所定のプライマリ圧目標値Ppri_tを得る制御指令(プライマリ圧指示値Ppri_d)をプライマリ油圧ソレノイド63aに出力する。
 セカンダリ圧制御部73は、所定のセカンダリ圧目標値Psec_tを得る制御指令(セカンダリ圧指示値Psec_d)をセカンダリ油圧ソレノイド64aに出力する。
The line pressure control unit 71 outputs a predetermined control command (line pressure instruction value) to the line pressure solenoid 62a.
The primary pressure control unit 72 outputs a control command (primary pressure instruction value Ppri_d) for obtaining a predetermined primary pressure target value Ppri_t to the primary hydraulic solenoid 63a.
Secondary pressure controller 73 outputs a control command (secondary pressure command value Psec_d) for obtaining predetermined secondary pressure target value Psec_t to secondary hydraulic solenoid 64a.
 次に、基本的なセカンダリ圧指示値Psec_d,プライマリ圧指示値Ppri_d,ライン圧指示値PL_cの設定を説明する。
 セカンダリ圧制御部73は、図2に示すように、エンジンECU8からの出力情報及びセカンダリ回転センサ82からの車速に基づいてCVTECU7で算出した出力情報に基づいて無段変速機1により伝達するトルク容量(必要トルク伝達容量)を算出し、この伝達トルク容量から必要推力に応じたセカンダリ圧目標値Psec_tを導出してセカンダリ圧指示値Psec_dを設定する。なお、セカンダリ圧指示値Psec_dはこのセカンダリ圧目標値Psec_tに、セカンダリ実圧Psec_rに基づくフィードバック補正量を加算することで設定する。したがって、セカンダリ圧Psecはセカンダリ実圧Psec_rに基づくフィードバック制御(ここでは、PID制御)によって制御される。
Next, the setting of the basic secondary pressure command value Psec_d, primary pressure command value Ppri_d, and line pressure command value PL_c will be described.
As shown in FIG. 2, the secondary pressure control unit 73 controls the torque capacity transmitted by the continuously variable transmission 1 based on the output information from the engine ECU 8 and the output information calculated by the CVT ECU 7 based on the vehicle speed from the secondary rotation sensor 82. (Required torque transmission capacity) is calculated, and a secondary pressure target value Psec_t corresponding to a required thrust is derived from the transmission torque capacity to set a secondary pressure instruction value Psec_d. The secondary pressure command value Psec_d is set by adding a feedback correction amount based on the secondary actual pressure Psec_r to the secondary pressure target value Psec_t. Therefore, the secondary pressure Psec is controlled by feedback control (here, PID control) based on the secondary actual pressure Psec_r.
 プライマリ圧制御部72は、図2に示すように、エンジンECU8から入手した目標変速比R_tと変速比演算部74で演算した実変速比R_rとセカンダリ圧指示値(セカンダリ指示圧)Psec_dとから、プライマリ圧目標値Ppri_tを設定し、このプライマリ圧目標値Ppri_tとプライマリ実圧Ppri_rとからプライマリ圧指示値(プライマリ指示圧)Ppri_dを設定する。つまり、プライマリ圧制御部72では、目標変速比R_tと実変速比R_rとの偏差(R_t-R_r)に基づくフィードバック制御(ここでは、PID制御)によって、セカンダリ圧指示値Psec_dとの関係が目標差推力に応じたものとなるプライマリ圧目標値Ppri_tを与えてプライマリ実圧Ppri_rを考慮しながらプライマリ圧指示値Ppri_dを設定する。 As shown in FIG. 2, the primary pressure control unit 72 calculates the target speed ratio R_t obtained from the engine ECU 8, the actual speed ratio R_r calculated by the speed ratio calculation unit 74, and the secondary pressure command value (secondary command pressure) Psec_d. A primary pressure target value Ppri_t is set, and a primary pressure instruction value (primary instruction pressure) Ppri_d is set from the primary pressure target value Ppri_t and the primary actual pressure Ppri_r. That is, in the primary pressure control unit 72, the relationship between the secondary pressure instruction value Psec_d and the secondary pressure instruction value Psec_d is determined by feedback control (here, PID control) based on the deviation (R_t−R_r) between the target speed ratio R_t and the actual speed ratio R_r. A primary pressure target value Ppri_t corresponding to the thrust is given, and a primary pressure instruction value Ppri_d is set while considering the primary actual pressure Ppri_r.
 ライン圧制御部71はセカンダリ圧指示値Psec_d及びプライマリ圧指示値Ppri_dに基づいて、セカンダリ圧指示値Psec_d及びプライマリ圧指示値Ppri_dを達成可能とするように、セカンダリ圧指示値Psec_d及びプライマリ圧指示値Ppri_dのうち大きい方よりもマージン分(差圧ΔP0)だけ高いライン圧指示値PL_dを設定する。 Based on the secondary pressure command value Psec_d and the primary pressure command value Ppri_d, the line pressure control unit 71 sets the secondary pressure command value Psec_d and the primary pressure command value such that the secondary pressure command value Psec_d and the primary pressure command value Ppri_d can be achieved. A line pressure command value PL_d higher by a margin (differential pressure ΔP0) than the larger one of Ppri_d is set.
 ところで、この車両用無段変速機を備えた車両が、例えば、舗装がされていないオフロード等の非良路を走行するときには、アクセルペダルの踏み込みによって駆動輪12にスリップ(ホイールスピン)が発生し易くなる。駆動輪12にホイールスピンが発生し、その後にグリップ力が回復すると、駆動輪12が路面から反力トルクを受けながらスリップを解消する。このとき、駆動輪12が路面から受ける反力トルクがセカンダリプーリ5に入力されると、セカンダリプーリ5とベルト6との間の滑りを誘発する。 By the way, when the vehicle provided with the vehicle continuously variable transmission travels on an irregular road such as an unpaved off-road road, a slip (wheel spin) occurs in the drive wheels 12 due to depression of an accelerator pedal. Easier to do. When wheel spin occurs in the driving wheel 12 and the grip force is recovered thereafter, the driving wheel 12 receives the reaction torque from the road surface and eliminates the slip. At this time, when the reaction torque received by the drive wheels 12 from the road surface is input to the secondary pulley 5, a slip between the secondary pulley 5 and the belt 6 is induced.
 このベルト6の滑りを抑制するには、セカンダリ油室53に供給する作動油の油圧を舗装路等の良路走行時よりも高めてベルトを挟圧する推力を大きくすること(これを、スピンリカバー制御という)が有効である。
 そこで、CVTECU7には、駆動輪にホイールスピンが発生していることを判定するスピン判定部(スピン判定手段)75を備え、スピン判定部75が、ホイールスピンが発生していることを判定したらセカンダリ圧制御部73でスピンリカバー制御を実施するようになっている。
In order to suppress the slippage of the belt 6, the hydraulic pressure of the hydraulic oil supplied to the secondary oil chamber 53 is increased as compared with running on a good road such as a pavement road to increase the thrust for clamping the belt (this is called spin recovery). Control) is effective.
Therefore, the CVT ECU 7 is provided with a spin determination unit (spin determination means) 75 for determining that wheel spin is occurring in the drive wheel. When the spin determination unit 75 determines that wheel spin is occurring, the secondary is determined. The pressure control unit 73 performs the spin recovery control.
 なお、スピン判定部75は、駆動輪回転センサ85から駆動輪の回転速度Vdwの検出情報を取得し、従動輪回転センサ86から従動輪の回転速度Vnwの検出情報を取得して、駆動輪の回転速度Vdwと従動輪の回転速度Vnwとの偏差(=Vdw-Vnw)と、駆動輪の回転加速度Adw(駆動輪の回転速度Vdwの時間微分値)と推定車体加速度Av(従動輪の回転速度Vnwの時間微分値)との偏差(=Adw-Av)とに基づいて、ホイールスピンの発生を判定する。 The spin determination unit 75 acquires detection information of the rotation speed Vdw of the driving wheel from the driving wheel rotation sensor 85, acquires detection information of the rotation speed Vnw of the driven wheel from the driven wheel rotation sensor 86, The difference between the rotation speed Vdw and the rotation speed Vnw of the driven wheel (= Vdw−Vnw), the rotation acceleration Adw of the driving wheel (the time differential value of the rotation speed Vdw of the driving wheel), and the estimated vehicle body acceleration Av (the rotation speed of the driven wheel) The occurrence of wheel spin is determined based on the deviation (= Adw−Av) from the time derivative of Vnw.
 つまり、偏差(=Vdw-Vnw)を予め設定された判定基準値ΔVと比較して、この偏差が判定基準値ΔVよりも大きいこと、及び、偏差(=Adw-Av)を予め設定された判定基準値ΔAと比較して、この偏差が判定基準値ΔAよりも大きいこと、の何れかが成立したら駆動輪にホイールスピンが発生していると判定する。ただし、スピン判定は、この2つの何れか一方のみで行ってもよく、他の手法で行ってもよい。 That is, the deviation (= Vdw−Vnw) is compared with a predetermined reference value ΔV, and this deviation is larger than the reference value ΔV, and the deviation (= Adw−Av) is determined in advance. If any of the deviations is larger than the reference value ΔA than the reference value ΔA, it is determined that wheel spin has occurred in the drive wheels. However, the spin determination may be performed using only one of these two methods, or may be performed using another method.
 しかしながら、スピンリカバー制御において、セカンダリ圧指示値Psec_dを高め過ぎると、このホイールスピン中にアクセルペダルからの足離し(踏み込み解除)を行うと、プライマリプーリ4に供給する油圧を高められなくなり、変速比Rに基づくフィードバック制御では推力比を操作しきれずに、変速比のロー側ズレが起こることが発明者等の検証により判明した。 However, in the spin recovery control, if the secondary pressure command value Psec_d is too high, if the foot is released from the accelerator pedal (the stepping is released) during the wheel spin, the hydraulic pressure supplied to the primary pulley 4 cannot be increased, and the gear ratio It has been found by the inventors and others that feedback control based on R does not allow the thrust ratio to be fully operated and causes a low-side shift of the speed ratio.
 これについて、図3を参照して説明する。
 図3は、ホイールスピンの発生に対してセカンダリ指示圧Psec_dを最大にするスピンリカバー制御を行った場合のシミュレーション結果の一例を示すタイムチャートであり、アクセル開度、エンジン回転数、車速、セカンダリ指示圧P、セカンダリ実圧Psec_r、目標変速比R_t、実変速比R_rの変化を示している。
This will be described with reference to FIG.
FIG. 3 is a time chart showing an example of a simulation result when spin recovery control for maximizing the secondary command pressure Psec_d with respect to occurrence of wheel spin is performed. The accelerator opening, the engine speed, the vehicle speed, and the secondary command are shown. 7 shows changes in the pressure P, the secondary actual pressure Psec_r, the target speed ratio R_t, and the actual speed ratio R_r.
 ホイールスピン中の時点t1にアクセルペダルからの足離しがされると、この後、エンジン回転数が次第に低下し、これに応じて車速も次第に低下する。エンジン回転数の低下が進んだ時点t2で、それまでセカンダリ指示圧Psec_dに略沿ったレベルに保持されていたセカンダリ実圧Psec_rに低下が生じて(符号※1参照)、その後も繰り返して、セカンダリ実圧Psec_rの低下が発生する(符号※2~※5参照)。なお、ホイールスピンは時点t3で解消される。 (4) When the foot is released from the accelerator pedal at time t1 during wheel spin, the engine speed gradually decreases thereafter, and the vehicle speed gradually decreases accordingly. At the time point t2 when the engine speed has been reduced, the secondary actual pressure Psec_r, which has been maintained at a level substantially in line with the secondary command pressure Psec_d, is reduced (see reference sign * 1). The actual pressure Psec_r decreases (see symbols * 2 to * 5). Note that the wheel spin is eliminated at time t3.
 また、実変速比R_rは、アクセルペダルからの足離しがされた直後から目標変速比R_tに対して増大側(ロー側)にずれて、その後、目標変速比R_tに接近した後、目標変速比R_tに対して減少側(ハイ側)にずれて、再び目標変速比R_tに接近した後、目標変速比R_tに対して増大側(ロー側)にずれる現象を繰り返し(符号※6~※9の線の交差部分を参照)、目標変速比R_t又はその近傍に安定しない。 Further, the actual speed ratio R_r is shifted to an increasing side (low side) with respect to the target speed ratio R_t immediately after the release of the foot from the accelerator pedal, and then approaches the target speed ratio R_t, and then is shifted to the target speed ratio R_t. After shifting to a decreasing side (high side) with respect to R_t and approaching the target speed ratio R_t again, a phenomenon of shifting to an increasing side (low side) with respect to the target speed ratio R_t is repeated (reference numerals * 6 to * 9). (See the intersection of the lines), and the target speed ratio R_t or its vicinity is not stable.
 このような実変速比R_rの目標変速比R_tに対する増減変動の原因は、セカンダリ指示圧Psec_dが過剰に高い圧に設定されるためと考えられる。
 つまり、アクセルペダルからの足離しがされると、通常、目標変速比R_tは現状維持或いは現状よりもハイ側に変更される。
 目標変速比が維持されると、プライマリ圧Ppriをセカンダリ圧Psecとの関係で調整して推力バランスを維持することが必要になり、目標変速比がハイ側に変更されると、プライマリ圧Ppriを増大させて推力バランスを変更することが必要になる。
It is considered that the cause of the fluctuation of the actual speed ratio R_r with respect to the target speed ratio R_t is that the secondary command pressure Psec_d is set to an excessively high pressure.
That is, when the foot is released from the accelerator pedal, the target speed ratio R_t is normally maintained or changed to a higher side than the current state.
When the target gear ratio is maintained, it is necessary to maintain the thrust balance by adjusting the primary pressure Ppri in relation to the secondary pressure Psec. When the target gear ratio is changed to the high side, the primary pressure Ppri is increased. It is necessary to increase and change the thrust balance.
 しかし、過剰に高いセカンダリ指示圧Psec_dに応答してセカンダリ実圧Psec_rが高められているため、推力バランスを維持または変更できるだけのプライマリ圧Ppriをすぐには確保できず、フィードバック補正量が蓄積されて増大する。やがて、時間遅れしながら実変速比R_rが目標変速比R_tに達するが、フィードバック補正量の蓄積により増大の影響で実変速比R_rが目標変速比R_t又はその近傍に安定しないで、目標変速比R_tに対して増減変動するのである。 However, since the secondary actual pressure Psec_r is increased in response to the excessively high secondary command pressure Psec_d, the primary pressure Ppri that can maintain or change the thrust balance cannot be secured immediately, and the feedback correction amount is accumulated. Increase. Eventually, the actual speed ratio R_r reaches the target speed ratio R_t with a time delay, but the actual speed ratio R_r is not stabilized at or near the target speed ratio R_t due to an increase due to accumulation of the feedback correction amount. Fluctuates.
 したがって、実変速比R_rの目標変速比R_tからのずれを防ぐためには、プライマリプーリ4のプライマリ圧Ppriに係る変速比フィードバック制御の補正量が過剰に蓄積しないように、スピンリカバー制御のためのセカンダリ指示圧Psec_dの増大を抑えることが有効である。 Therefore, in order to prevent the actual speed ratio R_r from deviating from the target speed ratio R_t, the secondary for spin recovery control is controlled so that the correction amount of the speed ratio feedback control relating to the primary pressure Ppri of the primary pulley 4 is not excessively accumulated. It is effective to suppress the increase in the command pressure Psec_d.
 上記のセカンダリ実圧Psec_rの低下の原因を検討すると、セカンダリ実圧Psec_rの低下は可動シーブ52のストローク速度が速いためであることが判明した。
 図4は変速ストローク速度と油圧低下の関係を示すグラフであり、図5は図3に対応するタイムチャートであり、油圧低下メカニズムを示すものである。図5中の符号※1~※5は図3中の符号※1~※5と対応する。図5に示すように、ストローク速度(線g)は細かく変動しながら、セカンダリ実圧Psec_rが低下するタイミングでロー側又はハイ側に大きな値となっている。
Examination of the cause of the decrease in the secondary actual pressure Psec_r reveals that the decrease in the secondary actual pressure Psec_r is due to a high stroke speed of the movable sheave 52.
FIG. 4 is a graph showing the relationship between the shift stroke speed and the oil pressure decrease, and FIG. 5 is a time chart corresponding to FIG. 3, showing the oil pressure decrease mechanism. The symbols * 1 to * 5 in FIG. 5 correspond to the symbols * 1 to * 5 in FIG. As shown in FIG. 5, while the stroke speed (line g) fluctuates finely, it becomes a large value on the low side or high side at the timing when the secondary actual pressure Psec_r decreases.
 また、このストローク速度の変動と同期するように、発生可能油圧(線a)が変動する。ただし、発生可能油圧は定常収支限界(ポンプの吐出油圧と吐出油量との関係から決まる油圧限界)の油圧(線b)で制限される。
 このような発生可能油圧の変動は、ストローク速度が高まると、作動油の量的な増減が大きくなってこの分だけ発生可能油圧が低下するものと考えられる。
 さらに、発生可能油圧は、アクセルペダルからの足離し後は、エンジン回転数の低下に伴うオイルポンプの吐出圧の低下によって低下していく。
Further, the available hydraulic pressure (line a) fluctuates in synchronization with the fluctuation of the stroke speed. However, the hydraulic pressure that can be generated is limited by the hydraulic pressure (line b) at the steady balance limit (the hydraulic pressure limit determined from the relationship between the discharge hydraulic pressure of the pump and the discharge oil amount).
It is conceivable that such a change in the hydraulic pressure that can be generated is such that when the stroke speed increases, the amount of hydraulic oil that is increased or decreased increases, and the hydraulic pressure that can be generated decreases by that much.
Further, after the foot is released from the accelerator pedal, the possible hydraulic pressure decreases due to a decrease in the discharge pressure of the oil pump accompanying a decrease in the engine speed.
 セカンダリ実圧Psec_rはこの発生可能油圧で制限されるため、発生可能油圧の低下に伴ってセカンダリ実圧Psec_rも減少する(符号※1~※5参照)。
 したがって、セカンダリ実圧Psec_rの低下量は、図4に示すように、ストローク速度の大きさに比例する特性となる。
Since the secondary actual pressure Psec_r is limited by the possible hydraulic pressure, the secondary actual pressure Psec_r also decreases with a decrease in the possible hydraulic pressure (see symbols * 1 to * 5).
Therefore, the amount of decrease in the secondary actual pressure Psec_r has a characteristic proportional to the magnitude of the stroke speed, as shown in FIG.
 このようなストローク速度の増大は、プライマリプーリ4のプライマリ圧Ppriに係る変速比フィードバック制御の補正量が過剰に蓄積することが原因の一つであり、セカンダリ実圧Psec_rの低下を抑制するにはスピンリカバー制御のためのセカンダリ指示圧Psec_dの増大を抑えることが有効である。 One of the causes of such an increase in the stroke speed is that the correction amount of the gear ratio feedback control relating to the primary pressure Ppri of the primary pulley 4 is excessively accumulated. To suppress the decrease in the secondary actual pressure Psec_r It is effective to suppress an increase in the secondary command pressure Psec_d for the spin recovery control.
 また、セカンダリ指示圧Psec_dが発生可能油圧を超えた値に設定されることもセカンダリ実圧Psec_rの低下原因である。発生可能油圧は油圧収支限界の油圧で制限されるため、セカンダリ実圧Psec_rの低下を抑制するには、セカンダリ指示圧Psec_dを少なくともこの油圧収支限界を超えないように設定することが有効である。 こ と Further, the secondary command pressure Psec_d being set to a value exceeding the possible hydraulic pressure is also a cause of the decrease of the secondary actual pressure Psec_r. Since the possible hydraulic pressure is limited by the hydraulic pressure at the hydraulic balance limit, it is effective to set the secondary command pressure Psec_d so as not to exceed at least the hydraulic balance limit in order to suppress a decrease in the secondary actual pressure Psec_r.
 そこで、本装置の変速制御部7Aは、スピン判定部75によりホイールスピンが生じていると判定されたら、セカンダリ指示圧Psec_dを図6に示すような条件1~3を何れも満たす範囲(セカンダリ圧制御領域)内の値に設定している。
 つまり、スピンリカバー制御として必要なベルトの滑りを回避するための下限油圧(ベルト保護のために必要な最低油圧)P1以上であること(条件1)。
 スピンリカバー制御中にアクセルペダルからの足離しがされても変速比の変更を妨げないための第1上限油圧(実変速比R_rのロー側ずれを防ぎ変速不良を防止するための上限油圧)P3以下であること(条件2)。
 油圧収支限界を超えない第2上限油圧(油圧収支上で発生可能な上限油圧)P2(上限値P2)以下であること(条件3)。
 なお、下限油圧P1,第1上限油圧P3,第2上限油圧P2は車両の走行状態に応じた試験結果或いはシミュレーション結果に基づいて車両の走行状態に応じて設定することができる。
Therefore, when the spin determination unit 75 determines that the wheel spin is occurring, the transmission control unit 7A of the present apparatus sets the secondary command pressure Psec_d to a range (secondary pressure) that satisfies all of the conditions 1 to 3 as shown in FIG. Control area).
That is, it must be equal to or higher than the lower limit hydraulic pressure (minimum hydraulic pressure required for belt protection) P1 for avoiding belt slippage necessary for spin recovery control (condition 1).
A first upper limit oil pressure (upper limit oil pressure for preventing a low shift of the actual speed ratio R_r and preventing poor gear shifting) P3 so as not to hinder a change in the speed ratio even if the accelerator pedal is released during the spin recovery control. The following (condition 2).
It must be equal to or less than a second upper limit oil pressure (upper limit oil pressure that can be generated on the oil pressure balance) P2 (upper limit value P2) that does not exceed the oil pressure balance limit (condition 3).
The lower limit oil pressure P1, the first upper limit oil pressure P3, and the second upper limit oil pressure P2 can be set according to the running state of the vehicle based on test results or simulation results according to the running state of the vehicle.
 本実施形態にかかる車両用無段変速機の制御装置は、上述のように構成されているので、例えば図7に示すフローチャートのような処理を行って、ホイールスピンの判定、及び、スピンリカバー制御を含むセカンダリ圧Psecの制御を実施することができる。 Since the control device for a continuously variable transmission for a vehicle according to the present embodiment is configured as described above, for example, the processing as shown in the flowchart of FIG. 7 is performed to determine the wheel spin and perform the spin recovery control. The control of the secondary pressure Psec including the above can be performed.
 まず、駆動輪の回転速度Vdwと従動輪の回転速度Vnwとを取得し(ステップS10)、これらに基づいて、駆動輪の回転加速度(駆動輪加速度)Adwと推定車体加速度Avとを演算する(ステップS20)。そして、車輪速度差(偏差=Vdw-Vnw)と判定基準値ΔVとを比較し、駆動輪の回転加速度Adwと推定車体加速度Avとの偏差(=Adw-Av)と判定基準値ΔAとを比較して、偏差(=Vdw-Vnw)が判定基準値ΔVよりも大きいこと、及び、偏差(=Adw-Av)が判定基準値ΔAよりも大きいこと、の何れかが成立しているかを判定する(ステップS30)。 First, the rotational speed Vdw of the drive wheel and the rotational speed Vnw of the driven wheel are obtained (step S10), and based on these, the rotational acceleration (drive wheel acceleration) Adw of the drive wheel and the estimated vehicle body acceleration Av are calculated ( Step S20). Then, the wheel speed difference (deviation = Vdw-Vnw) is compared with the criterion value ΔV, and the deviation (= Adw-Av) between the rotational acceleration Adw of the drive wheel and the estimated vehicle body acceleration Av is compared with the criterion value ΔA. Then, it is determined whether the deviation (= Vdw−Vnw) is larger than the criterion value ΔV and the deviation (= Adw−Av) is larger than the criterion value ΔA. (Step S30).
 上記条件の何れかが成立していれば、ホイールスピン状態であると判定し(ステップS40)、ステップS50~S70のスピンリカバー制御を実施する。上記条件の何れも成立していなければ、ホイールスピン状態ではないと判定し、セカンダリ圧Psecの指示値として通常時の指示油圧(指示圧)Pnorを設定する(ステップS80)。 れ ば If any of the above conditions is satisfied, it is determined that the wheel is in the spin state (step S40), and the spin recovery control in steps S50 to S70 is performed. If none of the above conditions are satisfied, it is determined that the vehicle is not in the wheel spin state, and the normal command oil pressure (command pressure) Pnor is set as the command value of the secondary pressure Psec (step S80).
 スピンリカバー制御を実施する場合、スピンリカバー制御として必要なベルトの滑りを回避するための油圧としてその下限油圧(ベルト保護のために必要な最低油圧)P1を設定する(ステップS50)。 When the spin recovery control is performed, the lower limit hydraulic pressure (the minimum hydraulic pressure required for protecting the belt) P1 is set as the hydraulic pressure for avoiding the slippage of the belt required for the spin recovery control (step S50).
 そして、下限油圧P1を、油圧収支限界を超えない第2上限油圧P2により規制したものを指示圧Paに設定する(ステップS60)。ベルトの滑りを回避するための下限油圧P1が油圧収支限界である第2上限油圧P2以下であれば、下限油圧P1を指示圧Paに設定するが、下限油圧P1が油圧収支限界である第2上限油圧P2よりも大きければ、第2上限油圧P2を指示圧Paに設定する。 Then, the lower limit hydraulic pressure P1 regulated by the second upper limit hydraulic pressure P2 that does not exceed the hydraulic balance limit is set as the command pressure Pa (step S60). If the lower limit hydraulic pressure P1 for avoiding the belt slip is equal to or less than the second upper limit hydraulic pressure P2 which is the hydraulic balance limit, the lower limit hydraulic pressure P1 is set to the command pressure Pa, but the second lower limit hydraulic pressure P1 is the hydraulic balance limit. If it is higher than the upper limit oil pressure P2, the second upper limit oil pressure P2 is set to the command pressure Pa.
 指示圧Paを、変速不良を防止するための第1上限油圧P3により規制したものを指示圧Pbに設定する(ステップS70)。指示圧Paが変速不良を防止するための第1上限油圧P3以下であれば、指示圧Paを最終指示圧Pbに設定するが、指示圧Paが変速不良を防止するための第1上限油圧P3よりも大きければ、第1上限油圧P3を最終指示圧Pbに設定する。
 これにより、ホイールスピン状態であれば最終指示圧はPbに設定され、ホイールスピン状態でなければ最終指示圧はPnorに設定される(ステップS90)。
The command pressure Pa, which is regulated by the first upper limit oil pressure P3 for preventing shift failure, is set as the command pressure Pb (step S70). If the command pressure Pa is equal to or lower than the first upper limit hydraulic pressure P3 for preventing shift failure, the command pressure Pa is set to the final command pressure Pb, but the command pressure Pa is set to the first upper limit hydraulic pressure P3 for preventing shift failure. If it is larger than the first upper limit hydraulic pressure P3, the first upper limit hydraulic pressure P3 is set to the final command pressure Pb.
As a result, if the wheel is in the wheel spin state, the final command pressure is set to Pb, and if not, the final command pressure is set to Pnor (step S90).
 本制御装置によれば、このように、スピンリカバー制御時に、セカンダリ指示圧Psec_dを条件1~3を満たすセカンダリ圧制御領域の範囲内の値に設定するので、ホイールスピンが発生した際のベルト滑りの発生を抑制しつつ、例えば図8に比較例と対比して示すように、スピンリカバー制御時にアクセルペダルからの足離しを行っても、セカンダリ実圧Psec_rの低下を抑制すると共に、変速不良を防止することができるようになる。 According to the present control device, the secondary command pressure Psec_d is set to a value within the range of the secondary pressure control region that satisfies the conditions 1 to 3 during the spin recovery control, so that the belt slip when the wheel spin occurs occurs. For example, as shown in FIG. 8 in comparison with the comparative example, even if the foot is released from the accelerator pedal during the spin recovery control, the reduction in the secondary actual pressure Psec_r is suppressed, and the shift failure is suppressed. Can be prevented.
 つまり、スピンリカバー制御のためにセカンダリ圧指令値Psec_dが過剰に高く設定されると、図8(a)に示すように、セカンダリ実圧Psec_rの低下が発生し(※10を参照)、実変速比R_rの目標変速比R_tからの大きな乖離(破線内を参照)から所定の変速ができなくなるが、セカンダリ指示圧Psec_dを条件1~3を満たす範囲内の値に設定すると、図8(b)に示すように、セカンダリ実圧Psec_rの低下の発生も抑制され、実変速比R_rの目標変速比R_tからの大きな乖離も抑えられ(破線内を参照)て所定の変速ができるようになる。もちろん、ベルト滑りも抑制することができる。 That is, if the secondary pressure command value Psec_d is set too high for the spin recovery control, as shown in FIG. 8A, the secondary actual pressure Psec_r decreases (see * 10), and the actual speed change occurs. Although a predetermined shift cannot be performed due to a large deviation of the ratio R_r from the target speed ratio R_t (see the broken line), when the secondary command pressure Psec_d is set to a value that satisfies the conditions 1 to 3, FIG. As shown in (2), the occurrence of a decrease in the secondary actual pressure Psec_r is also suppressed, and a large deviation of the actual speed ratio R_r from the target speed ratio R_t is suppressed (see the broken line), whereby a predetermined speed change can be performed. Of course, belt slippage can also be suppressed.
 以上、本発明の実施形態を説明したが、本発明はかかる実施形態を適宜変更して実施してもよい。
 例えば、上記実施形態では、セカンダリ指示圧Psec_dを条件1~3を満たす範囲内の値に設定しているが、条件1,2のみを満たす範囲内の値、つまり、スピンリカバー制御として必要なベルトの滑りを回避するための下限油圧P1以上であり、且つ、スピンリカバー制御中にアクセルペダルからの足離しがされても変速比の変更を妨げないための第1上限油圧P3以下である値、に設定しても一定の効果を得ることができる。
As described above, the embodiments of the present invention have been described, but the present invention may be implemented by appropriately modifying such embodiments.
For example, in the above embodiment, the secondary command pressure Psec_d is set to a value within a range satisfying the conditions 1 to 3, but a value within a range satisfying only the conditions 1 and 2, that is, a belt required for spin recovery control. A value that is equal to or higher than a lower limit oil pressure P1 for avoiding slippage and is equal to or lower than a first upper limit oil pressure P3 for preventing a change in a gear ratio even when a foot is released from an accelerator pedal during spin recovery control; , A certain effect can be obtained.

Claims (4)

  1.  駆動源に駆動連結されたプライマリプーリと、駆動輪に駆動連結されたセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられた無端状のベルトと、前記駆動源によって駆動され、前記プライマリプーリ及び前記セカンダリプーリの各油室に前記ベルトを挟圧する推力を付与するための作動油を供給するオイルポンプと、を備えた車両用無段変速機の制御装置であって、
     車両の走行状態に応じて、前記各油室に供給する作動油の油圧を制御して前記推力を制御することにより、変速比を制御する変速制御部と、
     前記駆動輪にホイールスピンが生じているか否かを判定するスピン判定部と、を備え、
     前記変速制御部は、前記スピン判定部により前記ホイールスピンが生じていると判定されたら、前記推力を付与するための作動油の油圧を制御する油圧指令値を、前記ベルトの滑りを回避するための下限油圧以上であって変速比の変更を妨げないための第1上限油圧以下である値に設定して、前記油圧指令値に基づいて前記油圧を制御する、
     車両用無段変速機の制御装置。
    A primary pulley that is drivingly connected to a driving source, a secondary pulley that is drivingly connected to driving wheels, an endless belt wound around the primary pulley and the secondary pulley, and the primary pulley that is driven by the driving source. And an oil pump for supplying hydraulic oil for applying a thrust for clamping the belt to each oil chamber of the secondary pulley, and a control device for a continuously variable transmission for a vehicle, comprising:
    A shift control unit that controls a gear ratio by controlling a hydraulic pressure of hydraulic oil supplied to each of the oil chambers and controlling the thrust according to a traveling state of the vehicle;
    A spin determination unit that determines whether wheel spin has occurred in the drive wheel,
    The shift control unit is configured to, when the spin determination unit determines that the wheel spin is occurring, change a hydraulic pressure command value for controlling a hydraulic pressure of hydraulic oil for applying the thrust to avoid slippage of the belt. Set to a value that is equal to or higher than the lower limit oil pressure and equal to or lower than a first upper limit oil pressure so as not to hinder the change of the gear ratio, and controls the oil pressure based on the oil pressure command value;
    Control device for continuously variable transmission for vehicles.
  2.  前記変速制御部は、前記スピン判定部により前記ホイールスピンが生じていると判定されたら、前記油圧指令値を、前記ベルトの滑りを回避するための下限油圧以上であって変速比の変更を妨げないための上限油圧以下であり、且つ、油圧収支限界を超えない第2上限油圧以下である値に設定する、
     請求項1に記載の車両用無段変速機の制御装置。
    The shift control unit, when the spin determination unit determines that the wheel spin is occurring, sets the hydraulic pressure command value equal to or higher than a lower limit hydraulic pressure for avoiding slippage of the belt and prevents a change in a gear ratio. Is set to a value that is equal to or less than the upper limit oil pressure for not being present and is equal to or less than a second upper limit oil pressure that does not exceed the oil pressure balance limit.
    The control device for a continuously variable transmission for a vehicle according to claim 1.
  3.  前記変速制御部は、前記セカンダリプーリの油室の作動油の油圧であるセカンダリ油圧を制御することにより前記推力を付与し、前記プライマリプーリの油室の作動油の油圧であるプライマリ油圧を前記セカンダリ油圧に対して制御することにより前記変速比を制御し、
     前記ホイールスピンが生じていると判定されたときには、前記セカンダリ油圧を前記油圧指令値に基づいて制御する、
     請求項1又は2に記載の車両用無段変速機の制御装置。
    The shift control unit applies the thrust by controlling a secondary hydraulic pressure, which is a hydraulic pressure of hydraulic oil in an oil chamber of the secondary pulley, and changes a primary hydraulic pressure, which is a hydraulic pressure of hydraulic oil in an oil chamber of the primary pulley, to the secondary hydraulic pressure. Controlling the gear ratio by controlling the hydraulic pressure,
    When it is determined that the wheel spin has occurred, the secondary hydraulic pressure is controlled based on the hydraulic pressure command value,
    The control device for a continuously variable transmission for a vehicle according to claim 1 or 2.
  4.  駆動源に駆動連結されたプライマリプーリと、駆動輪に駆動連結されたセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられた無端状のベルトと、前記駆動源によって駆動され、前記プライマリプーリ及び前記セカンダリプーリの各油室に前記ベルトを挟圧する推力を付与するための作動油を供給するオイルポンプと、を備えた車両用無段変速機の制御方法であって、
     変速比は、車両の走行状態に応じて前記各油室に供給する作動油の油圧を制御して前記推力を制御することにより制御され、
     前記駆動輪にホイールスピンが生じていると判定されたら、前記推力を付与するための作動油の油圧を制御する油圧指令値を、前記ベルトの滑りを回避するための下限油圧以上であって変速比の変更を妨げないための第1上限油圧以下である値に設定して、前記油圧指令値に基づいて前記油圧を制御する、
     車両用無段変速機の制御方法。
    A primary pulley that is drivingly connected to a driving source, a secondary pulley that is drivingly connected to driving wheels, an endless belt wound around the primary pulley and the secondary pulley, and the primary pulley that is driven by the driving source. And an oil pump for supplying hydraulic oil for applying a thrust to squeeze the belt to each oil chamber of the secondary pulley, and a method of controlling a continuously variable transmission for a vehicle, comprising:
    The gear ratio is controlled by controlling the hydraulic pressure of hydraulic oil supplied to each of the oil chambers according to the running state of the vehicle to control the thrust,
    If it is determined that wheel spin has occurred in the drive wheels, the hydraulic pressure command value for controlling the hydraulic pressure of the hydraulic oil for applying the thrust is not less than the lower limit hydraulic pressure for avoiding slippage of the belt, and the gear shift is performed. Controlling the hydraulic pressure based on the hydraulic pressure command value by setting the hydraulic pressure to a value that is equal to or less than a first upper limit hydraulic pressure so as not to prevent a change in the ratio.
    A control method for a continuously variable transmission for a vehicle.
PCT/JP2019/030851 2018-08-09 2019-08-06 Vehicle continuously-variable transmission control device and vehicle continuously-variable transmission control method WO2020032010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018150812A JP2022024186A (en) 2018-08-09 2018-08-09 Control device of continuously variable transmission for vehicle
JP2018-150812 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020032010A1 true WO2020032010A1 (en) 2020-02-13

Family

ID=69414781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030851 WO2020032010A1 (en) 2018-08-09 2019-08-06 Vehicle continuously-variable transmission control device and vehicle continuously-variable transmission control method

Country Status (2)

Country Link
JP (1) JP2022024186A (en)
WO (1) WO2020032010A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132828A (en) * 1999-11-04 2001-05-18 Mitsubishi Motors Corp Control device of vehicular continuously variable transmission
JP2004116606A (en) * 2002-09-25 2004-04-15 Jatco Ltd Controller of belt-type continuously variable transmission system for vehicle
JP2008045607A (en) * 2006-08-11 2008-02-28 Jatco Ltd Continuously variable transmission control device
JP2009257489A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Controller for continuously variable transmission
WO2015133258A1 (en) * 2014-03-03 2015-09-11 ジヤトコ株式会社 Control device for continuously variable transmission for use in vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132828A (en) * 1999-11-04 2001-05-18 Mitsubishi Motors Corp Control device of vehicular continuously variable transmission
JP2004116606A (en) * 2002-09-25 2004-04-15 Jatco Ltd Controller of belt-type continuously variable transmission system for vehicle
JP2008045607A (en) * 2006-08-11 2008-02-28 Jatco Ltd Continuously variable transmission control device
JP2009257489A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Controller for continuously variable transmission
WO2015133258A1 (en) * 2014-03-03 2015-09-11 ジヤトコ株式会社 Control device for continuously variable transmission for use in vehicles

Also Published As

Publication number Publication date
JP2022024186A (en) 2022-02-09

Similar Documents

Publication Publication Date Title
KR101362103B1 (en) Control device for continuously variable transmission
JP4939915B2 (en) Control device for continuously variable transmission
JP2004125104A (en) Apparatus for judging abnormal decrease in oil pressure of transmission for vehicle
US10711884B2 (en) Control method and control device of continuously variable transmission
JP2009257444A (en) Control device of continuously variable transmission, and control program
KR102532321B1 (en) Method for controlling pulley of continuously variable transmission
CN109690142B (en) Control device for continuously variable transmission
WO2011104884A1 (en) Controller of continuously variable transmission
KR101918429B1 (en) Continuously variable transmission control device and control method
JP5830165B2 (en) Hydraulic control circuit and control method thereof
JP2004092846A (en) Hydraulic sensor fail control device for belt type continuously variable transmission
WO2020032010A1 (en) Vehicle continuously-variable transmission control device and vehicle continuously-variable transmission control method
US11137071B2 (en) Control device and control method for continuously variable transmission
JP2002327835A (en) Controller for continuously variable transmission
JP6831470B2 (en) Control device and control method for continuously variable transmission
WO2020045253A1 (en) Control device and control method for continuously variable transmission
JP4893134B2 (en) Control device for continuously variable transmission for vehicle
JP2010265918A (en) Device and method for controlling continuously variable transmission
JP2008101716A (en) Control device for vehicle continuously variable transmission
JP5120150B2 (en) Control device for continuously variable transmission for vehicle
JP4101563B2 (en) Slip prevention device for continuously variable transmission for vehicle
JP6799580B2 (en) Control device for continuously variable transmission and control method for continuously variable transmission
JP7123565B2 (en) vehicle controller
JP6379065B2 (en) Transmission and transmission control method
JP2020034091A (en) Control device and control method for continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP