WO2020031943A1 - Position estimation method, motor control device, and motor system - Google Patents

Position estimation method, motor control device, and motor system Download PDF

Info

Publication number
WO2020031943A1
WO2020031943A1 PCT/JP2019/030655 JP2019030655W WO2020031943A1 WO 2020031943 A1 WO2020031943 A1 WO 2020031943A1 JP 2019030655 W JP2019030655 W JP 2019030655W WO 2020031943 A1 WO2020031943 A1 WO 2020031943A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
learning data
feature amount
motor
amount learning
Prior art date
Application number
PCT/JP2019/030655
Other languages
French (fr)
Japanese (ja)
Inventor
超 居
剛一 高江
友博 福村
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980051451.9A priority Critical patent/CN112534706B/en
Publication of WO2020031943A1 publication Critical patent/WO2020031943A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present application relates to a method for estimating a mechanical angle of a rotor with high accuracy.
  • the present application also relates to a motor control device and a motor system.
  • a motor such as a permanent magnet synchronous motor generally includes a rotor having a plurality of magnetic poles, a stator having a plurality of windings, and a magnetic sensor such as a Hall element or a Hall IC for sensing magnetic flux formed by the magnetic poles of the rotor. ing.
  • a position sensor such as a rotary encoder or a resolver is used.
  • Japanese Patent Laying-Open No. 2002-112579 discloses a phase detection device that estimates the phase (electrical angle) of a rotor based on the output of a Hall IC.
  • the electrical angle of the rotor is calculated using a phase signal (pulse signal generated in electrical angle units of 60 °) periodically obtained from the output of the Hall IC and the rotational speed of the rotor.
  • a phase signal pulse signal generated in electrical angle units of 60 °
  • phase detection device disclosed in Japanese Patent Application Laid-Open Publication No. 2002-112579 cannot determine from the Hall IC which signal is generated by which magnetic pole pair of the rotor. Further, phase signals periodically obtained from the output of the Hall IC are treated as signals generated at equal intervals. As will be described in detail later, the interval between such phase signals varies. Therefore, the above-described phase detection device cannot estimate the mechanical angle of the rotor with high accuracy.
  • Embodiments of the present disclosure provide a method, a motor controller, and a motor system for estimating a mechanical angle of a rotor by a new algorithm.
  • the method of the present disclosure estimates a position of a rotor in a motor having a rotor, a stator, and a sensor device that outputs an electrical signal that varies periodically with the rotation of the rotor.
  • the computer includes a sequence of a plurality of measurements defining a waveform characteristic of a first electrical signal output from the sensor device when the rotor is rotating.
  • a storage medium that stores first feature amount learning data that is feature amount learning data and that defines a relationship between a plurality of divided regions that define a machine position of the rotor and the plurality of measurement values; Acquiring quantity learning data; receiving a second electrical signal output from the sensor device when the rotor is rotating; and obtaining waveform characteristics of the second electrical signal.
  • a second feature amount learning data including a sequence of a plurality of detection values defining a waveform feature of the output second electric signal, wherein the plurality of segmented regions defining a mechanical position of the rotor and the plurality of segmented regions are provided.
  • the apparatus of the present disclosure is, in an exemplary embodiment, a motor control device used in combination with a motor having a rotor, a stator, and a sensor device that outputs an electrical signal that varies periodically with the rotation of the rotor.
  • a computer that stores a program for operating the computer, wherein the computer generates a waveform characteristic of a first electric signal output from the sensor device when the rotor is rotating.
  • a first feature amount learning data including a sequence of a plurality of defined measurement values, wherein a first relationship defining a plurality of segmented regions defining a machine position of the rotor and the plurality of measurement values is defined.
  • Second feature amount learning data in which a relationship between a plurality of segmented regions defining a mechanical position of the rotor and the plurality of detection values is defined; Learning data and said Based on the difference between the second feature quantity learning data, determining at least one of the deteriorated state of the motor and the sensor device, for execution.
  • a motor system includes a motor having a rotor, a stator, and a sensor device that outputs an electric signal that changes periodically according to rotation of the rotor, and a motor drive that drives the motor. And a motor control device as described above connected to the motor drive device.
  • a method for estimating a mechanical angle of a rotor by performing matching on a sequence of a plurality of numerical values defining a waveform characteristic of an electric signal that periodically changes according to rotation of a rotor An apparatus and a motor system are provided.
  • FIG. 1 is a diagram schematically showing a configuration example of a cross section perpendicular to the center axis of rotation of the motor.
  • FIG. 2 is a graph showing an example of a waveform of an electric signal obtained from the Hall sensors Hu, Hv, and Hw.
  • FIG. 3 is a diagram showing an example of the output waveform of the Hall IC.
  • FIG. 4 is a diagram showing an example of the arrangement of three Hall ICs in the motor.
  • FIG. 5 is a diagram showing an example of a state transition of a digital signal output from each Hall IC.
  • FIG. 6 is a diagram showing the relationship between mechanical positions 0 to 11 and electrical positions E0 to E5.
  • FIG. 7 is a diagram schematically illustrating an example of the measured edge interval.
  • FIG. 1 is a diagram schematically showing a configuration example of a cross section perpendicular to the center axis of rotation of the motor.
  • FIG. 2 is a graph showing an example of a waveform of an electric signal obtained
  • FIG. 8 is a schematic diagram in which the measured value of the angle width ⁇ [i] is represented by the bar height for each machine position [i].
  • FIG. 9 is a flowchart illustrating a processing procedure of an exemplary position estimation method.
  • FIG. 10A is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is relatively large.
  • FIG. 10B is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is the minimum.
  • FIG. 11 is a diagram for explaining the mechanical angle estimation process.
  • FIG. 12 is a diagram for explaining the mechanical angle estimation processing in detail.
  • FIG. 13 is a schematic diagram for explaining a method of calculating the mechanical angle by calculating the rotation speed V for each period ⁇ t in the divided area N.
  • FIG. 10A is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is relatively large.
  • FIG. 10B is a diagram schematically illustrating an example
  • FIG. 14 is a flowchart illustrating a procedure of an example of a mechanical angle estimation process after determination of a segmented area.
  • FIG. 15 is a diagram schematically illustrating an example of a reference that is continuously updated and changes.
  • FIG. 16 is a flowchart illustrating a procedure of an exemplary reference update process.
  • FIG. 17A is a schematic diagram in which the measured value of the angular width for each of the divided areas determined based on the normal matching result until the time t is represented by the height of the bar.
  • FIG. 17B is a schematic diagram showing measured values of the angle width for each of the divided areas acquired after time t.
  • FIG. 18 is a flowchart illustrating a procedure of an exemplary abnormality determination process.
  • FIG. 18 is a flowchart illustrating a procedure of an exemplary abnormality determination process.
  • FIG. 19A is a schematic diagram illustrating an example of a reference at the time of factory shipment.
  • FIG. 19B is a schematic diagram illustrating an example of an updated reference.
  • FIG. 20 is a flowchart illustrating a procedure of an exemplary time-dependent deterioration determination process.
  • FIG. 21 is a diagram illustrating a configuration example of an exemplary motor system.
  • FIG. 22 is a diagram illustrating an example of a hardware configuration of a motor control device in an exemplary motor system according to the present disclosure.
  • FIG. 23 is a diagram illustrating a configuration example of a processing block of an exemplary motor control device according to the present disclosure.
  • FIG. 1 is a cross-sectional view schematically illustrating a schematic configuration of a motor M including a rotor R having a plurality of magnetic poles N0, S0, N1, and S1, and a stator S. This sectional view is perpendicular to the central axis of rotation of the rotor R.
  • the motor M in FIG. 1 has a configuration of four poles and six slots, and the stator S has six teeth (not shown). The six teeth are excited by U-phase, V-phase, or W-phase windings, respectively. The windings are connected to a drive, not shown.
  • the motor M in this example includes three Hall elements Hu, Hv, Hw.
  • the Hall elements Hu, Hv, Hw are arranged at different positions which are rotated by a predetermined angle around the central axis of rotation of the rotor R.
  • the Hall elements Hu, Hv, Hw respectively sense magnetic fluxes formed by the magnetic poles N0, S0, N1, S1 of the rotor R, and output analog electric signals.
  • FIG. 1 the arrangement of the magnetic poles N0, S0, N1, and S1 is schematically illustrated for simplicity.
  • the actual magnetic poles N0, S0, N1, S1 are respectively provided by permanent magnets provided on or inside the rotor R.
  • the magnetic poles N0 and N1 form N poles at different positions on the surface of the rotor R, respectively.
  • the magnetic poles S0 and S1 form S poles at different positions on the surface of the rotor R, respectively.
  • the magnetic poles N0 and S0 form a first magnetic pole pair
  • the magnetic poles N1 and S1 form a second magnetic pole pair.
  • the rotor R in this example has two “magnetic pole pairs”.
  • the “number of magnetic pole pairs” may be referred to as a pole pair number NPP .
  • these magnetic poles N0, S0, N1, S1 form a magnetic flux ⁇ g in a gap between the rotor R and the stator S, and contribute to magnet torque.
  • One cycle of the sine wave of the magnetic flux ⁇ g corresponds to each magnetic pole pair.
  • the magnetic flux ⁇ g becomes sinusoidal with a period equal to the “number of magnetic pole pairs”. Vibrate.
  • the number of pole pairs NPP is 2
  • the circumferential position ⁇ s changes by 2 ⁇ radians (360 °) along the outer peripheral surface of the rotor R
  • the magnetic flux ⁇ g becomes sinusoidal for two periods.
  • the angle at which the magnetic flux ⁇ g changes sinusoidally for one cycle that is, the angle corresponding to “one magnetic pole pair” is defined as “360 ° electrical angle”.
  • the angle at which the rotor R makes one physical (mechanical) rotation around the central axis of rotation is defined as “360 ° of mechanical angle”.
  • “360 ° of mechanical angle” when “360 ° of mechanical angle” is converted into an electrical angle, it is “360 ° ⁇ the number of pole pairs N PP ”.
  • the Hall elements Hu, Hv, and Hw respectively provide the intensity (magnetic flux density) and direction of the magnetic flux formed by the magnetic poles N0, S0, N1, and S1 of the rotor R. May output an electric signal such as a voltage that changes in response to the signal.
  • the output (for example, voltage) of the Hall element Hu can show a maximum value.
  • the output of the Hall element Hu decreases as the center of the magnetic pole N0 moves away from the Hall element Hu.
  • the output of the Hall element Hu can show a minimum value.
  • the output of the Hall element Hu can show the next maximum value.
  • the output of the Hall element Hu changes periodically according to the rotational position of the rotor R.
  • the Hall elements Hv and Hw also change periodically according to the rotational position of the rotor R, similarly to the Hall element Hu.
  • the Hall elements Hv, Hw are located at positions rotated from the position of the Hall element Hu by a predetermined angle (120 ° in electrical angle) with respect to the center axis of rotation, and therefore the Hall elements Hu, Hv, Hw include the magnetic poles N0, S0. , N1, and S1 are sensed at mutually different phases, and electric signals are output.
  • the arrangement intervals of the Hall elements Hu, Hv, and Hw are not strictly 120 degrees in electrical angle, but generally vary randomly from 120 degrees by an amount corresponding to the mounting error.
  • FIG. 2 is a diagram illustrating a waveform example of an electric signal output from the Hall elements Hu, Hv, and Hw when the rotor R makes one rotation around the rotation center.
  • the horizontal axis is the rotational position of the rotor R, and the vertical axis is the voltage.
  • the output of the Hall element Hu is indicated by a dashed line
  • the output of the Hall element Hv is indicated by a dotted line
  • the output of the Hall element Hw is indicated by a solid line.
  • the output (solid line) of the Hall element Hw in FIG. 2 while the rotor R makes one rotation around the center of rotation, voltages having different maximum values are output at two different rotation positions. You can see that there is.
  • One of the causes that the voltage output from the same Hall element Hw indicates a different maximum value may be that the magnetomotive force differs between the magnetic pole N0 and the magnetic pole N1 of the rotor R.
  • the Hall elements Hu, Hv, Hw can output electric signals with different sensitivities (gains) in response to the same magnetic flux. Such differences in sensitivity are caused by individual differences due to manufacturing variations of the Hall elements Hu, Hv, and Hw, and misalignment of directions and / or positions that can occur when the Hall elements Hu, Hv, and Hw are fixed to the motor. Can depend. Also, the sensitivity can change depending on the temperature. Such temperature dependence may differ depending on the Hall elements Hu, Hv, Hw.
  • FIG. 3 is a diagram illustrating an example of an output waveform of the Hall IC.
  • the Hall IC senses a magnetic flux (specifically, magnetic flux density) that changes in accordance with the rotation of the rotor R, and outputs a digital signal that transitions between a logical low (Low) and a logical high (High).
  • a logical low (Low) may be displayed as “L”
  • a logical high (High) may be displayed as “H”.
  • a general Hall IC incorporates the above-described Hall element and IC circuit.
  • Such an IC circuit can be configured to transition from Low to High when the output (analog signal) of the Hall element exceeds the threshold Th1, for example, and transition from High to Low when the output (analog signal) falls below the threshold Th2 (Th1). > Th2).
  • FIG. 4 shows a configuration example of a motor M in which three Hall ICs (H1, H2, H3) are arranged at positions rotated by a predetermined angle (120 ° in electrical angle) with respect to the center axis of the rotation of the rotor R. This is schematically shown.
  • the electric signals (digital signals) output from the three Hall ICs (H1, H2, H3) are indicated by “H1,” “H2,” and “H3,” respectively.
  • the signals H1, H2, H3 periodically transition between Low and High at mutually different phases.
  • FIG. 5 is a diagram illustrating an example of a state transition of the signals H1, H2, and H3.
  • the horizontal axis represents time or the rotational position of the rotor.
  • FIG. 5 shows a state transition of two cycles in electrical angle.
  • the combination of each state (“L” or “H”) of the signals H1, H2, and H3 changes in six steps within one cycle (360 degE) of the electrical angle.
  • the row of vertical arrows in FIG. 5 is a row of phases ⁇ 0 , ⁇ 1 , ⁇ 2 ,... Indicating timings of rising edges and falling edges in digital signals output from three Hall ICs.
  • a phase signal is generated each time the rotor R rotates by 60 electrical degrees.
  • the time of the phase ⁇ 0 , ⁇ 1 , ⁇ 2 ,... Of the edge is caused by unevenness of the magnetomotive force distribution on the outer peripheral surface of the rotor R, the individual difference of the Hall element, and the mounting variation.
  • the interval (edge interval) is not constant.
  • the i-th phase signal is represented by ⁇ [i]
  • the time interval (edge interval) from the edge phase ⁇ [i ⁇ 1] to the edge phase ⁇ [i] is represented by ⁇ t [i]. is there.
  • Table 1 below is a table showing an example of a relationship between a combination of each state (“L” or “H”) of the signals H1, H2, and H3 and the phase of the rotor R.
  • the phase of the rotor R is defined by the electrical angle of the rotor R.
  • the phase (electrical angle) of the rotor R is included in any of the six regions equally dividing the electric angle of 360 °. These six regions are referred to as "electrical locations.” In this specification, numbers of E0, E1, E2, E3, E4, and E5 are assigned to the six “electrical positions”, respectively.
  • “Electrical location” has a width of about 60 electrical degrees.
  • the current phase of the rotor R can be detected from a combination of the respective states (“L” or “H”) of the signals H1, H2, and H3. For example, when the signals H1, H2, and H3 are "H”, “L”, and “L”, respectively, the phase of the rotor R is at the electrical position E1. When the rotor R rotates and the signal H2 changes from “L” to “H”, that is, when the signals H1, H2, and H3 are “H”, “H”, and “L”, respectively, the phase of the rotor R is It can be seen that the electric position E1 has shifted to the electric position E2.
  • the current electrical position of the rotor R can be determined from the combination of the respective states ("L” or "H") of the signals H1, H2, and H3, but the mechanical angle of the rotor R cannot be specified. As shown in FIG. 5, the state in which the signals H1, H2, and H3 are "H", "L", and “L” respectively appears at a cycle of 360 electrical degrees with the rotation of the rotor R. During one mechanical rotation of the rotor R, the electrical position of the rotor R shows the same value as the number of magnetic pole pairs. If only the motor is rotated, the electrical position of the rotor R or the phase (electrical angle) of the rotor R may be detected, and there is no need to detect or estimate the mechanical angle of the rotor.
  • FIG. 6 is a diagram showing a relationship between mechanical positions 0 to 11 and electrical positions E0 to E5.
  • the “mechanical position” is a physical position of the rotor determined by a combination of the respective states (“L” or “H”) of the signals H1, H2, and H3 and the magnetic pole pair that causes the states to be generated in the Hall IC. is there.
  • Each “machine position (section area)” has a unique angular width. The angular width is defined by the interval (edge interval) between the rising edge and the falling edge in the waveform P in FIG.
  • the angle width of each machine position (section area) is about 30 ° in mechanical angle, but the total value of the angle widths of 12 machine positions (section areas) is exactly 360 °. is there. Note that the angular width of each machine position (sectioned area) does not need to be quantified in mechanical angle, but may be quantified in electrical angle. In this specification, the angular width of the machine position may be referred to as a “feature amount”.
  • the edge spacing of the digital signal may be different at different machine positions.
  • the edge interval ( ⁇ [1] ⁇ [0]) at the mechanical position 0 may be different from the edge interval ( ⁇ [7] ⁇ [6]) at the mechanical position 6.
  • FIG. 7 is a diagram schematically illustrating an example of an edge interval measured when the rotor R is rotating at a constant speed.
  • a time ⁇ t [i] from the detection of the edge phase ⁇ i to the detection of the next edge phase ⁇ i + 1 is measured by, for example, a timer in a computer.
  • the segmented area defined by the edge phase ⁇ i and the edge phase ⁇ i + 1 is the machine position i.
  • the angular width ⁇ [i] of the machine position i that is, the mechanical angle at which the rotor R rotates between the generation (detection) of the edge phase ⁇ i and the generation (detection) of the edge phase ⁇ i + 1 is ⁇ t [i] ⁇ machine It is equal to the angular velocity V.
  • ⁇ t [i] is the time required for a rotation of 360 ° mechanical angle (one rotation of the rotor), and “degM” is a unit of mechanical angle.
  • the arrangement of the measured values of the angle width ⁇ [i] defines the waveform characteristics of the electric signal output from the sensor device that outputs the electric signal that changes periodically according to the rotation of the rotor.
  • the feature amount learning data in which the relationship between the mechanical position [i] of the rotor and the measured value of the angle width ⁇ [i] is specified is such that the motor is actually operated and the rotor is driven at a constant speed. Obtained while rotating with.
  • the rotation of the rotor is not limited to one rotation.
  • the angle width ⁇ [i] of each machine position [i] may be determined by averaging the values measured in the process of the rotor making multiple rotations. The data thus obtained can be stored in a storage medium as feature amount learning data (table).
  • a feature amount learning data including a sequence of a plurality of measurement values defining a waveform feature of an electric signal output from such a sensor device is used as a reference, and the mechanical position or mechanical angle of the rotor is determined.
  • the feature amount learning data is data that defines a relationship between a plurality of machine positions (a plurality of divided areas) of the rotor and a plurality of measured values.
  • Such feature amount learning data may be generated, for example, before shipping the motor or at the time of startup, and may be stored in a storage medium.
  • a sequence of a plurality of detection values that define the waveform characteristics of the electric signal output from the sensor device is acquired.
  • the position estimation method of the present disclosure estimates, in a non-limiting, exemplary embodiment, a rotational position of a rotor in a motor including a rotor and a stator.
  • This motor includes a sensor device that outputs an electric signal that changes periodically according to the rotation of the rotor.
  • a typical example of the sensor device is a non-contact magnetic sensor that converts a magnetic field generated in a motor into an electric signal and outputs the electric signal, such as a Hall element or a Hall IC.
  • FIG. 9 is a flowchart illustrating a processing procedure of the position estimation method according to the embodiment of the present disclosure.
  • This position estimating method is a method implemented in a computer, and the computer determines at least the segmented region where the rotor exists by executing the following processes (1) to (3). Note that the “step” in parentheses in each process represents the step in FIG.
  • the computer rotates the rotor at a constant speed (step S1).
  • the computer acquires the feature amount learning data from the storage medium storing the feature amount learning data (step S2).
  • the feature amount learning data includes an array of a plurality of measurement values that define the waveform feature of the first electric signal output from the sensor device when the rotor is rotating.
  • a relationship between a plurality of segmented regions that define the machine position of the rotor and a plurality of measured values is defined.
  • Such feature amount learning data may be acquired during an off-line operation, for example, before the motor is shipped from a factory, and may be stored in a recording medium. However, the feature amount learning data may be updated when the shipped motor is operating or when the motor is stopped.
  • Process (2) When the rotor is rotating, the computer receives the second electric signal output from the sensor device. Then, a plurality of detection values that define the waveform characteristics of the second electric signal are sequentially acquired, respectively (step S3). These detection values may typically be obtained immediately after the motor user has started the motor by power cycling, or during operation of the motor. For this reason, an arrangement of a plurality of detection values that define the waveform characteristic of the second electric signal may be referred to as an “online detection value”.
  • Process (3) The computer performs matching between at least one detected value including the latest detected value among the plurality of detected values, and a sequence of a plurality of measured values included in the feature amount learning data (Ste S4). With this matching, the computer determines a segmented area associated with the current machine position of the rotor (step S5).
  • a computer that controls the motor starts the motor, and rotates the rotor in a predetermined direction at a constant speed by a known motor control algorithm such as vector control.
  • a motor control algorithm such as vector control.
  • the electrical position of the rotor is determined according to the output of a sensor device such as a Hall IC.
  • the computer shifts from the normal operation mode to the matching mode.
  • a plurality of detection values that define the waveform characteristics of the second electric signal output from the sensor device are sequentially obtained.
  • the “plurality of detection values” in the present embodiment is obtained by performing the same measurement as that performed when acquiring the feature amount learning data.
  • the “plurality of detected values” are obtained by sequentially measuring the elapsed time of the edge interval between adjacent rising edges and falling edges in the digital signal output from the Hall IC, and , Obtained by determining the angular width of the individual edge intervals based on the elapsed time of the individual edge intervals measured during one mechanical revolution of the rotor at a constant speed.
  • an average value of the elapsed time of the individual edge intervals measured during two or more mechanical rotations of the rotor at a constant speed may be used.
  • the past three detected values thus obtained are, for example, 60.6 °, 58.2 °, and 62.1 ° in electrical angle.
  • the machine positions corresponding to the past three detected values can be determined to be the machine positions 5, 6, and 7, respectively.
  • the current rotor is at the machine position 8.
  • the past three detected values are used for matching, but matching may be performed using U (U is an integer of 1 or more) detected values.
  • U is preferably 2 or more, typically 3 or more.
  • the case where U is 1 means that the machine position is determined by one detected value.
  • mapping is performed with reference to the feature amount learning data in Table 2 to find the closest feature amount learning data. It is possible to determine that the machine position corresponding to the found feature amount learning data is the machine position at which the one detected value is obtained.
  • the matching can be performed so as to minimize the sum of absolute values of the error of the feature amount (difference between the measured value and the detected value) or the sum of squares of the error. Since the electric position is determined based on the outputs from the three Hall ICs, the matching can be completed if the magnetic pole pair can be specified.
  • FIG. 10A is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is relatively large.
  • FIG. 10B is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is the minimum.
  • a broken line indicates a sequence of measured values (reference), and a solid line indicates a sequence of detected values.
  • the computer determines that the matching is established.
  • the state where the matching is established may be expressed as “Matched”. If “Matched”, the current machine position (section area) of the rotor is determined. If the value of the sum of squares is equal to or greater than a predetermined threshold, the computer outputs an error. If an error is output, the machine position (section area) of the rotor is not determined.
  • Each of the above processes can be performed by a general-purpose microcontroller, a microcontroller for a motor, or a computing device such as a digital signal processing device (DSP).
  • DSP digital signal processing device
  • An analog signal output from a sensor device having a Hall element is converted into a digital signal by, for example, an AD conversion circuit.
  • a digital signal output from a sensor device having a Hall IC can typically be input to a computing device as it is.
  • the above-described embodiment using three Hall ICs as the sensor device is an example.
  • a Hall element may be used instead of the Hall IC, and the number of sensor devices may be four or more.
  • the waveforms of FIGS. 2, 5, and 6 are changed to waveforms of the number corresponding to the number of sensor devices, and a combination of High and Low corresponding to the number of waveforms is obtained.
  • the above-described concept can be applied to the case where the rotation direction of the motor is normal rotation and reverse rotation. That is, the measured values of the mechanical position i and the angle width ⁇ [i] in Table 2 can be obtained for each of the forward and reverse rotations of the motor.
  • the feature amount learning data may include a function that gives the mechanical angle of the rotor at each end of each of the plurality of divided regions or the angular width of each divided region as a variable with the mechanical position and the rotation direction of the rotor.
  • FIG. 11 is a diagram for explaining the mechanical angle estimation process.
  • the mechanical angle is the mechanical angle ⁇ 2 at the head position (edge position) of the determined divided area (area number 2 in FIG. 11), and the edge position , And the sum ( ⁇ 2 + ⁇ ) with the current mechanical angle ( ⁇ ) of the rotor.
  • the computer can determine the mechanical angle by calculating ( ⁇ 2 + V ⁇ ⁇ t).
  • ⁇ 2 + V ⁇ ⁇ t a method of obtaining V and ⁇ t required for performing this calculation will be described.
  • FIG. 12 is a diagram for explaining the mechanical angle estimation processing in detail. In order to generalize the description, it is assumed that the determined divided area is N and the mechanical angle to be obtained is ⁇ (t).
  • ⁇ n is a mechanical angle at the head position (edge position) of the determined divided area N.
  • the rotation speed V of the rotor in the divided region N approximately matches the rotation speed of the immediately preceding divided region (N-1).
  • the rotation speed V of the immediately preceding section (N-1), that is, the rotation speed V of the rotor in the section N can be obtained as follows. (Equation 5)
  • t n and t n-1 are timer values of the passing times at the head position and the end position of the immediately preceding segmented area (N-1), respectively. Note that a time value converted from the timer value can be used instead of the timer value itself.
  • the start position and the end position of the segmented area (N-1) correspond to one and the other of the adjacent rising edge and falling edge in the digital signal output from the Hall IC, which define the segmented area (N-1). is there.
  • the integration range ⁇ T in Expression 6 is a timer value or a time value converted from the timer value.
  • FIG. 12 shows a simple method of calculating the mechanical angle when the rotation speed V is assumed to be constant in the segmented area N. However, a more accurate method of calculating the mechanical angle may be employed.
  • FIG. 13 is a schematic diagram for explaining a method of calculating the mechanical angle by calculating the rotation speed V for each period ⁇ t in the divided area N.
  • the beginning of the passage time of the edge position of the segment area N is t n
  • mechanical angle is theta n.
  • the period ⁇ t is shorter than the time from the start position to the end position of the divided area N.
  • the period ⁇ t is, for example, the operation period of the microcomputer, and a specific example is 50 microseconds.
  • the mechanical angle ⁇ (t) is obtained by the following calculation.
  • V [k] represents the rotation speed of the rotor in the k-th cycle in the divided area N.
  • V [k] is obtained by dividing the difference between the mechanical angle at the start position and the mechanical angle at the end position in the k-th cycle by ⁇ t.
  • the mechanical angle estimation method shown in FIG. 12 estimates the mechanical angle by regarding the rotation speed in the immediately preceding segmented area as the current rotational speed in the segmented area.
  • the method of estimating the mechanical angle shown in FIG. 13 is based on the assumption that the rotational speed obtained in the immediately preceding operation cycle in the current divided area is not the rotational speed in the immediately preceding divided area but the rotation speed in the current operation cycle.
  • the mechanical angle assuming. In the latter estimation method, since the rotation angle for each ⁇ t can be more accurately obtained, the obtained mechanical angle is more accurate.
  • FIG. 14 is a flowchart illustrating the procedure of the mechanical angle estimation process after the determination of the segmented area. Here, a mechanical angle estimation process shown in FIG. 12 is illustrated.
  • step S11 the computer rotates the rotor at a constant speed.
  • step S12 the computer calculates the mechanical angle ⁇ n at the head position of the current segmented area according to Equation 4.
  • step S13 the computer acquires the elapsed time ⁇ T from the latest detection of the rising edge or the falling edge of the digital signal output from the Hall IC.
  • step S14 the computer calculates the rotational speed V of the rotor at the time of passing through the immediately preceding segmented area according to Equation 5.
  • step S15 the computer outputs an estimated value of the mechanical angle according to Equation 6.
  • Equation 6 in Step S15 may be replaced with Equation 7.
  • the rotation speed V of the divided area N approximately matches the rotation angle of the immediately preceding divided area (N-1). Therefore, the rotation angle V was obtained by dividing the mechanical angle of the segmented area (N-1) by the passing time.
  • the rotation speed V of the divided region N may be obtained by using the rotation speed of the divided region further before the immediately preceding divided region.
  • the rotation speed V of the divided area N may be obtained by dividing the total value of the mechanical angles of the plurality of immediately preceding divided areas by the passing time of the plurality of divided areas.
  • the rotation speed of the rotor may be calculated.
  • the rotation speed of the segmented region X or more before is regarded as the rotation speed of the segmented region N.
  • the rotation speed may be obtained.
  • the reference broken line
  • the detected value solid line
  • One of the reasons is a difference between an operating condition when a measured value as a reference is obtained and an operating condition when a detected value is obtained.
  • the operating condition here is, for example, an environmental temperature.
  • the sensitivity of the Hall IC can change depending on the temperature.
  • the gap between the rotor and the stator can also vary with temperature. These can change the characteristic amount of the motor.
  • the existing reference is updated with the detection value obtained under the current operating condition and used for the subsequent matching processing.
  • the sum of squares of the error used in the evaluation of the matching can be further reduced.
  • the computer determines that the matching is established, the computer updates the existing reference with the arrangement of the detection values as a new reference. More specifically, the computer overwrites the existing reference stored in the memory with the new reference.
  • FIG. 15 schematically illustrates an example of a reference that is continuously updated and changes.
  • the establishment of the matching is a necessary condition for updating the reference, no significant change is observed between the reference before and after the update.
  • some or all of the measurements change gradually and approach the detected values obtained under the current operating conditions.
  • the sum of squares of the error which is a condition for the success or failure of the matching, can be further reduced.
  • the computer may lower the sum-of-squares error threshold.
  • the reference updating process may be performed not only when the matching is established, but also after the process of estimating a more detailed position (mechanical angle) of the rotor is completed.
  • the reference at the time of factory shipment may be maintained, and a separately updatable reference may be prepared and updated.
  • the process of updating the reference after the rotor mechanical angle estimation process will be described.
  • FIG. 16 is a flowchart illustrating the procedure of the reference update process.
  • step S21 the computer retains, in a buffer, the arrangement of the detection values when it is determined that the matching is established.
  • the buffer is a storage element included in a general computer (CPU).
  • step S22 the computer determines whether an updatable reference already exists in the storage medium.
  • the “updatable reference” means a reference that can be updated (overwritten), unlike a reference at the time of factory shipment.
  • the reference at the time of shipment from the factory is given an overwrite-disabled attribute so as not to be overwritten.
  • the reference at the time of factory shipment may be stored in a non-rewritable storage medium (for example, ROM).
  • step S23 If the updatable reference does not already exist in the storage medium, the process proceeds to step S23. If an updatable reference already exists in the storage medium, the process proceeds to step S24.
  • step S23 the computer newly creates an updatable reference in the order of the detected values held in the buffer, and stores it in the storage medium. Thereafter, the computer ends the processing.
  • step S24 the computer overwrites the updatable reference with the sequence of the detection values held in the buffer. Thereafter, the computer ends the processing.
  • the reference used for the matching processing can be updated while maintaining the reference at the time of factory shipment.
  • an abnormality determination process for determining that the motor is in an abnormal state, such as a failure, when determining the success or failure of the matching.
  • FIG. 17A is a schematic diagram in which the measured value of the angular width for each of the divided areas determined based on the normal matching result up to time t is represented by the bar height. Attention is now focused on the set C1 of the angular widths of the divided areas 2 and 3 acquired at the time t.
  • FIG. 17B is a schematic diagram showing measured values of the angle width for each of the divided areas acquired after time t.
  • the set C2 of the angular widths of the divided areas 2 and 3 largely deviates from the set C1 of the angular widths of the divided areas 2 and 3 acquired at the time t. It is understood that the set C2 has a larger angular width of the divided area 2 and a smaller angular width of the divided area 3. Therefore, for example, a threshold value is set in advance for the absolute value or the sum of the squares of the differences of all the angle widths, and if the threshold value is exceeded, the computer determines that the motor is in an abnormal state. The computer switches to control for stopping the rotor according to the determination result.
  • a reference value of the angle width of each sectioned area an angle width obtained in the immediately preceding process or obtained within a predetermined time range may be adopted, or an angle width of each sectioned area prepared in advance May be adopted.
  • the computer may perform the above-described abnormality determination regardless of the success or failure of the matching.
  • FIG. 18 is a flowchart illustrating the procedure of the abnormality determination process.
  • step S31 the computer obtains the current estimated value of the angle width.
  • step S32 the computer determines whether the matching has been completed within a predetermined time. If completed, the process proceeds to step S33; if not completed, the process proceeds to step S34.
  • step S33 the computer determines whether or not the absolute value or the sum of the squares of the difference between the angle width of each of the divided areas and the previously prepared reference angle width is within a threshold value. If it is within the threshold, it is determined that there is no abnormality, and the process ends. On the other hand, if it exceeds the threshold, it is determined that there is an abnormality, and the process proceeds to step SS34.
  • step S34 the computer determines that a motor abnormality has occurred.
  • the computer can specify the machine position at which the absolute value or the square of the difference exceeds a predetermined value and increases, and determines that an abnormality has occurred in the motor at the machine position.
  • the computer outputs a signal indicating the machine position where the abnormality has occurred.
  • a buzzer (not shown) is sounded and / or a warning indicating the machine position where the abnormality has occurred is displayed on a display device (not shown).
  • the computer may switch the currently executing process of rotating the rotor of the motor to the process of stopping the rotation of the rotor. For example, the computer stops the rotation of the rotor by interrupting the current supplied to the motor.
  • the computer may output a signal indicating that either the motor or the Hall IC (sensor device) is in an abnormal state.
  • a buzzer (not shown) is sounded and / or a warning indicating failure is displayed on a display device (not shown).
  • the computer may record a signal indicating that either the motor or the Hall IC (sensor device) is in an abnormal state in a storage medium. For example, at the time of maintenance of the motor, the user can take a measure such as repairing a failed part in accordance with a signal recorded in the storage medium.
  • the computer can also perform other applied processing.
  • the individual recognition of the motor can be performed by utilizing that the detection value acquired in the matching indicates the characteristic amount unique to the motor. Normally, it is assumed that the matching is completed within 0.1 seconds. However, if the matching process is performed continuously for one second but the matching is not established, the reference and the detection value are so different that the matching cannot be performed, that is, a motor different from the motor that obtained the reference, or It is possible to determine an abnormal state in which a motor is not mounted. Therefore, the computer can switch to a process of not driving the motor. Thereby, control can be permitted only for a specific motor. Further, a signal indicating that the motor does not conform to the reference may be output. Thus, the user can be notified that a different motor has been detected.
  • the relevant supplier may obtain a unique reference for the non-conforming motor, for example, a communication line. Or installed on a computer via a removable storage medium. As a result, matching is established for the motor that has been determined to be unsuitable until now, and the motor can be controlled.
  • the updated reference originally has a difference from the reference at the time of factory shipment.
  • the difference may be due to different operating conditions, but may actually be due to aging. In the case of aging, the difference can be progressively greater for some or all of the reference. Therefore, it is possible to determine whether or not deterioration with time has progressed using the updated reference and the reference at the time of factory shipment.
  • FIG. 19A is a schematic diagram illustrating an example of a reference at the time of factory shipment.
  • FIG. 19B is a schematic diagram illustrating an example of an updated reference.
  • the angular width of the segmented area 8 the reference at the time of shipment from the factory and the updated reference substantially match.
  • the set of angular widths of the segmented areas 2 and 3 is different from the reference set C3 at the time of factory shipment and the updated reference set C5. These differences can be evaluated using the absolute value or the sum of squares of the difference between the angular widths of the two references.
  • the deterioration with time can occur due to, for example, eccentricity of the rotor, demagnetization of the magnet used for the rotor, and reduction in sensitivity of the Hall IC. Therefore, it is possible to determine whether or not at least one of the motor and the Hall IC (sensor device) has deteriorated with time. Note that the determination of the presence or absence of temporal deterioration may be referred to as “determination of a deteriorated state”.
  • FIG. 20 is a flowchart illustrating the procedure of the time-dependent deterioration determination process.
  • the processing according to this flowchart may be executed, for example, at the time of starting the motor or at a regular timing after a predetermined time has elapsed since the start of the motor.
  • step S41 the computer acquires the current reference and the reference at the time of factory shipment from the storage medium.
  • step S42 the computer determines whether or not the absolute value or the sum of the squares of the difference between the angular widths of the divided regions of both references is within a predetermined threshold. If it is within the threshold value, it is determined that there is no deterioration over time, and the process ends. On the other hand, if it exceeds the threshold, it is determined that there is deterioration over time, and the process proceeds to step S43.
  • step S43 the computer determines that the motor has deteriorated with time. Then, the computer outputs a signal indicating that at least one of the motor and the Hall IC (sensor device) has deteriorated with time. With the signal, the user can be notified of the occurrence of temporal deterioration. For example, in response to the signal, a buzzer (not shown) is sounded and / or a warning indicating that the display device (not shown) is deteriorated is displayed. Thereby, the user can be notified of the deterioration over time.
  • a buzzer not shown
  • a warning indicating that the display device (not shown) is deteriorated is displayed. Thereby, the user can be notified of the deterioration over time.
  • the matching process and the machine position estimating process it is possible not only to estimate the accurate position of the rotor, but also to determine abnormality and deterioration over time of the motor.
  • FIG. 21 is a diagram illustrating a configuration example of the motor system 1000 according to the embodiment of the present disclosure.
  • the motor system 1000 illustrated in FIG. 21 includes a motor M to which a sensor device 20 having Hall ICs (H1, H2, H3) is attached.
  • the motor M includes a rotor R having a plurality of magnetic poles and a stator S having a plurality of windings.
  • a typical example of the motor M in the present disclosure is a permanent magnet synchronous motor such as a brushless DC motor, but is not limited to this example.
  • the motor system 1000 includes a motor drive device 30 that drives the motor M, and a motor control device 40 connected to the motor drive device 30.
  • a motor drive device 30 that drives the motor M
  • a motor control device 40 connected to the motor drive device 30.
  • bidirectional white arrows are shown between blocks. This arrow does not mean that information such as signals and data can always move in two directions. For example, between the motor drive device 30 and the motor control device 40, a signal may be sent from the motor control device 40 to the motor drive device 30 in one direction.
  • the motor system 1000 is connected to the external device 70.
  • the motor control device 40 receives command values such as a position command value and a speed command value from the external device 70, and executes control processing according to, for example, a known vector control algorithm.
  • Motor control device 40 outputs a voltage command value.
  • the motor driving device 30 applies a voltage necessary for the rotation operation of the motor M to the winding of the stator S in the motor M based on the voltage command value output from the motor control device 40.
  • the motor driving device 30 includes, for example, an inverter circuit and a pre-driver.
  • the inverter circuit may be a bridge circuit having a plurality of power transistors.
  • the motor drive device 30 typically receives a pulse width modulation (PWM) signal from the motor control device 40 as a voltage command value, and applies a pseudo sine wave voltage to the motor M.
  • PWM pulse width modulation
  • the motor control device 40 includes a position estimating device 60 that estimates the position of the rotor R.
  • the position estimating device 60 includes a sensor signal processing circuit 62, a feature amount extraction circuit 64, a memory 68 storing feature amount learning data (reference), and a matching circuit 66. These circuits correspond to functional blocks of the position estimation device 60. As will be described later, each functional block can be realized by a computer.
  • the sensor signal processing circuit 62 receives the sensor output from the sensor device 20, and generates a signal indicating the edge phase ⁇ [i] or the waveform P in FIG.
  • the sensor signal processing circuit 62 may include a logic circuit that specifies an electrical position from a sensor output.
  • the feature amount extraction circuit 64 sequentially acquires ⁇ [i] by the method described with reference to FIG. However, at this point, the machine position i is unspecified even if the current electric position is specified.
  • the position estimation device 60 reads the feature amount learning data from the memory 68 and performs matching with ⁇ [i]. As a result of the matching, the machine position i can be specified.
  • the mechanical position of the rotor R can be obtained using the output from the Hall IC. Further, according to the method and apparatus described later, the mechanical angle of the rotor R can be estimated with high resolution.
  • a signal indicating the position estimation value of the rotor R is input from the position estimation device 60 to the motor control device 40.
  • FIG. 22 is a diagram illustrating an example of a hardware configuration of the motor control device 40 in the motor system according to the present disclosure.
  • the motor control device 40 may have, for example, a hardware configuration illustrated in FIG.
  • the motor control device 40 in this example includes a CPU 54, a PWM circuit 55, a ROM (read only memory) 56, a RAM (random access memory) 57, and an I / F (input / output interface) 58, which are connected to each other by a bus. I have. Other circuits or devices not shown (such as AD converters) may be connected to the bus.
  • the PWM circuit 55 provides a PWM signal to the motor driving device 30 in FIG.
  • Programs and data that define the operation of the CPU 54 are stored in at least one of the ROM 56 and the RAM 57.
  • Such a motor control device 40 can be realized by, for example, a 32-bit general-purpose microcontroller.
  • Such a microcontroller may consist of, for example, one or more integrated circuit chips.
  • the microcontroller is an example of the “computer” described above.
  • Various operations performed by the motor control device 40 are defined by programs stored in a memory (storage medium). By updating part or all of the contents of the program and data, it is possible to change part or all of the operation of the motor control device 40.
  • Such a program update may be performed using a recording medium storing the program, or may be performed by wired or wireless communication. The communication can be performed using the I / F 58 of FIG.
  • a part of various operations performed by the motor control device 40 for example, a part of a vector calculation may be executed by a hardware circuit dedicated to the calculation.
  • the motor control device 40 in the motor system 1000 of the present embodiment includes a current command value generation circuit 10, a current control circuit 12, a first coordinate conversion circuit 14A, and a PWM circuit 16. I have.
  • the current command value generation circuit 10 generates a d-axis current command value id * and a q-axis current command value iq * from the position command value and the speed command value.
  • the current control circuit 12 determines a d-axis voltage command value Vd * and a q-axis voltage command value Vq * from the d-axis current command value id * and the q-axis current command value iq *.
  • the first coordinate conversion circuit 14A converts the voltage command value from a dq coordinate system to a UVW coordinate system.
  • the PWM circuit 16 generates a pulse width modulation signal based on the voltage command values (Vu *, Vv *, Vw *) output from the first coordinate conversion circuit 14A.
  • the configuration and operation of these circuits 10, 12, 14A, 16 follow known examples.
  • the motor control device 40 further includes a second coordinate conversion circuit 14B, a position estimation device 18A, and a speed calculation circuit 18B.
  • the second coordinate conversion circuit 14B converts the detected values iu, iv of the three-phase U, V, W winding currents supplied from the inverter 200 to the motor M from the UVW coordinate system to the dq coordinate system.
  • the position estimating device 18A estimates the mechanical angle ⁇ m of the rotor of the motor M based on the output from a sensor device (not shown) attached to the motor M by the method described above.
  • the speed calculation circuit 18B calculates the mechanical angular speed ⁇ m of the rotor from the mechanical angle ⁇ m of the rotor.
  • the d-axis current id and the q-axis current iq converted into the dq coordinate system from the second coordinate conversion circuit 14B are provided to the current control circuit 12, and the d-axis current command value id * and the q-axis current command value iq, respectively.
  • * Is compared with A typical example of the current control circuit 12 is a proportional-integral (PI) controller.
  • the electrical angle ⁇ of the rotor is calculated from the mechanical angle ⁇ m of the rotor.
  • the electrical angle ⁇ of the rotor is used for coordinate conversion between the dq coordinate system and the UVW coordinate system.
  • the mechanical angular velocity ⁇ m of the rotor can be used for determining the torque command value T.
  • a gate driver that generates a gate drive signal for switching a transistor in the inverter based on the PWM signal may be provided at a stage preceding the inverter of the motor drive circuit 200.
  • Part or all of the above circuits can be realized by an integrated circuit device.
  • Such an integrated circuit device can typically be formed by one or more semiconductor components.
  • the integrated circuit device includes an A / D converter that converts an analog signal from a position sensor into a digital signal, and an A / D converter that converts an analog signal from a sensor (not shown) that detects a current flowing through a winding of the motor M into a digital signal. / D converter.
  • At least a part of the inverter may be included in the integrated circuit device.
  • Such an integrated circuit device is typically realized by interconnecting one or more semiconductor chips in one package.
  • Part or all of the integrated circuit device can be realized by, for example, writing a program specific to the present disclosure in a general-purpose microcontroller unit (MCU).
  • MCU general-purpose microcontroller unit
  • the position estimation method, the motor control device, and the motor system of the present disclosure can estimate the position of the rotor with high resolution without using a position sensor such as a rotary encoder or a resolver. Can be widely used for required applications.
  • Reference Signs List 20 ... Sensor device, 30 ... Motor drive device, 40 ..., 60 ... Motor control device, 62 ... Sensor signal processing circuit, 64 ... Feature amount extraction circuit, 66 ... Matching circuit, 68: memory, 1000: motor system, Hu, Hv, Hw: Hall element, R: rotor, S: stator, M: motor, H1, H2, H3 ... Hall IC

Abstract

The position estimation method according to the present disclosure includes: obtaining first learning data including a sequence of a plurality of measurement values specifying the waveform feature of a first electric signal output from a sensor device when a rotor rotates; sequentially obtaining a sequence of a plurality of detection values specifying the waveform feature of a second electric signal output from the sensor device when the rotor rotates; estimating, using the plurality of measurement values and the plurality of detection values, the relationship between the rotation positions of the rotor when the respective first and second electric signals are output; and determining the degradation state of a motor on the basis of the difference between the first learning data and second learning data, wherein said second learning data include the sequence of the plurality of detection values specifying the waveform feature of the second electric signal and specify the relationship between a plurality of segment regions specifying the mechanical position of the rotor and the plurality of detection values.

Description

位置推定方法、モータ制御装置およびモータシステムPosition estimation method, motor control device and motor system

 本願は、ロータの機械角を高い精度で推定する方法に関する。また、本願は、モータ制御装置およびモータシステムにも関する。

The present application relates to a method for estimating a mechanical angle of a rotor with high accuracy. The present application also relates to a motor control device and a motor system.

 永久磁石同期モータなどのモータは、一般に、複数の磁極を有するロータと、複数の巻線を有するステータと、ロータの磁極が形成する磁束をセンシングするホール素子またはホールICなどの磁気センサとを備えている。ロータの物理的な回転位置(機械角)を高精度で計測することが必要な場合、ロータリ・エンコーダまたはレゾルバなどの位置センサが利用される。これらの位置センサは、モータシステムの小型化を難しくし、その製造コストを増加させる。

A motor such as a permanent magnet synchronous motor generally includes a rotor having a plurality of magnetic poles, a stator having a plurality of windings, and a magnetic sensor such as a Hall element or a Hall IC for sensing magnetic flux formed by the magnetic poles of the rotor. ing. When it is necessary to measure the physical rotational position (mechanical angle) of the rotor with high accuracy, a position sensor such as a rotary encoder or a resolver is used. These position sensors make it difficult to downsize the motor system and increase its manufacturing cost.

 日本国公開公報特開2002-112579号公報は、ホールICの出力に基づいてロータの位相(電気角)を推定する位相検出装置を開示している。この位相検出装置では、ホールICの出力から周期的に得られる位相信号(電気角60°単位で発生するパルス信号)とロータの回転速度とを用いて、ロータの電気角が算出される。このような位相検出装置によれば、ロータリ・エンコーダまたはレゾルバなどの位置センサを用いることなく、ロータのおよその電気角を推定することが可能になる。

Japanese Patent Laying-Open No. 2002-112579 discloses a phase detection device that estimates the phase (electrical angle) of a rotor based on the output of a Hall IC. In this phase detection device, the electrical angle of the rotor is calculated using a phase signal (pulse signal generated in electrical angle units of 60 °) periodically obtained from the output of the Hall IC and the rotational speed of the rotor. According to such a phase detection device, it is possible to estimate the approximate electrical angle of the rotor without using a position sensor such as a rotary encoder or a resolver.

日本国公開公報特開2002-112579号公報Japanese Patent Laid-Open Publication No. 2002-112579

 日本国公開公報特開2002-112579号公報の位相検出装置は、ロータが複数の磁極対を有する場合、ホールICから信号がロータのいずれの磁極対によって発生した信号であるかを判別できない。また、ホールICの出力から周期的に得られる位相信号が等しい間隔で発生する信号として扱われている。後に詳しく説明するように、このような位相信号の間隔はばらつく。このため、上記の位相検出装置では、ロータの機械角を高精度で推定することはできない。

When the rotor has a plurality of magnetic pole pairs, the phase detection device disclosed in Japanese Patent Application Laid-Open Publication No. 2002-112579 cannot determine from the Hall IC which signal is generated by which magnetic pole pair of the rotor. Further, phase signals periodically obtained from the output of the Hall IC are treated as signals generated at equal intervals. As will be described in detail later, the interval between such phase signals varies. Therefore, the above-described phase detection device cannot estimate the mechanical angle of the rotor with high accuracy.

 本開示の実施形態は、新しいアルゴリズムによってロータの機械角を推定する方法、モータ制御装置、およびモータシステムを提供する。

Embodiments of the present disclosure provide a method, a motor controller, and a motor system for estimating a mechanical angle of a rotor by a new algorithm.

 本開示の方法は、例示的な実施形態において、ロータ、ステータ、および前記ロータの回転に応じて周期的に変化する電気信号を出力するセンサ装置を有するモータにおける前記ロータの位置を推定する、コンピュータに実装された方法であって、コンピュータは、前記ロータが回転しているときに前記センサ装置から出力された第1の電気信号の波形特徴を規定する複数の測定値の並びを含む第1の特徴量学習データであって、前記ロータの機械位置を規定する複数の区分領域と前記複数の測定値との関係が規定されている第1の特徴量学習データを記憶する記憶媒体から、前記特徴量学習データを取得すること、前記ロータが回転しているとき、前記センサ装置から出力された第2の電気信号を受け取り、前記第2の電気信号の波形特徴を規定する複数の検出値を、それぞれ、順次、取得すること、および、前記複数の検出値のうちの最新の検出値を含む少なくとも1個の検出値と、前記第1の特徴量学習データに含まれる前記複数の測定値の並びとの間でマッチングを行うことにより、前記ロータの現在の機械位置に関係づけられた区分領域を決定すること、前記ロータが回転しているときに前記センサ装置から出力された前記第2の電気信号の波形特徴を規定する複数の検出値の並びを含む第2の特徴量学習データであって、前記ロータの機械位置を規定する複数の区分領域と前記複数の検出値との関係が規定されている第2の特徴量学習データを前記記憶媒体に記憶すること、前記第1の特徴量学習データと前記第2の特徴量学習データとの差異に基づいて、前記モータの劣化状態を判定すること、を実行する。

The method of the present disclosure, in an exemplary embodiment, estimates a position of a rotor in a motor having a rotor, a stator, and a sensor device that outputs an electrical signal that varies periodically with the rotation of the rotor. Wherein the computer includes a sequence of a plurality of measurements defining a waveform characteristic of a first electrical signal output from the sensor device when the rotor is rotating. A storage medium that stores first feature amount learning data that is feature amount learning data and that defines a relationship between a plurality of divided regions that define a machine position of the rotor and the plurality of measurement values; Acquiring quantity learning data; receiving a second electrical signal output from the sensor device when the rotor is rotating; and obtaining waveform characteristics of the second electrical signal. Acquiring a plurality of prescribed detection values sequentially, and including at least one detection value including the latest detection value among the plurality of detection values and the first feature amount learning data; Determining a segmented area associated with the current machine position of the rotor by performing a match between the arrangement of the plurality of measured values, and from the sensor device when the rotor is rotating. A second feature amount learning data including a sequence of a plurality of detection values defining a waveform feature of the output second electric signal, wherein the plurality of segmented regions defining a mechanical position of the rotor and the plurality of segmented regions are provided. Storing second feature amount learning data in which a relationship with a detected value is defined in the storage medium, based on a difference between the first feature amount learning data and the second feature amount learning data, The motor Determining the deteriorated state, and the execution.

 本開示の装置は、例示的な実施形態において、ロータ、ステータ、および前記ロータの回転に応じて周期的に変化する電気信号を出力するセンサ装置を有するモータに組み合わせて使用されるモータ制御装置であって、コンピュータと、前記コンピュータを動作させるプログラムを格納するメモリと、を備え、前記コンピュータは、前記ロータが回転しているときに前記センサ装置から出力された第1の電気信号の波形特徴を規定する複数の測定値の並びを含む第1の特徴量学習データであって、前記ロータの機械位置を規定する複数の区分領域と前記複数の測定値との関係が規定されている第1の特徴量学習データを記憶する記憶媒体から、前記特徴量学習データを取得すること、前記ロータが回転しているとき、前記センサ装置から出力された第2の電気信号を受け取り、前記第2の電気信号の波形特徴を規定する複数の検出値を、それぞれ、順次、取得すること、前記複数の検出値のうちの最新の検出値を含む少なくとも1個の検出値と、前記第1の特徴量学習データに含まれる前記複数の測定値の並びとの間でマッチングを行うことにより、前記ロータの現在の機械位置に関係づけられた区分領域を決定すること、前記ロータが回転しているときに前記センサ装置から出力された前記第2の電気信号の波形特徴を規定する複数の検出値の並びを含む第2の特徴量学習データであって、前記ロータの機械位置を規定する複数の区分領域と前記複数の検出値との関係が規定されている第2の特徴量学習データを前記記憶媒体に記憶すること、前記第1の特徴量学習データと前記第2の特徴量学習データとの差異に基づいて、前記モータおよび前記センサ装置の少なくとも一方の劣化状態を判定すること、を実行する。

The apparatus of the present disclosure is, in an exemplary embodiment, a motor control device used in combination with a motor having a rotor, a stator, and a sensor device that outputs an electrical signal that varies periodically with the rotation of the rotor. A computer that stores a program for operating the computer, wherein the computer generates a waveform characteristic of a first electric signal output from the sensor device when the rotor is rotating. A first feature amount learning data including a sequence of a plurality of defined measurement values, wherein a first relationship defining a plurality of segmented regions defining a machine position of the rotor and the plurality of measurement values is defined. Obtaining the feature amount learning data from a storage medium storing feature amount learning data; outputting the sensor amount data when the rotor is rotating; Receiving the obtained second electric signal, sequentially acquiring a plurality of detection values respectively defining a waveform characteristic of the second electric signal, including a latest detection value among the plurality of detection values By performing matching between at least one detection value and the arrangement of the plurality of measurement values included in the first feature amount learning data, a divided area related to the current machine position of the rotor Determining second characteristic amount learning data including a sequence of a plurality of detection values that define a waveform characteristic of the second electric signal output from the sensor device when the rotor is rotating. Storing, in the storage medium, second feature amount learning data in which a relationship between a plurality of segmented regions defining a mechanical position of the rotor and the plurality of detection values is defined; Learning data and said Based on the difference between the second feature quantity learning data, determining at least one of the deteriorated state of the motor and the sensor device, for execution.

 本開示のモータシステムは、例示的な実施形態において、ロータ、ステータ、および前記ロータの回転に応じて周期的に変化する電気信号を出力するセンサ装置を有するモータと、前記モータを駆動するモータ駆動装置と、前記モータ駆動装置に接続された、上述のモータ制御装置と、を備えている。

In an exemplary embodiment, a motor system according to an embodiment of the present disclosure includes a motor having a rotor, a stator, and a sensor device that outputs an electric signal that changes periodically according to rotation of the rotor, and a motor drive that drives the motor. And a motor control device as described above connected to the motor drive device.

 本発明の実施形態によれば、ロータの回転に応じて周期的に変化する電気信号の波形特徴を規定する複数の数値の並びについてマッチングを行うことによってロータの機械角を推定する方法、モータ制御装置、およびモータシステムが提供される。

According to an embodiment of the present invention, there is provided a method for estimating a mechanical angle of a rotor by performing matching on a sequence of a plurality of numerical values defining a waveform characteristic of an electric signal that periodically changes according to rotation of a rotor, An apparatus and a motor system are provided.

図1はモータの回転の中心軸に垂直な断面の構成例を模式的に示す図である。FIG. 1 is a diagram schematically showing a configuration example of a cross section perpendicular to the center axis of rotation of the motor. 図2はホールセンサHu、HvおよびHwから取得された電気信号の波形の例を示すグラフである。FIG. 2 is a graph showing an example of a waveform of an electric signal obtained from the Hall sensors Hu, Hv, and Hw. 図3はホールICの出力波形の例を示す図である。FIG. 3 is a diagram showing an example of the output waveform of the Hall IC. 図4はモータ内の3個のホールICの配置例を示す図である。FIG. 4 is a diagram showing an example of the arrangement of three Hall ICs in the motor. 図5は各ホールICから出力されたデジタル信号の状態遷移の例を示す図である。FIG. 5 is a diagram showing an example of a state transition of a digital signal output from each Hall IC. 図6は機械位置0~11と電気位置E0~E5との関係を示す図である。FIG. 6 is a diagram showing the relationship between mechanical positions 0 to 11 and electrical positions E0 to E5. 図7は測定されたエッジ間隔の例を模式的に示す図である。FIG. 7 is a diagram schematically illustrating an example of the measured edge interval. 図8は各機械位置[i]について、角度幅Δθ[i]の測定値をバーの高さで表現した模式図である。FIG. 8 is a schematic diagram in which the measured value of the angle width Δθ [i] is represented by the bar height for each machine position [i]. 図9は例示的な位置推定方法の処理手順を示すフローチャートである。FIG. 9 is a flowchart illustrating a processing procedure of an exemplary position estimation method. 図10Aは特徴量の誤差の平方和が相対的に大きな例を模式的に示す図である。FIG. 10A is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is relatively large. 図10Bは特徴量の誤差の平方和が最小の例を模式的に示す図である。FIG. 10B is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is the minimum. 図11は機械角の推定処理を説明するための図である。FIG. 11 is a diagram for explaining the mechanical angle estimation process. 図12は機械角の推定処理を詳細に説明するための図である。FIG. 12 is a diagram for explaining the mechanical angle estimation processing in detail. 図13は区分領域N内で周期Δtごとに回転速度Vを算出して機械角を計算する方法を説明するための模式図である。FIG. 13 is a schematic diagram for explaining a method of calculating the mechanical angle by calculating the rotation speed V for each period Δt in the divided area N. 図14は例示的な区分領域決定後の機械角の推定処理の手順を示すフローチャートである。FIG. 14 is a flowchart illustrating a procedure of an example of a mechanical angle estimation process after determination of a segmented area. 図15は継続的に更新されて変化するリファレンスの例を模式的に示す図である。FIG. 15 is a diagram schematically illustrating an example of a reference that is continuously updated and changes. 図16は例示的なリファレンスの更新処理の手順を示すフローチャートである。FIG. 16 is a flowchart illustrating a procedure of an exemplary reference update process. 図17Aは時刻tまでの、正常なマッチング結果に基づいて決定された区分領域ごとの角度幅の測定値をバーの高さで表現した模式図である。FIG. 17A is a schematic diagram in which the measured value of the angular width for each of the divided areas determined based on the normal matching result until the time t is represented by the height of the bar. 図17Bは時刻t以後に取得された、区分領域ごとの角度幅の測定値を示す模式図である。FIG. 17B is a schematic diagram showing measured values of the angle width for each of the divided areas acquired after time t. 図18は例示的な異常判定処理の手順を示すフローチャートである。FIG. 18 is a flowchart illustrating a procedure of an exemplary abnormality determination process. 図19Aは工場出荷時のリファレンスの一例を示す模式図である。FIG. 19A is a schematic diagram illustrating an example of a reference at the time of factory shipment. 図19Bは更新されたリファレンスの一例を示す模式図である。FIG. 19B is a schematic diagram illustrating an example of an updated reference. 図20は例示的な経時劣化の判定処理の手順を示すフローチャートである。FIG. 20 is a flowchart illustrating a procedure of an exemplary time-dependent deterioration determination process. 図21は例示的なモータシステムの構成例を示す図である。FIG. 21 is a diagram illustrating a configuration example of an exemplary motor system. 図22は本開示による例示的なモータシステムにおけるモータ制御装置のハードウェア構成の例を示す図である。FIG. 22 is a diagram illustrating an example of a hardware configuration of a motor control device in an exemplary motor system according to the present disclosure. 図23は本開示の例示的なモータ制御装置の処理ブロックの構成例を示す図である。FIG. 23 is a diagram illustrating a configuration example of a processing block of an exemplary motor control device according to the present disclosure.

<本開示の基本原理>

 本開示の実施形態を説明する前に、ホール素子およびホールICの動作、ならびに、電気角、電気位置、機械角、機械位置の用語を説明する。

<Basic principle of the present disclosure>

Before describing an embodiment of the present disclosure, the operation of a Hall element and a Hall IC and terms of an electrical angle, an electrical position, a mechanical angle, and a mechanical position will be described.

 図1は、複数の磁極N0、S0、N1、S1を有するロータRと、ステータSとを備えるモータMの概略構成を模式的に示す断面図である。この断面図は、ロータRの回転の中心軸に垂直である。図1のモータMは、4極-6スロットの構成を有しており、ステータSは、6個のティース(不図示)を有している。6個のティースは、それぞれ、U相、V相、またはW相の巻線によって励磁される。巻線は、図示されていない駆動装置に接続される。

FIG. 1 is a cross-sectional view schematically illustrating a schematic configuration of a motor M including a rotor R having a plurality of magnetic poles N0, S0, N1, and S1, and a stator S. This sectional view is perpendicular to the central axis of rotation of the rotor R. The motor M in FIG. 1 has a configuration of four poles and six slots, and the stator S has six teeth (not shown). The six teeth are excited by U-phase, V-phase, or W-phase windings, respectively. The windings are connected to a drive, not shown.

 この例におけるモータMは、3個のホール素子Hu、Hv、Hwを備えている。ホール素子Hu、Hv、Hwは、ロータRの回転の中心軸の周りを相互に所定の角度だけ回転した異なる位置に配置されている。ホール素子Hu、Hv、Hwは、それぞれ、ロータRの磁極N0、S0、N1、S1が形成する磁束をセンシングして、アナログの電気信号を出力する。

The motor M in this example includes three Hall elements Hu, Hv, Hw. The Hall elements Hu, Hv, Hw are arranged at different positions which are rotated by a predetermined angle around the central axis of rotation of the rotor R. The Hall elements Hu, Hv, Hw respectively sense magnetic fluxes formed by the magnetic poles N0, S0, N1, S1 of the rotor R, and output analog electric signals.

 図1では、簡単のため、磁極N0、S0、N1、S1の配置が模式的に記載されている。実際の磁極N0、S0、N1、S1は、それぞれ、ロータRの表面または内部に設けられた永久磁石によって与えられる。磁極N0、N1は、それぞれ、ロータRの表面の異なる位置にN極を形成する。一方、磁極S0、S1は、それぞれ、ロータRの表面の異なる位置にS極を形成する。磁極N0、S0は、第1の磁極対を構成し、磁極N1、S1は第2の磁極対を構成している。この例におけるロータRは、2個の「磁極対」を有している。以下、「磁極対の数」を極対数NPPと呼ぶことがある。

In FIG. 1, the arrangement of the magnetic poles N0, S0, N1, and S1 is schematically illustrated for simplicity. The actual magnetic poles N0, S0, N1, S1 are respectively provided by permanent magnets provided on or inside the rotor R. The magnetic poles N0 and N1 form N poles at different positions on the surface of the rotor R, respectively. On the other hand, the magnetic poles S0 and S1 form S poles at different positions on the surface of the rotor R, respectively. The magnetic poles N0 and S0 form a first magnetic pole pair, and the magnetic poles N1 and S1 form a second magnetic pole pair. The rotor R in this example has two “magnetic pole pairs”. Hereinafter, the “number of magnetic pole pairs” may be referred to as a pole pair number NPP .

 一般に、これらの磁極N0、S0、N1、S1は、ロータRとステータSとのギャップに磁束Φgを形成し、マグネットトルクに寄与する。ギャップの磁束Φgは、ロータRの外周表面における周方向位置θsの関数であり、概略的には正弦波によって近似され得る。この関数を、例えばΦg=f(θs)で表すことができる。磁束Φgの正弦波の1周期は、個々の磁極対に対応している。言い換えると、ロータRの外周表面に沿って周方向位置θsが2πラジアン(360°)だけ変化して元の位置にもどる間に、磁束Φgは「磁極対の数」に等しい周期で正弦波状に振動する。図1の例では、極対数NPPが2であるため、ロータRの外周表面に沿って周方向位置θsが2πラジアン(360°)だけ変化する間に、磁束Φgは2周期だけ正弦波状に振動する。ここで、磁束Φgが1周期だけ正弦波状に変化する角度、すなわち「1個の磁極対」に相当する角度を「電気角の360°」と定義する。一方、ロータRが回転の中心軸の周りに物理的(機械的)に1回転するときの角度を「機械角の360°」と定義する。図1の例では、「機械角の360°」を電気角に換算すると、「360°×極対数NPP」である。

Generally, these magnetic poles N0, S0, N1, S1 form a magnetic flux Φg in a gap between the rotor R and the stator S, and contribute to magnet torque. The magnetic flux Φg of the gap is a function of the circumferential position θs on the outer peripheral surface of the rotor R, and can be roughly approximated by a sine wave. This function can be represented by, for example, Φg = f (θs). One cycle of the sine wave of the magnetic flux Φg corresponds to each magnetic pole pair. In other words, while the circumferential position θs changes along the outer peripheral surface of the rotor R by 2π radians (360 °) and returns to the original position, the magnetic flux Φg becomes sinusoidal with a period equal to the “number of magnetic pole pairs”. Vibrate. In the example of FIG. 1, since the number of pole pairs NPP is 2, while the circumferential position θs changes by 2π radians (360 °) along the outer peripheral surface of the rotor R, the magnetic flux Φg becomes sinusoidal for two periods. Vibrate. Here, the angle at which the magnetic flux Φg changes sinusoidally for one cycle, that is, the angle corresponding to “one magnetic pole pair” is defined as “360 ° electrical angle”. On the other hand, the angle at which the rotor R makes one physical (mechanical) rotation around the central axis of rotation is defined as “360 ° of mechanical angle”. In the example of FIG. 1, when “360 ° of mechanical angle” is converted into an electrical angle, it is “360 ° × the number of pole pairs N PP ”.

 図1に示されているロータRが回転しているとき、ホール素子Hu、Hv、Hwは、それぞれ、ロータRの磁極N0、S0、N1、S1が形成する磁束の強度(磁束密度)および向きに応答して変化する電圧などの電気信号を出力し得る。例えば、図1のロータRが時計方向に回転し、ロータRの磁極N0の中央がホール素子Huに対向したとき、ホール素子Huの出力(例えば電圧)は極大値を示し得る。ロータRの回転に伴って磁極N0の中央がホール素子Huから遠ざかるにつれ、ホール素子Huの出力は低下する。ロータRがさらに回転し、ロータRの磁極S0の中央がホール素子Huに対向したとき、ホール素子Huの出力は極小値を示し得る。ロータRがさらに回転し、ロータRの磁極N1の中央がホール素子Huに対向したとき、ホール素子Huの出力は次の極大値を示し得る。こうして、ホール素子Huの出力は、ロータRの回転位置に応じて周期的に変化する。

When the rotor R shown in FIG. 1 is rotating, the Hall elements Hu, Hv, and Hw respectively provide the intensity (magnetic flux density) and direction of the magnetic flux formed by the magnetic poles N0, S0, N1, and S1 of the rotor R. May output an electric signal such as a voltage that changes in response to the signal. For example, when the rotor R of FIG. 1 rotates clockwise and the center of the magnetic pole N0 of the rotor R faces the Hall element Hu, the output (for example, voltage) of the Hall element Hu can show a maximum value. With the rotation of the rotor R, the output of the Hall element Hu decreases as the center of the magnetic pole N0 moves away from the Hall element Hu. When the rotor R further rotates and the center of the magnetic pole S0 of the rotor R faces the Hall element Hu, the output of the Hall element Hu can show a minimum value. When the rotor R further rotates and the center of the magnetic pole N1 of the rotor R faces the Hall element Hu, the output of the Hall element Hu can show the next maximum value. Thus, the output of the Hall element Hu changes periodically according to the rotational position of the rotor R.

 ホール素子Hv、Hwも、ホール素子Huと同様にして、ロータRの回転位置に応じて周期的に変化する。ホール素子Hv、Hwは、ホール素子Huの位置から回転の中心軸に関して所定の角度(電気角で120°ずつ)だけ回転した位置にあるため、ホール素子Hu、Hv、Hwは、磁極N0、S0、N1、S1が形成する磁束を相互に異なる位相でセンシングし、電気信号を出力する。なお、ホール素子Hu、Hv、Hwの配置間隔は、厳密には、電気角で120°ではなく、120°から取り付け誤差の分だけ、ランダムにばらつくことが普通である。

The Hall elements Hv and Hw also change periodically according to the rotational position of the rotor R, similarly to the Hall element Hu. The Hall elements Hv, Hw are located at positions rotated from the position of the Hall element Hu by a predetermined angle (120 ° in electrical angle) with respect to the center axis of rotation, and therefore the Hall elements Hu, Hv, Hw include the magnetic poles N0, S0. , N1, and S1 are sensed at mutually different phases, and electric signals are output. Strictly speaking, the arrangement intervals of the Hall elements Hu, Hv, and Hw are not strictly 120 degrees in electrical angle, but generally vary randomly from 120 degrees by an amount corresponding to the mounting error.

 図2は、ロータRが回転中心の周りを一回転するときにホール素子Hu、Hv、Hwから出力された電気信号の波形例を示す図である。横軸はロータRの回転位置、縦軸は電圧である。図2において、ホール素子Huの出力は一点鎖線、ホール素子Hvの出力は点線、ホール素子Hwの出力は実線で示されている。図2におけるホール素子Hwの出力(実線)に注目すると、ロータRが回転中心の周りを一回転する間に、異なる2個の回転位置において、大きさの異なる極大値を有する電圧が出力されていることがわかる。同一のホール素子Hwから出力された電圧が異なる極大値を示す原因のひとつは、ロータRが有する磁極N0と磁極N1との間で起磁力が異なることであり得る。

FIG. 2 is a diagram illustrating a waveform example of an electric signal output from the Hall elements Hu, Hv, and Hw when the rotor R makes one rotation around the rotation center. The horizontal axis is the rotational position of the rotor R, and the vertical axis is the voltage. In FIG. 2, the output of the Hall element Hu is indicated by a dashed line, the output of the Hall element Hv is indicated by a dotted line, and the output of the Hall element Hw is indicated by a solid line. Paying attention to the output (solid line) of the Hall element Hw in FIG. 2, while the rotor R makes one rotation around the center of rotation, voltages having different maximum values are output at two different rotation positions. You can see that there is. One of the causes that the voltage output from the same Hall element Hw indicates a different maximum value may be that the magnetomotive force differs between the magnetic pole N0 and the magnetic pole N1 of the rotor R.

 図2におけるホール素子Hu、Hv、Hwの各出力を比較すると、電圧振幅が必ずしも等しいわけではないことがわかる。ホール素子Hu、Hv、Hwは、同じ磁束に応答して異なる感度(ゲイン)で電気信号を出力し得る。このような感度の差異は、ホール素子Hu、Hv、Hwの製造ばらつきに起因する個体差と、ホール素子Hu、Hv、Hwをモータに固定したときに生じ得る向きおよび/または位置のずれなどに依存し得る。また、感度は温度に依存して変化し得る。このような温度依存性は、ホール素子Hu、Hv、Hwによって異なり得る。

Comparing the outputs of the Hall elements Hu, Hv, Hw in FIG. 2, it can be seen that the voltage amplitudes are not necessarily equal. The Hall elements Hu, Hv, Hw can output electric signals with different sensitivities (gains) in response to the same magnetic flux. Such differences in sensitivity are caused by individual differences due to manufacturing variations of the Hall elements Hu, Hv, and Hw, and misalignment of directions and / or positions that can occur when the Hall elements Hu, Hv, and Hw are fixed to the motor. Can depend. Also, the sensitivity can change depending on the temperature. Such temperature dependence may differ depending on the Hall elements Hu, Hv, Hw.

 一般に、永久磁石同期モータなどの同期モータを回転させるとき、ステータの巻線を流れる電流をロータの位相に同期させて制御する必要がある。このような同期は、従来、上記のホール素子Hu、Hv、Hwから得られる出力(アナログ信号)、またはホールICから得られる出力(デジタル信号)に基づいて実行されてきた。

Generally, when rotating a synchronous motor such as a permanent magnet synchronous motor, it is necessary to control a current flowing through a winding of a stator in synchronization with a phase of a rotor. Conventionally, such synchronization has been performed based on the output (analog signal) obtained from the Hall elements Hu, Hv, Hw or the output (digital signal) obtained from the Hall IC.

 ステータSの3相(U、V、W相)の巻線に印加する電圧を6ステップで変化させるとき(6ステップ駆動)、その変化は電気角で60°単位のタイミングで行われる。このタイミングを規定する位相信号は、ロータRの位相、すなわち電気角に応じて生成される。ベクトル制御のアルゴリズムを用いて、ステータSの3相(U、V、W相)の巻線に印加する電圧を正弦波状に制御するときも、位相信号に基づいた「同期」が実行される。同期モータを動作させるには、電気角60°単位でロータRの角度位置を検出または推定する必要がある。

When the voltage applied to the three-phase (U, V, W phase) windings of the stator S is changed in six steps (six-step driving), the change is performed at a timing of an electrical angle of 60 °. The phase signal defining this timing is generated according to the phase of the rotor R, that is, the electrical angle. Even when the voltage applied to the three-phase (U, V, W phase) windings of the stator S is controlled in a sine wave shape using the vector control algorithm, “synchronization” based on the phase signal is executed. To operate the synchronous motor, it is necessary to detect or estimate the angular position of the rotor R in units of 60 electrical degrees.

 図3は、ホールICの出力波形の例を示す図である。ホールICは、ロータRの回転に応じて変化する磁束(具体的には磁束密度)をセンシングし、論理低(Low)と論理高(High)との間で遷移するデジタル信号を出力する。以下、簡単のため、論理低(Low)を「L」と論理高(High)を「H」と表示することがある。一般的なホールICは、前述したホール素子とIC回路とを内蔵している。このようなIC回路は、ホール素子の出力(アナログ信号)が例えば閾値Th1を超えたときLowからHighに遷移し、閾値Th2を下回ったときからHighからLowに遷移するように構成され得る(Th1>Th2)。

FIG. 3 is a diagram illustrating an example of an output waveform of the Hall IC. The Hall IC senses a magnetic flux (specifically, magnetic flux density) that changes in accordance with the rotation of the rotor R, and outputs a digital signal that transitions between a logical low (Low) and a logical high (High). Hereinafter, for the sake of simplicity, a logical low (Low) may be displayed as “L” and a logical high (High) may be displayed as “H”. A general Hall IC incorporates the above-described Hall element and IC circuit. Such an IC circuit can be configured to transition from Low to High when the output (analog signal) of the Hall element exceeds the threshold Th1, for example, and transition from High to Low when the output (analog signal) falls below the threshold Th2 (Th1). > Th2).

 図4は、3個のホールIC(H1、H2、H3)がロータRの回転の中心軸に関して所定の角度(電気角で120°ずつ)だけ回転した位置に配置されたモータMの構成例を模式的に示している。3個のホールIC(H1、H2、H3)が出力する電気信号(デジタル信号)は、それぞれ、「H1」、「H2」、「H3」で表示されている。信号H1、H2、H3は、相互に異なる位相でLowとHighとの間を周期的に遷移する。

FIG. 4 shows a configuration example of a motor M in which three Hall ICs (H1, H2, H3) are arranged at positions rotated by a predetermined angle (120 ° in electrical angle) with respect to the center axis of the rotation of the rotor R. This is schematically shown. The electric signals (digital signals) output from the three Hall ICs (H1, H2, H3) are indicated by “H1,” “H2,” and “H3,” respectively. The signals H1, H2, H3 periodically transition between Low and High at mutually different phases.

 図5は、信号H1、H2、H3の状態遷移の例を示す図である。図5において、横軸は時間またはロータの回転位置である。図5では、電気角で2周期の状態遷移が示されている。信号H1、H2、H3のそれぞれの状態(「L」または「H」)の組み合わせは、電気角の1周期(360degE)のうちに6ステップで変化する。図5の垂直な矢印の列は、3個のホールICから出力されたデジタル信号における立ち上がりエッジおよび立ち下がりエッジのタイミングを示す位相θ、θ、θ、・・・の列である。理想的には、ロータRが電気角で60°回転するごとに位相信号が発生する。しかし、現実には、ロータRの外周表面における起磁力分布の不均一、ホール素子の固体差および取り付けばらつきなどに起因して、エッジの位相θ、θ、θ、・・・の時間間隔(エッジ間隔)は一定ではない。本明細書では、i番目の位相信号をθ[i]で表わし、エッジ位相θ[i-1]からエッジ位相θ[i]までの時間間隔(エッジ間隔)をΔt[i]で表わすことがある。ロータRが一定速度で回転しているときに取得されるΔt[0]、Δt[1]、・・・の配列(数値の並び)は、モータごとに異なり、個々のモータに固有の特徴量である。後述するように、本開示によるロータの位置推定処理は、このようなモータの特徴量を利用する。

FIG. 5 is a diagram illustrating an example of a state transition of the signals H1, H2, and H3. In FIG. 5, the horizontal axis represents time or the rotational position of the rotor. FIG. 5 shows a state transition of two cycles in electrical angle. The combination of each state (“L” or “H”) of the signals H1, H2, and H3 changes in six steps within one cycle (360 degE) of the electrical angle. The row of vertical arrows in FIG. 5 is a row of phases θ 0 , θ 1 , θ 2 ,... Indicating timings of rising edges and falling edges in digital signals output from three Hall ICs. Ideally, a phase signal is generated each time the rotor R rotates by 60 electrical degrees. However, in reality, the time of the phase θ 0 , θ 1 , θ 2 ,... Of the edge is caused by unevenness of the magnetomotive force distribution on the outer peripheral surface of the rotor R, the individual difference of the Hall element, and the mounting variation. The interval (edge interval) is not constant. In this specification, the i-th phase signal is represented by θ [i], and the time interval (edge interval) from the edge phase θ [i−1] to the edge phase θ [i] is represented by Δt [i]. is there. The array of [Delta] t [0], [Delta] t [1],... (Sequence of numerical values) obtained when the rotor R is rotating at a constant speed differs for each motor, and is a characteristic amount unique to each motor. It is. As described later, the rotor position estimating process according to the present disclosure uses such a feature amount of the motor.

 以下の表1は、信号H1、H2、H3のそれぞれの状態(「L」または「H」)の組み合わせと、ロータRの位相との関係の一例を示す表である。ロータRの位相は、ロータRの電気角によって規定される。ロータRの位相(電気角)は、電気角360°を均等に区分した6個の領域のいずれかに含まれる。これらの6個の領域を「電気位置」と称する。本明細書では、6個の「電気位置」に、それぞれ、E0、E1、E2、E3、E4、E5の番号を割り当てる。「電気位置」は、電気角で約60°の幅を有している。

Table 1 below is a table showing an example of a relationship between a combination of each state (“L” or “H”) of the signals H1, H2, and H3 and the phase of the rotor R. The phase of the rotor R is defined by the electrical angle of the rotor R. The phase (electrical angle) of the rotor R is included in any of the six regions equally dividing the electric angle of 360 °. These six regions are referred to as "electrical locations." In this specification, numbers of E0, E1, E2, E3, E4, and E5 are assigned to the six “electrical positions”, respectively. "Electrical location" has a width of about 60 electrical degrees.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 信号H1、H2、H3のそれぞれの状態(「L」または「H」)の組み合わせから、現在のロータRの位相を検出することができる。例えば、信号H1、H2、H3がそれぞれ「H」、「L」、「L」のとき、ロータRの位相は電気位置E1にある。ロータRが回転し、信号H2が「L」から「H」に遷移したとき、すなわち、信号H1、H2、H3がそれぞれ「H」、「H」、「L」のとき、ロータRの位相は電気位置E1から電気位置E2にシフトしたことがわかる。

The current phase of the rotor R can be detected from a combination of the respective states (“L” or “H”) of the signals H1, H2, and H3. For example, when the signals H1, H2, and H3 are "H", "L", and "L", respectively, the phase of the rotor R is at the electrical position E1. When the rotor R rotates and the signal H2 changes from “L” to “H”, that is, when the signals H1, H2, and H3 are “H”, “H”, and “L”, respectively, the phase of the rotor R is It can be seen that the electric position E1 has shifted to the electric position E2.

 信号H1、H2、H3のそれぞれの状態(「L」または「H」)の組み合わせから、現在のロータRの電気位置を決定することはできるが、ロータRの機械角は特定できない。図5に示されるように、信号H1、H2、H3がそれぞれ「H」、「L」、「L」である状態は、ロータRの回転に伴って電気角360°の周期で出現する。ロータRが機械的に1回転する間に、ロータRの電気位置は、磁極対の数だけ、同一の値を示す。モータを回転させるだけであれば、ロータRの電気位置、またはロータRの位相(電気角)を検出すればよく、ロータの機械角を検出または推定する必要はない。

The current electrical position of the rotor R can be determined from the combination of the respective states ("L" or "H") of the signals H1, H2, and H3, but the mechanical angle of the rotor R cannot be specified. As shown in FIG. 5, the state in which the signals H1, H2, and H3 are "H", "L", and "L" respectively appears at a cycle of 360 electrical degrees with the rotation of the rotor R. During one mechanical rotation of the rotor R, the electrical position of the rotor R shows the same value as the number of magnetic pole pairs. If only the motor is rotated, the electrical position of the rotor R or the phase (electrical angle) of the rotor R may be detected, and there is no need to detect or estimate the mechanical angle of the rotor.

 図6は、機械位置0~11と電気位置E0~E5との関係を示す図である。「機械位置」は、信号H1、H2、H3のそれぞれの状態(「L」または「H」)の組み合わせと、それらの状態をホールICに生じさせる磁極対とによって決まるロータの物理的な位置である。個々の「機械位置(区分領域)」は、固有の角度幅を有している。角度幅は、図6の波形Pにおける立ち上がりエッジと立ち下がりエッジとの間隔(エッジ間隔)によって規定される。磁極対数がLであるとき、ロータRが物理的に1回転(機械角360°の回転)を行うときのロータRの角度位置(機械角)は、6×L=N個の区分領域のいずれかに属する。N個の区分領域には、それぞれ、「0」、「1」、「2」、・・・、「N-2」、「N-1」の番号が割り当てられる。図6の例において、Nは12である。この例において、個々の機械位置(区分領域)が有する角度幅は、機械角で約30°であるが、12個の機械位置(区分領域)の角度幅の合計値は、正確に360°である。なお、個々の機械位置(区分領域)が有する角度幅は、機械角で数値化されていている必要はなく、電気角で数値化されていてもよい。本明細書において、機械位置が有する角度幅を「特徴量」と呼ぶ場合がある。

FIG. 6 is a diagram showing a relationship between mechanical positions 0 to 11 and electrical positions E0 to E5. The “mechanical position” is a physical position of the rotor determined by a combination of the respective states (“L” or “H”) of the signals H1, H2, and H3 and the magnetic pole pair that causes the states to be generated in the Hall IC. is there. Each “machine position (section area)” has a unique angular width. The angular width is defined by the interval (edge interval) between the rising edge and the falling edge in the waveform P in FIG. When the number of magnetic pole pairs is L, the angular position (mechanical angle) of the rotor R when the rotor R physically makes one rotation (rotation with a mechanical angle of 360 °) is any one of 6 × L = N divided areas. Belongs to Numbers “0”, “1”, “2”,..., “N−2”, and “N−1” are assigned to the N divided areas, respectively. In the example of FIG. 6, N is 12. In this example, the angle width of each machine position (section area) is about 30 ° in mechanical angle, but the total value of the angle widths of 12 machine positions (section areas) is exactly 360 °. is there. Note that the angular width of each machine position (sectioned area) does not need to be quantified in mechanical angle, but may be quantified in electrical angle. In this specification, the angular width of the machine position may be referred to as a “feature amount”.

 図6に示される例において、同じ電気位置であっても、異なる機械位置では、デジタル信号のエッジ間隔が異なり得る。例えば電気位置E0の場合、機械位置0のエッジ間隔(θ[1]-θ[0])と機械位置6のエッジ間隔(θ[7]-θ[6])とは異なり得る。

In the example shown in FIG. 6, even at the same electrical position, the edge spacing of the digital signal may be different at different machine positions. For example, in the case of the electrical position E0, the edge interval (θ [1] −θ [0]) at the mechanical position 0 may be different from the edge interval (θ [7] −θ [6]) at the mechanical position 6.

 次に、図7を参照して、各機械位置のエッジ間隔を測定する方法を説明する。

Next, a method of measuring the edge interval at each machine position will be described with reference to FIG.

 図7は、ロータRを一定速度で回転させているときに測定されるエッジ間隔の例を模式的に示す図である。図7に示すように、エッジ位相θを検出してから次のエッジ位相θi+1を検出するまでの時間Δt[i]を例えばコンピュータ内のタイマーによって測定する。エッジ位相θとエッジ位相θi+1とによって規定される区分領域は、機械位置iである。機械位置iの角度幅Δθ[i]、すなわち、エッジ位相θiの発生(検知)からエッジ位相θi+1の発生(検知)までの間にロータRが回転する機械角は、Δt[i]×機械角速度Vに等しい。

FIG. 7 is a diagram schematically illustrating an example of an edge interval measured when the rotor R is rotating at a constant speed. As shown in FIG. 7, a time Δt [i] from the detection of the edge phase θ i to the detection of the next edge phase θ i + 1 is measured by, for example, a timer in a computer. The segmented area defined by the edge phase θ i and the edge phase θ i + 1 is the machine position i. The angular width Δθ [i] of the machine position i, that is, the mechanical angle at which the rotor R rotates between the generation (detection) of the edge phase θi and the generation (detection) of the edge phase θ i + 1 is Δt [i] × machine It is equal to the angular velocity V.

 ロータRが等速で、すなわちV=一定値で機械角360°の回転を行うとき、以下の等式が成立する。

Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003
ここで、Σは、ロータRの機械位置i=0、1、・・・、N-1についての総和を意味する。ΣΔt[i]は、機械角360°の回転(ロータの一回転)に要する時間であり、「degM」は機械角の単位である。

When the rotor R rotates at a constant speed, that is, at a constant value of V and rotates at a mechanical angle of 360 °, the following equation is established.

Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003
Here, Σ means the sum of the mechanical positions i = 0, 1,..., N−1 of the rotor R. ΣΔt [i] is the time required for a rotation of 360 ° mechanical angle (one rotation of the rotor), and “degM” is a unit of mechanical angle.

 数2からわかるように、角度幅Δθ[i]は、Δt[i]に比例する。ロータRが等速で1回転する間にΔt[i]の測定値を取得すれば、1回転に要する時間に対する割合から角度幅Δθ[i]を求めることができる。こうして、機械位置i=0、1、・・・、N-1のそれぞれについて、角度幅Δθ[i]の測定値を取得することができる。角度幅Δθ[i]の測定値のそれぞれは、厳密には機械位置iごとに異なる値を持ち、角度幅Δθ[i]の測定値の並びはモータMに固有の情報である。

As can be seen from Equation 2, the angle width Δθ [i] is proportional to Δt [i]. If the measured value of Δt [i] is acquired during one rotation of the rotor R at a constant speed, the angle width Δθ [i] can be obtained from the ratio to the time required for one rotation. Thus, the measured value of the angle width Δθ [i] can be obtained for each of the mechanical positions i = 0, 1,..., N−1. Each of the measured values of the angle width Δθ [i] has a strictly different value for each machine position i, and the arrangement of the measured values of the angle width Δθ [i] is information unique to the motor M.

 図8は、機械位置i=0、1、・・・、11のそれぞれについて、角度幅Δθ[i]の測定値をバーの高さで表現した模式図である。図8に示されるように、角度幅Δθ[i]の測定値は、機械位置iによって異なる。角度幅Δθ[i]の測定値の並びは、ロータの回転に応じて周期的に変化する電気信号を出力するセンサ装置から出力された電気信号の波形特徴を規定する。

FIG. 8 is a schematic diagram in which the measured value of the angle width Δθ [i] is represented by the bar height for each of the mechanical positions i = 0, 1,. As shown in FIG. 8, the measured value of the angle width Δθ [i] differs depending on the machine position i. The arrangement of the measured values of the angle width Δθ [i] defines the waveform characteristics of the electric signal output from the sensor device that outputs the electric signal that changes periodically according to the rotation of the rotor.

 以下の表2は、機械位置i=0、1、・・・、11のそれぞれについて、角度幅Δθ[i]の測定値(電気角表示)を記載している。

Table 2 below shows measured values (electrical angle display) of the angle width Δθ [i] for each of the mechanical positions i = 0, 1,...

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 表2に示されるような、ロータの機械位置[i]と角度幅Δθ[i]の測定値との関係が規定されている特徴量学習データは、実際にモータを動作させ、ロータを定速で回転させながら取得される。測定値を取得するとき、ロータの回転は1回転に限定されない。ロータが複数回の回転を行う過程で測定された値を平均化することにより、個々の機械位置[i]の角度幅Δθ[i]を決定してもよい。このようにして得たデータは、特徴量学習データ(テーブル)として記憶媒体に保存され得る。

As shown in Table 2, the feature amount learning data in which the relationship between the mechanical position [i] of the rotor and the measured value of the angle width Δθ [i] is specified is such that the motor is actually operated and the rotor is driven at a constant speed. Obtained while rotating with. When acquiring the measured values, the rotation of the rotor is not limited to one rotation. The angle width Δθ [i] of each machine position [i] may be determined by averaging the values measured in the process of the rotor making multiple rotations. The data thus obtained can be stored in a storage medium as feature amount learning data (table).

 本開示の実施形態では、このようなセンサ装置から出力された電気信号の波形特徴を規定する複数の測定値の並びを含む特徴量学習データをリファレンスとして利用し、ロータの機械位置または機械角を推定する。特徴量学習データは、ロータの複数の機械位置(複数の区分領域)と複数の測定値との関係を規定するデータである。このような特徴量学習データは、例えばモータ出荷前または起動時などに生成され、記憶媒体に記憶され得る。

In an embodiment of the present disclosure, a feature amount learning data including a sequence of a plurality of measurement values defining a waveform feature of an electric signal output from such a sensor device is used as a reference, and the mechanical position or mechanical angle of the rotor is determined. presume. The feature amount learning data is data that defines a relationship between a plurality of machine positions (a plurality of divided areas) of the rotor and a plurality of measured values. Such feature amount learning data may be generated, for example, before shipping the motor or at the time of startup, and may be stored in a storage medium.

 また、本開示の実施形態では、ロータの機械位置を推定するとき、センサ装置から出力された電気信号の波形特徴を規定する複数の検出値の並びを取得する。リアルタイムで取得される検出値と特徴量学習データとのマッチングを行うことにより、現在のロータの機械位置の決定、更には機械角の高精度な推定を実現することが可能になる。

Further, in the embodiment of the present disclosure, when estimating the mechanical position of the rotor, a sequence of a plurality of detection values that define the waveform characteristics of the electric signal output from the sensor device is acquired. By performing matching between the detected value acquired in real time and the feature amount learning data, it is possible to determine the current machine position of the rotor and to estimate the mechanical angle with high accuracy.

 以下、本開示の実施形態を説明する。

Hereinafter, embodiments of the present disclosure will be described.

<実施形態>

1.特徴量マッチング

 本開示の位置推定方法は、非限定的で例示的な実施形態において、ロータと、ステータとを備えるモータにおけるロータの回転位置を推定する。このモータは、ロータの回転に応じて周期的に変化する電気信号を出力するセンサ装置を備えている。センサ装置の典型例は、モータに発生する磁界を電気信号に変換して出力する非接触の磁気センサであり、例えばホール素子またはホールICである。

<Embodiment>

1. Feature matching

The position estimation method of the present disclosure estimates, in a non-limiting, exemplary embodiment, a rotational position of a rotor in a motor including a rotor and a stator. This motor includes a sensor device that outputs an electric signal that changes periodically according to the rotation of the rotor. A typical example of the sensor device is a non-contact magnetic sensor that converts a magnetic field generated in a motor into an electric signal and outputs the electric signal, such as a Hall element or a Hall IC.

 図9は、本開示の実施形態による位置推定方法の処理手順を示すフローチャートである。この位置推定方法は、コンピュータに実装された方法であって、コンピュータは、少なくとも以下の処理(1)-(3)を実行することにより、ロータが存在する区分領域を決定する。なお、各処理における括弧書きの「ステップ」は図9のステップを表している。

FIG. 9 is a flowchart illustrating a processing procedure of the position estimation method according to the embodiment of the present disclosure. This position estimating method is a method implemented in a computer, and the computer determines at least the segmented region where the rotor exists by executing the following processes (1) to (3). Note that the “step” in parentheses in each process represents the step in FIG.

 処理(1):コンピュータは、ロータを定速回転させる(ステップS1)。コンピュータは、特徴量学習データを記憶する記憶媒体から、特徴量学習データを取得する(ステップS2)。特徴量学習データは、ロータが回転しているときにセンサ装置から出力された第1の電気信号の波形特徴を規定する複数の測定値の並びを含む。この特徴量学習データでは、ロータの機械位置を規定する複数の区分領域と、複数の測定値との関係が規定されている。このような特徴量学習データは、例えばモータを工場から出荷する前などのオフライン動作時に取得され、記録媒体に記憶され得る。ただし、出荷されたモータを動作させているとき、またはモータの停止時に、特徴量学習データを更新してもよい。

Process (1): The computer rotates the rotor at a constant speed (step S1). The computer acquires the feature amount learning data from the storage medium storing the feature amount learning data (step S2). The feature amount learning data includes an array of a plurality of measurement values that define the waveform feature of the first electric signal output from the sensor device when the rotor is rotating. In the feature amount learning data, a relationship between a plurality of segmented regions that define the machine position of the rotor and a plurality of measured values is defined. Such feature amount learning data may be acquired during an off-line operation, for example, before the motor is shipped from a factory, and may be stored in a recording medium. However, the feature amount learning data may be updated when the shipped motor is operating or when the motor is stopped.

 処理(2):ロータが回転しているとき、コンピュータは、センサ装置から出力された第2の電気信号を受け取る。そして、第2の電気信号の波形特徴を規定する複数の検出値を、それぞれ、順次、取得する(ステップS3)。これらの検出値は、典型的には、モータのユーザが電源再投入によってモータを始動した直後、あるいは、モータの動作中に取得され得る。このため、第2の電気信号の波形特徴を規定する複数の検出値の並びを「オンライン検出値」と呼んでもよい。

Process (2): When the rotor is rotating, the computer receives the second electric signal output from the sensor device. Then, a plurality of detection values that define the waveform characteristics of the second electric signal are sequentially acquired, respectively (step S3). These detection values may typically be obtained immediately after the motor user has started the motor by power cycling, or during operation of the motor. For this reason, an arrangement of a plurality of detection values that define the waveform characteristic of the second electric signal may be referred to as an “online detection value”.

 処理(3):コンピュータは、複数の検出値のうちの最新の検出値を含む少なくとも1個の検出値と、特徴量学習データに含まれる複数の測定値の並びとの間でマッチングを行う(ステップS4)。このマッチングにより、コンピュータは、ロータの現在の機械位置に関係づけられた区分領域を決定する(ステップS5)。

Process (3): The computer performs matching between at least one detected value including the latest detected value among the plurality of detected values, and a sequence of a plurality of measured values included in the feature amount learning data ( Step S4). With this matching, the computer determines a segmented area associated with the current machine position of the rotor (step S5).

 以下、マッチングの詳細を説明する。具体的には、表2に示されているデータをリファレンスとして用いる例を説明する。

Hereinafter, the details of the matching will be described. Specifically, an example in which the data shown in Table 2 is used as a reference will be described.

 まず、モータを制御するコンピュータがモータを始動し、ベクトル制御などの公知のモータ制御アルゴリズムにより、ロータを所定の方向に一定速度で回転させる。このようなロータの回転には、ロータの電気位置を取得する必要があるが、ホールICなどのセンサ装置の出力に応じてロータの電気位置は確定する。

First, a computer that controls the motor starts the motor, and rotates the rotor in a predetermined direction at a constant speed by a known motor control algorithm such as vector control. For such rotation of the rotor, it is necessary to acquire the electrical position of the rotor, but the electrical position of the rotor is determined according to the output of a sensor device such as a Hall IC.

 次に、コンピュータは、通常の動作モードからマッチングモードに移行する。上記の処理(1)、(2)を実行して、センサ装置から出力された第2の電気信号の波形特徴を規定する複数の検出値を、それぞれ、順次、取得する。本実施形態における「複数の検出値」は、特徴量学習データの取得時に行った測定と同様の測定を行うことによって取得される。センサ装置としてホールICを利用する場合、「複数の検出値」は、ホールICから出力されたデジタル信号における隣接する立ち上がりエッジおよび立ち下がりエッジのエッジ間隔の経過時間を、順次、測定すること、および、ロータが等速で機械的に1回転する間に測定された個々のエッジ間隔の経過時間に基づいて、個々のエッジ間隔の角度幅を決定することによって取得される。個々のエッジ間隔の角度幅を決定するとき、ロータが等速で機械的に2回転以上回転する間に測定された個々のエッジ間隔の経過時間の平均値を用いてもよい。

Next, the computer shifts from the normal operation mode to the matching mode. By executing the above processes (1) and (2), a plurality of detection values that define the waveform characteristics of the second electric signal output from the sensor device are sequentially obtained. The “plurality of detection values” in the present embodiment is obtained by performing the same measurement as that performed when acquiring the feature amount learning data. When a Hall IC is used as the sensor device, the “plurality of detected values” are obtained by sequentially measuring the elapsed time of the edge interval between adjacent rising edges and falling edges in the digital signal output from the Hall IC, and , Obtained by determining the angular width of the individual edge intervals based on the elapsed time of the individual edge intervals measured during one mechanical revolution of the rotor at a constant speed. When determining the angular width of the individual edge intervals, an average value of the elapsed time of the individual edge intervals measured during two or more mechanical rotations of the rotor at a constant speed may be used.

 こうして取得された過去3個の検出値が、例えば、電気角で60.6°、58.2°、62.1°であったとする。この場合、表2の特徴量学習データを参照することにより、過去3個の検出値に相当する機械位置は、それぞれ、機械位置5、6、7であると決定することができる。その結果、現在のロータは機械位置8にあると推定できる。この例では、過去3個の検出値をマッチングに用いているが、U個(Uは1以上の整数)の検出値を用いてマッチングを行えばよい。Uは、好ましくは2以上、典型的には3以上である。なお、Uが1の場合とは、1個の検出値によって機械位置が決定されることを意味する。例えば、1個の検出値が得られた後、表2の特徴量学習データを参照してマッチングを行い、最も近い特徴量学習データを探し出す。探し出した特徴量学習データに対応する機械位置が、当該1個の検出値が得られた機械位置であると判定することができる。

It is assumed that the past three detected values thus obtained are, for example, 60.6 °, 58.2 °, and 62.1 ° in electrical angle. In this case, by referring to the feature amount learning data in Table 2, the machine positions corresponding to the past three detected values can be determined to be the machine positions 5, 6, and 7, respectively. As a result, it can be estimated that the current rotor is at the machine position 8. In this example, the past three detected values are used for matching, but matching may be performed using U (U is an integer of 1 or more) detected values. U is preferably 2 or more, typically 3 or more. The case where U is 1 means that the machine position is determined by one detected value. For example, after one detection value is obtained, matching is performed with reference to the feature amount learning data in Table 2 to find the closest feature amount learning data. It is possible to determine that the machine position corresponding to the found feature amount learning data is the machine position at which the one detected value is obtained.

 マッチングは、特徴量の誤差(測定値と検出値の差分)の絶対値の和、または誤差の平方和を最小化するように行われ得る。なお、3個のホールICからの出力に基づいて電気位置は確定されるため、マッチングは、磁極対を特定できれば完了し得る。

The matching can be performed so as to minimize the sum of absolute values of the error of the feature amount (difference between the measured value and the detected value) or the sum of squares of the error. Since the electric position is determined based on the outputs from the three Hall ICs, the matching can be completed if the magnetic pole pair can be specified.

 図10Aは、特徴量の誤差の平方和が相対的に大きな例を模式的に示す図である。図10Bは、特徴量の誤差の平方和が最小の例を模式的に示す図である。それぞれの図において、破線が測定値の並び(リファレンス)を示し、実線が検出値の並びを示している。特徴量の誤差の平方和が最小になり(図10B)、かつ、当該平方和の値が予め定められた閾値未満になったとき、コンピュータはマッチングが成立したと判定する。本明細書では、マッチングが成立した状態を”Matched”と表現することがある。”Matched”であれば、現在のロータの機械位置(区分領域)が決定される。なお、当該平方和の値が予め定められた閾値以上の場合には、コンピュータはエラーを出力する。エラーが出力されると、ロータの機械位置(区分領域)は決定されない。

FIG. 10A is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is relatively large. FIG. 10B is a diagram schematically illustrating an example in which the sum of squares of the error of the feature amount is the minimum. In each of the figures, a broken line indicates a sequence of measured values (reference), and a solid line indicates a sequence of detected values. When the sum of squares of the error of the feature amount is minimized (FIG. 10B) and the value of the sum of squares is less than a predetermined threshold, the computer determines that the matching is established. In this specification, the state where the matching is established may be expressed as “Matched”. If “Matched”, the current machine position (section area) of the rotor is determined. If the value of the sum of squares is equal to or greater than a predetermined threshold, the computer outputs an error. If an error is output, the machine position (section area) of the rotor is not determined.

 上記の各処理は、汎用的なマイクロコントローラ、モータ用マイクロコントローラ、またはデジタル信号処理装置(DSP)などのコンピューティングデバイスによって実行され得る。ホール素子を備えるセンサ装置から出力されたアナログ信号は、例えばAD変換回路によってデジタル信号に変換される。一方、ホールICを備えるセンサ装置から出力されたデジタル信号は、典型的には、そのままコンピューティングデバイスに入力され得る。

Each of the above processes can be performed by a general-purpose microcontroller, a microcontroller for a motor, or a computing device such as a digital signal processing device (DSP). An analog signal output from a sensor device having a Hall element is converted into a digital signal by, for example, an AD conversion circuit. On the other hand, a digital signal output from a sensor device having a Hall IC can typically be input to a computing device as it is.

 なお、上述の、センサ装置として3個のホールICを用いる態様は一例である。他の例として、ホールICに代えてホール素子を用いてもよいし、センサ装置の数は4個以上であってもよい。センサ装置の数が4個以上の場合、例えば図2、図5および図6の波形は、センサ装置の数に応じた数の波形に変わり、波形の数に応じたHighおよびLowの組み合わせが得られる。

Note that the above-described embodiment using three Hall ICs as the sensor device is an example. As another example, a Hall element may be used instead of the Hall IC, and the number of sensor devices may be four or more. When the number of sensor devices is four or more, for example, the waveforms of FIGS. 2, 5, and 6 are changed to waveforms of the number corresponding to the number of sensor devices, and a combination of High and Low corresponding to the number of waveforms is obtained. Can be

 また、上述の考え方は、モータの回転方向が正転および逆転のそれぞれに適用し得る。すなわち、表2の機械位置iと角度幅Δθ[i]の測定値は、モータの回転方向が正転時および逆転時のそれぞれについて取得され得る。なお、特徴量学習データとして、複数の区分領域のそれぞれの両端におけるロータの機械角または各区分領域の角度幅を、ロータの機械位置および回転方向を変数として与える関数を含み得る。

Further, the above-described concept can be applied to the case where the rotation direction of the motor is normal rotation and reverse rotation. That is, the measured values of the mechanical position i and the angle width Δθ [i] in Table 2 can be obtained for each of the forward and reverse rotations of the motor. Note that the feature amount learning data may include a function that gives the mechanical angle of the rotor at each end of each of the plurality of divided regions or the angular width of each divided region as a variable with the mechanical position and the rotation direction of the rotor.

 上述した他の例は、以下に説明する各項目にも適用され得る。

The other examples described above can also be applied to the items described below.

2.機械角推定

 上述した特徴量のマッチング処理によってロータが存在する区分領域が決定されると、次に、コンピュータは、ロータのより詳細な位置(機械角)を推定する処理を実行する。本明細書において、「機械角」はロータの絶対角と同義である。

2. Mechanical angle estimation

When the segmented region where the rotor exists is determined by the above-described feature amount matching processing, the computer next executes processing for estimating a more detailed position (mechanical angle) of the rotor. In this specification, "mechanical angle" is synonymous with the absolute angle of the rotor.

 図11は、機械角の推定処理を説明するための図である。ロータが一定の回転速度(角速度)Vで回転している場合、機械角は、決定された区分領域(図11の領域番号2)の先頭位置(エッジ位置)における機械角θと、エッジ位置から起算した現在のロータの機械角(Δθ)との和(θ+Δθ)として得られる。

FIG. 11 is a diagram for explaining the mechanical angle estimation process. When the rotor is rotating at a constant rotation speed (angular speed) V, the mechanical angle is the mechanical angle θ 2 at the head position (edge position) of the determined divided area (area number 2 in FIG. 11), and the edge position , And the sum (θ 2 + Δθ) with the current mechanical angle (Δθ) of the rotor.

 エッジ位置から起算した現在のロータの機械角(Δθ)は、当該区分領域のエッジ位置からの経過時間Δtと、ロータの回転速度Vとから算出することができる。具体的には、コンピュータは、Δθ=V・Δt を計算する。

The current mechanical angle (Δθ) of the rotor calculated from the edge position can be calculated from the elapsed time Δt from the edge position of the divided area and the rotation speed V of the rotor. Specifically, the computer calculates Δθ = V · Δt.

 コンピュータは、(θ+V・Δt)を計算することにより、機械角を求めることができる。以下、この計算を行うために必要なVおよびΔtの求め方を説明する。

The computer can determine the mechanical angle by calculating (θ 2 + V · Δt). Hereinafter, a method of obtaining V and Δt required for performing this calculation will be described.

 図12は、機械角の推定処理を詳細に説明するための図である。説明を一般化するため、決定された区分領域はNであり、求めるべき機械角はθ(t)であるとする。

FIG. 12 is a diagram for explaining the mechanical angle estimation processing in detail. In order to generalize the description, it is assumed that the determined divided area is N and the mechanical angle to be obtained is θ (t).

 まず、θ(t)は以下のとおり表される。

 (数3) θ(t)=θ+V・ΔT

First, θ (t) is expressed as follows.

(Equation 3) θ (t) = θ n + V · ΔT

 ここでθは、決定された区分領域Nの先頭位置(エッジ位置)における機械角である。θは、表2の関係を用いて下記の通り求めることができる。

 (数4) θ=ΣΔθ[i] ただし、i=0~(n-1)の整数

Here, θ n is a mechanical angle at the head position (edge position) of the determined divided area N. theta n can be determined as follows using the relationship shown in Table 2.

(Equation 4) θ n = ΣΔθ [i] where i = 0 to an integer of (n−1)

 次に、本実施形態では、区分領域Nにおけるロータの回転速度Vは、近似的に直前の区分領域(N-1)の回転速度に一致すると考える。直前の区分領域(N-1)の回転速度V、すなわち区分領域Nにおけるロータの回転速度V、は下記の通り求めることができる。

 (数5)

Figure JPOXMLDOC01-appb-I000005

Next, in the present embodiment, it is considered that the rotation speed V of the rotor in the divided region N approximately matches the rotation speed of the immediately preceding divided region (N-1). The rotation speed V of the immediately preceding section (N-1), that is, the rotation speed V of the rotor in the section N, can be obtained as follows.

(Equation 5)

Figure JPOXMLDOC01-appb-I000005

 なお数5中のθn-1の求め方は数4に準ずる。tおよびtn-1はそれぞれ、直前の区分領域(N-1)の先頭位置および末尾位置の通過時刻のタイマ値である。なお、タイマ値そのものではなく、タイマ値から換算された時刻値を用いることもできる。区分領域(N-1)の先頭位置および末尾位置は、それぞれ、区分領域(N-1)を規定する、ホールICから出力されたデジタル信号における隣接する立ち上がりエッジおよび立ち下がりエッジの一方および他方である。

Note that the method of finding θ n-1 in Equation 5 is in accordance with Equation 4. t n and t n-1 are timer values of the passing times at the head position and the end position of the immediately preceding segmented area (N-1), respectively. Note that a time value converted from the timer value can be used instead of the timer value itself. The start position and the end position of the segmented area (N-1) correspond to one and the other of the adjacent rising edge and falling edge in the digital signal output from the Hall IC, which define the segmented area (N-1). is there.

 求めるべき機械角は、下記のように表される。

 (数6) θ(t)=θ+∫Vdt (ただし、積分範囲は、時刻tから(t+ΔT)まで)

 数6の積分範囲ΔTは、タイマ値またはタイマ値から換算された時刻値である。

The mechanical angle to be obtained is expressed as follows.

(Equation 6) θ (t) = θ n + ∫Vdt (however, the integration range is from time t n to (t n + ΔT))

The integration range ΔT in Expression 6 is a timer value or a time value converted from the timer value.

 図12は、区分領域N内において回転速度Vが一定であると仮定した場合の簡易な機械角の計算方法である。しかしながら、より精度の高い機械角の計算方法を採用することもできる。

FIG. 12 shows a simple method of calculating the mechanical angle when the rotation speed V is assumed to be constant in the segmented area N. However, a more accurate method of calculating the mechanical angle may be employed.

 図13は、区分領域N内で周期Δtごとに回転速度Vを算出して機械角を計算する方法を説明するための模式図である。この例でも、区分領域Nの先頭のエッジ位置の通過時刻はtであり、機械角はθである。周期Δtは、区分領域Nの先頭位置から末尾位置までの時間よりも短い。周期Δtは、例えばマイコンの動作周期であり、具体例は50マイクロ秒である。図13の例では、以下の演算によって機械角θ(t)を求める。

 (数7) θ(t)=θ+∫Vdt=θn+Σ{V[k]・Δt}   (ただし、Σの加算範囲は、k=1からΔT/Δtまで)

FIG. 13 is a schematic diagram for explaining a method of calculating the mechanical angle by calculating the rotation speed V for each period Δt in the divided area N. In this example, the beginning of the passage time of the edge position of the segment area N is t n, mechanical angle is theta n. The period Δt is shorter than the time from the start position to the end position of the divided area N. The period Δt is, for example, the operation period of the microcomputer, and a specific example is 50 microseconds. In the example of FIG. 13, the mechanical angle θ (t) is obtained by the following calculation.

(Equation 7) θ (t) = θ n + {Vdt = θn + {V [k] · Δt} (however, the addition range of Σ is from k = 1 to ΔT / Δt)

 ここで、V[k]は、区分領域N内のk番目の周期におけるロータの回転速度を表している。V[k]はk番目の周期における先頭位置の機械角および末尾位置の機械角の差を、Δtで除算して得られる。

Here, V [k] represents the rotation speed of the rotor in the k-th cycle in the divided area N. V [k] is obtained by dividing the difference between the mechanical angle at the start position and the mechanical angle at the end position in the k-th cycle by Δt.

 図12に示す機械角の推定方法は、直前の区分領域における回転速度が現在の区分領域の回転速度であるとみなして機械角を推定する。一方、図13に示す機械角の推定方法は、直前の区分領域における回転速度ではなく、現在の区分領域内の、直前の動作周期において求めた回転速度を現在の動作周期における回転速度であるとみなして機械角を推定する。後者の推定方法の方が、より精確にΔtごとの回転角を求めることができるため、得られる機械角もより精確になる。

The mechanical angle estimation method shown in FIG. 12 estimates the mechanical angle by regarding the rotation speed in the immediately preceding segmented area as the current rotational speed in the segmented area. On the other hand, the method of estimating the mechanical angle shown in FIG. 13 is based on the assumption that the rotational speed obtained in the immediately preceding operation cycle in the current divided area is not the rotational speed in the immediately preceding divided area but the rotation speed in the current operation cycle. Consider the mechanical angle assuming. In the latter estimation method, since the rotation angle for each Δt can be more accurately obtained, the obtained mechanical angle is more accurate.

 図14は、区分領域決定後の機械角の推定処理の手順を示すフローチャートである。ここでは図12に示す機械角の推定処理を例示する。

FIG. 14 is a flowchart illustrating the procedure of the mechanical angle estimation process after the determination of the segmented area. Here, a mechanical angle estimation process shown in FIG. 12 is illustrated.

 ステップS11において、コンピュータはロータを定速回転させる。ステップS12において、コンピュータは、数4に従い現在の区分領域の先頭位置における機械角θnを算出する。ステップS13において、コンピュータはホールICから出力されたデジタル信号の立ち上がりエッジまたは立ち下がりエッジの最新の検出からの経過時間ΔTを取得する。ステップS14において、コンピュータは数5に従い、直前の区分領域通過時のロータの回転速度Vを算出する。ステップS15において、コンピュータは数6に従い、機械角の推定値を出力する。

In step S11, the computer rotates the rotor at a constant speed. In step S12, the computer calculates the mechanical angle θn at the head position of the current segmented area according to Equation 4. In step S13, the computer acquires the elapsed time ΔT from the latest detection of the rising edge or the falling edge of the digital signal output from the Hall IC. In step S14, the computer calculates the rotational speed V of the rotor at the time of passing through the immediately preceding segmented area according to Equation 5. In step S15, the computer outputs an estimated value of the mechanical angle according to Equation 6.

 なお、図13に示す推定方法を採用する場合には、ステップS15における数6を数7に読み替えれば良い。以上の処理により、コンピュータを用いて精確な機械角を推定することができる。

In the case where the estimation method shown in FIG. 13 is employed, Equation 6 in Step S15 may be replaced with Equation 7. By the above processing, a precise mechanical angle can be estimated using a computer.

 なお、例示的な実施形態では、近似的に、区分領域Nの回転速度Vは直前の区分領域(N-1)の回転角度に一致するとした。そのため、区分領域(N-1)の機械角を通過時刻で除算して回転速度Vを求めた。しかしながら、直前の区分領域よりもさらに前の区分領域の回転速度を利用して区分領域Nの回転速度Vを求めてもよい。例えば、直前の複数の区分領域の機械角の合計値を、当該複数の区分領域の通過時刻で除算して、区分領域Nの回転速度Vを求めてもよい。すなわち、立ち上がりエッジまたは立ち下がりエッジの最新の検出結果と、X個(Xは2以上の整数)前の区分領域の最初の立ち上がりエッジまたは立ち下がりエッジの検出結果との間の時間間隔に基づいて、ロータの回転速度を算出してもよい。あるいは、X個以上前の区分領域の機械角をその区分領域の通過時刻で除算して、近似的に、X個以上前の区分領域の回転速度が区分領域Nの回転速度であると見なして、回転速度を求めてもよい。

In the exemplary embodiment, it is assumed that the rotation speed V of the divided area N approximately matches the rotation angle of the immediately preceding divided area (N-1). Therefore, the rotation angle V was obtained by dividing the mechanical angle of the segmented area (N-1) by the passing time. However, the rotation speed V of the divided region N may be obtained by using the rotation speed of the divided region further before the immediately preceding divided region. For example, the rotation speed V of the divided area N may be obtained by dividing the total value of the mechanical angles of the plurality of immediately preceding divided areas by the passing time of the plurality of divided areas. That is, based on the time interval between the latest detection result of the rising edge or the falling edge and the detection result of the first rising edge or the falling edge of the X (X is an integer equal to or greater than 2) preceding segmented region. Alternatively, the rotation speed of the rotor may be calculated. Alternatively, by dividing the mechanical angle of the segmented region X or more before by the passing time of the segmented region, approximately, the rotation speed of the segmented region X or more before is regarded as the rotation speed of the segmented region N. Alternatively, the rotation speed may be obtained.

3.リファレンス更新

 次に、リファレンスの更新処理を説明する。

3. Reference update

Next, reference update processing will be described.

 図10Bに示すように、マッチングが成立したと判定された場合でも、リファレンス(破線)と検出値(実線)とは完全に一致していない場合がある。その理由の一つは、リファレンスである測定値が取得された時の動作条件と、検出値が取得された時の動作条件との相違である。ここでいう動作条件とは、例えば環境温度である。ホール素子と同様、ホールICの感度も温度に依存して変化し得る。ロータとステータとのギャップも温度に応じて変わり得る。これらは、モータ固有の特徴量を変化させ得る。

As shown in FIG. 10B, even when it is determined that the matching is established, the reference (broken line) and the detected value (solid line) may not completely match. One of the reasons is a difference between an operating condition when a measured value as a reference is obtained and an operating condition when a detected value is obtained. The operating condition here is, for example, an environmental temperature. Like the Hall element, the sensitivity of the Hall IC can change depending on the temperature. The gap between the rotor and the stator can also vary with temperature. These can change the characteristic amount of the motor.

 そこで、既存のリファレンスを現在の動作条件で取得した検出値によって更新して以後のマッチング処理に利用する。それにより、マッチングの評価に用いる誤差の平方和をより小さくすることができる。例えば、コンピュータは、マッチングが成立したと判定した場合、検出値の並びを新たなリファレンスとして既存のリファレンスを更新する。より具体的には、コンピュータは、メモリに記憶されている既存のリファレンスを、新たなリファレンスによって上書きする。

Therefore, the existing reference is updated with the detection value obtained under the current operating condition and used for the subsequent matching processing. Thereby, the sum of squares of the error used in the evaluation of the matching can be further reduced. For example, when the computer determines that the matching is established, the computer updates the existing reference with the arrangement of the detection values as a new reference. More specifically, the computer overwrites the existing reference stored in the memory with the new reference.

 図15は、継続的に更新されて変化するリファレンスの例を模式的に示している。本実施形態では、マッチングの成立がリファレンス更新の必要条件であるとしているため、更新前後のリファレンス間に大幅な変動は見られない。しかしながら、一部または全部の測定値が徐々に変化し、現在の動作条件下で取得された検出値に近付いてゆく。その結果、マッチング成否の条件である誤差の平方和をより小さくできる。例えば、リファレンスを更新する度に、コンピュータは誤差の平方和の閾値をより小さくしてもよい。マッチングが成立したと判定する条件をより厳しくすることにより、マッチングの精度をより高めることができる。

FIG. 15 schematically illustrates an example of a reference that is continuously updated and changes. In the present embodiment, since the establishment of the matching is a necessary condition for updating the reference, no significant change is observed between the reference before and after the update. However, some or all of the measurements change gradually and approach the detected values obtained under the current operating conditions. As a result, the sum of squares of the error, which is a condition for the success or failure of the matching, can be further reduced. For example, each time the reference is updated, the computer may lower the sum-of-squares error threshold. By making the conditions for determining that the matching is established more strict, the accuracy of the matching can be further improved.

 なお、リファレンスの更新処理は、マッチングが成立した場合だけでなく、その後のロータのより詳細な位置(機械角)を推定する処理が終了した後に行われても良い。また、工場出荷時のリファレンスは維持しておき、別途更新可能なリファレンスを用意して更新してもよい。以下、ロータの機械角推定処理の後にリファレンスを更新する処理を説明する。

The reference updating process may be performed not only when the matching is established, but also after the process of estimating a more detailed position (mechanical angle) of the rotor is completed. Alternatively, the reference at the time of factory shipment may be maintained, and a separately updatable reference may be prepared and updated. Hereinafter, the process of updating the reference after the rotor mechanical angle estimation process will be described.

 図16は、リファレンスの更新処理の手順を示すフローチャートである。

FIG. 16 is a flowchart illustrating the procedure of the reference update process.

 ステップS21において、コンピュータは、マッチングが成立したと判定した時の検出値の並びをバッファに保持する。バッファは、一般的なコンピュータ(CPU)が内部に有する記憶素子である。

In step S21, the computer retains, in a buffer, the arrangement of the detection values when it is determined that the matching is established. The buffer is a storage element included in a general computer (CPU).

 ステップS22において、コンピュータは、記憶媒体に更新可能リファレンスが既に存在しているか否かを判定する。「更新可能リファレンス」とは、工場出荷時のリファレンスとは異なり、更新(上書き)することが可能なリファレンスを意味する。なお、本実施形態では、工場出荷時のリファレンスには上書きがされないよう上書き不可属性が付与されている。または、工場出荷時のリファレンスは書き換え不可能な記憶媒体(例えばROM)に記憶されていても良い。

In step S22, the computer determines whether an updatable reference already exists in the storage medium. The “updatable reference” means a reference that can be updated (overwritten), unlike a reference at the time of factory shipment. In the present embodiment, the reference at the time of shipment from the factory is given an overwrite-disabled attribute so as not to be overwritten. Alternatively, the reference at the time of factory shipment may be stored in a non-rewritable storage medium (for example, ROM).

 記憶媒体に更新可能リファレンスが既に存在していない場合には、処理はステップS23に進む。記憶媒体に更新可能リファレンスが既に存在している場合には、処理はステップS24に進む。

If the updatable reference does not already exist in the storage medium, the process proceeds to step S23. If an updatable reference already exists in the storage medium, the process proceeds to step S24.

 ステップS23において、コンピュータは、バッファに保持された検出値の並びで、更新可能リファレンスを新たに作成し、記憶媒体に保存する。その後、コンピュータは処理を終了する。

In step S23, the computer newly creates an updatable reference in the order of the detected values held in the buffer, and stores it in the storage medium. Thereafter, the computer ends the processing.

 ステップS24において、コンピュータは、バッファに保持された検出値の並びで更新可能リファレンスを上書きする。その後、コンピュータは処理を終了する。

In step S24, the computer overwrites the updatable reference with the sequence of the detection values held in the buffer. Thereafter, the computer ends the processing.

 以上の処理により、工場出荷時のリファレンスを維持しつつ、マッチング処理に利用するリファレンスを更新することができる。

Through the above processing, the reference used for the matching processing can be updated while maintaining the reference at the time of factory shipment.

4.異常検知

 次に、本項目および次の項目においてマッチング処理の応用例を説明する。

4. Anomaly detection

Next, application examples of the matching processing in this item and the next item will be described.

 本項目では、マッチングの成否判断の際、モータが故障している等の異常状態にあることを判定する異常判定処理を説明する。

In this item, a description will be given of an abnormality determination process for determining that the motor is in an abnormal state, such as a failure, when determining the success or failure of the matching.

 ある時刻tまではマッチングが成立してモータの機械位置の推定が正しく行われていたが、時刻t以降は、ある機械位置で検出値が突然大きくなったとする。そのような状況では、マッチング成否の判定処理に時間を要すると考えられる。そこでマッチングが予め定められた所定時間以内に完了しないとき、当該機械位置において何らかの異常が発生したと推測することができる。

It is assumed that the matching has been established and the machine position of the motor has been correctly estimated until a certain time t, but the detected value suddenly increases at a certain machine position after the time t. In such a situation, it is considered that it takes time to perform the matching success / failure determination process. Therefore, when the matching is not completed within a predetermined time, it can be assumed that some abnormality has occurred at the machine position.

 図17Aは、時刻tまでの、正常なマッチング結果に基づいて決定された区分領域ごとの角度幅の測定値をバーの高さで表現した模式図である。いま、時刻tで取得された区分領域2および3の角度幅の組C1に注目する。

FIG. 17A is a schematic diagram in which the measured value of the angular width for each of the divided areas determined based on the normal matching result up to time t is represented by the bar height. Attention is now focused on the set C1 of the angular widths of the divided areas 2 and 3 acquired at the time t.

 図17Bは、時刻t以後に取得された、区分領域ごとの角度幅の測定値を示す模式図である。区分領域2および3の角度幅の組C2は、時刻tで取得された区分領域2および3の角度幅の組C1と大きく乖離している。組C2の方が、区分領域2の角度幅がより大きくなり、区分領域3の角度幅がより小さくなっていることが理解される。そこで、例えば、全ての角度幅の差分の絶対値または平方の和について予め閾値を設けておき、当該閾値を超えた場合には、コンピュータはモータが異常状態にあると判定する。判定結果に従って、コンピュータはロータを停止させるための制御に切り替える。各区分領域の角度幅の基準値として、直前の処理で取得された、または、一定の時間範囲以内に取得された角度幅を採用してもよいし、予め用意された各区分領域の角度幅を示す固定値を採用してもよい。

FIG. 17B is a schematic diagram showing measured values of the angle width for each of the divided areas acquired after time t. The set C2 of the angular widths of the divided areas 2 and 3 largely deviates from the set C1 of the angular widths of the divided areas 2 and 3 acquired at the time t. It is understood that the set C2 has a larger angular width of the divided area 2 and a smaller angular width of the divided area 3. Therefore, for example, a threshold value is set in advance for the absolute value or the sum of the squares of the differences of all the angle widths, and if the threshold value is exceeded, the computer determines that the motor is in an abnormal state. The computer switches to control for stopping the rotor according to the determination result. As a reference value of the angle width of each sectioned area, an angle width obtained in the immediately preceding process or obtained within a predetermined time range may be adopted, or an angle width of each sectioned area prepared in advance May be adopted.

 なお、角度幅の差分の絶対値または平方の和が閾値を上回った場合でも、マッチングが成立することはあり得る。そのため、コンピュータは、マッチングの成否にかかわらず上述の異常判定を行ってもよい。

It should be noted that even when the absolute value of the difference in the angle width or the sum of the squares exceeds the threshold value, matching may be established. Therefore, the computer may perform the above-described abnormality determination regardless of the success or failure of the matching.

 図18は異常判定処理の手順を示すフローチャートである。

FIG. 18 is a flowchart illustrating the procedure of the abnormality determination process.

 ステップS31において、コンピュータは、現在の角度幅の推定値を取得する。

In step S31, the computer obtains the current estimated value of the angle width.

 ステップS32において、コンピュータは、マッチングが所定時間以内に完了したか否かを判定する。完了した場合には処理はステップS33に進み、完了しなかった場合には処理はステップS34に進む。

In step S32, the computer determines whether the matching has been completed within a predetermined time. If completed, the process proceeds to step S33; if not completed, the process proceeds to step S34.

 ステップS33において、コンピュータは、各区分領域の角度幅と、予め用意された基準角度幅との差分の絶対値または平方の和が閾値以内か否かを判定する。閾値以内であれば、異常がないと判定されるため、処理は終了する。一方、閾値を超えている場合には、異常ありと判定され、処理はステップSS34に進む。

In step S33, the computer determines whether or not the absolute value or the sum of the squares of the difference between the angle width of each of the divided areas and the previously prepared reference angle width is within a threshold value. If it is within the threshold, it is determined that there is no abnormality, and the process ends. On the other hand, if it exceeds the threshold, it is determined that there is an abnormality, and the process proceeds to step SS34.

 ステップS34では、コンピュータはモータの異常が発生したと判定する。このとき、コンピュータは、差分の絶対値または平方が所定値を超えて大きくなった機械位置を特定することができ、当該機械位置においてモータに異常が発生していると判定する。そして、コンピュータは、異常が発生した機械位置を示す信号を出力する。当該信号に応答して、例えば、不図示のブザーを鳴動させ、および/または、不図示の表示装置に異常が発生した機械位置を示す警告を表示させる。これにより、ユーザに異常が発生した機械位置を報知できる。または、コンピュータは現在実行中のモータのロータを回転させる処理を、ロータの回転を停止させる処理に切り替えてもよい。例えば、コンピュータはモータに供給される電流を遮断することにより、ロータの回転を停止させる。

In step S34, the computer determines that a motor abnormality has occurred. At this time, the computer can specify the machine position at which the absolute value or the square of the difference exceeds a predetermined value and increases, and determines that an abnormality has occurred in the motor at the machine position. Then, the computer outputs a signal indicating the machine position where the abnormality has occurred. In response to the signal, for example, a buzzer (not shown) is sounded and / or a warning indicating the machine position where the abnormality has occurred is displayed on a display device (not shown). Thus, the user can be notified of the machine position where the abnormality has occurred. Alternatively, the computer may switch the currently executing process of rotating the rotor of the motor to the process of stopping the rotation of the rotor. For example, the computer stops the rotation of the rotor by interrupting the current supplied to the motor.

 なお、モータに異常があると判定した場合には、コンピュータは、モータまたはホールIC(センサ装置)のいずれかが異常状態にあることを示す信号を出力してもよい。当該信号に応答して、例えば、不図示のブザーを鳴動させ、および/または、不図示の表示装置に故障であることを示す警告を表示させる。これにより、ユーザに故障を報知することができる。また、モータに異常があると判定した場合に、コンピュータは、モータまたはホールIC(センサ装置)のいずれかが異常状態にあることを示す信号を記憶媒体に記録してもよい。例えば、ユーザは、モータのメンテナンスの際に、記憶媒体に記録された信号に応じて、故障箇所を修理する等の処置をすることができる。

When it is determined that the motor has an abnormality, the computer may output a signal indicating that either the motor or the Hall IC (sensor device) is in an abnormal state. In response to the signal, for example, a buzzer (not shown) is sounded and / or a warning indicating failure is displayed on a display device (not shown). As a result, the user can be notified of the failure. When it is determined that the motor has an abnormality, the computer may record a signal indicating that either the motor or the Hall IC (sensor device) is in an abnormal state in a storage medium. For example, at the time of maintenance of the motor, the user can take a measure such as repairing a failed part in accordance with a signal recorded in the storage medium.

 コンピュータは、さらに他の応用的な処理を行うこともできる。例えば、マッチングに当たって取得した検出値がそのモータ固有の特徴量を示すことを利用して、モータの個体認識を行うことができる。通常であれば0.1秒以内にマッチングが完了していたとする。しかしながら、1秒間継続してマッチング処理を行ったもののマッチングが成立しない場合には、マッチングができないほどリファレンスと検出値とが大きく異なっている、つまりはリファレンスを取得したモータとは異なるモータ、または適合しないモータ、が実装されたという異常状態を判定し得る。そこで、コンピュータはモータを駆動しない、という処理に切り替えることができる。これにより、特定のモータについてのみ制御を許可することができる。また、リファレンスにモータが適合しないことを示す信号を出力してもよい。これにより、異なるモータを検知したことをユーザに報知することができる。

The computer can also perform other applied processing. For example, the individual recognition of the motor can be performed by utilizing that the detection value acquired in the matching indicates the characteristic amount unique to the motor. Normally, it is assumed that the matching is completed within 0.1 seconds. However, if the matching process is performed continuously for one second but the matching is not established, the reference and the detection value are so different that the matching cannot be performed, that is, a motor different from the motor that obtained the reference, or It is possible to determine an abnormal state in which a motor is not mounted. Therefore, the computer can switch to a process of not driving the motor. Thereby, control can be permitted only for a specific motor. Further, a signal indicating that the motor does not conform to the reference may be output. Thus, the user can be notified that a different motor has been detected.

 なお、仮に本明細書に記載の処理を行うモータシステムを提供する業者が、上述の適合しないモータについての使用許諾を与えた場合、当該業者は、適合しないモータの固有のリファレンスを、例えば通信回線を介して、またはリムーバブル記憶媒体を介してコンピュータにインストールする。これにより、これまで適合しないと判定されていたモータについてマッチングが成立し、モータを制御することが可能になる。

If a provider of a motor system that performs the processing described in the present specification grants a license for the above-mentioned non-conforming motor, the relevant supplier may obtain a unique reference for the non-conforming motor, for example, a communication line. Or installed on a computer via a removable storage medium. As a result, matching is established for the motor that has been determined to be unsuitable until now, and the motor can be controlled.

5.経過時劣化判定

 本項目では、工場出荷時のリファレンスと、更新されたリファレンスとを利用して、モータの経時劣化の有無を判定する処理を説明する。

5. Elapsed deterioration judgment

In this section, a process of determining whether or not the motor has deteriorated with time using a reference at the time of factory shipment and an updated reference will be described.

 上述の項目3で説明したように、更新されたリファレンスは、もともと、工場出荷時のリファレンスとの間に差異が存在することを前提としている。相違は、動作条件が異なることに起因すると考えられるが、実際には、経時劣化に起因することもあり得る。経時劣化の場合、相違はリファレンスの一部または全部について徐々に大きくなり得る。そこで、更新されたリファレンスと工場出荷時のリファレンスとを利用して、経時劣化が進んだか否かを判定することができる。

As described in item 3 above, it is assumed that the updated reference originally has a difference from the reference at the time of factory shipment. The difference may be due to different operating conditions, but may actually be due to aging. In the case of aging, the difference can be progressively greater for some or all of the reference. Therefore, it is possible to determine whether or not deterioration with time has progressed using the updated reference and the reference at the time of factory shipment.

 図19Aは、工場出荷時のリファレンスの一例を示す模式図である。一方、図19Bは、更新されたリファレンスの一例を示す模式図である。例えば、区分領域8の角度幅については、工場出荷時のリファレンスと更新されたリファレンスとで実質的に一致している。一方、区分領域2および3の角度幅の組については、工場出荷時のリファレンスの組C3と、更新されたリファレンスの組C5とは相違している。これらの相違は、両リファレンスの角度幅の差分の絶対値または平方和を利用して評価することができる。例えば両リファレンスの角度幅の差分の絶対値または平方和が閾値以上であれば、経時劣化が発生したと判定することができる。経時劣化は、例えば、ロータの偏心、ロータに用いられている磁石の減磁、ホールICの感度の低下に起因して発生し得る。よって、モータおよびホールIC(センサ装置)の少なくとも一方の経時劣化の有無を判定できる。なお、経時劣化の有無の判定を、「劣化状態の判定」と呼ぶことがある。

FIG. 19A is a schematic diagram illustrating an example of a reference at the time of factory shipment. On the other hand, FIG. 19B is a schematic diagram illustrating an example of an updated reference. For example, as for the angular width of the segmented area 8, the reference at the time of shipment from the factory and the updated reference substantially match. On the other hand, the set of angular widths of the segmented areas 2 and 3 is different from the reference set C3 at the time of factory shipment and the updated reference set C5. These differences can be evaluated using the absolute value or the sum of squares of the difference between the angular widths of the two references. For example, if the absolute value or the sum of the squares of the difference between the angular widths of the two references is equal to or larger than the threshold, it can be determined that the deterioration with time has occurred. The deterioration with time can occur due to, for example, eccentricity of the rotor, demagnetization of the magnet used for the rotor, and reduction in sensitivity of the Hall IC. Therefore, it is possible to determine whether or not at least one of the motor and the Hall IC (sensor device) has deteriorated with time. Note that the determination of the presence or absence of temporal deterioration may be referred to as “determination of a deteriorated state”.

 以下、経時劣化の判定処理の内容を説明する。以下では、上述の項目3の例と同様、現在のリファレンスと工場出荷時のリファレンスとが記憶媒体内に併存しているとする。

Hereinafter, the details of the processing for determining the deterioration over time will be described. In the following, it is assumed that the current reference and the reference at the time of factory shipment coexist in the storage medium as in the example of item 3 described above.

 図20は、経時劣化の判定処理の手順を示すフローチャートである。このフローチャートによる処理は、例えばモータ起動時、またはモータの起動以後所定の時間が経過した定期的なタイミングで実行され得る。

FIG. 20 is a flowchart illustrating the procedure of the time-dependent deterioration determination process. The processing according to this flowchart may be executed, for example, at the time of starting the motor or at a regular timing after a predetermined time has elapsed since the start of the motor.

 ステップS41において、コンピュータは、記憶媒体から、現在のリファレンスと工場出荷時のリファレンスとを取得する。

In step S41, the computer acquires the current reference and the reference at the time of factory shipment from the storage medium.

 ステップS42において、コンピュータは、両リファレンスの各区分領域の角度幅の差分の絶対値または平方和が予め定められた閾値以内か否かを判定する。閾値以内であれば、経時劣化はないと判定されるため、処理は終了する。一方、閾値を超えている場合には、経時劣化ありと判定され、処理はステップS43に進む。

In step S42, the computer determines whether or not the absolute value or the sum of the squares of the difference between the angular widths of the divided regions of both references is within a predetermined threshold. If it is within the threshold value, it is determined that there is no deterioration over time, and the process ends. On the other hand, if it exceeds the threshold, it is determined that there is deterioration over time, and the process proceeds to step S43.

 ステップS43において、コンピュータはモータが経時劣化したと判定する。そして、コンピュータは、モータまたはホールIC(センサ装置)の少なくとも一方が経時劣化していることを示す信号を出力する。当該信号により、ユーザに経時劣化の発生を報知することができる。例えば、当該信号に応答して、不図示のブザーを鳴動させ、および/または、不図示の表示装置に劣化があることを示す警告を表示させる。これにより、ユーザに経時劣化を報知することができる。以上、本開示にかかる例示的な実施形態を説明した。

In step S43, the computer determines that the motor has deteriorated with time. Then, the computer outputs a signal indicating that at least one of the motor and the Hall IC (sensor device) has deteriorated with time. With the signal, the user can be notified of the occurrence of temporal deterioration. For example, in response to the signal, a buzzer (not shown) is sounded and / or a warning indicating that the display device (not shown) is deteriorated is displayed. Thereby, the user can be notified of the deterioration over time. The exemplary embodiment according to the present disclosure has been described above.

 上述の通り、マッチング処理および機械位置の推定処理により、ロータの精確な位置を推定できるだけでなく、モータの異常および経時劣化を判定することが可能である。

As described above, by the matching process and the machine position estimating process, it is possible not only to estimate the accurate position of the rotor, but also to determine abnormality and deterioration over time of the motor.

6.モータシステムの構成例

 以下、本開示の実施形態におけるモータシステム1000の構成例を説明する。

6. Motor system configuration example

Hereinafter, a configuration example of the motor system 1000 according to the embodiment of the present disclosure will be described.

 まず、図21を参照する。図21は、本開示の実施形態におけるモータシステム1000の構成例を示す図である。図21に例示されているモータシステム1000は、ホールIC(H1、H2、H3)を有するセンサ装置20が取り付けられたモータMを備えている。モータMは、複数の磁極を有するロータRと、複数の巻線を有するステータSとを備えている。本開示におけるモータMの典型例は、ブラシレスDCモータなどの永久磁石同期モータであるが、この例に限定されない。

First, reference is made to FIG. FIG. 21 is a diagram illustrating a configuration example of the motor system 1000 according to the embodiment of the present disclosure. The motor system 1000 illustrated in FIG. 21 includes a motor M to which a sensor device 20 having Hall ICs (H1, H2, H3) is attached. The motor M includes a rotor R having a plurality of magnetic poles and a stator S having a plurality of windings. A typical example of the motor M in the present disclosure is a permanent magnet synchronous motor such as a brushless DC motor, but is not limited to this example.

 モータシステム1000は、モータMを駆動するモータ駆動装置30と、モータ駆動装置30に接続されているモータ制御装置40とを備えている。なお、図21には、ブロック間に双方向の白抜き矢印が記載されている。この矢印は、信号およびデータなどの情報が常に2方向に移動し得ることを意味していない。例えば、モータ駆動装置30とモータ制御装置40との間では、モータ制御装置40からモータ駆動装置30に向かって1方向に信号が送られてもよい。

The motor system 1000 includes a motor drive device 30 that drives the motor M, and a motor control device 40 connected to the motor drive device 30. In FIG. 21, bidirectional white arrows are shown between blocks. This arrow does not mean that information such as signals and data can always move in two directions. For example, between the motor drive device 30 and the motor control device 40, a signal may be sent from the motor control device 40 to the motor drive device 30 in one direction.

 モータシステム1000は、外部装置70に接続されている。モータ制御装置40は、外部装置70から位置指令値および速度指令値などの指令値を受け取り、例えば公知のベクトル制御のアルゴリズムに従った制御処理を実行する。モータ制御装置40は、電圧指令値を出力する。モータ駆動装置30は、モータ制御装置40から出力された電圧指令値に基づいて、モータMの回転動作に必要な電圧をモータMにおけるステータSの巻線に印加する。モータ駆動装置30は、例えばインバータ回路およびプリドライバを備えている。インバータ回路は、複数のパワートランジスタを有するブリッジ回路であり得る。モータ駆動装置30は、電圧指令値として、典型的にはパルス幅変調(PWM)信号をモータ制御装置40から受け取り、擬似的な正弦波電圧をモータMに与える。

The motor system 1000 is connected to the external device 70. The motor control device 40 receives command values such as a position command value and a speed command value from the external device 70, and executes control processing according to, for example, a known vector control algorithm. Motor control device 40 outputs a voltage command value. The motor driving device 30 applies a voltage necessary for the rotation operation of the motor M to the winding of the stator S in the motor M based on the voltage command value output from the motor control device 40. The motor driving device 30 includes, for example, an inverter circuit and a pre-driver. The inverter circuit may be a bridge circuit having a plurality of power transistors. The motor drive device 30 typically receives a pulse width modulation (PWM) signal from the motor control device 40 as a voltage command value, and applies a pseudo sine wave voltage to the motor M.

 モータ制御装置40は、ロータRの位置を推定する位置推定装置60を備えている。位置推定装置60は、センサ信号処理回路62と、特徴量抽出回路64と、特徴量学習データ(リファレンス)が記憶されているメモリ68と、マッチング回路66とを備えている。これらの回路は、位置推定装置60の機能ブロックに相当している。後述するように、各機能ブロックは、コンピュータによって実現され得る。

The motor control device 40 includes a position estimating device 60 that estimates the position of the rotor R. The position estimating device 60 includes a sensor signal processing circuit 62, a feature amount extraction circuit 64, a memory 68 storing feature amount learning data (reference), and a matching circuit 66. These circuits correspond to functional blocks of the position estimation device 60. As will be described later, each functional block can be realized by a computer.

 センサ信号処理回路62は、センサ装置20からセンサ出力を受け取り、エッジ位相θ[i]または図6の波形Pを示す信号を生成する。センサ信号処理回路62は、センサ出力から電気位置を特定するロジック回路を有していてもよい。

The sensor signal processing circuit 62 receives the sensor output from the sensor device 20, and generates a signal indicating the edge phase θ [i] or the waveform P in FIG. The sensor signal processing circuit 62 may include a logic circuit that specifies an electrical position from a sensor output.

 特徴量抽出回路64は、図7を参照しながら説明した方法により、Δθ[i]を順次取得する。ただし、この時点では、現在の電気位置が特定されていたとしても、機械位置iは不特定である。

The feature amount extraction circuit 64 sequentially acquires Δθ [i] by the method described with reference to FIG. However, at this point, the machine position i is unspecified even if the current electric position is specified.

 位置推定装置60は、メモリ68から特徴量学習データを読み出し、Δθ[i]とのマッチングを行う。マッチングの結果、機械位置iを特定することができる。

The position estimation device 60 reads the feature amount learning data from the memory 68 and performs matching with Δθ [i]. As a result of the matching, the machine position i can be specified.

 こうして、前述した位置推定方法を実行することにより、ホールICからの出力を用いてロータRの機械位置を求めることができる。また、後述する方法および装置によれば、ロータRの機械角を高い分解能で推定することができる。ロータRの位置推定値を示す信号は、位置推定装置60からモータ制御装置40に入力される。

Thus, by executing the above-described position estimation method, the mechanical position of the rotor R can be obtained using the output from the Hall IC. Further, according to the method and apparatus described later, the mechanical angle of the rotor R can be estimated with high resolution. A signal indicating the position estimation value of the rotor R is input from the position estimation device 60 to the motor control device 40.

 図22は、本開示によるモータシステムにおけるモータ制御装置40のハードウェア構成の例を示す図である。

FIG. 22 is a diagram illustrating an example of a hardware configuration of the motor control device 40 in the motor system according to the present disclosure.

 モータ制御装置40は、例えば図22に示されるハードウェア構成を有していても良い。この例におけるモータ制御装置40は、互いにバス接続されたCPU54、PWM回路55、ROM(リードオンリーメモリ)56、RAM(ランダムアクセスメモリ)57、およびI/F(入出力インタフェース)58を有している。図示されていない他の回路またはデバイス(AD変換器など)がバスに接続されていてもよい。PWM回路55は、図21のモータ駆動装置30にPWM信号を与える。CPU54の動作を規定するプログラムおよびデータは、ROM56およびRAM57の少なくとも一方に記憶されている。このようなモータ制御装置40は、例えば32ビットの汎用的なマイクロコントローラによって実現され得る。そのようなマイクロコントローラは、例えば1個または複数の集積回路チップから構成され得る。マイクロコントローラは、上述の「コンピュータ」の一例である。

The motor control device 40 may have, for example, a hardware configuration illustrated in FIG. The motor control device 40 in this example includes a CPU 54, a PWM circuit 55, a ROM (read only memory) 56, a RAM (random access memory) 57, and an I / F (input / output interface) 58, which are connected to each other by a bus. I have. Other circuits or devices not shown (such as AD converters) may be connected to the bus. The PWM circuit 55 provides a PWM signal to the motor driving device 30 in FIG. Programs and data that define the operation of the CPU 54 are stored in at least one of the ROM 56 and the RAM 57. Such a motor control device 40 can be realized by, for example, a 32-bit general-purpose microcontroller. Such a microcontroller may consist of, for example, one or more integrated circuit chips. The microcontroller is an example of the “computer” described above.

 モータ制御装置40が行う各種の動作は、メモリ(記憶媒体)に格納されているプログラムによって規定されている。プログラムおよびデータの内容の一部または全部を更新することにより、モータ制御装置40の動作の一部または全部を変更することが可能である。そのようなプログラムの更新は、プログラムを格納した記録媒体を用いて行ってもよいし、有線または無線の通信によって行っても良い。通信は、図22のI/F58を用いて行うことができる。図22に示されるCPU54の演算量を低減するために、モータ制御装置40が行う各種の動作の一部、例えばベクトル演算の一部が、その演算専用のハードウェア回路によって実行されてもよい。

Various operations performed by the motor control device 40 are defined by programs stored in a memory (storage medium). By updating part or all of the contents of the program and data, it is possible to change part or all of the operation of the motor control device 40. Such a program update may be performed using a recording medium storing the program, or may be performed by wired or wireless communication. The communication can be performed using the I / F 58 of FIG. In order to reduce the calculation amount of the CPU 54 shown in FIG. 22, a part of various operations performed by the motor control device 40, for example, a part of a vector calculation may be executed by a hardware circuit dedicated to the calculation.

 次に、図23を参照して、本開示の実施形態におけるモータ制御装置の限定的ではない例示的な構成および動作の例を説明する。図示されている例において、本実施形態のモータシステム1000におけるモータ制御装置40は、電流指令値生成回路10と、電流制御回路12と、第1座標変換回路14Aと、PWM回路16とを備えている。電流指令値生成回路10は、位置指令値および速度指令値からd軸電流指令値id*およびq軸電流指令値iq*を生成する。電流制御回路12は、d軸電流指令値id*およびq軸電流指令値iq*からd軸電圧指令値Vd*およびq軸電圧指令値Vq*を決定する。第1座標変換回路14Aは、電圧指令値をdq座標系からUVW座標系に変換する。PWM回路16は、第1座標変換回路14Aから出力される電圧指令値(Vu*、Vv*、Vw*)に基づいてパルス幅変調信号を生成する。これらの回路10、12、14A、16の構成および動作は、公知の例に従う。

Next, an example of a non-limiting exemplary configuration and operation of the motor control device according to the embodiment of the present disclosure will be described with reference to FIG. In the illustrated example, the motor control device 40 in the motor system 1000 of the present embodiment includes a current command value generation circuit 10, a current control circuit 12, a first coordinate conversion circuit 14A, and a PWM circuit 16. I have. The current command value generation circuit 10 generates a d-axis current command value id * and a q-axis current command value iq * from the position command value and the speed command value. The current control circuit 12 determines a d-axis voltage command value Vd * and a q-axis voltage command value Vq * from the d-axis current command value id * and the q-axis current command value iq *. The first coordinate conversion circuit 14A converts the voltage command value from a dq coordinate system to a UVW coordinate system. The PWM circuit 16 generates a pulse width modulation signal based on the voltage command values (Vu *, Vv *, Vw *) output from the first coordinate conversion circuit 14A. The configuration and operation of these circuits 10, 12, 14A, 16 follow known examples.

 モータ制御装置40は、更に、第2座標変換回路14Bと、位置推定装置18Aと、速度演算回路18Bとを備えている。第2座標変換回路14Bは、インバータ200からモータMに供給される3相U、V、Wの巻線電流の検出値iu、ivについて、UVW座標系からdq座標系に変換する。位置推定装置18Aは、前述した方法により、モータMに取り付けられたセンサ装置(不図示)からの出力に基づいて、モータMにおけるロータの機械角θmを推定する。速度演算回路18Bは、ロータの機械角θmからロータの機械角速度ωmを算出する。

The motor control device 40 further includes a second coordinate conversion circuit 14B, a position estimation device 18A, and a speed calculation circuit 18B. The second coordinate conversion circuit 14B converts the detected values iu, iv of the three-phase U, V, W winding currents supplied from the inverter 200 to the motor M from the UVW coordinate system to the dq coordinate system. The position estimating device 18A estimates the mechanical angle θm of the rotor of the motor M based on the output from a sensor device (not shown) attached to the motor M by the method described above. The speed calculation circuit 18B calculates the mechanical angular speed ωm of the rotor from the mechanical angle θm of the rotor.

 第2座標変換回路14Bから、dq座標系に変換されたd軸電流id、q軸電流iqは、電流制御回路12に与えられ、それぞれ、d軸電流指令値id*およびq軸電流指令値iq*と比較される。電流制御回路12の典型例は、比例積分(PI)制御器である。ロータの機械角θmからはロータの電気角θが算出される。ロータの電気角θは、dq座標系とUVW座標系との間の座標変換に利用される。ロータの機械角速度ωmは、トルク指令値Tの決定に利用され得る。

The d-axis current id and the q-axis current iq converted into the dq coordinate system from the second coordinate conversion circuit 14B are provided to the current control circuit 12, and the d-axis current command value id * and the q-axis current command value iq, respectively. * Is compared with A typical example of the current control circuit 12 is a proportional-integral (PI) controller. The electrical angle θ of the rotor is calculated from the mechanical angle θm of the rotor. The electrical angle θ of the rotor is used for coordinate conversion between the dq coordinate system and the UVW coordinate system. The mechanical angular velocity ωm of the rotor can be used for determining the torque command value T.

 モータ駆動回路200のインバータの前段には、PWM信号に基づいてインバータ内のトランジスタをスイッチングするゲート駆動信号を生成するゲートドライバが設けられ得る。これらの要素は公知であり、簡単のため、記載が省略されている。

A gate driver that generates a gate drive signal for switching a transistor in the inverter based on the PWM signal may be provided at a stage preceding the inverter of the motor drive circuit 200. These elements are well-known and have been omitted for simplicity.

 上記の各回路の一部または全部は、集積回路装置によって実現され得る。このような集積回路装置は、典型的には1個または複数個の半導体部品によって形成され得る。集積回路装置は、位置センサからのアナログ信号をデジタル信号に変換するA/Dコンバータと、モータMの巻線を流れる電流を検出するセンサ(不図示)からのアナログ信号をデジタル信号に変換するA/Dコンバータとを含み得る。

Part or all of the above circuits can be realized by an integrated circuit device. Such an integrated circuit device can typically be formed by one or more semiconductor components. The integrated circuit device includes an A / D converter that converts an analog signal from a position sensor into a digital signal, and an A / D converter that converts an analog signal from a sensor (not shown) that detects a current flowing through a winding of the motor M into a digital signal. / D converter.

 インバータの少なくとも一部が集積回路装置に含まれていても良い。このような集積回路装置は、典型的には、1個また複数個の半導体チップを1個のパッケージ内で相互に接続することによって実現される。集積回路装置の一部または全部は、例えば汎用的なマイクロコントローラユニット(MCU)に本開示に特有のプログラムを書き込むことによって実現され得る。

At least a part of the inverter may be included in the integrated circuit device. Such an integrated circuit device is typically realized by interconnecting one or more semiconductor chips in one package. Part or all of the integrated circuit device can be realized by, for example, writing a program specific to the present disclosure in a general-purpose microcontroller unit (MCU).

 本開示の位置推定方法、モータ制御装置、およびモータシステムは、ロータリ・エンコーダまたはレゾルバなどの位置センサを用いることなく、ロータの位置を高分解で推定することができるため、精度の高い位置制御が必要な用途に広く利用され得る。

The position estimation method, the motor control device, and the motor system of the present disclosure can estimate the position of the rotor with high resolution without using a position sensor such as a rotary encoder or a resolver. Can be widely used for required applications.

 20・・・センサ装置、30・・・モータ駆動装置、40・・・ 、60・・・モータ制御装置、62・・・センサ信号処理回路、64・・・特徴量抽出回路 、66・・・マッチング回路、 68・・・メモリ、1000・・・モータシステム、Hu、Hv、Hw・・・ホール素子、R・・・ロータ、S・・・ステータ、M・・・モータ、H1、H2、H3・・・ホールIC

Reference Signs List 20 ... Sensor device, 30 ... Motor drive device, 40 ..., 60 ... Motor control device, 62 ... Sensor signal processing circuit, 64 ... Feature amount extraction circuit, 66 ... Matching circuit, 68: memory, 1000: motor system, Hu, Hv, Hw: Hall element, R: rotor, S: stator, M: motor, H1, H2, H3 ... Hall IC

Claims (8)


  1.  ロータ、ステータ、および前記ロータの回転に応じて周期的に変化する電気信号を出力するセンサ装置を有するモータにおける前記ロータの位置を推定する、コンピュータに実装された方法であって、コンピュータは、

     前記ロータが回転しているときに前記センサ装置から出力された第1の電気信号の波形特徴を規定する複数の測定値の並びを含む第1の特徴量学習データであって、前記ロータの機械位置を規定する複数の区分領域と前記複数の測定値との関係が規定されている第1の特徴量学習データを記憶する記憶媒体から、前記特徴量学習データを取得すること、

     前記ロータが回転しているとき、前記センサ装置から出力された第2の電気信号を受け取り、前記第2の電気信号の波形特徴を規定する複数の検出値を、それぞれ、順次、取得すること、および、

     前記複数の検出値のうちの最新の検出値を含む少なくとも1個の検出値と、前記第1の特徴量学習データに含まれる前記複数の測定値の並びとの間でマッチングを行うことにより、前記ロータの現在の機械位置に関係づけられた区分領域を決定すること、

     前記ロータが回転しているときに前記センサ装置から出力された前記第2の電気信号の波形特徴を規定する複数の検出値の並びを含む第2の特徴量学習データであって、前記ロータの機械位置を規定する複数の区分領域と前記複数の検出値との関係が規定されている第2の特徴量学習データを前記記憶媒体に記憶すること、

     前記第1の特徴量学習データと前記第2の特徴量学習データとの差異に基づいて、前記モータの劣化状態を判定すること、を実行する、方法。

    A computer-implemented method for estimating the position of the rotor in a motor having a rotor, a stator, and a sensor device that outputs an electrical signal that varies periodically in response to rotation of the rotor, the computer comprising:

    A first feature amount learning data including an array of a plurality of measurement values that define a waveform feature of a first electric signal output from the sensor device when the rotor is rotating, wherein the machine data of the rotor is Acquiring the feature amount learning data from a storage medium storing first feature amount learning data in which a relationship between a plurality of divided regions defining a position and the plurality of measurement values is defined;

    When the rotor is rotating, receiving a second electric signal output from the sensor device, a plurality of detection values that define the waveform characteristics of the second electric signal, respectively, to sequentially obtain, and,

    By performing matching between at least one detection value including the latest detection value of the plurality of detection values and the arrangement of the plurality of measurement values included in the first feature amount learning data, Determining a segmented area associated with a current machine position of the rotor;

    A second feature amount learning data including a sequence of a plurality of detection values defining a waveform feature of the second electric signal output from the sensor device when the rotor is rotating, wherein Storing, in the storage medium, second feature amount learning data in which a relationship between a plurality of divided regions defining a machine position and the plurality of detected values is defined;

    Determining a deterioration state of the motor based on a difference between the first feature amount learning data and the second feature amount learning data.

  2.  前記コンピュータは、前記第1の特徴量学習データと前記第2の特徴量学習データとの差異に基づいて、前記モータが経時劣化していることを示す信号を出力する 、請求項1に記載の方法。

    The computer according to claim 1, wherein the computer outputs a signal indicating that the motor has deteriorated with time based on a difference between the first feature amount learning data and the second feature amount learning data. Method.

  3.  前記コンピュータは、モータ起動時、または所定の動作時間が経過したとき、前記第1の特徴量学習データと前記第2の特徴量学習データとの差異を求め、前記劣化状態を判定する、請求項1または2に記載の方法。

    The computer determines a difference between the first feature amount learning data and the second feature amount learning data to determine the deterioration state when the motor is started or when a predetermined operation time has elapsed. 3. The method according to 1 or 2.

  4.  前記第1の特徴量学習データと前記第2の特徴量学習データとの差異は、前記複数の測定値の並びと前記複数の測定値の並びとの間で対応する値の間にある差分の絶対値または平方の和によって規定される、請求項1から3のいずれかに記載の方法。

    The difference between the first feature amount learning data and the second feature amount learning data is a difference between a corresponding value between the arrangement of the plurality of measurement values and the arrangement of the plurality of measurement values. 4. The method according to claim 1, wherein the method is defined by an absolute value or a sum of squares.

  5.  前記コンピュータは、前記差分の絶対値または平方の和を前記記憶媒体に記憶する、請求項4に記載の方法。

    5. The method of claim 4, wherein the computer stores the absolute value of the difference or the sum of squares on the storage medium.

  6.  前記記憶媒体から前記第2の特徴量学習データを取得すること、

     前記ロータが回転しているとき、前記センサ装置から出力された前記第2の電気信号を受け取り、前記複数の検出値のうちの最新の検出値を含む少なくとも1個の検出値と、前記第2の特徴量学習データに含まれる前記複数の測定値の並びとの間でマッチングを行うことにより、前記ロータの現在の機械位置に関係づけられた区分領域を決定すること、を実行する、請求項1から5のいずれかに記載の方法。

    Acquiring the second feature amount learning data from the storage medium;

    When the rotor is rotating, receiving the second electric signal output from the sensor device, and detecting at least one of the plurality of detected values including the latest detected value; Determining a segmented area associated with a current machine position of the rotor by performing matching between the plurality of measurement values included in the feature amount learning data of the rotor. 6. The method according to any one of 1 to 5.

  7.  ロータ、ステータ、および前記ロータの回転に応じて周期的に変化する電気信号を出力するセンサ装置を有するモータに組み合わせて使用されるモータ制御装置であって、

     コンピュータと、

     前記コンピュータを動作させるプログラムを格納するメモリと、を備え、

     前記コンピュータは、

     前記ロータが回転しているときに前記センサ装置から出力された第1の電気信号の波形特徴を規定する複数の測定値の並びを含む第1の特徴量学習データであって、前記ロータの機械位置を規定する複数の区分領域と前記複数の測定値との関係が規定されている第1の特徴量学習データを記憶する記憶媒体から、前記特徴量学習データを取得すること、

     前記ロータが回転しているとき、前記センサ装置から出力された第2の電気信号を受け取り、前記第2の電気信号の波形特徴を規定する複数の検出値を、それぞれ、順次、取得すること、

     前記複数の検出値のうちの最新の検出値を含む少なくとも1個の検出値と、前記第1の特徴量学習データに含まれる前記複数の測定値の並びとの間でマッチングを行うことにより、前記ロータの現在の機械位置に関係づけられた区分領域を決定すること、

     前記ロータが回転しているときに前記センサ装置から出力された前記第2の電気信号の波形特徴を規定する複数の検出値の並びを含む第2の特徴量学習データであって、前記ロータの機械位置を規定する複数の区分領域と前記複数の検出値との関係が規定されている第2の特徴量学習データを前記記憶媒体に記憶すること、

     前記第1の特徴量学習データと前記第2の特徴量学習データとの差異に基づいて、前記モータおよび前記センサ装置の少なくとも一方の劣化状態を判定すること、を実行する、

     モータ制御装置。

    A motor control device used in combination with a motor having a rotor, a stator, and a sensor device that outputs an electric signal that periodically changes in accordance with the rotation of the rotor,

    Computer and

    A memory for storing a program for operating the computer,

    The computer is

    A first feature amount learning data including an array of a plurality of measurement values that define a waveform feature of a first electric signal output from the sensor device when the rotor is rotating, wherein the machine data of the rotor is Acquiring the feature amount learning data from a storage medium storing first feature amount learning data in which a relationship between a plurality of divided regions defining a position and the plurality of measurement values is defined;

    When the rotor is rotating, receiving a second electric signal output from the sensor device, a plurality of detection values that define the waveform characteristics of the second electric signal, respectively, to sequentially obtain,

    By performing matching between at least one detection value including the latest detection value of the plurality of detection values and the arrangement of the plurality of measurement values included in the first feature amount learning data, Determining a segmented area associated with a current machine position of the rotor;

    A second feature amount learning data including a sequence of a plurality of detection values defining a waveform feature of the second electric signal output from the sensor device when the rotor is rotating, wherein Storing, in the storage medium, second feature amount learning data in which a relationship between a plurality of divided regions defining a machine position and the plurality of detected values is defined;

    Determining a deterioration state of at least one of the motor and the sensor device based on a difference between the first feature amount learning data and the second feature amount learning data;

    Motor control device.

  8.  ロータ、ステータ、および前記ロータの回転に応じて周期的に変化する電気信号を出力するセンサ装置を有するモータと、

     前記モータを駆動するモータ駆動装置と、

     前記モータ駆動装置に接続された、請求項7に記載のモータ制御装置と、を備える、モータシステム。

    A motor having a rotor, a stator, and a sensor device that outputs an electrical signal that changes periodically according to the rotation of the rotor;

    A motor driving device for driving the motor,

    A motor system comprising: the motor control device according to claim 7 connected to the motor drive device.
PCT/JP2019/030655 2018-08-08 2019-08-05 Position estimation method, motor control device, and motor system WO2020031943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980051451.9A CN112534706B (en) 2018-08-08 2019-08-05 Position estimation method, motor control device, and motor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018149716 2018-08-08
JP2018-149716 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020031943A1 true WO2020031943A1 (en) 2020-02-13

Family

ID=69415002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030655 WO2020031943A1 (en) 2018-08-08 2019-08-05 Position estimation method, motor control device, and motor system

Country Status (2)

Country Link
CN (1) CN112534706B (en)
WO (1) WO2020031943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157102A (en) * 2020-12-31 2022-03-08 德马科技集团股份有限公司 Angle measuring method, system and device of motor and computer readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104378A1 (en) * 2014-12-22 2016-06-30 日本電産株式会社 Position estimation method and position control device
WO2016194919A1 (en) * 2015-06-02 2016-12-08 並木精密宝石株式会社 Control method for three-phase brushless dc motor and motor control device using such control method
JP2018098886A (en) * 2016-12-13 2018-06-21 株式会社デンソー Rotation angle estimation device, motor control device, and rotation angle estimation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276463A (en) * 2017-08-09 2017-10-20 中国科学院宁波材料技术与工程研究所 A kind of detecting apparatus for rotor position of four phase switch reluctances motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104378A1 (en) * 2014-12-22 2016-06-30 日本電産株式会社 Position estimation method and position control device
WO2016194919A1 (en) * 2015-06-02 2016-12-08 並木精密宝石株式会社 Control method for three-phase brushless dc motor and motor control device using such control method
JP2018098886A (en) * 2016-12-13 2018-06-21 株式会社デンソー Rotation angle estimation device, motor control device, and rotation angle estimation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157102A (en) * 2020-12-31 2022-03-08 德马科技集团股份有限公司 Angle measuring method, system and device of motor and computer readable storage medium
CN114157102B (en) * 2020-12-31 2023-07-18 德马科技集团股份有限公司 Motor angle measurement method, system, device and computer readable storage medium

Also Published As

Publication number Publication date
CN112534706B (en) 2023-11-17
CN112534706A (en) 2021-03-19

Similar Documents

Publication Publication Date Title
US9531307B2 (en) Motor control method and motor control apparatus
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
EP3584924B1 (en) Motor control device and method for controlling motor control device
US11050370B2 (en) Method for detecting magnetic field location in electric motor
US9979331B2 (en) Method for controlling a motor
US20190173413A1 (en) Motor module, motor controller, temperature inferring device, and temperature inference method
JP2009183062A (en) Motor controller
JP2009273256A (en) Controller of multiphase rotary machine
JP2010119220A (en) Motor drive control device
JP2003235285A (en) Rotating direction detector for three-phase brushless dc motor
WO2020031943A1 (en) Position estimation method, motor control device, and motor system
WO2020031882A1 (en) Position estimation method, motor control device and motor system
US20150102754A1 (en) Apparatus for driving motor and controlling method thereof
JP4735439B2 (en) Initial magnetic pole position estimation device for permanent magnet type synchronous motor
JP6526312B2 (en) Out-of-step detection device and out-of-step detection method
WO2020031938A1 (en) Position estimation method, motor control device, and motor system
WO2020031942A1 (en) Position estimation method, motor control device, and motor system
WO2020031937A1 (en) Position estimation method, motor control device and motor system
JP2019033582A (en) Control device and control method
JP5585058B2 (en) Rotation angle detection device, motor control device, and electric power steering device
JP2010051151A (en) Motor control apparatus
US11515814B2 (en) Motor drive control device and method for controlling the same
JP2018157672A (en) Phase adjustor of brushless motor
JP7433113B2 (en) Motor control device, motor system and motor control method
JP7176341B2 (en) Information processing device for motor control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP