WO2020031802A1 - 学習方法、学習装置、モデル生成方法及びプログラム - Google Patents

学習方法、学習装置、モデル生成方法及びプログラム Download PDF

Info

Publication number
WO2020031802A1
WO2020031802A1 PCT/JP2019/029977 JP2019029977W WO2020031802A1 WO 2020031802 A1 WO2020031802 A1 WO 2020031802A1 JP 2019029977 W JP2019029977 W JP 2019029977W WO 2020031802 A1 WO2020031802 A1 WO 2020031802A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
learning
loss function
discriminator
classifier
Prior art date
Application number
PCT/JP2019/029977
Other languages
English (en)
French (fr)
Inventor
正一朗 山口
Original Assignee
株式会社Preferred Networks
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Preferred Networks filed Critical 株式会社Preferred Networks
Publication of WO2020031802A1 publication Critical patent/WO2020031802A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • This disclosure relates to machine learning.
  • GANs Generic Adversarial Networks
  • Mode collapse is a phenomenon in which the diversity of samples generated from a model distribution is reduced.
  • the model distribution is considered to be a distribution having ten modes “0” to “9”.
  • the model distribution may fail by sampling only certain numbers.
  • an object of the present disclosure is to provide a technique for reducing mode collapse in GANs.
  • one embodiment of the present disclosure is a learning method including a step executed by a processor, including a step of learning a generator and a classifier according to a hostile generation network, wherein the learning is performed.
  • the step relates to a learning method including updating parameters of the discriminator so as to depress the loss function of the generator in a region where the generator can sample.
  • FIG. 4 is a schematic diagram showing a distribution of a gradient vector and a generator to a convex portion on a surface of a loss function.
  • FIG. 4 is a schematic diagram showing a distribution of a gradient vector and a generator to a convex portion on a surface of a loss function.
  • FIG. 5 is a schematic diagram illustrating a distribution of a gradient vector and a generator by depressing a convex portion according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating a distribution of a gradient vector and a generator by depressing a convex portion according to an embodiment of the present disclosure.
  • 1 is a schematic diagram illustrating a learning system according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating a hardware configuration of a learning device according to an embodiment of the present disclosure.
  • 5 is a flowchart illustrating a learning process by GANs according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a concave portion of a convex portion according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a concave portion of a convex portion according to an embodiment of the present disclosure.
  • the parameters of the classifier are updated so as to concavify or regularize the generator's loss function in a region where the generator in GANs can sample. .
  • a region where the generator can sample on the surface of the generator's negative loss function ⁇ L g may have a convex portion, and the probability gradient
  • the gradient vector of the loss function of the generator moves to the convex region as shown in FIG.
  • FIG. 1B the generation distribution of the generator is concentrated on the convex region, and mode collapse occurs in which only specific data is generated.
  • such a convex region is concave or regularized, and as shown in FIG. 2, the surface of the loss function of the generator is smoothed.
  • the gradient vector of the loss function of the generator is spread, and as shown in FIG. 2B, the generation distribution of the generator is spread, and mode collapse is reduced. Or be resolved.
  • the unevenness is based on a mathematical definition.
  • the function f is convex when any two points x, y and open interval (0, 1) in the interval are different.
  • f is convex when any two points x, y and open interval (0, 1) in the interval are different.
  • t in f (tx + (1-t) y) ⁇ tf (x) + (1-t) f (y) Is defined as
  • f is called a concave function.
  • the convex function may be referred to as a “convex downward function”, and the concave function may be referred to as an “upward convex function”.
  • FIG. 3 is a schematic diagram illustrating a learning system according to an embodiment of the present disclosure.
  • the learning system 10 includes a database (DB) 50 and a learning device 100.
  • the DB 50 stores training data used by the learning device 100. Specifically, the DB 50 stores data to be generated by the generator in the learning device 100 and data to be determined by the classifier. For example, when simulating the performance of the generated model learned by the learning device 100, the DB 50 may store image data sets for simulation such as MNIST, CIFAR-10, and CIFAR-100.
  • the learning device 100 has two neural networks called generators and classifiers in GANs. Any neural network may be applied to the generator and the classifier according to the present disclosure.
  • the neural network of the generator and the classifier is set to any appropriate initial state, and as the learning process progresses, various parameters of the neural network of the generator and the classifier are, for example, Updated sequentially as described in detail.
  • input data z such as random numbers is input to a generator, and output data is generated by the generator.
  • output data generated by the generator or the training data in the DB 50 is input to the discriminator as input data x, and the input data x is either the output data of the generator or the training data from the DB 50 by the discriminator. Is output. For example, 0 is output if the data is output by the generator, and 1 is output if the data is training data from the DB 50.
  • the parameters of the neural network of the discriminator are updated according to, for example, back propagation based on the stochastic gradient method so that the discriminator outputs a correct discrimination result.
  • the parameters of the neural network of the generator are updated according to, for example, back propagation based on the stochastic gradient method so that the output data of the generator is discriminated as training data by the classifier.
  • the learning process is performed such that
  • g is a generator
  • f is a discriminator
  • x is input data
  • Pr is a data distribution to be learned
  • L g is an activation function of the generator
  • P g is The distribution of the sample to be generated or the distribution of the generator
  • L r is the activation function of the discriminator.
  • V (g, f) may be referred to as a baseline objective function.
  • z is a random number or noise
  • P s is the source distribution of the sample to produce (the underlying noise distribution of the sample to produce)
  • alpha is the learning rate.
  • the objective function of f described above (critic's objective) is
  • V (g, f) is the above-mentioned baseline objective function
  • is a value in the range of 0 to 1
  • is a constant.
  • L reg independently samples two points x 1 and x 2 from the generator distribution, and calculates irregularities on the surface of the generator loss function L g between x 1 and x 2.
  • the objective function of f described above adds regularization to the parameters of the discriminator such that the generator may sample in the region where the generator can sample on the surface of the generator's negative loss function.
  • the above-described parameters of the generator and the discriminator are continuously updated until a predetermined termination condition is satisfied.
  • a final generator is acquired as a learned generation model.
  • the learning process according to the present disclosure is not limited thereto, and a learning process based on any other appropriate GANs may be applied.
  • the learning device 100 includes, for example, a processor 101 such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), a memory 102 such as a RAM (Random Access Memory) and a flash memory, as shown in FIG. It may have a hardware configuration including a hard disk 103 and an input / output (I / O) interface 104.
  • a processor 101 such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit)
  • a memory 102 such as a RAM (Random Access Memory) and a flash memory, as shown in FIG. It may have a hardware configuration including a hard disk 103 and an input / output (I / O) interface 104.
  • I / O input / output
  • the processor 101 executes various processes of the learning device 100, and performs learning processing for the generator and the discriminator using the GANs described above, execution of the generator and the discriminator, and input and output of data between the generator, the discriminator, and the DB 50. Various processes such as overall control of the learning device 100 are executed.
  • the memory 102 stores various data and programs in the learning device 100, and functions as a working memory particularly for work data, running programs, and the like. Specifically, the memory 102 stores a program for executing and controlling a learning process in the generator and the discriminator loaded from the hard disk 103, and functions as a working memory while the processor 101 is executing the program.
  • the hard disk 103 stores various data and programs in the learning device 100, and stores various data and / or programs for executing and controlling processes in the generator and the discriminator.
  • the I / O interface 104 is an interface for inputting and outputting data to and from an external device such as the DB 50, and for example, inputs and outputs data such as a USB (Universal Serial Bus), a communication line, a keyboard, a mouse, and a display. Device.
  • USB Universal Serial Bus
  • the learning device 100 is not limited to the hardware configuration described above, and may have any other appropriate hardware configuration.
  • the learning process by the learning device 100 described above may be realized by a processing circuit or an electronic circuit wired to realize this.
  • FIG. 5 is a flowchart illustrating a learning process by GANs according to an embodiment of the present disclosure.
  • step S101 the processor 101 inputs a random number to the generator.
  • the processor 101 generates a random number by executing any suitable pseudo-random number generation routine or by using a random number generator mounted on the learning device 100, and inputs the generated random number to the generator. Is also good.
  • step S102 the processor 101 acquires an image generated by the generator from the input random numbers.
  • the generator may be a neural network having any suitable structure.
  • step S103 the processor 101 inputs the image generated by the generator or the training image stored in the DB 50 to the discriminator.
  • step S104 the processor 101 makes the discriminator determine whether the input image is the output image of the generator or the training image.
  • the classifier may be a neural network having any suitable structure.
  • step S105 the processor 101 updates the parameters of the classifier and the generator according to the determination result by the classifier. That is, the processor 101 updates the parameters of the classifier according to the backpropagation based on the stochastic gradient method so that the classifier correctly determines the input image, and the classifier is an image generated by the generator as a training image. , The parameters of the generator are updated according to the back propagation based on the probability gradient method.
  • the processor 101 updates the parameters of the discriminator such that the loss function of the generator is concave or regularized in a region where the generator can sample. For example, as described above, the processor 101 determines that the objective function of the classifier is
  • the loss function may be concave or regularized in the region where the generator can sample. That is, as shown in FIG. 6, the processor 101 determines that the value of the loss function at a point on a line segment between two points on the surface of the generator's loss function is a linear combination of the two values of the loss function.
  • the loss function may be concave or regularized such that For example, as shown in FIG. 6A, when there is a convex region on the surface of the loss function of the generator,
  • such a convex region causes the gradient vector of the loss function of the generator to be guided toward the convex region, as shown in FIG. 1A, and as a result, as shown in FIG. Cause the mode to collapse.
  • the gradient vector of the loss function of the generator is diffused as shown in FIG. 2A by denting the loss function in a region where the generator can sample, and FIG. As shown in b), the distribution in the generator model of the generator is diffused, and the occurrence of mode collapse can be avoided.
  • the processor 101 repeats the above-described steps S101 to S105, and ends the learning process when a predetermined end condition is satisfied.
  • the predetermined termination condition is that a predetermined number of iterations have been completed, that the accuracy of the generator and / or the discriminator has exceeded a predetermined threshold, that the accuracy of the generator and / or the discriminator has converged, and the like. It may be.
  • the generator and the classifier are learned with respect to the image data.
  • the learning process according to the present disclosure is not limited thereto, and any other types of moving image data, audio data, and the like may be used. Applicable to data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)
  • Machine Translation (AREA)

Abstract

敵対的生成ネットワークにおけるモード崩壊を軽減するための技術が開示される。本開示の一態様は、プロセッサにより実行されるステップからなる学習方法であって、敵対的生成ネットワークに従って生成器と識別器とを学習するステップを有し、前記学習するステップは、前記生成器がサンプルしうる領域における、前記生成器の損失関数を凹化するように、前記識別器のパラメータを更新するステップを含む学習方法に関する。

Description

学習方法、学習装置、モデル生成方法及びプログラム
 本開示は、機械学習に関する。
 敵対的生成ネットワーク(以下、GANs (Generative Adversarial Networks)と称する)は、画像生成及び動画生成の分野において驚くべき結果を残している一方、学習が困難であることが知られている。GANsの学習を困難にする現象としてモード崩壊(”mode collapse”)が知られている。
 モード崩壊は、モデル分布から生成されるサンプルの多様性が小さくなってしまう現象である。例えば、手書き文字データセットMNISTにあるような手書き文字を生成する際、モデル分布は”0”~”9”の10個のモードを有する分布になっていると考えられる。しかしながら、GANsの学習の結果として、モデル分布が特定の数字のみサンプルして失敗することがある。
 上述した問題点を鑑み、本開示の課題は、GANsにおけるモード崩壊を軽減するための技術を提供することである。
 上記課題を解決するため、本開示の一態様は、プロセッサにより実行されるステップからなる学習方法であって、敵対的生成ネットワークに従って生成器と識別器とを学習するステップを有し、前記学習するステップは、前記生成器がサンプルしうる領域における、前記生成器の損失関数を凹化するように、前記識別器のパラメータを更新するステップを含む学習方法に関する。
損失関数の表面上の凸部分への勾配ベクトル及び生成器の分布を示す概略図である。 損失関数の表面上の凸部分への勾配ベクトル及び生成器の分布を示す概略図である。 本開示の一実施例による凸部分の凹化による勾配ベクトル及び生成器の分布を示す概略図である。 本開示の一実施例による凸部分の凹化による勾配ベクトル及び生成器の分布を示す概略図である。 本開示の一実施例による学習システムを示す概略図である。 本開示の一実施例による学習装置のハードウェア構成を示すブロック図である。 本開示の一実施例によるGANsによる学習処理を示すフローチャートである。 本開示の一実施例による凸部分の凹化を示す概略図である。 本開示の一実施例による凸部分の凹化を示す概略図である。
 以下の実施例では、GANsによる学習装置及び方法が開示される。
 本開示による学習装置及び方法を概略すると、GANsにおける生成器がサンプルしうる領域における、生成器の損失関数を凹化(concavify)又は正則化(regularize)するように識別器のパラメータが更新される。
 具体的には、図1に示されるように、生成器の負の損失関数-Lgの表面上で生成器がサンプルしうる領域には、凸な部分が発生する可能性があり、確率勾配法が学習処理に適用される場合、図1(a)に示されるように、生成器の損失関数の勾配ベクトルは当該凸領域に移動することなる。この結果、図1(b)に示されるように、生成器の生成分布は凸領域に集中することになり、特定のデータのみが生成されるモード崩壊が発生する。
 本開示の学習装置及び方法によると、このような凸領域を凹化又は正則化し、図2に示されるように、生成器の損失関数の表面をスムース化する。この結果、図2(a)に示されるように、生成器の損失関数の勾配ベクトルは拡散され、図2(b)に示されるように、生成器の生成分布は拡散され、モード崩壊が軽減又は解消される。
 以下の説明において、凹凸は数学的な定義に基づくものであり、具体的には、関数fが凸であるとは、区間内の任意の異なる2点x, yと開区間(0, 1)内の任意のtに対して、
 f(tx + (1-t)y) ≦ tf(x) + (1-t)f(y)
を満たすと定義される。また、-fが凸関数のとき、fを凹関数と呼ぶ。凸関数を「下に凸な関数」、凹関数を「上に凸な関数」と称することもある。
 まず、図3及び4を参照して、本開示の一実施例によるGANsによる学習装置を説明する。図3は、本開示の一実施例による学習システムを示す概略図である。
 図3に示されるように、本開示の一実施例による学習システム10は、データベース(DB)50及び学習装置100を有する。
 DB50は、学習装置100により利用される訓練データを格納する。具体的には、DB50は、学習装置100における生成器による生成対象であると共に、識別器による判別対象であるデータを格納する。例えば、学習装置100により学習される生成モデルの性能をシミュレートする場合、DB50には、MNIST, CIFAR-10, CIFAR-100などのシミュレーション用の画像データセットが格納されてもよい。
 学習装置100は、GANsにおける生成器及び識別器と呼ばれる2つのニューラルネットワークを有する。本開示による生成器及び識別器には、任意のニューラルネットワークが適用されてもよい。生成器及び識別器のニューラルネットワークは、学習処理の開始時には何れか適切な初期状態に設定され、学習処理が進捗するに従って、生成器及び識別器の各ニューラルネットワークの各種パラメータが、例えば、以下で詳細に説明されるように順次更新される。
 一実施例のGANsによる学習処理では、まず乱数などの入力データzが生成器に入力され、生成器によって出力データが生成される。次に、生成器によって生成された出力データ又はDB50における訓練データが入力データxとして識別器に入力され、識別器によって入力データxが生成器による出力データ又はDB50からの訓練データの何れであるかを示す判別結果が出力される。例えば、生成器による出力データである場合には0が出力され、DB50からの訓練データである場合には1が出力される。当該判別結果に応じて、識別器が正しい判別結果を出力するように、例えば、確率勾配法に基づくバックプロパゲーションに従って識別器のニューラルネットワークのパラメータが更新される。また、生成器の出力データが識別器によって訓練データと判別されるように、例えば、確率勾配法に基づくバックプロパゲーションに従って生成器のニューラルネットワークのパラメータが更新される。
 すなわち、GANsでは、
Figure JPOXMLDOC01-appb-M000001
となるように学習処理が実行される。ここで、gは生成器であり、fは識別器であり、xは入力データであり、Prは学習対象のデータ分布であり、Lgは生成器の活性化関数であり、Pgは生成するサンプルの分布又は生成器の分布であり、Lrは識別器の活性化関数である。V(g,f)はベースライン目的関数として参照されうる。
 また、f,gをそれぞれφ,θによってパラメータ化すると、GANsによる学習処理では、
Figure JPOXMLDOC01-appb-M000002
に従って生成器及び識別器のパラメータが更新されていく。ここで、zは乱数又はノイズであり、Psは生成するサンプルのソース分布(生成するサンプルの元となるノイズ分布)であり、αは学習率である。
 また、上記の生成器のパラメータθの更新式の第2項について、
Figure JPOXMLDOC01-appb-M000003
により書き換え可能である。ターゲット分布
Figure JPOXMLDOC01-appb-M000004
と共に(ただし、全ての可測集合Aに対して、
Figure JPOXMLDOC01-appb-M000005
である)、輸送関数を
Figure JPOXMLDOC01-appb-M000006
として定義する。ここで、
Figure JPOXMLDOC01-appb-M000007
はシード変数zに依存する分布である。このとき、
Figure JPOXMLDOC01-appb-M000008
となる。
 このことは、
Figure JPOXMLDOC01-appb-M000009
とg(z)とのL2距離の平方が減少するようにgが更新され続けることを意味し、すなわち、生成器の更新は、
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
に向かって移動させることを意味する。すなわち、上述したGANsによる学習処理は、関数勾配の観点から以下のように記述できる。
Figure JPOXMLDOC01-appb-M000012
 本開示によると、上述したfの目的関数(critic’s objective)が、
Figure JPOXMLDOC01-appb-M000013
により置き換えられ、当該目的関数により識別器のパラメータが更新される。ここで、V(g,f)は上述したベースライン目的関数であり、εは0から1の範囲内の値であり、αは定数である。また、Lregは、生成器の分布から2点x1, x2を独立にサンプリングし、x1, x2の間の生成器の損失関数Lgの表面における凹凸を
Figure JPOXMLDOC01-appb-M000014
に従って評価することによって決定される。すなわち、上述したfの目的関数は、生成器の負の損失関数の表面上で生成器がサンプルしうる領域において当該損失関数を凹化するように、識別器のパラメータに正則化を加える。
 所定の終了条件が充足されるまで、上述した生成器及び識別器のパラメータが更新され続け、所定の終了条件が充足されると、最終的な生成器が学習済み生成モデルとして取得される。しかしながら、本開示による学習処理は、これに限定されず、他の何れか適切なGANsに基づく学習処理が適用されてもよい。
 ここで、学習装置100は、例えば、図4に示されるように、CPU (Central Processing unit)、GPU (Graphics Processing Unit)などのプロセッサ101、RAM (Random Access Memory)、フラッシュメモリなどのメモリ102、ハードディスク103及び入出力(I/O)インタフェース104によるハードウェア構成を有してもよい。
 プロセッサ101は、学習装置100の各種処理を実行し、上述したGANsによる生成器及び識別器に対する学習処理、生成器及び識別器の実行、生成器、識別器及びDB50の間のデータの入出力を含む、学習装置100の全体制御などの各種処理を実行する。
 メモリ102は、学習装置100における各種データ及びプログラムを格納し、特に作業用データ、実行中のプログラムなどのためのワーキングメモリとして機能する。具体的には、メモリ102は、ハードディスク103からロードされた生成器及び識別器における学習処理を実行及び制御するためのプログラムを格納し、プロセッサ101によるプログラムの実行中にワーキングメモリとして機能する。
 ハードディスク103は、学習装置100における各種データ及びプログラムを格納し、生成器及び識別器における処理を実行及び制御するための各種データ及び/又はプログラムを格納する。
 I/Oインタフェース104は、DB50などの外部装置との間でデータを入出力するためのインタフェースであり、例えば、USB (Universal Serial Bus)、通信回線、キーボード、マウス、ディスプレイなどのデータを入出力するためのデバイスである。
 しかしながら、本開示による学習装置100は、上述したハードウェア構成に限定されず、他の何れか適切なハードウェア構成を有してもよい。例えば、上述した学習装置100による学習処理は、これを実現するよう配線化された処理回路又は電子回路により実現されてもよい。
 次に、図5及び6を参照して、本開示の一実施例によるGANsによる画像生成モデルの学習処理を説明する。図5は、本開示の一実施例によるGANsによる学習処理を示すフローチャートである。
 図5に示されるように、ステップS101において、プロセッサ101は、乱数を生成器に入力する。プロセッサ101は、何れか適切な擬似乱数発生ルーチンを実行することによって、あるいは、学習装置100に搭載された乱数発生器を利用することによって乱数を生成し、生成した乱数を生成器に入力してもよい。
 ステップS102において、プロセッサ101は、入力された乱数から生成器によって生成された画像を取得する。例えば、生成器は、何れか適切な構造を有するニューラルネットワークであってもよい。
 ステップS103において、プロセッサ101は、生成器によって生成された画像又はDB50に格納されている訓練画像を識別器に入力する。
 ステップS104において、プロセッサ101は、入力画像が生成器の出力画像であるか、あるいは、訓練画像であるか識別器に判別させる。例えば、識別器は、何れか適切な構造を有するニューラルネットワークであってもよい。
 ステップS105において、プロセッサ101は、識別器による判別結果に応じて識別器及び生成器のパラメータを更新する。すなわち、プロセッサ101は、識別器が入力画像を正しく判別するように、確率勾配法に基づくバックプロパゲーションに従って識別器のパラメータを更新し、識別器が生成器によって生成された画像を訓練画像であると判別するように、確率勾配法に基づくバックプロパゲーションに従って生成器のパラメータを更新する。
 具体的には、プロセッサ101は、生成器がサンプルしうる領域における、生成器の損失関数を凹化又は正則化するように、識別器のパラメータを更新する。例えば、プロセッサ101は、上述したように、識別器の目的関数が
Figure JPOXMLDOC01-appb-M000015
となるように、生成器がサンプルしうる領域において損失関数を凹化又は正則化してもよい。すなわち、プロセッサ101は、図6に示されるように、生成器の損失関数の表面上の2点間の線分上の点の当該損失関数の値が2点の損失関数の各値の線形結合になるように、損失関数を凹化又は正則化してもよい。例えば、図6(a)に示されるように、生成器の損失関数の表面上に凸領域がある場合、すなわち、
Figure JPOXMLDOC01-appb-M000016
が正値である場合、プロセッサ101は、
Figure JPOXMLDOC01-appb-M000017
に従って生成器がサンプルしうる領域において損失関数を凹化し、図6(b)に示されるように、損失関数の表面がスムース化されるように正則化を加えながら識別器のパラメータを更新する。
 上述したように、このような凸領域は、図1(a)に示されるように、生成器の損失関数の勾配ベクトルを凸領域に向かって誘導させ、この結果、図1(b)に示されるように、モード崩壊を発生させる。一方、本開示によると、生成器がサンプルしうる領域において損失関数を凹化することによって、図2(a)に示されるように、生成器の損失関数の勾配ベクトルが拡散され、図2(b)に示されるように、生成器の生成モデルにおける分布が拡散され、モード崩壊の発生を回避できる。
 その後、プロセッサ101は、上述したステップS101~S105を繰り返し、所定の終了条件が充足されると、当該学習処理を終了する。例えば、所定の終了条件は、所定の回数の繰り返しを終了したこと、生成器及び/又は識別器の精度が所定の閾値を超えたこと、生成器及び/又は識別器の精度が収束したことなどであってもよい。
 なお、上述した実施例では、画像データに対して生成器及び識別器が学習されたが、本開示による学習処理は、これに限定されず、動画データ、音響データなどの他の任意のタイプのデータにも適用可能である。
 以上、本発明の実施例について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 本出願は、2018年8月9日に出願した日本国特許出願2018-150539号の優先権の利益に基づき、これを主張するものであり、2018-150539号の全内容を本出願に援用する。
50 データベース(DB)
100 学習装置

Claims (9)

  1.  プロセッサにより実行されるステップからなる学習方法であって、
     敵対的生成ネットワークに従って生成器と識別器とを学習するステップを有し、
     前記学習するステップは、前記生成器がサンプルしうる領域における、前記生成器の損失関数を凹化するように、前記識別器のパラメータを更新するステップを含む学習方法。
  2.  前記更新するステップは、前記損失関数の表面上の2点間の線分上の点の前記損失関数の値が前記2点の損失関数の各値の線形結合になるように、前記損失関数を凹化する、請求項1記載の学習方法。
  3.  前記損失関数の凹化は、前記損失関数の勾配ベクトルを拡散させる、請求項1又は2記載の学習方法。
  4.  前記学習するステップは、
     前記生成器によって、乱数から画像を生成するステップと、
     前記識別器によって、入力画像が前記生成された画像又は訓練画像の何れであるか判別するステップと、
     判別結果に応じて前記生成器と前記識別器とのパラメータを更新するステップと、
     所定の終了条件が充足されるまで前記生成するステップ、前記判別するステップ及び前記更新するステップを繰り返すステップと、
    を含む、請求項1乃至3何れか一項記載の学習方法。
  5.  前記生成器のパラメータは、前記識別器が前記生成された画像を前記訓練画像であると判別するように更新され、
     前記識別器のパラメータは、前記識別器が前記入力画像を正しく判別するように更新される、請求項4記載の学習方法。
  6.  前記生成器及び前記識別器は、ニューラルネットワークである、請求項1乃至5何れか一項記載の学習方法。
  7.  メモリと、
     前記メモリに結合されるプロセッサと、
    を有し、
     前記プロセッサは、
     敵対的生成ネットワークに従って生成器と識別器とを学習し、
     前記プロセッサは、前記生成器がサンプルしうる領域における、前記生成器の損失関数を凹化するように、前記識別器のパラメータを更新する学習装置。
  8.  敵対的生成ネットワークに従って生成器と識別器とを学習する処理をプロセッサに実行させ、
     前記学習する処理は、前記生成器がサンプルしうる領域における、前記生成器の損失関数を凹化するように、前記識別器のパラメータを更新する処理を含むプログラム。
  9.  プロセッサにより実行されるステップからなるモデル生成方法であって、
     敵対的生成ネットワークに従って生成器と識別器とを学習するステップを有し、
     前記学習するステップは、前記生成器がサンプルしうる領域における、前記生成器の損失関数を凹化するように、前記識別器のパラメータを更新するステップを含むモデル生成方法。
PCT/JP2019/029977 2018-08-09 2019-07-31 学習方法、学習装置、モデル生成方法及びプログラム WO2020031802A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-150539 2018-08-09
JP2018150539A JP2022003423A (ja) 2018-08-09 2018-08-09 学習方法、学習装置及びプログラム

Publications (1)

Publication Number Publication Date
WO2020031802A1 true WO2020031802A1 (ja) 2020-02-13

Family

ID=69414197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029977 WO2020031802A1 (ja) 2018-08-09 2019-07-31 学習方法、学習装置、モデル生成方法及びプログラム

Country Status (2)

Country Link
JP (1) JP2022003423A (ja)
WO (1) WO2020031802A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837396A (zh) * 2021-01-29 2021-05-25 深圳市天耀创想网络科技有限公司 一种基于机器学习的线稿生成方法及装置
US20210174201A1 (en) * 2019-12-05 2021-06-10 Samsung Electronics Co., Ltd. Computing device, operating method of computing device, and storage medium
WO2023171755A1 (ja) * 2022-03-09 2023-09-14 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理方法、記録媒体、情報処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANEKO, TAKUHIRO: "Generative adversarial networks: Foundations and applications", ACOUSTICAL SCIENCE AND TECHNOLOGY - ACOUSTICAL SOCIETY OF JAPAN., vol. 39, no. 4, May 2018 (2018-05-01), pages 189 - 197, XP055686121 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210174201A1 (en) * 2019-12-05 2021-06-10 Samsung Electronics Co., Ltd. Computing device, operating method of computing device, and storage medium
CN112837396A (zh) * 2021-01-29 2021-05-25 深圳市天耀创想网络科技有限公司 一种基于机器学习的线稿生成方法及装置
CN112837396B (zh) * 2021-01-29 2024-05-07 深圳市天耀创想网络科技有限公司 一种基于机器学习的线稿生成方法及装置
WO2023171755A1 (ja) * 2022-03-09 2023-09-14 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理方法、記録媒体、情報処理システム

Also Published As

Publication number Publication date
JP2022003423A (ja) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2020031802A1 (ja) 学習方法、学習装置、モデル生成方法及びプログラム
US11531861B2 (en) Neural architecture search with factorized hierarchical search space
Christen et al. A general purpose sampling algorithm for continuous distributions (the t-walk)
WO2023050707A1 (zh) 网络模型量化方法、装置、计算机设备以及存储介质
US7162085B2 (en) Pattern recognition method and apparatus
US11625518B2 (en) Learning device, inference device, and learned model
CN113792880B (zh) 基于脉冲的量子门实现方法及装置、电子设备和介质
US20190122081A1 (en) Confident deep learning ensemble method and apparatus based on specialization
KR20190113952A (ko) 배치 재정규화 계층
JP6187977B2 (ja) 解析装置、解析方法及びプログラム
CN111027428A (zh) 一种多任务模型的训练方法、装置及电子设备
KR20210060146A (ko) 딥 뉴럴 네트워크 모델을 이용한 데이터 처리 방법 및 장치, 딥 뉴럴 네트워크 모델을 학습시키는 학습 방법 및 장치
JP6942203B2 (ja) データ処理システムおよびデータ処理方法
US8700686B1 (en) Robust estimation of time varying parameters
US11886832B2 (en) Operation device and operation method
US20200320393A1 (en) Data processing method and data processing device
US7933449B2 (en) Pattern recognition method
CN117836778A (zh) 用于确定用于神经网络的量化的基于饱和比率的量化范围的方法及设备
CN112488319B (zh) 一种具有自适应配置生成器的调参方法和系统
CN111582430A (zh) 基于萤火虫算法的参数优化方法、装置、设备及存储介质
KR20240087565A (ko) 노이즈 대리 기반 통합 가상 양자화 방법 및 장치
Chassein et al. Approximating multiobjective combinatorial optimization problems with the OWA criterion
CN117725231B (zh) 基于语义证据提示和置信度的内容生成方法和系统
Wada et al. Analyzing parameter sensitivity and classifier representations for real-valued XCS
WO2020003450A1 (ja) データ処理システムおよびデータ処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP