WO2020031792A1 - Method for producing exhaust-gas-purifying catalyst - Google Patents

Method for producing exhaust-gas-purifying catalyst Download PDF

Info

Publication number
WO2020031792A1
WO2020031792A1 PCT/JP2019/029870 JP2019029870W WO2020031792A1 WO 2020031792 A1 WO2020031792 A1 WO 2020031792A1 JP 2019029870 W JP2019029870 W JP 2019029870W WO 2020031792 A1 WO2020031792 A1 WO 2020031792A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
introduction
catalyst slurry
slurry
Prior art date
Application number
PCT/JP2019/029870
Other languages
French (fr)
Japanese (ja)
Inventor
万陽 城取
大司 望月
豪人 高山
禎憲 高橋
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to CN201980036704.5A priority Critical patent/CN112203764B/en
Publication of WO2020031792A1 publication Critical patent/WO2020031792A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to a method for producing an exhaust gas purifying catalyst.
  • the exhaust gas discharged from the internal combustion engine contains particulate matter (PM) mainly composed of carbon, ash composed of non-combustible components, etc., and is known to cause air pollution.
  • PM particulate matter
  • the emission of particulate matter has been strictly regulated in diesel engines, which emit relatively more particulate matter than gasoline engines.
  • the regulation of particulate matter emissions has also been regulated in gasoline engines. It is being strengthened.
  • the properties such as viscosity and solid content of the slurry are adjusted, and one of the introduction-side cell and the discharge-side cell is pressurized to form
  • a method of adjusting the permeation of the catalyst slurry into the partition walls by causing a pressure difference between the fuel cell and the discharge side cell is known (for example, see Patent Document 1).
  • a high shear rate region By adjusting the viscosity of the low shear rate region and the viscosity, the coating time of the catalyst slurry can be shortened, and the method of suppressing blockage of the flow-through type cell (Patent Document 2), or by using a thixotropic slurry, A method for increasing a contact area between a catalyst formed on a cell surface and exhaust gas is known (Patent Document 3).
  • Patent Literature 1 has a wall flow type structure from the viewpoint of removing particulate matter, and is configured so that exhaust gas passes through pores of partition walls.
  • Patent Documents 2 and 3 relate to a technique of forming a catalyst layer on a partition wall of a flow-through type base material, and the present invention discloses a method of coating a catalyst layer on a pore surface inside a partition wall of a wall flow type base material. Has no relevance.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a production method capable of stably obtaining an exhaust gas purifying catalyst having improved soot trapping performance with good reproducibility, and an object of the invention.
  • an object of the invention is to provide a production method capable of stably obtaining an exhaust gas purifying catalyst having improved soot trapping performance with good reproducibility, and an object of the invention.
  • the present invention is not limited to the object described above, and is an operation and effect derived from each configuration shown in the embodiment for carrying out the invention described later, and also has an operation and effect that cannot be obtained by the conventional technology. It can be positioned for other purposes.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, it has been found that the soot collection performance of the exhaust gas purifying catalyst is also reduced by pore segregation or uneven coating due to segregation or uneven distribution of the catalyst layer when the catalyst layer is formed. Further, through a specific manufacturing process using a thixotropic slurry, the porosity is maintained at a relatively high level and the pore diameter is compared while suppressing the occurrence of such pore clogging and coating unevenness. The present inventors have found that the soot collection performance of the obtained exhaust gas purifying catalyst can be improved, and have completed the present invention. That is, the present invention provides various specific embodiments described below.
  • a method for producing an exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine An introduction-side cell in which the end on the exhaust gas introduction side is open, and a discharge-side cell in which the end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall.
  • the step of preparing An impregnation step of impregnating the end of the wall flow type substrate on the exhaust gas introduction side or the exhaust gas discharge side with a thixotropic catalyst slurry, By introducing a gas into the wall flow type base material from the end side impregnated with the catalyst slurry, the catalyst slurry impregnated in the wall flow type base material is applied to the pore surfaces of the partition walls. Coating process, A stopping step of stopping the introduction of the gas, The coated catalyst slurry is calcined, and the amount of coating of the catalyst layer (the amount of coating of the catalyst layer excluding the weight of the catalyst metal per 1 L of the wall flow type substrate) is 20 to 110 g / L.
  • the catalyst slurry has a TI value of 10 to 100, A method for producing an exhaust gas purifying catalyst.
  • the catalyst slurry contains at least one selected from the group consisting of methylamine, dimethylamine, trimethylamine, barium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, and aqueous ammonia, The method for producing an exhaust gas purifying catalyst according to [1].
  • the catalyst slurry has a pH of 3 to 10, The method for producing an exhaust gas purifying catalyst according to [1] or [2].
  • An exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine The introduction-side cell whose end on the exhaust gas introduction side is open, and the discharge-side cell whose end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall, , And a catalyst layer formed in the pores of the partition wall, An impregnation step in which the catalyst layer impregnates the end of the wall flow type substrate on the exhaust gas introduction side or the exhaust gas discharge side with a thixotropic catalyst slurry; By introducing a gas into the, the application step of applying the catalyst slurry impregnated in the wall flow type substrate to the pore surface of the partition wall, and a stop step of stopping the introduction of the gas, Formed by the catalyst layer forming step,
  • the coating amount of the catalyst layer of the exhaust gas purifying catalyst is 20 to 110 g / L
  • the present invention it is possible to provide a production method capable of stably obtaining an exhaust gas purifying catalyst having enhanced soot trapping performance with good reproducibility, and an exhaust gas purifying catalyst obtained by the production method.
  • the exhaust gas purifying catalyst can be effectively used as a gasoline particulate filter (GPF) supporting the catalyst, and the performance of an exhaust gas treatment system equipped with such a particulate filter can be further enhanced.
  • GPF gasoline particulate filter
  • FIG. 3 is a process chart schematically showing a method for manufacturing the exhaust gas purifying catalyst of the embodiment. It is a sectional view showing typically one mode of an exhaust gas purification catalyst of this embodiment. It is sectional drawing which shows typically one aspect of the catalyst layer in the partition of the exhaust gas purification catalyst obtained using the catalyst slurry which does not have thixotropy. It is a sectional view showing typically one mode of a catalyst layer in a partition of an exhaust gas purifying catalyst of this embodiment.
  • FIG. 2 is a trace diagram showing a cross section of the exhaust gas purifying catalyst of the first embodiment.
  • FIG. 4 is a trace diagram showing a cross section of the exhaust gas purifying catalyst of Comparative Example 1.
  • a numerical value or a property value when inserted before and after using “to”, it is used as including the values before and after.
  • a numerical range notation of “1 to 100” includes both the lower limit value “1” and the upper limit value “100”. The same applies to the notation of other numerical ranges.
  • the production method according to the present embodiment is a method for producing an exhaust gas purifying catalyst 100 for purifying exhaust gas discharged from a gasoline engine.
  • the production method includes an introduction cell 11 having an open end 11 a on the exhaust gas introduction side, and an introduction cell 11.
  • the stopping step S1c for stopping the introduction, and firing the coated catalyst slurry 21a, the coating amount of the catalyst layer (the coating amount of the catalyst layer excluding the catalyst metal mass per 1 L of the wall flow type substrate) is
  • the wall flow type base material before forming the catalyst layer 21 is referred to as “base material 10”
  • the wall flow type base material after forming the catalyst layer 21 is referred to as “exhaust gas purifying catalyst 100”.
  • a wall flow type substrate is prepared as a substrate.
  • the wall flow type base material 10 has an introduction-side cell 11 having an open end 11a on the exhaust gas introduction side, and a discharge-side cell 12 having an open end 12a on the exhaust gas discharge side adjacent to the introduction-side cell 11 having a porous structure. It has a wall flow type structure which is separated by a quality partition wall 13.
  • the material of the base material may be exposed to high-temperature (for example, 400 ° C. or more) exhaust gas generated when the internal combustion engine is operated under high load conditions, or may be used to burn and remove particulate matter at a high temperature.
  • a material made of a heat-resistant material is preferable so as to be compatible.
  • the heat-resistant material include ceramics such as cordierite, mullite, aluminum titanate, and silicon carbide (SiC); and alloys such as stainless steel.
  • the shape of the base material can be appropriately adjusted from the viewpoint of exhaust gas purification performance, suppression of pressure loss rise, and the like.
  • the outer shape of the substrate can be a cylindrical shape, an elliptical cylindrical shape, a polygonal cylindrical shape, or the like.
  • the capacity of the base material is preferably 0.1 to 5 L, more preferably 0.5 to 3 L, depending on the space into which the substrate is to be incorporated.
  • the total length of the substrate in the stretching direction is preferably 10 to 500 mm, more preferably 50 to 300 mm.
  • the introduction-side cell 11 and the discharge-side cell 12 are regularly arranged along the axial direction of the cylindrical shape, and adjacent cells alternately have one open end and the other open end in the extending direction. It is sealed.
  • the introduction-side cell 11 and the discharge-side cell 12 can be set to appropriate shapes and sizes in consideration of the flow rate and components of the supplied exhaust gas.
  • the opening shapes of the inlet-side cell 11 and the outlet-side cell 12 can be triangular; rectangular such as square, parallelogram, rectangular, and trapezoidal; other polygons such as hexagonal and octagonal; circular.
  • the cross-sectional area of the introduction-side cell 11 and the cross-sectional area of the discharge-side cell 12 may have a High Ash Capacity (HAC) structure.
  • HAC High Ash Capacity
  • the number of the introduction-side cells 11 and the number of the discharge-side cells 12 can be appropriately set so as to promote the generation of turbulent flow of exhaust gas and to suppress clogging due to fine particles and the like contained in the exhaust gas.
  • 200 cpsi to 400 cpsi is preferred.
  • the partition 13 that separates adjacent cells is not particularly limited as long as it has a porous structure through which exhaust gas can pass, and its configuration is limited to exhaust gas purification performance, suppression of increase in pressure loss, and mechanical strength of a substrate. It can be adjusted appropriately from the viewpoint of improvement of the quality.
  • the catalyst layer 21 is formed on the pore surface in the partition wall 13 using a catalyst slurry 21a described later, the pore diameter (for example, the mode diameter (the pore diameter having the largest appearance ratio in the pore diameter frequency distribution (the When the maximum value))) or the pore volume is large, the pores are not easily blocked by the catalyst layer 21, and the resulting exhaust gas purifying catalyst tends to have a low pressure loss.
  • the pore diameter (mode diameter) of the partition walls 13 of the wall flow type substrate 10 before the formation of the catalyst layer 21 is preferably 8 to 25 ⁇ m, more preferably 10 to 22 ⁇ m, and furthermore Preferably it is 13 to 20 ⁇ m.
  • the thickness (length in the thickness direction orthogonal to the stretching direction) of the partition wall 13 is preferably 6 to 12 mil, and more preferably 6 to 10 mil.
  • the pore volume of the partition wall 13 by the mercury intrusion method is preferably 0.2 to 1.5 cm 3 / g, more preferably 0.25 to 0.9 cm 3 / g, and still more preferably 0.3 to 0.9 cm 3 / g. 0.80.8 cm 3 / g.
  • the porosity of the partition walls 13 by the mercury intrusion method is preferably 20 to 80%, more preferably 40 to 70%, and further preferably 60 to 70%.
  • the pore volume or the porosity is equal to or more than the lower limit, an increase in pressure loss tends to be further suppressed.
  • the pore volume or the porosity is equal to or less than the upper limit, the strength of the base material tends to be further improved.
  • the pore diameter (mode diameter), the pore volume, and the porosity mean values calculated by the mercury intrusion method under the conditions described in the following Examples.
  • the catalyst layer forming step S1 includes an impregnating step S1a of impregnating the end portion 11a on the exhaust gas introduction side or the end portion 12a on the exhaust gas discharge side of the wall flow type substrate 10 with a thixotropic catalyst slurry 21a, and a catalyst slurry 21a.
  • a thixotropic catalyst slurry 21a is used in which the viscosity is reduced by applying a shear stress and the viscosity is increased by standing without applying a shear stress.
  • the viscosity of the catalyst slurry 21a is reduced by the stress applied by the introduction of the gas F, so that the catalyst slurry 21a is uniformly coated on the pore surfaces of the porous partition walls 13.
  • the stopping step S1c the viscosity of the catalyst slurry 21a is increased, so that the coated catalyst slurry 21a is prevented from moving in the pores of the partition walls, and segregation or uneven distribution of the catalyst layer is suppressed. can do.
  • by suppressing the occurrence of pore blockage or coating unevenness due to segregation or uneven distribution of the catalyst layer it is possible to maintain a relatively high porosity and relatively small pore diameter.
  • the suppression of segregation or uneven distribution of the catalyst layer is not particularly limited, but is considered as follows.
  • the coated catalyst slurry 21a tends to move to a position where the area of the solid-liquid interface, that is, the contact area with the pore surface of the partition wall 13, increases due to the balance of the surface tension at the gas-liquid interface and the solid-liquid interface. . Therefore, in general, as the volume decreases due to the drying, the catalyst slurry 21a becomes narrower because the contact area with the pore surface of the partition wall 13 such as the small pores 13a having a relatively small pore diameter or the bag-like portion 13b having a bag-like shape is increased. And the catalyst layer tends to be segregated or unevenly distributed (see FIG. 3).
  • the catalyst slurry 21a after being applied has a high viscosity, so that the movement of the catalyst slurry 21a to the narrow portion is suppressed, so that the small pores 13a are closed or the catalyst is formed in the bag-like portion 13b. Concentration of the slurry 21a can be suppressed, and segregation or uneven distribution of the catalyst layer can be suppressed (see FIG. 4).
  • the method of applying the catalyst slurry 21a is not particularly limited, but for example, a method of impregnating a part of the base material 10 with the catalyst slurry 21a and spreading the impregnated catalyst slurry 21a over the entire partition 13 of the base material 10 can be mentioned. More specifically, the step S1a of impregnating the catalyst slurry 21a into the end 11a on the exhaust gas introduction side or the end 12a on the exhaust gas discharge side of the base material 10 and the base material from the end side impregnated with the catalyst slurry 21a A method including a coating step S1b of coating the partition walls 13 with the catalyst slurry 21a impregnated in the base material 10 by introducing a gas into the base material 10 is exemplified.
  • the method of impregnating the catalyst slurry 21a in the impregnation step S1a is not particularly limited, and for example, a method of immersing the end of the base material 10 in the catalyst slurry 21a can be used. In this method, if necessary, the catalyst slurry 21a may be pulled up by discharging (sucking) gas from the opposite end.
  • the end for impregnating the catalyst slurry 21a may be either the end 11a on the exhaust gas introduction side or the end 12a on the exhaust gas discharge side, but it is preferable to impregnate the end 11a on the exhaust gas introduction side with the catalyst slurry 21a.
  • the gas can be introduced in the step S1b in the same direction as the exhaust gas introduction direction, and the catalyst slurry 21a can be applied to a complicated pore shape along the flow of the exhaust gas. Therefore, suppression of a rise in pressure loss of the obtained exhaust gas purifying catalyst is expected, and improvement in exhaust gas purifying performance can be expected.
  • the viscosity of the impregnated catalyst slurry 21a is reduced by the stress applied by the introduction of the gas F, and the reduced viscosity of the catalyst slurry 21a is reduced by the flow of the gas F from the introduction side of the base material 10 to the back. Along the air, and reaches the end on the discharge side of the gas F.
  • the catalyst slurry 21a can be applied to the inside of the pores by passing the catalyst slurry 21a through the inside of the pores of the partition 13, and the catalyst slurry 21a is applied to the entire partition.
  • the manufacturing method of the present embodiment may include a drying step of drying the applied catalyst slurry 21a after the stopping step S1c.
  • the drying condition in the drying step is not particularly limited as long as the solvent evaporates from the catalyst slurry 21a.
  • the drying temperature is preferably from 100 to 225 ° C, more preferably from 100 to 200 ° C, and even more preferably from 125 to 175 ° C.
  • the drying time is preferably 0.5 to 2 hours, and preferably 0.5 to 1.5 hours.
  • the catalyst slurry 21a uniformly coated as described above is fired to form the catalyst layer 21.
  • the firing conditions in the firing step S1d are not particularly limited as long as the catalyst layer 21 can be formed from the catalyst slurry 21a.
  • the firing temperature is not particularly limited, but is preferably from 400 to 650 ° C, more preferably from 450 to 600 ° C, and still more preferably from 500 to 600 ° C.
  • the firing time is preferably 0.5 to 2 hours, preferably 0.5 to 1.5 hours.
  • the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 obtained through the firing step S1d is preferably 20 to 110 g / L, more preferably 40 to 90 g / L, and further preferably 50 to 70 g. / L.
  • the catalyst slurry 21a for forming the catalyst layer 21 will be described.
  • the catalyst slurry 21a used in the present embodiment has thixotropic properties.
  • thixotropic refers to a property in which the viscosity decreases with time when flowing at a constant shear rate, and then returns to the original viscosity again after stopping the flow and resting for a while.
  • viscosity in the present embodiment refers to a value measured using a rheometer at a predetermined shear rate at 25 ° C.
  • the viscosity ⁇ 10 at a shear rate of 10 s ⁇ 1 is preferably 50 to 1500 mPa ⁇ s, more preferably 200 to 1300 mPa ⁇ s, and still more preferably 300 to 1200 mPa ⁇ s.
  • Viscosity eta 10 is obtained by assuming the viscosity of the catalyst slurry is coated on the pores surface in the partition wall, by an in viscosity eta 10 above range, movement in the pores of the catalyst slurry 21a was coated is suppressed There is a tendency. Thereby, it is possible to suppress the small pores 13a from being closed or the catalyst slurry 21a from being concentrated on the bag-like portion 13b, and to suppress segregation or uneven distribution of the catalyst layer.
  • the viscosity ⁇ 550 at a shear rate of 550 s ⁇ 1 is preferably 5 to 30 mPa ⁇ s, It is more preferably 5 to 20 mPa ⁇ s, and still more preferably 5 to 15 mPa ⁇ s.
  • the viscosity ⁇ 550 is based on the viscosity of the catalyst slurry at the time of coating. When the viscosity ⁇ 550 is within the above range, the uniform coating property of the catalyst slurry tends to be further improved.
  • the TI value is 10 to 100, preferably 20 to 80, and more preferably 40 to 80.
  • Thixotropic that is, the viscosity ⁇ 10 and the viscosity ⁇ 550 , and the TI value, which is the ratio thereof, can be adjusted by the solid content and the pH of the catalyst slurry 21a.
  • the catalyst slurry 21a contains a catalyst powder, a solvent such as water, and a pH adjuster.
  • the catalyst powder is a group of a plurality of catalyst particles including catalyst metal particles and carrier particles supporting the catalyst metal particles, and forms the catalyst layer 21 through a firing step S1d described later.
  • the catalyst particles are not particularly limited, and can be appropriately selected from known catalyst particles and used.
  • the solid content of the catalyst slurry 21a is preferably 1 to 50% by mass, more preferably 10 to 50% by mass, still more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass. is there.
  • thixotropicity that is, viscosity ⁇ 10 and viscosity ⁇ 550 can be adjusted.
  • the D90 particle size of the catalyst powder contained in the catalyst slurry 21a is preferably 1 to 7 ⁇ m, more preferably 1 to 5 ⁇ m, and still more preferably 1 to 3 ⁇ m.
  • the D90 particle diameter is 1 ⁇ m or more, the pulverization time when the catalyst powder is crushed by a milling device can be reduced, and the working efficiency tends to be further improved.
  • the D90 particle size is 7 ⁇ m or less, the coarse particles are suppressed from closing the inside of the partition wall 13 and the increase in pressure loss tends to be suppressed.
  • the D90 particle size can be measured with a laser diffraction particle size distribution analyzer (eg, a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation).
  • the catalyst metal contained in the catalyst slurry 21a is not particularly limited, and various metal species that can function as an oxidation catalyst or a reduction catalyst can be used.
  • platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used.
  • palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity
  • rhodium (Rh) is preferable from the viewpoint of reduction activity.
  • oxygen storage materials such as cerium oxide (ceria: CeO 2 ) and ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ) 2 ), oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components.
  • OSC materials oxygen storage materials
  • cerium oxide ceria: CeO 2
  • CZ composite oxide ceria-zirconia composite oxide
  • aluminum oxide alumina: Al 2 O 3
  • zirconium oxide zirconia: ZrO 2
  • oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components.
  • the carrier particles may be a composite oxide or a solid solution to which a rare earth element such as lanthanum or yttrium, a transition metal element, or an alkaline earth metal element is added.
  • These carrier particles may be used alone or in combination of two or more.
  • the oxygen storage material means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), oxygen in the exhaust gas is stored and the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere that releases the occluded oxygen is referred to as the atmosphere on the side of excess fuel.
  • the specific surface area of the carrier particles contained in the catalyst slurry is preferably from 10 to 500 m 2 / g, and more preferably from 30 to 200 m 2 / g.
  • the pH adjuster contained in the catalyst slurry is not particularly limited, and includes, for example, at least one selected from the group consisting of methylamine, dimethylamine, trimethylamine, barium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, and aqueous ammonia.
  • thixotropic that is, the viscosity ⁇ 10 and the viscosity ⁇ 550 can be adjusted, and in particular, the viscosity ⁇ 10 can be higher and the viscosity ⁇ 550 can be lower.
  • barium hydroxide is preferred from the viewpoint that the degree of ionization is large, that is, the pH can be adjusted with a small amount, and it is easily dispersed uniformly in the catalyst slurry.
  • methylamine, dimethylamine, trimethylamine, ammonium carbonate, ammonium hydrogen carbonate, and aqueous ammonia are preferable, and ammonium carbonate is more preferable.
  • the pH of the catalyst slurry is preferably 3 to 10, more preferably 4 to 9, and even more preferably 5 to 8.
  • thixotropic that is, the viscosity ⁇ 10 and the viscosity ⁇ 550 can be adjusted, and in particular, the viscosity ⁇ 10 can be higher and the viscosity ⁇ 550 can be lower.
  • the pore diameter (mode diameter) of the partition wall 13 of the exhaust gas purifying catalyst 100 in the state where the catalyst layer 21 is formed by the mercury intrusion method is preferably 10 to 23 ⁇ m, more preferably 11 to 20 ⁇ m, and still more preferably. Is 12 to 18 ⁇ m.
  • the pore volume of the partition wall of the exhaust gas purifying catalyst in the state where the laminated catalyst layer is formed by a mercury intrusion method is preferably 0.2 to 1.0 cm 3 / g, more preferably 0.25 to 0 cm 3 / g. 0.9 cm 3 / g, and more preferably 0.3 to 0.8 cm 3 / g.
  • the porosity of the partition wall of the exhaust gas purifying catalyst in the state where the laminated catalyst layer is formed by a mercury intrusion method is preferably 20 to 80%, more preferably 30 to 70%, and preferably 35 to 70%. 60%.
  • the pore diameter (mode diameter), the pore volume, and the porosity mean values calculated by the mercury intrusion method under the conditions described in the following Examples.
  • the exhaust gas purifying catalyst is an exhaust gas purifying catalyst 100 for purifying exhaust gas discharged from a gasoline engine.
  • the exhaust gas purifying catalyst 100 includes an inlet cell 11 having an open end 11a on the exhaust gas inlet side and an inlet cell 11 adjacent to the inlet cell 11.
  • the discharge-side cell 12 having an open end 12a on the exhaust gas discharge side comprises a wall flow-type substrate 10 defined by a porous partition wall 13 and a catalyst layer 21 formed in pores of the partition wall 13.
  • the catalyst layer forming step S1 includes a coating step S1b for coating the partition walls 13, a stopping step S1c for stopping the introduction of the gas F, and a firing step S1d for firing the coated catalyst slurry 21a.
  • the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 is 20 to 110 g / L.
  • the exhaust gas purifying catalyst of the present embodiment has a wall flow type structure.
  • the exhaust gas discharged from the internal combustion engine flows into the introduction-side cell 11 from the end portion 11a (opening) on the exhaust gas introduction side, passes through the pores of the partition wall 13, and passes through. Flows into the adjacent discharge-side cell 12 and flows out from the end portion 12a (opening) on the exhaust gas discharge side.
  • the particulate matter (PM) that hardly passes through the pores of the partition 13 is generally deposited on the partition 13 in the introduction-side cell 11 and / or in the pores of the partition 13, and the deposited particulate matter is:
  • the fuel is removed by burning due to the catalytic function of the catalyst layer 21 or at a predetermined temperature (for example, about 500 to 700 ° C.).
  • the exhaust gas comes into contact with the catalyst layer 21 formed in the pores of the partition 13, whereby carbon monoxide (CO) and hydrocarbon (HC) contained in the exhaust gas are converted into water (H 2 O) and carbon dioxide ( CO 2 ) and the like, nitrogen oxides (NOx) are reduced to nitrogen (N 2 ), and harmful components are purified (made harmless).
  • the removal of particulate matter and the purification of harmful components such as carbon monoxide (CO) are also collectively referred to as “exhaust gas purification performance”.
  • each configuration will be described in more detail.
  • a catalyst layer is formed in the portion. Furthermore, the uneven distribution of the catalyst layer in the small pores 13a and the bag-like portions 13b in the partition walls is suppressed, so that a relatively large number of catalyst layers can be formed in other pores. Therefore, from the viewpoint of soot collection, a relatively large number of catalyst layers are formed on the surface of the air holes 13c that are too large, and the soot collection rate in the air holes 13c is improved by reducing the pore diameter. . That is, according to the catalyst layer 21 formed in the catalyst layer forming step S1, the blockage of the small pores 13a is suppressed, and the pore diameter of the atmospheric pores 13c is appropriately narrowed, so that the soot collection rate is reduced. Can be improved. However, the reason why the soot collection rate is improved is not limited to the above.
  • the catalyst layer 21 is preferably formed from the cell wall on the introduction side cell 11 side to the cell wall on the discharge side cell 12 side in the thickness direction of the partition wall 13. In the direction (length direction), it is preferable that the entirety be formed.
  • the catalyst layer 21 can be confirmed by a scanning electron microscope on the cross section of the partition wall 13 of the exhaust gas purifying catalyst 100.
  • the catalyst metal contained in the catalyst layer 21 is not particularly limited, and various metal species that can function as various oxidation catalysts and reduction catalysts can be used.
  • platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used.
  • palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity
  • rhodium (Rh) is preferable from the viewpoint of reduction activity.
  • the catalyst layer 21 contains one or more catalyst metals in a mixed state as described above. In particular, when two or more kinds of catalyst metals are used in combination, a synergistic effect due to having different catalytic activities is expected.
  • the embodiment of the combination of such catalyst metals is not particularly limited, and a combination of two or more catalyst metals having excellent oxidation activity, a combination of two or more catalyst metals having excellent reduction activity, and a catalyst metal having excellent oxidation activity and reduction. Combinations of catalyst metals having excellent activity are mentioned. Among these, as one aspect of the synergistic effect, a combination of a catalyst metal having excellent oxidation activity and a catalyst metal having excellent reduction activity is preferable, and a combination containing at least Rh, Pd and Rh, or Pt and Rh is more preferable. With such a combination, the exhaust gas purification performance tends to be further improved.
  • the fact that the catalyst layer 21 contains the catalyst metal can be confirmed by a scanning electron microscope or the like on the cross section of the partition wall 13 of the exhaust gas purifying catalyst. Specifically, it can be confirmed by performing energy dispersive X-ray analysis in the field of view of a scanning electron microscope.
  • oxygen storage materials such as cerium oxide (ceria: CeO 2 ) and ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ) 2 ), oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components.
  • OSC materials oxygen storage materials
  • cerium oxide ceria: CeO 2
  • CZ composite oxide ceria-zirconia composite oxide
  • aluminum oxide alumina: Al 2 O 3
  • zirconium oxide zirconia: ZrO 2
  • oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components.
  • the oxygen storage material means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), oxygen in the exhaust gas is stored and the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere that releases the occluded oxygen is referred to as the atmosphere on the side of excess fuel.
  • the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 is preferably 20 to 110 g / L, more preferably 40 to 90 g / L, and further preferably 50 to 70 g / L.
  • the pore diameter (mode diameter) of the partition wall 13 of the exhaust gas purifying catalyst 100 in the state where the catalyst layer 21 is formed by the mercury intrusion method is preferably 10 to 23 ⁇ m, more preferably 12 to 20 ⁇ m, and still more preferably. Is 14 to 18 ⁇ m.
  • the pore volume of the partition wall 13 of the exhaust gas purifying catalyst in the state where the catalyst layer 21 is formed by the mercury intrusion method is preferably 0.2 to 1.0 cm 3 / g, more preferably 0.25 to 0. It is 9 cm 3 / g, and more preferably 0.3 to 0.8 cm 3 / g.
  • the porosity of the partition wall 13 of the exhaust gas purifying catalyst 100 in the state where the catalyst layer 21 is formed by the mercury intrusion method is preferably 20 to 80%, more preferably 30 to 70%, and preferably 35 to 70%. 60%.
  • the pore diameter (mode diameter), the pore volume, and the porosity mean values calculated by the mercury intrusion method under the conditions described in the following Examples.
  • An air-fuel mixture containing oxygen and fuel gas is supplied to an internal combustion engine, and the air-fuel mixture is burned to convert combustion energy into mechanical energy.
  • the air-fuel mixture burned at this time is discharged as exhaust gas to an exhaust system.
  • the exhaust system is provided with an exhaust gas purifying device provided with an exhaust gas purifying catalyst, and harmful components (for example, carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) contained in exhaust gas by the exhaust gas purifying catalyst are provided. )) Is purified, and particulate matter (PM) contained in the exhaust gas is collected and removed.
  • the exhaust gas purifying catalyst 100 of the present embodiment is preferably used for a gasoline particulate filter (GPF) that can collect and remove particulate matter contained in exhaust gas of a gasoline engine.
  • GPF gasoline particulate filter
  • Example 1 The alumina powder and the ceria-zirconia composite oxide powder were impregnated with an aqueous solution of palladium nitrate, and then calcined at 500 ° C. for 1 hour to obtain a Pd-supported powder.
  • the zirconia powder was impregnated with an aqueous solution of rhodium nitrate, and then calcined at 500 ° C. for 1 hour to obtain a Rh-supported powder.
  • the viscosity ⁇ 10 when the shear rate of the obtained catalyst slurry is 10 s ⁇ 1 is 616 mPa ⁇ s
  • the viscosity ⁇ 550 when the shear rate is 550 s ⁇ 1 is 15 mPa ⁇ s
  • the viscosity ⁇ The ratio of the viscosity ⁇ 10 to 550 ( ⁇ 10 / ⁇ 550 ), that is, the TI value, was 41.
  • a cordierite wall flow type honeycomb substrate (cell number / mil thickness: 300 cpsi / 8.5 mil, diameter: 118.4 mm, total length: 127 mm, pore diameter (mode diameter): 20 ⁇ m, porosity: 65%) was prepared.
  • the end of the base material on the exhaust gas introduction side was immersed in the catalyst slurry, and vacuum suction was performed from the opposite end side to impregnate and hold the catalyst slurry at the end of the base material.
  • the base material coated with the catalyst slurry was dried at 150 ° C., and then calcined at 550 ° C. in an air atmosphere to prepare an exhaust gas purifying catalyst.
  • the coating amount of the catalyst layer after the firing was 58.8 g (excluding the weight of the platinum group metal) per 1 L of the base material.
  • Comparative Example 1 An exhaust gas purifying catalyst was prepared in the same manner as in Example 1, except that 32 g of barium hydroxide octahydrate and ammonium carbonate were not added in the preparation of the catalyst slurry.
  • the pH of the catalyst slurry used in Comparative Example 1 was 4.2.
  • the D90 particle size of the catalyst slurry was measured by a laser scattering method using a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation.
  • Viscosity measurement The viscosity ⁇ 10 and the viscosity ⁇ 550 were measured at 25 ° C using a rheometer HAAKE MARS II manufactured by Thermo Fisher Scientific.
  • the pore diameter (mode diameter) was obtained, and the pore volume of pores having a pore diameter of 1 ⁇ m or more was calculated.
  • the values of the pore diameter and the pore volume the average values of the values obtained in the exhaust gas introduction side portion, the exhaust gas discharge side portion, and the intermediate portion were used.
  • the soot collection rate of the example was 73.8%
  • the soot collection rate of the comparative example was 60.2%
  • the soot collection rate of the base material itself was 67.4%.
  • the small pores are not closed and the pore diameter of the atmospheric holes is reduced, thereby improving the soot collection rate.
  • the small pores are closed,
  • the catalyst layer is also arranged on the bag-shaped portion, the pore diameter of the atmospheric pores is not small, which suggests that the soot collection rate is lower than that of the base material.
  • the exhaust gas purifying catalyst of the present invention can be widely and effectively used as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of a gasoline engine. Further, the exhaust gas purifying catalyst of the present invention can be effectively used as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of not only gasoline engines but also jet engines, boilers, gas turbines and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A method for producing an exhaust-gas-purifying catalyst that purifies exhaust gas discharged from a gasoline engine, wherein the method has: a step for preparing a wall-flow-type base material, in which an introduction-side cell that is open on an exhaust-gas-introduction-side end and a discharge-side cell that is adjacent to the introduction-side cell and is open on an exhaust-gas-discharge side end are divided by a porous partition wall; an impregnation step for impregnating the exhaust-gas-introduction side end or exhaust-gas-discharge side end of the wall-flow-type base material with a thixotropic catalyst slurry; an application step for introducing a gas into the wall-flow-type base material from the catalyst-slurry-impregnated end, whereby the catalyst slurry with which the wall-flow-type base material is impregnated is applied to the surfaces of pores in the partition wall; a stopping step for stopping introduction of the gas; and a firing step for firing the applied catalyst slurry to obtain an exhaust-gas-purifying catalyst in which the amount of a catalyst layer applied is 20-110 g/L, the TI value of the catalyst slurry being 10-100.

Description

排ガス浄化触媒の製造方法Method for producing exhaust gas purifying catalyst
 本発明は、排ガス浄化触媒の製造方法に関する。 The present invention relates to a method for producing an exhaust gas purifying catalyst.
 内燃機関から排出される排ガスには、炭素を主成分とする粒子状物質(PM)、不燃成分からなるアッシュなどが含まれ、大気汚染の原因となることが知られている。従来より、ガソリンエンジンよりも比較的に粒子状物質を排出しやすいディーゼルエンジンでは、粒子状物質の排出量が厳しく規制されていたが、近年、ガソリンエンジンにおいても粒子状物質の排出量の規制が強化されつつある。 排 ガ ス The exhaust gas discharged from the internal combustion engine contains particulate matter (PM) mainly composed of carbon, ash composed of non-combustible components, etc., and is known to cause air pollution. Conventionally, the emission of particulate matter has been strictly regulated in diesel engines, which emit relatively more particulate matter than gasoline engines.In recent years, however, the regulation of particulate matter emissions has also been regulated in gasoline engines. It is being strengthened.
 粒子状物質の排出量を低減するための手段としては、内燃機関の排ガス通路に粒子状物質を堆積させ捕集することを目的としたパティキュレートフィルタを設ける方法が知られている。特に、近年では、搭載スペースの省スペース化等の観点から、粒子状物質の排出抑制と、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)等の有害成分の除去を同時に行うために、パティキュレートフィルタに触媒スラリーを塗工し、これを焼成することで触媒層を設けることが検討されている。 As a means for reducing the emission of particulate matter, there is known a method of providing a particulate filter for depositing and collecting particulate matter in an exhaust gas passage of an internal combustion engine. In particular, in recent years, from the viewpoint of space saving of mounting space, etc., emission control of particulate matter and removal of harmful components such as carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) have been carried out. In order to perform the treatment at the same time, it has been studied to apply a catalyst slurry to a particulate filter and to provide a catalyst layer by firing the catalyst slurry.
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を備えるパティキュレートフィルタに対して、このような触媒層の形成方法としては、スラリーの粘度や固形分率などの性状を調整し、導入側セル又は排出側セルの一方を加圧して、導入側セルと排出側セルに圧力差を生じさせることにより、触媒スラリーの隔壁内への浸透を調整する方法が知られている(例えば、特許文献1参照)。 An introduction-side cell in which the end on the exhaust gas introduction side is open, and a discharge-side cell in which the end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall. With respect to the particulate filter provided, as a method for forming such a catalyst layer, the properties such as viscosity and solid content of the slurry are adjusted, and one of the introduction-side cell and the discharge-side cell is pressurized to form A method of adjusting the permeation of the catalyst slurry into the partition walls by causing a pressure difference between the fuel cell and the discharge side cell is known (for example, see Patent Document 1).
 また、パティキュレートフィルタ以外の排ガス浄化触媒の製造方法、例えば、粒子状物質の除去を目的としないフロースルー型構造を有する基材のセル表面に触媒層を形成する方法においては、高せん断速度領域と低せん断速度領域の粘度を調整することで、触媒スラリーの塗工時間を短縮し、フロースルー型セルの閉塞を抑制する方法や(特許文献2)、チキソトロピー性を有するスラリーを用いることで、セル表面上に形成される触媒と排ガスとの接触面積を増加させる方法が知られている(特許文献3)。 Further, in a method of producing an exhaust gas purifying catalyst other than a particulate filter, for example, in a method of forming a catalyst layer on a cell surface of a base material having a flow-through type structure that does not aim at removing particulate matter, a high shear rate region By adjusting the viscosity of the low shear rate region and the viscosity, the coating time of the catalyst slurry can be shortened, and the method of suppressing blockage of the flow-through type cell (Patent Document 2), or by using a thixotropic slurry, A method for increasing a contact area between a catalyst formed on a cell surface and exhaust gas is known (Patent Document 3).
WO2016/060048WO2016 / 060048 特開2009-11934号公報JP 2009-11934 A WO2009/028422WO2009 / 028422
 特許文献1に記載されるようなパティキュレートフィルタは、粒子状物質の除去の観点からウォールフロー型構造を有し、排ガスが隔壁の気孔内を通過するように構成される。しかしながら、スス捕集性能に関して、依然として改善の余地がある。
 また、特許文献2及び3は、フロースルー型基材の隔壁上に触媒層を形成する技術に関するものであり、ウォールフロー型基材の隔壁内部の気孔表面に触媒層を塗工する本発明とは何ら関連性がない。
The particulate filter described in Patent Literature 1 has a wall flow type structure from the viewpoint of removing particulate matter, and is configured so that exhaust gas passes through pores of partition walls. However, there is still room for improvement in soot collection performance.
Patent Documents 2 and 3 relate to a technique of forming a catalyst layer on a partition wall of a flow-through type base material, and the present invention discloses a method of coating a catalyst layer on a pore surface inside a partition wall of a wall flow type base material. Has no relevance.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、スス捕集性能が高められた排ガス浄化触媒を再現性よく安定して得ることのできる製造方法、及び当該製造方法により得られた排ガス浄化触媒等を提供することにある。なお、ここでいう目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本発明の他の目的として位置づけることができる。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a production method capable of stably obtaining an exhaust gas purifying catalyst having improved soot trapping performance with good reproducibility, and an object of the invention. To provide an improved exhaust gas purifying catalyst and the like. In addition, the present invention is not limited to the object described above, and is an operation and effect derived from each configuration shown in the embodiment for carrying out the invention described later, and also has an operation and effect that cannot be obtained by the conventional technology. It can be positioned for other purposes.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、排ガス浄化触媒のスス捕集性能は、触媒層形成時の触媒層の偏析ないしは偏在による気孔閉塞や塗工ムラ等によっても低減することを見出した。そしてさらに、揺変性を有するスラリーを用いて特定の製造プロセスを経ることにより、かかる気孔閉塞や塗工ムラ等の発生を抑制しつつ、気孔率を比較的に高く維持し、且つ気孔径を比較的に小さくできることを見出し、その結果、得られる排ガス浄化触媒のスス捕集性能が高められ得ることを見出して、本発明を完成するに至った。すなわち、本発明は、以下に示す種々の具体的態様を提供する。 The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, it has been found that the soot collection performance of the exhaust gas purifying catalyst is also reduced by pore segregation or uneven coating due to segregation or uneven distribution of the catalyst layer when the catalyst layer is formed. Further, through a specific manufacturing process using a thixotropic slurry, the porosity is maintained at a relatively high level and the pore diameter is compared while suppressing the occurrence of such pore clogging and coating unevenness. The present inventors have found that the soot collection performance of the obtained exhaust gas purifying catalyst can be improved, and have completed the present invention. That is, the present invention provides various specific embodiments described below.
〔1〕
 ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒の製造方法であって、
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を準備する工程と、
 前記ウォールフロー型基材の排ガス導入側又は排ガス排出側の前記端部に、揺変性を有する触媒スラリーを含浸させる含浸工程と、
 前記触媒スラリーを含浸させた前記端部側から前記ウォールフロー型基材内に気体を導入することにより、前記ウォールフロー型基材に含浸された前記触媒スラリーを前記隔壁の気孔表面に塗工する塗工工程と、
 前記気体の導入を停止する停止工程と、
 塗工された前記触媒スラリーを焼成して、触媒層の塗工量(前記ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)が、20~110g/Lである排ガス浄化触媒を得る焼成工程と、を有し、
 前記触媒スラリーのTI値が、10~100である、
 排ガス浄化触媒の製造方法。
〔2〕
 前記触媒スラリーが、メチルアミン、ジメチルアミン、トリメチルアミン、水酸化バリウム、炭酸アンモニウム、炭酸水素アンモニウム、及びアンモニア水からなる群より選ばれる少なくとも一種を含む、
 〔1〕に記載の排ガス浄化触媒の製造方法。
〔3〕
 前記触媒スラリーのpHが、3~10である、
 〔1〕又は〔2〕に記載の排ガス浄化触媒の製造方法。
〔4〕
 前記塗工工程において、前記気体の導入により印加される応力により、前記揺変性を有する触媒スラリーの粘度が減少する、
 〔1〕~〔3〕のいずれか一項に記載の排ガス浄化触媒の製造方法。
〔5〕
 前記停止工程において、前記揺変性を有する触媒スラリーの粘度が増加する、
 〔1〕~〔4〕のいずれか一項に記載の排ガス浄化触媒の製造方法。
〔6〕
 ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒であって、
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材と、
 前記隔壁の気孔内に形成された触媒層と、を有し、
 該触媒層が、前記ウォールフロー型基材の排ガス導入側又は排ガス排出側の前記端部に、揺変性を有する触媒スラリーを含浸させる含浸工程と、前記端部側から前記ウォールフロー型基材内に気体を導入することにより、前記ウォールフロー型基材に含浸された前記触媒スラリーを前記隔壁の気孔表面に塗工する塗工工程と、前記気体の導入を停止する停止工程と、を有する、触媒層形成工程により形成されたものであり、
 前記排ガス浄化触媒の触媒層の塗工量(前記ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)が、20~110g/Lである、
 排ガス浄化触媒。
[1]
A method for producing an exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine,
An introduction-side cell in which the end on the exhaust gas introduction side is open, and a discharge-side cell in which the end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall. The step of preparing,
An impregnation step of impregnating the end of the wall flow type substrate on the exhaust gas introduction side or the exhaust gas discharge side with a thixotropic catalyst slurry,
By introducing a gas into the wall flow type base material from the end side impregnated with the catalyst slurry, the catalyst slurry impregnated in the wall flow type base material is applied to the pore surfaces of the partition walls. Coating process,
A stopping step of stopping the introduction of the gas,
The coated catalyst slurry is calcined, and the amount of coating of the catalyst layer (the amount of coating of the catalyst layer excluding the weight of the catalyst metal per 1 L of the wall flow type substrate) is 20 to 110 g / L. Baking step to obtain a purification catalyst,
The catalyst slurry has a TI value of 10 to 100,
A method for producing an exhaust gas purifying catalyst.
[2]
The catalyst slurry contains at least one selected from the group consisting of methylamine, dimethylamine, trimethylamine, barium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, and aqueous ammonia,
The method for producing an exhaust gas purifying catalyst according to [1].
[3]
The catalyst slurry has a pH of 3 to 10,
The method for producing an exhaust gas purifying catalyst according to [1] or [2].
[4]
In the coating step, by the stress applied by the introduction of the gas, the viscosity of the thixotropic catalyst slurry decreases,
The method for producing an exhaust gas purifying catalyst according to any one of [1] to [3].
[5]
In the stopping step, the viscosity of the thixotropic catalyst slurry increases,
The method for producing an exhaust gas purifying catalyst according to any one of [1] to [4].
[6]
An exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine,
The introduction-side cell whose end on the exhaust gas introduction side is open, and the discharge-side cell whose end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall, ,
And a catalyst layer formed in the pores of the partition wall,
An impregnation step in which the catalyst layer impregnates the end of the wall flow type substrate on the exhaust gas introduction side or the exhaust gas discharge side with a thixotropic catalyst slurry; By introducing a gas into the, the application step of applying the catalyst slurry impregnated in the wall flow type substrate to the pore surface of the partition wall, and a stop step of stopping the introduction of the gas, Formed by the catalyst layer forming step,
The coating amount of the catalyst layer of the exhaust gas purifying catalyst (the coating amount of the catalyst layer excluding the mass of the catalyst metal per 1 L of the wall flow type substrate) is 20 to 110 g / L.
Exhaust gas purification catalyst.
 本発明によれば、スス捕集性能が高められた排ガス浄化触媒を再現性よく安定して得ることのできる製造方法、及び当該製造方法により得られた排ガス浄化触媒等を提供することができる。そして、この排ガス浄化触媒は、触媒を担持したガソリンパティキュレートフィルタ(GPF)として有効に利用することができ、このようなパティキュレートフィルタを搭載した排ガス処理システムの一層の高性能化が図られる。 According to the present invention, it is possible to provide a production method capable of stably obtaining an exhaust gas purifying catalyst having enhanced soot trapping performance with good reproducibility, and an exhaust gas purifying catalyst obtained by the production method. The exhaust gas purifying catalyst can be effectively used as a gasoline particulate filter (GPF) supporting the catalyst, and the performance of an exhaust gas treatment system equipped with such a particulate filter can be further enhanced.
本実施形態の排ガス浄化触媒の製造方法を模式的に示す工程図である。FIG. 3 is a process chart schematically showing a method for manufacturing the exhaust gas purifying catalyst of the embodiment. 本実施形態の排ガス浄化触媒の一態様を模式的に示す断面図である。It is a sectional view showing typically one mode of an exhaust gas purification catalyst of this embodiment. 揺変性を有しない触媒スラリーを用いて得られる排ガス浄化触媒の隔壁内の触媒層の一態様を模式的に示す断面図である。It is sectional drawing which shows typically one aspect of the catalyst layer in the partition of the exhaust gas purification catalyst obtained using the catalyst slurry which does not have thixotropy. 本実施形態の排ガス浄化触媒の隔壁内の触媒層の一態様を模式的に示す断面図である。It is a sectional view showing typically one mode of a catalyst layer in a partition of an exhaust gas purifying catalyst of this embodiment. 実施例1の排ガス浄化触媒の断面を示すトレース図である。FIG. 2 is a trace diagram showing a cross section of the exhaust gas purifying catalyst of the first embodiment. 比較例1の排ガス浄化触媒の断面を示すトレース図である。FIG. 4 is a trace diagram showing a cross section of the exhaust gas purifying catalyst of Comparative Example 1.
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施態様の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。本明細書において、「D50粒子径」とは、体積基準の粒子径の累積分布において小粒径からの積算値が全体の50%に達したときの粒子径をいい、「D90粒子径」とは、体積基準の粒子径の累積分布において小粒径からの積算値が全体の90%に達したときの粒子径をいう。また、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いる。例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Hereinafter, embodiments of the present invention will be described in detail. The following embodiments are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited to these. In addition, the present invention can be arbitrarily modified and implemented without departing from the gist thereof. In this specification, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings unless otherwise specified. The dimensional ratios in the drawings are not limited to the illustrated ratios. In the present specification, the “D50 particle size” refers to the particle size when the integrated value from the small particle size reaches 50% of the whole in the cumulative distribution of the volume-based particle size, and “D90 particle size”. Refers to the particle size when the integrated value from the small particle size reaches 90% of the total in the cumulative distribution of the particle size based on volume. Further, in the present specification, when a numerical value or a property value is inserted before and after using “to”, it is used as including the values before and after. For example, a numerical range notation of “1 to 100” includes both the lower limit value “1” and the upper limit value “100”. The same applies to the notation of other numerical ranges.
[排ガス浄化触媒の製造方法]
 本実施形態の製造方法は、ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒100の製造方法であって、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セル11に隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13により画定されたウォールフロー型基材10を準備する工程S0と、ウォールフロー型基材10の排ガス導入側の端部11a又は排ガス排出側の端部12aに、揺変性を有する触媒スラリー21aを含浸させる含浸工程S1aと、触媒スラリー21aを含浸させた端部側からウォールフロー型基材10内に気体Fを導入することにより、ウォールフロー型基材10に含浸された触媒スラリー21aを隔壁13の気孔表面に塗工する塗工工程S1bと、気体Fの導入を停止する停止工程S1cと、塗工された触媒スラリー21aを焼成して、触媒層の塗工量(ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)が、20~110g/Lである排ガス浄化触媒を得る焼成工程S1dと、を有し、触媒スラリーのTI値が、10~100であることを特徴とする。
[Method of manufacturing exhaust gas purifying catalyst]
The production method according to the present embodiment is a method for producing an exhaust gas purifying catalyst 100 for purifying exhaust gas discharged from a gasoline engine. The production method includes an introduction cell 11 having an open end 11 a on the exhaust gas introduction side, and an introduction cell 11. A step S0 of preparing a wall flow-type base material 10 in which an exhaust-side cell 12 having an open end 12a on the exhaust gas discharge side adjacent to the substrate is defined by a porous partition wall 13; An impregnating step S1a for impregnating the catalyst end 21a on the introduction side or the end 12a on the exhaust gas discharge side with the thixotropic catalyst slurry 21a, and into the wall flow type substrate 10 from the end side impregnated with the catalyst slurry 21a. A coating step S1b for applying the catalyst slurry 21a impregnated in the wall flow type substrate 10 to the surface of the pores of the partition 13 by introducing the gas F; The stopping step S1c for stopping the introduction, and firing the coated catalyst slurry 21a, the coating amount of the catalyst layer (the coating amount of the catalyst layer excluding the catalyst metal mass per 1 L of the wall flow type substrate) is A firing step S1d for obtaining an exhaust gas purifying catalyst of 20 to 110 g / L, wherein the TI value of the catalyst slurry is 10 to 100.
 以下、図1に示す、本実施形態の排ガス浄化触媒の製造方法を模式的に示す工程図を参照しつつ、各工程について説明する。なお、本明細書においては、触媒層21を形成する前のウォールフロー型基材を「基材10」と表記し、触媒層21を形成した後のウォールフロー型基材を「排ガス浄化触媒100」と表記する。 Hereinafter, each process will be described with reference to the process diagram schematically illustrating the method for manufacturing the exhaust gas purifying catalyst of the present embodiment shown in FIG. In this specification, the wall flow type base material before forming the catalyst layer 21 is referred to as “base material 10”, and the wall flow type base material after forming the catalyst layer 21 is referred to as “exhaust gas purifying catalyst 100”. ".
<準備工程>
 この準備工程S0では、基材として、ウォールフロー型基材を準備する。ウォールフロー型基材10は、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セル11に隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13によって仕切られているウォールフロー型構造を有する。
<Preparation process>
In this preparation step S0, a wall flow type substrate is prepared as a substrate. The wall flow type base material 10 has an introduction-side cell 11 having an open end 11a on the exhaust gas introduction side, and a discharge-side cell 12 having an open end 12a on the exhaust gas discharge side adjacent to the introduction-side cell 11 having a porous structure. It has a wall flow type structure which is separated by a quality partition wall 13.
 基材10としては、従来のこの種の用途に用いられる種々の材質及び形体のものが使用可能である。例えば、基材の材質は、内燃機関が高負荷条件で運転された際に生じる高温(例えば400℃以上)の排ガスに曝された場合や、粒子状物質を高温で燃焼除去する場合などにも対応可能なように、耐熱性素材からなるものが好ましい。耐熱性素材としては、例えば、コージェライト、ムライト、チタン酸アルミニウム、及び炭化ケイ素(SiC)等のセラミック;ステンレス鋼などの合金が挙げられる。また、基材の形体は、排ガス浄化性能及び圧力損失上昇抑制等の観点から適宜調整することが可能である。例えば、基材の外形は、円筒形状、楕円筒形状、又は多角筒形状等とすることができる。また、組み込む先のスペースなどにもよるが、基材の容量(セルの総体積)は、好ましくは0.1~5Lであり、より好ましくは0.5~3Lである。また、基材の延伸方向の全長(隔壁13の延伸方向の全長)は、好ましくは10~500mm、より好ましくは50~300mmである。 As the base material 10, various materials and shapes used in conventional applications of this kind can be used. For example, the material of the base material may be exposed to high-temperature (for example, 400 ° C. or more) exhaust gas generated when the internal combustion engine is operated under high load conditions, or may be used to burn and remove particulate matter at a high temperature. A material made of a heat-resistant material is preferable so as to be compatible. Examples of the heat-resistant material include ceramics such as cordierite, mullite, aluminum titanate, and silicon carbide (SiC); and alloys such as stainless steel. Further, the shape of the base material can be appropriately adjusted from the viewpoint of exhaust gas purification performance, suppression of pressure loss rise, and the like. For example, the outer shape of the substrate can be a cylindrical shape, an elliptical cylindrical shape, a polygonal cylindrical shape, or the like. The capacity of the base material (total volume of the cells) is preferably 0.1 to 5 L, more preferably 0.5 to 3 L, depending on the space into which the substrate is to be incorporated. The total length of the substrate in the stretching direction (the total length of the partition 13 in the stretching direction) is preferably 10 to 500 mm, more preferably 50 to 300 mm.
 導入側セル11と排出側セル12は、筒形状の軸方向に沿って規則的に配列されており、隣り合うセル同士は延伸方向の一の開口端と他の一の開口端とが交互に封止されている。導入側セル11及び排出側セル12は、供給される排ガスの流量や成分を考慮して適当な形状および大きさに設定することができる。例えば、導入側セル11及び排出側セル12の口形状は、三角形;正方形、平行四辺形、長方形、及び台形等の矩形;六角形及び八角形等のその他の多角形;円形とすることができる。また、導入側セル11の断面積と、排出側セル12の断面積とを異ならせたHigh Ash Capacity(HAC)構造を有するものであってもよい。なお、導入側セル11及び排出側セル12の個数は、排ガスの乱流の発生を促進し、かつ、排ガスに含まれる微粒子等による目詰まりを抑制できるように適宜設定することができ、特に限定されないが、200cpsi~400cpsiが好ましい。 The introduction-side cell 11 and the discharge-side cell 12 are regularly arranged along the axial direction of the cylindrical shape, and adjacent cells alternately have one open end and the other open end in the extending direction. It is sealed. The introduction-side cell 11 and the discharge-side cell 12 can be set to appropriate shapes and sizes in consideration of the flow rate and components of the supplied exhaust gas. For example, the opening shapes of the inlet-side cell 11 and the outlet-side cell 12 can be triangular; rectangular such as square, parallelogram, rectangular, and trapezoidal; other polygons such as hexagonal and octagonal; circular. . Further, the cross-sectional area of the introduction-side cell 11 and the cross-sectional area of the discharge-side cell 12 may have a High Ash Capacity (HAC) structure. In addition, the number of the introduction-side cells 11 and the number of the discharge-side cells 12 can be appropriately set so as to promote the generation of turbulent flow of exhaust gas and to suppress clogging due to fine particles and the like contained in the exhaust gas. However, 200 cpsi to 400 cpsi is preferred.
 隣り合うセル同士を仕切る隔壁13は、排ガスが通過可能な多孔質構造を有するものであれば特に制限されず、その構成については、排ガス浄化性能や圧力損失の上昇抑制、基材の機械的強度の向上等の観点から適宜調整することができる。例えば、後述する触媒スラリー21aを用いて該隔壁13内の気孔表面に触媒層21を形成する場合、気孔径(例えば、モード径(気孔径の頻度分布における出現比率がもっとも大きい気孔径(分布の極大値)))や気孔容積が大きい場合には、触媒層21による気孔の閉塞が生じにくく、得られる排ガス浄化触媒は圧力損失が上昇しにくいものとなる傾向にあるが、粒子状物質の捕集能力が低下し、また、基材の機械的強度も低下する傾向にある。一方で、気孔径や気孔容積が小さい場合には、圧力損失が上昇しやすいものとなるが、粒子状物質の捕集能力は向上し、基材の機械的強度も向上する傾向にある。 The partition 13 that separates adjacent cells is not particularly limited as long as it has a porous structure through which exhaust gas can pass, and its configuration is limited to exhaust gas purification performance, suppression of increase in pressure loss, and mechanical strength of a substrate. It can be adjusted appropriately from the viewpoint of improvement of the quality. For example, when the catalyst layer 21 is formed on the pore surface in the partition wall 13 using a catalyst slurry 21a described later, the pore diameter (for example, the mode diameter (the pore diameter having the largest appearance ratio in the pore diameter frequency distribution (the When the maximum value))) or the pore volume is large, the pores are not easily blocked by the catalyst layer 21, and the resulting exhaust gas purifying catalyst tends to have a low pressure loss. There is a tendency that the collecting ability decreases and the mechanical strength of the base material also decreases. On the other hand, when the pore diameter and the pore volume are small, the pressure loss tends to increase, but the trapping ability of the particulate matter is improved and the mechanical strength of the base material tends to be improved.
 このような観点から、触媒層21を形成する前のウォールフロー型基材10の隔壁13の気孔径(モード径)は、好ましくは8~25μmであり、より好ましくは10~22μmであり、さらに好ましくは13~20μmである。また、隔壁13の厚み(延伸方向に直交する厚さ方向の長さ)は、好ましくは6~12milであり、より好ましくは6~10milである。さらに、水銀圧入法による隔壁13の気孔容積は、好ましくは0.2~1.5cm/gであり、より好ましくは0.25~0.9cm/gであり、さらに好ましくは0.3~0.8cm/gである。また、水銀圧入法による隔壁13の気孔率は、好ましくは20~80%であり、より好ましくは40~70%であり、さらに好ましくは60~70%である。気孔容積又は気孔率が下限以上であることにより、圧力損失の上昇がより抑制される傾向にある。また、気孔容積又は気孔率が上限以下であることにより、基材の強度がより向上する傾向にある。なお、気孔径(モード径)、気孔容積、及び気孔率は、下記実施例に記載の条件において水銀圧入法により算出される値を意味する。 From such a viewpoint, the pore diameter (mode diameter) of the partition walls 13 of the wall flow type substrate 10 before the formation of the catalyst layer 21 is preferably 8 to 25 μm, more preferably 10 to 22 μm, and furthermore Preferably it is 13 to 20 μm. The thickness (length in the thickness direction orthogonal to the stretching direction) of the partition wall 13 is preferably 6 to 12 mil, and more preferably 6 to 10 mil. Further, the pore volume of the partition wall 13 by the mercury intrusion method is preferably 0.2 to 1.5 cm 3 / g, more preferably 0.25 to 0.9 cm 3 / g, and still more preferably 0.3 to 0.9 cm 3 / g. 0.80.8 cm 3 / g. The porosity of the partition walls 13 by the mercury intrusion method is preferably 20 to 80%, more preferably 40 to 70%, and further preferably 60 to 70%. When the pore volume or the porosity is equal to or more than the lower limit, an increase in pressure loss tends to be further suppressed. When the pore volume or the porosity is equal to or less than the upper limit, the strength of the base material tends to be further improved. In addition, the pore diameter (mode diameter), the pore volume, and the porosity mean values calculated by the mercury intrusion method under the conditions described in the following Examples.
<触媒層形成工程>
 この触媒層形成工程S1は、ウォールフロー型基材10の排ガス導入側の端部11a又は排ガス排出側の端部12aに、揺変性を有する触媒スラリー21aを含浸させる含浸工程S1aと、触媒スラリー21aを含浸させた端部側からウォールフロー型基材10内に気体Fを導入させることにより、ウォールフロー型基材10に含浸された触媒スラリー21aを多孔質の隔壁13に塗工する塗工工程S1bと、気体Fの導入を停止する停止工程S1cと、塗工された触媒スラリー21aを焼成して、触媒層の塗工量が、20~110g/Lである排ガス浄化触媒を得る焼成工程S1dと、を有する。
<Catalyst layer forming step>
The catalyst layer forming step S1 includes an impregnating step S1a of impregnating the end portion 11a on the exhaust gas introduction side or the end portion 12a on the exhaust gas discharge side of the wall flow type substrate 10 with a thixotropic catalyst slurry 21a, and a catalyst slurry 21a. A coating step of applying the catalyst slurry 21a impregnated in the wall flow type substrate 10 to the porous partition walls 13 by introducing the gas F into the wall flow type substrate 10 from the end side impregnated with S1b, a stopping step S1c for stopping the introduction of the gas F, and a firing step S1d for firing the coated catalyst slurry 21a to obtain an exhaust gas purifying catalyst having a coating amount of the catalyst layer of 20 to 110 g / L. And
 本実施形態においては、せん断応力を加えることにより粘度が減少し、せん断応力を加えず静置することにより粘度が上昇する揺変性を有する触媒スラリー21aを用いる。これにより、上記塗工工程S1bにおいては、気体Fの導入により印加される応力によって触媒スラリー21aの粘度が減少することで、多孔質の隔壁13の気孔表面に触媒スラリー21aを均一に塗工することができ、また、停止工程S1cにおいては、触媒スラリー21aの粘度が増加することで、塗工した触媒スラリー21aが隔壁の気孔内で移動することを抑制し、触媒層の偏析ないしは偏在を抑制することができる。さらに、触媒層の偏析ないしは偏在による気孔閉塞や塗工ムラ等の発生を抑制することにより、気孔率を比較的に高く維持し、且つ気孔径を比較的に小さくすることが可能となる。 In the present embodiment, a thixotropic catalyst slurry 21a is used in which the viscosity is reduced by applying a shear stress and the viscosity is increased by standing without applying a shear stress. Thereby, in the coating step S1b, the viscosity of the catalyst slurry 21a is reduced by the stress applied by the introduction of the gas F, so that the catalyst slurry 21a is uniformly coated on the pore surfaces of the porous partition walls 13. Further, in the stopping step S1c, the viscosity of the catalyst slurry 21a is increased, so that the coated catalyst slurry 21a is prevented from moving in the pores of the partition walls, and segregation or uneven distribution of the catalyst layer is suppressed. can do. Furthermore, by suppressing the occurrence of pore blockage or coating unevenness due to segregation or uneven distribution of the catalyst layer, it is possible to maintain a relatively high porosity and relatively small pore diameter.
 触媒層の偏析ないしは偏在の抑制については、特に限定されないが、以下のように考えられる。塗工された触媒スラリー21aは、気液界面及び固液界面の表面張力等のバランスにより、固液界面の面積、すなわち隔壁13の気孔表面との接触面積が増加する位置へ移動する傾向がある。そのため、一般に、乾燥による体積減少とともに、触媒スラリー21aは比較的細孔径の小さい小気孔13aや袋状に閉じた形状を有する袋状部13bなど隔壁13の気孔表面との接触面積が大きくなる狭小部へと移動し、触媒層の偏析ないしは偏在が生じやすくなる(図3参照)。これに対して、本実施形態においては、塗工後の触媒スラリー21aが高粘度化することにより狭小部への移動が抑制されるため、小気孔13aが閉塞したり、袋状部13bに触媒スラリー21aが集中したりすることを抑制することができ、触媒層の偏析ないしは偏在を抑制することができる(図4参照)。 抑制 The suppression of segregation or uneven distribution of the catalyst layer is not particularly limited, but is considered as follows. The coated catalyst slurry 21a tends to move to a position where the area of the solid-liquid interface, that is, the contact area with the pore surface of the partition wall 13, increases due to the balance of the surface tension at the gas-liquid interface and the solid-liquid interface. . Therefore, in general, as the volume decreases due to the drying, the catalyst slurry 21a becomes narrower because the contact area with the pore surface of the partition wall 13 such as the small pores 13a having a relatively small pore diameter or the bag-like portion 13b having a bag-like shape is increased. And the catalyst layer tends to be segregated or unevenly distributed (see FIG. 3). On the other hand, in the present embodiment, since the catalyst slurry 21a after being applied has a high viscosity, the movement of the catalyst slurry 21a to the narrow portion is suppressed, so that the small pores 13a are closed or the catalyst is formed in the bag-like portion 13b. Concentration of the slurry 21a can be suppressed, and segregation or uneven distribution of the catalyst layer can be suppressed (see FIG. 4).
 触媒スラリー21aの塗工方法は、特に制限されないが、例えば、基材10の一部に触媒スラリー21aを含浸させて、それを基材10の隔壁13全体に広げる方法が挙げられる。より具体的には、排ガス導入側の端部11a又は基材10の排ガス排出側の端部12aに、触媒スラリー21aを含浸させる工程S1aと、触媒スラリー21aを含浸させた端部側から基材10内に気体を導入させることにより、基材10に含浸された触媒スラリー21aを隔壁13に塗工する塗工工程S1bを有する方法が挙げられる。 The method of applying the catalyst slurry 21a is not particularly limited, but for example, a method of impregnating a part of the base material 10 with the catalyst slurry 21a and spreading the impregnated catalyst slurry 21a over the entire partition 13 of the base material 10 can be mentioned. More specifically, the step S1a of impregnating the catalyst slurry 21a into the end 11a on the exhaust gas introduction side or the end 12a on the exhaust gas discharge side of the base material 10 and the base material from the end side impregnated with the catalyst slurry 21a A method including a coating step S1b of coating the partition walls 13 with the catalyst slurry 21a impregnated in the base material 10 by introducing a gas into the base material 10 is exemplified.
 含浸工程S1aにおける触媒スラリー21aの含浸方法としては、特に制限されないが、例えば、触媒スラリー21aに基材10の端部を浸漬させる方法が挙げられる。この方法においては、必要に応じて、反対側の端部から気体を排出(吸引)させることにより触媒スラリー21aを引き上げてもよい。触媒スラリー21aを含浸させる端部は、排ガス導入側の端部11a又は排ガス排出側の端部12aのどちらでもよいが、排ガス導入側の端部11aに触媒スラリー21aを含浸させることが好ましい。これにより、排ガスの導入方向と同じ方向で工程S1bにおいて気体を導入することができ、複雑な気孔形状に対して、排ガスの流れに沿った形で触媒スラリー21aを塗工することができる。そのため、得られる排ガス浄化触媒の圧力損失の上昇抑制が見込まれ、また、排ガス浄化性能の向上も期待できる。 方法 The method of impregnating the catalyst slurry 21a in the impregnation step S1a is not particularly limited, and for example, a method of immersing the end of the base material 10 in the catalyst slurry 21a can be used. In this method, if necessary, the catalyst slurry 21a may be pulled up by discharging (sucking) gas from the opposite end. The end for impregnating the catalyst slurry 21a may be either the end 11a on the exhaust gas introduction side or the end 12a on the exhaust gas discharge side, but it is preferable to impregnate the end 11a on the exhaust gas introduction side with the catalyst slurry 21a. Thereby, the gas can be introduced in the step S1b in the same direction as the exhaust gas introduction direction, and the catalyst slurry 21a can be applied to a complicated pore shape along the flow of the exhaust gas. Therefore, suppression of a rise in pressure loss of the obtained exhaust gas purifying catalyst is expected, and improvement in exhaust gas purifying performance can be expected.
 塗工工程S1bにおいて、含浸した触媒スラリー21aの粘度は気体Fの導入により印加される応力によって減少し、低粘度化した触媒スラリー21aは、基材10の導入側から奥へ気体Fの流れに沿って移動し、気体Fの排出側の端部へ到達する。その過程において、隔壁13の気孔内部を触媒スラリー21aが通過することで、気孔内部に触媒スラリー21aを塗工することができ、隔壁の全体に触媒スラリー21aが塗工される。 In the coating step S1b, the viscosity of the impregnated catalyst slurry 21a is reduced by the stress applied by the introduction of the gas F, and the reduced viscosity of the catalyst slurry 21a is reduced by the flow of the gas F from the introduction side of the base material 10 to the back. Along the air, and reaches the end on the discharge side of the gas F. In the process, the catalyst slurry 21a can be applied to the inside of the pores by passing the catalyst slurry 21a through the inside of the pores of the partition 13, and the catalyst slurry 21a is applied to the entire partition.
 停止工程S1cでは、気体Fの導入を停止し、触媒スラリー21aの粘度を増加させることで、塗工した触媒スラリー21aが隔壁の気孔内で移動することを抑制する。本実施形態の製造方法においては、停止工程S1c後、塗工した触媒スラリー21aを乾燥させる乾燥工程を有していてもよい。乾燥工程における乾燥条件は、触媒スラリー21aから溶媒が揮発するような条件であれば特に制限されない。例えば、乾燥温度は、好ましくは100~225℃であり、より好ましくは100~200℃であり、さらに好ましくは125~175℃である。また、乾燥時間は、好ましくは0.5~2時間であり、好ましくは0.5~1.5時間である。 In the stopping step S1c, the introduction of the gas F is stopped to increase the viscosity of the catalyst slurry 21a, thereby suppressing the movement of the coated catalyst slurry 21a in the pores of the partition walls. The manufacturing method of the present embodiment may include a drying step of drying the applied catalyst slurry 21a after the stopping step S1c. The drying condition in the drying step is not particularly limited as long as the solvent evaporates from the catalyst slurry 21a. For example, the drying temperature is preferably from 100 to 225 ° C, more preferably from 100 to 200 ° C, and even more preferably from 125 to 175 ° C. Further, the drying time is preferably 0.5 to 2 hours, and preferably 0.5 to 1.5 hours.
 焼成工程S1dでは、上記のようにして、均一に塗工された触媒スラリー21aを焼成して、触媒層21を形成する。焼成工程S1dにおける焼成条件は、触媒スラリー21aから触媒層21が形成できるような条件であれば特に制限されない。例えば、焼成温度は、特に制限されないが、好ましくは400~650℃であり、より好ましくは450~600℃であり、さらに好ましくは500~600℃である。また、焼成時間は、好ましくは0.5~2時間であり、好ましくは0.5~1.5時間である。 In the firing step S1d, the catalyst slurry 21a uniformly coated as described above is fired to form the catalyst layer 21. The firing conditions in the firing step S1d are not particularly limited as long as the catalyst layer 21 can be formed from the catalyst slurry 21a. For example, the firing temperature is not particularly limited, but is preferably from 400 to 650 ° C, more preferably from 450 to 600 ° C, and still more preferably from 500 to 600 ° C. Further, the firing time is preferably 0.5 to 2 hours, preferably 0.5 to 1.5 hours.
 なお、ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒、特に、粒子状物質の捕集用途に用いられるという観点から、焼成工程S1dを経て得られる排ガス浄化触媒100の触媒層の塗工量(ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)は、好ましくは20~110g/Lであり、より好ましくは40~90g/Lであり、さらに好ましくは50~70g/Lである。 In addition, from the viewpoint of being used for exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine, particularly for use in collecting particulate matter, the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 obtained through the firing step S1d. (Coating amount of the catalyst layer excluding the weight of the catalyst metal per 1 L of the wall flow type substrate) is preferably 20 to 110 g / L, more preferably 40 to 90 g / L, and further preferably 50 to 70 g. / L.
 (触媒スラリー)
 触媒層21を形成するための触媒スラリー21aについて説明する。本実施形態で用いる触媒スラリー21aは揺変性を有する。本実施形態において「揺変性」とは、一定のせん断速度で流動させたときに時間とともに粘度が低下し、その後、流動を止めてしばらく静止すると再び元の粘度に戻る性質のことをいう。また、本実施形態における「粘度」とは、25℃下において、所定のせん断速度でレオメーターを用いて測定した値を言う。
(Catalyst slurry)
The catalyst slurry 21a for forming the catalyst layer 21 will be described. The catalyst slurry 21a used in the present embodiment has thixotropic properties. In the present embodiment, “thixotropic” refers to a property in which the viscosity decreases with time when flowing at a constant shear rate, and then returns to the original viscosity again after stopping the flow and resting for a while. Further, the “viscosity” in the present embodiment refers to a value measured using a rheometer at a predetermined shear rate at 25 ° C.
 せん断速度を10s-1としたときの粘度η10は、好ましくは50~1500mPa・sであり、より好ましくは200~1300mPa・sであり、さらに好ましくは300~1200mPa・sである。粘度η10は隔壁の気孔表面に塗工された触媒スラリーの粘度を想定したものであり、粘度η10上記範囲内であることにより、塗工した触媒スラリー21aの気孔内における移動が抑制される傾向にある。これにより、小気孔13aが閉塞したり、袋状部13bに触媒スラリー21aが集中したりすることを抑制することができ、触媒層の偏析ないしは偏在を抑制することができる。 The viscosity η 10 at a shear rate of 10 s −1 is preferably 50 to 1500 mPa · s, more preferably 200 to 1300 mPa · s, and still more preferably 300 to 1200 mPa · s. Viscosity eta 10 is obtained by assuming the viscosity of the catalyst slurry is coated on the pores surface in the partition wall, by an in viscosity eta 10 above range, movement in the pores of the catalyst slurry 21a was coated is suppressed There is a tendency. Thereby, it is possible to suppress the small pores 13a from being closed or the catalyst slurry 21a from being concentrated on the bag-like portion 13b, and to suppress segregation or uneven distribution of the catalyst layer.
 また、隔壁13内の気孔に均一に塗工できる程度の比較的低粘度を有するという観点から、せん断速度を550s-1としたときの粘度η550は、好ましくは5~30mPa・sであり、より好ましくは5~20mPa・sであり、さらに好ましくは5~15mPa・sである。粘度η550は塗工する際の触媒スラリーの粘度を想定したものであり、粘度η550が上記範囲内であることにより、触媒スラリーの均一塗工性がより向上する傾向にある。 Further, from the viewpoint of having a relatively low viscosity that can uniformly coat the pores in the partition wall 13, the viscosity η 550 at a shear rate of 550 s −1 is preferably 5 to 30 mPa · s, It is more preferably 5 to 20 mPa · s, and still more preferably 5 to 15 mPa · s. The viscosity η 550 is based on the viscosity of the catalyst slurry at the time of coating. When the viscosity η 550 is within the above range, the uniform coating property of the catalyst slurry tends to be further improved.
 粘度η550に対する粘度η10の比(η10/η550)をTI値とすると、TI値は、10~100であり、好ましくは20~80であり、より好ましくは40~80である。 Assuming that the ratio of the viscosity η 10 to the viscosity η 55010 / η 550 ) is the TI value, the TI value is 10 to 100, preferably 20 to 80, and more preferably 40 to 80.
 揺変性、すなわち粘度η10及び粘度η550、並びにその比であるTI値は、触媒スラリー21aの固形分率とpHにより調整することができる。 Thixotropic, that is, the viscosity η 10 and the viscosity η 550 , and the TI value, which is the ratio thereof, can be adjusted by the solid content and the pH of the catalyst slurry 21a.
 触媒スラリー21aは、触媒粉体と、水などの溶剤と、pH調整剤とを含む。触媒粉体は、触媒金属粒子と該触媒金属粒子を担持する担体粒子とを含む、複数の触媒粒子の集団であり、後述する焼成工程S1dを経て、触媒層21を形成する。触媒粒子は、特に限定されず、公知の触媒粒子から適宜選択して用いることができる。 (4) The catalyst slurry 21a contains a catalyst powder, a solvent such as water, and a pH adjuster. The catalyst powder is a group of a plurality of catalyst particles including catalyst metal particles and carrier particles supporting the catalyst metal particles, and forms the catalyst layer 21 through a firing step S1d described later. The catalyst particles are not particularly limited, and can be appropriately selected from known catalyst particles and used.
 触媒スラリー21aの固形分率は、好ましくは1~50質量%であり、より好ましくは10~50質量%であり、さらに好ましくは15~40質量%であり、特に好ましくは20~35質量%である。固形分率が上記範囲内であることにより、揺変性、すなわち粘度η10及び粘度η550を調整することができる。 The solid content of the catalyst slurry 21a is preferably 1 to 50% by mass, more preferably 10 to 50% by mass, still more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass. is there. When the solid content is within the above range, thixotropicity, that is, viscosity η 10 and viscosity η 550 can be adjusted.
 触媒スラリー21aに含まれる触媒粉体のD90粒子径は、好ましくは1~7μmであり、より好ましくは1~5μmであり、さらに好ましくは1~3μmである。D90粒子径が1μm以上であることにより、触媒粉体をミリング装置で破砕する場合の粉砕時間を短縮することができ、作業効率がより向上する傾向にある。また、D90粒子径が7μm以下であることにより、粗大粒子が隔壁13内を閉塞することが抑制され、圧力損失の上昇が抑制される傾向にある。なお、本明細書において、D90粒子径は、レーザー回折式粒子径分布測定装置(例えば、島津製作所社製、レーザー回折式粒子径分布測定装置SALD-3100等)で測定することができる。 触媒 The D90 particle size of the catalyst powder contained in the catalyst slurry 21a is preferably 1 to 7 μm, more preferably 1 to 5 μm, and still more preferably 1 to 3 μm. When the D90 particle diameter is 1 μm or more, the pulverization time when the catalyst powder is crushed by a milling device can be reduced, and the working efficiency tends to be further improved. Further, when the D90 particle size is 7 μm or less, the coarse particles are suppressed from closing the inside of the partition wall 13 and the increase in pressure loss tends to be suppressed. In this specification, the D90 particle size can be measured with a laser diffraction particle size distribution analyzer (eg, a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation).
 触媒スラリー21aに含まれる触媒金属としては、特に制限されず、種々の酸化触媒や還元触媒として機能し得る金属種を用いることができる。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)及びオスミウム(Os)等の白金族金属が挙げられる。このなかでも、酸化活性の観点からはパラジウム(Pd)、白金(Pt)が好ましく、還元活性の観点からはロジウム(Rh)が好ましい。 触媒 The catalyst metal contained in the catalyst slurry 21a is not particularly limited, and various metal species that can function as an oxidation catalyst or a reduction catalyst can be used. For example, platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used. Among them, palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity, and rhodium (Rh) is preferable from the viewpoint of reduction activity.
 触媒金属粒子を担持する担体粒子としては、従来この種の排ガス浄化触媒で使用される無機化合物を考慮することができる。例えば、酸化セリウム(セリア:CeO)、セリア-ジルコニア複合酸化物(CZ複合酸化物)等の酸素吸蔵材(OSC材)、酸化アルミニウム(アルミナ:Al)、酸化ジルコニウム(ジルコニア:ZrO)、酸化ケイ素(シリカ:SiO)、酸化チタン(チタニア:TiO)等の酸化物やこれらの酸化物を主成分とした複合酸化物を挙げることができる。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。なお、これら担体粒子は、一種単独で用いても、二種以上を併用してもよい。ここで、酸素吸蔵材(OSC材)とは、排ガスの空燃比がリーンであるとき(即ち酸素過剰側の雰囲気)には排ガス中の酸素を吸蔵し、排ガスの空燃比がリッチであるとき(即ち燃料過剰側の雰囲気)には吸蔵されている酸素を放出するものをいう。なお、排ガス浄化性能の観点から、触媒スラリーに含まれる担体粒子の比表面積は、好ましくは10~500m/g、より好ましくは30~200m/gである。 As the carrier particles supporting the catalytic metal particles, inorganic compounds conventionally used in this type of exhaust gas purifying catalyst can be considered. For example, oxygen storage materials (OSC materials) such as cerium oxide (ceria: CeO 2 ) and ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ) 2 ), oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components. These may be a composite oxide or a solid solution to which a rare earth element such as lanthanum or yttrium, a transition metal element, or an alkaline earth metal element is added. These carrier particles may be used alone or in combination of two or more. Here, the oxygen storage material (OSC material) means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), oxygen in the exhaust gas is stored and the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere that releases the occluded oxygen is referred to as the atmosphere on the side of excess fuel. From the viewpoint of exhaust gas purification performance, the specific surface area of the carrier particles contained in the catalyst slurry is preferably from 10 to 500 m 2 / g, and more preferably from 30 to 200 m 2 / g.
 触媒スラリーに含まれるpH調整剤としては、特に制限されないが、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、水酸化バリウム、炭酸アンモニウム、炭酸水素アンモニウム、及びアンモニア水からなる群より選ばれる少なくとも一種が挙げられる。このようなpH調整剤を用いることにより、揺変性、すなわち粘度η10及び粘度η550を調整することができ、特に、粘度η10をより高く、粘度η550をより低くすることができる。このなかでも、電離度が大きく、即ち少量でpHを調整可能であり、触媒スラリー中に均一に分散しやすいという観点から、水酸化バリウムが好ましく、また、焼成後、排ガス浄化触媒に残存しにくいという観点から、メチルアミン、ジメチルアミン、トリメチルアミン、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水が好ましく、炭酸アンモニウムがより好ましい。 The pH adjuster contained in the catalyst slurry is not particularly limited, and includes, for example, at least one selected from the group consisting of methylamine, dimethylamine, trimethylamine, barium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, and aqueous ammonia. Can be By using such a pH adjuster, thixotropic, that is, the viscosity η 10 and the viscosity η 550 can be adjusted, and in particular, the viscosity η 10 can be higher and the viscosity η 550 can be lower. Among them, barium hydroxide is preferred from the viewpoint that the degree of ionization is large, that is, the pH can be adjusted with a small amount, and it is easily dispersed uniformly in the catalyst slurry. From the viewpoint, methylamine, dimethylamine, trimethylamine, ammonium carbonate, ammonium hydrogen carbonate, and aqueous ammonia are preferable, and ammonium carbonate is more preferable.
 触媒スラリーのpHは、好ましくは3~10であり、より好ましくは4~9であり、さらに好ましくは5~8である。触媒スラリーのpHを上記範囲内とすることにより、揺変性、すなわち粘度η10及び粘度η550を調整することができ、特に、粘度η10をより高く、粘度η550をより低くすることができる。 The pH of the catalyst slurry is preferably 3 to 10, more preferably 4 to 9, and even more preferably 5 to 8. By setting the pH of the catalyst slurry within the above range, thixotropic, that is, the viscosity η 10 and the viscosity η 550 can be adjusted, and in particular, the viscosity η 10 can be higher and the viscosity η 550 can be lower. .
 また、触媒層21が形成された状態の排ガス浄化触媒100の水銀圧入法による隔壁13の気孔径(モード径)は、好ましくは10~23μmであり、より好ましくは11~20μmであり、さらに好ましくは12~18μmである。また、孔内積層触媒層が形成された状態の排ガス浄化触媒の水銀圧入法による隔壁の気孔容積は、好ましくは0.2~1.0cm/gであり、より好ましくは0.25~0.9cm/gであり、さらに好ましくは0.3~0.8cm/gである。さらに、孔内積層触媒層が形成された状態の排ガス浄化触媒の水銀圧入法による隔壁の気孔率は、好ましくは20~80%であり、より好ましくは30~70%であり、好ましくは35~60%である。なお、気孔径(モード径)、気孔容積、及び気孔率は、下記実施例に記載の条件において水銀圧入法により算出される値を意味する。 The pore diameter (mode diameter) of the partition wall 13 of the exhaust gas purifying catalyst 100 in the state where the catalyst layer 21 is formed by the mercury intrusion method is preferably 10 to 23 μm, more preferably 11 to 20 μm, and still more preferably. Is 12 to 18 μm. The pore volume of the partition wall of the exhaust gas purifying catalyst in the state where the laminated catalyst layer is formed by a mercury intrusion method is preferably 0.2 to 1.0 cm 3 / g, more preferably 0.25 to 0 cm 3 / g. 0.9 cm 3 / g, and more preferably 0.3 to 0.8 cm 3 / g. Further, the porosity of the partition wall of the exhaust gas purifying catalyst in the state where the laminated catalyst layer is formed by a mercury intrusion method is preferably 20 to 80%, more preferably 30 to 70%, and preferably 35 to 70%. 60%. In addition, the pore diameter (mode diameter), the pore volume, and the porosity mean values calculated by the mercury intrusion method under the conditions described in the following Examples.
〔排ガス浄化触媒〕
 本実施形態の排ガス浄化触媒は、ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒100であって、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セル11に隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13により画定されたウォールフロー型基材10と、隔壁13の気孔内に形成された触媒層21と、を有し、該触媒層21が、ウォールフロー型基材10の排ガス導入側の端部11a又は排ガス排出側の端部12aに、揺変性を有する触媒スラリー21aを含浸させる含浸工程S1aと、触媒スラリー21aを含浸させた端部側からウォールフロー型基材10内に気体Fを導入させることにより、ウォールフロー型基材10に含浸された触媒スラリー21aを多孔質の隔壁13に塗工する塗工工程S1bと、気体Fの導入を停止する停止工程S1cと、塗工された触媒スラリー21aを焼成する焼成工程S1dとを有する、触媒層形成工程S1により形成されたものであり、排ガス浄化触媒100の触媒層の塗工量が、20~110g/Lであることを特徴とする。
(Exhaust gas purification catalyst)
The exhaust gas purifying catalyst according to the present embodiment is an exhaust gas purifying catalyst 100 for purifying exhaust gas discharged from a gasoline engine. The exhaust gas purifying catalyst 100 includes an inlet cell 11 having an open end 11a on the exhaust gas inlet side and an inlet cell 11 adjacent to the inlet cell 11. The discharge-side cell 12 having an open end 12a on the exhaust gas discharge side comprises a wall flow-type substrate 10 defined by a porous partition wall 13 and a catalyst layer 21 formed in pores of the partition wall 13. An impregnating step S1a in which the catalyst layer 21 impregnates the end portion 11a on the exhaust gas introduction side or the end portion 12a on the exhaust gas discharge side of the wall flow type substrate 10 with a thixotropic catalyst slurry 21a; By introducing gas F into the wall flow-type base material 10 from the end side impregnated with 21a, the catalyst slurry 21a impregnated in the wall flow-type base material 10 is made porous. The catalyst layer forming step S1 includes a coating step S1b for coating the partition walls 13, a stopping step S1c for stopping the introduction of the gas F, and a firing step S1d for firing the coated catalyst slurry 21a. And the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 is 20 to 110 g / L.
 以下、図2に示す、本実施形態の排ガス浄化触媒を模式的に示す断面図を参照しつつ、各構成について説明する。本実施形態の排ガス浄化触媒はウォールフロー型構造を有する。このような構造を有する排ガス浄化触媒100では、内燃機関から排出される排ガスが、排ガス導入側の端部11a(開口)から導入側セル11内へと流入し、隔壁13の気孔内を通過して隣接する排出側セル12内へ流入し、排ガス排出側の端部12a(開口)から流出する。この過程において、隔壁13の気孔内を通り難い粒子状物質(PM)は、一般に、導入側セル11内の隔壁13上及び/又は隔壁13の気孔内に堆積し、堆積した粒子状物質は、触媒層21の触媒機能によって、或いは所定の温度(例えば500~700℃程度)で燃焼し、除去される。また、排ガスは、隔壁13の気孔内に形成された触媒層21と接触し、これによって排ガスに含まれる一酸化炭素(CO)や炭化水素(HC)は水(HO)や二酸化炭素(CO)などへ酸化され、窒素酸化物(NOx)は窒素(N)へ還元され、有害成分が浄化(無害化)される。なお、本明細書においては、粒子状物質の除去及び一酸化炭素(CO)等の有害成分の浄化をまとめて「排ガス浄化性能」ともいう。以下、各構成についてより詳細に説明する。 Hereinafter, each configuration will be described with reference to a cross-sectional view schematically illustrating the exhaust gas purification catalyst of the present embodiment illustrated in FIG. 2. The exhaust gas purifying catalyst of the present embodiment has a wall flow type structure. In the exhaust gas purifying catalyst 100 having such a structure, the exhaust gas discharged from the internal combustion engine flows into the introduction-side cell 11 from the end portion 11a (opening) on the exhaust gas introduction side, passes through the pores of the partition wall 13, and passes through. Flows into the adjacent discharge-side cell 12 and flows out from the end portion 12a (opening) on the exhaust gas discharge side. In this process, the particulate matter (PM) that hardly passes through the pores of the partition 13 is generally deposited on the partition 13 in the introduction-side cell 11 and / or in the pores of the partition 13, and the deposited particulate matter is: The fuel is removed by burning due to the catalytic function of the catalyst layer 21 or at a predetermined temperature (for example, about 500 to 700 ° C.). Further, the exhaust gas comes into contact with the catalyst layer 21 formed in the pores of the partition 13, whereby carbon monoxide (CO) and hydrocarbon (HC) contained in the exhaust gas are converted into water (H 2 O) and carbon dioxide ( CO 2 ) and the like, nitrogen oxides (NOx) are reduced to nitrogen (N 2 ), and harmful components are purified (made harmless). In this specification, the removal of particulate matter and the purification of harmful components such as carbon monoxide (CO) are also collectively referred to as “exhaust gas purification performance”. Hereinafter, each configuration will be described in more detail.
 (基材)
 ウォールフロー型基材10としては、上記と同様のものを用いることができる。
(Base material)
The same thing as the above can be used as the wall flow type substrate 10.
 (触媒層)
 触媒層形成工程S1により形成された触媒層21は、比較的細孔径の小さい小気孔13aや袋状に閉じた形状を有する袋状部13bへの偏析ないしは偏在が抑制されたものとなる。これにより、触媒層の偏析ないしは偏在による気孔閉塞や塗工ムラ等の発生が抑制され、結果として気孔率を比較的に高く維持し、且つ気孔径を比較的に小さくできる排ガス浄化触媒が得られる。そして、本実施形態の排ガス浄化触媒においては、触媒層によって閉塞されていない小気孔13aがススの捕集率の向上に寄与することができ、また、排ガスに接触しやすい、袋状部13b以外の部分に触媒層が形成される。さらに、隔壁内の小気孔13aや袋状部13bへの触媒層の偏在が抑制される結果、それ以外の気孔に相対的に多くの触媒層を形成することができる。そのため、ススの捕集という観点からは、大きすぎる大気孔13cの表面にも相対的に多くの触媒層が形成され、気孔径が狭くなることにより大気孔13cにおけるススの捕集率も向上する。すなわち、触媒層形成工程S1により形成された触媒層21によれば、小気孔13aの閉塞が抑制され、かつ大気孔13cの気孔径を適切に狭小化されることにより、ススの捕集率を向上させることができる。但し、ススの捕集率が向上する理由は、上記に限定されない。
(Catalyst layer)
In the catalyst layer 21 formed in the catalyst layer forming step S1, segregation or uneven distribution to the small pores 13a having a relatively small pore diameter or the bag-like portion 13b having a closed shape in a bag shape is suppressed. As a result, the occurrence of pore blockage or uneven coating due to segregation or uneven distribution of the catalyst layer is suppressed, and as a result, an exhaust gas purifying catalyst capable of maintaining a relatively high porosity and having a relatively small pore diameter can be obtained. . In the exhaust gas purifying catalyst of the present embodiment, the small pores 13a that are not closed by the catalyst layer can contribute to the improvement of the soot collection rate, and can easily contact the exhaust gas other than the bag-shaped portion 13b. A catalyst layer is formed in the portion. Furthermore, the uneven distribution of the catalyst layer in the small pores 13a and the bag-like portions 13b in the partition walls is suppressed, so that a relatively large number of catalyst layers can be formed in other pores. Therefore, from the viewpoint of soot collection, a relatively large number of catalyst layers are formed on the surface of the air holes 13c that are too large, and the soot collection rate in the air holes 13c is improved by reducing the pore diameter. . That is, according to the catalyst layer 21 formed in the catalyst layer forming step S1, the blockage of the small pores 13a is suppressed, and the pore diameter of the atmospheric pores 13c is appropriately narrowed, so that the soot collection rate is reduced. Can be improved. However, the reason why the soot collection rate is improved is not limited to the above.
 触媒層21は、隔壁13の厚さ方向において、導入側セル11側のセル壁面から排出側セル12側のセル壁面にかけて形成されていることが好ましく、また、触媒層21は、隔壁13の延伸方向(長さ方向)において、全体にわたって形成されていることが好ましい。なお、触媒層21は、排ガス浄化触媒100の隔壁13の断面の走査型電子顕微鏡により確認することができる。 The catalyst layer 21 is preferably formed from the cell wall on the introduction side cell 11 side to the cell wall on the discharge side cell 12 side in the thickness direction of the partition wall 13. In the direction (length direction), it is preferable that the entirety be formed. The catalyst layer 21 can be confirmed by a scanning electron microscope on the cross section of the partition wall 13 of the exhaust gas purifying catalyst 100.
 触媒層21に含まれる触媒金属としては、特に制限されず、種々の酸化触媒や還元触媒として機能し得る金属種を用いることができる。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)及びオスミウム(Os)等の白金族金属が挙げられる。このなかでも、酸化活性の観点からはパラジウム(Pd)、白金(Pt)が好ましく、還元活性の観点からはロジウム(Rh)が好ましい。本実施形態においては、上記のとおり一種以上の触媒金属を混合された状態で含有する触媒層21を有する。特に二種以上の触媒金属の併用により、異なる触媒活性を有することによる相乗的な効果が期待される。 触媒 The catalyst metal contained in the catalyst layer 21 is not particularly limited, and various metal species that can function as various oxidation catalysts and reduction catalysts can be used. For example, platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used. Among them, palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity, and rhodium (Rh) is preferable from the viewpoint of reduction activity. In the present embodiment, the catalyst layer 21 contains one or more catalyst metals in a mixed state as described above. In particular, when two or more kinds of catalyst metals are used in combination, a synergistic effect due to having different catalytic activities is expected.
 このような触媒金属の組み合わせの態様は、特に制限されず、酸化活性に優れる二種以上の触媒金属の組み合わせ、還元活性に優れる二種以上の触媒金属の組み合わせ、酸化活性に優れる触媒金属と還元活性に優れる触媒金属の組み合わせが挙げられる。このなかでも、相乗効果の一つの態様として、酸化活性に優れる触媒金属と還元活性に優れる触媒金属の組み合わせが好ましく、Rh、Pd及びRh、または、Pt及びRhを少なくとも含む組合せがより好ましい。このような組み合わせとすることにより、排ガス浄化性能がより向上する傾向にある。 The embodiment of the combination of such catalyst metals is not particularly limited, and a combination of two or more catalyst metals having excellent oxidation activity, a combination of two or more catalyst metals having excellent reduction activity, and a catalyst metal having excellent oxidation activity and reduction. Combinations of catalyst metals having excellent activity are mentioned. Among these, as one aspect of the synergistic effect, a combination of a catalyst metal having excellent oxidation activity and a catalyst metal having excellent reduction activity is preferable, and a combination containing at least Rh, Pd and Rh, or Pt and Rh is more preferable. With such a combination, the exhaust gas purification performance tends to be further improved.
 なお、触媒層21が触媒金属を含有することは、排ガス浄化触媒の隔壁13の断面の走査型電子顕微鏡などにより確認することができる。具体的には、走査型電子顕微鏡の視野においてエネルギー分散型X線分析を行うことにより確認することができる。 The fact that the catalyst layer 21 contains the catalyst metal can be confirmed by a scanning electron microscope or the like on the cross section of the partition wall 13 of the exhaust gas purifying catalyst. Specifically, it can be confirmed by performing energy dispersive X-ray analysis in the field of view of a scanning electron microscope.
 触媒層21に含まれ、触媒金属を担持する担体粒子としては、従来この種の排ガス浄化触媒で使用される無機化合物を考慮することができる。例えば、酸化セリウム(セリア:CeO)、セリア-ジルコニア複合酸化物(CZ複合酸化物)等の酸素吸蔵材(OSC材)、酸化アルミニウム(アルミナ:Al)、酸化ジルコニウム(ジルコニア:ZrO)、酸化ケイ素(シリカ:SiO)、酸化チタン(チタニア:TiO)等の酸化物やこれらの酸化物を主成分とした複合酸化物を挙げることができる。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。なお、これら担体粒子は、一種単独で用いても、二種以上を併用してもよい。ここで、酸素吸蔵材(OSC材)とは、排ガスの空燃比がリーンであるとき(即ち酸素過剰側の雰囲気)には排ガス中の酸素を吸蔵し、排ガスの空燃比がリッチであるとき(即ち燃料過剰側の雰囲気)には吸蔵されている酸素を放出するものをいう。 As the carrier particles contained in the catalyst layer 21 and supporting the catalyst metal, inorganic compounds conventionally used in this type of exhaust gas purifying catalyst can be considered. For example, oxygen storage materials (OSC materials) such as cerium oxide (ceria: CeO 2 ) and ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ) 2 ), oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components. These may be a composite oxide or a solid solution to which a rare earth element such as lanthanum or yttrium, a transition metal element, or an alkaline earth metal element is added. These carrier particles may be used alone or in combination of two or more. Here, the oxygen storage material (OSC material) means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), oxygen in the exhaust gas is stored and the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere that releases the occluded oxygen is referred to as the atmosphere on the side of excess fuel.
 なお、ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒、特に、粒子状物質の捕集用途に用いられるという観点から、排ガス浄化触媒100の触媒層の塗工量(ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)は、好ましくは20~110g/Lであり、より好ましくは40~90g/Lであり、さらに好ましくは50~70g/Lである。 In addition, from the viewpoint of being used for an exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine, particularly for use in collecting particulate matter, the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 (wall flow type substrate 1L) The coating amount of the catalyst layer excluding the catalytic metal mass per unit) is preferably 20 to 110 g / L, more preferably 40 to 90 g / L, and further preferably 50 to 70 g / L.
 また、触媒層21が形成された状態の排ガス浄化触媒100の水銀圧入法による隔壁13の気孔径(モード径)は、好ましくは10~23μmであり、より好ましくは12~20μmであり、さらに好ましくは14~18μmである。また、触媒層21が形成された状態の排ガス浄化触媒の水銀圧入法による隔壁13の気孔容積は、好ましくは0.2~1.0cm/gであり、より好ましくは0.25~0.9cm/gであり、さらに好ましくは0.3~0.8cm/gである。さらに、触媒層21が形成された状態の排ガス浄化触媒100の水銀圧入法による隔壁13の気孔率は、好ましくは20~80%であり、より好ましくは30~70%であり、好ましくは35~60%である。なお、気孔径(モード径)、気孔容積、及び気孔率は、下記実施例に記載の条件において水銀圧入法により算出される値を意味する。 The pore diameter (mode diameter) of the partition wall 13 of the exhaust gas purifying catalyst 100 in the state where the catalyst layer 21 is formed by the mercury intrusion method is preferably 10 to 23 μm, more preferably 12 to 20 μm, and still more preferably. Is 14 to 18 μm. The pore volume of the partition wall 13 of the exhaust gas purifying catalyst in the state where the catalyst layer 21 is formed by the mercury intrusion method is preferably 0.2 to 1.0 cm 3 / g, more preferably 0.25 to 0. It is 9 cm 3 / g, and more preferably 0.3 to 0.8 cm 3 / g. Further, the porosity of the partition wall 13 of the exhaust gas purifying catalyst 100 in the state where the catalyst layer 21 is formed by the mercury intrusion method is preferably 20 to 80%, more preferably 30 to 70%, and preferably 35 to 70%. 60%. In addition, the pore diameter (mode diameter), the pore volume, and the porosity mean values calculated by the mercury intrusion method under the conditions described in the following Examples.
[用途]
 内燃機関(エンジン)には、酸素と燃料ガスとを含む混合気が供給され、この混合気が燃焼されて、燃焼エネルギーが力学的エネルギーに変換される。このときに燃焼された混合気は排ガスとなって排気系に排出される。排気系には、排ガス浄化触媒を備える排ガス浄化装置が設けられており、排ガス浄化触媒により排ガスに含まれる有害成分(例えば、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx))が浄化されるとともに、排ガスに含まれる粒子状物質(PM)が捕集され、除去される。特に、本実施形態の排ガス浄化触媒100は、ガソリンエンジンの排ガスに含まれる粒子状物質を捕集し、除去できるガソリンパティキュレートフィルタ(GPF)に用いられるものであることが好ましい。
[Use]
An air-fuel mixture containing oxygen and fuel gas is supplied to an internal combustion engine, and the air-fuel mixture is burned to convert combustion energy into mechanical energy. The air-fuel mixture burned at this time is discharged as exhaust gas to an exhaust system. The exhaust system is provided with an exhaust gas purifying device provided with an exhaust gas purifying catalyst, and harmful components (for example, carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) contained in exhaust gas by the exhaust gas purifying catalyst are provided. )) Is purified, and particulate matter (PM) contained in the exhaust gas is collected and removed. In particular, the exhaust gas purifying catalyst 100 of the present embodiment is preferably used for a gasoline particulate filter (GPF) that can collect and remove particulate matter contained in exhaust gas of a gasoline engine.
 以下に試験例、実施例と比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 特 徴 The characteristics of the present invention will be described more specifically with reference to Test Examples, Examples and Comparative Examples below, but the present invention is not limited thereto. That is, the materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Further, the values of various production conditions and evaluation results in the following examples have meanings as preferred upper limits or preferred lower limits in the embodiments of the present invention, and preferred ranges are the upper limit or lower limit values described above. And a range defined by a combination of the values of the following examples or the values of the examples.
(実施例1)
 アルミナ粉末と、セリアジルコニア複合酸化物粉末に、硝酸パラジウム水溶液を含浸させ、その後、500℃で1時間焼成して、Pd担持粉末を得た。また、ジルコニア粉末に、硝酸ロジウム水溶液を含浸させ、その後、500℃で1時間焼成して、Rh担持粉末を得た。
(Example 1)
The alumina powder and the ceria-zirconia composite oxide powder were impregnated with an aqueous solution of palladium nitrate, and then calcined at 500 ° C. for 1 hour to obtain a Pd-supported powder. The zirconia powder was impregnated with an aqueous solution of rhodium nitrate, and then calcined at 500 ° C. for 1 hour to obtain a Rh-supported powder.
 得られたPd担持粉末667g及びRh担持粉末0.25kgと、セリアジルコニア複合酸化物粉末333gと、46%硝酸ランタン水溶液70gと、イオン交換水とを混合し、得られた混合物をボールミルに投入し、触媒粉体が所定の粒子径分布になるまでミリングし、D90粒子径が3.0μm、pHが4.2の触媒スラリーを得た。得られた触媒スラリーに、水酸化バリウム八水和物32g(pH調整剤)と、炭酸アンモニウム10g(pH調整剤)とを混合し、pHが6.2の触媒スラリーを得た。 667 g of the obtained Pd-supported powder and 0.25 kg of Rh-supported powder, 333 g of ceria-zirconia composite oxide powder, 70 g of a 46% lanthanum nitrate aqueous solution, and ion-exchanged water were mixed, and the obtained mixture was put into a ball mill. Then, the catalyst powder was milled until a predetermined particle size distribution was obtained, thereby obtaining a catalyst slurry having a D90 particle size of 3.0 μm and a pH of 4.2. The catalyst slurry thus obtained was mixed with 32 g of barium hydroxide octahydrate (pH adjuster) and 10 g of ammonium carbonate (pH adjuster) to obtain a catalyst slurry having a pH of 6.2.
 得られた触媒スラリーのせん断速度を10s-1としたときの粘度η10は、616mPa・sであり、せん断速度を550s-1としたときの粘度η550は、15mPa・sであり、粘度η550に対する粘度η10の比(η10/η550)、すなわちTI値は、41であった。 The viscosity η 10 when the shear rate of the obtained catalyst slurry is 10 s −1 is 616 mPa · s, the viscosity η 550 when the shear rate is 550 s −1 is 15 mPa · s, and the viscosity η The ratio of the viscosity η 10 to 55010 / η 550 ), that is, the TI value, was 41.
 次いで、コージェライト製のウォールフロー型ハニカム基材(セル数/ミル厚:300cpsi/8.5mil、直径:118.4mm、全長:127mm、気孔径(モード径):20μm、気孔率:65%)を用意した。この基材の排ガス導入側の端部を触媒スラリーに浸漬させ、反対側の端部側から減圧吸引して、基材端部に触媒スラリーを含浸保持させた。排ガス導入側の端部から基材内へ気体を流入させて、隔壁内の気孔表面に触媒スラリーを塗工するとともに、基材の排ガス排出側の端部から過剰分の触媒スラリーを吹き払って、気体の流入を停止した。その後、触媒スラリーを塗工した基材を150℃で乾燥させた後、大気雰囲気下、550℃で焼成して、排ガス浄化触媒を作製した。焼成後における触媒層の塗工量は、基材1L当たり58.8g(白金族金属の重量を除く)であった。 Next, a cordierite wall flow type honeycomb substrate (cell number / mil thickness: 300 cpsi / 8.5 mil, diameter: 118.4 mm, total length: 127 mm, pore diameter (mode diameter): 20 μm, porosity: 65%) Was prepared. The end of the base material on the exhaust gas introduction side was immersed in the catalyst slurry, and vacuum suction was performed from the opposite end side to impregnate and hold the catalyst slurry at the end of the base material. By flowing gas into the base material from the end on the exhaust gas introduction side, coating the catalyst slurry on the pore surface in the partition wall, and blowing off excess catalyst slurry from the end on the exhaust gas discharge side of the base material The gas flow was stopped. Thereafter, the base material coated with the catalyst slurry was dried at 150 ° C., and then calcined at 550 ° C. in an air atmosphere to prepare an exhaust gas purifying catalyst. The coating amount of the catalyst layer after the firing was 58.8 g (excluding the weight of the platinum group metal) per 1 L of the base material.
(比較例1)
 触媒スラリーの調整において、水酸化バリウム八水和物32gと、炭酸アンモニウムを添加しなかったこと以外は、実施例1と同様にして、排ガス浄化触媒を作製した。なお、比較例1において用いた触媒スラリーのpHは、4.2であった。
(Comparative Example 1)
An exhaust gas purifying catalyst was prepared in the same manner as in Example 1, except that 32 g of barium hydroxide octahydrate and ammonium carbonate were not added in the preparation of the catalyst slurry. The pH of the catalyst slurry used in Comparative Example 1 was 4.2.
[粒子径分布測定]
 触媒スラリーのD90粒子径は、島津製作所社製レーザー回折式粒子径分布測定装置SALD-3100を用いて、レーザー散乱法により測定した。
[Particle size distribution measurement]
The D90 particle size of the catalyst slurry was measured by a laser scattering method using a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation.
[粘度測定]
 粘度η10及び粘度η550は、Thermo Fisher Scientific社製レオメーターHAAKE MARS IIを用いて、25℃下において測定した。
[Viscosity measurement]
The viscosity η 10 and the viscosity η 550 were measured at 25 ° C using a rheometer HAAKE MARS II manufactured by Thermo Fisher Scientific.
[気孔率の算出]
 実施例及び比較例で作製した排ガス浄化触媒、並びに、触媒スラリーを塗工する前の基材の、排ガス導入側部分、排ガス排出側部分、及び中間部分の各隔壁から、気孔径(モード径)及び気孔容積の測定用サンプル(1cm)をそれぞれ採取した。測定用サンプルを乾燥後、水銀ポロシメーター(Thermo Fisher Scientific社製、商品名:PASCAL140及びPASCAL440)を用いて、水銀圧入法により気孔分布を測定した。この際、PASCAL140により低圧領域(0~400Kpa)を測定し、PASCAL440により高圧領域(0.1Mpa~400Mpa)を測定した。得られた気孔分布から、気孔径(モード径)を求め、また、気孔径1μm以上の気孔における気孔容積を算出した。なお、気孔径及び気孔容積の値としては、排ガス導入側部分、排ガス排出側部分、及び中間部分それぞれで得られた値の平均値を採用した。
[Calculation of porosity]
The pore diameters (mode diameters) of the exhaust gas purifying catalysts prepared in Examples and Comparative Examples, and the base material before applying the catalyst slurry, from the partition walls of the exhaust gas introduction side portion, the exhaust gas discharge side portion, and the intermediate portion. And a sample (1 cm 3 ) for measuring the pore volume was collected. After drying the measurement sample, the pore distribution was measured by a mercury intrusion method using a mercury porosimeter (manufactured by Thermo Fisher Scientific, trade names: PASCAL140 and PASCAL440). At this time, the low pressure region (0 to 400 Kpa) was measured by PASCAL140, and the high pressure region (0.1 Mpa to 400 Mpa) was measured by PASCAL440. From the obtained pore distribution, the pore diameter (mode diameter) was obtained, and the pore volume of pores having a pore diameter of 1 μm or more was calculated. In addition, as the values of the pore diameter and the pore volume, the average values of the values obtained in the exhaust gas introduction side portion, the exhaust gas discharge side portion, and the intermediate portion were used.
 次いで、下記式により、実施例及び比較例で作製した排ガス浄化触媒の気孔率を算出した。その結果を、下記表1に示す。
 排ガス浄化触媒の気孔率(%)=排ガス浄化触媒の気孔容積(cc/g)÷基材の気孔容積(cc/g)×基材の気孔率(%)
 基材の気孔率(%)=65%
Figure JPOXMLDOC01-appb-T000001
Next, the porosity of the exhaust gas purifying catalysts manufactured in Examples and Comparative Examples was calculated by the following equation. The results are shown in Table 1 below.
Porosity of exhaust gas purifying catalyst (%) = Porous volume of exhaust gas purifying catalyst (cc / g) / Porous volume of substrate (cc / g) x Porosity of substrate (%)
Porosity (%) of base material = 65%
Figure JPOXMLDOC01-appb-T000001
[スス捕集性能の測定]
 実施例及び比較例で作製した排ガス浄化触媒を、1.5L直噴ターボエンジン搭載車に取り付け、固体粒子数測定装置(堀場製作所製、商品名:MEXA-2100 SPCS)を用いて、WLTCモード走行時のスス排出数量(PNtest)を測定した。なお、ススの捕集率は、排ガス浄化触媒を搭載せずに上記試験を行った際に測定したスス量(PNblank)からの減少率として、下記式により算出した。
 ススの捕集率(%)=(PNblank-PNtest)/PNblank × 100(%)
[Measurement of soot collection performance]
The exhaust gas purifying catalyst prepared in each of Examples and Comparative Examples was mounted on a vehicle equipped with a 1.5-liter direct injection turbo engine, and traveled in a WLTC mode using a solid particle counting device (trade name: MEXA-2100 SPCS, manufactured by Horiba, Ltd.). The soot discharge quantity at the time (PN test ) was measured. The soot collection rate was calculated by the following equation as a reduction rate from the soot amount (PN blank ) measured when the above test was carried out without mounting the exhaust gas purifying catalyst.
Soot collection rate (%) = (PN blank −PN test ) / PN blank × 100 (%)
 その結果、実施例のススの捕集率は73.8%であり、比較例のススの捕集率は60.2%であった。また、参考値として、基材自体のススの捕集率は67.4%であった。このことから、実施例においては、小気孔が閉塞されずかつ大気孔の細孔径が小さくなることによりススの捕集率の向上が達成されており、比較例においては、小気孔が閉塞され、かつ、袋状部にも触媒層が配されるため大気孔の細孔径も小さくなっていないためにススの捕集率が基材よりも低下していることが示唆される。 As a result, the soot collection rate of the example was 73.8%, and the soot collection rate of the comparative example was 60.2%. As a reference value, the soot collection rate of the base material itself was 67.4%. From this, in the examples, the small pores are not closed and the pore diameter of the atmospheric holes is reduced, thereby improving the soot collection rate.In the comparative example, the small pores are closed, In addition, since the catalyst layer is also arranged on the bag-shaped portion, the pore diameter of the atmospheric pores is not small, which suggests that the soot collection rate is lower than that of the base material.
[コート状態観察]
 実施例及び比較例で作製した排ガス浄化触媒の隔壁から走査型電子顕微鏡(SEM)の測定用サンプル(1cm)をそれぞれ作製した。測定用サンプルを樹脂に埋め、カーボン蒸着の前処理を行なった。前処理後の測定用サンプルを、走査型電子顕微鏡(Carl Zeiss社製、商品名:ULTRA55)を用いて観察し、基材への触媒の担持状態を確認した。そのトレース図を図5~6に示す。その結果、実施例においては、図5に示すように偏析ないしは偏在が抑制された触媒層を有する排ガス浄化触媒が容易に得られることが分かった。
[Coat condition observation]
Samples (1 cm 3 ) for measurement by a scanning electron microscope (SEM) were produced from the partition walls of the exhaust gas purifying catalysts produced in Examples and Comparative Examples. The measurement sample was buried in a resin, and a pretreatment for carbon deposition was performed. The measurement sample after the pretreatment was observed using a scanning electron microscope (trade name: ULTRA55, manufactured by Carl Zeiss), and the state of the catalyst supported on the substrate was confirmed. The trace diagrams are shown in FIGS. As a result, it was found that, in the example, as shown in FIG. 5, an exhaust gas purifying catalyst having a catalyst layer in which segregation or uneven distribution was suppressed was easily obtained.
 本出願は、2018年8月9日に日本国特許庁へ出願された日本特許出願(特願2018-149987)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed with the JPO on August 9, 2018 (Japanese Patent Application No. 2018-149987), the contents of which are incorporated herein by reference.
 本発明の排ガス浄化触媒は、ガソリンエンジンの排ガス中に含まれる粒子状物質を除去するため排ガス浄化触媒として広く且つ有効に利用することができる。また、本発明の排ガス浄化触媒は、ガソリンエンジンのみならず、ジェットエンジン、ボイラー、ガスタービン等の排ガス中に含まれる粒子状物質を除去するため排ガス浄化触媒としても有効に利用可能である。 The exhaust gas purifying catalyst of the present invention can be widely and effectively used as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of a gasoline engine. Further, the exhaust gas purifying catalyst of the present invention can be effectively used as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of not only gasoline engines but also jet engines, boilers, gas turbines and the like.
 10 ・・・ウォールフロー型基材
 11 ・・・導入側セル
 11a・・・排ガス導入側の端部
 12 ・・・排出側セル
 12a・・・排ガス排出側の端部
 13 ・・・隔壁
 13a・・・小気孔
 13b・・・袋状部
 13c・・・大気孔
 21 ・・・触媒層
 21a・・・触媒スラリー
100 ・・・排ガス浄化触媒
DESCRIPTION OF SYMBOLS 10 ... Wall flow type base material 11 ... Introducing cell 11a ... End part on exhaust gas introduction side 12 ... Discharge side cell 12a ... End part on exhaust gas discharging side 13 ... Partition wall 13a. ..Small pores 13b ... bag-like portion 13c ... atmospheric pores 21 ... catalyst layer 21a ... catalyst slurry 100

Claims (6)

  1.  ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒の製造方法であって、
     排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を準備する工程と、
     前記ウォールフロー型基材の排ガス導入側又は排ガス排出側の前記端部に、揺変性を有する触媒スラリーを含浸させる含浸工程と、
     前記触媒スラリーを含浸させた前記端部側から前記ウォールフロー型基材内に気体を導入することにより、前記ウォールフロー型基材に含浸された前記触媒スラリーを前記隔壁の気孔表面に塗工する塗工工程と、
     前記気体の導入を停止する停止工程と、
     塗工された前記触媒スラリーを焼成して、触媒層の塗工量(前記ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)が、20~110g/Lである排ガス浄化触媒を得る焼成工程と、を有し、
     前記触媒スラリーのTI値が、10~100である、
     排ガス浄化触媒の製造方法。
    A method for producing an exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine,
    An introduction-side cell in which the end on the exhaust gas introduction side is open, and a discharge-side cell in which the end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall. The step of preparing,
    An impregnation step of impregnating the end of the wall flow type substrate on the exhaust gas introduction side or the exhaust gas discharge side with a thixotropic catalyst slurry,
    By introducing a gas into the wall flow type base material from the end side impregnated with the catalyst slurry, the catalyst slurry impregnated in the wall flow type base material is applied to the pore surfaces of the partition walls. Coating process,
    A stopping step of stopping the introduction of the gas,
    The coated catalyst slurry is calcined, and the amount of coating of the catalyst layer (the amount of coating of the catalyst layer excluding the weight of the catalyst metal per 1 L of the wall flow type substrate) is 20 to 110 g / L. Baking step to obtain a purification catalyst,
    The catalyst slurry has a TI value of 10 to 100;
    A method for producing an exhaust gas purifying catalyst.
  2.  前記触媒スラリーが、メチルアミン、ジメチルアミン、トリメチルアミン、水酸化バリウム、炭酸アンモニウム、炭酸水素アンモニウム、及びアンモニア水からなる群より選ばれる少なくとも一種を含む、
     請求項1に記載の排ガス浄化触媒の製造方法。
    The catalyst slurry contains at least one selected from the group consisting of methylamine, dimethylamine, trimethylamine, barium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, and aqueous ammonia,
    A method for producing the exhaust gas purifying catalyst according to claim 1.
  3.  前記触媒スラリーのpHが、3~10である、
     請求項1又は2に記載の排ガス浄化触媒の製造方法。
    The catalyst slurry has a pH of 3 to 10,
    A method for producing the exhaust gas purifying catalyst according to claim 1.
  4.  前記塗工工程において、前記気体の導入により印加される応力により、前記揺変性を有する触媒スラリーの粘度が減少する、
     請求項1~3のいずれか一項に記載の排ガス浄化触媒の製造方法。
    In the coating step, due to the stress applied by the introduction of the gas, the viscosity of the thixotropic catalyst slurry decreases,
    A method for producing the exhaust gas purifying catalyst according to any one of claims 1 to 3.
  5.  前記停止工程において、前記揺変性を有する触媒スラリーの粘度が増加する、
     請求項1~4のいずれか一項に記載の排ガス浄化触媒の製造方法。
    In the stopping step, the viscosity of the thixotropic catalyst slurry increases,
    A method for producing an exhaust gas purifying catalyst according to any one of claims 1 to 4.
  6.  ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒であって、
     排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材と、
     前記隔壁の気孔内に形成された触媒層と、を有し、
     該触媒層が、前記ウォールフロー型基材の排ガス導入側又は排ガス排出側の前記端部に、揺変性を有する触媒スラリーを含浸させる含浸工程と、前記端部側から前記ウォールフロー型基材内に気体を導入することにより、前記ウォールフロー型基材に含浸された前記触媒スラリーを前記隔壁の気孔表面に塗工する塗工工程と、前記気体の導入を停止する停止工程と、塗工された触媒スラリーを焼成する焼成工程とを有する、触媒層形成工程により形成されたものであり、
     前記排ガス浄化触媒の触媒層の塗工量(前記ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)が、20~110g/Lである、
     排ガス浄化触媒。
    An exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine,
    The introduction-side cell whose end on the exhaust gas introduction side is open, and the discharge-side cell whose end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall, ,
    And a catalyst layer formed in the pores of the partition wall,
    An impregnation step in which the catalyst layer impregnates the end of the wall flow type substrate on the exhaust gas introduction side or the exhaust gas discharge side with a thixotropic catalyst slurry; By introducing a gas into the wall flow type substrate, a coating step of applying the catalyst slurry impregnated to the wall surface of the pores of the partition walls, a stop step of stopping the introduction of the gas, a coating step. Having a firing step of firing the catalyst slurry, which is formed by the catalyst layer forming step,
    The coating amount of the catalyst layer of the exhaust gas purifying catalyst (the coating amount of the catalyst layer excluding the mass of the catalyst metal per 1 L of the wall flow type substrate) is 20 to 110 g / L.
    Exhaust gas purification catalyst.
PCT/JP2019/029870 2018-08-09 2019-07-30 Method for producing exhaust-gas-purifying catalyst WO2020031792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980036704.5A CN112203764B (en) 2018-08-09 2019-07-30 Method for producing exhaust gas purifying catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018149987A JP6581262B1 (en) 2018-08-09 2018-08-09 Method for producing exhaust gas purification catalyst
JP2018-149987 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020031792A1 true WO2020031792A1 (en) 2020-02-13

Family

ID=68053491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029870 WO2020031792A1 (en) 2018-08-09 2019-07-30 Method for producing exhaust-gas-purifying catalyst

Country Status (3)

Country Link
JP (1) JP6581262B1 (en)
CN (1) CN112203764B (en)
WO (1) WO2020031792A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026804A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb catalyst and process for production thereof
JP2009011934A (en) * 2007-07-04 2009-01-22 Cataler Corp Method for adjusting viscosity of slurry and method for manufacturing slurry
WO2009028422A1 (en) * 2007-08-27 2009-03-05 Tokyo Roki Co. Ltd. Process for producing catalyst for exhaust gas purification and catalyst for exhaust gas purification
WO2016060048A1 (en) * 2014-10-16 2016-04-21 株式会社キャタラー Exhaust gas purification catalyst
JP2017159252A (en) * 2016-03-10 2017-09-14 株式会社キャタラー Exhaust gas purification catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923830A (en) * 1989-09-18 1990-05-08 Swiss Aluminum Ltd. Ceramic bodies formed from partially stabilized zirconia
CN1169752C (en) * 2000-10-27 2004-10-06 中国科学院上海硅酸盐研究所 Method for mfg. high strength, screen like and porous ceramic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026804A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb catalyst and process for production thereof
JP2009011934A (en) * 2007-07-04 2009-01-22 Cataler Corp Method for adjusting viscosity of slurry and method for manufacturing slurry
WO2009028422A1 (en) * 2007-08-27 2009-03-05 Tokyo Roki Co. Ltd. Process for producing catalyst for exhaust gas purification and catalyst for exhaust gas purification
WO2016060048A1 (en) * 2014-10-16 2016-04-21 株式会社キャタラー Exhaust gas purification catalyst
JP2017159252A (en) * 2016-03-10 2017-09-14 株式会社キャタラー Exhaust gas purification catalyst

Also Published As

Publication number Publication date
CN112203764B (en) 2021-08-06
JP2020025898A (en) 2020-02-20
CN112203764A (en) 2021-01-08
JP6581262B1 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2020031975A1 (en) Catalyst-coated gasoline particulate filter and method for producing same
JP7051186B2 (en) Exhaust gas purification catalyst
JP6526847B1 (en) Exhaust gas purification catalyst and method for producing the same
JP6608090B1 (en) Exhaust gas purification catalyst
WO2019221214A1 (en) Exhaust gas purifying catalyst
JP6523496B1 (en) Exhaust gas purification catalyst and method for producing the same
WO2020031793A1 (en) Exhaust gas purification catalyst
WO2019221217A1 (en) Exhaust gas purification catalyst
CN112041065B (en) Method for producing exhaust gas purifying catalyst
WO2020031792A1 (en) Method for producing exhaust-gas-purifying catalyst
WO2019221212A1 (en) Exhaust gas purification catalyst and method for producing same
JP7319293B2 (en) Exhaust gas purification catalyst and its manufacturing method
JP7075282B2 (en) Exhaust gas purification catalyst
JP6526846B1 (en) Exhaust gas purification catalyst and method for producing the same
WO2021059883A1 (en) Exhaust-gas-purifying catalyst production method
WO2022163720A1 (en) Exhaust gas purification catalyst filter for gasoline engine
JP2023072745A (en) Catalyst for exhaust gas purification, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847119

Country of ref document: EP

Kind code of ref document: A1