WO2020031595A1 - Method for producing negative electrode - Google Patents

Method for producing negative electrode Download PDF

Info

Publication number
WO2020031595A1
WO2020031595A1 PCT/JP2019/027251 JP2019027251W WO2020031595A1 WO 2020031595 A1 WO2020031595 A1 WO 2020031595A1 JP 2019027251 W JP2019027251 W JP 2019027251W WO 2020031595 A1 WO2020031595 A1 WO 2020031595A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
polyacrylic acid
polyfunctional amine
active material
electrode active
Prior art date
Application number
PCT/JP2019/027251
Other languages
French (fr)
Japanese (ja)
Inventor
剛司 近藤
智之 田崎
圭吾 小▲柳▼津
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020031595A1 publication Critical patent/WO2020031595A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom
  • R 1 and R 2 are each independently a single or plural hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl Or a methoxy group.
  • the method for producing a binder for a negative electrode of the present invention and the method for producing a negative electrode of the present invention can synthesize polyacrylic acid in which the modification of the chemical structure is suppressed, the production process can be shortened, It is possible to provide a negative electrode binder and a negative electrode which are excellent in quality and cost.
  • the numerical range “ab” described in this specification includes the lower limit a and the upper limit b.
  • a numerical range can be formed by arbitrarily combining these upper and lower limits and the numerical values listed in the examples. Further, numerical values arbitrarily selected from within these numerical ranges can be set as new upper and lower numerical values.
  • the organic solvent is not limited as long as acrylic acid, polyacrylic acid and the polyfunctional amine of the general formula (1) can be dissolved therein.
  • organic solvents include dimethyl sulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylcarbonate, diethylcarbonate, ethylmethylcarbonate, tetrahydrofuran, dichloromethane, methanol, ethanol, propanol, isopropanol, acetone, methylethylketone And methyl isobutyl ketone.
  • the reaction temperature in step (a) may be a temperature at which the radical polymerization initiator decomposes. For example, ranges of 60 to 90 ° C. and 60 to 80 ° C. can be exemplified.
  • the reaction time in the step a) may be a time when acrylic acid disappears from the reaction solution. For example, 0.5 to 5 hours and 1 to 3 hours can be exemplified.
  • Mw / Mn which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of polyacrylic acid, is preferably in the range of 1 to 5, more preferably 1 to 4, and more preferably 1 to 3. The range of 5 is more preferable, and the range of 1 to 3 is even more preferable.
  • the polyfunctional amine of the general formula (1) may be dissolved in an organic solvent and then added to the polyacrylic acid solution obtained in the step a). Further, the polyfunctional amine of the general formula (1) may be previously dissolved in the organic solvent in the step a) before the synthesis of polyacrylic acid.
  • a-1) a step of reacting a radical polymerization initiator in a solution of acrylic acid in an organic solvent to synthesize polyacrylic acid; b-1) adding the polyfunctional amine to the reaction solution after the step a-1); And heating the mixture to produce a mixed solution containing a precursor of a compound obtained by condensing polyacrylic acid and the polyfunctional amine of the general formula (1).
  • the intensity of the peak derived from the carbonyl of the amide group is determined by the carbonyl of the acid anhydride as measured by infrared spectroscopy. It can be said that those having a higher intensity than the peaks derived therefrom are preferable.
  • the polyacrylic acid and the polyfunctional amine of the general formula (1) are each soluble in an organic solvent, but the compound obtained by condensation of the polyacrylic acid and the polyfunctional amine of the general formula (1) is a basic compound. Thus, it becomes sparingly soluble in organic solvents.
  • Examples of the thickness of the negative electrode active material layer include 1 to 200 ⁇ m, 5 to 150 ⁇ m, and 10 to 100 ⁇ m.
  • the silicon material obtained by heating the layered silicon compound also contains elements derived from oxygen and anions of acids.
  • the silicon material has a structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction.
  • the plate-like silicon body preferably has a thickness in the range of 10 nm to 100 nm, more preferably 20 nm to 50 nm.
  • the length in the longitudinal direction of the plate-like silicon body is preferably in the range of 0.1 ⁇ m to 50 ⁇ m.
  • the plate-like silicon body preferably has a ratio of (length in the longitudinal direction) / (thickness) in the range of 2 to 1,000.
  • the laminated structure of the plate-like silicon body can be confirmed by observation with a scanning electron microscope or the like. This laminated structure is considered to be a remnant of the Si layer in the raw material CaSi 2 .
  • the size of the silicon crystallite is calculated from Scherrer's formula using the half-value width of the diffraction peak of the Si (111) plane in the obtained X-ray diffraction chart by performing X-ray diffraction measurement on the silicon material. .
  • the conductive additive is added to increase the conductivity of the negative electrode. Therefore, the conductive assistant may be arbitrarily added when the conductivity of the negative electrode is insufficient, and may not be added when the conductivity of the negative electrode is sufficiently excellent.
  • the conductive additive may be any chemically inert high electron conductor, and examples thereof include carbon black fine particles such as carbon black, graphite, vapor grown carbon fiber (VaporapGrown Carbon Fiber), and various metal particles. You. Examples of the carbon black include acetylene black, Ketjen Black (registered trademark), furnace black, and channel black. These conductive assistants can be added to the negative electrode active material layer alone or in combination of two or more.
  • the positive electrode active material layer contains a positive electrode active material capable of occluding and releasing charge carriers such as lithium ions, and, if necessary, a binder and a conductive assistant.
  • the positive electrode active material layer preferably contains the positive electrode active material at 60 to 99% by mass, more preferably 70 to 95% by mass, based on the total mass of the positive electrode active material layer.
  • the Li x Mn 2-y A y O 4 (A spinel structure, Ca, Mg, S, Si , Na, K, Al, P, Ga , Ge, and at least one metal element selected from transition metal elements such as Ni, and 0 ⁇ x ⁇ 2.2, 0 ⁇ y ⁇ 1).
  • the range of the value of x can be exemplified by 0.5 ⁇ x ⁇ 1.8, 0.7 ⁇ x ⁇ 1.5, 0.9 ⁇ x ⁇ 1.2, and the range of the value of y is 0 ⁇ y ⁇ 0.8 and 0 ⁇ y ⁇ 0.6.
  • Specific examples of the compound having a spinel structure include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Specific positive electrode active material can be exemplified by LiFePO 4, Li 2 FeSiO 4, LiCoPO 4, Li 2 CoPO 4, Li 2 MnPO 4, Li 2 MnSiO 4, Li 2 CoPO 4 F.
  • Li 2 MnO 3 —LiCoO 2 can be exemplified.
  • Step 27.4 g (0.14 mol) of 4,4'-diaminodiphenylmethane was dissolved in 190 g of N-methyl-2-pyrrolidone to obtain a polyfunctional amine solution.
  • a polyfunctional amine solution was added to the polyacrylic acid solution obtained in step a) to obtain a mixed solution.
  • the solution of Example 1 containing a precursor of a compound obtained by condensation of polyacrylic acid and a polyfunctional amine was produced by stirring the mixed solution under a heating condition of 110 ° C. for 2 hours.
  • the molar ratio of acrylic acid monomer to 4,4'-diaminodiphenylmethane corresponds to 16: 1.
  • An irradiation unit for irradiating light having a wavelength of 6 ⁇ m was prepared. In this apparatus, the process of irradiating the negative electrode precursor with light was performed under a nitrogen gas atmosphere. The output of the light having a wavelength of 6 ⁇ m was set so that the temperature of the irradiation part was 200 ° C. The roll winding speed was set so that the time for irradiating an arbitrary portion of the negative electrode precursor with light was 3 minutes.
  • the negative electrode precursor of Example 1 was manufactured by placing the negative electrode precursor obtained in step d) in the above device and operating the above device under the above conditions.
  • the lithium ion secondary batteries of Example 1 and Comparative Example 1 showed the same charge / discharge curve and the same capacity retention ratio.
  • An irradiation unit for irradiating light having a wavelength of 6 ⁇ m was prepared. In this apparatus, the process of irradiating the negative electrode precursor with light was performed under a nitrogen gas atmosphere. The output of the light having a wavelength of 6 ⁇ m was set so that the temperature of the irradiation part was 200 ° C. The roll winding speed was set so that the time for irradiating an arbitrary portion of the negative electrode precursor with light was 3 minutes.
  • the negative electrode precursor obtained in the step was placed in the above-mentioned device, and the above-mentioned device was operated under the above conditions, thereby producing the negative electrode of Reference Example 1.
  • Reference evaluation example 2 The surfaces of the negative electrode precursor in Reference Example 1, the negative electrode in Reference Example 1, and the negative electrode in Reference Comparative Example 1 were analyzed for Si by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polyamides (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

According to the present invention, a step for producing a negative electrode is shortened by using a compound obtained by condensation of poly(acrylic acid) and a polyfunctional amine. This method for producing a negative electrode containing a compound obtained by condensation of poly(acrylic acid) and a polyfunctional amine represented by general formula (1) is characterized by: including a) a step for causing a radical polymerization initiator to act in a solution obtained by dissolving acrylic acid in an organic solvent, thereby synthesizing poly(acrylic acid), b) a step for mixing the poly(acrylic acid) and the polyfunctional amine represented by general formula (1) in the organic solvent so as to produce a mixed solution, c) a step for mixing the mixed solution with a negative electrode active substance so as to produce a composition for forming a negative electrode active substance layer, d) a step for coating the composition for forming a negative electrode active substance layer on a current collector so as to produce a negative electrode precursor, and e) a step for heating the negative electrode precursor so as to promote a condensation reaction between the poly(acrylic acid) and the polyfunctional amine represented by general formula (1); and step a) and step b) being carried out in the same reaction vessel.

Description

負極の製造方法Manufacturing method of negative electrode
 本発明は、二次電池などの蓄電装置に用いられる負極の製造方法に関するものである。 The present invention relates to a method for manufacturing a negative electrode used for a power storage device such as a secondary battery.
 一般に、二次電池等の蓄電装置は、主な構成要素として、正極、負極及び電解液を備える。そして、負極には、集電体と、充放電に関与する負極活物質が具備されている。産業界からは蓄電装置の高容量化が求められており、その対応として、各種の技術が検討されている。その具体的な技術の一つとしては、蓄電装置の負極活物質として、リチウムなどの電荷担体の吸蔵能力が高いSiを含有するSi含有負極活物質を採用する技術が知られている。 Generally, a power storage device such as a secondary battery includes a positive electrode, a negative electrode, and an electrolyte as main components. The negative electrode includes a current collector and a negative electrode active material involved in charge and discharge. The industry has been demanding an increase in the capacity of a power storage device, and various technologies are being studied to meet the demand. As one of the specific techniques, there is known a technique in which a Si-containing negative electrode active material containing Si having a high ability to absorb a charge carrier such as lithium is used as a negative electrode active material of a power storage device.
 Si含有負極活物質は、充放電時に膨張及び収縮することが知られているため、Si含有負極活物質を具備する負極においては、Si含有負極活物質に適した結着剤を採用するのが好ましいといえる。 It is known that the Si-containing negative electrode active material expands and contracts during charge and discharge. Therefore, in a negative electrode including the Si-containing negative electrode active material, it is necessary to employ a binder suitable for the Si-containing negative electrode active material. It is preferable.
 特許文献1には、ポリアクリル酸と多官能アミンが縮合してなる化合物が、Si含有負極活物質を具備する負極用結着剤として優れていることが記載されている。同文献には、ポリアクリル酸と4,4’-ジアミノジフェニルメタンなどが縮合してなる化合物を負極用結着剤として用いたリチウムイオン二次電池が、ポリアミドイミドを負極用結着剤として用いたリチウムイオン二次電池よりも、電池特性に優れていたことが、具体的な試験結果と共に記載されている。 Patent Document 1 describes that a compound obtained by condensation of polyacrylic acid and a polyfunctional amine is excellent as a binder for a negative electrode having a Si-containing negative electrode active material. In this document, a lithium ion secondary battery using a compound obtained by condensation of polyacrylic acid and 4,4′-diaminodiphenylmethane as a negative electrode binder uses polyamideimide as a negative electrode binder. It is described that the battery characteristics were better than the lithium ion secondary battery, together with specific test results.
 そして、特許文献1には、ポリアクリル酸と多官能アミンが縮合してなる化合物を含有する負極が、以下の製造方法で得られたことが具体的に記載されている(実施例1を参照。)。 Patent Document 1 specifically describes that a negative electrode containing a compound obtained by condensation of polyacrylic acid and a polyfunctional amine was obtained by the following production method (see Example 1). .).
 ポリアクリル酸をN-メチル-2-ピロリドンに溶解したポリアクリル酸溶液を製造する
  ↓
 多官能アミンをN-メチル-2-ピロリドンに溶解した多官能アミン溶液を製造する
  ↓
 ポリアクリル酸溶液及び多官能アミン溶液を混合し、130℃の条件下、ポリアクリル酸と多官能アミンを含有する中間組成物のN-メチル-2-ピロリドン溶液を製造する
  ↓
 中間組成物のN-メチル-2-ピロリドン溶液を用いてスラリー状の負極活物質層形成用組成物を製造する
  ↓
 負極集電体に負極活物質層形成用組成物を塗布し、N-メチル-2-ピロリドンを除去する
  ↓
 160℃、3時間加熱処理することで、中間組成物を縮合反応させて架橋構造を有する高分子を形成し、負極を製造する
Producing a polyacrylic acid solution in which polyacrylic acid is dissolved in N-methyl-2-pyrrolidone ↓
Producing a polyfunctional amine solution in which a polyfunctional amine is dissolved in N-methyl-2-pyrrolidone ↓
The polyacrylic acid solution and the polyfunctional amine solution are mixed to produce an N-methyl-2-pyrrolidone solution of the intermediate composition containing polyacrylic acid and the polyfunctional amine at 130 ° C. ↓
Using the N-methyl-2-pyrrolidone solution of the intermediate composition to produce a slurry-like negative electrode active material layer forming composition ↓
Apply the composition for forming a negative electrode active material layer to the negative electrode current collector and remove N-methyl-2-pyrrolidone ↓
By performing a heat treatment at 160 ° C. for 3 hours, the intermediate composition is subjected to a condensation reaction to form a polymer having a crosslinked structure, thereby producing a negative electrode.
 また、ポリアクリル酸は、アクリル酸モノマーを水溶液中でラジカル重合させることで製造するのが一般的である。実際に、特許文献2~5には、アクリル酸モノマーを水溶媒中でラジカル重合させるポリアクリル酸の製造方法が具体的に記載されている。 ポ リ In addition, polyacrylic acid is generally produced by radical polymerization of an acrylic acid monomer in an aqueous solution. In fact, Patent Documents 2 to 5 specifically describe a method for producing polyacrylic acid by radical polymerization of an acrylic acid monomer in an aqueous solvent.
国際公開第2016/063882号International Publication No. WO 2016/063882 特開昭64-38403号公報JP-A-64-38403 特開平5-86125号公報JP-A-5-86125 特開平11-315115号公報JP-A-11-315115 特開2004-210878号公報JP 2004-210878 A
 上述のとおり、ポリアクリル酸はアクリル酸モノマーを水溶媒中でラジカル重合させることで製造するのが一般的であるため、ポリアクリル酸は水溶媒の溶液として製造される。 と お り As described above, since polyacrylic acid is generally produced by radical polymerization of an acrylic acid monomer in an aqueous solvent, polyacrylic acid is produced as a solution in an aqueous solvent.
 他方、特許文献1に記載のポリアクリル酸と多官能アミンが縮合してなる化合物を製造する場合には、多官能アミンが水に対して難溶性であるため、ポリアクリル酸と多官能アミンの溶解溶媒として、有機溶媒であるN-メチル-2-ピロリドンを採用している。そのため、特許文献1に記載のポリアクリル酸と多官能アミンが縮合してなる化合物を製造する場合には、溶媒として水を用いたポリアクリル酸の水溶液から水を除去してポリアクリル酸を乾燥した上で、ポリアクリル酸をN-メチル-2-ピロリドンに溶解する必要があった。 On the other hand, in the case of producing a compound obtained by condensing polyacrylic acid and a polyfunctional amine described in Patent Document 1, the polyfunctional amine is hardly soluble in water. N-methyl-2-pyrrolidone, which is an organic solvent, is employed as a dissolution solvent. Therefore, when producing a compound obtained by condensation of polyacrylic acid and a polyfunctional amine described in Patent Document 1, water is removed from an aqueous solution of polyacrylic acid using water as a solvent to dry the polyacrylic acid. Then, it was necessary to dissolve the polyacrylic acid in N-methyl-2-pyrrolidone.
 しかしながら、作業効率や費用の点からみて、製造工程は短い方が好ましい。 て However, from the viewpoint of work efficiency and cost, it is preferable that the manufacturing process is short.
 本発明はかかる事情に鑑みて為されたものであり、ポリアクリル酸と多官能アミンが縮合してなる化合物を用いて負極を製造する工程を短縮することを目的とする。 The present invention has been made in view of such circumstances, and has as its object to shorten the process of manufacturing a negative electrode using a compound obtained by condensation of polyacrylic acid and a polyfunctional amine.
 本発明者は、アクリル酸モノマーを水溶媒中でラジカル重合させてポリアクリル酸を製造するのではなく、アクリル酸モノマーを有機溶媒中でラジカル重合させてポリアクリル酸を製造することを想起した。さらに、本発明者は、ポリアクリル酸の製造工程と、ポリアクリル酸と多官能アミンの混合工程を、One-Potで実施することを想起した。
 そして、実際に、アクリル酸モノマーを有機溶媒中でラジカル重合させてポリアクリル酸を製造したところ、アクリル酸モノマーを水溶媒中でラジカル重合させる製造方法と比較して、化学構造の変性が抑制されていること等を見出した。
 かかる知見に基づき、本発明者は本発明を完成させた。
The present inventor recalled that instead of producing polyacrylic acid by radical polymerization of an acrylic acid monomer in an aqueous solvent, polyacrylic acid was produced by radical polymerization of an acrylic acid monomer in an organic solvent. Furthermore, the present inventor has recalled that the step of producing polyacrylic acid and the step of mixing polyacrylic acid and polyfunctional amine are performed in One-Pot.
And, actually, when acrylic acid monomer was radically polymerized in an organic solvent to produce polyacrylic acid, the modification of the chemical structure was suppressed compared to the production method in which acrylic acid monomer was radically polymerized in an aqueous solvent. And so on.
Based on such knowledge, the present inventors have completed the present invention.
 本発明の負極用結着剤の製造方法は、
 a)アクリル酸を有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程、
 b)前記ポリアクリル酸と下記一般式(1)の多官能アミンを前記有機溶媒中で混合して、混合溶液を製造する工程、を有し、
 前記a)工程及び前記b)工程を同じ反応容器で行うことを特徴とする。 
The method for producing a binder for a negative electrode of the present invention includes:
a) reacting a radical polymerization initiator in a solution of acrylic acid in an organic solvent to synthesize polyacrylic acid;
b) mixing the polyacrylic acid and a polyfunctional amine of the following general formula (1) in the organic solvent to produce a mixed solution,
The step a) and the step b) are performed in the same reaction vessel.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R、Rはそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。 Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom, and R 1 and R 2 are each independently a single or plural hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl Or a methoxy group.
 本発明の負極の製造方法は、ポリアクリル酸及び下記一般式(1)の多官能アミンが縮合してなる化合物を含有する負極の製造方法であって、
 a)アクリル酸を有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程、
 b)前記ポリアクリル酸と下記一般式(1)の多官能アミンを前記有機溶媒中で混合して、混合溶液を製造する工程、
 c)前記混合溶液と負極活物質を混合して、負極活物質層形成用組成物を製造する工程、
 d)前記負極活物質層形成用組成物を集電体に塗布して、負極前駆体を製造する工程、
 e)前記負極前駆体を加熱して、前記ポリアクリル酸と下記一般式(1)の多官能アミンの縮合反応を進行させる工程、を有し、
 前記a)工程及び前記b)工程を同じ反応容器で行うことを特徴とする。
The method for producing a negative electrode of the present invention is a method for producing a negative electrode containing polyacrylic acid and a compound obtained by condensation of a polyfunctional amine of the following general formula (1),
a) reacting a radical polymerization initiator in a solution of acrylic acid in an organic solvent to synthesize polyacrylic acid;
b) mixing the polyacrylic acid and a polyfunctional amine of the following general formula (1) in the organic solvent to produce a mixed solution;
c) mixing the mixed solution and a negative electrode active material to produce a negative electrode active material layer forming composition;
d) a step of applying the composition for forming a negative electrode active material layer to a current collector to produce a negative electrode precursor;
e) heating the negative electrode precursor to advance a condensation reaction between the polyacrylic acid and the polyfunctional amine of the following general formula (1),
The step a) and the step b) are performed in the same reaction vessel.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R、Rはそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。 Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom, and R 1 and R 2 are each independently a single or plural hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl Or a methoxy group.
 本発明の負極用結着剤の製造方法及び本発明の負極の製造方法は、化学構造の変性が抑制されているポリアクリル酸を合成できることに加えて、製造工程を短縮することができるので、品質面及びコスト面に優れた負極用結着剤及び負極を提供することが可能である。 Since the method for producing a binder for a negative electrode of the present invention and the method for producing a negative electrode of the present invention can synthesize polyacrylic acid in which the modification of the chemical structure is suppressed, the production process can be shortened, It is possible to provide a negative electrode binder and a negative electrode which are excellent in quality and cost.
実施例1のa)工程で製造されたポリアクリル酸のH-NMRチャートである。1 is a 1 H-NMR chart of polyacrylic acid produced in step a) of Example 1. 比較例1で使用した市販のポリアクリル酸のH-NMRチャートである。1 is a 1 H-NMR chart of a commercially available polyacrylic acid used in Comparative Example 1. 参考評価例6における、30℃の時点での赤外吸収スペクトルである。14 is an infrared absorption spectrum at 30 ° C. in Reference Evaluation Example 6. 参考評価例6における、250℃の時点での赤外吸収スペクトルである。14 is an infrared absorption spectrum at 250 ° C. in Reference Evaluation Example 6.
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに、これらの数値範囲内から任意に選択した数値を、新たな上限や下限の数値とすることができる。 Hereinafter, embodiments for carrying out the present invention will be described. Unless otherwise specified, the numerical range “ab” described in this specification includes the lower limit a and the upper limit b. A numerical range can be formed by arbitrarily combining these upper and lower limits and the numerical values listed in the examples. Further, numerical values arbitrarily selected from within these numerical ranges can be set as new upper and lower numerical values.
 a)工程について説明する。
 a)工程は、アクリル酸を有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程である。
a) The step will be described.
The step a) is a step of synthesizing polyacrylic acid by allowing a radical polymerization initiator to act in a solution in which acrylic acid is dissolved in an organic solvent.
 有機溶媒は、アクリル酸、ポリアクリル酸及び一般式(1)の多官能アミンが溶解可能なものであれば限定されない。 The organic solvent is not limited as long as acrylic acid, polyacrylic acid and the polyfunctional amine of the general formula (1) can be dissolved therein.
 具体的な有機溶媒としては、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、テトラヒドロフラン、ジクロロメタン、メタノール、エタノール、プロパノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトンを例示できる。 Specific organic solvents include dimethyl sulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylcarbonate, diethylcarbonate, ethylmethylcarbonate, tetrahydrofuran, dichloromethane, methanol, ethanol, propanol, isopropanol, acetone, methylethylketone And methyl isobutyl ketone.
 本発明の負極の製造方法のc)工程において、有機溶媒を含有する負極活物質層形成用組成物を製造することから、有機溶媒としては、負極活物質層形成用組成物の溶剤として汎用されているN-メチル-2-ピロリドンを採用するのが好ましい。 In the step c) of the method for producing a negative electrode of the present invention, since a composition for forming a negative electrode active material layer containing an organic solvent is produced, the organic solvent is widely used as a solvent for the composition for forming a negative electrode active material layer. It is preferable to employ N-methyl-2-pyrrolidone.
 アクリル酸に対する有機溶媒の配合比としては、質量比で1~20の範囲内が好ましく、1.5~10の範囲内がより好ましく、2~5の範囲内がさらに好ましい。 配合 The mixing ratio of the organic solvent to acrylic acid is preferably in the range of 1 to 20, more preferably in the range of 1.5 to 10, and even more preferably in the range of 2 to 5 by mass ratio.
 ラジカル重合開始剤は、a)工程で用いる有機溶媒に溶解可能なものであれば限定されない。
 具体的なラジカル重合開始剤としては、アゾビスイソブチロニトリル、アゾビスパレロニトリル、4,4′-アゾビス(4-シアノ吉草酸)、2,2′-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド〕、2,2′-アゾビス(2-アミジノプロパン)二塩酸塩、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(2-メチルプロピオネート)等のアゾ化合物、並びに、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、メチルエチルケトンパーオキサイド、ジ-t-ブチルパーオキシド、ジクミルパーオキシド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、ジ-イソプロピルパーオキシジカーボネート、ジ-t-ブチルパーオキシイソフタレート、1,1′,3,3′-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート等の過酸化物を挙げることができる。
The radical polymerization initiator is not limited as long as it is soluble in the organic solvent used in the step a).
Specific examples of the radical polymerization initiator include azobisisobutyronitrile, azobispaleronitrile, 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobisiso Azo compounds such as butyronitrile, 2,2'-azobis (2-methylpropionate), benzoyl peroxide, lauroyl peroxide, methyl ethyl ketone peroxide, di-t-butyl peroxide, dicumyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate, di-isopropylperoxydi Peroxides such as carbonate, di-t-butylperoxyisophthalate, 1,1 ', 3,3'-tetramethylbutylperoxy-2-ethylhexanoate and t-butylperoxyisobutyrate. be able to.
 アクリル酸に対するラジカル重合開始剤の配合比は、モル比で0.0001~0.1の範囲内が好ましく、0.001~0.05の範囲内がより好ましく、0.003~0.01の範囲内がさらに好ましい。 The molar ratio of the radical polymerization initiator to acrylic acid is preferably in the range of 0.0001 to 0.1, more preferably 0.001 to 0.05, and more preferably 0.003 to 0.01. Within the range is more preferable.
 a)工程の反応温度としては、ラジカル重合開始剤が分解する温度であればよい。例えば、60~90℃、60~80℃の範囲を例示できる。a)工程の反応時間としては、反応溶液からアクリル酸が消失した時点の時間とすればよい。例えば、0.5~5時間、1~3時間を例示できる。 The reaction temperature in step (a) may be a temperature at which the radical polymerization initiator decomposes. For example, ranges of 60 to 90 ° C. and 60 to 80 ° C. can be exemplified. The reaction time in the step a) may be a time when acrylic acid disappears from the reaction solution. For example, 0.5 to 5 hours and 1 to 3 hours can be exemplified.
 a)工程は、不活性ガス雰囲気下で実施するのが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンを例示できる。 Step (a) is preferably performed in an inert gas atmosphere. Examples of the inert gas include nitrogen, helium, and argon.
 a)工程で合成されるポリアクリル酸の分子量は、アクリル酸に対する有機溶媒の配合比、アクリル酸に対するラジカル重合開始剤の配合比、及び、a)工程の反応温度を適切に調整することで制御できる。 The molecular weight of the polyacrylic acid synthesized in step a) is controlled by appropriately adjusting the compounding ratio of the organic solvent to acrylic acid, the compounding ratio of the radical polymerization initiator to acrylic acid, and the reaction temperature in step a). it can.
 ポリアクリル酸の重量平均分子量としては、5000~1000000の範囲内が好ましく、10000~500000の範囲内がより好ましく、20000~300000の範囲内がさらに好ましく、30000~200000の範囲内がさらにより好ましく、40000~100000の範囲内が特に好ましい。
 ポリアクリル酸の重量平均分子量が高いほど、結着力が高くなる傾向にあるが、溶剤に溶解した場合の粘度が高くなる。
The weight average molecular weight of polyacrylic acid is preferably in the range of 5,000 to 1,000,000, more preferably in the range of 10,000 to 500,000, still more preferably in the range of 20,000 to 300,000, and still more preferably in the range of 30,000 to 200,000. Particularly preferred is a range of from 40,000 to 100,000.
The higher the weight average molecular weight of polyacrylic acid, the higher the binding strength, but the higher the viscosity when dissolved in a solvent.
 また、ポリアクリル酸の数平均分子量としては、5000~500000の範囲内が好ましく、7000~300000の範囲内がより好ましく、9000~200000の範囲内がさらに好ましく、10000~100000の範囲内がさらにより好ましく、10000~50000の範囲内が特に好ましい。 The number average molecular weight of the polyacrylic acid is preferably in the range of 5,000 to 500,000, more preferably in the range of 7,000 to 300,000, further preferably in the range of 9000 to 200,000, and still more preferably in the range of 10,000 to 100,000. It is particularly preferably in the range of 10,000 to 50,000.
 ポリアクリル酸の数平均分子量(Mn)に対する重量平均分子量(Mw)の比であるMw/Mnとしては、1~5の範囲内が好ましく、1~4の範囲内がより好ましく、1~3.5の範囲内がさらに好ましく、1~3の範囲内がさらにより好ましい。 Mw / Mn, which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of polyacrylic acid, is preferably in the range of 1 to 5, more preferably 1 to 4, and more preferably 1 to 3. The range of 5 is more preferable, and the range of 1 to 3 is even more preferable.
 次に、b)工程について説明する。b)工程は、a)工程で合成されたポリアクリル酸と一般式(1)の多官能アミンを有機溶媒中で混合して、混合溶液を製造する工程である。そして、a)工程及びb)工程は、同じ反応容器を用いて実施される。すなわち、a工程及びb)工程は、One-Pot合成法である。One-Pot合成法を採用することで、従来の製造方法よりも、製造工程が短縮される。 Next, the step b) will be described. Step b) is a step of mixing the polyacrylic acid synthesized in step a) with the polyfunctional amine of the general formula (1) in an organic solvent to produce a mixed solution. Steps a) and b) are performed using the same reaction vessel. That is, the steps a and b) are the One-Pot synthesis method. By employing the One-Pot synthesis method, the manufacturing steps are shorter than in the conventional manufacturing method.
 ポリアクリル酸に対する一般式(1)の多官能アミンの添加量としては、アクリル酸モノマーと一般式(1)の多官能アミンのモル比として、2:1~50:1が好ましく、4:1~30:1がより好ましく、7:1~25:1がさらに好ましく、10:1~20:1が特に好ましい。
 アクリル酸モノマーに対する一般式(1)の多官能アミンのモル比が過小であれば、蓄電装置の容量を好適に維持することが困難になる場合がある。アクリル酸モノマーに対する一般式(1)の多官能アミンのモル比が過大であれば、結着性が低下する場合がある。
The amount of the polyfunctional amine of the general formula (1) to be added to the polyacrylic acid is preferably from 2: 1 to 50: 1, more preferably from 4: 1 as a molar ratio of the acrylic acid monomer and the polyfunctional amine of the general formula (1). 3030: 1 is more preferable, 7: 1 to 25: 1 is further preferable, and 10: 1 to 20: 1 is particularly preferable.
If the molar ratio of the polyfunctional amine of the general formula (1) to the acrylic acid monomer is too small, it may be difficult to appropriately maintain the capacity of the power storage device. If the molar ratio of the polyfunctional amine of the general formula (1) to the acrylic acid monomer is too large, the binding property may decrease.
 一般式(1)で表される多官能アミンは、特許文献1に記載された多官能アミンであり、水に難溶性であって、N-メチル-2-ピロリドンなどの有機溶剤に可溶性である。 The polyfunctional amine represented by the general formula (1) is a polyfunctional amine described in Patent Literature 1, is poorly soluble in water, and soluble in an organic solvent such as N-methyl-2-pyrrolidone. .
 一般式(1)において、Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R、Rはそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。 In the general formula (1), Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom, and R 1 and R 2 are each independently a single or plural hydrogen atoms, a methyl group. , An ethyl group, a trifluoromethyl group, or a methoxy group.
 Yが直鎖アルキル基及びフェニレン基である場合において、その構造を構成する炭素には置換基が結合されてもよい。例えば、直鎖アルキル基を構成する炭素に結合される置換基としては、メチル基、エチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、メトキシ基、エトキシ基、オキソ基が挙げられる。これらの置換基は、一種のみが結合されてもよいし、二種以上が結合されてもよい。一つの炭素に結合される置換基の数は、一つであってもよいし、二つであってもよい。また、直鎖アルキル基及びフェニレン基を構成する炭素原子に結合される置換基は、アミノ基、又はアミノ基を含む置換基であってもよい。 When Y is a linear alkyl group or a phenylene group, a substituent may be bonded to carbon constituting the structure. For example, examples of the substituent bonded to carbon constituting the linear alkyl group include a methyl group, an ethyl group, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, and an oxo group. One of these substituents may be bonded, or two or more of these substituents may be bonded. The number of substituents bonded to one carbon may be one or two. Further, the substituent bonded to the carbon atoms constituting the linear alkyl group and the phenylene group may be an amino group or a substituent containing an amino group.
 一般式(1)で表される多官能アミンの具体例としては、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-エチレンジアニリン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンゾフェノン、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、パラローズアニリン、1,3,5-トリス(4-アミノフェニル)ベンゼンが挙げられる。 Specific examples of the polyfunctional amine represented by the general formula (1) include 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4'-ethylenedianiline, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 4,4'-diaminobenzophenone, 4'-methylenebis (2-ethyl-6-methylaniline), pararoseaniline, 1,3,5-tris (4-aminophenyl) benzene.
 b)工程は、加熱条件で実施するのが好ましい。加熱に因り、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の前駆体の形成を促進できる。加熱温度の範囲としては、50~150℃、60~130℃、70~100℃、80~90℃を例示できる。
 ここで、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の前駆体とは、ポリアクリル酸のカルボキシル基と一般式(1)の多官能アミンのアミノ基がイオン結合している状態のものを意味するが、一部のカルボキシル基とアミノ基が結合してアミド結合を形成していてもよい。
Step b) is preferably performed under heating conditions. Heating can promote the formation of a precursor of a compound formed by condensation of polyacrylic acid and the polyfunctional amine of the general formula (1). Examples of the range of the heating temperature include 50 to 150 ° C., 60 to 130 ° C., 70 to 100 ° C., and 80 to 90 ° C.
Here, the precursor of the compound obtained by condensing polyacrylic acid with the polyfunctional amine of the general formula (1) is defined as the carboxyl group of the polyacrylic acid and the amino group of the polyfunctional amine of the general formula (1) are ion-bonded. In this case, a part of the carboxyl group and the amino group may be bonded to form an amide bond.
 一般式(1)の多官能アミンは、有機溶媒に溶解した上でa)工程で得られたポリアクリル酸溶液に添加されてもよい。また、一般式(1)の多官能アミンは、ポリアクリル酸合成前のa)工程における有機溶媒にあらかじめ溶解しておいてもよい。 多 The polyfunctional amine of the general formula (1) may be dissolved in an organic solvent and then added to the polyacrylic acid solution obtained in the step a). Further, the polyfunctional amine of the general formula (1) may be previously dissolved in the organic solvent in the step a) before the synthesis of polyacrylic acid.
 加熱条件を加えた好適なa)工程及びb)工程として、下記a-1)工程及び下記b-1)工程、又は、下記a-2)工程及び下記b-2)を例示できる。 好 適 Examples of suitable steps a) and b) to which heating conditions are added include the following steps a-1) and b-1), or the following steps a-2) and b-2).
 a-1)アクリル酸を有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
 b-1)前記a-1)工程後の反応溶液に前記多官能アミンを添加して加熱し、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の前駆体を含有する混合溶液を製造する工程
a-1) a step of reacting a radical polymerization initiator in a solution of acrylic acid in an organic solvent to synthesize polyacrylic acid; b-1) adding the polyfunctional amine to the reaction solution after the step a-1); And heating the mixture to produce a mixed solution containing a precursor of a compound obtained by condensing polyacrylic acid and the polyfunctional amine of the general formula (1).
 a-2)アクリル酸及び前記多官能アミンを有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
 b-2)前記a-2)工程後の反応溶液を加熱して、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の前駆体を含有する混合溶液を製造する工程
a-2) a step of reacting a radical polymerization initiator in a solution in which acrylic acid and the polyfunctional amine are dissolved in an organic solvent to synthesize polyacrylic acid b-2) a reaction solution after the step a-2) To produce a mixed solution containing a precursor of a compound obtained by condensation of polyacrylic acid and a polyfunctional amine of the general formula (1)
 b)工程を経て得られた混合溶液が、本発明の負極用結着剤の一態様である。 The mixed solution obtained through the step b) is one embodiment of the negative electrode binder of the present invention.
 次に、c)工程について説明する。c)工程は、b)工程で得られた混合溶液と負極活物質を混合して、負極活物質層形成用組成物を製造する工程である。 Next, the step c) will be described. Step c) is a step of mixing the mixed solution obtained in step b) and the negative electrode active material to produce a negative electrode active material layer forming composition.
 負極活物質層形成用組成物は、構成成分を混合することで製造される。負極活物質層形成用組成物には、導電助剤やその他の添加剤を配合してもよい。
 負極活物質層形成用組成物の全体に対して、有機溶媒の量は、20~80質量%が好ましく、45~75質量%がより好ましい。
The composition for forming a negative electrode active material layer is produced by mixing constituent components. The composition for forming a negative electrode active material layer may include a conductive additive and other additives.
The amount of the organic solvent is preferably from 20 to 80% by mass, more preferably from 45 to 75% by mass, based on the whole composition for forming a negative electrode active material layer.
 次に、d)工程について説明する。d)工程は、負極活物質層形成用組成物を集電体に塗布して、負極前駆体を製造する工程である。 Next, the step d) will be described. Step d) is a step of applying the composition for forming a negative electrode active material layer to a current collector to produce a negative electrode precursor.
 d)工程における塗布方法としては、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法を例示できる。 塗布 Examples of the coating method in the step d) include a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method.
 塗布後には、負極活物質層形成用組成物から有機溶媒を除去することを目的とする、加熱乾燥工程や、負極をプレスして負極活物質層の密度を適切なものとするプレス工程を実施してもよい。加熱乾燥工程及びプレス工程は、常圧下で実施されてもよいし、減圧下で実施されてもよい。 After the application, a heat drying step or a pressing step of pressing the negative electrode to make the density of the negative electrode active material layer appropriate is performed to remove the organic solvent from the negative electrode active material layer forming composition. May be. The heating and drying step and the pressing step may be performed under normal pressure or may be performed under reduced pressure.
 加熱乾燥工程は、50~150℃の温度範囲内で行われるのが好ましく、70~140℃の温度範囲内で行われるのがより好ましく、90~130℃の温度範囲内で行われるのがさらに好ましい。加熱乾燥工程で有機溶媒を十分に留去しておくことで、次のe)工程における所要時間を短縮可能となる。ただし、加熱乾燥工程の温度を、150℃を超える温度とすることは、好ましいとはいえない。その理由は、d)工程は大気下で実施されることが想定されており、d)工程の一部として実施される加熱乾燥工程において150℃を超える温度とすることで、集電体などが酸化して、その強度が低下するおそれがあるためである。 The heating and drying step is preferably performed in a temperature range of 50 to 150 ° C., more preferably performed in a temperature range of 70 to 140 ° C., and further preferably performed in a temperature range of 90 to 130 ° C. preferable. By sufficiently distilling off the organic solvent in the heating and drying step, the time required in the following step e) can be reduced. However, setting the temperature of the heating and drying step to a temperature exceeding 150 ° C. is not preferable. The reason is that the step d) is supposed to be performed in the atmosphere, and the current collector and the like are set to a temperature exceeding 150 ° C. in the heating and drying step performed as a part of the step d). This is because the strength may decrease due to oxidation.
 e)工程について説明する。
 e)工程は、負極前駆体を加熱して、ポリアクリル酸と一般式(1)の多官能アミンの縮合反応を進行させる工程である。e)工程においては、上述の縮合反応が進行し得る程度の加熱を施せばよい。そのため、e)工程の加熱の態様は特に限定されないが、負極前駆体に波長4~8μmの光を照射して、e)工程を実施するのが好ましい。
e) The step will be described.
Step e) is a step of heating the negative electrode precursor to cause a condensation reaction between the polyacrylic acid and the polyfunctional amine of the general formula (1) to proceed. In step e), heating may be performed to such an extent that the above-described condensation reaction can proceed. Therefore, the mode of heating in the step e) is not particularly limited, but it is preferable to perform the step e) by irradiating the negative electrode precursor with light having a wavelength of 4 to 8 μm.
 波長4~8μmの光は、HOや炭素-酸素二重結合を有する官能基が特異的に吸収する波長領域の光である。HOが特異的に吸収する光の波長領域が概ね5.5~7μmであること、及び、カルボキシル基の炭素-酸素二重結合が特異的に吸収する光の波長領域が概ね5.5~7μmであることを鑑みると、e)工程で照射する光の波長は5.5~7μmが好ましいといえる。 The light having a wavelength of 4 to 8 μm is light in a wavelength region where H 2 O or a functional group having a carbon-oxygen double bond specifically absorbs. The wavelength range of light specifically absorbed by H 2 O is approximately 5.5 to 7 μm, and the wavelength range of light specifically absorbed by the carbon-oxygen double bond of the carboxyl group is approximately 5.5. Considering that the wavelength is about 7 μm, it can be said that the wavelength of the light irradiated in the step e) is preferably 5.5 to 7 μm.
 波長4~8μmの光は、ポリアクリル酸のカルボキシル基に対する一般式(1)の多官能アミンのアミノ基に因る求核脱水反応を促進させると考えられる。そして、その結果、一般式(1)の多官能アミンによるポリアクリル酸の鎖の架橋形成が促進されると考えられる。 光 Light having a wavelength of 4 to 8 μm is considered to promote a nucleophilic dehydration reaction caused by an amino group of the polyfunctional amine of the general formula (1) with respect to a carboxyl group of polyacrylic acid. As a result, it is considered that the cross-linking of the polyacrylic acid chain by the polyfunctional amine of the general formula (1) is promoted.
 波長4~8μmの光は赤外線に該当するため、負極前駆体に波長4~8μmの光を照射することで、必然的に、加熱状態となる。波長4~8μmの光の出力の程度は、e)工程における温度状態で把握することができる。波長4~8μmの光の出力が高いほど、e)工程における温度は高くなるし、所望の求核脱水反応が迅速に進行するといえる。 光 Because light having a wavelength of 4 to 8 μm corresponds to infrared light, irradiating the negative electrode precursor with light having a wavelength of 4 to 8 μm necessarily results in a heated state. The degree of output of light having a wavelength of 4 to 8 μm can be determined by the temperature in the step e). It can be said that the higher the output of light having a wavelength of 4 to 8 μm, the higher the temperature in the step e), and that the desired nucleophilic dehydration reaction proceeds rapidly.
 e)工程における温度としては、170~250℃が好ましく、180~220℃がより好ましく、190~210℃がさらに好ましい。
 e)工程における温度が低すぎると、所望の反応が十分に進行しないおそれがある。e)工程における温度が高すぎると、ポリアクリル酸の鎖のカルボキシル基同士の脱水反応が過剰に進行すること、すなわち酸無水物の構造が過剰に生じることで、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の結着剤としての機能が低下するおそれがある。また、e)工程における温度が過剰に高すぎると、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物が分解するおそれもある。
The temperature in step e) is preferably from 170 to 250 ° C, more preferably from 180 to 220 ° C, even more preferably from 190 to 210 ° C.
If the temperature in step e) is too low, the desired reaction may not proceed sufficiently. If the temperature in the step e) is too high, the dehydration reaction between carboxyl groups of the polyacrylic acid chain proceeds excessively, that is, the structure of the acid anhydride is excessively generated, so that polyacrylic acid and the general formula (1) The function of the compound obtained by condensation of the polyfunctional amine of (2) as a binder may be reduced. Further, if the temperature in the step e) is excessively high, a compound obtained by condensation of polyacrylic acid and the polyfunctional amine of the general formula (1) may be decomposed.
 ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物においては、赤外分光法で測定した際に、アミド基のカルボニルに由来するピークの強度が、酸無水物のカルボニルに由来するピークの強度よりも大きいものが好ましいといえる。
 なお、ポリアクリル酸や一般式(1)の多官能アミンは、それぞれ、有機溶媒に可溶であるが、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物は、基本的に、有機溶媒に難溶性となる。
In a compound obtained by condensation of polyacrylic acid and a polyfunctional amine of the general formula (1), the intensity of the peak derived from the carbonyl of the amide group is determined by the carbonyl of the acid anhydride as measured by infrared spectroscopy. It can be said that those having a higher intensity than the peaks derived therefrom are preferable.
The polyacrylic acid and the polyfunctional amine of the general formula (1) are each soluble in an organic solvent, but the compound obtained by condensation of the polyacrylic acid and the polyfunctional amine of the general formula (1) is a basic compound. Thus, it becomes sparingly soluble in organic solvents.
 e)工程において、負極前駆体の任意の箇所に波長4~8μmの光を照射する時間としては、0.5~10分が好ましく、1~5分がより好ましく、1.5~4分が特に好ましい。例えば、e)工程における温度が200℃の場合、e)工程における光照射時間は3分程度で十分である。
 e)工程における照射時間が短すぎると、所望の反応が十分に進行しないおそれがある。e)工程における照射時間が長すぎると、エネルギーの無駄になるとともに、不都合な副反応が生じるおそれがある。
In the step e), the time for irradiating an arbitrary portion of the negative electrode precursor with light having a wavelength of 4 to 8 μm is preferably 0.5 to 10 minutes, more preferably 1 to 5 minutes, and 1.5 to 4 minutes. Particularly preferred. For example, when the temperature in step e) is 200 ° C., about 3 minutes is sufficient for the light irradiation time in step e).
If the irradiation time in step e) is too short, the desired reaction may not proceed sufficiently. If the irradiation time in the step e) is too long, energy may be wasted and an undesired side reaction may occur.
 また、波長4~8μmの光は、負極活物質層の厚み程度であれば、透過し得るので、負極活物質層の内部側に存在するポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の前駆体、又は、ポリアクリル酸及び一般式(1)の多官能アミンに対しても、波長4~8μmの光が届くと考えられる。そうすると、負極活物質層の表面だけではなく、内部でも、所望の反応を促進させることが可能と考えられる。 In addition, light having a wavelength of 4 to 8 μm can be transmitted as long as the thickness is about the thickness of the negative electrode active material layer. Therefore, polyacrylic acid existing inside the negative electrode active material layer and the polyfunctional amine represented by the general formula (1) can be used. It is considered that light having a wavelength of 4 to 8 μm reaches a compound precursor obtained by condensation, or polyacrylic acid and a polyfunctional amine of the general formula (1). Then, it is considered that a desired reaction can be promoted not only on the surface of the negative electrode active material layer but also on the inside.
 e)工程は、不都合な酸化を抑制するために、不活性ガス雰囲気下で実施されるのが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンを例示できる。また、光照射後に、負極をプレスして負極活物質層の密度を適切なものとするプレス工程を実施してもよい。 Step e) is preferably performed in an inert gas atmosphere to suppress undesired oxidation. Examples of the inert gas include nitrogen, helium, and argon. After the light irradiation, a pressing step of pressing the negative electrode to make the density of the negative electrode active material layer appropriate may be performed.
 e)工程においては、ロール状の負極前駆体を搬出するロール巻出し部と、ロール状の負極が巻取られるロール巻取り部と、前記ロール巻出し部及び前記ロール巻取り部の間に配置されている波長4~8μmの光を照射する照射部と、を具備する装置を用いるのが、負極の大量生産に好都合である。
 当該装置を用いることで、平坦な集電体上に平坦な負極活物質層が存在するとの、製造バラツキが生じ難い条件下で負極を製造できるため、e)工程後の負極の性状は均一化される。また、均一な条件での光照射が容易であり、光照射時間の設定も容易であることから、負極の性能バラツキが生じ難い。さらに、生産能力の増大や、省人化にも適応可能である。
In the step e), a roll unwinding unit for unloading the roll-shaped negative electrode precursor, a roll winding unit for winding the rolled negative electrode, and a roll unwinding unit and the roll unwinding unit are disposed between the roll unwinding unit and the roll winding unit. It is convenient for mass production of the negative electrode to use a device having an irradiation unit for irradiating light having a wavelength of 4 to 8 μm.
By using the device, the negative electrode can be manufactured under the condition that the manufacturing variation hardly occurs because the flat negative electrode active material layer is present on the flat current collector, and thus the property of the negative electrode after the step e) is uniform. Is done. Further, light irradiation under uniform conditions is easy, and the setting of the light irradiation time is easy, so that the performance variation of the negative electrode hardly occurs. Further, it can be applied to increase of production capacity and labor saving.
 本発明の負極は、具体的には、集電体、並びに、集電体の表面に、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物及び負極活物質を含有する負極活物質層を備える。本発明の負極において、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物は結着剤として機能する。 Specifically, the negative electrode of the present invention contains a current collector, a compound obtained by condensing polyacrylic acid and a polyfunctional amine of the general formula (1), and a negative electrode active material on the surface of the current collector. A negative electrode active material layer is provided. In the negative electrode of the present invention, a compound obtained by condensation of polyacrylic acid and the polyfunctional amine of the general formula (1) functions as a binder.
 集電体は、リチウムイオン二次電池などの二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体の材料は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はない。集電体の材料としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 (4) The current collector refers to a chemically inert electronic conductor for continuously supplying a current to the electrode during discharging or charging of a secondary battery such as a lithium ion secondary battery. The material of the current collector is not particularly limited as long as the metal can withstand a voltage suitable for the active material to be used. As the material of the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel And other metal materials. The current collector may be covered with a known protective layer. A current collector whose surface is treated by a known method may be used as the current collector.
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can be in the form of foil, sheet, film, wire, rod, mesh, and the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of a foil, a sheet or a film, the thickness is preferably in the range of 1 μm to 100 μm.
 負極活物質層の厚みとしては、1~200μm、5~150μm、10~100μmを例示できる。 厚 み Examples of the thickness of the negative electrode active material layer include 1 to 200 μm, 5 to 150 μm, and 10 to 100 μm.
 負極活物質層は、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物、並びに、リチウムイオンなどの電荷担体を吸蔵及び放出し得る負極活物質、さらに必要に応じて他の結着剤及び導電助剤などの添加剤を含む。負極活物質層には、負極活物質が負極活物質層全体の質量に対して、60~95質量%で含まれるのが好ましく、70~90質量%で含まれるのがより好ましい。また、負極活物質層には、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物が負極活物質層全体の質量に対して、1~20質量%で含まれるのが好ましく、5~15質量%で含まれるのがより好ましい。 The negative electrode active material layer includes a compound obtained by condensing polyacrylic acid and a polyfunctional amine represented by the general formula (1), a negative electrode active material capable of inserting and extracting a charge carrier such as lithium ion, and further, if necessary. And additives such as a conductive aid. The anode active material layer preferably contains the anode active material in an amount of 60 to 95% by mass, more preferably 70 to 90% by mass, based on the mass of the entire anode active material layer. Further, the negative electrode active material layer contains a compound obtained by condensation of polyacrylic acid and the polyfunctional amine of the general formula (1) in an amount of 1 to 20% by mass based on the total mass of the negative electrode active material layer. More preferably, it is contained at 5 to 15% by mass.
 負極活物質としては、電荷担体を吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンなどの電荷担体を吸蔵及び放出可能である単体、合金又は化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。合金又は化合物の具体例としては、Ag-Sn合金、Cu-Sn合金、Co-Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質として、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3-xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。 As the negative electrode active material, a material capable of inserting and extracting a charge carrier can be used. Therefore, there is no particular limitation as long as it is a simple substance, an alloy or a compound capable of inserting and extracting a charge carrier such as lithium ions. For example, as a negative electrode active material, Li, a group 14 element such as carbon, silicon, germanium and tin; a group 13 element such as aluminum and indium; a group 12 element such as zinc and cadmium; a group 15 element such as antimony and bismuth; And an alkaline earth metal such as calcium, and a group 11 element such as silver and gold may be used alone. Specific examples of alloys or compounds include tin-based materials such as Ag-Sn alloys, Cu-Sn alloys, Co-Sn alloys, carbon-based materials such as various graphites, and SiO x (which is disproportionated to silicon alone and silicon dioxide). 0.3.ltoreq.x.ltoreq.1.6), a simple substance of silicon, or a composite of a combination of a silicon-based material and a carbon-based material. As the negative electrode active material, an oxide such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , Fe 2 O 3 , or Li 3-x M x N (M = Co , Ni, Cu) may be used. One or more of these materials can be used as the negative electrode active material.
 高容量化の可能性の点から、好ましい負極活物質として、黒鉛、Si含有材料、Sn含有材料を挙げることができる。また、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の結着剤としての好適な特性を鑑みると、充放電時に膨張及び収縮の程度が大きいSi含有負極活物質が特に好ましい。 好 ま し い In view of the possibility of increasing the capacity, preferable negative electrode active materials include graphite, Si-containing materials, and Sn-containing materials. Also, in view of the preferable properties of a compound obtained by condensation of polyacrylic acid and the polyfunctional amine of the general formula (1) as a binder, a Si-containing negative electrode active material having a large degree of expansion and contraction during charge and discharge is required. Particularly preferred.
 Si含有負極活物質の具体例として、Si単体や、Si相とケイ素酸化物相との2相に不均化された又は未不均化状態のSiO(0.3≦x≦1.6)を例示できる。xの範囲は0.5≦x≦1.5であるのがより好ましく、0.7≦x≦1.2であるのがさらに好ましい。 As specific examples of the Si-containing negative electrode active material, SiO x (0.3 ≦ x ≦ 1.6) in a disproportionated or undisproportionated state to Si alone or two phases of a Si phase and a silicon oxide phase. ) Can be exemplified. The range of x is more preferably 0.5 ≦ x ≦ 1.5, and even more preferably 0.7 ≦ x ≦ 1.2.
 Si含有負極活物質の具体例として、国際公開第2014/080608号などに開示されるシリコン材料(以下、単に「シリコン材料」という。)を挙げることができる。 具体 As a specific example of the Si-containing negative electrode active material, a silicon material (hereinafter, simply referred to as “silicon material”) disclosed in WO 2014/080608 and the like can be given.
 シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有するものである。シリコン材料は、例えば、CaSiと酸とを反応させてポリシランを主成分とする層状シリコン化合物を合成する工程、さらに、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させる工程を経て製造されるものである。 The silicon material has a structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction. The silicon material undergoes, for example, a step of reacting CaSi 2 with an acid to synthesize a layered silicon compound containing polysilane as a main component, and a step of heating the layered silicon compound at 300 ° C. or higher to release hydrogen. It is manufactured.
 シリコン材料の製造方法を、酸として塩化水素を用いた場合の理想的な反応式で示すと以下のとおりとなる。
 3CaSi+6HCl → Si+3CaCl
 Si → 6Si+3H
An ideal reaction formula for a method of manufacturing a silicon material using hydrogen chloride as an acid is as follows.
3CaSi 2 + 6HCl → Si 6 H 6 + 3CaCl 2
Si 6 H 6 → 6Si + 3H 2
 ただし、ポリシランであるSiを合成する上段の反応では、副生物や不純物除去の観点から、通常、反応溶媒として水が用いられる。そして、Siは水と反応し得るため、上段の反応を含む層状シリコン化合物を合成する工程において、層状シリコン化合物がSiのみを含むものとして製造されることはほとんどなく、層状シリコン化合物はSi(OH)(Xは酸のアニオン由来の元素若しくは基、s+t+u=6、0<s<6、0<t<6、0<u<6)で表されるものとして製造される。なお、上記の化学式においては、残存し得るCaなどの不可避不純物については、考慮していない。そして、当該層状シリコン化合物を加熱して得られるシリコン材料も、酸素や酸のアニオン由来の元素を含む。 However, in the upper reaction of synthesizing Si 6 H 6 as polysilane, water is usually used as a reaction solvent from the viewpoint of removing by-products and impurities. Since Si 6 H 6 can react with water, in the step of synthesizing the layered silicon compound including the upper reaction, the layered silicon compound is hardly produced as containing only Si 6 H 6 , The silicon compound is represented by Si 6 H s (OH) t X u (X is an element or group derived from an anion of an acid, s + t + u = 6, 0 <s <6, 0 <t <6, 0 <u <6). Manufactured as such. In the above chemical formula, inevitable impurities such as Ca that may remain are not considered. The silicon material obtained by heating the layered silicon compound also contains elements derived from oxygen and anions of acids.
 既述のとおり、シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有する。リチウムイオン等の電荷担体が効率的に吸蔵及び放出されるためには、板状シリコン体は厚さが10nm~100nmの範囲内のものが好ましく、20nm~50nmの範囲内のものがより好ましい。板状シリコン体の長手方向の長さは、0.1μm~50μmの範囲内が好ましい。また、板状シリコン体は、(長手方向の長さ)/(厚さ)が2~1000の範囲内であるのが好ましい。板状シリコン体の積層構造は走査型電子顕微鏡などによる観察で確認できる。また、この積層構造は、原料のCaSiにおけるSi層の名残りであると考えられる。 As described above, the silicon material has a structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction. In order to efficiently store and release charge carriers such as lithium ions, the plate-like silicon body preferably has a thickness in the range of 10 nm to 100 nm, more preferably 20 nm to 50 nm. The length in the longitudinal direction of the plate-like silicon body is preferably in the range of 0.1 μm to 50 μm. Further, the plate-like silicon body preferably has a ratio of (length in the longitudinal direction) / (thickness) in the range of 2 to 1,000. The laminated structure of the plate-like silicon body can be confirmed by observation with a scanning electron microscope or the like. This laminated structure is considered to be a remnant of the Si layer in the raw material CaSi 2 .
 シリコン材料には、アモルファスシリコン及び/又はシリコン結晶子が含まれるのが好ましい。特に、上記板状シリコン体において、アモルファスシリコンをマトリックスとし、シリコン結晶子が当該マトリックス中に点在している状態が好ましい。シリコン結晶子のサイズは、0.5nm~300nmの範囲内が好ましく、1nm~100nmの範囲内がより好ましく、1nm~50nmの範囲内がさらに好ましく、1nm~10nmの範囲内が特に好ましい。なお、シリコン結晶子のサイズは、シリコン材料に対してX線回折測定を行い、得られたX線回折チャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。 The silicon material preferably includes amorphous silicon and / or silicon crystallite. In particular, in the plate-like silicon body, it is preferable that amorphous silicon is used as a matrix and silicon crystallites are scattered in the matrix. The size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm. The size of the silicon crystallite is calculated from Scherrer's formula using the half-value width of the diffraction peak of the Si (111) plane in the obtained X-ray diffraction chart by performing X-ray diffraction measurement on the silicon material. .
 シリコン材料に含まれる板状シリコン体、アモルファスシリコン及びシリコン結晶子の存在量や大きさは、主に加熱温度や加熱時間に左右される。加熱温度は、400℃~900℃の範囲内が好ましく、500℃~800℃の範囲内がより好ましい。 存在 The abundance and size of the plate-like silicon body, amorphous silicon, and silicon crystallite contained in the silicon material mainly depend on the heating temperature and the heating time. The heating temperature is preferably in the range of 400 ° C. to 900 ° C., and more preferably in the range of 500 ° C. to 800 ° C.
 Si含有負極活物質は、炭素で被覆されたものが好ましい。炭素被覆により、Si含有負極活物質の導電性が向上する。 The Si-containing negative electrode active material is preferably coated with carbon. The carbon coating improves the conductivity of the Si-containing negative electrode active material.
 Si含有負極活物質は、粒子の集合体である粉末状のものが好ましい。Si含有負極活物質の平均粒子径は、1~30μmの範囲内が好ましく、2~20μmの範囲内がより好ましい。なお、本明細書における平均粒子径とは、一般的なレーザー回折式粒度分布測定装置で試料を測定した場合におけるD50を意味する。 The Si-containing negative electrode active material is preferably in the form of a powder, which is an aggregate of particles. The average particle diameter of the Si-containing negative electrode active material is preferably in the range of 1 to 30 μm, and more preferably in the range of 2 to 20 μm. The average particle diameter herein means a D 50 in the case of measuring a sample in a conventional laser diffraction particle size distribution analyzer.
 他の結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース等のセルロース誘導体を例示することができる。 Other binders, polyvinylidene fluoride, polytetrafluoroethylene, fluorine-containing resins such as fluororubber, polypropylene, thermoplastic resins such as polyethylene, polyimides, imide-based resins such as polyamideimide, alkoxysilyl group-containing resins, Acrylic resins such as poly (meth) acrylic acid, styrene-butadiene rubber (SBR), and cellulose derivatives such as carboxymethyl cellulose can be exemplified.
 導電助剤は、負極の導電性を高めるために添加される。そのため、導電助剤は、負極の導電性が不足する場合に任意に加えればよく、負極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独又は二種以上組み合わせて負極活物質層に添加することができる。 The conductive additive is added to increase the conductivity of the negative electrode. Therefore, the conductive assistant may be arbitrarily added when the conductivity of the negative electrode is insufficient, and may not be added when the conductivity of the negative electrode is sufficiently excellent. The conductive additive may be any chemically inert high electron conductor, and examples thereof include carbon black fine particles such as carbon black, graphite, vapor grown carbon fiber (VaporapGrown Carbon Fiber), and various metal particles. You. Examples of the carbon black include acetylene black, Ketjen Black (registered trademark), furnace black, and channel black. These conductive assistants can be added to the negative electrode active material layer alone or in combination of two or more.
 負極活物質層中の導電助剤の配合割合は、1~20質量%が好ましく、3~15質量%がより好ましく、5~13質量%がさらに好ましい。また、負極活物質及び導電助剤の質量比は、99:1~85:15が好ましく、97:3~90:10がより好ましく、95:5~92:8がさらに好ましく、94:6~93:7が特に好ましい。 配合 The compounding ratio of the conductive assistant in the negative electrode active material layer is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and still more preferably 5 to 13% by mass. The mass ratio between the negative electrode active material and the conductive additive is preferably from 99: 1 to 85:15, more preferably from 97: 3 to 90:10, even more preferably from 95: 5 to 92: 8, and preferably from 94: 6 to 93: 7 is particularly preferred.
 本発明の負極は、蓄電装置の負極として使用することができる。
 蓄電装置としては、一次電池、二次電池、キャパシタを例示できる。以下、蓄電装置の代表例であるリチウムイオン二次電池についての説明を通じて、本発明の負極を備える本発明の蓄電装置の説明をする。
The negative electrode of the present invention can be used as a negative electrode of a power storage device.
Examples of the power storage device include a primary battery, a secondary battery, and a capacitor. Hereinafter, the power storage device of the present invention including the negative electrode of the present invention will be described through the description of a lithium ion secondary battery that is a typical example of the power storage device.
 以下、本発明の負極を備えるリチウムイオン二次電池を、本発明のリチウムイオン二次電池という。
 本発明のリチウムイオン二次電池の一態様は、本発明の負極、正極、並びに、セパレータ及び電解液、又は、固体電解質を具備する。
 正極は、集電体と集電体の表面に形成された正極活物質層とを具備する。
Hereinafter, a lithium ion secondary battery including the negative electrode of the present invention is referred to as a lithium ion secondary battery of the present invention.
One embodiment of the lithium ion secondary battery of the present invention includes the negative electrode, the positive electrode, the separator and the electrolytic solution, or the solid electrolyte of the present invention.
The positive electrode includes a current collector and a positive electrode active material layer formed on a surface of the current collector.
 正極の集電体としては、負極で説明したものを適宜適切に選択すればよい。 As the current collector of the positive electrode, those described for the negative electrode may be appropriately selected.
 正極の電位をリチウム基準で4V以上とする場合には、正極用集電体としてアルミニウムを採用するのが好ましい。 (4) When the potential of the positive electrode is set to 4 V or more based on lithium, it is preferable to employ aluminum as the positive electrode current collector.
 具体的には、正極用集電体として、アルミニウム又はアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al-Cu系、Al-Mn系、Al-Fe系、Al-Si系、Al-Mg系、Al-Mg-Si系、Al-Zn-Mg系が挙げられる。 Specifically, it is preferable to use a collector made of aluminum or an aluminum alloy as the current collector for the positive electrode. Here, aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or more is referred to as pure aluminum. An alloy obtained by adding various elements to pure aluminum is referred to as an aluminum alloy. Examples of the aluminum alloy include Al-Cu, Al-Mn, Al-Fe, Al-Si, Al-Mg, Al-Mg-Si, and Al-Zn-Mg.
 また、アルミニウム又はアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al-Mn系)、JIS A8079、A8021等のA8000系合金(Al-Fe系)が挙げられる。 Specific examples of aluminum or aluminum alloy include, for example, A1000 series alloys (pure aluminum series) such as JIS A1085 and A1N30, A3000 series alloys (Al-Mn series) such as JIS A3003 and A3004, and JIS A8079, A8021 and the like. A8000 series alloy (Al-Fe series).
 正極活物質層は、リチウムイオンなどの電荷担体を吸蔵及び放出し得る正極活物質、並びに必要に応じて結着剤及び導電助剤を含む。正極活物質層には、正極活物質が正極活物質層全体の質量に対して、60~99質量%で含まれるのが好ましく、70~95質量%で含まれるのがより好ましい。 The positive electrode active material layer contains a positive electrode active material capable of occluding and releasing charge carriers such as lithium ions, and, if necessary, a binder and a conductive assistant. The positive electrode active material layer preferably contains the positive electrode active material at 60 to 99% by mass, more preferably 70 to 95% by mass, based on the total mass of the positive electrode active material layer.
 正極活物質としては、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)、又は、LiNiCoAl(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦3)、で表されるリチウム複合金属酸化物、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル構造の金属酸化物、スピネル構造の金属酸化物と層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、電荷担体(例えば充放電に寄与するリチウムイオン)を含まないものを用いても良い。例えば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極及び/又は負極に貼り付けるなどして一体化しても良い。 As the positive electrode active material, the general formula of the layered rock salt structure: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Fe, Ge, Zn, Ru, sc, Sn, in, Y, Bi, S, Si, Na, K, P, at least one element selected from V, 1.7 ≦ f ≦ 3) , or, Li a Ni b Co c Al d D e O f (0.2 ≦ a ≦ 2 , b + c + d + e = 1,0 ≦ e <1, D is Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Zr, Ti, P , Ga, Ge, V, Mo, Nb, W, La, at least one element selected from the group consisting of 1.7 ≦ f ≦ 3). Examples thereof include a lithium composite metal oxide and Li 2 MnO 3 . As the positive electrode active material, a metal oxide having a spinel structure such as LiMn 2 O 4 , a solid solution composed of a mixture of a metal oxide having a spinel structure and a layered compound, LiMPO 4 , LiMVO 4, or Li 2 MSiO 4 (wherein M is selected from at least one of Co, Ni, Mn, and Fe). Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any of the metal oxides used as the positive electrode active material may have the above composition formula as a basic composition, and those obtained by replacing a metal element contained in the basic composition with another metal element can also be used. Further, as the positive electrode active material, a material not containing a charge carrier (for example, lithium ions contributing to charge and discharge) may be used. For example, a simple substance of sulfur, a compound in which sulfur and carbon are combined, a metal sulfide such as TiS 2 , an oxide such as V 2 O 5 and MnO 2 , a compound containing polyaniline and anthraquinone, and an aromatic compound thereof in a chemical structure, a conjugated compound Conjugated materials such as acetic acid-based organic substances and other known materials can also be used. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, and phenoxyl may be employed as the positive electrode active material. When a positive electrode active material containing no charge carrier such as lithium is used, it is necessary to add a charge carrier to the positive electrode and / or the negative electrode in advance by a known method. The charge carrier may be added in an ionic state or in a non-ionic state such as a metal. For example, when the charge carrier is lithium, the charge carrier may be integrated by attaching a lithium foil to the positive electrode and / or the negative electrode.
 高容量及び耐久性などに優れる点から、正極活物質として、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3) 、又は、LiNiCoAl(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物を採用することが好ましい。 From the viewpoint of excellent and high capacity, and durability, as the positive electrode active material, the general formula of the layered rock salt structure: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, At least one element selected from the group consisting of Rh, Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, P, and V, 1.7 ≦ f ≦ 3), or Li a Ni b Co c Al d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si , Na, K, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La It is preferable to employ a lithium composite metal oxide represented by the following formula: 1.7 ≦ f ≦ 3).
 上記一般式において、b、c、dの値は、上記条件を満足するものであれば特に制限はないが、0<b<1、0<c<1、0<d<1であるものが良く、また、b、c、dの少なくともいずれか一つが30/100<b<90/100、10/100<c<90/100、1/100<d<50/100の範囲であることが好ましく、40/100<b<90/100、10/100<c<50/100、2/100<d<30/100の範囲であることがより好ましく、50/100<b<90/100、10/100<c<30/100、2/100<d<10/100の範囲であることがさらに好ましい。 In the above general formula, the values of b, c, and d are not particularly limited as long as they satisfy the above conditions, but those satisfying 0 <b <1, 0 <c <1, and 0 <d <1. In addition, at least one of b, c, and d is in the range of 30/100 <b <90/100, 10/100 <c <90/100, and 1/100 <d <50/100. More preferably, it is more preferably in the range of 40/100 <b <90/100, 10/100 <c <50/100, 2/100 <d <30/100, and more preferably 50/100 <b <90/100. More preferably, the ratio is in the range of 10/100 <c <30/100 and 2/100 <d <10/100.
 a、e、fについては、上記一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦e<0.2、1.8≦f≦2.5、より好ましくは0.8≦a≦1.3、0≦e<0.1、1.9≦f≦2.1をそれぞれ例示することができる。 a, e, and f may be numerical values within the range defined by the above general formula, and are preferably 0.5 ≦ a ≦ 1.5, 0 ≦ e <0.2, and 1.8 ≦ f ≦ 2. 0.5, more preferably 0.8 ≦ a ≦ 1.3, 0 ≦ e <0.1, and 1.9 ≦ f ≦ 2.1.
 高容量及び耐久性などに優れる点から、正極活物質として、スピネル構造のLiMn2―y(Aは、Ca、Mg、S、Si、Na、K、Al、P、Ga、Geから選ばれる少なくとも1の元素、及び、Niなどの遷移金属元素から選ばれる少なくとも1種の金属元素から選択される。0<x≦2.2、0≦y≦1)を例示できる。xの値の範囲としては、0.5≦x≦1.8、0.7≦x≦1.5、0.9≦x≦1.2を例示でき、yの値の範囲としては、0≦y≦0.8、0≦y≦0.6を例示できる。具体的なスピネル構造の化合物として、LiMn、LiMn1.5Ni0.5を例示できる。 From the viewpoint of excellent and high capacity, and durability, as a positive electrode active material, the Li x Mn 2-y A y O 4 (A spinel structure, Ca, Mg, S, Si , Na, K, Al, P, Ga , Ge, and at least one metal element selected from transition metal elements such as Ni, and 0 <x ≦ 2.2, 0 ≦ y ≦ 1). The range of the value of x can be exemplified by 0.5 ≦ x ≦ 1.8, 0.7 ≦ x ≦ 1.5, 0.9 ≦ x ≦ 1.2, and the range of the value of y is 0 ≦ y ≦ 0.8 and 0 ≦ y ≦ 0.6. Specific examples of the compound having a spinel structure include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
 具体的な正極活物質として、LiFePO、LiFeSiO、LiCoPO、LiCoPO、LiMnPO、LiMnSiO、LiCoPOFを例示できる。他の具体的な正極活物質として、LiMnO-LiCoOを例示できる。 Specific positive electrode active material can be exemplified by LiFePO 4, Li 2 FeSiO 4, LiCoPO 4, Li 2 CoPO 4, Li 2 MnPO 4, Li 2 MnSiO 4, Li 2 CoPO 4 F. As another specific positive electrode active material, Li 2 MnO 3 —LiCoO 2 can be exemplified.
 結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、カルボキシメチルセルロース、スチレン-ブタジエンゴムなどの公知のものを採用すればよい。 Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, fluorine-containing resins such as fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide-based resins such as polyimide and polyamideimide, resins containing an alkoxysilyl group, and carboxymethylcellulose. A known material such as styrene-butadiene rubber may be used.
 導電助剤としては、負極で説明したものを採用すればよい。
 正極活物質層における、結着剤及び導電助剤の配合量は、適宜適切な量とすればよい。また、集電体の表面に正極活物質層を形成させるには、公知の方法を適宜適切に採用すればよい。
As the conductive additive, those described for the negative electrode may be employed.
The amounts of the binder and the conductive additive in the positive electrode active material layer may be appropriately set as appropriate. In addition, in order to form the positive electrode active material layer on the surface of the current collector, a known method may be appropriately used.
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、公知のものを採用すればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子及びセラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布及び織布などを挙げることができる。また、セパレータは多層構造としてもよい。 (4) The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass therethrough while preventing a short circuit due to contact between the two electrodes. Known separators may be used as the separator, and synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic @ polyamide), polyester, and polyacrylonitrile; polysaccharides such as cellulose and amylose; and fibroin. , Nonwoven fabrics and woven fabrics using one or more of electrically insulating materials such as ceramics and natural polymers such as keratin, lignin and suberin. Further, the separator may have a multilayer structure.
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。 The electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
 非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、フルオロエチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。 環状 As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, and vinylene carbonate, and examples of the cyclic ester include gamma-butyrolactone, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone, and gamma-valerolactone. . Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate, and examples of the chain ester include alkyl propionate, dialkyl malonate, and alkyl acetate. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. As the non-aqueous solvent, a compound in which part or all of the hydrogen in the specific chemical structure of the solvent is substituted with fluorine may be used.
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(FSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (FSO 2 ) 2 .
 電解液としては、フルオロエチレンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの非水溶媒にリチウム塩を0.5mol/Lから3mol/L程度、好ましくは1.5mol/Lから2.5mol/Lの濃度で溶解させた溶液を例示できる。 As the electrolyte, a lithium salt is added to a non-aqueous solvent such as fluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate in an amount of about 0.5 mol / L to 3 mol / L, preferably 1.5 mol / L to 2 mol / L. An example is a solution dissolved at a concentration of 0.5 mol / L.
 固体電解質としては、リチウムイオン二次電池の固体電解質として使用可能なものを適宜採用すればよい。 も の As the solid electrolyte, a solid electrolyte that can be used as a solid electrolyte of a lithium ion secondary battery may be appropriately adopted.
 本発明のリチウムイオン二次電池の具体的な製造方法の一態様について述べる。
 例えば、正極と負極とでセパレータを挟持して電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極の積層体を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までを、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。
One embodiment of a specific method for manufacturing the lithium ion secondary battery of the present invention will be described.
For example, an electrode body is formed by sandwiching a separator between a positive electrode and a negative electrode. The electrode body may be any of a stacked type in which a positive electrode, a separator, and a negative electrode are stacked, or a wound type in which a stacked body of a positive electrode, a separator, and a negative electrode is wound. After connecting the current collector of the positive electrode and the current collector of the negative electrode to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like, then adding an electrolytic solution to the electrode body to form a lithium ion secondary battery. Good.
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 形状 The shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 リ チ ウ ム The lithium ion secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, such as an electric vehicle or a hybrid vehicle. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. Examples of devices equipped with a lithium ion secondary battery include various home electric appliances, office equipment, industrial equipment, and the like, other than vehicles, such as personal computers and portable communication devices, which are driven by batteries. Further, the lithium ion secondary battery of the present invention is a power storage device and a power smoothing device for wind power generation, photovoltaic power generation, hydroelectric power generation and other power systems, power sources for ships and the like and / or power supply sources for auxiliary equipment, aircraft, Power supply for spacecraft and other power supplies and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, The present invention may be applied to a power storage device that temporarily stores electric power required for charging at a charging station for an electric vehicle or the like.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. The present invention can be implemented in various forms with modifications, improvements, and the like that can be made by those skilled in the art without departing from the gist of the present invention.
 以下に、実施例及び比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. Note that the present invention is not limited by these examples.
 (実施例1)
 a)工程
 フラスコ内で、アクリル酸159.2g(2.2mol)を486.2gのN-メチル-2-ピロリドンに溶解して、アクリル酸溶液とした。フラスコ内の気体を窒素ガスで置換した後に、ラジカル重合開始剤であるアゾビスイソブチロニトリル1.80g(0.01mol)を添加して反応溶液とした。撹拌下の反応溶液を60℃に加温して3時間撹拌し、その後90℃に加温して12時間撹拌して、ラジカル重合反応を進行させ、ポリアクリル酸を合成した。
 反応の進行を追跡したところ、60℃の加温条件下でラジカル重合反応が開始されたこと、及び、60℃の加温条件下で1時間以内に、アクリル酸がほとんど消費されたことが確認された。
(Example 1)
a) Step In a flask, 159.2 g (2.2 mol) of acrylic acid was dissolved in 486.2 g of N-methyl-2-pyrrolidone to prepare an acrylic acid solution. After replacing the gas in the flask with nitrogen gas, 1.80 g (0.01 mol) of azobisisobutyronitrile as a radical polymerization initiator was added to obtain a reaction solution. The reaction solution under stirring was heated to 60 ° C. and stirred for 3 hours, and then heated to 90 ° C. and stirred for 12 hours to allow a radical polymerization reaction to proceed to synthesize polyacrylic acid.
When the progress of the reaction was monitored, it was confirmed that the radical polymerization reaction was started under the heating condition of 60 ° C., and that acrylic acid was almost consumed within one hour under the heating condition of 60 ° C. Was done.
 b)工程
 4,4’-ジアミノジフェニルメタン27.4g(0.14mol)を190gのN-メチル-2-ピロリドンに溶解して、多官能アミン溶液とした。
 a)工程で得られたポリアクリル酸溶液に対して多官能アミン溶液を添加して、混合溶液とした。混合溶液を110℃の加熱条件下で2時間撹拌することで、ポリアクリル酸及び多官能アミンが縮合してなる化合物の前駆体を含有する実施例1の溶液を製造した。 なお、実施例1の溶液においては、アクリル酸モノマーと4,4’-ジアミノジフェニルメタンのモル比は16:1に該当する。
b) Step 27.4 g (0.14 mol) of 4,4'-diaminodiphenylmethane was dissolved in 190 g of N-methyl-2-pyrrolidone to obtain a polyfunctional amine solution.
a) A polyfunctional amine solution was added to the polyacrylic acid solution obtained in step a) to obtain a mixed solution. The solution of Example 1 containing a precursor of a compound obtained by condensation of polyacrylic acid and a polyfunctional amine was produced by stirring the mixed solution under a heating condition of 110 ° C. for 2 hours. In the solution of Example 1, the molar ratio of acrylic acid monomer to 4,4'-diaminodiphenylmethane corresponds to 16: 1.
 c)工程
 Si含有負極活物質として炭素被覆シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤として固形分が14質量部となる量の実施例1の溶液、及び、適量のN-メチル-2-ピロリドンを混合して、スラリー状の負極活物質層形成用組成物を製造した。
c) Step The solution of Example 1 in an amount of 72.5 parts by mass of the carbon-coated silicon material as the Si-containing negative electrode active material, 13.5 parts by mass of acetylene black as the conductive additive, and 14 parts by mass of the solid content as the binder And an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry-like composition for forming a negative electrode active material layer.
 d)工程
 負極用集電体として、厚み30μmの電解Cu箔を、ロール状に巻き取ったものを準備した。
 集電体を搬出するロール巻出し部と、ロール状の負極前駆体が巻取られるロール巻取り部と、ロール巻出し部及びロール巻取り部の間に配置されている、負極活物質層形成用組成物を膜状に塗布する塗布部と、塗布部及びロール巻取り部の間に配置されている乾燥部と、乾燥部及びロール巻取り部の間に配置されているプレス部とを具備する、負極前駆体製造用装置を準備した。
 当該装置に負極用集電体及び負極活物質層形成用組成物を供給して、大気下で、負極前駆体を製造した。なお、乾燥部における乾燥温度は80℃とした。また、負極前駆体における負極活物質層の厚みは20μmであった。
d) Process A 30 μm thick electrolytic Cu foil wound into a roll was prepared as a negative electrode current collector.
A roll unwinding unit for unloading the current collector, a roll winding unit on which a rolled negative electrode precursor is wound, and a negative electrode active material layer formed between the roll unwinding unit and the roll winding unit; A coating section for applying the composition for film formation, a drying section disposed between the coating section and the roll winding section, and a press section disposed between the drying section and the roll winding section. An apparatus for producing a negative electrode precursor was prepared.
The current collector for a negative electrode and the composition for forming a negative electrode active material layer were supplied to the device, and a negative electrode precursor was produced in the atmosphere. Note that the drying temperature in the drying section was set to 80 ° C. The thickness of the negative electrode active material layer in the negative electrode precursor was 20 μm.
 e)工程
 ロール状の負極前駆体を搬出するロール巻出し部と、ロール状の負極が巻取られるロール巻取り部と、前記ロール巻出し部及び前記ロール巻取り部の間に配置されている波長6μmの光を照射する照射部と、を具備する装置を準備した。当該装置において、負極前駆体が光照射される道程は、窒素ガス雰囲気下とした。
 波長6μmの光の出力を、照射部の温度が200℃となるように設定した。また、負極前駆体の任意の箇所に光照射される時間が3分となるように、ロール巻取り速度を設定した。
 d)工程で得た負極前駆体を上記の装置に配置して、以上の条件で上記の装置を作動させて、実施例1の負極を製造した。
e) Step: a roll unwinding section for unloading the rolled negative electrode precursor, a roll winding section for winding the rolled negative electrode, and a roll unwinding section and a roll winding section. An irradiation unit for irradiating light having a wavelength of 6 μm was prepared. In this apparatus, the process of irradiating the negative electrode precursor with light was performed under a nitrogen gas atmosphere.
The output of the light having a wavelength of 6 μm was set so that the temperature of the irradiation part was 200 ° C. The roll winding speed was set so that the time for irradiating an arbitrary portion of the negative electrode precursor with light was 3 minutes.
The negative electrode precursor of Example 1 was manufactured by placing the negative electrode precursor obtained in step d) in the above device and operating the above device under the above conditions.
 <リチウムイオン二次電池の製造>
 実施例1の負極を径11mmの円形に裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmの円形に裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒に、LiPFを1mol/Lで溶解した電解液を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、コイン型電池を得た。これを実施例1のリチウムイオン二次電池とした。
<Manufacture of lithium ion secondary batteries>
The negative electrode of Example 1 was cut into a circle having a diameter of 11 mm, and used as an evaluation electrode. A metal lithium foil having a thickness of 500 μm was cut into a circle having a diameter of 13 mm to serve as a counter electrode. As a separator, a glass filter (Hoechst Celanese) and celgard 2400 (Polypore), which is a single-layer polypropylene, were prepared. In addition, an electrolyte was prepared by dissolving LiPF 6 at 1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate mixed at a volume ratio of 1: 1. Two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body. This electrode body was accommodated in a coin-type battery case CR2032 (Hosen Co., Ltd.), and an electrolytic solution was further injected to obtain a coin-type battery. This was designated as a lithium ion secondary battery of Example 1.
 (比較例1)
 市販されているポリアクリル酸の水溶液(東亞合成株式会社)を準備した。当該ポリアクリル酸は水中で製造されたものである。
 ポリアクリル酸の水溶液を乾燥させて、水を除去した。乾燥後のポリアクリル酸をN-メチル-2-ピロリドンに溶解して、ポリアクリル酸溶液とした。
(Comparative Example 1)
A commercially available aqueous solution of polyacrylic acid (Toagosei Co., Ltd.) was prepared. The polyacrylic acid is produced in water.
The aqueous solution of polyacrylic acid was dried to remove water. The dried polyacrylic acid was dissolved in N-methyl-2-pyrrolidone to obtain a polyacrylic acid solution.
 上記のポリアクリル酸溶液を用いてb)工程を実施した以外は、実施例1と同様の方法で、比較例1の溶液、負極、リチウムイオン二次電池を製造した。 溶液 A solution, a negative electrode, and a lithium ion secondary battery of Comparative Example 1 were produced in the same manner as in Example 1, except that step b) was performed using the above-mentioned polyacrylic acid solution.
 (評価例1)
 実施例1のa)工程で合成されたポリアクリル酸、及び、比較例1で使用した市販のポリアクリル酸を、それぞれゲル浸透クロマトグラフィーで分析して、数平均分子量(Mn)及び重量平均分子量(Mw)を測定した。結果を表1に示す。 
(Evaluation Example 1)
The polyacrylic acid synthesized in the step a) of Example 1 and the commercially available polyacrylic acid used in Comparative Example 1 were respectively analyzed by gel permeation chromatography, and the number average molecular weight (Mn) and the weight average molecular weight were analyzed. (Mw) was measured. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 Mw/Mnの結果から、実施例1のa)工程で製造されたポリアクリル酸の方が、単分散に近い分子量分布をしているといえる。 From the results of Mw / Mn, it can be said that the polyacrylic acid produced in the step a) of Example 1 has a molecular weight distribution closer to monodispersion.
 (評価例2)
 実施例1のa)工程で合成されたポリアクリル酸、及び、比較例1で使用した市販のポリアクリル酸、並びに、ポリアクリル酸と4,4’-ジアミノジフェニルメタンの混合溶液である実施例1の溶液及び比較例1の溶液を、H-NMRで分析した。その結果、いずれの物質も目的の化学構造を示すことが確認された。
(Evaluation example 2)
Example 1 which is a polyacrylic acid synthesized in the step a) of Example 1, the commercially available polyacrylic acid used in Comparative Example 1, and a mixed solution of polyacrylic acid and 4,4′-diaminodiphenylmethane And the solution of Comparative Example 1 were analyzed by 1 H-NMR. As a result, it was confirmed that each of the substances had the desired chemical structure.
 実施例1のa)工程で製造されたポリアクリル酸のH-NMRチャートを図1に示し、比較例1で使用した市販のポリアクリル酸のH-NMRチャートを図2に示す。
 図1及び図2を比較すると、2~2.2ppmや4ppmに検出されるピーク強度に関しては、図1の方が小さく、図2の方が大きいことがわかる。2~2.2ppmや4ppmに検出されるピークは、架橋などのポリアクリル酸の変性に由来するピークである。よって、実施例1のa)工程で製造されたポリアクリル酸は、変性が少ないといえる。
A 1 H-NMR chart of polyacrylic acid produced in the step a) of Example 1 shown in FIG. 1, a 1 H-NMR chart of a commercially available polyacrylic acid used in Comparative Example 1 in FIG.
1 and 2, it can be seen that the peak intensities detected at 2 to 2.2 ppm and 4 ppm are smaller in FIG. 1 and larger in FIG. Peaks detected at 2 to 2.2 ppm and 4 ppm are peaks derived from polyacrylic acid modification such as crosslinking. Therefore, it can be said that the polyacrylic acid produced in step a) of Example 1 has little modification.
 (評価例3)
 実施例1及び比較例1のリチウムイオン二次電池につき、0.05Cで0.01Vまで充電した後に、1Vまで放電するとの初回充放電を行った。
 また、初回充放電に引き続き、0.15Cで0.01Vまで充電した後に、1Vまで放電するとの充放電サイクルを49回繰り返し行った。
(Evaluation example 3)
For the lithium ion secondary batteries of Example 1 and Comparative Example 1, initial charging / discharging was performed by charging to 0.01 V at 0.05 C and then discharging to 1 V.
After the initial charge / discharge, the charge / discharge cycle of charging to 0.1 V at 0.01 V and discharging to 1 V was repeated 49 times.
 その結果、実施例1及び比較例1のリチウムイオン二次電池は、同等の充放電曲線を示し、かつ、同等の容量維持率を示した。 As a result, the lithium ion secondary batteries of Example 1 and Comparative Example 1 showed the same charge / discharge curve and the same capacity retention ratio.
 (参考例1)
 重量平均分子量10万のポリアクリル酸をN-メチル-2-ピロリドンに溶解して、ポリアクリル酸が19質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’-ジアミノジフェニルメタンをN-メチル-2-ピロリドンに溶解して、4,4’-ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液に、4,4’-ジアミノジフェニルメタン溶液を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を130℃で3時間撹拌して、参考例1の溶液を製造した。
 なお、参考例1の溶液においては、アクリル酸モノマーと4,4’-ジアミノジフェニルメタンのモル比は16:1に該当する。
(Reference Example 1)
Polyacrylic acid having a weight average molecular weight of 100,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 19% by mass of polyacrylic acid. Also, 4,4'-diaminodiphenylmethane was dissolved in N-methyl-2-pyrrolidone to prepare a 4,4'-diaminodiphenylmethane solution. Under stirring conditions, a 4,4′-diaminodiphenylmethane solution was added dropwise to the polyacrylic acid solution, and the resulting mixture was stirred at room temperature for 30 minutes. Thereafter, using a Dean-Stark apparatus, the mixture was stirred at 130 ° C. for 3 hours to produce a solution of Reference Example 1.
In the solution of Reference Example 1, the molar ratio of acrylic acid monomer to 4,4′-diaminodiphenylmethane corresponds to 16: 1.
 c)工程
 Si含有負極活物質として炭素被覆シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤として固形分が14質量部となる量の参考例1の溶液、及び、適量のN-メチル-2-ピロリドンを混合して、スラリー状の負極活物質層形成用組成物を製造した。
c) Step 72.5 parts by mass of the carbon-coated silicon material as the Si-containing negative electrode active material, 13.5 parts by mass of acetylene black as the conductive agent, and the solution of Reference Example 1 having a solid content of 14 parts by mass as the binder And an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry-like composition for forming a negative electrode active material layer.
 d)工程
 負極用集電体として、厚み30μmの電解Cu箔を、ロール状に巻き取ったものを準備した。
 集電体を搬出するロール巻出し部と、ロール状の負極前駆体が巻取られるロール巻取り部と、ロール巻出し部及びロール巻取り部の間に配置されている、負極活物質層形成用組成物を膜状に塗布する塗布部と、塗布部及びロール巻取り部の間に配置されている乾燥部と、乾燥部及びロール巻取り部の間に配置されているプレス部とを具備する、負極前駆体製造用装置を準備した。
 当該装置に負極用集電体及び負極活物質層形成用組成物を供給して、大気下で、負極前駆体を製造した。なお、乾燥部における乾燥温度は80℃とした。また、負極前駆体における負極活物質層の厚みは20μmであった。
d) Process A 30 μm thick electrolytic Cu foil wound into a roll was prepared as a negative electrode current collector.
A roll unwinding unit for unloading the current collector, a roll winding unit on which a rolled negative electrode precursor is wound, and a negative electrode active material layer formed between the roll unwinding unit and the roll winding unit; A coating section for applying the composition for film formation, a drying section disposed between the coating section and the roll winding section, and a press section disposed between the drying section and the roll winding section. An apparatus for producing a negative electrode precursor was prepared.
The current collector for a negative electrode and the composition for forming a negative electrode active material layer were supplied to the device, and a negative electrode precursor was produced in the atmosphere. Note that the drying temperature in the drying section was set to 80 ° C. The thickness of the negative electrode active material layer in the negative electrode precursor was 20 μm.
 e)工程
 ロール状の負極前駆体を搬出するロール巻出し部と、ロール状の負極が巻取られるロール巻取り部と、前記ロール巻出し部及び前記ロール巻取り部の間に配置されている波長6μmの光を照射する照射部と、を具備する装置を準備した。当該装置において、負極前駆体が光照射される道程は、窒素ガス雰囲気下とした。
 波長6μmの光の出力を、照射部の温度が200℃となるように設定した。また、負極前駆体の任意の箇所に光照射される時間が3分となるように、ロール巻取り速度を設定した。
 d)工程で得た負極前駆体を上記の装置に配置して、以上の条件で上記の装置を作動させて、参考例1の負極を製造した。
e) Step: a roll unwinding section for unloading the rolled negative electrode precursor, a roll winding section for winding the rolled negative electrode, and a roll unwinding section and a roll winding section. An irradiation unit for irradiating light having a wavelength of 6 μm was prepared. In this apparatus, the process of irradiating the negative electrode precursor with light was performed under a nitrogen gas atmosphere.
The output of the light having a wavelength of 6 μm was set so that the temperature of the irradiation part was 200 ° C. The roll winding speed was set so that the time for irradiating an arbitrary portion of the negative electrode precursor with light was 3 minutes.
d) The negative electrode precursor obtained in the step was placed in the above-mentioned device, and the above-mentioned device was operated under the above conditions, thereby producing the negative electrode of Reference Example 1.
 <リチウムイオン二次電池の製造>
 参考例1の負極を径11mmの円形に裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmの円形に裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒に、LiPFを1mol/Lで溶解した電解液を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、コイン型電池を得た。これを参考例1のリチウムイオン二次電池とした。
<Manufacture of lithium ion secondary batteries>
The negative electrode of Reference Example 1 was cut into a circle having a diameter of 11 mm, and used as an evaluation electrode. A metal lithium foil having a thickness of 500 μm was cut into a circle having a diameter of 13 mm to serve as a counter electrode. As a separator, a glass filter (Hoechst Celanese) and celgard 2400 (Polypore), which is a single-layer polypropylene, were prepared. In addition, an electrolyte was prepared by dissolving LiPF 6 at 1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate mixed at a volume ratio of 1: 1. Two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body. This electrode body was accommodated in a coin-type battery case CR2032 (Hosen Co., Ltd.), and an electrolytic solution was further injected to obtain a coin-type battery. This was designated as a lithium ion secondary battery of Reference Example 1.
 (参考例2)
 e)工程において、波長6μmの光の出力を照射部の温度が180℃となるように設定した以外は、参考例1と同様の方法で、参考例2の負極及びリチウムイオン二次電池を製造した。
(Reference Example 2)
In the step e), the negative electrode and the lithium-ion secondary battery of Reference Example 2 were manufactured in the same manner as in Reference Example 1, except that the output of light having a wavelength of 6 μm was set so that the temperature of the irradiated portion was 180 ° C. did.
 (参考比較例1)
 e)工程を実施せず、以下の加熱工程を実施した以外は、参考例1と同様の方法で、参考比較例1の負極及びリチウムイオン二次電池を製造した。
 加熱工程:
 ロール状に捲回した負極前駆体を真空加熱炉に配置し、減圧雰囲気下、200℃で2時間加熱して、参考比較例1の負極を製造した。参考比較例1の負極には、若干のシワが観察された。
(Reference Comparative Example 1)
e) A negative electrode and a lithium ion secondary battery of Reference Comparative Example 1 were manufactured in the same manner as in Reference Example 1, except that the following heating step was performed without performing the step.
Heating process:
The negative electrode precursor wound in a roll was placed in a vacuum heating furnace and heated at 200 ° C. for 2 hours under a reduced pressure atmosphere to produce a negative electrode of Reference Comparative Example 1. Some wrinkles were observed in the negative electrode of Reference Comparative Example 1.
 (参考評価例1)
 参考例1における負極前駆体、参考例1の負極、参考例2の負極及び参考比較例1の負極を、クロロホルムに浸漬させて、4,4’-ジアミノジフェニルメタンを抽出させた。得られた4,4’-ジアミノジフェニルメタンのクロロホルム溶液をGC-MSで分析した。結果を表2に示す。 
(Reference evaluation example 1)
The negative electrode precursor of Reference Example 1, the negative electrode of Reference Example 1, the negative electrode of Reference Example 2, and the negative electrode of Reference Comparative Example 1 were immersed in chloroform to extract 4,4′-diaminodiphenylmethane. The obtained chloroform solution of 4,4′-diaminodiphenylmethane was analyzed by GC-MS. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2の結果から、参考例1及び参考比較例1の加熱条件においては、ポリアクリル酸と4,4’-ジアミノジフェニルメタンとの反応が完了していることがわかる。
 参考例2の結果から、参考例2の加熱条件においては、ポリアクリル酸と4,4’-ジアミノジフェニルメタンの反応の一部が完了していないといえる。加熱条件を3分間とするのであれば、200℃程度の加熱が必要であるといえるし、また、加熱温度を180℃とするのであれば、加熱時間を3分間よりも長くすることが必要といえる。
From the results in Table 2, it can be seen that under the heating conditions of Reference Example 1 and Reference Comparative Example 1, the reaction between polyacrylic acid and 4,4′-diaminodiphenylmethane was completed.
From the results of Reference Example 2, it can be said that under the heating conditions of Reference Example 2, a part of the reaction between polyacrylic acid and 4,4′-diaminodiphenylmethane was not completed. If the heating condition is 3 minutes, it can be said that heating at about 200 ° C. is necessary, and if the heating temperature is 180 ° C., the heating time needs to be longer than 3 minutes. I can say.
 (参考評価例2)
 参考例1における負極前駆体、参考例1の負極及び参考比較例1の負極の表面を、X線光電子分光法(XPS)でSiを対象とした分析を行った。
(Reference evaluation example 2)
The surfaces of the negative electrode precursor in Reference Example 1, the negative electrode in Reference Example 1, and the negative electrode in Reference Comparative Example 1 were analyzed for Si by X-ray photoelectron spectroscopy (XPS).
 その結果、参考例1の負極においては、参考例1における負極前駆体と比較して、負極表面のSiピークの強度にほとんど変化が無かった。しかし、参考比較例1の負極においては、参考例1における負極前駆体と比較して、負極表面のSiピークの強度が著しく増加した。 As a result, in the negative electrode of Reference Example 1, there was almost no change in the intensity of the Si peak on the negative electrode surface as compared with the negative electrode precursor of Reference Example 1. However, in the negative electrode of Reference Comparative Example 1, the intensity of the Si peak on the negative electrode surface was significantly increased as compared with the negative electrode precursor of Reference Example 1.
 以上の結果から、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の前駆体が、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物に変化した際に、参考例1の負極においては、Si含有負極活物質が当該前駆体又は当該化合物で被覆されている度合いは、ほとんど変化が無かったといえる。
 しかしながら、参考比較例1の負極においては、Si含有負極活物質が当該化合物で被覆されている度合いが著しく減少して、Si含有負極活物質が露出されたといえる。この現象は、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物において、ポリアクリル酸のカルボキシル基同士の脱水反応が進行することに因るポリアクリル酸の鎖同士の架橋反応が過剰に進行し、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物の体積が収縮したことに原因があると考えられる。
From the above results, the precursor of the compound obtained by condensation of polyacrylic acid and the polyfunctional amine of the general formula (1) is changed to a compound obtained by condensation of polyacrylic acid and the polyfunctional amine of the general formula (1). At that time, in the negative electrode of Reference Example 1, it can be said that the degree of the Si-containing negative electrode active material being coated with the precursor or the compound hardly changed.
However, in the negative electrode of Reference Comparative Example 1, the degree of coating of the Si-containing negative electrode active material with the compound was significantly reduced, and it can be said that the Si-containing negative electrode active material was exposed. This phenomenon occurs in a compound formed by condensation between polyacrylic acid and a polyfunctional amine represented by the general formula (1). The cross-linking between polyacrylic acid chains due to the progress of a dehydration reaction between carboxyl groups of polyacrylic acid. It is considered that the reaction proceeded excessively and the volume of the compound formed by condensation of polyacrylic acid and the polyfunctional amine of the general formula (1) shrank.
 (参考評価例3)
 参考例1の溶液から、N-メチル-2-ピロリドンを留去して、フィルムを製造した。熱機械分析装置(株式会社リガク TMA8310)を用いて、引張荷重49mN、窒素ガス雰囲気下における、下記温度条件1及び温度条件2での当該フィルムの収縮量を測定した。
 温度条件1: 室温から200℃へ昇温して、200℃で5分間保持し、室温へ冷却する。
 温度条件2: 室温から200℃へ昇温して、200℃で1時間保持し、室温へ冷却する。
(Reference evaluation example 3)
From the solution of Reference Example 1, N-methyl-2-pyrrolidone was distilled off to produce a film. Using a thermomechanical analyzer (Rigaku TMA8310), the shrinkage of the film under the following temperature conditions 1 and 2 under a tensile load of 49 mN and a nitrogen gas atmosphere was measured.
Temperature condition 1: The temperature is raised from room temperature to 200 ° C., kept at 200 ° C. for 5 minutes, and cooled to room temperature.
Temperature condition 2: The temperature is raised from room temperature to 200 ° C., kept at 200 ° C. for 1 hour, and cooled to room temperature.
 温度条件1でのフィルムの収縮量は1%程度であり、温度条件2でのフィルムの収縮量は2%程度であった。この結果から、高温での保持時間が長いほど、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物におけるポリアクリル酸の鎖同士の架橋反応が進行して、当該化合物の体積が収縮することが示唆される。 フ ィ ル ム The shrinkage of the film under temperature condition 1 was about 1%, and the shrinkage of the film under temperature condition 2 was about 2%. From this result, the longer the retention time at high temperature, the more the cross-linking reaction between the polyacrylic acid chains in the compound obtained by condensation between polyacrylic acid and the polyfunctional amine of the general formula (1) progresses, It is suggested that the volume shrinks.
 (参考評価例4)
 昇温加熱装置及び質量分析計を組み合わせたEGA-MSにて、参考例1における負極前駆体を室温から200℃へ昇温し、200℃を2時間保持して、発生する気体を分析した。
(Reference evaluation example 4)
The temperature of the negative electrode precursor in Reference Example 1 was increased from room temperature to 200 ° C. by EGA-MS in which a temperature raising heater and a mass spectrometer were combined, and the temperature was kept at 200 ° C. for 2 hours to analyze generated gas.
 その結果、付着水と推定される水、N-メチル-2-ピロリドン、脱水反応に由来すると推定される水の順に検出された。脱水反応に由来すると推定される水は、200℃に到達してから7分までに検出された。c)工程での加熱温度が200℃の場合、加熱時間は7分以下で足りるといえる。 As a result, water that was presumed to be attached water, N-methyl-2-pyrrolidone, and water that was presumed to be derived from the dehydration reaction were detected in this order. Water presumed to be derived from the dehydration reaction was detected by 7 minutes after reaching 200 ° C. When the heating temperature in the step c) is 200 ° C., it can be said that the heating time is 7 minutes or less.
 (参考評価例5)
 引張試験機を用いて、参考例1における負極前駆体、参考例1の負極、参考例2の負極及び参考比較例1の負極の剥離強度を測定した。試験方法はJIS  Z  0237に準拠した。試験方法について詳細に述べると、負極活物質層側を下向きにして台座に粘着テープで接着し、そして、負極を上向きに90度の方向に引っ張ることにより剥離強度を測定した。剥離強度の結果を、それぞれの負極の加熱温度とともに、表3に示す。 
(Reference Evaluation Example 5)
The peel strength of the negative electrode precursor of Reference Example 1, the negative electrode of Reference Example 1, the negative electrode of Reference Example 2, and the negative electrode of Reference Comparative Example 1 was measured using a tensile tester. The test method was based on JIS Z 0237. The test method was described in detail. The negative electrode active material layer side was downwardly attached to the pedestal with an adhesive tape, and the peeling strength was measured by pulling the negative electrode upward in the direction of 90 degrees. Table 3 shows the results of the peel strength together with the heating temperature of each negative electrode.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3から、高温での加熱が長時間為された参考比較例1の負極においては、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物は、結着剤としての能力が低下しているといえる。
 他方、参考例1における負極前駆体、参考例1の負極及び参考例2の負極の結果から、e)工程での加熱の有無に因らず、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物又はその前駆体は、好適な結着力を示すといえる。
From Table 3, in the negative electrode of Reference Comparative Example 1 in which heating at a high temperature was performed for a long time, the compound obtained by condensing polyacrylic acid and the polyfunctional amine of the general formula (1) has a capacity as a binder. Can be said to have decreased.
On the other hand, from the results of the negative electrode precursor of Reference Example 1, the negative electrode of Reference Example 1, and the negative electrode of Reference Example 2, polyacrylic acid and the polyfunctional compound of the general formula (1) were obtained regardless of the presence or absence of heating in the step e). A compound obtained by condensation of an amine or a precursor thereof can be said to exhibit a suitable binding force.
 (参考評価例6)
 CaFを粉砕して加圧し、CaF錠剤を製造した。参考例1の溶液をCaF錠剤に滴下した後に、N-メチル-2-ピロリドンを留去して乾燥し、測定用サンプルとした。当該測定用サンプルを、熱走査-赤外分光測定装置に供して、加熱条件下でのIRスペクトルの変化を分析した。加熱条件は、以下のとおりとした。
 30℃ → 180℃まで昇温 → 180℃で2時間保持 → 250℃まで昇温
(Reference Evaluation Example 6)
CaF 2 was crushed and pressed to produce CaF 2 tablets. After the solution of Reference Example 1 was dropped on a CaF 2 tablet, N-methyl-2-pyrrolidone was distilled off and dried to obtain a sample for measurement. The measurement sample was subjected to a thermal scanning-infrared spectrometer to analyze a change in IR spectrum under heating conditions. The heating conditions were as follows.
30 ° C → Heat up to 180 ° C → Hold at 180 ° C for 2 hours → Heat up to 250 ° C
 図3に30℃の時点での赤外吸収スペクトルを示す。図3においては、アミド基のカルボニルに由来するピークが観測されなかった。
 図4に250℃の時点での赤外吸収スペクトルを示す。図4においては、アミド基のカルボニルに由来するピークが強く観測された。また、ピーク強度は小さいものの、酸無水物のカルボニルに由来するピークも観測された。
FIG. 3 shows an infrared absorption spectrum at 30 ° C. In FIG. 3, no peak derived from the carbonyl of the amide group was observed.
FIG. 4 shows an infrared absorption spectrum at 250 ° C. In FIG. 4, a peak derived from the carbonyl of the amide group was strongly observed. Further, although the peak intensity was small, a peak derived from the carbonyl of the acid anhydride was also observed.
 加熱条件の推移に伴う、赤外吸収スペクトルのピーク挙動の推移を以下に示す。 推移 The transition of the peak behavior of the infrared absorption spectrum with the transition of the heating conditions is shown below.
 アミノ基に由来するピークの強度は昇温に伴い減少し、180℃で2時間保持後には、アミノ基に由来するピークは消失した。アミノ基に由来するピーク挙動と連動して、アミド基に由来するピークの強度は昇温に伴い増加した。また、イミド基に由来するピークの強度も昇温に伴い増加した。アミノ基とカルボキシル基が反応してアミド基を形成した後に、アミド基の一部が近傍のカルボキシル基と反応してイミド基を形成しているといえる。 The intensity of the peak derived from the amino group decreased with increasing temperature, and after holding at 180 ° C. for 2 hours, the peak derived from the amino group disappeared. In conjunction with the peak behavior derived from the amino group, the intensity of the peak derived from the amide group increased with increasing temperature. Further, the intensity of the peak derived from the imide group also increased with increasing temperature. It can be said that after the amino group and the carboxyl group react to form an amide group, part of the amide group reacts with a nearby carboxyl group to form an imide group.
 180℃で2時間保持中に、カルボキシル基同士が脱水縮合した酸無水物に由来するピークが観察され始めた。酸無水物に由来するピークの強度は、250℃までの昇温で、増加した。カルボキシル基に由来するピークの強度は昇温に伴い減少したものの、250℃の時点においても、カルボキシル基に由来するピークは観測された。 During holding at 180 ° C for 2 hours, a peak derived from an acid anhydride in which carboxyl groups were dehydrated and condensed began to be observed. The intensity of the peak derived from the acid anhydride increased with increasing temperature up to 250 ° C. Although the intensity of the peak derived from the carboxyl group decreased with increasing temperature, the peak derived from the carboxyl group was observed even at 250 ° C.
 参考評価例1~参考評価例6の結果を総合して考察すると、200℃、2時間の加熱処理を行った参考比較例1の負極においては、ポリアクリル酸の鎖のカルボキシル基同士が脱水縮合した酸無水物が、比較的多く生成したために、剥離強度が低下したといえる。
 他方、ポリアクリル酸と一般式(1)の多官能アミンが縮合してなる化合物又はその前駆体を、200℃となる波長4~8μmの光照射下で3分間程度処理することで、ポリアクリル酸と一般式(1)の多官能アミンとの脱水縮合反応が促進されつつ、ポリアクリル酸の鎖のカルボキシル基同士の脱水縮合反応は抑制された、好適な結着力を示す結着剤が得られるといえる。
Considering the results of Reference Evaluation Example 1 to Reference Evaluation Example 6 in total, in the negative electrode of Reference Comparative Example 1 subjected to heat treatment at 200 ° C. for 2 hours, the carboxyl groups of the polyacrylic acid chain are dehydrated and condensed. It can be said that the peel strength was lowered because a relatively large amount of acid anhydride was produced.
On the other hand, a polyacrylic acid and a compound obtained by condensation of the polyfunctional amine of the general formula (1) or a precursor thereof are treated under light irradiation at 200 ° C. for 4 minutes to 8 μm for about 3 minutes to obtain polyacrylic acid. While the dehydration-condensation reaction between the acid and the polyfunctional amine of the general formula (1) is accelerated, the dehydration-condensation reaction between the carboxyl groups of the polyacrylic acid chain is suppressed, and a binder exhibiting a suitable binding force is obtained. It can be said that.
 (参考評価例7)
 参考例1及び参考比較例1のリチウムイオン二次電池につき、0.05Cで0.01Vまで充電した後に、1Vまで放電するとの初回充放電を行った。
 また、初回充放電に引き続き、0.15Cで0.01Vまで充電した後に、1Vまで放電するとの充放電サイクルを499回繰り返し行った。
(Reference Evaluation Example 7)
For the lithium ion secondary batteries of Reference Example 1 and Reference Comparative Example 1, initial charging and discharging were performed by charging to 0.01 V at 0.05 C and then discharging to 1 V.
Further, following the initial charge and discharge, a charge and discharge cycle of charging to 0.1 V at 0.15 C and then discharging to 1 V was repeated 499 times.
 以下の式に従い、容量維持率を算出した。結果を表4に示す。
 容量維持率(%)=100×(最終サイクル時の放電容量)/(初回放電容量) 
The capacity retention was calculated according to the following equation. Table 4 shows the results.
Capacity maintenance rate (%) = 100 × (discharge capacity at last cycle) / (initial discharge capacity)
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表4の結果から、加熱時間が3分である参考例1は、加熱炉にて2時間加熱した参考比較例1と同等以上の容量維持率を示したことがわかる。 結果 From the results in Table 4, it can be seen that Reference Example 1, in which the heating time was 3 minutes, exhibited a capacity retention ratio equal to or higher than Reference Comparative Example 1, which was heated in a heating furnace for 2 hours.

Claims (5)

  1.  ポリアクリル酸及び下記一般式(1)の多官能アミンが縮合してなる化合物を含有する負極の製造方法であって、
     a)アクリル酸を有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程、
     b)前記ポリアクリル酸と下記一般式(1)の多官能アミンを前記有機溶媒中で混合して、混合溶液を製造する工程、
     c)前記混合溶液と負極活物質を混合して、負極活物質層形成用組成物を製造する工程、
     d)前記負極活物質層形成用組成物を集電体に塗布して、負極前駆体を製造する工程、
     e)前記負極前駆体を加熱して、前記ポリアクリル酸と下記一般式(1)の多官能アミンの縮合反応を進行させる工程、を有し、
     前記a)工程及び前記b)工程を同じ反応容器で行うことを特徴とする負極の製造方法。  
    Figure JPOXMLDOC01-appb-C000001
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R、Rはそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。
    A method for producing a negative electrode comprising a compound obtained by condensation of polyacrylic acid and a polyfunctional amine of the following general formula (1),
    a) reacting a radical polymerization initiator in a solution of acrylic acid in an organic solvent to synthesize polyacrylic acid;
    b) mixing the polyacrylic acid and the polyfunctional amine of the following general formula (1) in the organic solvent to produce a mixed solution;
    c) mixing the mixed solution and a negative electrode active material to produce a negative electrode active material layer forming composition;
    d) a step of applying the composition for forming a negative electrode active material layer to a current collector to produce a negative electrode precursor;
    e) heating the negative electrode precursor to advance a condensation reaction between the polyacrylic acid and the polyfunctional amine of the following general formula (1),
    A method for producing a negative electrode, wherein the steps a) and b) are performed in the same reaction vessel.
    Figure JPOXMLDOC01-appb-C000001
    Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom, and R 1 and R 2 are each independently a single or plural hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl Or a methoxy group.
  2.  前記a)工程及び前記b)工程が、下記a-1)工程及び下記b-1)工程、又は、下記a-2)工程及び下記b-2)である請求項1に記載の負極の製造方法。
     a-1)アクリル酸を有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
     b-1)前記a-1)工程後の反応溶液に前記多官能アミンを添加して加熱し、前記化合物の前駆体を含有する混合溶液を製造する工程
     a-2)アクリル酸及び前記多官能アミンを有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程
     b-2)前記a-2)工程後の反応溶液を加熱して、前記化合物の前駆体を含有する混合溶液を製造する工程
    2. The production of a negative electrode according to claim 1, wherein the steps a) and b) are the following steps a-1) and b-1) or the following steps a-2) and b-2). Method.
    a-1) a step of reacting a radical polymerization initiator in a solution of acrylic acid in an organic solvent to synthesize polyacrylic acid; b-1) adding the polyfunctional amine to the reaction solution after the step a-1); Is added and heated to produce a mixed solution containing the precursor of the compound. A-2) A radical polymerization initiator is allowed to act in a solution in which acrylic acid and the polyfunctional amine are dissolved in an organic solvent, Step b-2) of heating the reaction solution after the step a-2) to produce a mixed solution containing a precursor of the compound
  3.  前記e)工程が、前記負極前駆体に波長4~8μmの光を照射する工程である請求項1又は2に記載の負極の製造方法。 (3) The method for producing a negative electrode according to (1) or (2), wherein the step e) is a step of irradiating the negative electrode precursor with light having a wavelength of 4 to 8 μm.
  4.  前記e)工程が、ロール状の負極前駆体を搬出するロール巻出し部と、ロール状の負極が巻取られるロール巻取り部と、前記ロール巻出し部及び前記ロール巻取り部の間に配置される波長4~8μmの光を照射する照射部と、を具備する装置を用いる工程である、請求項3に記載の負極の製造方法。 The step e) includes disposing a roll unwinding unit that unwinds the roll-shaped negative electrode precursor, a roll winding unit that winds the roll-shaped negative electrode, and the roll unwinding unit and the roll winding unit. 4. The method for producing a negative electrode according to claim 3, wherein the method comprises using an apparatus having an irradiation unit for irradiating light having a wavelength of 4 to 8 μm.
  5.  a)アクリル酸を有機溶媒に溶解した溶液中でラジカル重合開始剤を作用させて、ポリアクリル酸を合成する工程、
     b)前記ポリアクリル酸と下記一般式(1)の多官能アミンを前記有機溶媒中で混合して、混合溶液を製造する工程、を有し、
     前記a)工程及び前記b)工程を同じ反応容器で行うことを特徴とする負極用結着剤の製造方法。  
    Figure JPOXMLDOC01-appb-C000002
     Yは、炭素数1~4の直鎖アルキル基、フェニレン基、又は酸素原子であり、R、Rはそれぞれ独立して、単数又は複数の水素原子、メチル基、エチル基、トリフルオロメチル基、又はメトキシ基である。
    a) reacting a radical polymerization initiator in a solution of acrylic acid in an organic solvent to synthesize polyacrylic acid;
    b) mixing the polyacrylic acid and a polyfunctional amine of the following general formula (1) in the organic solvent to produce a mixed solution,
    A method for producing a negative electrode binder, wherein the steps a) and b) are performed in the same reaction vessel.
    Figure JPOXMLDOC01-appb-C000002
    Y is a linear alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom, and R 1 and R 2 are each independently a single or plural hydrogen atoms, a methyl group, an ethyl group, a trifluoromethyl Or a methoxy group.
PCT/JP2019/027251 2018-08-10 2019-07-10 Method for producing negative electrode WO2020031595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-152098 2018-08-10
JP2018152098A JP2020027746A (en) 2018-08-10 2018-08-10 Manufacturing method for negative electrode

Publications (1)

Publication Number Publication Date
WO2020031595A1 true WO2020031595A1 (en) 2020-02-13

Family

ID=69413836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027251 WO2020031595A1 (en) 2018-08-10 2019-07-10 Method for producing negative electrode

Country Status (2)

Country Link
JP (1) JP2020027746A (en)
WO (1) WO2020031595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110234A (en) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd Binder for lithium ion secondary battery use, negative electrode active material layer for lithium ion secondary battery use, and lithium ion secondary battery
WO2016063882A1 (en) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 High-molecular compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing high-molecular compound, and method for producing negative electrode
WO2017138395A1 (en) * 2016-02-12 2017-08-17 株式会社 豊田自動織機 Polymer compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
WO2017141674A1 (en) * 2016-02-18 2017-08-24 株式会社 豊田自動織機 Polymer compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
WO2017183398A1 (en) * 2016-04-21 2017-10-26 株式会社 豊田自動織機 Polymeric compound, intermediate composition, negative electrode, electrical storage device, and method for producing polymeric compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110234A (en) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd Binder for lithium ion secondary battery use, negative electrode active material layer for lithium ion secondary battery use, and lithium ion secondary battery
WO2016063882A1 (en) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 High-molecular compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing high-molecular compound, and method for producing negative electrode
WO2017138395A1 (en) * 2016-02-12 2017-08-17 株式会社 豊田自動織機 Polymer compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
WO2017141674A1 (en) * 2016-02-18 2017-08-24 株式会社 豊田自動織機 Polymer compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
WO2017183398A1 (en) * 2016-04-21 2017-10-26 株式会社 豊田自動織機 Polymeric compound, intermediate composition, negative electrode, electrical storage device, and method for producing polymeric compound

Also Published As

Publication number Publication date
JP2020027746A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
WO2016042728A1 (en) Msix (m is at least one element selected from group 3-9 elements, provided that 1/3≤x≤3)-containing silicon material and method for manufacturing same
JP2019145402A (en) Lithium ion secondary battery
TW201810778A (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6459700B2 (en) Negative electrode and secondary battery containing amorphous-containing Si powder, and methods for producing the same
JP6855922B2 (en) Electrodes for secondary batteries coated with a polymer layer
JP2020050554A (en) Composite particle
JP2021015778A (en) Binder
JP7183707B2 (en) Negative electrode, manufacturing method of negative electrode, and binder for electrode
WO2020031597A1 (en) Method for producing negative electrode, and binder for electrode
JP2020053308A (en) Composite particles
JP6555520B2 (en) Method for producing carbon-coated silicon material
CN107835789B (en) Containing CaSi2Composition and method for producing silicon material
WO2020031595A1 (en) Method for producing negative electrode
JP2020123542A (en) Manufacturing method of anode
JP2020202011A (en) NEGATIVE ELECTRODE USING BOTH Si-CONTAINING NEGATIVE ELECTRODE ACTIVE MATERIAL AND GRAPHITE
JP2018193479A (en) Ionic conductive material
JP2018032602A (en) Method of producing negative electrode material
JP2018026259A (en) Negative electrode and lithium ion secondary battery
US12132201B2 (en) Negative electrode and method for producing negative electrode, and electrode binding agent
WO2020066218A1 (en) Binder for negative electrode
JP2021077487A (en) NEGATIVE ELECTRODE MATERIAL INCLUDING Si-CONTAINING NEGATIVE ELECTRODE ACTIVE MATERIAL
WO2020031596A1 (en) Negative electrode, method for producing negative electrode, and binder for electrode
JP2020027745A (en) Manufacturing method for negative electrode
JP2020053314A (en) Method of manufacturing composite particles
JP2019083121A (en) Negative electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847462

Country of ref document: EP

Kind code of ref document: A1