WO2020031588A1 - Base station device, terminal device, communication method, and integrated circuit - Google Patents

Base station device, terminal device, communication method, and integrated circuit Download PDF

Info

Publication number
WO2020031588A1
WO2020031588A1 PCT/JP2019/027107 JP2019027107W WO2020031588A1 WO 2020031588 A1 WO2020031588 A1 WO 2020031588A1 JP 2019027107 W JP2019027107 W JP 2019027107W WO 2020031588 A1 WO2020031588 A1 WO 2020031588A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
initial
terminal device
setting information
random access
Prior art date
Application number
PCT/JP2019/027107
Other languages
French (fr)
Japanese (ja)
Inventor
麗清 劉
山田 昇平
高橋 宏樹
星野 正幸
秀和 坪井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020031588A1 publication Critical patent/WO2020031588A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present invention relates to a base station device, a terminal device, a communication method, and an integrated circuit.
  • This application claims priority based on Japanese Patent Application No. 2018-148467 for which it applied to Japan on August 7, 2018, and uses the content here.
  • Non-Patent Document 1 As the wireless access method and wireless network technology for the fifth generation cellular system, in the 3rd generation partnership project (3GPP: The Third Generation Partnership Project), LTE (Long Term Evolution) -Advanced Pro and NR (New Radio) technology) and standard formulation (Non-Patent Document 1).
  • 3GPP The Third Generation Partnership Project
  • LTE Long Term Evolution
  • NR New Radio
  • 5th generation cellular systems include enhanced mobile broadband (eMBB) for high-speed and large-capacity transmission, ultra-reliable and low-latency communication (URLLC) for low-latency and high-reliability communication, and Internet of Things (IoT).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communication
  • IoT Internet of Things
  • mmMTC massive Machine Type Communication
  • An object of one embodiment of the present invention is to provide a terminal device, a base station device, a communication method, and an integrated circuit that enable efficient communication in the above wireless communication system.
  • the terminal device includes a receiving unit that receives an RRCReconfiguraton message, and a control unit that determines setting information of a search space for receiving the SIB1 and setting information of a RESET. If the first parameter reconfigurationWithSync is included, the control unit determines that the active DL @ BWP includes the bandwidth of the initial DL @ BWP and the SS block with which the initial DL @ BWP is related in the frequency domain, and the same subcarrier interval as the initial DL @ BWP.
  • the setting information of searchspace # 0 and the setting information of RESET # 0 are determined, and the SIB1 is acquired by the active DL @ BWP based on the determined setting information of searchspace # 0 and the setting information of RESET # 0.
  • the first parameter is the target cell SpCell It is a parameter for synchronizing les configuration, the CORESET # 0 is relative to the initial DL BWP, set by ControlResourceSetZero, the searchspace # 0 is relative to the initial DL BWP, set by SearchSpaceZero.
  • a base station device that communicates with the terminal device includes a transmitting unit that transmits an RRCReconfiguraton message, and a control unit that controls a search space for the terminal device to acquire SIB1 and CORESET.
  • the control unit determines that an active DL @ BWP operated by the terminal device is associated with an initial DL @ BWP bandwidth and an initial DL @ BWP in a frequency domain.
  • the terminal device If the terminal device includes the SS block to be used and uses the same subcarrier interval as the initial DL @ BWP, the terminal device is caused to acquire SIB1 by the active DL @ BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0. ,
  • the first parameter is the target cell.
  • the parameters for synchronous reconfiguration to the SpCell are set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set by searchSpaceZero for the initial DL @ BWP. Is done.
  • the communication method is a communication method for a terminal device, which receives an RRCReconfiguraton message and determines search space setting information and CORESET setting information for receiving SIB1. If the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the active DL @ BWP includes the bandwidth of the initial DL @ BWP and the SS block associated with the initial DL @ BWP in the frequency domain, and the same subcarrier interval as the initial DL @ BWP.
  • the setting information of searchspace # 0 and the setting information of RESET # 0 are determined, and the SIB1 is acquired by the active DL @ BWP based on the determined setting information of searchspace # 0 and the setting information of RESET # 0.
  • the first parameter is the target cell Sp This is a parameter for synchronous reconfiguration to the Cell.
  • the RESET # 0 is set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set by searchSpaceZero for the initial DL @ BWP. You.
  • the communication method according to an aspect of the present invention is a communication method for a base station apparatus, which is a communication method for a base station apparatus that communicates with a terminal apparatus that performs an RRC reconfiguration procedure, and transmits a RRCReconfiguraton message. Then, the terminal device controls a search space and a RESET for acquiring SIB1, and when the RRCReconfiguraton message includes the first parameter reconfigurationWithSync, the active DL @ BWP operated by the terminal device is initially set in the frequency domain.
  • the terminal device is used for the setting information of searchspace # 0 and the setting information of CORRESET # 0.
  • the first parameter is a parameter for synchronous reconfiguration to the target cell SpCell
  • the RESET # 0 is set by the controlResourceSetZero for the initial DL @ BWP
  • the searchspace # 0 is set. Is set by searchSpaceZero for the initial DL @ BWP.
  • the integrated circuit according to one embodiment of the present invention is an integrated circuit mounted on a terminal device, the function of receiving an RRCReconfiguraton message, the setting information of search space for receiving SIB1, and the setting of CORRESET.
  • the setting information of searchspace # 0 and the setting information of RESET # 0 are determined, and the setting information of the determined searchspace # 0 and the setting of RESET # 0 are determined.
  • the active DL @ BWP is used to obtain SIB1, 1 is a parameter for synchronous reconfiguration to the target cell SpCell, the RESET # 0 is set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is a parameter for the initial DL @ BWP.
  • searchSpaceZero is set by searchSpaceZero.
  • an integrated circuit is an integrated circuit mounted on a base station device, and has a function of transmitting an RRCReconfiguraton message, a search space for the terminal device to acquire SIB1, and a reset.
  • the active DL @ BWP operated by the terminal apparatus is set to the initial DL @ BWP bandwidth and the initial DL @ BWP in the frequency domain. If the DL @ BWP includes an associated SS block and uses the same subcarrier interval as the initial DL @ BWP, the terminal apparatus is configured to use the active DL @ BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0.
  • SIB1 is acquired, and the first parameter is This is a parameter for synchronous reconfiguration to the get cell SpCell.
  • the RESET # 0 is set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set by searchSpaceZero for the initial DL @ BWP. Is done.
  • the base station device and the terminal device can communicate efficiently.
  • FIG. 1 is a diagram illustrating a concept of a wireless communication system according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of an SS / PBCH block and an SS burst set according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of an uplink and a downlink slot according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a relationship in a time domain of subframes, slots, and minislots according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a slot or a subframe according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of beamforming according to the embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a concept of a wireless communication system according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of an SS / PBCH block and an
  • FIG. 7 is a diagram illustrating an example of SSB index allocation for PRACH opportunities according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of a BWP setting according to the embodiment of the present invention.
  • FIG. 8 is a diagram illustrating pseudo code related to a MAC entity determining BWP switching for a serving cell at the start of a random access procedure in a serving cell according to an embodiment of the present invention. It is a flowchart which shows an example of the random access procedure of the terminal device 1 concerning this embodiment.
  • FIG. 14 is a diagram illustrating another example of pseudo code related to the determination of the BWP switching performed by the MAC entity on the serving cell at the start of the random access procedure in the serving cell according to the present embodiment.
  • FIG. 1 is a schematic block diagram illustrating a configuration of a terminal device 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a base station device 3 according to the embodiment of the present invention
  • FIG. 1 is a conceptual diagram of the wireless communication system according to the present embodiment.
  • the wireless communication system includes a terminal device 1A, a terminal device 1B, and a base station device 3.
  • the terminal devices 1A and 1B are also referred to as terminal devices 1.
  • the terminal device 1 is also called a user terminal, a mobile station device, a communication terminal, a mobile device, a terminal, a UE (User Equipment), and an MS (Mobile Station).
  • the base station device 3 includes a wireless base station device, a base station, a wireless base station, a fixed station, an NB (Node B), an eNB (evolved Node B), a BTS (Base Transceiver Station), a BS (Base Station), and an NR NB ( Also called NR (Node B), NNB, TRP (Transmission and Reception Point), and gNB.
  • the base station device 3 may include a core network device.
  • the base station device 3 may include one or more transmission / reception points 4 (transmission @ reception @ point). At least a part of the functions / processes of the base station device 3 described below may be the functions / processes at each transmission / reception point 4 of the base station device 3.
  • the base station device 3 may serve the terminal device 1 with one or more cells in a communicable range (communication area) controlled by the base station device 3. Further, the base station device 3 may serve the terminal device 1 with one or a plurality of cells in a communicable range (communication area) controlled by one or a plurality of transmission / reception points 4. Further, one cell may be divided into a plurality of partial areas (Beamed @ area), and the terminal device 1 may be served in each of the partial areas.
  • the partial area may be identified based on an index of a beam used in beamforming or an index of precoding.
  • a wireless communication link from the base station device 3 to the terminal device 1 is referred to as a downlink.
  • the wireless communication link from the terminal device 1 to the base station device 3 is called an uplink.
  • orthogonal frequency division multiplexing including a cyclic prefix (CP: Cyclic Prefix), single carrier frequency multiplexing (SC- ().
  • FDM Single-Carrier Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • MC-CDM Multi-Carrier Code Division Multiplexing
  • UFMC universal filter multicarrier
  • F-OFDM filter OFDM
  • FBMC filter bank multicarrier
  • OFDM symbols will be described using OFDM as a transmission method, but the present invention includes a case using the above-described other transmission methods.
  • the above-described transmission method using no padding or zero padding instead of the CP may be used. Also, the CP and zero padding may be added to both the front and the rear.
  • One aspect of the present embodiment may be operated in carrier aggregation or dual connectivity with a radio access technology (RAT: Radio Access Technology) such as LTE or LTE-A / LTE-A Pro.
  • RAT Radio Access Technology
  • some or all cells or cell groups, carriers or carrier groups for example, a primary cell (PCell: ⁇ Primary ⁇ Cell), a secondary cell (SCell: ⁇ Secondary ⁇ Cell), a primary secondary cell (PSCell), and an MCG (Master Cell Group) ), SCG (Secondary Cell Group), etc.
  • PCell ⁇ Primary ⁇ Cell
  • SCell secondary cell
  • PSCell primary secondary cell
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • SpCell (Special Cell) is a PCell of MCG or PSCell of SCG depending on whether a MAC (MAC: Medium Access Control) entity is associated with MCG or SCG, respectively. Called. If it is not a dual connectivity operation, SpCell (Special @ Cell) is called PCell. SpCell (Special @ Cell) supports PUCCH transmission and contention-based random access.
  • MAC Medium Access Control
  • one or more serving cells may be set for the terminal device 1.
  • the set plurality of serving cells may include one primary cell and one or more secondary cells.
  • the primary cell may be a serving cell in which an initial connection establishment procedure has been performed, a serving cell in which a connection re-establishment procedure has been started, or a cell designated as a primary cell in a handover procedure. Good.
  • One or more secondary cells may be set at or after the establishment of an RRC (Radio Resource Control) connection.
  • the set multiple serving cells may include one primary secondary cell.
  • the primary secondary cell may be a secondary cell capable of transmitting control information in the uplink among one or a plurality of secondary cells in which the terminal device 1 is set.
  • a subset of two types of serving cells may be set for the terminal device 1.
  • the master cell group may be composed of one primary cell and zero or more secondary cells.
  • the secondary cell group may be composed of one primary secondary cell and zero or more secondary cells.
  • the wireless communication system of the present embodiment may employ TDD (Time Division Duplex) and / or FDD (Frequency Division Duplex).
  • a TDD (Time Division Division Duplex) method or an FDD (Frequency Division Division Duplex) method may be applied to all of the plurality of cells.
  • cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated.
  • the TDD scheme may be referred to as unpaired spectrum operation (Unpaired spectrum operation).
  • the FDD scheme may be referred to as a paired spectrum operation (Paired spectrum operation).
  • a carrier corresponding to a serving cell is referred to as a downlink component carrier (or a downlink carrier).
  • a carrier corresponding to a serving cell is called an uplink component carrier (or an uplink carrier).
  • a carrier corresponding to a serving cell is referred to as a side link component carrier (or a side link carrier).
  • the downlink component carrier, the uplink component carrier, and / or the side link component carrier are collectively referred to as a component carrier (or a carrier).
  • the following physical channels are used in wireless communication between the terminal device 1 and the base station device 3.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the PBCH is used to broadcast important information blocks (MIB: Master Information Block, EIB: Essential Information Block, BCH: Broadcast Channel) containing important system information required by the terminal device 1.
  • MIB Master Information Block
  • EIB Essential Information Block
  • BCH Broadcast Channel
  • the PBCH may be used to broadcast a time index within a cycle of a synchronization signal block (also referred to as an SS / PBCH block).
  • the time index is information indicating an index of a synchronization signal and a PBCH in a cell.
  • the SS / PBCH block is set within a predetermined period or set. Chronological order within the specified cycle.
  • the terminal device may recognize the difference in the time index as the difference in the transmission beam.
  • the PDCCH is used to transmit (or carry) downlink control information (Downlink Control Information: DCI) in downlink wireless communication (wireless communication from the base station device 3 to the terminal device 1).
  • DCI Downlink Control Information
  • one or a plurality of DCIs (which may be referred to as DCI formats) are defined for transmission of downlink control information. That is, a field for downlink control information is defined as DCI and is mapped to information bits.
  • the PDCCH is transmitted in PDCCH candidates.
  • the terminal device 1 monitors a set of PDCCH candidates (candidate) in the serving cell. Monitoring means attempting to decode the PDCCH according to a certain DCI format.
  • DCI format 0_0 may include information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
  • the DCI format 0_1 is information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating a band portion (BWP: BandWidth @ Part), channel state information (CSI: Channel @ State @ Information) request, sounding reference. It may include a signal (SRS: Sounding Reference Signal) request and information on an antenna port.
  • BWP BandWidth @ Part
  • CSI Channel @ State @ Information
  • SRS Sounding Reference Signal
  • the DCI format 1_0 may include information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
  • the DCI format 1_1 includes information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating a band portion (BWP), a transmission configuration instruction (TCI: Transmission Configuration Indication), and information regarding an antenna port. Is fine.
  • $ DCI format 2_0 is used to notify the slot format of one or more slots.
  • the slot format is defined such that each OFDM symbol in a slot is classified into one of downlink, flexible, and uplink. For example, when the slot format is 28, DDDDDDDDDDDFU is applied to 14 OFDM symbols in the slot for which the slot format 28 is indicated.
  • D is a downlink symbol
  • F is a flexible symbol
  • U is an uplink symbol. The slot will be described later.
  • the DCI format 2_1 is used to notify the terminal device 1 of a physical resource block and an OFDM symbol that may be assumed to have no transmission. This information may be referred to as a preemption instruction (intermittent transmission instruction).
  • the DCI format 2_2 is used for transmitting a PUSCH and a transmission power control (TPC: Transmit Power Control) command for the PUSCH.
  • TPC Transmit Power Control
  • the DCI format 2_3 is used to transmit a group of TPC commands for transmitting a sounding reference signal (SRS) by one or a plurality of terminal devices 1. Further, an SRS request may be transmitted together with the TPC command. Further, in DCI format 2_3, an SRS request and a TPC command may be defined for an uplink without a PUSCH and a PUCCH, or for an uplink in which SRS transmission power control is not associated with PUSCH transmission power control.
  • SRS sounding reference signal
  • the DCI for the downlink is also called a downlink grant (downlink @ grant) or a downlink assignment (downlink @ assignment).
  • DCI for the uplink is also referred to as an uplink grant (uplink @ grant) or an uplink assignment (Uplink @ assignment).
  • C-RNTI Cell-Radio Network Network Temporary Identifier
  • CS-RNTI Configured Scheduling-Radio Network Network Temporary Identifier
  • RA- It is scrambled with RNTI (Random @ Access-Radio @ Network @ Temporary @ Identity) or Temporary @ C-RNTI.
  • C-RNTI and CS-RNTI are identifiers for identifying a terminal device in a cell.
  • Temporary @ C-RNTI is an identifier for identifying the terminal device 1 that has transmitted the random access preamble during the contention based random access procedure (contention based random access procedure).
  • C-RNTI terminal device identifier (identification information)
  • CS-RNTI is used for periodically allocating PDSCH or PUSCH resources.
  • Temporary @ C-RNTI is used to control PDSCH transmission or PUSCH transmission in one or more slots.
  • Temporary @ C-RNTI is used to schedule retransmission of random access message 3 and transmission of random access message 4.
  • RA-RNTI random access response identification information
  • the PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI) in uplink wireless communication (wireless communication from the terminal device 1 to the base station device 3).
  • the uplink control information may include channel state information (CSI: ⁇ Channel ⁇ State ⁇ Information) used to indicate the state of the downlink channel.
  • the uplink control information may include a scheduling request (SR: Scheduling Request) used to request the UL-SCH resource.
  • the uplink control information may include HARQ-ACK (Hybrid ⁇ Automatic ⁇ Repeat ⁇ request ⁇ ACKnowledgement).
  • HARQ-ACK may indicate HARQ-ACK for downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH).
  • the PDSCH is used for transmitting downlink data (DL-SCH: Downlink Shared CHannel) from the medium access (MAC: Medium Access Control) layer.
  • DL-SCH Downlink Shared CHannel
  • MAC Medium Access Control
  • SI system information
  • RAR Random ⁇ Access ⁇ Response
  • the PUSCH may be used to transmit HARQ-ACK and / or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. Also, it may be used to transmit only CSI or only HARQ-ACK and CSI. That is, it may be used to transmit only UCI.
  • UL-SCH Uplink Shared CHannel
  • the base station device 3 and the terminal device 1 exchange (transmit and receive) signals in an upper layer (upper layer: higher layer).
  • the base station device 3 and the terminal device 1 transmit and receive RRC signaling (RRC message: Radio Resource Control message, RRC information: also referred to as Radio Resource Control information) in a radio resource control (RRC: Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the base station device 3 and the terminal device 1 may transmit and receive a MAC control element in a MAC (Medium Access Control) layer.
  • the RRC signaling and / or the MAC control element are also referred to as an upper layer signal (upper layer signal: higher @ layer @ signaling).
  • the upper layer here means the upper layer as viewed from the physical layer, and may include one or more of a MAC layer, an RRC layer, an RLC layer, a PDCP layer, a NAS (Non Access Stratum) layer, and the like.
  • the upper layer may include one or more of an RRC layer, an RLC layer, a PDCP layer, a NAS layer, and the like.
  • $ PDSCH or PUSCH may be used for transmitting RRC signaling and MAC control elements.
  • RRC signaling transmitted from the base station device 3 may be common signaling to a plurality of terminal devices 1 in a cell.
  • the RRC signaling transmitted from the base station apparatus 3 may be signaling dedicated to a certain terminal apparatus 1 (also referred to as dedicated signaling). That is, terminal device-specific (UE-specific) information may be transmitted to a certain terminal device 1 using dedicated signaling.
  • the PUSCH may be used for transmission of UE capability (UE Capability) in the uplink.
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • SS Synchronization signal
  • RS Reference Signal
  • the synchronization signal may include a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • the cell ID may be detected using the PSS and the SSS.
  • the synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and the time domain.
  • the synchronization signal may be used by the terminal device 1 for precoding or beam selection in precoding or beamforming by the base station device 3.
  • the beam may be called a transmission or reception filter setting, or a spatial domain transmission filter or a spatial domain reception filter.
  • the reference signal is used by the terminal device 1 to perform channel compensation of the physical channel.
  • the reference signal may also be used by the terminal device 1 to calculate downlink CSI.
  • the reference signal may be used for fine synchronization (Fine synchronization) to enable numerology such as wireless parameters and subcarrier intervals, FFT window synchronization, and the like.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PTRS Phase Tracking Reference Signal
  • TRS Tracking Reference Signal
  • DMRS is used to demodulate a modulated signal.
  • two types of reference signals for demodulating the PBCH and a reference signal for demodulating the PDSCH may be defined, or both may be referred to as DMRS.
  • CSI-RS is used for channel state information (CSI) measurement and beam management, and a periodic, semi-persistent, or aperiodic CSI reference signal transmission method is applied.
  • CSI-RS a non-zero power (NZP: Non-Zero @ Power) CSI-RS and a zero power (ZP: Zero @ Power) CSI-RS having zero transmission power (or reception power) may be defined.
  • NZP Non-Zero @ Power
  • ZP Zero @ Power
  • ZP CSI-RS may be defined as a CSI-RS resource with zero or no transmit power, and a PTRS to track the phase in the time axis with a view to guaranteeing a frequency offset due to phase noise.
  • TRS is used to guarantee Doppler shift during high-speed movement, where TRS may be used as one setting of CSI-RS, for example, one-port CSI-RS is used as TRS. Radio resources may be configured.
  • uplink reference signals are used.
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • SRS Sounding Reference Signal
  • DMRS is used to demodulate a modulated signal.
  • two types of reference signals for demodulating the PUCCH and reference signals for demodulating the PUSCH may be defined, or both may be referred to as DMRS.
  • the SRS is used for uplink channel state information (CSI) measurement, channel sounding, and beam management.
  • PTRS is used to track the phase in the time axis in order to guarantee a frequency offset due to phase noise.
  • a downlink physical channel and / or a downlink physical signal are collectively referred to as a downlink signal.
  • An uplink physical channel and / or an uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and / or the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and / or the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in a medium access control (MAC) layer is called a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (TB) and / or a MAC PDU (Protocol Data Unit).
  • HARQ Hybrid Automatic Repeat Repeat reQuest
  • the transport block is a unit of data that the MAC layer delivers to the physical layer.
  • transport blocks are mapped to codewords, and encoding is performed for each codeword.
  • FIG. 2 is a diagram illustrating an example of an SS / PBCH block (also referred to as a synchronization signal block, an SS block, or an SSB) and an SS burst set (also referred to as a synchronization signal burst set) according to the present embodiment.
  • FIG. 2 illustrates an example in which two SS / PBCH blocks are included in a periodically transmitted SS burst set, and the SS / PBCH blocks are configured by four consecutive OFDM symbols.
  • the SS / PBCH block is a unit block including at least a synchronization signal (PSS, SSS) and / or PBCH. Transmitting a signal / channel included in an SS / PBCH block is referred to as transmitting an SS / PBCH block.
  • the base station apparatus 3 may use an independent downlink transmission beam for each SS / PBCH block. Good.
  • PSS, SSS and PBCH are time / frequency multiplexed in one SS / PBCH block.
  • the order in which the PSS, SSS and / or PBCH are multiplexed in the time domain may be different from the example shown in FIG.
  • the SS burst set may be transmitted periodically.
  • a cycle to be used for initial access and a cycle to be set for a connected (Connected or RRC_Connected) terminal device may be defined.
  • the cycle set for the connected (Connected or RRC_Connected) terminal device may be set in the RRC layer.
  • the cycle set for the connected (Connected or RRC_Connected) terminal is a cycle of a radio resource in a time domain that may potentially transmit, and is actually transmitted by the base station apparatus 3. You may decide.
  • the cycle to be used for the initial access may be defined in advance in a specification or the like.
  • the SS burst set may be determined based on a system frame number (SFN: System Frame Number). Further, the start position (boundary) of the SS burst set may be determined based on the SFN and the cycle.
  • SFN System Frame Number
  • the SS / PBCH block is assigned an SSB index (also referred to as an SSB / PBCH block index) according to a temporal position in the SS burst set.
  • the terminal device 1 calculates an SSB index based on PBCH information and / or reference signal information included in the detected SS / PBCH block.
  • SSSS / PBCH blocks having the same relative time within each SS burst set in a plurality of SS burst sets are assigned the same SSB index.
  • SS / PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL (or have the same downlink transmit beam applied).
  • antenna ports in SS / PBCH blocks with the same relative time in each SS burst set in multiple SS burst sets may be assumed to be QCL with respect to average delay, Doppler shift, and spatial correlation.
  • SS / PBCH blocks assigned the same SSB index may be assumed to be QCL with respect to average delay, average gain, Doppler spread, Doppler shift, spatial correlation.
  • a setting corresponding to one or a plurality of SS / PBCH blocks that are QCLs (or may be reference signals) may be referred to as a QCL setting.
  • the number of SS / PBCH blocks (which may also be referred to as the number of SS blocks or the number of SSBs) is, for example, the number of SS / PBCH blocks (number) in an SS burst or SS burst set, or in a period of an SS / PBCH block. May be defined.
  • the number of SS / PBCH blocks may indicate the number of beam groups for cell selection within an SS burst, within an SS burst set, or within a period of an SS / PBCH block.
  • the beam group may be defined as the number of different SS / PBCH blocks or the number of different beams included in the SS burst, the SS burst set, or the period of the SS / PBCH block.
  • a reference signal described in the present embodiment includes a downlink reference signal, a synchronization signal, an SS / PBCH block, a downlink DM-RS, a CSI-RS, an uplink reference signal, an SRS, and / or an uplink DM- Includes RS.
  • a downlink reference signal, a synchronization signal, and / or an SS / PBCH block may be referred to as a reference signal.
  • the reference signal used in the downlink includes a downlink reference signal, a synchronization signal, an SS / PBCH block, a downlink DM-RS, a CSI-RS, and the like.
  • the reference signal used in the uplink includes an uplink reference signal, an SRS, and / or an uplink DM-RS.
  • the reference signal may be used for radio resource measurement (RRM). Further, the reference signal may be used for beam management.
  • RRM radio resource measurement
  • the reference signal may be used for beam management.
  • Beam management includes analog and / or digital beams in a transmitting device (the base station device 3 in the case of downlink, and the terminal device 1 in the case of uplink) and a receiving device (the terminal device 1 in the case of downlink). (In the case of the uplink, the base station apparatus 3), the procedure of the base station apparatus 3 and / or the terminal apparatus 1 for matching the directivity of the analog and / or digital beams and obtaining the beam gain.
  • the procedure for configuring, setting, or establishing a beam pair link may include the following procedure. ⁇ Beam selection ⁇ Beam refinement ⁇ Beam recovery
  • beam selection may be a procedure for selecting a beam in communication between the base station device 3 and the terminal device 1.
  • the beam improvement may be a procedure of selecting a beam having a higher gain or changing a beam between the base station apparatus 3 and the terminal apparatus 1 optimally by moving the terminal apparatus 1.
  • the beam recovery may be a procedure for reselecting a beam when the quality of a communication link is degraded due to a blockage caused by a shield or the passage of a person in communication between the base station device 3 and the terminal device 1.
  • Beam management may include beam selection and beam improvement.
  • Beam recovery may include the following procedures. Detection of beam failure detection of a new beam transmission of a beam recovery request monitoring of a response to a beam recovery request
  • CSI-RS or RSRP Reference Signal Received Power
  • CSI-RS resource index CRI: CSI-RS ⁇ Resource ⁇ Index
  • DMRS reference signal
  • the base station apparatus 3 indicates a time index of CRI or SS / PBCH when instructing a beam to the terminal apparatus 1, and the terminal apparatus 1 receives a signal based on the instructed CRI or SS / PBCH time index. I do.
  • the terminal device 1 may set and receive a spatial filter based on the designated CRI or SS / PBCH time index.
  • the terminal device 1 may receive the data using an assumption of a pseudo-same location (QCL: Quasi @ Co-Location).
  • a signal (antenna port, synchronization signal, reference signal, etc.) is "QCL" or another signal (antenna port, synchronization signal, reference signal, etc.) with another signal (antenna port, synchronization signal, reference signal, etc.) Can be interpreted as being associated with another signal.
  • Two antenna ports are said to be QCL if the Long Term Property of a channel carrying a symbol at one antenna port can be inferred from the channel carrying a symbol at the other antenna port.
  • the long-range characteristics of the channel include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. For example, if the antenna port 1 and the antenna port 2 are QCL with respect to the average delay, it means that the reception timing of the antenna port 2 can be inferred from the reception timing of the antenna port 1.
  • This QCL can be extended to beam management.
  • a QCL extended to the space may be newly defined.
  • the arrival angle AoA (Angle of Arrival), ZoA (Zenith angle of Arrival), etc.
  • Angle Spread for example, ASA (Angle Spread of Arrival) or ZSA (Zenith angle Spread of Arrival)
  • transmission angle AoD, ZoD, etc.
  • Angle Spread such as ASD (Angle Spread of Departure) or ZSD ( Zenith angle Spread of Departure)
  • spatial correlation Spatial Correlation
  • the reception spatial parameter can be regarded as QCL between the antenna port 1 and the antenna port 2
  • the reception from the reception beam (reception spatial filter) for receiving the signal from the antenna port 1 receives the signal from the antenna port 2 It means that the beam can be inferred.
  • QCL type a combination of long-range characteristics that may be regarded as a QCL may be defined.
  • types may be defined: -Type A: Doppler shift, Doppler spread, average delay, delay spread-Type B: Doppler shift, Doppler spread-Type C: average delay, Doppler shift-Type D: reception spatial parameter
  • the above-mentioned QCL type sets and / or sets one or two reference signals and an assumption of QCL of PDCCH or PDSCH @ DMRS as a transmission setting instruction (TCI: Transmission Configuration Indication) in the RRC and / or MAC layer and / or DCI. You may instruct.
  • TCI Transmission Configuration Indication
  • the terminal device 1 performs PDCCH @ DMRS .
  • PDCCH DMRS When receiving the PDCCH DMRS, assuming the Doppler shift, the Doppler spread, the average delay, the delay spread, the reception spatial parameter and the long-term characteristics of the channel in the reception of the SS / PBCH block index # 2, An estimate may be made.
  • a reference signal (SS / PBCH block in the above example) indicated by the TCI is a source reference signal, and a reference affected by long-term characteristics inferred from long-term characteristics of a channel when the source reference signal is received.
  • the signal (PDCCH @ DMRS in the above example) may be referred to as a target reference signal.
  • a combination of a source reference signal and a QCL type may be set for a plurality of TCI states and each state by RRC, and may be instructed to the terminal device 1 by a MAC layer or DCI.
  • the operations of the base station device 3 and the terminal device 1 equivalent to the beam management are defined by the assumption of the QCL in the spatial domain and the radio resources (time and / or frequency) as the beam management and the beam instruction / report. Good.
  • the subframe will be described.
  • it is called a subframe, but may be called a resource unit, a radio frame, a time section, a time interval, or the like.
  • FIG. 3 is a diagram showing an example of a schematic configuration of the uplink and downlink slots according to the first embodiment of the present invention.
  • Each of the radio frames is 10 ms long.
  • Each radio frame is composed of 10 subframes and W slots.
  • One slot is composed of X OFDM symbols. That is, the length of one subframe is 1 ms.
  • NCP Normal Cyclic Prefix
  • an uplink slot is defined similarly, and a downlink slot and an uplink slot may be defined separately.
  • the bandwidth of the cell in FIG. 3 may be defined as a part of the bandwidth (BWP: BandWidth Part).
  • a slot may be defined as a transmission time interval (TTI: Transmission @ Time @ Interval).
  • TTI Transmission @ Time @ Interval
  • the signal or physical channel transmitted in each of the slots may be represented by a resource grid.
  • a resource grid is defined by multiple subcarriers and multiple OFDM symbols. The number of subcarriers forming one slot depends on the downlink and uplink bandwidth of the cell, respectively.
  • Each of the elements in the resource grid is called a resource element. Resource elements may be identified using subcarrier numbers and OFDM symbol numbers.
  • Reference resource blocks, common resource blocks, physical resource blocks, and virtual resource blocks are defined as resource blocks.
  • One resource block is defined as 12 continuous subcarriers in the frequency domain.
  • the reference resource block is common to all subcarriers.
  • a resource block may be configured at a subcarrier interval of 15 kHz, and may be numbered in ascending order.
  • Subcarrier index 0 in reference resource block index 0 may be referred to as reference point A (or simply referred to as "reference point").
  • the common resource block is a resource block that is numbered in ascending order from 0 at each subcarrier interval setting ⁇ from the reference point A.
  • the resource grid described above is defined by this common resource block.
  • the physical resource blocks are resource blocks numbered in ascending order from 0 included in a bandwidth portion (BWP) described later, and the physical resource blocks are allocated in ascending order from 0 included in the bandwidth portion (BWP). This is a numbered resource block.
  • a physical uplink channel is first mapped to a virtual resource block. Thereafter, the virtual resource blocks are mapped to physical resource blocks.
  • NR supports multiple OFDM numerologies.
  • N ⁇ ⁇ slot ⁇ _ ⁇ symb ⁇ consecutive OFDM symbols are in the slot.
  • N ⁇ ⁇ slot ⁇ _ ⁇ symb ⁇ is 14.
  • the start of slot n ⁇ ⁇ _ ⁇ s ⁇ in a subframe is the start and time of the n ⁇ ⁇ _ ⁇ s ⁇ N ⁇ ⁇ slot ⁇ _ ⁇ symb ⁇ th OFDM symbol in the same subframe. Are aligned.
  • FIG. 4 is a diagram showing the relationship in the time domain between subframes, slots, and minislots. As shown in the figure, three types of time units are defined.
  • the subframe is 1 ms regardless of the subcarrier interval, the number of OFDM symbols included in the slot is 7 or 14, and the slot length varies depending on the subcarrier interval.
  • the subcarrier interval is 15 kHz, 14 OFDM symbols are included in one subframe.
  • the downlink slot may be referred to as PDSCH mapping type A.
  • Uplink slots may be referred to as PUSCH mapping type A.
  • a minislot (which may be referred to as a subslot) is a time unit composed of fewer OFDM symbols than the number of OFDM symbols included in the slot.
  • the figure shows an example where the minislot is composed of 2 OFDM symbols.
  • An OFDM symbol in a mini-slot may coincide with the OFDM symbol timing making up the slot.
  • the minimum unit of scheduling may be a slot or a minislot.
  • Assigning minislots may also be referred to as non-slot based scheduling.
  • scheduling a minislot may be expressed as scheduling a resource whose relative time position between the reference signal and the data start position is fixed.
  • the downlink minislot may be referred to as PDSCH mapping type B.
  • An uplink minislot may be referred to as PUSCH mapping type B.
  • FIG. 5 is a diagram illustrating an example of the slot format.
  • the slot length is 1 ms at a subcarrier interval of 15 kHz is shown as an example.
  • D indicates downlink and U indicates uplink.
  • U indicates uplink.
  • a certain time interval for example, the minimum time interval that must be assigned to one UE in the system.
  • One or more of downlink symbols, flexible symbols, and uplink symbols may be included. Note that these ratios may be predetermined as a slot format. Also, it may be defined by the number of downlink OFDM symbols included in the slot or the start position and the end position in the slot.
  • scheduling a slot may be expressed as scheduling a resource whose relative time position between the reference signal and the slot boundary is fixed.
  • the terminal device 1 may receive a downlink signal or a downlink channel using a downlink symbol or a flexible symbol.
  • the terminal device 1 may transmit an uplink signal or a downlink channel using an uplink symbol or a flexible symbol.
  • FIG. 5A may be referred to as a certain time section (for example, a minimum unit of a time resource that can be allocated to one UE, a time unit, or the like. Also, a bundle of a plurality of minimum units of a time resource is referred to as a time unit.
  • FIG. 5B illustrates an example in which uplink scheduling is performed using, for example, a PDCCH in the first time resource, and processing delay of the PDCCH and downlink are performed. To transmit an uplink signal through a flexible symbol including an uplink switching time and generation of a transmission signal.
  • FIG. 5B illustrates an example in which uplink scheduling is performed using, for example, a PDCCH in the first time resource, and processing delay of the PDCCH and downlink are performed.
  • the uplink signal may be used for transmission of HARQ-ACK and / or CSI, that is, UCI.
  • FIG. 5 (d) is used for transmission of the PDCCH and / or PDSCH in the first time resource, and the PUSCH and / or the uplink are transmitted via a processing delay and a switching time from downlink to uplink, and a gap for generating a transmission signal.
  • the uplink signal may be used for transmission of uplink data, that is, UL-SCH.
  • FIG. 5 (e) shows an example in which all are used for uplink transmission (PUSCH or PUCCH).
  • the above-mentioned downlink part and uplink part may be composed of a plurality of OFDM symbols as in LTE.
  • FIG. 6 is a diagram showing an example of beam forming.
  • the plurality of antenna elements are connected to one transmission unit (TXRU: Transceiver unit) 50, the phase is controlled by a phase shifter 51 for each antenna element, and transmitted from the antenna element 52 to transmit a signal in an arbitrary direction. Can direct the beam.
  • TXRU may be defined as an antenna port, and in terminal device 1, only an antenna port may be defined.
  • directivity can be directed in an arbitrary direction, so that the base station apparatus 3 can communicate with the terminal apparatus 1 using a beam having a high gain.
  • BWP is also called carrier BWP.
  • the BWP may be set for each of the downlink and the uplink.
  • BWP is defined as a set of contiguous physical resources selected from a contiguous subset of a common resource block.
  • the terminal device 1 can set up to four BWPs in which one downlink carrier BWP (DL @ BWP) is activated at a certain time.
  • the terminal device 1 can set up to four BWPs in which one uplink carrier BWP (UL @ BWP) is activated at a certain time.
  • BWP may be set in each serving cell. At this time, the fact that one BWP is set in a certain serving cell may be expressed as not setting the BWP.
  • the setting of two or more BWPs may be expressed as the setting of the BWP.
  • BWP switching for a serving cell is used to activate an inactive (deactivated) BWP and deactivate an active (activated) BWP. Is done.
  • BWP switching for a certain serving cell is controlled by a PDCCH indicating a downlink assignment or an uplink grant.
  • BWP switching for a serving cell may be further controlled by a BWP inactivity timer, RRC signaling, or by the MAC entity itself at the start of the random access procedure.
  • SpCell PCell or PSCell
  • SCell SpCell
  • one BWP is initially active without receiving a PDCCH indicating a downlink assignment or an uplink grant.
  • the initially active DL BWP and UL BWP may be specified in an RRC message sent from the base station device 3 to the terminal device 1.
  • the active BWP for a certain serving cell is specified by RRC or PDCCH sent from base station apparatus 3 to terminal apparatus 1.
  • RRC or PDCCH sent from base station apparatus 3 to terminal apparatus 1.
  • DL BWP and UL BWP are paired, and BWP switching is common to UL and DL.
  • the MAC entity of the terminal device 1 applies a normal process.
  • Normal processing includes transmitting a UL-SCH, transmitting a RACH, monitoring a PDCCH, transmitting a PUCCH, transmitting an SRS, and receiving a DL-SCH.
  • the MAC entity of the terminal device 1 does not transmit the UL-SCH, does not transmit the RACH, does not monitor the PDCCH, does not transmit the PUCCH, No SRS is transmitted and no DL-SCH is received. If a serving cell is deactivated, there may be no active BWP (eg, the active BWP is deactivated).
  • a BWP information element (IE) included in an RRC message (system information to be broadcast or information sent in a dedicated RRC message) is used for setting BWP.
  • the RRC message transmitted from the base station device 3 is received by the terminal device 1.
  • the network (such as base station apparatus 3) has at least one downlink BWP and one (for example, if the serving cell is configured for uplink) or two (appendix uplink (supplementary uplink)).
  • at least an initial BWP (initial BWP) including the uplink BWP in the case where is used is set for the terminal device 1.
  • the network may configure additional uplink and downlink BWPs for certain serving cells.
  • BWP configuration is divided into uplink parameters and downlink parameters.
  • the BWP setting is divided into a common parameter and a dedicated parameter.
  • Common parameters (such as BWP uplink common IE and BWP downlink common IE) are cell-specific.
  • Common parameters of the primary BWP of the primary cell are also provided in the system information.
  • the network provides common parameters with dedicated signals.
  • BWP is identified by BWP ID.
  • the initial BWP has a BWP ID (BWP identifier) of 0.
  • BWP IDs of other BWPs take values from 1 to 4.
  • one primary cell and up to 15 secondary cells may be set.
  • Random access procedure Random Access procedure of this embodiment is demonstrated.
  • the random access procedure is classified into two procedures: a contention-based (CB: Content @ Base) and a non-contention-based (non-CB) (CF: Content: Free).
  • Contention-based random access is also called CBRA, and non-contention-based random access is also called CFRA
  • the random access procedure includes (i) transmission of a random access preamble (message 1, Msg1) on PRACH, (ii) reception of a random access response (RAR) message with PDCCH / PDSCH (message 2, Msg2), and applicable.
  • RAR random access response
  • transmission of message 3 PUSCH (Msg3 PUSCH) and (iv) reception of PDSCH for resolving collision may be included.
  • FIG. 10 is a flowchart illustrating an example of the random access procedure of the terminal device 1 according to the present embodiment.
  • S1001 is a procedure relating to the start of a random access procedure (random access procedure initialization).
  • the random access procedure is initiated by a PDCCH order, a notification of a beam failure from a MAC entity, a lower layer, an RRC, or the like.
  • the random access procedure in SCell is started only by the PDCCH order including the ra-PreambleIndex which is not set to 0b000000.
  • the terminal device 1 receives random access setting information via an upper layer before starting (initiate) a random access procedure.
  • the random access setting information may include the following information or information for determining / setting the following information.
  • prach-ConfigIndex a set of one or more time / frequency resources (also referred to as random access channel occasions, PRACH occasions, RACH occasions) available for transmission of the random access preamble
  • premableReceivedTargetPower Initial power of preamble (may be target received power)
  • Rsrp-ThresholdSSB Reference signal received power (RSRP) threshold for selection of SS / PBCH block (which may be the associated random access preamble and / or PRACH opportunity)
  • rsrp-ThresholdCSI-RS CSI-RS Reference signal received power (RSRP) threshold for selection of (which may be an associated random access preamble and / or PRACH opportunity)
  • rsrp-ThresholdSSB-SUL NUL (Normal Uplink)
  • PREAMBLE_TRANSMISSION_COUNTER.ra-PreambleIndex One or more available random access preambles or one or more available in the plurality of random access preamble groups.
  • Random access preamble ra-ssb-OccationMaskIndex Information for determining the PRACH opportunity allocated to the SS / PBCH block in which the MAC entity transmits the random access preamble ra-OccasionList: CSI in which the MAC entity transmits the random access preamble -Information for determining the PRACH opportunity assigned to the RS-premTransMax Maximum number of preamble transmissions ssb-perRACH-OccationAndCB-PreamblesPer SSB (SpCell only): Parameter indicating the number of SS / PBCH blocks mapped to each PRACH opportunity and the number of random access preambles mapped to each SS / PBCH block.
  • ra-ResponseWindow Time window for monitoring random access response (SpCell only)
  • ra-ContentionResolutionTimer Contention Resolution timer, numberOfRA-PreamblesGroupA: Random burst for each SS / PBCH block Number of random access preambles in group A ⁇ PREAM BLE_TRANSMISSION_COUNTER: Preamble transmission counter DELTA_PREAMBLE: Power offset value based on random access preamble format
  • PREAMBLE_POWER_RAMPING_COUNTER Preamble power ramping counter
  • PREAMBLE_RECEIVED_TARGET_POWER Initial random access preamble 5 shows an initial transmission power for random access preamble transmission.
  • PREAMBLE_BACKOFF Used to adjust the timing of random access preamble transmission.
  • the MAC entity flushes the Msg3 buffer, sets the state variable PREAMBLE_TRANSMISSION_COUNTER to 1, sets the state variable PREAMBLE_POWER_RAMPING_COUNTER to 1, and sets the state variable PREAMBLE_BACKOFF to 0ms. If the carrier used for the random access procedure is explicitly reported, the MAC entity selects the reported carrier for performing the random access procedure and sets the state variable PCMAX to the maximum transmission power value of the reported carrier. set.
  • the MAC entity When the MAC entity does not explicitly notify the carrier used for the random access procedure, and the SUL carrier is set for the serving cell, and the RSRP for downlink path loss reference is smaller than rsrp-ThresholdSSB-SUL Then, the SUL carrier is selected for performing the random access procedure, and the state variable PCMAX is set to the maximum transmission power value of the SUL carrier. Otherwise, the MAC entity selects a NUL carrier for performing the random access procedure and sets the state variable PCMAX to the maximum transmission power value of the NUL carrier.
  • S1002 is a random access resource selection procedure (random access resource selection).
  • a procedure for selecting a random access resource including a time / frequency resource and / or a preamble index in the MAC layer of the terminal device 1 will be described.
  • the terminal device 1 sets a value for a preamble index (may be referred to as PREAMBLE_INDEX) of a random access preamble to be transmitted in the following procedure.
  • a preamble index may be referred to as PREAMBLE_INDEX
  • the terminal device 1 starts (1) the random access procedure by the notification of the beam failure from the lower layer, and (2) transmits the SS / PBCH block (also referred to as SSB) or CSI-RS with the RRC parameter.
  • Random access resources (which may be PRACH opportunities) for non-contention based random access for the associated beam failure recovery request are provided, and (3) one or more SS / PBCH blocks or CSI If the RSRP of the RS exceeds a predetermined threshold, select an SS / PBCH block or CSI-RS whose RSRP exceeds the predetermined threshold.
  • the MAC entity determines the ra-PreambleIndex associated with the selected SS / PBCH block with a preamble index (PREAMBLE_INDEX). ) May be set. Otherwise, the MAC entity sets the ra-PreambleIndex associated with the selected SS / PBCH block or CSI-RS to the preamble index.
  • the terminal device 1 (1) is provided with the ra-PreambleIndex on the PDCCH or RRC, (2) the value of the ra-PreambleIndex is not the value (for example, 0b000000) indicating the contention-based random access procedure, and (3) the RRC If the SS / PBCH block or CSI-RS is not associated with a random access resource for contention-based random access, the signaled ra-PreambleIndex is set to the preamble index.
  • 0bxxxxxx means a bit string arranged in a 6-bit information field.
  • the terminal device 1 provides (1) a random access resource for non-contention-based random access associated with the SS / PBCH block from the RRC, and (2) a predetermined RSRP among the associated SS / PBCH blocks.
  • a random access resource for non-contention-based random access associated with the SS / PBCH block from the RRC and (2) a predetermined RSRP among the associated SS / PBCH blocks.
  • the terminal device 1 (1) associates a CSI-RS with a random access resource for non-contention-based random access by RRC, and (2) RSRP of the associated CSI-RS exceeds a predetermined threshold If one or more CSI-RSs are available, select one of the CSI-RSs whose RSRP exceeds the predetermined threshold and preamble the ra-PreambleIndex associated with the selected CSI-RS. Set to index.
  • the terminal device 1 performs a contention-based random access procedure.
  • the terminal device 1 selects an SS / PBCH block having an RSRP of an SS / PBCH block exceeding a set threshold, and selects a preamble group.
  • the terminal device 1 determines a random number from one or more random access preambles associated with the selected SS / PBCH block and the selected preamble group. , Select ra-PreambleIndex, and set the selected ra-PreambleIndex to the preamble index.
  • the MAC entity selects one SS / PBCH block, and if an association between the PRACH opportunity and the SS / PBCH block is set, the next of the PRACH opportunities associated with the selected SS / PBCH block May determine available PRACH opportunities.
  • the terminal device 1 selects one CSI-RS, and if the association (association) between the PRACH opportunity and the CSI-RS is set, the terminal device 1 selects the next PRACH opportunity among the PRACH opportunities associated with the selected CSI-RS. May determine available PRACH opportunities.
  • Available PRACH opportunities may also be identified based on mask index information, SSB index information, resource settings configured with RRC parameters, and / or a selected reference signal (SS / PBCH block or CSI-RS). Good.
  • the resource settings set by the RRC parameters include resource settings for each SS / PBCH block and / or resource settings for each CSI-RS.
  • the base station device 3 may transmit the resource setting for each SS / PBCH block and / or the resource setting for each CSI-RS to the terminal device 1 by an RRC message.
  • the terminal device 1 receives the resource setting for each SS / PBCH block and / or the resource setting for each CSI-RS from the base station device 3 in the RRC message.
  • the base station device 3 may transmit the mask index information and / or the SSB index information to the terminal device 1.
  • the terminal device 1 acquires the mask index information and / or the SSB index information from the base station device 3.
  • the terminal device 1 may select a reference signal (SS / PBCH block or CSI-RS) based on a certain condition.
  • the terminal device 1 determines the next available PRACH opportunity based on the mask index information, the SSB index information, the resource setting configured by the RRC parameter, and the selected reference signal (SS / PBCH block or CSI-RS). It may be specified.
  • the MAC entity of the terminal device 1 may instruct the physical layer to transmit the random access preamble using the selected PRACH opportunity.
  • Mask index information is information indicating an index of a PRACH opportunity that can be used for transmitting a random access preamble.
  • the mask index information may be information indicating a PRACH opportunity of a part of one or a plurality of groups of PRACH opportunities defined by theprach-ConfigurationIndex. Further, the mask index information may be information indicating some PRACH opportunities in a group of PRACH opportunities to which a specific SSB index specified by the SSB index information is mapped.
  • the SSB index information is information indicating an SSB index corresponding to one of one or a plurality of SS / PBCH blocks transmitted by the base station device 3.
  • the terminal device 1 that has received the message 0 specifies a group of PRACH opportunities to which the SSB index indicated by the SSB index information is mapped.
  • the SSB index that is mapped to each PRACH opportunity is determined by the PRACH setting index, the upper layer parameter SB-perRACH-Occasion, and the upper layer parameter cb-preamblePerSSB.
  • S1003 is a procedure related to transmission of a random access preamble (random access preamble transmission). For each random access preamble, the MAC entity determines (1) that the state variable PREAMBLE_TRANSMISSION_COUNTER is greater than 1 and (2) that no notification of a stopped power ramp counter has been received from higher layers, and (3) the selection If the changed SS / PBCH block has not been changed, the state variable PREAMBLE_POWER_RAMPING_COUNTER is incremented by one.
  • the MAC entity selects the value of DELTA_PREAMBLE, and sets the state variable PREAMBLE_RECEIVED_TARGET_POWER to a predetermined value.
  • the predetermined value is calculated by preambleReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_POWER_RAMPING_COUNTER-1) * powerRampingStep.
  • the MAC entity calculates the RA-RNTI associated with the PRACH opportunity where the random access preamble is transmitted, other than the non-contention based random access preamble due to the beam failure recovery request.
  • s_id is the index of the first OFDM symbol of the PRACH to be transmitted, and takes a value from 0 to 13.
  • t_id is the index of the first slot of the PRACH in the system frame, and takes a value from 0 to 79.
  • f_id is a PRACH index in the frequency domain, and takes a value from 0 to 7.
  • ul_carrier_id is an uplink carrier used for Msg1 transmission.
  • the ul_carrier_id for the NUL carrier is 0, and the ul_carrier_id for the SUL carrier is 1.
  • the MAC entity instructs the physical layer to transmit a random access preamble using the selected PRACH.
  • S1004 is a procedure for receiving a random access response. Once the random access preamble has been transmitted, the MAC entity performs the following operations regardless of the possible occurrence of measurement gaps.
  • the MAC entity uses a random access response window (ra-ResponseWindow) at the first PDCCH opportunity from the end of the random access preamble transmission.
  • ra-ResponseWindow a random access response window
  • the MAC entity monitors the SpCell PDCCH identified by the C-RNTI for a response to the beam failure recovery request.
  • the period (window size) of the random access response window is given by ra-ResponseWindow included in the upper layer parameter BeamFailureRecoveryConfig.
  • the MAC entity starts a random access response window (ra-ResponseWindow) at the first PDCCH opportunity from the end of the random access preamble transmission.
  • the period (window size) of the random access response window is given by ra-ResponseWindow included in the upper layer parameter RACH-ConfigCommon.
  • the MAC entity monitors the SpCell PDCCH identified by the RA-RNTI for a random access response.
  • the information element BeamFailureRecoveryConfig is used for setting a RACH resource and a candidate beam for the terminal apparatus 1 for beam failure recovery in the case of beam failure detection.
  • the information element RACH-ConfigCommon is used to specify a cell-specific random access parameter.
  • the MAC entity may (1) receive acknowledgment of the PDCCH transmission from the lower layer, (2) the PDCCH transmission may be scrambled by the C-RNTI, and (3) the MAC entity may use a non-contention based When the random access preamble is transmitted, the random access procedure may be deemed to have been successfully completed.
  • the MAC entity performs the following operations when (1) the downlink assignment is received on the PDCCH of RA-RNTI and (2) the received transport block is successfully decoded.
  • the MAC entity sets PREAMBLE_BACKOFF to the value of the BI field included in the MAC @ subPDU. Otherwise, the MAC entity sets PREAMBLE_BACKOFF to 0 ms.
  • the $ MAC entity may deem that the random access response has been successfully received if the MAC entity includes a MAC $ subPDU that includes the random access preamble identifier corresponding to the transmitted PREAMBLE_INDEX.
  • the MAC entity considers that the random access procedure has been successfully completed if (1) the reception of the random access response is considered successful and (2) the random access response includes only the MAC @ subPDU containing the RAPID; , The reception of the acknowledgment (acknowledgement) to the SI request (symstem @ information @ request) is indicated to the upper layer.
  • the MAC entity applies the following operation A to the serving cell where the random access preamble is transmitted.
  • the MAC entity processes the received transmission timing adjustment information (Timing Advance Command), and indicates to the lower layer the preambleReceivedTargetPower and the amount of power ramping applied to the latest random access preamble transmission.
  • the transmission timing adjustment information is used to adjust a shift in transmission timing between the terminal device 1 and the base station device 3 from the received random access preamble.
  • the MAC entity may ignore the received UL grant. Otherwise, the MAC entity processes the received UL grant value and indicates it to the lower layer.
  • the MAC entity may consider the random access procedure successfully completed.
  • the MAC entity sets TEMPORARY_C-RNTI to the value of the Temporary C-RNTI field included in the received random access response.
  • the MAC entity may, if not transmitting on the CCCH logical channel (common control channel logical channel), Notify a predetermined entity (multiplexing and assembly entity) that the C-RNTI MAC CE will be included in the next uplink transmission, and obtain and obtain a MAC PDU for transmission from the predetermined entity (multiplexing and assembly entity)
  • the stored MAC PDU is stored in the Msg3 buffer.
  • the MAC entity acquires a MAC PDU for transmission from a predetermined entity (multiplexing and assembly entity), and stores the acquired MAC PDU in the Msg3 buffer.
  • the MAC entity considers that the random access response has not been successfully received, and increments the preamble transmission counter (PREAMBLE_TRANSMISSION_COUNTER) by one.
  • the MAC entity indicates a random access problem to an upper layer. Then, if the random access procedure is started for the SI request, the MAC entity considers that the random access procedure has not been successfully completed.
  • the MAC entity determines that the random access procedure has not been successfully completed. I reckon.
  • Condition (3) is that the period of the random access response window set in the RACH-ConfigCommon expires (expired), and that a random access response including a random access preamble identifier matching the transmitted preamble index has not been received. That's what it means.
  • condition (4) is that the period of the random access response window set in the BeamFailureRecoveryConfig expires (expired), and that the PDCCH scrambled by the C-RNTI has not been received.
  • the MAC entity may determine whether the random access preamble is selected by the MAC itself from the range of contention-based random access preambles, if the random access procedure is between 0 and PREAMBLE_BACKOFF. A backoff time is selected, transmission of the next random access preamble is delayed by the selected backoff time, and S1002 is executed. If the random access procedure has not been completed, the MAC entity performs S1002 if the random access preamble has not been selected from the range of the contention-based random access preamble by the MAC itself in the random access procedure.
  • the MAC entity may stop the random access response window upon successfully receiving a random access response including a random access preamble identifier matching the transmitted preamble index.
  • the terminal device 1 transmits the message 3 on the PUSCH based on the UL grant.
  • S1005 is a procedure related to contention resolution.
  • the MAC entity starts a collision resolution timer and restarts the collision resolution timer at each HARQ retransmission.
  • the MAC entity monitors the PDCCH while the collision resolution timer is running, regardless of the possible occurrence of measurement gaps.
  • the MAC entity determines that at least one of the following conditions (5) to (7) is satisfied: , Deem the contention resolution to be successful, stop the collision resolution timer, discard the TEMPORARY_C-RNTI, and deem that the random access procedure has been successfully completed.
  • Condition (5) is that the random access procedure is initiated by the MAC sublayer itself or the RRC sublayer, the PDCCH transmission is scrambled by the C-RNTI, and the PDCCH transmission includes an uplink grant for the initial transmission.
  • Condition (6) is that the random access procedure is started by PDCCH order and PDCCH transmission is scrambled by C-RNTI.
  • Condition (7) is that the random access procedure is started for beam failure recovery, and the PDCCH transmission is scrambled by C-RNTI.
  • CCCH SDU (UE contention resolution Identiy) is included in Msg3 and the PDCCH transmission is scrambled by TEMPORARY_C-RNTI
  • the MAC entity stops the collision resolution timer if the MAC PDU is successfully decoded. . Subsequently, if the successfully decoded MAC PDU includes a UE contention resolution identity MAC CE, and the UE collision resolution identity in the MAC CE matches the CCCH SDU transmitted on Msg3, The MAC entity considers that the collision resolution is successful and ends the disassembly and demultiplexing of the MAC @ PDU.
  • the MAC entity when the random access procedure is started for the SI request, the MAC entity indicates to the upper layer the receipt of the acknowledgment for the SI request. If the random access procedure is not started due to the SI request, the MAC entity sets C-RNTI to the value of TEMPORARY_C-RNTI. Subsequently, the MAC entity discards the TEMPORARY_C-RNTI and considers the random access procedure to be successfully completed.
  • the MAC entity discards the TEMPORARY_C-RNTI, assumes that the collision resolution is not successful, and returns the successfully decoded MAC $ PDU. Discard.
  • the MAC entity discards the TEMPORARY_C-RNTI (discard) and regards the contention resolution as unsuccessful.
  • the MAC entity flushes the HARQ buffer used for transmitting the MAC @ PDU in the Msg3 buffer and increments the preamble transmission counter (PREAMBLE_TRANSMISSION_COUNTER) by one if the contention resolution is not considered to be successful.
  • the preamble transmission counter reaches a predetermined value (maximum number of preamble transmissions + 1), the MAC entity indicates a random access problem to an upper layer. Then, if the random access procedure is started for the SI request, the MAC entity considers that the random access procedure has not been successfully completed.
  • the MAC entity selects a random backoff time between 0 and PREAMBLE_BACKOFF, delays the next random access preamble transmission by the selected backoff time, and executes S1002.
  • the MAC entity Upon completion of the random access procedure, the MAC entity discards explicitly signaled non-contention based random access resources for non-contention based random access procedures other than the non-contention based random access procedure for beam failure recovery request. Then, the HARQ buffer used for transmitting the MAC @ PDU in the Msg3 buffer is flushed.
  • control resource set (CORESET) in the present embodiment will be described.
  • the control resource set (CORESET, Control resource set) is a time and frequency resource for searching for downlink control information.
  • the coreset setting information includes a coreset identifier (ControlResourceSetId, coreset-id) and information for specifying a coreset frequency resource.
  • the information element ControlResourceSetId (identifier of CORESET) is used to specify a control resource set in a certain serving cell.
  • the CORESET identifier is used between BWPs in a certain serving cell.
  • the CORESET identifier is unique among BWPs in the serving cell.
  • the number of coresets for each BWP is limited to three, including the initial coreset. In a certain serving cell, the value of the identifier of CORRESET takes a value from 0 to 11.
  • CORESET # 0 may be set by pdcch-ConfigSIB1 included in MIB or PDCCH-ConfigCommon included in ServingCellConfigCommon. That is, the setting information of CORRESET # 0 may be pdcch-ConfigSIB1 included in MIB, or PDCCH-ConfigCommon included in ServingCellConfigConfig. The setting information of RESET # 0 may be set by controlResourceSetZero included in PDCCH-ConfigCommon.
  • CORESET indicated by pdcch-ConfigSIB1 is CORESET # 0.
  • the RESET setting information pdcch-ConfigSIB1 for RESET # 0 does not include information for explicitly specifying the RESET identifier and the RESET frequency resource, but the RESET frequency resource for RESET # 0 is included in the pdcch-ConfigSIB1. Information can be specified implicitly.
  • the information element PDCCH-ConfigCommon is used to set a cell-specific PDCCH parameter provided in the SIB. Also, the PDCCH-ConfigCommon may be provided at the time of handover and addition of PSCell and / or SCell.
  • the setting information of the coreset # 0 is included in the setting of the initial BWP. That is, the setting information of CORRESET # 0 may not be included in the settings of BWP other than the initial BWP.
  • the setting information of the additional common CORRESET may be set by a commonControlResourceSet included in the PDCCH-ConfigCommon.
  • the configuration information of the additional common coreset may be used to specify the additional common coreset used for the random access procedure.
  • Additional common CORESET configuration information may be included in each BWP configuration.
  • the identifier of the RESET shown in the commonControlResourceSet takes a value other than 0.
  • Common CORESET may be a CORESET used for a random access procedure (eg, an additional common CORESET).
  • the common CORESET may include CORESET # 0 and / or CORESET set by additional common CORESET setting information. That is, the common coreset may include coreset # 0 and / or additional common coresets.
  • CORESET # 0 may be called common CORESET # 0.
  • the terminal device 1 and the BWP other than the BWP in which the common CORESET is set may refer to (acquire) the setting information of the common CORESET.
  • the configuration information of one or more coresets may be configured by PDCCH-Config.
  • the information element PDCCH-Config is used to set UE-specific PDCCH parameters (for example, CORSET, search space, etc.) for a certain BWP.
  • the PDCCH-Config may be included in each BWP setting.
  • the setting information of the common CORESET indicated by the MIB is pdcch-ConfigSIB1
  • the setting information of the common CORESET indicated by the PDCCH-ConfigCommon is controlResourceSetZero
  • the additional information of the common CORESET indicated by the PDCCH-ConfigCommon is commonControlResourceSet.
  • the setting information of one or more coresets (UE specifically configured control resources set, UE specific coresets) indicated by PDCCH-Config is controlResourceSetToAddModList.
  • the search space is defined to search for PDCCH candidates (PDCCH candidates).
  • the searchSpaceType included in the search space setting information indicates that the search space is a common search space (Common Search Space, CSS) or a UE-specific search space (UE-specific Search Space, USS).
  • the UE-specific search space is derived from at least the value of the C-RNTI set by the terminal device 1. That is, the UE-specific search space is derived individually for each terminal device 1.
  • the common search space is a common search space among the plurality of terminal devices 1 and is configured by a CCE (Control ⁇ Channel ⁇ Element) having a predetermined index.
  • the CCE is composed of a plurality of resource elements.
  • the setting information of the search space includes information of the DCI format monitored in the search space.
  • the search space setting information includes the coreset identifier specified by the coreset setting information.
  • the coreset specified by the coreset identifier included in the search space setting information is associated with the search space.
  • the coreset associated with the search space is the coreset specified by the coreset identifier included in the search space.
  • the DCI format indicated by the setting information of the search space is monitored by the associated CORRESET.
  • Each search space is associated with one coreset.
  • the setting information of the search space for the random access procedure may be set by ra-SearchSpace. That is, the DCI format to which the CRC scrambled by the RA-RNTI or the TC-RNTI is added in the CORESET associated with the ra-SearchSpace is monitored.
  • the terminal device 1 monitors a set of PDCCH candidates in one or more coresets arranged in each active serving cell set to monitor the PDCCH.
  • the set of PDCCH candidates corresponds to one or more search space sets.
  • Monitoring means decoding each PDCCH candidate according to one or more DCI formats to be monitored.
  • a set of PDCCH candidates monitored by the terminal device 1 is defined by a PDCCH search space set.
  • One search space set is a common search space set or a UE-specific search space set. In the above description, the search space set is called a search space, the common search space set is called a common search space, and the UE-specific search space set is called a UE-specific search space.
  • the terminal device 1 monitors PDCCH candidates in one or a plurality of the following search space sets.
  • -A Type 0-PDCCH common search space set This search space set is a search space zero (searchSpaceZero) indicated by MIB or a search space indicated by PDCCH-ConfigCommon, which is an upper layer parameter. This is set by SIB1 (searchSpaceSIB1). This search space is for monitoring the DCI format of the CRC scrambled with the SI-RNRI in the primary cell.
  • a Type 0A-PDCCH common search space set This search space set is set by a search space OSI (searchSpace-OSI) indicated by PDCCH-ConfigCommon, which is a parameter of an upper layer.
  • This search space is for monitoring the DCI format of the CRC scrambled with the SI-RNRI in the primary cell.
  • -A Type1-PDCCH common search space set This search space set is a search space (ra-SearchSpace) for a random access procedure indicated by PDCCH-ConfigCommon, which is an upper layer parameter. Is set by This search space is for monitoring the DCI format of the CRC scrambled with RA-RNRI or TC-RNTI in the primary cell.
  • -A Type2-PDCCH common search space set This search space set is set by the paging search space (pagingSearchSpace) for the paging procedure indicated by the upper layer parameter, PDCCH-ConfigCommon. You.
  • This search space is for monitoring the DCI format of the CRC scrambled with the P-RNTI in the primary cell.
  • -Type 3 PDCCH common search space set (a Type3-PDCCH common search space set): This search space set is set by a search space (SearchSpace) in which the search space type indicated by PDCCH-Config which is a parameter of an upper layer is common. You.
  • This search space is for monitoring the DCI format of the CRC scrambled by the INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, or TPC-SRS-RNTI.
  • -UE-specific search space set In this search space set, a search space type indicated by PDCCH-Config, which is a parameter of an upper layer, is set by a UE-specific search space. . This search space is for monitoring the DCI format of the CRC scrambled with C-RNTI or CS-RNTI (s).
  • the setting information of $ BWP is divided into setting information of DL @ BWP and setting information of UL @ BWP.
  • the BWP setting information includes an information element bwp-Id (BWP identifier).
  • the BWP identifier included in the DL @ BWP setting information is used to specify (refer to) the DL @ BWP in a certain serving cell.
  • the BWP identifier included in the UL @ BWP setting information is used to specify (refer to) UL @ BWP in a certain serving cell.
  • the BWP identifier is given to each of DL @ BWP and UL @ BWP.
  • the identifier of the BWP corresponding to DL @ BWP may be referred to as DL @ BWP @ index (DL @ BWP @ index).
  • the identifier of the BWP corresponding to UL @ BWP may be referred to as UL @ BWP @ index (UL @ BWP @ index).
  • the initial DL @ BWP is referenced by the DL @ BWP identifier 0.
  • the initial UL @ BWP is referenced by the UL @ BWP identifier 0.
  • Each of the other DL @ BWPs or other UL @ BWPs may be referenced from BWP identifier # 1 to maxNrofBWPs.
  • maxNofBWPs is the maximum number of BWPs per serving cell, and is 4. That is, the values of the identifiers of other BWPs take values from 1 to 4.
  • the other upper layer setting information is associated with a specific BWP by using the BWP identifier.
  • FIG. 8 is a diagram showing an example of the BWP setting according to the embodiment of the present invention.
  • One initial BWP including at least one DL @ BWP and one UL @ BWP is set for each serving cell. Then, additional BWP (additional UL @ BWP and additional DL @ BWP) may be set for a certain serving cell. Up to four additional BWPs may be set. However, in one serving cell, one DL @ BWP becomes active and one UL @ BWP becomes active.
  • one initial BWP (BWP # 0) and two additional BWPs (BWP # 1 and BWP # 2) are set for a terminal device 1 in a certain serving cell.
  • Reference numeral 801 denotes an initial DL @ BWP (DL @ BWP # 0).
  • Reference numeral 802 denotes an initial UL @ BWP (UL @ BWP # 0).
  • Reference numeral 805 denotes an additional DL @ BWP (DL @ BWP # 1).
  • Reference numeral 806 denotes an additional UL @ BWP (UL @ BWP # 1).
  • Reference numeral 808 denotes an additional DL @ BWP (DL @ BWP # 2).
  • the 809 is an additional UL @ BWP (UL @ BWP # 2).
  • DL @ BWP # 1 is activated and UL @ BWP # 0 is activated. That is, DL @ BWP # 0 and UL @ BWP # 1 are inactive BWPs.
  • DL @ BWP # 2 and UL @ BWP # 2 are inactive BWPs.
  • the activated DL @ BWP # 1 may be referred to as an active DL @ BWP (active DL @ BWP, currently @ active @ DL @ BWP).
  • the activated initial UL @ BWP # 0 may be referred to as an initially active ULBWP.
  • the terminal device 1 performs downlink reception with the active DL @ BWP # 1, and performs uplink transmission with the initially active UL @ BWP.
  • $ 803 is a reset # 0 set for the initial DL $ BWP.
  • 804 is an additional common coreset set for the initial DL @ BWP.
  • Reference numeral 807 denotes a reset that is set for the additional BWP # 1.
  • Reference numeral 810 denotes a coreset set for the additional BWP # 2.
  • 807 and 810 may be referred to as UE-specific CORESET (UE ⁇ specifically ⁇ configured ⁇ Control ⁇ Resource ⁇ Sets).
  • the setting information of CORRESET # 0 (803) may be set by pdcch-ConfigSIB1 or PDCCH-ConfigCommon.
  • the setting information of the additional common CORESET (804) may be set by commonControlResourceSet included in the PDCCH-ConfigCommon.
  • the setting information of RESET (807 and 810) may be set by controlResourceSetToAddModList included in PDCCH-Config.
  • the value of the identifier of the RESET of 803 is given as 0.
  • the value of the RESET identifier of 804 may be given as one.
  • the value of the identifier of the RESET of 807 may be given by 3.
  • the value of the identifier of the RESET at 810 may be given by 6.
  • the value of the identifier of the RESET including the ra-searchspace is set to 1
  • the value of the identifier of the RESET including the ra-searchspace is set to 6.
  • ra-searchspace is set for each of DL @ BWP # 0, DL @ BWP # 1, and DL @ BWP # 2.
  • the setting information of the search space for the random access procedure may be set according to ra-SearchSpace.
  • the identifier of the RESET included in the ra-searchspace set for a certain DL @ BWP is set to the value of the identifier of the RESET that specifies the setting information of the RESET set for the DL @ BWP.
  • it may be set to the value of the identifier of CORESET included in the ra-SearchSpace set for the initial BWP.
  • the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the RESET that specifies the setting information of the RESET set for the DL @ BWP, or the The identifier of CORESET included in the set ra-SearchSpace may be indicated. That is, the ra-searchspace set for a certain DL @ BWP does not indicate the identifier of the common and UE-specific CORESET set for the DL @ BWP and other DL @ BWPs other than the initial DL @ BWP. Is also good.
  • the ra-searchspace set by the base station apparatus 3 for a certain DL @ BWP is a common set for the DL @ BWP other than the DL @ BWP and the initial DL @ BWP.
  • the RRC message may be transmitted so as not to indicate the identifier of the UE-specific CORRESET.
  • the value of the identifier of the RESET including the ra-searchspace may be set to 1, or may be set to 3.
  • the value of the identifier of the RESET including the ra-searchspace for DL @ BWP # 1 is not set to 6.
  • the terminal device 1 When the value of the identifier of the RESET including the ra-searchspace for DL @ BWP # 1 is set to 1, the terminal device 1 is set based on the setting information of the RESET # 1 (804) specified by the identifier 1 of the RESET. The active DL @ BWP # 1 monitors the DCI format included in the ra-searchspace. When the value of the identifier of the RESET including the ra-searchspace for DL @ BWP # 1 is set to 3, the terminal device 1 is set based on the setting information of the RESET # 3 (807) specified by the identifier 3 of the RESET. The active DL @ BWP # 1 monitors the DCI format included in the ra-searchspace.
  • the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the coreset that specifies the setting information of the common coreset.
  • the value of the identifier of CORESET including ra-searchspace for DL @ BWP # 1 may be set to 1.
  • RESET # 1 is set in the initial DL @ BWP
  • RESET # 0 cannot be called as ra-searchspace.
  • RESET # 0 can be called as ra-searchspace.
  • the RESET # 0 can be called by the DL @ BWP as a ra-searchspace. Is also good.
  • the identifier of the RESET included in the ra-searchspace set for a certain DL @ BWP is the identifier of the RESET that specifies the setting information of the common RESET set for the DL @ BWP. It may be set to a value, or may be set to the value of the identifier of the common coreset for the random access procedure set for another BWP. That is, the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the RESET that specifies the setting information of the common RESET that is set for the DL @ BWP, or may indicate to other BWPs. The identifier of the common CORESET for the random access procedure set for this may be indicated.
  • the value of the identifier of the RESET including the ra-searchspace may be set to 1, 3, or 6, may be set. That is, when RESET # 1 is set in the initial DL @ BWP, CORRESET # 0 cannot be called as the ra-searchspace of the DL @ BWP. If the RESET # 1 is not set in the initial DL @ BWP, the RESET # 0 can be called as the DL-BWP ra-searchspace.
  • the identifier of CORESET included in the ra-searchspace set for a certain DL @ BWP may be set to the value of the identifier of every common CORESET set in the terminal device 1.
  • the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the coreset that specifies the setting information of all the common coresets set in the serving cell.
  • the value of the identifier of the coreset including ra-searchspace for DL @ BWP # 1 may be set to 0, 1, 3, or 6.
  • the setting information of the coreset set for the DL @ BWP may be set to the value of the coreset identifier for specifying the coreset, or set to the value of the coreset identifier set for another BWP.
  • the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the RESET that specifies the setting information of the RESET set for the DL @ BWP, or may be used for another BWP. May be indicated.
  • the value of the identifier of CORESET including ra-searchspace may be set to 0, may be set to 1, may be set to 3, or may be set to 6. May be set.
  • the MAC entity determines whether to switch BWP for this serving cell.
  • BWP switching at the start of the random access procedure in the serving cell will be described.
  • the MAC entity determines the active DL BWP based on at least some or all of the following elements (i) to (vi): Determine whether to switch from BWP to another DL BWP (e.g., initial DL BWP, first active DL BWP, DL BWP having the same BWP identifier as active UL BWP), and BWP capable of performing a random access procedure May be determined. (I) whether the PRACH opportunity is set for the active UL BWP, (ii) whether the serving cell is a SpCell, or (iii) the identifier of the active DL BWP and the identifier of the active UL BWP.
  • DL BWP e.g., initial DL BWP, first active DL BWP, DL BWP having the same BWP identifier as active UL BWP
  • the PRACH opportunity is the time and frequency resources available for transmitting the random access preamble.
  • the PRACH opportunity will be described later.
  • FIG. 9 is a diagram showing pseudo code regarding a MAC entity at the start of a random access procedure in a serving cell, the BWP switching determination for the serving cell.
  • condition A is that no PRACH opportunity is set for the active UL @ BWP.
  • Condition B is that the serving cell is SpCell.
  • Condition C is that the active DL @ BWP does not have the same bwp-Id as the active UL @ BWP.
  • Condition D is that the ra-SearchSpace set for the active DL @ BWP has the same CORESET identifier as the ra-SearchSpace set for the DL @ BWP that has the same BWP identifier as the active UL @ BWP. That is not to do.
  • condition D is that the ra-SearchSpace set for the active DL @ BWP has the same BWP identifier as the active UL @ BWP, and the same RESET identifier as the ra-SearchSpace set for the DL @ BWP. Is not associated with Alternatively, the condition D is that the identifier of the RESET shown in the ra-SearchSpace set for the active DL @ BWP is set for the DL @ BWP having the same BWP identifier as the active UL @ BWP. This is different from the CORSET identifier shown in the SearchSpace. Satisfaction of the condition D may mean that both the condition E and the condition F are not satisfied. Unsatisfaction of condition D may mean that either condition E or condition F is satisfied. Conditions E and F will be described later.
  • Process A is for the MAC entity to switch the active UL BWP to the initial UL BWP.
  • Process B is that the MAC entity switches the active DL @ BWP to the initial DL @ BWP.
  • Process C is for the MAC entity to switch the active DL @ BWP to a DL @ BWP having the same BWP identifier as the active UL @ BWP.
  • Process D is that the MAC entity performs a random access procedure on the active DL @ BWP of the SpCell and the active UL @ BWP of the serving cell.
  • the MAC entity may determine which step to select and proceed next based on the condition A in S11. If the condition A is not satisfied, the MAC entity proceeds to S15. If the condition A is satisfied, the MAC entity proceeds to S12. That is, when the condition A is satisfied, the MAC entity executes the process A of S12. Subsequently, the MAC entity determines the condition B in S13. If the condition B is satisfied, the MAC entity executes the process B. If the condition B is not satisfied, the MAC entity proceeds to S20. That is, when the condition A and the condition B are satisfied, the MAC entity executes the process B. If the condition A is satisfied and the condition B is not satisfied, the MAC entity proceeds to S20.
  • S15 is that the condition A is not satisfied. That is, S15 is that the PRACH opportunity is set for the active UL @ BWP. Proceeding to S15, the MAC entity may determine which step to select and proceed next based on condition B of S16. Here, if the condition B of S16 is not satisfied, the MAC entity proceeds to S20. That is, when the condition A is not satisfied and the condition B is not satisfied, the MAC entity proceeds to S20.
  • the MAC entity proceeds to S17.
  • the MAC entity executes the process C of S19. That is, when the condition A is not satisfied, the condition B is satisfied, the condition C is satisfied, and the condition D is satisfied, the MAC entity executes the process C of S19. If the condition A is not satisfied, the condition B is satisfied, and at least one of the condition C and the condition D is not satisfied, the MAC entity does not execute the process C of S19, and proceeds to S20. In S20, the MAC entity executes the process D.
  • FIG. 11 is a diagram showing another example of the pseudo code related to the MAC entity determining the BWP switching for the serving cell at the start of the random access procedure in the serving cell.
  • the MAC entity that starts the random access procedure in a certain serving cell sets the active UL @ BWP to the initial (initial) UL @ BWP when the PRACH opportunity is not set for the active UL @ BWP. Switch. Then, when the serving cell is SpCell and ra-SearchSpace is not set for the active DL @ BWP (S13), the MAC entity switches the active DL @ BWP to the initial (initial) @ DL @ BWP. . That is, in FIG. 9, the condition of S13 may be that the serving cell is SpCell and / or that no ra-SearchSpace is set for the active DL @ BWP.
  • the first information is the ra-SearchSpace set for the first DL @ BWP.
  • the second information is the ra-SearchSpace set for the second DL @ BWP having the same BWP identifier as the first UL @ BWP.
  • the first UL @ BWP is the UL @ BWP set to the active UL @ BWP at this time.
  • the first DL @ BWP is the DL @ BWP set to the active DL @ BWP at this time.
  • the second DL @ BWP is a DL @ BWP having the same BWP identifier as the first UL @ BWP.
  • the control resource set associated with the first information set for the first DL @ BWP has the same BWP identifier as the first UL @ BWP.
  • Switch the active DL @ BWP to the second DL @ BWP based on whether or not it has the same CORRESET identifier as the control resource set (CORESET) associated with the second information set for the second DL @ BWP Determine whether or not.
  • the MAC entity may change the active DL @ BWP to the first DL if the control resource set (CORESET) associated with the first information does not have the same CORESET identifier as the control resource set associated with the second information.
  • the MAC entity converts the active DL @ BWP from the first DL @ BWP to the second DL if the control resource set associated with the first information has the same CORRESET identifier as the control resource set associated with the second information. It is not necessary to switch to BWP.
  • the MAC entity determines that the serving cell is a SpCell, and a PRACH opportunity is set for a first UL @ BWP set to an active UL @ BWP, and a first is set to an active DL @ BWP. The above determination may be made when the DL @ BWP does not have the same BWP identifier as the first UL @ BWP.
  • the MAC entity determines whether the identifier of the coreset indicated (included) in the first information is the same as the identifier of the coreset indicated (included) in the second information. , Determine whether to switch the active DL @ BWP to the second DL @ BWP.
  • the MAC entity may switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP when the identifier of the RESET shown in the first information is different from the identifier of the RESET shown in the second information. Good.
  • the MAC entity does not switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP when the identifier of the RESET shown in the first information is the same as the identifier of the RESET shown in the second information. You may.
  • the MAC entity determines that the serving cell is a SpCell, and a PRACH opportunity is set for a first UL @ BWP set to an active UL @ BWP, and a first is set to an active DL @ BWP. The above determination may be made when the DL @ BWP does not have the same BWP identifier as the first UL @ BWP.
  • the condition E is that the BWP identifier of the DL @ BWP in which the setting information of the RESET specified by the identifier of the RESET shown in the first information is set is the same as the BWP identifier of the first UL @ BWP. It is.
  • the condition E is that UL @ BWP having the same BWP identifier as DL @ BWP in which the RESET setting information specified by the RESET identifier indicated in the first information is set is the first UL @ BWP. is there.
  • Condition F is that the DL @ BWP in which the RESET setting information specified by the RESET identifier indicated in the second information is set is the active DL @ BWP.
  • the MAC entity does not have to switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP when either of the condition E or the condition F is satisfied. . Further, the MAC entity may switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP when both the condition E and the condition F are not satisfied.
  • the MAC entity determines that the serving cell is a SpCell, and a PRACH opportunity is set for a first UL @ BWP set to an active UL @ BWP, and a first is set to an active DL @ BWP.
  • the above-described conditions E and F may be determined.
  • the MAC entity that starts the random access procedure in a certain serving cell changes the active UL @ BWP to the initial (initial) UL @ BWP when no PRACH opportunity is set for the active UL @ BWP.
  • the MAC entity determines that the serving cell is SpCell and that the setting information of the RESET specified by the identifier of the RESET shown in the first information set for the active DL @ BWP is the initial DL @ BWP. It is determined whether to switch the active DL @ BWP to the initial DL @ BWP (or the first active DL @ BWP) based on whether or not the active DL @ BWP is set.
  • the MAC entity determines that the serving cell is SpCell and that the configuration information of the RESET specified by the identifier of the RESET shown in the first information set for the active DL @ BWP is the initial DL @ BWP. If it is set, it is not necessary to switch the active DL @ BWP to the initial DL @ BWP. Also, the MAC entity indicates that the serving cell is SpCell, and the configuration information of the RESET specified by the identifier of the RESET shown in the first information set for the active $ DL @ BWP is other than the initial DL @ BWP. If it is set for another DL @ BWP, the active DL @ BWP may be switched to the initial DL @ BWP.
  • the MAC entity that starts the random access procedure in a certain serving cell changes the active UL @ BWP to the initial (initial) UL @ BWP when the PRACH opportunity is not set for the active UL @ BWP.
  • the MAC entity determines the active DL @ BWP as the first DL based on whether or not the serving cell is SpCell and the RESET specified by the RESET identifier indicated in the first information is the common RESET. It is determined whether to switch from BWP to the second DL @ BWP.
  • the MAC entity changes the active DL @ BWP from the first DL @ BWP to the second DL @ BWP. It is not necessary to switch to DL @ BWP.
  • the serving cell is SpCell and the RESET specified by the RESET identifier indicated in the first information is not the common RESET, the MAC entity changes the active DL @ BWP from the first DL @ BWP to the second DL You may switch to BWP.
  • the MAC entity determines that the coreset specified by the coreset identifier indicated in the first information set for the first DL @ BWP is the common coreset. Is determined based on whether the active DL @ BWP is switched to the second DL @ BWP. For example, if the coreset specified by the identifier of the coreset indicated in the first information set for the first DL @ BWP is a common coreset, the MAC entity changes the active DL @ BWP to the first DL @ BWP. It is not necessary to switch from to the second DL @ BWP.
  • the MAC entity converts the active DL @ BWP into the first DL @ BWP if the CORESET specified by the identifier of the CORESET shown in the first information set for the first DL @ BWP is not the common CORESET. May be switched to the second DL BWP.
  • the MAC entity determines that the serving cell is a SpCell and that a PRACH opportunity is set for a first UL @ BWP that is set to an active UL @ BWP and that a first UL is set to an active DL @ BWP.
  • the above processing may be performed when the DL @ BWP does not have the same BWP identifier as the first UL @ BWP.
  • the MAC entity may satisfy the above condition that the active DL @ BWP is not switched from the first DL @ BWP to the second DL @ BWP, and associate the MAC entity with the PDCCH monitor indicated in the first information. If the parameter to be performed and the parameter related to the PDCCH monitor indicated in the second information indicate the same value, it is not necessary to switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP.
  • the MAC entity and the parameter related to the PDCCH monitor indicated in the first information and the second May be switched from the first DL @ BWP to the second DL @ BWP if the parameters related to the PDCCH monitor indicated in the information of the above do not indicate the same value.
  • the parameter related to the PDCCH monitor included in the ra-SearchSpace may be monitoringSlotPeriodicityAndOffset.
  • monitoringSlotPeriodicityAndOffset is used to set the period and offset for PDCCH monitoring.
  • the parameter associated with the PDCCH monitor may be monitoringSymbolsWithinSlot.
  • monitoringSymbolsWithinSlot is used to indicate the first symbol of CORESET in the slot for PDCCH monitoring.
  • FIG. 11 is a diagram showing another example of the pseudo code related to the MAC entity determining the BWP switching for the serving cell at the start of the random access procedure in the serving cell.
  • the MAC entity may determine which step to select and proceed next based on whether a PRACH opportunity has been set for the active UL @ BWP.
  • the MAC entity switches the active UL @ BWP to the initial UL @ BWP (S22), and proceeds to S23. If the PRACH opportunity has been set for the active UL @ BWP, the MAC entity proceeds to S23.
  • the MAC entity may determine which step to select and proceed next based on whether a PRACH opportunity has been set for the active UL @ BWP.
  • the PRACH opportunity is not set for the active UL @ BWP (S21)
  • the MAC entity switches the active UL @ BWP to the initial UL @ BWP (S22), and proceeds to S23A.
  • the PRACH opportunity has been set for the active UL @ BWP, the MAC entity proceeds to S23A.
  • the condition of S23A may be that the serving cell is SpCell and / or that no ra-SearchSpace is set for the active DL @ BWP.
  • the MAC entity switches the active DL @ BWP to the initial (DL) BWP, and then proceeds to S27 (or S23).
  • the MAC entity proceeds to S23. That is, when the condition of S23A is not satisfied, the MAC entity may not switch the active DL @ BWP to the initial (initial) @ DL @ BWP.
  • the MAC entity determines whether the serving cell in which the random access procedure is started is SpCell. If the serving cell is not an SpCell, the MAC entity performs a random access procedure in the active DL @ BWP of the SpCell and the active UL @ BWP of the serving cell (S27).
  • the MAC entity switches the active DL @ BWP to the DL @ BWP having the same BWP identifier as the active UL @ BWP when the serving cell is the SpCell (S23) and when the conditions of S24 and S25 are satisfied.
  • And S27 may be executed. If the serving cell is a SpCell (S23), and if at least one of the conditions of S24 and S25 is not satisfied, the MAC entity converts the active DL @ BWP into a DL having the same BWP identifier as the active UL @ BWP. S27 may be executed without switching to BWP.
  • the condition of S24 may be the condition C in FIG. 9 described above.
  • the condition of S25 may be the condition D in FIG. 9 described above.
  • the contention based random access procedure is initiated by a PDCCH order, MAC entity, notification of beam failure from lower layer, RRC, etc.
  • a beam failure notification is provided from the physical layer of the terminal device 1 to the MAC entity of the terminal device 1
  • the MAC entity of the terminal device 1 starts a random access procedure.
  • a procedure for determining whether a certain condition is satisfied and starting a random access procedure is referred to as a beam failure recovery procedure. You may.
  • This random access procedure is a random access procedure for a beam failure recovery request.
  • the random access procedure initiated by the MAC entity includes a random access procedure initiated by a scheduling request procedure.
  • the random access procedure for the beam failure recovery request may or may not be considered a random access procedure initiated by the MAC entity. Since the random access procedure for the beam failure recovery request and the random access procedure started by the scheduling request procedure may be different, a distinction is made between the random access procedure for the beam failure recovery request and the scheduling request procedure. You may do so.
  • the random access procedure for the beam failure recovery request and the scheduling request procedure may be a random access procedure initiated by the MAC entity.
  • the random access procedure initiated by the scheduling request procedure is referred to as a random access procedure initiated by the MAC entity
  • the random access procedure for the beam failure recovery request is referred to as a random access by a notification of a beam failure from a lower layer. It may be called a procedure.
  • the start of the random access procedure when the notification of the beam failure from the lower layer is received may mean the start of the random access procedure for the beam failure recovery request.
  • the terminal device 1 performs initial access from a state where the terminal device 1 is not connected (communicated) with the base station device 3 and / or uplink data or transmission that is connected to the base station device 3 but can be transmitted to the terminal device 1.
  • a contention-based random access procedure is performed at the time of a scheduling request when possible side link data is generated.
  • applications of contention-based random access are not limited to these.
  • the fact that the uplink data that can be transmitted to the terminal device 1 has occurred may include that the buffer status report corresponding to the uplink data that can be transmitted is triggered.
  • the occurrence of transmittable uplink data to the terminal device 1 may include the fact that a scheduling request triggered based on the occurrence of transmittable uplink data is pending.
  • the occurrence of the transmittable side link data to the terminal device 1 may include the fact that the buffer status report corresponding to the transmittable side link data has been triggered.
  • the occurrence of transmittable sidelink data to the terminal device 1 may include the fact that a scheduling request triggered based on the occurrence of transmittable sidelink data is pending.
  • the non-contention-based random access procedure may be started when the terminal device 1 receives, from the base station device 3, information indicating the start of the random access procedure.
  • the non-contention based random access procedure may be started when the MAC layer of the terminal device 1 receives a beam failure notification from a lower layer.
  • Non-contention based random access is performed between the terminal device 1 and the base station device 3 quickly when the base station device 3 and the terminal device 1 are connected but the handover or the transmission timing of the mobile station device is not valid. May be used for uplink synchronization.
  • Non-contention based random access may be used to transmit a beam failure recovery request when a beam failure occurs in the terminal device 1.
  • the application of the non-contention based random access is not limited to these.
  • the random access setting information may include common information in the cell, or may include dedicated information that differs for each terminal device 1.
  • a part of the random access setting information may be associated with all SS / PBCH blocks in the SS burst set. However, a part of the random access setting information may be associated with one or more of the set CSI-RSs. However, a part of the random access setting information may be associated with one downlink transmission beam (or beam index).
  • part of the random access setting information may be associated with one SS / PBCH block in the SS burst set. However, part of the random access setting information may be associated with one of the set one or more CSI-RSs. However, a part of the random access setting information may be associated with one downlink transmission beam (or beam index). However, information associated with one SS / PBCH block, one CSI-RS, and / or one downlink transmit beam includes a corresponding one SS / PBCH block, one CSI-RS, and / or Index information for identifying one downlink transmission beam (for example, may be an SSB index, a beam index, or a QCL setting index) may be included.
  • information associated with one SS / PBCH block, one CSI-RS, and / or one downlink transmit beam includes a corresponding one SS / PBCH block, one CSI-RS, and / or Index information for identifying one downlink transmission beam (for example, may be an SSB index, a beam
  • random access setting information may be set for each SS / PBCH block in the SS burst set, or one common random access setting information may be set for all SS / PBCH blocks in the SS burst set.
  • the terminal device 1 receives one or a plurality of random access setting information by a downlink signal, and each of the one or a plurality of random access setting information is an SS / PBCH block (CSI-RS or a downlink transmission beam. May be associated).
  • the terminal device 1 selects one of the received one or a plurality of SS / PBCH blocks (which may be a CSI-RS or a downlink transmission beam) and is associated with the selected SS / PBCH block.
  • a random access procedure may be performed using the random access setting information.
  • the PRACH opportunity will be described below.
  • the set of one or more PRACH opportunities available for transmission of the random access preamble may be specified by an upper layer parameter pach-ConfigIndex provided in an upper layer (upper layer signal).
  • an upper layer parameter pach-ConfigIndex provided in an upper layer (upper layer signal).
  • PRACH setting physical random access channel setting
  • a predetermined table also referred to as a random access channel setting (PRACH @ config) table
  • PRACH @ config random access channel setting
  • a set of one or more PRACH opportunities is identified.
  • the specified one or more PRACH opportunities may be a set of PRACH opportunities associated with each of one or more SS / PBCH blocks transmitted by the base station device 3.
  • the PRACH configuration index can transmit a period (PRACH configuration period (physical random access channel configuration period: PRACH configuration period)) in which the set of PRACH opportunities indicated in the random access configuration table is repeated temporally, and a random access preamble.
  • PRACH configuration period physical random access channel configuration period: PRACH configuration period
  • the subcarrier index, resource block index, subframe number, slot number, system frame number, symbol number, and / or format of the preamble may be used.
  • the number of SS / PBCH blocks mapped to each PRACH opportunity may be indicated by an upper layer parameter SSB-perRACH-Occation provided in an upper layer. If SSB-perRACH-Occasion is a value less than 1, one SS / PBCH block is mapped for a plurality of consecutive PRACH opportunities.
  • the number of random access preambles mapped to each SS / PBCH block may be indicated by an upper layer parameter cb-preamblePerSSB provided in an upper layer.
  • the number of random access preambles mapped to each SS / PBCH block at each PRACH opportunity may be calculated from SSB-perRACH-Occation and cb-preamblePerSSB.
  • the index of the random access preamble mapped to each SS / PBCH block at each PRACH opportunity may be identified from the SB-perRACH-Occation, cb-preamblePerSSB, and SSB index.
  • the SSB index may be mapped according to the following rules.
  • n + 3 a plurality of PRACH opportunities time-multiplexed in the PRACH slot are mapped in ascending order of the time resource index. For example, if two more PRACH opportunities are multiplexed in the PRACH slot in the time direction in addition to the example of (2) above, the SSB indexes mapped to these PRACH opportunities are n + 4, n + 5 and n + 6, n + 7. .
  • multiple PRACH slots are mapped in ascending index order. For example, when there is a RACH opportunity in the next PRACH slot in addition to the example of the above (3), the mapped SSB indexes are n + 8, n + 9,. However, in the above example, when n + x becomes larger than the maximum value of the SSB index, the value of the SSB index returns to 0.
  • FIG. 7 is a diagram illustrating an example of SSB index allocation for PRACH opportunities according to an embodiment of the present invention.
  • FIG. 7 shows that two PRACH slots exist in a certain time interval, two PRACH opportunities (ROs) exist in one PRACH slot in the time direction and two PRACH opportunities exist in the frequency direction, and the SSB index exists from 0 to 11. An example of the case is shown. Two SSB indices are mapped to one PRACH opportunity, SSB indices are mapped according to the rules (1) to (4), and SSB index 0 is mapped again from the seventh PRACH opportunity.
  • ROs PRACH opportunities
  • the SSB index is mapped to each PRACH opportunity, even when all the PRACH opportunities within the PRACH setting cycle specified by theprach-ConfigIndex are used, all the SSB indexes (all the SSS indexes transmitted by the base station apparatus 3) are used. / PBCH block), the SSB index may be mapped over multiple PRACH configuration periods. However, the number of all SS / PBCH blocks transmitted by the base station device 3 may be indicated by higher layer parameters.
  • a cycle in which the PRACH setting cycle is repeated a predetermined number of times so that all SSB indexes are mapped at least once is referred to as an association cycle (association @ period).
  • a minimum value that satisfies the above condition from a predetermined set of a plurality of values may be used.
  • the set of the plurality of predetermined values may be determined for each PRACH setting cycle.
  • the SSB indexes may be mapped again.
  • the remaining PRACH opportunities have SSB The index need not be mapped.
  • a cycle in which a PRACH opportunity is assigned once for every SSB index is called an SSB index assignment cycle. If the SSB-perRACH-Occasion is 1 or more, each SSB index is mapped to one PRACH opportunity in one SSB index allocation cycle. If SSB-perRACH-Occasion is a value less than 1, each SSB index is mapped to PRACH opportunity of 1 / SSB-perRACH-Occasion in one SSB index allocation cycle.
  • the terminal device 1 may specify the association cycle based on the PRACH setting cycle indicated by the PRACH setting index and the number of SS / PBCH blocks specified by the upper layer parameter provided in the upper layer (upper layer signal). .
  • One or more random access preamble groups included in the random access setting information may be associated with each reference signal (eg, SS / PBCH block, CSI-RS, or downlink transmission beam).
  • the terminal device 1 may select a random access preamble group based on the received reference signal (for example, SS / PBCH block, CSI-RS, or downlink transmission beam).
  • the random access preamble group associated with each SS / PBCH block may be specified by one or more parameters notified by an upper layer.
  • One of the one or more parameters may be an index (eg, a start index) of one or more available preambles.
  • One of the one or more parameters may be a number of preambles available for contention based random access per SS / PBCH block.
  • One of the one or more parameters may be the sum of the number of preambles available for contention-based random access and the number of preambles available for non-contention-based random access per SS / PBCH block.
  • One of the one or more parameters may be a number of SS / PBCH blocks associated with one PRACH opportunity.
  • the terminal device 1 receives one or a plurality of downlink signals transmitted using one downlink transmission beam and receives random access setting information associated with one downlink signal among the downlink signals. Then, a random access procedure may be performed based on the received random access setting information.
  • the terminal device 1 receives one or more SS / PBCH blocks in the SS burst set, receives random access setting information associated with one SS / PBCH block in the SS burst set, and receives the received random access setting information.
  • a random access procedure may be performed based on the information.
  • the terminal device 1 receives one or a plurality of CSI-RSs, receives random access setting information associated with one of the CSI-RSs, and performs a random access procedure based on the received random access setting information. May be performed.
  • Parameters regarding random access for each reference signal may be included in the random access channel setting.
  • Parameters (PRACH setting index, PRACH opportunity, etc.) related to the physical random access channel for each reference signal may be included in the physical random access channel setting.
  • One random access setting information may indicate a parameter related to random access corresponding to one reference signal, and a plurality of random access setting information may indicate parameters related to a plurality of random access corresponding to a plurality of reference signals.
  • One random access setting information indicates a parameter related to physical random access corresponding to one reference signal, and may indicate a parameter related to a plurality of random accesses corresponding to a plurality of reference signals.
  • random access setting information (random access channel setting corresponding to the reference signal, physical random access channel setting corresponding to the reference signal) corresponding to the reference signal may be selected. .
  • the terminal device 1 receives one or a plurality of random access setting information from the base station device 3 and / or the transmission / reception point 4 different from the base station device 3 and / or the transmission / reception point 4 transmitting the random access preamble. Is also good.
  • the terminal device 1 may transmit a random access preamble to the second base station device 3 based on at least one of the random access setting information received from the first base station device 3.
  • the base station device 3 may determine a downlink transmission beam to be applied when transmitting a downlink signal to the terminal device 1 by receiving the random access preamble transmitted by the terminal device 1.
  • the terminal device 1 may transmit the random access preamble using the PRACH opportunity indicated in the random access setting information associated with a certain downlink transmission beam.
  • the base station apparatus 3 transmits the downlink signal to the terminal apparatus 1 based on the random access preamble received from the terminal apparatus 1 and / or the PRACH opportunity receiving the random access preamble.
  • the link transmit beam may be determined.
  • the base station device 3 transmits to the terminal device 1 an RRC parameter including one or more pieces of random access setting information (which may include random access resources) as an RRC message.
  • the terminal device 1 sets one or a plurality of available random access preambles and / or one or a plurality of available PRACH opportunities to be used for a random access procedure based on channel characteristics with the base station device 3. You may choose.
  • the terminal device 1 is based on a propagation path characteristic (for example, reference signal reception power (RSRP)) measured by a reference signal (for example, SS / PBCH block and / or CSI-RS) received from the base station device 3.
  • RSRP reference signal reception power
  • a reference signal for example, SS / PBCH block and / or CSI-RS
  • the configuration information of the additional common coreset may be used to specify the additional common coreset used for the random access procedure.
  • the additional common CORESET configuration information may be used to specify additional common CORESET for system information and / or paging procedures. That is, the additional common CORESET may be used for receiving SIB1 and / or SI messages (other ⁇ system ⁇ information, for example, SIB2 and SIB after SIB2), paging, and RAR.
  • the common search space set for SIB1 eg, type 0 PDCCH common search space set
  • SIB1 eg, type 0 PDCCH common search space set
  • a common search space set for SI messages (eg, type 0 APDCCH common search space set) may be associated with an additional common CORRESET.
  • a common search space set for paging (eg, type 2 PDCCH common search space set) may be associated with an additional common CORRESET.
  • a common search space set for the RAR (eg, a type 1 PDCCH common search space set) may be associated with an additional common coreset.
  • the type 0 PDCCH common search space (common search space for SIB1) may be set by searchSpaceZero included in MIB or searchSpaceSIB1 included in ServingCellConfigCommon.
  • the association between the PDCCH monitoring opportunity (monitoring @ occasions) for the type 0 APDCCH common search space set and the SS / PBCH block index is the PDCCH monitoring opportunity for the type 0 PDCCH common search space set. And the association with the SS / PBCH block index.
  • the association between the PDCCH monitoring opportunity (monitoring @ occasions) for the type 2 PDCCH common search space set and the SS / PBCH block index is the PDCCH for the type 0 PDCCH common search space set. It may be the same as the association between the monitoring opportunity and the SS / PBCH block index.
  • the initial DL BWP is the number of PRB locations and consecutive PRBs for the control resource set (CORESET, CORRESET # 0) for the type 0 PDCCH common search space, the subcarrier spacing, and It may be defined by a cyclic prefix. That is, the initial DL BWP may be set by pdcch-ConfigSIB1 included in MIB or PDCCH-ConfigCommon included in ServingCellConfigCommon.
  • the information element ServingCellConfigCommon is used to set a cell-specific parameter of the serving cell for the terminal device 1. Specifically, the bandwidth of the initial DL BWP is the bandwidth of CORRESET # 0.
  • the controlResourceSetZero indicating the setting information of CORRESET # 0 corresponds to 4 bits (for example, 4 bits of MSB, 4 bits of the most significant bit) of pdcch-ConfigSIB1.
  • the controlResourceSetZero may be included in PDCCH-ConfigSIB1 or PDCCH-ConfigCommon.
  • SearchSpaceZero indicating the setting information of SearchSpace # 0 corresponds to 4 bits (for example, 4 bits of LSB, 4 bits of the least significant bit) in pdcch-ConfigSIB1. That is, the size of the initial DL BWP is N size BWP, 0 (the first size, the size of the RESET). N size BWP, 0 is the number of resource blocks indicating the bandwidth of the initial DL BWP.
  • the initial DL BWP may be referred to as a first size initial DL BWP.
  • the terminal device 1 may be provided with the initial DL BWP by SIB1 (systemInformationBlockType1) or ServingCellConfigCommon (for example, ServingCellConfigCommonSIB).
  • SIB1 systemInformationBlockType1
  • ServingCellConfigCommon for example, ServingCellConfigCommonSIB
  • the initial DL BWP is indicated by the upper layer parameter locationAndBandwidth included in BWP-DownlinkCommon. The position and bandwidth of the frequency domain of the initial DL BWP may be given based on the locationAndBandwidth.
  • the information element BWP-DownlinkCommon may be included in ServingCellConfigCommon or SIB1.
  • the information element ServingCellConfigCommonSIB is used to set a cell-specific parameter of a serving cell for the terminal device 1 in the SIB1.
  • the size of the initial DL BWP is N size BWP, 1 . That is, N size BWP, 1 is the number of resource blocks of the initial DL BWP indicated by SIB1 (SystemInformationBlockType1) or ServingCellConfigCommon. N size BWP, 1 may be equal to N size BWP, 0 . N size BWP, 1 may be different from N size BWP, 0 .
  • the initial DL BWP may be referred to as an initial DL BWP of size N size BWP, 1 (second size).
  • the initial DL @ BWP may be distinguished as a first size initial DL @ BWP and a second size initial DL @ BWP.
  • the initial DL @ BWP is the above-described initial DL @ BWP of the second size.
  • the above-mentioned initial DL @ BWP of the first size may be referred to as a bandwidth (size) of CORESET # 0.
  • the initial DL @ BWP of the first size may be referred to as an initial active DL @ BWP. That is, the initial active DL @ BWP is the number of PRB locations and the number of consecutive PRBs for the control resource set (CORESET, CORRESET # 0) for the type 0 PDCCH common search space, the subcarrier interval, and the cyclic. May be defined by a prefix. That is, in this embodiment, the initial DL @ BWP may mean the initial DL @ BWP of the second size unless otherwise specified.
  • the terminal device 1 may be provided with the initial UL ⁇ BWP by SIB1 (systemInformationBlockType1) or initialUplinkBWP.
  • SIB1 systemInformationBlockType1
  • initialUplinkBWP is used to set an initial UL @ BWP.
  • a plurality of DLWBWPs may be set for the terminal device 1. Then, of the DL @ BWP set for the terminal device 1, the default DL @ BWP can be set by the upper layer parameter defaultDownlinkBWP-Id. When the upper layer parameter defaultDownlinkBWP-Id is not provided to the terminal device 1, the default DL @ BWP is the initial DL @ BWP.
  • the initial DL @ BWP may be the initial DL @ BWP of the second size.
  • the setting information of CORRESET # 0 is included in the setting of the initial DL $ BWP.
  • the setting information of CORESET # 0 may not be included in the setting of BWP (additional BWP) other than the initial DL @ BWP.
  • the setting information of SearchSpace # 0 is included in the setting of the initial DL @ BWP.
  • the setting information of SearchSpace # 0 may not be included in the setting of BWP (additional BWP) other than the initial DL @ BWP.
  • BWPs additional BWPs
  • the RESET # 0 and the SS block in the frequency domain It may be necessary to at least satisfy that it is included in the additional BWP and uses the same subcarrier spacing.
  • Using the same subcarrier interval means that the subcarrier interval for the additional DL @ BWP and the subcarrier interval for the initial DL @ BWP (or CORRESET # 0) are the same.
  • the search space set for the additional BWP can refer to the setting information of CORESET # 0 (refer, @acquire, etc.) by indicating the identifier 0 of CORESET # 0.
  • the terminal device 1 operating with another BWP refers to the setting information of the RESET # 0.
  • the search space set for the additional BWP can refer to the setting information of SearchSpace # 0 (refer, @acquire, etc.) by indicating the search space identifier 0. That is, at this time, SearchSpace # 0 is set only for the initial DL @ BWP, but the terminal device 1 operating with another BWP (additional BWP) refers to the setting information of SearchSpace # 0. Can be.
  • the bandwidth of the initial DL BWP (or the bandwidth of CORRESET # 0) is included in the additional DL BWP, and the SS block is included in the additional DL BWP, and uses the same subcarrier interval. If any of the conditions is not satisfied, the terminal device 1 does not have to expect that the additional DL BWP refers to the setting information of CORET # 0 and / or the setting information of SearchSpace # 0. That is, in this case, the base station apparatus 3 does not have to set the additional DL BWP for the terminal apparatus 1 to refer to the setting information of CORRESET # 0 and / or the setting information of SearchSpace # 0.
  • the initial DL BWP may be an initial DL BWP of size N size BWP, 0 (first size). Further, the initial DL BWP may be an initial DL BWP of a size N size BWP, 1 (second size).
  • the SS block described above may be associated with the initial DL BWP.
  • the SS block may be a cell-defining @ SS block for a cell.
  • the cell-defining @ SS block may be associated with CORRESET # 0.
  • the terminal device 1 may determine the RESET (CORESET # 0) for the type 0 PDCCH common search space set by the Cell-defining @ SS block.
  • An SS block that is not cell-defining @ SS block does not have to be associated with CORRESET # 0. That is, the terminal device 1 cannot acquire the setting information of CORESET # 0 by an SS block that is not the cell-defining @ SS block.
  • the base station device 3 may start the RRC reconfiguration procedure for the terminal device 1 in the RRC connection state for a specific purpose.
  • the purpose of the RRC reconfiguration procedure is to change the RRC connection (RRC connection) to the terminal device 1.
  • RRC connection RRC connection
  • the RRCReconfiguraton message is a command for changing the RRC connection.
  • the RRCReconfiguraton message may include a masterCellGroup.
  • masterCellGroup is used for configuration of a master cell group (MCG).
  • CellGroupConfig in masterCellGroup includes spCellConfig.
  • spCellConfig is a PCell parameter of MCG.
  • spCellConfig In the case of changing the SpCell, adding the PSCell, and changing the security key, spCellConfig always includes the reconfigurationWithSync field.
  • reconfigurationWithSync is a parameter for synchronous reconfiguration to the target SpCell.
  • the active DL @ BWP is indicated by the firstActiveDownlinkBWP-Id for the target SpCell of the MCG.
  • the active DL @ BWP may be referred to as the first active DL @ BWP (first @ active @ DL @ BWP).
  • one BWP is first active without receiving a PDCCH indicating a downlink assignment or an uplink grant.
  • the active DL @ BWP and UL @ BWP may be specified in the RRC message sent from the base station apparatus 3 to the terminal apparatus 1.
  • the active BWP for a certain serving cell is specified by RRC or PDCCH sent from the base station device 3 to the terminal device 1.
  • the first active DL ⁇ BWP ⁇ (first active DL DL BWP) and UL BWP (first active UL UL BWP) may be included in the message 4.
  • the fact that the common search space is set for the ⁇ active DL ⁇ BWP may mean that the information element PDCCH-configcommon for the DL @ BWP indicates a common search space for the SIB1 (for example, searchSpaceSIB1).
  • the terminal device 1 monitors the DCI format for scheduling the SIB1 based on the information indicated in the common search space and the setting information of the RESET associated with the common search space.
  • the terminal device 1 can acquire the SIB1 of the target SpCell of the MCG by detecting the DCI format.
  • the terminal device 1 can set the target of the MCG when the condition for referring to the setting information of CORRESET # 0 and / or SearchSpace # 0 is satisfied.
  • the SCell 1 of the SpCell may be acquired. That is, even if the common search space is not set for the active DL @ BWP, the terminal apparatus 1 includes the bandwidth of the initial DL @ BWP and the SS block in the frequency domain and includes the same subcarrier If the condition using the interval is satisfied, SIB1 of the target SpCell of the MCG may be acquired.
  • the terminal device 1 monitors the DCI format for scheduling the SIB1 based on the setting information of SearchSpace # 0 and the setting information of CORRESET # 0.
  • the terminal device 1 can acquire the SIB1 of the target SpCell of the MCG by detecting the DCI format.
  • the DCI format for scheduling SIB1 may be DCI format 1_0 to which CRC parity bits scrambled by SI-RNTI or SIB1-RNTI are added.
  • SI-RNTI may be used for broadcasting system information.
  • SIB1-RNTI may be used for broadcasting system information of SIB1.
  • the additional BWP refers to the setting information of the additional common CORESET set for the initial DL @ BWP.
  • DL @ BWP refers to additional common CORESET setting information of another BWP (refer, @acquire, etc.)
  • the common CORESET or the bandwidth of the BWP
  • the terminal device 1 does not have to expect the additional DL @ BWP to refer to the setting information of the RESET set for the BWP.
  • the SS blocks that the BWP contains (associated with) are the SS blocks with which the additional common CORESET is associated.
  • the terminal device 1 may add the additional DL in which the active DL @ BWP is set for another BWP in the frequency domain. Includes the bandwidth of the common CORESET (or the bandwidth of another BWP), and the active DL @ BWP includes another BWP (an additional common CORESET set for the other BWP) (or SIB1 may be acquired in the case of including the (related) SS block and using the same subcarrier interval.
  • the terminal device 1 monitors the DCI format for scheduling the SIB1 based on the setting information of the additional common CORESET and the setting information of the common search space related to the additional common CORESET.
  • the terminal device 1 can acquire the SIB1 by detecting the DCI format.
  • the common search space may be a common search space for SIB1. That is, for other BWPs, the common search space for SIB1 may be associated with an additional common coreset. Another BWP for which the additional common CORESET is set may be the initial DL @ BWP. Further, another BWP in which the additional common CORESET is set may be additional DL @ BWP.
  • the common search space for SIB1 may be SearchSpace # 0 indicated by searchSpaceZero, or the common search space indicated by searchspaceSIB1 (other than search space identifier 0). Common search space). If the other BWP is additional DL @ BWP, the common search space for SIB1 may be the common search space indicated by searchspaceSIB1 (common search space other than search space identifier 0).
  • the active DL @ BWP may not include the SS block that the other BWP includes (associated with). In other words, even if the active DL @ BWP does not include the SS block included in (related to) the other BWP, the active DL @ BWP does not include the additional common coreset bandwidth (or the other BWP bandwidth). ) And using the same subcarrier interval, additional common CORESET setting information may be obtained.
  • the terminal device 1 sets the additional common CORESET in which the active DL @ BWP is set for another BWP in the frequency domain.
  • the SIB1 may be acquired (acquired) when the bandwidth includes the bandwidth (or other BWP bandwidth) and uses the same subcarrier interval.
  • the active DL @ BWP includes (related) the other BWP. It is necessary to include the SS block.
  • the terminal device 1 acquires the setting information of the additional common CORESET set for the other BWP in the active DL @ BWP. Can not do it.
  • the terminal device 1 sets the bandwidth of the additional common CORRESET in which the active DL @ BWP is set for another BWP in the frequency domain.
  • SS block that contains (or the bandwidth of another BWP), and that the active DL @ BWP contains (or is associated with) another BWP (an additional common coreset set for the other BWP)
  • SIB1 may be acquired.
  • the base station device 3 requests the terminal device 1 for the capability information of the terminal device 1 using a UECapabilityEnquiry message. That is, the UECapabilityEnquiry message is used to request the wireless access capability of the terminal device 1 for the NR and other RATs (Radio Access Technology, a wireless access method). Then, the terminal device 1 that has received the UECapabilityEnquiry message transmits (reports) the capability information to the base station device 3.
  • a UECapabilityEnquiry message is used to request the wireless access capability of the terminal device 1 for the NR and other RATs (Radio Access Technology, a wireless access method).
  • the terminal device 1 that has received the UECapabilityEnquiry message transmits (reports) the capability information to the base station device 3.
  • the capability information of the terminal device 1 to be transmitted to the base station device 3 may include capability information relating to the BWP operation.
  • the first BWP operation capability information may indicate that an additional BWP may be configured in the frequency domain that may not include either or both of the initial DL BWP bandwidth and / or SS blocks for the cell. .
  • the base station device 3 adds, to the terminal device 1, an additional bandwidth including both the initial DL @ BWP bandwidth and the SS block for the cell in the frequency domain. Set only BWP.
  • the base station device 3 provides the terminal device 1 with any one of the initial DL @ BWP bandwidth and the SS block for the cell in the frequency domain, or An additional BWP that does not need to include both may be set.
  • the condition for referring to the above-described setting information of CORRESET # 0 and / or SearchSpace # 0 may be changed.
  • the terminal device 1 indicates the first BWP operation capability
  • the additional BWP includes the bandwidth of the initial DL BWP (CORESET # 0) in the frequency domain, and the same subcarrier interval as the initial DL BWP
  • the terminal device 1 can refer to CORRESET # 0 and / or SearchSpace # 0 (refer, $ acquire, etc.) with additional BWP.
  • the additional BWP may not include the SS block of the cell.
  • the terminal device 1 does not show the first BWP operation capability, and the additional BWP includes the bandwidth of the initial DL @ BWP (CRESET # 0) in the frequency domain, and has the same subcarrier interval as the initial DL @ BWP.
  • CRESET # 0 the bandwidth of the initial DL @ BWP
  • the terminal device 1 cannot refer to CORRESET # 0 and / or SearchSpace # 0 (refer, @acquire, etc.) with the additional BWP.
  • FIG. 12 is a schematic block diagram showing the configuration of the terminal device 1 of the present embodiment.
  • the terminal device 1 is configured to include a wireless transmission / reception unit 10 and an upper layer processing unit 14.
  • the wireless transmitting / receiving unit 10 includes an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13.
  • the upper layer processing unit 14 includes a medium access control layer processing unit 15 and a radio resource control layer processing unit 16.
  • the wireless transmission / reception unit 10 is also called a transmission unit, a reception unit, a monitor unit, or a physical layer processing unit.
  • the upper layer processing unit 14 is also referred to as a measurement unit, a selection unit, or a control unit.
  • the upper layer processing unit 14 outputs the uplink data (which may be referred to as a transport block) generated by a user operation or the like to the wireless transmission / reception unit 10.
  • the upper layer processing unit 14 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: ⁇ RLC) layer, and a radio resource control (Radio). Resource Control: RRC) Performs some or all of the layers.
  • the upper layer processing unit 14 may have a function of selecting one reference signal from one or a plurality of reference signals based on a measured value of each reference signal.
  • the upper layer processing unit 14 may have a function of selecting a PRACH opportunity associated with one selected reference signal from one or a plurality of PRACH opportunities.
  • the upper layer processing unit 14 sets the 1 It may have a function of specifying one index from one or a plurality of indexes and setting the same as a preamble index.
  • the upper layer processing unit 14 may have a function of identifying an index associated with the selected reference signal among one or a plurality of indexes set by the RRC, and setting the index to a preamble index.
  • the upper layer processing unit 14 may have a function of determining the next available PRACH opportunity based on the received information (for example, SSB index information and / or mask index information).
  • the upper layer processing unit 14 may have a function of selecting an SS / PBCH block based on the received information (for example, SSB index information).
  • the medium access control layer processing unit 15 provided in the upper layer processing unit 14 performs processing of a MAC layer (medium access control layer).
  • the medium access control layer processing unit 15 controls transmission of a scheduling request based on various setting information / parameters managed by the radio resource control layer processing unit 16.
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the RRC layer (radio resource control layer).
  • the radio resource control layer processing unit 16 manages various setting information / parameters of the own device.
  • the radio resource control layer processing unit 16 sets various setting information / parameters based on the upper layer signal received from the base station device 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station device 3.
  • the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the wireless transmission / reception unit 10 separates, demodulates, and decodes the signal received from the base station device 3 and outputs the decoded information to the upper layer processing unit 14.
  • the wireless transmission / reception unit 10 generates a transmission signal by modulating and encoding data, and transmits the transmission signal to the base station device 3.
  • the wireless transmission / reception unit 10 may have a function of receiving one or a plurality of reference signals in a certain cell.
  • the wireless transmission / reception unit 10 may have a function of receiving information (for example, SSB index information and / or mask index information) specifying one or a plurality of PRACH opportunities.
  • the wireless transmission / reception unit 10 may have a function of receiving a signal including instruction information for instructing start of a random access procedure.
  • the wireless transmission / reception unit 10 may have a function of receiving information for receiving information for specifying a predetermined index.
  • the wireless transmission / reception unit 10 may have a function of receiving information for specifying an index of a random access preamble.
  • the wireless transmission / reception unit 10 may have a function of transmitting a random access preamble at the PRACH opportunity determined by the upper layer processing unit 14.
  • the RF unit 12 converts a signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down conversion: down covert), and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts an analog signal input from the RF unit 12 into a digital signal.
  • the baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs fast Fourier transform (Fast Fourier Transform: FFT) on the signal from which the CP has been removed, and converts the frequency domain signal. Extract.
  • CP Cyclic Prefix
  • FFT Fast Fourier transform
  • the baseband unit 13 performs an inverse fast Fourier transform (Inverse ⁇ ⁇ Fast Fourier Transform: IFFT) on the data, generates an OFDM symbol, adds a CP to the generated OFDM symbol, generates a baseband digital signal, The digital signal of the band is converted into an analog signal.
  • the baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • the RF unit 12 removes extra frequency components from the analog signal input from the baseband unit 13 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits the analog signal via the antenna unit 11. I do. Further, the RF unit 12 amplifies the power. Further, the RF unit 12 may have a function of determining the transmission power of the uplink signal and / or the uplink channel transmitted in the serving cell. The RF unit 12 is also called a transmission power control unit.
  • FIG. 13 is a schematic block diagram showing the configuration of the base station device 3 of the present embodiment.
  • the base station device 3 is configured to include a radio transmission / reception unit 30 and an upper layer processing unit 34.
  • the wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 is configured to include a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, a monitor unit, or a physical layer processing unit. Further, a control unit for controlling the operation of each unit based on various conditions may be separately provided.
  • the upper layer processing unit 34 is also called a terminal control unit.
  • the upper-layer processing unit 34 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: ⁇ RLC) layer, and a radio resource control (Radio Resource Control). Resource Control: RRC) Performs some or all of the layers.
  • the upper layer processing unit 34 may have a function of specifying one reference signal from one or a plurality of reference signals based on the random access preamble received by the wireless transmission / reception unit 30.
  • the upper layer processing unit 34 may specify a PRACH opportunity to monitor a random access preamble from at least the SSB index information and the mask index information.
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the MAC layer.
  • the medium access control layer processing unit 35 performs a process related to a scheduling request based on various setting information / parameters managed by the radio resource control layer processing unit 36.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of the RRC layer.
  • the radio resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC @ CE (Control @ Element), and the like arranged in the physical downlink shared channel, or obtains it from the upper node. , To the wireless transmission / reception unit 30. Further, the radio resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1.
  • the radio resource control layer processing unit 36 may set various setting information / parameters for each of the terminal devices 1 via a signal of an upper layer. That is, the radio resource control layer processing unit 36 transmits / reports information indicating various setting information / parameters.
  • the radio resource control layer processing unit 36 may transmit / broadcast information for specifying settings of a plurality of reference signals in a certain cell.
  • the base station apparatus 3 When transmitting an RRC message, MAC @ CE, and / or PDCCH from the base station apparatus 3 to the terminal apparatus 1 and performing processing based on the reception, the base station apparatus 3 The processing (control of the terminal device 1 and the system) is performed assuming that the processing is performed. That is, the base station device 3 sends the terminal device 1 an RRC message, MAC @ CE, and / or PDCCH that causes the terminal device to perform processing based on the reception.
  • the wireless transmission / reception unit 30 has a function of transmitting one or a plurality of reference signals. Further, the wireless transmission / reception unit 30 may have a function of receiving a signal including a beam failure recovery request transmitted from the terminal device 1.
  • the wireless transmission / reception unit 30 may have a function of transmitting information (for example, SSB index information and / or mask index information) specifying one or a plurality of PRACH opportunities to the terminal device 1.
  • the wireless transmission / reception unit 30 may have a function of transmitting information specifying a predetermined index.
  • the wireless transmission / reception unit 30 may have a function of transmitting information for specifying the index of the random access preamble.
  • the wireless transmission / reception unit 30 may have a function of monitoring the random access preamble at the PRACH opportunity specified by the upper layer processing unit 34. Other functions of the wireless transmission / reception unit 30 are the same as those of the wireless transmission / reception unit 10, and thus description thereof is omitted.
  • the base station device 3 is connected to one or a plurality of transmission / reception points 4, some or all of the functions of the radio transmission / reception unit 30 may be included in each transmission / reception point 4.
  • the upper layer processing unit 34 transmits (transfers) a control message or user data between the base station devices 3 or between a higher network device (MME, S-GW (Serving-GW)) and the base station device 3. ) Or receive.
  • MME mobile mobile phone
  • S-GW Serving-GW
  • receive receives
  • FIG. 13 other components of the base station device 3 and a transmission path of data (control information) between the components are omitted, but other functions necessary to operate as the base station device 3 are shown.
  • the block has a plurality of blocks.
  • the upper layer processing unit 34 includes a radio resource management (Radio Resource Management) layer processing unit and an application layer processing unit.
  • the upper layer processing unit 34 may have a function of setting a plurality of scheduling request resources corresponding to each of a plurality of reference signals transmitted from the wireless transmission / reception unit 30.
  • units in the figure are elements that realize the functions and procedures of the terminal device 1 and the base station device 3 that are also expressed by terms such as sections, circuits, constituent devices, devices, and units.
  • Each of the units denoted by reference numerals 10 to 16 included in the terminal device 1 may be configured as a circuit.
  • Each of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
  • the terminal device 1 determines the receiving unit 10 that receives the RRCReconfiguraton message, and the setting information of the search space and the setting information of the RESET for receiving the SIB1.
  • a control unit 16 which performs the first parameter reconfigurationWithSync in the message, the control unit determines that the active DL @ BWP is a bandwidth of the initial DL @ BWP and the SS block to which the initial DL @ BWP is related in the frequency domain.
  • the setting information of searchspace # 0 and the setting information of RESET # 0 are determined, and the setting information of the determined searchspace # 0 and the setting of RESET # 0 are determined.
  • SIB1 is acquired by the active DL @ BWP based on the information, and the first parameter is acquired. Is a parameter for synchronous reconfiguration to the target cell SpCell, the RESET # 0 is set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is a parameter for the initial DL @ BWP. , Set by searchSpaceZero.
  • the base station device 3 includes a transmitting unit 30 that transmits an RRCReconfiguraton message, and a control unit 36 that controls a search space for the terminal device to acquire the SIB1 and a RESET. If the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the control unit determines that the active DL @ BWP operated by the terminal device is an SS block associated with the initial DL @ BWP bandwidth and the initial DL @ BWP in the frequency domain.
  • the terminal device is caused to acquire SIB1 by the active DL @ BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0, 1 parameter is synchronization to target cell SpCell This is a parameter for reconfiguration.
  • the RESET # 0 is set by the controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set by the searchSpaceZero for the initial DL @ BWP.
  • the terminal device 1 can communicate with the base station device 3 efficiently.
  • the program that operates on the device according to the present invention may be a program that controls a central processing unit (CPU) or the like to cause a computer to function so as to realize the functions of the embodiment according to the present invention.
  • the program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiment according to the present invention may be recorded on a computer-readable recording medium.
  • the program may be realized by causing a computer system to read and execute the program recorded on the recording medium.
  • the “computer system” is a computer system built in the device, and includes an operating system and hardware such as peripheral devices.
  • the “computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium for dynamically storing a program for a short time, or another recording medium readable by a computer. Is also good.
  • Each functional block or various features of the device used in the above-described embodiment may be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other Logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • a general purpose processor may be a microprocessor, or may be a conventional processor, controller, microcontroller, or state machine.
  • the above-described electric circuit may be constituted by a digital circuit or may be constituted by an analog circuit.
  • one or more aspects of the present invention can use a new integrated circuit based on the technology.
  • the present invention is not limited to the above embodiment.
  • an example of the device is described.
  • the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, for example, AV devices, kitchen devices, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal device and this base station device efficiently perform communications. The terminal device receives a RRCReconfiguraton message, and determines search space configuration information and CORESET configuration information for receiving SIB1. If a first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, and if an active DL BWP includes, in the frequency region, an initial DL BWP bandwidth and an SS block related to the initial DL BWP, and a sub-carrier interval that is the same as the initial DL BWP is used, the terminal device determines searchspace #0 configuration information and CORESET #0 configuration information. The terminal device then acquires SIB1 with the active DL BWP on the basis of the searchspace #0 configuration information and the CORESET #0 configuration information that have been determined. The first parameter is for reconfiguration to synchronize with a target cell SpCell.

Description

基地局装置、端末装置、通信方法、および、集積回路Base station device, terminal device, communication method, and integrated circuit
 本発明は、基地局装置、端末装置、通信方法、および、集積回路に関する。本願は、2018年8月7日に日本に出願された特願2018-148467号に基づき優先権を主張し、その内容をここに援用する。 << The present invention relates to a base station device, a terminal device, a communication method, and an integrated circuit. This application claims priority based on Japanese Patent Application No. 2018-148467 for which it applied to Japan on August 7, 2018, and uses the content here.
 現在、第5世代のセルラーシステムに向けた無線アクセス方式および無線ネットワーク技術として、第三世代パートナーシッププロジェクト(3GPP: The Third Generation Partnership Project)において、LTE(Long Term Evolution)-Advanced Pro及びNR(New Radio technology)の技術検討及び規格策定が行われている(非特許文献1)。 Currently, as the wireless access method and wireless network technology for the fifth generation cellular system, in the 3rd generation partnership project (3GPP: The Third Generation Partnership Project), LTE (Long Term Evolution) -Advanced Pro and NR (New Radio) technology) and standard formulation (Non-Patent Document 1).
 第5世代のセルラーシステムでは、高速・大容量伝送を実現するeMBB(enhanced Mobile BroadBand)、低遅延・高信頼通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、IoT(Internet of Things)などマシン型デバイスが多数接続するmMTC(massive Machine Type Communication)の3つがサービスの想定シナリオとして要求されている。 5th generation cellular systems include enhanced mobile broadband (eMBB) for high-speed and large-capacity transmission, ultra-reliable and low-latency communication (URLLC) for low-latency and high-reliability communication, and Internet of Things (IoT). There are three demands for the service scenario: mmMTC (massive Machine Type Communication) to which many machine-type devices connect.
 本発明の一態様の目的は、上記のような無線通信システムにおいて、効率的な通信を可能とする端末装置、基地局装置、通信方法、および、集積回路を提供することを目的とする。 An object of one embodiment of the present invention is to provide a terminal device, a base station device, a communication method, and an integrated circuit that enable efficient communication in the above wireless communication system.
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の一態様における端末装置は、RRCReconfiguratonメッセージを受信する受信部と、SIB1を受信するためのサーチスペースの設定情報とCORESETの設定情報を決定する制御部と、を備え、前記メッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記制御部は、アクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、searchspace#0の設定情報とCORESET#0の設定情報を決定し、決定した前記searchspace#0の設定情報と前記CORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得し、前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される。 (1) In order to achieve the above object, the present invention has taken the following measures. That is, the terminal device according to one aspect of the present invention includes a receiving unit that receives an RRCReconfiguraton message, and a control unit that determines setting information of a search space for receiving the SIB1 and setting information of a RESET. If the first parameter reconfigurationWithSync is included, the control unit determines that the active DL @ BWP includes the bandwidth of the initial DL @ BWP and the SS block with which the initial DL @ BWP is related in the frequency domain, and the same subcarrier interval as the initial DL @ BWP. Is used, the setting information of searchspace # 0 and the setting information of RESET # 0 are determined, and the SIB1 is acquired by the active DL @ BWP based on the determined setting information of searchspace # 0 and the setting information of RESET # 0. And the first parameter is the target cell SpCell It is a parameter for synchronizing les configuration, the CORESET # 0 is relative to the initial DL BWP, set by ControlResourceSetZero, the searchspace # 0 is relative to the initial DL BWP, set by SearchSpaceZero.
 (2)また、本発明の一態様における端末装置と通信する基地局装置は、RRCReconfiguratonメッセージを送信する送信部と、前記端末装置がSIB1を取得するためのサーチスペースとCORESETを制御する制御部と、を備え、前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記制御部は、前記端末装置がオペレーティングしているアクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、前記端末装置をsearchspace#0の設定情報とCORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得させ、前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される。 (2) Further, a base station device that communicates with the terminal device according to one aspect of the present invention includes a transmitting unit that transmits an RRCReconfiguraton message, and a control unit that controls a search space for the terminal device to acquire SIB1 and CORESET. When the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the control unit determines that an active DL @ BWP operated by the terminal device is associated with an initial DL @ BWP bandwidth and an initial DL @ BWP in a frequency domain. If the terminal device includes the SS block to be used and uses the same subcarrier interval as the initial DL @ BWP, the terminal device is caused to acquire SIB1 by the active DL @ BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0. , The first parameter is the target cell. The parameters for synchronous reconfiguration to the SpCell are set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set by searchSpaceZero for the initial DL @ BWP. Is done.
 (3)また、本発明の一態様における通信方法は、端末装置の通信方法であって、RRCReconfiguratonメッセージを受信するし、SIB1を受信するためのサーチスペースの設定情報とCORESETの設定情報を決定し、前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、アクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、searchspace#0の設定情報とCORESET#0の設定情報を決定し、決定した前記searchspace#0の設定情報と前記CORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得し、前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される。 (3) The communication method according to one aspect of the present invention is a communication method for a terminal device, which receives an RRCReconfiguraton message and determines search space setting information and CORESET setting information for receiving SIB1. If the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the active DL @ BWP includes the bandwidth of the initial DL @ BWP and the SS block associated with the initial DL @ BWP in the frequency domain, and the same subcarrier interval as the initial DL @ BWP. Is used, the setting information of searchspace # 0 and the setting information of RESET # 0 are determined, and the SIB1 is acquired by the active DL @ BWP based on the determined setting information of searchspace # 0 and the setting information of RESET # 0. And the first parameter is the target cell Sp This is a parameter for synchronous reconfiguration to the Cell. The RESET # 0 is set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set by searchSpaceZero for the initial DL @ BWP. You.
 (4)また、本発明の一態様における通信方法は、基地局装置の通信方法であって、RRCレコンフィグレーション手順を行う端末装置と通信する基地局装置の通信方法であり、RRCReconfiguratonメッセージを送信し、前記端末装置がSIB1を取得するためのサーチスペースとCORESETを制御し、前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記端末装置がオペレーティングしているアクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、前記端末装置をsearchspace#0の設定情報とCORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得させ、前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される。 (4) The communication method according to an aspect of the present invention is a communication method for a base station apparatus, which is a communication method for a base station apparatus that communicates with a terminal apparatus that performs an RRC reconfiguration procedure, and transmits a RRCReconfiguraton message. Then, the terminal device controls a search space and a RESET for acquiring SIB1, and when the RRCReconfiguraton message includes the first parameter reconfigurationWithSync, the active DL @ BWP operated by the terminal device is initially set in the frequency domain. If the bandwidth of DL @ BWP and the initial DL @ BWP include the associated SS block, and if the same subcarrier interval as the initial DL @ BWP is used, the terminal device is used for the setting information of searchspace # 0 and the setting information of CORRESET # 0. Based on the active DL @ BWP B1 is acquired, the first parameter is a parameter for synchronous reconfiguration to the target cell SpCell, the RESET # 0 is set by the controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set. Is set by searchSpaceZero for the initial DL @ BWP.
 (5)また、本発明の一態様における集積回路は、端末装置に実装される集積回路であって、RRCReconfiguratonメッセージを受信する機能と、SIB1を受信するためのサーチスペースの設定情報とCORESETの設定情報を決定する機能と、前記端末装置に発揮させ、前記メッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、アクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、searchspace#0の設定情報とCORESET#0の設定情報を決定し、決定した前記searchspace#0の設定情報と前記CORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得し、前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される。 (5) The integrated circuit according to one embodiment of the present invention is an integrated circuit mounted on a terminal device, the function of receiving an RRCReconfiguraton message, the setting information of search space for receiving SIB1, and the setting of CORRESET. The function of determining information and letting the terminal device exercise the information, and when the first parameter reconfigurationWithSync is included in the message, the active DL @ BWP defines the bandwidth of the initial DL @ BWP and the SS block associated with the initial DL @ BWP in the frequency domain. If it is included and the same subcarrier interval as the initial DL @ BWP is used, the setting information of searchspace # 0 and the setting information of RESET # 0 are determined, and the setting information of the determined searchspace # 0 and the setting of RESET # 0 are determined. Based on the information, the active DL @ BWP is used to obtain SIB1, 1 is a parameter for synchronous reconfiguration to the target cell SpCell, the RESET # 0 is set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is a parameter for the initial DL @ BWP. On the other hand, it is set by searchSpaceZero.
 (6)また、本発明の一態様における集積回路は、基地局装置に実装される集積回路であって、RRCReconfiguratonメッセージを送信する機能と、前記端末装置がSIB1を取得するためのサーチスペースとCORESETを制御する機能と、前記基地局装置に発揮させ、前記メッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記端末装置がオペレーティングしているアクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、前記端末装置をsearchspace#0の設定情報とCORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得させ、前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される。 (6) Further, an integrated circuit according to one aspect of the present invention is an integrated circuit mounted on a base station device, and has a function of transmitting an RRCReconfiguraton message, a search space for the terminal device to acquire SIB1, and a reset. When the first parameter reconfigurationWithSync is included in the message, the active DL @ BWP operated by the terminal apparatus is set to the initial DL @ BWP bandwidth and the initial DL @ BWP in the frequency domain. If the DL @ BWP includes an associated SS block and uses the same subcarrier interval as the initial DL @ BWP, the terminal apparatus is configured to use the active DL @ BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0. SIB1 is acquired, and the first parameter is This is a parameter for synchronous reconfiguration to the get cell SpCell. The RESET # 0 is set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set by searchSpaceZero for the initial DL @ BWP. Is done.
 この発明によれば、基地局装置と端末装置が、効率的に通信することができる。 According to the present invention, the base station device and the terminal device can communicate efficiently.
本発明の実施形態に係る無線通信システムの概念を示す図である。FIG. 1 is a diagram illustrating a concept of a wireless communication system according to an embodiment of the present invention. 本発明の実施形態に係るSS/PBCHブロックおよびSSバーストセットの例を示す図である。FIG. 4 is a diagram illustrating an example of an SS / PBCH block and an SS burst set according to the embodiment of the present invention. 本発明の実施形態に係る上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of a schematic configuration of an uplink and a downlink slot according to the embodiment of the present invention. 本発明の実施形態に係るサブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。FIG. 5 is a diagram illustrating a relationship in a time domain of subframes, slots, and minislots according to the embodiment of the present invention. 本発明の実施形態に係るスロットまたはサブフレームの一例を示す図である。FIG. 3 is a diagram illustrating an example of a slot or a subframe according to the embodiment of the present invention. 本発明の実施形態に係るビームフォーミングの一例を示した図である。FIG. 3 is a diagram illustrating an example of beamforming according to the embodiment of the present invention. 本発明の実施形態に係るPRACH機会に対するSSBインデックスの割当の一例を示す図である。FIG. 7 is a diagram illustrating an example of SSB index allocation for PRACH opportunities according to an embodiment of the present invention. 本発明の実施形態に係るBWP設定の一例を示す図である。FIG. 4 is a diagram illustrating an example of a BWP setting according to the embodiment of the present invention. 本発明の実施形態に係るサービングセルにおけるランダムアクセス手順の開始時にMACエンティティがそのサービングセルに対してBWP切り替えの判断に関する疑似コードを示す図である。FIG. 8 is a diagram illustrating pseudo code related to a MAC entity determining BWP switching for a serving cell at the start of a random access procedure in a serving cell according to an embodiment of the present invention. 本実施形態に係る端末装置1のランダムアクセス手順の一例を示すフロー図である。It is a flowchart which shows an example of the random access procedure of the terminal device 1 concerning this embodiment. 本実施形態に係るサービングセルにおけるランダムアクセス手順の開始時にMACエンティティがこのサービングセルに対してBWP切り替えの判断に関する疑似コードの他の一例を示す図である。FIG. 14 is a diagram illustrating another example of pseudo code related to the determination of the BWP switching performed by the MAC entity on the serving cell at the start of the random access procedure in the serving cell according to the present embodiment. 本発明の実施形態に係る端末装置1の構成を示す概略ブロック図である。FIG. 1 is a schematic block diagram illustrating a configuration of a terminal device 1 according to an embodiment of the present invention. 本発明の実施形態に係る基地局装置3の構成を示す概略ブロック図である。FIG. 2 is a schematic block diagram illustrating a configuration of a base station device 3 according to the embodiment of the present invention.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 図1は、本実施形態における無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A、端末装置1B、および基地局装置3を具備する。以下、端末装置1A、および、端末装置1Bを、端末装置1とも称する。 FIG. 1 is a conceptual diagram of the wireless communication system according to the present embodiment. In FIG. 1, the wireless communication system includes a terminal device 1A, a terminal device 1B, and a base station device 3. Hereinafter, the terminal devices 1A and 1B are also referred to as terminal devices 1.
 端末装置1は、ユーザ端末、移動局装置、通信端末、移動機、端末、UE(User Equipment)、MS(Mobile Station)とも称される。基地局装置3は、無線基地局装置、基地局、無線基地局、固定局、NB(Node B)、eNB(evolved Node B)、BTS(Base Transceiver Station)、BS(Base Station)、NR NB(NR Node B)、NNB、TRP(Transmission and Reception Point)、gNBとも称される。基地局装置3は、コアネットワーク装置を含んでも良い。また、基地局装置3は、1つまたは複数の送受信点4(transmission reception point)を具備しても良い。以下で説明する基地局装置3の機能/処理の少なくとも一部は、該基地局装置3が具備する各々の送受信点4における機能/処理であってもよい。基地局装置3は、基地局装置3によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、基地局装置3は、1つまたは複数の送受信点4によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、1つのセルを複数の部分領域(Beamed area)にわけ、それぞれの部分領域において端末装置1をサーブしてもよい。ここで、部分領域は、ビームフォーミングで使用されるビームのインデックスあるいはプリコーディングのインデックスに基づいて識別されてもよい。 The terminal device 1 is also called a user terminal, a mobile station device, a communication terminal, a mobile device, a terminal, a UE (User Equipment), and an MS (Mobile Station). The base station device 3 includes a wireless base station device, a base station, a wireless base station, a fixed station, an NB (Node B), an eNB (evolved Node B), a BTS (Base Transceiver Station), a BS (Base Station), and an NR NB ( Also called NR (Node B), NNB, TRP (Transmission and Reception Point), and gNB. The base station device 3 may include a core network device. In addition, the base station device 3 may include one or more transmission / reception points 4 (transmission @ reception @ point). At least a part of the functions / processes of the base station device 3 described below may be the functions / processes at each transmission / reception point 4 of the base station device 3. The base station device 3 may serve the terminal device 1 with one or more cells in a communicable range (communication area) controlled by the base station device 3. Further, the base station device 3 may serve the terminal device 1 with one or a plurality of cells in a communicable range (communication area) controlled by one or a plurality of transmission / reception points 4. Further, one cell may be divided into a plurality of partial areas (Beamed @ area), and the terminal device 1 may be served in each of the partial areas. Here, the partial area may be identified based on an index of a beam used in beamforming or an index of precoding.
 基地局装置3から端末装置1への無線通信リンクを下りリンクと称する。端末装置1から基地局装置3への無線通信リンクを上りリンクと称する。 無線 A wireless communication link from the base station device 3 to the terminal device 1 is referred to as a downlink. The wireless communication link from the terminal device 1 to the base station device 3 is called an uplink.
 図1において、端末装置1と基地局装置3の間の無線通信では、サイクリックプレフィックス(CP: Cyclic Prefix)を含む直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)、シングルキャリア周波数多重(SC-FDM: Single-Carrier Frequency Division Multiplexing)、離散フーリエ変換拡散OFDM(DFT-S-OFDM: Discrete Fourier Transform Spread OFDM)、マルチキャリア符号分割多重(MC-CDM: Multi-Carrier Code Division Multiplexing)が用いられてもよい。 In FIG. 1, in wireless communication between the terminal device 1 and the base station device 3, orthogonal frequency division multiplexing (OFDM) including a cyclic prefix (CP: Cyclic Prefix), single carrier frequency multiplexing (SC- (). FDM: Single-Carrier Frequency Division Multiplexing, Discrete Fourier Transform Spread OFDM (DFT-S-OFDM: Discrete Fourier Transform Spread OFDM), Multi-Carrier Code Division Multiplexing (MC-CDM) Is also good.
 また、図1において、端末装置1と基地局装置3の間の無線通信では、ユニバーサルフィルタマルチキャリア(UFMC: Universal-Filtered Multi-Carrier)、フィルタOFDM(F-OFDM: Filtered OFDM)、窓関数が乗算されたOFDM(Windowed OFDM)、フィルタバンクマルチキャリア(FBMC: Filter-Bank Multi-Carrier)が用いられてもよい。 In FIG. 1, in wireless communication between the terminal device 1 and the base station device 3, a universal filter multicarrier (UFMC), a filter OFDM (F-OFDM), and a window function are used. Multiplied OFDM (Windowed OFDM) and filter bank multicarrier (FBMC: Filter-Bank Multi-Carrier) may be used.
 なお、本実施形態ではOFDMを伝送方式としてOFDMシンボルで説明するが、上述の他の伝送方式の場合を用いた場合も本発明に含まれる。 In this embodiment, OFDM symbols will be described using OFDM as a transmission method, but the present invention includes a case using the above-described other transmission methods.
 また、図1において、端末装置1と基地局装置3の間の無線通信では、CPを用いない、あるいはCPの代わりにゼロパディングをした上述の伝送方式が用いられてもよい。また、CPやゼロパディングは前方と後方の両方に付加されてもよい。 In FIG. 1, in the wireless communication between the terminal device 1 and the base station device 3, the above-described transmission method using no padding or zero padding instead of the CP may be used. Also, the CP and zero padding may be added to both the front and the rear.
 本実施形態の一態様は、LTEやLTE-A/LTE-A Proといった無線アクセス技術(RAT: Radio Access Technology)とのキャリアアグリゲーションまたはデュアルコネクティビティにおいてオペレーションされてもよい。このとき、一部またはすべてのセルまたはセルグループ、キャリアまたはキャリアグループ(例えば、プライマリセル(PCell: Primary Cell)、セカンダリセル(SCell: Secondary Cell)、プライマリセカンダリセル(PSCell)、MCG(Master Cell Group)、SCG(Secondary Cell Group)など)で用いられてもよい。また、単独でオペレーションするスタンドアローンで用いられてもよい。デュアルコネクティビティオペレーションにおいては、SpCell(Special Cell)は、MAC(MAC: Medium Access Control)エンティティがMCGに関連付けられているか、SCGに関連付けられているかに応じて、それぞれ、MCGのPCellまたは、SCGのPSCellと称する。デュアルコネクティビティオペレーションでなければ、SpCell(Special Cell)は、PCellと称する。SpCell(Special Cell)は、PUCCH送信と、競合ベースランダムアクセスをサポートする。 One aspect of the present embodiment may be operated in carrier aggregation or dual connectivity with a radio access technology (RAT: Radio Access Technology) such as LTE or LTE-A / LTE-A Pro. At this time, some or all cells or cell groups, carriers or carrier groups (for example, a primary cell (PCell: \ Primary \ Cell), a secondary cell (SCell: \ Secondary \ Cell), a primary secondary cell (PSCell), and an MCG (Master Cell Group) ), SCG (Secondary Cell Group), etc.). Further, it may be used as a stand-alone that operates alone. In the dual connectivity operation, SpCell (Special Cell) is a PCell of MCG or PSCell of SCG depending on whether a MAC (MAC: Medium Access Control) entity is associated with MCG or SCG, respectively. Called. If it is not a dual connectivity operation, SpCell (Special @ Cell) is called PCell. SpCell (Special @ Cell) supports PUCCH transmission and contention-based random access.
 本実施形態では、端末装置1に対して1つまたは複数のサービングセルが設定されてもよい。設定された複数のサービングセルは、1つのプライマリセルと1つまたは複数のセカンダリセルとを含んでもよい。プライマリセルは、初期コネクション確立(initial connection establishment)プロシージャが行なわれたサービングセル、コネクション再確立(connection re-establishment)プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリセルと指示されたセルであってもよい。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、1つまたは複数のセカンダリセルが設定されてもよい。ただし、設定された複数のサービングセルは、1つのプライマリセカンダリセルを含んでもよい。プライマリセカンダリセルは、端末装置1が設定された1つまたは複数のセカンダリセルのうち、上りリンクにおいて制御情報を送信可能なセカンダリセルであってもよい。また、端末装置1に対して、マスターセルグループとセカンダリセルグループの2種類のサービングセルのサブセットが設定されてもよい。マスターセルグループは1つのプライマリセルと0個以上のセカンダリセルで構成されてもよい。セカンダリセルグループは1つのプライマリセカンダリセルと0個以上のセカンダリセルで構成されてもよい。 In the present embodiment, one or more serving cells may be set for the terminal device 1. The set plurality of serving cells may include one primary cell and one or more secondary cells. The primary cell may be a serving cell in which an initial connection establishment procedure has been performed, a serving cell in which a connection re-establishment procedure has been started, or a cell designated as a primary cell in a handover procedure. Good. One or more secondary cells may be set at or after the establishment of an RRC (Radio Resource Control) connection. However, the set multiple serving cells may include one primary secondary cell. The primary secondary cell may be a secondary cell capable of transmitting control information in the uplink among one or a plurality of secondary cells in which the terminal device 1 is set. Further, a subset of two types of serving cells, a master cell group and a secondary cell group, may be set for the terminal device 1. The master cell group may be composed of one primary cell and zero or more secondary cells. The secondary cell group may be composed of one primary secondary cell and zero or more secondary cells.
 本実施形態の無線通信システムは、TDD(Time Division Duplex)および/またはFDD(Frequency Division Duplex)が適用されてよい。複数のセルの全てに対してTDD(Time Division Duplex)方式またはFDD(Frequency Division Duplex)方式が適用されてもよい。また、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。TDD方式はアンペアードスペクトラムオペレーション(Unpaired spectrum operation)と称されてもよい。FDD方式はペアードスペクトラムオペレーション(Paired spectrum operation)と称されてもよい。 無線 The wireless communication system of the present embodiment may employ TDD (Time Division Duplex) and / or FDD (Frequency Division Duplex). A TDD (Time Division Division Duplex) method or an FDD (Frequency Division Division Duplex) method may be applied to all of the plurality of cells. Also, cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated. The TDD scheme may be referred to as unpaired spectrum operation (Unpaired spectrum operation). The FDD scheme may be referred to as a paired spectrum operation (Paired spectrum operation).
 下りリンクにおいて、サービングセルに対応するキャリアを下りリンクコンポーネントキャリア(あるいは下りリンクキャリア)と称する。上りリンクにおいて、サービングセルに対応するキャリアを上りリンクコンポーネントキャリア(あるいは上りリンクキャリア)と称する。サイドリンクにおいて、サービングセルに対応するキャリアをサイドリンクコンポーネントキャリア(あるいはサイドリンクキャリア)と称する。下りリンクコンポーネントキャリア、上りリンクコンポーネントキャリア、および/またはサイドリンクコンポーネントキャリアを総称してコンポーネントキャリア(あるいはキャリア)と称する。 キ ャ リ ア In the downlink, a carrier corresponding to a serving cell is referred to as a downlink component carrier (or a downlink carrier). In the uplink, a carrier corresponding to a serving cell is called an uplink component carrier (or an uplink carrier). In the side link, a carrier corresponding to a serving cell is referred to as a side link component carrier (or a side link carrier). The downlink component carrier, the uplink component carrier, and / or the side link component carrier are collectively referred to as a component carrier (or a carrier).
 本実施形態の物理チャネルおよび物理信号について説明する。 物理 The physical channel and the physical signal of the present embodiment will be described.
 図1において、端末装置1と基地局装置3の無線通信では、以下の物理チャネルが用いられる。 In FIG. 1, the following physical channels are used in wireless communication between the terminal device 1 and the base station device 3.
・PBCH(Physical Broadcast CHannel)
・PDCCH(Physical Downlink Control CHannel)
・PDSCH(Physical Downlink Shared CHannel)
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
・ PBCH (Physical Broadcast CHannel)
・ PDCCH (Physical Downlink Control CHannel)
・ PDSCH (Physical Downlink Shared CHannel)
・ PUCCH (Physical Uplink Control CHannel)
・ PUSCH (Physical Uplink Shared CHannel)
・ PRACH (Physical Random Access CHannel)
 PBCHは、端末装置1が必要な重要なシステム情報を含む重要情報ブロック(MIB: Master Information Block、EIB: Essential Information Block、BCH:Broadcast Channel)を報知するために用いられる。 The PBCH is used to broadcast important information blocks (MIB: Master Information Block, EIB: Essential Information Block, BCH: Broadcast Channel) containing important system information required by the terminal device 1.
 また、PBCHは、同期信号のブロック(SS/PBCHブロックとも称する)の周期内の時間インデックスを報知するために用いられてよい。ここで、時間インデックスは、セル内の同期信号およびPBCHのインデックスを示す情報である。例えば、3つの送信ビーム(送信フィルタ設定、受信空間パラメータに関する擬似同位置(QCL:Quasi Co-Location))の想定を用いてSS/PBCHブロックを送信する場合、予め定められた周期内または設定された周期内の時間順を示してよい。また、端末装置は、時間インデックスの違いを送信ビームの違いと認識してもよい。 The PBCH may be used to broadcast a time index within a cycle of a synchronization signal block (also referred to as an SS / PBCH block). Here, the time index is information indicating an index of a synchronization signal and a PBCH in a cell. For example, when transmitting an SS / PBCH block using the assumption of three transmission beams (transmission filter setting, quasi-co-location (QCL: Quasi Co-Location) related to reception spatial parameters), the SS / PBCH block is set within a predetermined period or set. Chronological order within the specified cycle. Further, the terminal device may recognize the difference in the time index as the difference in the transmission beam.
 PDCCHは、下りリンクの無線通信(基地局装置3から端末装置1への無線通信)において、下りリンク制御情報(Downlink Control Information: DCI)を送信する(または運ぶ)ために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称してもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされる。PDCCHは、PDCCH候補において送信される。端末装置1は、サービングセルにおいてPDCCH候補(candidate)のセットをモニタする。モニタすることは、あるDCIフォーマットに応じてPDCCHのデコードを試みることを意味する。 The PDCCH is used to transmit (or carry) downlink control information (Downlink Control Information: DCI) in downlink wireless communication (wireless communication from the base station device 3 to the terminal device 1). Here, one or a plurality of DCIs (which may be referred to as DCI formats) are defined for transmission of downlink control information. That is, a field for downlink control information is defined as DCI and is mapped to information bits. The PDCCH is transmitted in PDCCH candidates. The terminal device 1 monitors a set of PDCCH candidates (candidate) in the serving cell. Monitoring means attempting to decode the PDCCH according to a certain DCI format.
 例えば、以下のDCIフォーマットが定義されてよい。
 ・DCIフォーマット0_0
 ・DCIフォーマット0_1
 ・DCIフォーマット1_0
 ・DCIフォーマット1_1
 ・DCIフォーマット2_0
 ・DCIフォーマット2_1
 ・DCIフォーマット2_2
 ・DCIフォーマット2_3
For example, the following DCI format may be defined.
-DCI format 0_0
-DCI format 0_1
-DCI format 1_0
-DCI format 1_1
-DCI format 2_0
-DCI format 2_1
-DCI format 2_2
-DCI format 2_3
 DCIフォーマット0_0は、PUSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報を含んでよい。 DCI format 0_0 may include information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
 DCIフォーマット0_1は、PUSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報、帯域部分(BWP:BandWidth Part)を示す情報、チャネル状態情報(CSI:Channel State Information)リクエスト、サウンディング参照信号(SRS:Sounding Reference Signal)リクエスト、アンテナポートに関する情報を含んでよい。 The DCI format 0_1 is information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating a band portion (BWP: BandWidth @ Part), channel state information (CSI: Channel @ State @ Information) request, sounding reference. It may include a signal (SRS: Sounding Reference Signal) request and information on an antenna port.
 DCIフォーマット1_0は、PDSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報を含んでよい。 The DCI format 1_0 may include information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
 DCIフォーマット1_1は、PDSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報、帯域部分(BWP)を示す情報、送信設定指示(TCI:Transmission Configuration Indication)、アンテナポートに関する情報を含んでよい。 The DCI format 1_1 includes information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating a band portion (BWP), a transmission configuration instruction (TCI: Transmission Configuration Indication), and information regarding an antenna port. Is fine.
 DCIフォーマット2_0は、1つまたは複数のスロットのスロットフォーマットを通知するために用いられる。スロットフォーマットは、スロット内の各OFDMシンボルが下りリンク、フレキシブル、上りリンクのいずれかに分類されたものとして定義される。例えば、スロットフォーマットが28の場合、スロットフォーマット28が指示されたスロット内の14シンボルのOFDMシンボルに対してDDDDDDDDDDDDFUが適用される。ここで、Dが下りリンクシンボル、Fがフレキシブルシンボル、Uが上りリンクシンボルである。なお、スロットについては後述する。 $ DCI format 2_0 is used to notify the slot format of one or more slots. The slot format is defined such that each OFDM symbol in a slot is classified into one of downlink, flexible, and uplink. For example, when the slot format is 28, DDDDDDDDDDDFU is applied to 14 OFDM symbols in the slot for which the slot format 28 is indicated. Here, D is a downlink symbol, F is a flexible symbol, and U is an uplink symbol. The slot will be described later.
 DCIフォーマット2_1は、端末装置1に対して、送信がないと想定してよい物理リソースブロックとOFDMシンボルを通知するために用いられる。なお、この情報はプリエンプション指示(間欠送信指示)と称してよい。 The DCI format 2_1 is used to notify the terminal device 1 of a physical resource block and an OFDM symbol that may be assumed to have no transmission. This information may be referred to as a preemption instruction (intermittent transmission instruction).
 DCIフォーマット2_2は、PUSCHおよびPUSCHのための送信電力制御(TPC:Transmit Power Control)コマンドの送信のために用いられる。 The DCI format 2_2 is used for transmitting a PUSCH and a transmission power control (TPC: Transmit Power Control) command for the PUSCH.
 DCIフォーマット2_3は、1または複数の端末装置1によるサウンディング参照信号(SRS)送信のためのTPCコマンドのグループを送信するために用いられる。また、TPCコマンドとともに、SRSリクエストが送信されてもよい。また、DCIフォーマット2_3に、PUSCHおよびPUCCHのない上りリンク、またはSRSの送信電力制御がPUSCHの送信電力制御と紐付いていない上りリンクのために、SRSリクエストとTPCコマンドが定義されてよい。 The DCI format 2_3 is used to transmit a group of TPC commands for transmitting a sounding reference signal (SRS) by one or a plurality of terminal devices 1. Further, an SRS request may be transmitted together with the TPC command. Further, in DCI format 2_3, an SRS request and a TPC command may be defined for an uplink without a PUSCH and a PUCCH, or for an uplink in which SRS transmission power control is not associated with PUSCH transmission power control.
 下りリンクに対するDCIを、下りリンクグラント(downlink grant)、または、下りリンクアサインメント(downlink assignment)とも称する。ここで、上りリンクに対するDCIを、上りリンクグラント(uplink grant)、または、上りリンクアサインメント(Uplink assignment)とも称する。 DCThe DCI for the downlink is also called a downlink grant (downlink @ grant) or a downlink assignment (downlink @ assignment). Here, DCI for the uplink is also referred to as an uplink grant (uplink @ grant) or an uplink assignment (Uplink @ assignment).
 1つのPDCCHで送信されるDCIフォーマットに付加されるCRC(Cyclic Redundancy Check)パリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、CS-RNTI(Configured Scheduling-Radio Network Temporary Identifier)、RA-RNTI(Random Access-Radio Network Temporary Identity)、または、Temporary C-RNTIでスクランブルされる。C-RNTIおよびCS-RNTIは、セル内において端末装置を識別するための識別子である。Temporary C-RNTIは、競合ベースのランダムアクセス手順(contention based random access procedure)中に、ランダムアクセスプリアンブルを送信した端末装置1を識別するための識別子である。 The CRC (Cyclic Redundancy Check) parity bit added to the DCI format transmitted on one PDCCH is C-RNTI (Cell-Radio Network Network Temporary Identifier), CS-RNTI (Configured Scheduling-Radio Network Network Temporary Identifier), RA- It is scrambled with RNTI (Random @ Access-Radio @ Network @ Temporary @ Identity) or Temporary @ C-RNTI. C-RNTI and CS-RNTI are identifiers for identifying a terminal device in a cell. Temporary @ C-RNTI is an identifier for identifying the terminal device 1 that has transmitted the random access preamble during the contention based random access procedure (contention based random access procedure).
 C-RNTI(端末装置の識別子(識別情報))は、1つまたは複数のスロットにおけるPDSCHまたはPUSCHを制御するために用いられる。CS-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。Temporary C-RNTIは、1つまたは複数のスロットにおけるPDSCH送信またはPUSCH送信を制御するために用いられる。Temporary C-RNTIは、ランダムアクセスメッセージ3の再送信、およびランダムアクセスメッセージ4の送信をスケジュールするために用いられる。RA-RNTI(ランダムアクセス応答識別情報)は、ランダムアクセスプリアンブルを送信した物理ランダムアクセスチャネルの周波数および時間の位置情報に応じて決定される。 C-RNTI (terminal device identifier (identification information)) is used to control PDSCH or PUSCH in one or more slots. CS-RNTI is used for periodically allocating PDSCH or PUSCH resources. Temporary @ C-RNTI is used to control PDSCH transmission or PUSCH transmission in one or more slots. Temporary @ C-RNTI is used to schedule retransmission of random access message 3 and transmission of random access message 4. RA-RNTI (random access response identification information) is determined according to frequency and time position information of the physical random access channel that transmitted the random access preamble.
 PUCCHは、上りリンクの無線通信(端末装置1から基地局装置3の無線通信)において、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCHリソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。HARQ-ACKは、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH)に対するHARQ-ACKを示してもよい。 The PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI) in uplink wireless communication (wireless communication from the terminal device 1 to the base station device 3). Here, the uplink control information may include channel state information (CSI: {Channel} State} Information) used to indicate the state of the downlink channel. Further, the uplink control information may include a scheduling request (SR: Scheduling Request) used to request the UL-SCH resource. In addition, the uplink control information may include HARQ-ACK (Hybrid \ Automatic \ Repeat \ request \ ACKnowledgement). HARQ-ACK may indicate HARQ-ACK for downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH).
 PDSCHは、媒介アクセス(MAC: Medium Access Control)層からの下りリンクデータ(DL-SCH: Downlink Shared CHannel)の送信に用いられる。また、下りリンクの場合にはシステム情報(SI: System Information)やランダムアクセス応答(RAR: Random Access Response)などの送信にも用いられる。 The PDSCH is used for transmitting downlink data (DL-SCH: Downlink Shared CHannel) from the medium access (MAC: Medium Access Control) layer. In the case of downlink, it is also used for transmitting system information (SI: \ System \ Information) and a random access response (RAR: \ Random \ Access \ Response).
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH: Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。また、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわち、UCIのみを送信するために用いられてもよい。 The PUSCH may be used to transmit HARQ-ACK and / or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. Also, it may be used to transmit only CSI or only HARQ-ACK and CSI. That is, it may be used to transmit only UCI.
 ここで、基地局装置3と端末装置1は、上位層(上位レイヤ:higher layer)において信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC: Radio Resource Control)層において、RRCシグナリング(RRC message: Radio Resource Control message、RRC information: Radio Resource Control informationとも称される)を送受信してもよい。また、基地局装置3と端末装置1は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。ここで、RRCシグナリング、および/または、MACコントロールエレメントを、上位層の信号(上位レイヤ信号:higher layer signaling)とも称する。ここでの上位層は、物理層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS(Non Access Stratum)層などの一つまたは複数を含んでもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの一つまたは複数を含んでもよい。 Here, the base station device 3 and the terminal device 1 exchange (transmit and receive) signals in an upper layer (upper layer: higher layer). For example, the base station device 3 and the terminal device 1 transmit and receive RRC signaling (RRC message: Radio Resource Control message, RRC information: also referred to as Radio Resource Control information) in a radio resource control (RRC: Radio Resource Control) layer. May be. Further, the base station device 3 and the terminal device 1 may transmit and receive a MAC control element in a MAC (Medium Access Control) layer. Here, the RRC signaling and / or the MAC control element are also referred to as an upper layer signal (upper layer signal: higher @ layer @ signaling). The upper layer here means the upper layer as viewed from the physical layer, and may include one or more of a MAC layer, an RRC layer, an RLC layer, a PDCP layer, a NAS (Non Access Stratum) layer, and the like. For example, in the processing of the MAC layer, the upper layer may include one or more of an RRC layer, an RLC layer, a PDCP layer, a NAS layer, and the like.
 PDSCHまたはPUSCHは、RRCシグナリング、および、MACコントロールエレメントを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置3から送信されるRRCシグナリングは、セル内における複数の端末装置1に対して共通のシグナリングであってもよい。また、基地局装置3から送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。 $ PDSCH or PUSCH may be used for transmitting RRC signaling and MAC control elements. Here, in the PDSCH, RRC signaling transmitted from the base station device 3 may be common signaling to a plurality of terminal devices 1 in a cell. Further, the RRC signaling transmitted from the base station apparatus 3 may be signaling dedicated to a certain terminal apparatus 1 (also referred to as dedicated signaling). That is, terminal device-specific (UE-specific) information may be transmitted to a certain terminal device 1 using dedicated signaling. Also, the PUSCH may be used for transmission of UE capability (UE Capability) in the uplink.
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。ここで、下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal: SS)
・参照信号(Reference Signal: RS)
In FIG. 1, the following downlink physical signals are used in downlink wireless communication. Here, the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
・ Synchronization signal (SS)
・ Reference Signal (RS)
 同期信号は、プライマリ同期信号(PSS:Primary Synchronization Signal)およびセカンダリ同期信号(SSS)を含んでよい。PSSとSSSを用いてセルIDが検出されてよい。 The synchronization signal may include a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS). The cell ID may be detected using the PSS and the SSS.
 同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。ここで、同期信号は、端末装置1が基地局装置3によるプリコーディングまたはビームフォーミングにおけるプリコーディングまたはビームの選択に用いられて良い。なお、ビームは、送信または受信フィルタ設定、あるいは空間ドメイン送信フィルタまたは空間ドメイン受信フィルタと呼ばれてもよい。 The synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and the time domain. Here, the synchronization signal may be used by the terminal device 1 for precoding or beam selection in precoding or beamforming by the base station device 3. Note that the beam may be called a transmission or reception filter setting, or a spatial domain transmission filter or a spatial domain reception filter.
 参照信号は、端末装置1が物理チャネルの伝搬路補償を行うために用いられる。ここで、参照信号は、端末装置1が下りリンクのCSIを算出するためにも用いられてよい。また、参照信号は、無線パラメータやサブキャリア間隔などのヌメロロジーやFFTの窓同期などができる程度の細かい同期(Fine synchronization)に用いられて良い。 The reference signal is used by the terminal device 1 to perform channel compensation of the physical channel. Here, the reference signal may also be used by the terminal device 1 to calculate downlink CSI. In addition, the reference signal may be used for fine synchronization (Fine synchronization) to enable numerology such as wireless parameters and subcarrier intervals, FFT window synchronization, and the like.
 本実施形態において、以下の下りリンク参照信号のいずれか1つまたは複数が用いられる。
 ・DMRS(Demodulation Reference Signal)
 ・CSI-RS(Channel State Information Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・TRS(Tracking Reference Signal)
In the present embodiment, one or more of the following downlink reference signals are used.
・ DMRS (Demodulation Reference Signal)
・ CSI-RS (Channel State Information Reference Signal)
・ PTRS (Phase Tracking Reference Signal)
・ TRS (Tracking Reference Signal)
 DMRSは、変調信号を復調するために使用される。なお、DMRSには、PBCHを復調するための参照信号と、PDSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。CSI-RSは、チャネル状態情報(CSI:Channel State Information)の測定およびビームマネジメントに使用され、周期的またはセミパーシステントまたは非周期のCSI参照信号の送信方法が適用される。CSI-RSには、ノンゼロパワー(NZP:Non-Zero Power)CSI-RSと、送信電力(または受信電力)がゼロである(ゼロパワー(ZP:Zero Power)CSI-RSが定義されてよい。ここで、ZP CSI-RSは送信電力がゼロまたは送信されないCSI-RSリソースと定義されてよい。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。TRSは、高速移動時におけるドップラーシフトを保証するために使用される。なお、TRSはCSI-RSの1つの設定として用いられてよい。例えば、1ポートのCSI-RSがTRSとして無線リソースが設定されてもよい。 DMRS is used to demodulate a modulated signal. In the DMRS, two types of reference signals for demodulating the PBCH and a reference signal for demodulating the PDSCH may be defined, or both may be referred to as DMRS. CSI-RS is used for channel state information (CSI) measurement and beam management, and a periodic, semi-persistent, or aperiodic CSI reference signal transmission method is applied. As the CSI-RS, a non-zero power (NZP: Non-Zero @ Power) CSI-RS and a zero power (ZP: Zero @ Power) CSI-RS having zero transmission power (or reception power) may be defined. Here, ZP CSI-RS may be defined as a CSI-RS resource with zero or no transmit power, and a PTRS to track the phase in the time axis with a view to guaranteeing a frequency offset due to phase noise. TRS is used to guarantee Doppler shift during high-speed movement, where TRS may be used as one setting of CSI-RS, for example, one-port CSI-RS is used as TRS. Radio resources may be configured.
 本実施形態において、以下の上りリンク参照信号のいずれか1つまたは複数が用いられる。
 ・DMRS(Demodulation Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・SRS(Sounding Reference Signal)
In this embodiment, one or more of the following uplink reference signals are used.
・ DMRS (Demodulation Reference Signal)
・ PTRS (Phase Tracking Reference Signal)
・ SRS (Sounding Reference Signal)
 DMRSは、変調信号を復調するために使用される。なお、DMRSには、PUCCHを復調するための参照信号と、PUSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。SRSは、上りリンクチャネル状態情報(CSI)の測定、チャネルサウンディング、およびビームマネジメントに使用される。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。 DMRS is used to demodulate a modulated signal. In the DMRS, two types of reference signals for demodulating the PUCCH and reference signals for demodulating the PUSCH may be defined, or both may be referred to as DMRS. The SRS is used for uplink channel state information (CSI) measurement, channel sounding, and beam management. PTRS is used to track the phase in the time axis in order to guarantee a frequency offset due to phase noise.
 下りリンク物理チャネルおよび/または下りリンク物理シグナルを総称して、下りリンク信号と称する。上りリンク物理チャネルおよび/または上りリンク物理シグナルを総称して、上りリンク信号と称する。下りリンク物理チャネルおよび/または上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理シグナルおよび/または上りリンク物理シグナルを総称して、物理シグナルと称する。 A downlink physical channel and / or a downlink physical signal are collectively referred to as a downlink signal. An uplink physical channel and / or an uplink physical signal are collectively referred to as an uplink signal. The downlink physical channel and / or the uplink physical channel are collectively referred to as a physical channel. The downlink physical signal and / or the uplink physical signal are collectively referred to as a physical signal.
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:transport block)および/またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行われる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行われる。 BCH, UL-SCH and DL-SCH are transport channels. A channel used in a medium access control (MAC) layer is called a transport channel. A transport channel unit used in the MAC layer is also referred to as a transport block (TB) and / or a MAC PDU (Protocol Data Unit). In the MAC layer, HARQ (Hybrid Automatic Repeat Repeat reQuest) control is performed for each transport block. The transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, transport blocks are mapped to codewords, and encoding is performed for each codeword.
 図2は、本実施形態に係るSS/PBCHブロック(同期信号ブロック、SSブロック、SSBとも称される)およびSSバーストセット(同期信号バーストセットとも称される)の例を示す図である。図2は、周期的に送信されるSSバーストセット内に2つのSS/PBCHブロックが含まれ、SS/PBCHブロックは、連続する4OFDMシンボルで構成される例を示している。 FIG. 2 is a diagram illustrating an example of an SS / PBCH block (also referred to as a synchronization signal block, an SS block, or an SSB) and an SS burst set (also referred to as a synchronization signal burst set) according to the present embodiment. FIG. 2 illustrates an example in which two SS / PBCH blocks are included in a periodically transmitted SS burst set, and the SS / PBCH blocks are configured by four consecutive OFDM symbols.
 SS/PBCHブロックは、少なくとも同期信号(PSS、SSS)、および/またはPBCHを含む単位ブロックである。SS/PBCHブロックに含まれる信号/チャネルを送信することを、SS/PBCHブロックを送信すると表現する。基地局装置3はSSバーストセット内の1つまたは複数のSS/PBCHブロックを用いて同期信号および/またはPBCHを送信する場合に、SS/PBCHブロック毎に独立した下りリンク送信ビームを用いてもよい。 The SS / PBCH block is a unit block including at least a synchronization signal (PSS, SSS) and / or PBCH. Transmitting a signal / channel included in an SS / PBCH block is referred to as transmitting an SS / PBCH block. When transmitting the synchronization signal and / or the PBCH using one or a plurality of SS / PBCH blocks in the SS burst set, the base station apparatus 3 may use an independent downlink transmission beam for each SS / PBCH block. Good.
 図2において、1つのSS/PBCHブロックにはPSS、SSS、PBCHが時間/周波数多重されている。ただし、PSS、SSSおよび/またはPBCHが時間領域で多重される順番は図2に示す例と異なってもよい。 に お い て In FIG. 2, PSS, SSS and PBCH are time / frequency multiplexed in one SS / PBCH block. However, the order in which the PSS, SSS and / or PBCH are multiplexed in the time domain may be different from the example shown in FIG.
 SSバーストセットは、周期的に送信されてよい。例えば、初期アクセスに使用されるための周期と、接続されている(ConnectedまたはRRC_Connected)端末装置のために設定する周期が定義されてもよい。また、接続されている(ConnectedまたはRRC_Connected)端末装置のために設定する周期はRRC層で設定されてよい。また、接続されている(ConnectedまたはRRC_Connected)端末のために設定する周期は潜在的に送信する可能性がある時間領域の無線リソースの周期であって、実際には基地局装置3が送信するかどうかを決めてもよい。また、初期アクセスに使用されるための周期は、仕様書などに予め定義されてよい。 The SS burst set may be transmitted periodically. For example, a cycle to be used for initial access and a cycle to be set for a connected (Connected or RRC_Connected) terminal device may be defined. Further, the cycle set for the connected (Connected or RRC_Connected) terminal device may be set in the RRC layer. In addition, the cycle set for the connected (Connected or RRC_Connected) terminal is a cycle of a radio resource in a time domain that may potentially transmit, and is actually transmitted by the base station apparatus 3. You may decide. Further, the cycle to be used for the initial access may be defined in advance in a specification or the like.
 SSバーストセットは、システムフレーム番号(SFN:System Frame Number)に基づいて決定されてよい。また、SSバーストセットの開始位置(バウンダリ)は、SFNと周期に基づいて決定されてよい。 The SS burst set may be determined based on a system frame number (SFN: System Frame Number). Further, the start position (boundary) of the SS burst set may be determined based on the SFN and the cycle.
 SS/PBCHブロックは、SSバーストセット内の時間的な位置に応じてSSBインデックス(SSB/PBCHブロックインデックスと称されてもよい)が割り当てられる。端末装置1は、検出したSS/PBCHブロックに含まれるPBCHの情報および/または参照信号の情報に基づいてSSBインデックスを算出する。 The SS / PBCH block is assigned an SSB index (also referred to as an SSB / PBCH block index) according to a temporal position in the SS burst set. The terminal device 1 calculates an SSB index based on PBCH information and / or reference signal information included in the detected SS / PBCH block.
 複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックは、同じSSBインデックスが割り当てられる。複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックは、QCLである(あるいは同じ下りリンク送信ビームが適用されている)と想定されてもよい。また、複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックにおけるアンテナポートは、平均遅延、ドップラーシフト、空間相関に関してQCLであると想定されてもよい。 SSSS / PBCH blocks having the same relative time within each SS burst set in a plurality of SS burst sets are assigned the same SSB index. SS / PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL (or have the same downlink transmit beam applied). Also, antenna ports in SS / PBCH blocks with the same relative time in each SS burst set in multiple SS burst sets may be assumed to be QCL with respect to average delay, Doppler shift, and spatial correlation.
 あるSSバーストセットの周期内で、同じSSBインデックスが割り当てられているSS/PBCHブロックは、平均遅延、平均ゲイン、ドップラースプレッド、ドップラーシフト、空間相関に関してQCLであると想定されてもよい。QCLである1つまたは複数のSS/PBCHブロック(あるいは参照信号であってもよい)に対応する設定をQCL設定と称してもよい。 SS Within a period of a certain SS burst set, SS / PBCH blocks assigned the same SSB index may be assumed to be QCL with respect to average delay, average gain, Doppler spread, Doppler shift, spatial correlation. A setting corresponding to one or a plurality of SS / PBCH blocks that are QCLs (or may be reference signals) may be referred to as a QCL setting.
 SS/PBCHブロック数(SSブロック数あるいはSSB数と称されてもよい)は、例えばSSバースト、またはSSバーストセット内、またはSS/PBCHブロックの周期の中のSS/PBCHブロック数(個数)として定義されてよい。また、SS/PBCHブロック数は、SSバースト内、またはSSバーストセット内、またはSS/PBCHブロックの周期の中のセル選択のためのビームグループの数を示してもよい。ここで、ビームグループは、SSバースト内、またはSSバーストセット内、またはSS/PBCHブロックの周期の中に含まれる異なるSS/PBCHブロックの数または異なるビームの数として定義されてよい。 The number of SS / PBCH blocks (which may also be referred to as the number of SS blocks or the number of SSBs) is, for example, the number of SS / PBCH blocks (number) in an SS burst or SS burst set, or in a period of an SS / PBCH block. May be defined. Also, the number of SS / PBCH blocks may indicate the number of beam groups for cell selection within an SS burst, within an SS burst set, or within a period of an SS / PBCH block. Here, the beam group may be defined as the number of different SS / PBCH blocks or the number of different beams included in the SS burst, the SS burst set, or the period of the SS / PBCH block.
 以下、本実施形態で説明する参照信号は、下りリンク参照信号、同期信号、SS/PBCHブロック、下りリンクDM-RS、CSI-RS、上りリンク参照信号、SRS、および/または、上りリンクDM-RSを含む。例えば、下りリンク参照信号、同期信号および/またはSS/PBCHブロックを参照信号と称してもよい。下りリンクで使用される参照信号は、下りリンク参照信号、同期信号、SS/PBCHブロック、下りリンクDM-RS、CSI-RSなどを含む。上りリンクで使用される参照信号は、上りリンク参照信号、SRS、および/または、上りリンクDM-RSなどを含む。 Hereinafter, a reference signal described in the present embodiment includes a downlink reference signal, a synchronization signal, an SS / PBCH block, a downlink DM-RS, a CSI-RS, an uplink reference signal, an SRS, and / or an uplink DM- Includes RS. For example, a downlink reference signal, a synchronization signal, and / or an SS / PBCH block may be referred to as a reference signal. The reference signal used in the downlink includes a downlink reference signal, a synchronization signal, an SS / PBCH block, a downlink DM-RS, a CSI-RS, and the like. The reference signal used in the uplink includes an uplink reference signal, an SRS, and / or an uplink DM-RS.
 また、参照信号は、無線リソース測定(RRM:Radio Resource Measurement)に用いられてよい。また、参照信号は、ビームマネジメントに用いられてよい。 {Also, the reference signal may be used for radio resource measurement (RRM). Further, the reference signal may be used for beam management.
 ビームマネジメントは、送信装置(下りリンクの場合は基地局装置3であり、上りリンクの場合は端末装置1である)におけるアナログおよび/またはディジタルビームと、受信装置(下りリンクの場合は端末装置1、上りリンクの場合は基地局装置3である)におけるアナログおよび/またはディジタルビームの指向性を合わせ、ビーム利得を獲得するための基地局装置3および/または端末装置1の手続きであってよい。 Beam management includes analog and / or digital beams in a transmitting device (the base station device 3 in the case of downlink, and the terminal device 1 in the case of uplink) and a receiving device (the terminal device 1 in the case of downlink). (In the case of the uplink, the base station apparatus 3), the procedure of the base station apparatus 3 and / or the terminal apparatus 1 for matching the directivity of the analog and / or digital beams and obtaining the beam gain.
 なお、ビームペアリンクを構成、設定または確立する手続きとして、下記の手続きを含んでよい。
・ビーム選択(Beam selection)
・ビーム改善(Beam refinement)
・ビームリカバリ(Beam recovery)
The procedure for configuring, setting, or establishing a beam pair link may include the following procedure.
・ Beam selection
・ Beam refinement
・ Beam recovery
 例えば、ビーム選択は、基地局装置3と端末装置1の間の通信においてビームを選択する手続きであってよい。また、ビーム改善は、さらに利得の高いビームの選択、あるいは端末装置1の移動によって最適な基地局装置3と端末装置1の間のビームの変更をする手続きであってよい。ビームリカバリは、基地局装置3と端末装置1の間の通信において遮蔽物や人の通過などにより生じるブロッケージにより通信リンクの品質が低下した際にビームを再選択する手続きであってよい。 {For example, beam selection may be a procedure for selecting a beam in communication between the base station device 3 and the terminal device 1. Further, the beam improvement may be a procedure of selecting a beam having a higher gain or changing a beam between the base station apparatus 3 and the terminal apparatus 1 optimally by moving the terminal apparatus 1. The beam recovery may be a procedure for reselecting a beam when the quality of a communication link is degraded due to a blockage caused by a shield or the passage of a person in communication between the base station device 3 and the terminal device 1.
 ビームマネジメントには、ビーム選択、ビーム改善が含まれてよい。ビームリカバリには、下記の手続きを含んでよい。
・ビーム失敗(beam failure)の検出
・新しいビームの発見
・ビームリカバリリクエストの送信
・ビームリカバリリクエストに対する応答のモニタ
Beam management may include beam selection and beam improvement. Beam recovery may include the following procedures.
Detection of beam failure detection of a new beam transmission of a beam recovery request monitoring of a response to a beam recovery request
 例えば、端末装置1における基地局装置3の送信ビームを選択する際にCSI-RSまたはSS/PBCHブロックに含まれるSSSのRSRP(Reference Signal Received Power)を用いてもよいし、CSIを用いてもよい。また、基地局装置3への報告としてCSI-RSリソースインデックス(CRI:CSI-RS Resource Index)を用いてもよいし、SS/PBCHブロックに含まれるPBCHおよび/またはPBCHの復調に用いられる復調用参照信号(DMRS)の系列で指示されるインデックスを用いてもよい。 For example, when selecting a transmission beam of the base station device 3 in the terminal device 1, CSI-RS or RSRP (Reference Signal Received Power) of SSS included in the SS / PBCH block may be used, or CSI may be used. Good. Further, a CSI-RS resource index (CRI: CSI-RS {Resource} Index) may be used as a report to the base station device 3, or a PBCH included in the SS / PBCH block and / or a demodulation used for demodulation of the PBCH. An index indicated by a reference signal (DMRS) sequence may be used.
 また、基地局装置3は、端末装置1へビームを指示する際にCRIまたはSS/PBCHの時間インデックスを指示し、端末装置1は、指示されたCRIまたはSS/PBCHの時間インデックスに基づいて受信する。このとき、端末装置1は指示されたCRIまたはSS/PBCHの時間インデックスに基づいて空間フィルタを設定し、受信してよい。また、端末装置1は、疑似同位置(QCL:Quasi Co-Location)の想定を用いて受信してもよい。ある信号(アンテナポート、同期信号、参照信号など)が別の信号(アンテナポート、同期信号、参照信号など)と「QCLである」または、「QCLの想定が用いられる」とは、ある信号が別の信号と関連付けられていると解釈できる。 Further, the base station apparatus 3 indicates a time index of CRI or SS / PBCH when instructing a beam to the terminal apparatus 1, and the terminal apparatus 1 receives a signal based on the instructed CRI or SS / PBCH time index. I do. At this time, the terminal device 1 may set and receive a spatial filter based on the designated CRI or SS / PBCH time index. In addition, the terminal device 1 may receive the data using an assumption of a pseudo-same location (QCL: Quasi @ Co-Location). A signal (antenna port, synchronization signal, reference signal, etc.) is "QCL" or another signal (antenna port, synchronization signal, reference signal, etc.) with another signal (antenna port, synchronization signal, reference signal, etc.) Can be interpreted as being associated with another signal.
 もしあるアンテナポートにおけるあるシンボルが搬送されるチャネルの長区間特性(Long Term Property)が他方のアンテナポートにおけるあるシンボルが搬送されるチャネルから推論されうるなら、2つのアンテナポートはQCLであるといわれる。チャネルの長区間特性は、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得、及び平均遅延の1つまたは複数を含む。例えば、アンテナポート1とアンテナポート2が平均遅延に関してQCLである場合、アンテナポート1の受信タイミングからアンテナポート2の受信タイミングが推論されうることを意味する。 Two antenna ports are said to be QCL if the Long Term Property of a channel carrying a symbol at one antenna port can be inferred from the channel carrying a symbol at the other antenna port. . The long-range characteristics of the channel include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. For example, if the antenna port 1 and the antenna port 2 are QCL with respect to the average delay, it means that the reception timing of the antenna port 2 can be inferred from the reception timing of the antenna port 1.
 このQCLは、ビームマネジメントにも拡張されうる。そのために、空間に拡張したQCLが新たに定義されてもよい。例えば、空間ドメインのQCLの想定におけるチャネルの長区間特性(Long term property)として、無線リンクあるいはチャネルにおける到来角(AoA(Angle of Arrival), ZoA(Zenith angle of Arrival)など)および/または角度広がり(Angle Spread、例えばASA(Angle Spread of Arrival)やZSA(Zenith angle Spread of Arrival))、送出角(AoD, ZoDなど)やその角度広がり(Angle Spread、例えばASD(Angle Spread of Departure)やZSD(Zenith angle Spread of Departure))、空間相関(Spatial Correlation)、受信空間パラメータであってもよい。 This QCL can be extended to beam management. For this purpose, a QCL extended to the space may be newly defined. For example, as the long-term property of a channel in the assumption of QCL in the spatial domain, the arrival angle (AoA (Angle of Arrival), ZoA (Zenith angle of Arrival), etc.) and / or angle spread on a radio link or channel (Angle Spread, for example, ASA (Angle Spread of Arrival) or ZSA (Zenith angle Spread of Arrival)), transmission angle (AoD, ZoD, etc.) and its angular spread (Angle Spread, such as ASD (Angle Spread of Departure) or ZSD ( Zenith angle Spread of Departure)), spatial correlation (Spatial Correlation), and reception spatial parameters.
 例えば、アンテナポート1とアンテナポート2の間で受信空間パラメータに関してQCLであるとみなせる場合、アンテナポート1からの信号を受信する受信ビーム(受信空間フィルタ)からアンテナポート2からの信号を受信する受信ビームが推論されうることを意味する。 For example, when the reception spatial parameter can be regarded as QCL between the antenna port 1 and the antenna port 2, the reception from the reception beam (reception spatial filter) for receiving the signal from the antenna port 1 receives the signal from the antenna port 2 It means that the beam can be inferred.
 QCLタイプとして、QCLであるとみなしてよい長区間特性の組み合わせが定義されてよい。例えば、以下のタイプが定義されてよい。
 ・タイプA:ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド
 ・タイプB:ドップラーシフト、ドップラースプレッド
 ・タイプC:平均遅延、ドップラーシフト
 ・タイプD:受信空間パラメータ
As the QCL type, a combination of long-range characteristics that may be regarded as a QCL may be defined. For example, the following types may be defined:
-Type A: Doppler shift, Doppler spread, average delay, delay spread-Type B: Doppler shift, Doppler spread-Type C: average delay, Doppler shift-Type D: reception spatial parameter
 上述のQCLタイプは、RRCおよび/またはMAC層および/またはDCIで1つまたは2つの参照信号とPDCCHやPDSCH DMRSとのQCLの想定を送信設定指示(TCI:Transmission Configuration Indication)として設定および/または指示してもよい。例えば、端末装置1がPDCCHを受信する際のTCIの1つの状態として、SS/PBCHブロックのインデックス#2とQCLタイプA+QCLタイプBが設定および/または指示された場合、端末装置1は、PDCCH DMRSを受信する際、SS/PBCHブロックインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてPDCCHのDMRSを受信して同期や伝搬路推定をしてもよい。このとき、TCIにより指示される参照信号(上述の例ではSS/PBCHブロック)をソース参照信号、ソース参照信号を受信する際のチャネルの長区間特性から推論される長区間特性の影響を受ける参照信号(上述の例ではPDCCH DMRS)をターゲット参照信号と称してよい。また、TCIは、RRCで複数のTCI状態と各状態に対してソース参照信号とQCLタイプの組み合わせが設定され、MAC層またはDCIにより端末装置1に指示されてよい。 The above-mentioned QCL type sets and / or sets one or two reference signals and an assumption of QCL of PDCCH or PDSCH @ DMRS as a transmission setting instruction (TCI: Transmission Configuration Indication) in the RRC and / or MAC layer and / or DCI. You may instruct. For example, as one state of the TCI when the terminal device 1 receives the PDCCH, if the SS / PBCH block index # 2 and the QCL type A + QCL type B are set and / or indicated, the terminal device 1 performs PDCCH @ DMRS , When receiving the PDCCH DMRS, assuming the Doppler shift, the Doppler spread, the average delay, the delay spread, the reception spatial parameter and the long-term characteristics of the channel in the reception of the SS / PBCH block index # 2, An estimate may be made. At this time, a reference signal (SS / PBCH block in the above example) indicated by the TCI is a source reference signal, and a reference affected by long-term characteristics inferred from long-term characteristics of a channel when the source reference signal is received. The signal (PDCCH @ DMRS in the above example) may be referred to as a target reference signal. In the TCI, a combination of a source reference signal and a QCL type may be set for a plurality of TCI states and each state by RRC, and may be instructed to the terminal device 1 by a MAC layer or DCI.
 この方法により、ビームマネジメントおよびビーム指示/報告として、空間ドメインのQCLの想定と無線リソース(時間および/または周波数)によりビームマネジメントと等価な基地局装置3、端末装置1の動作が定義されてもよい。 With this method, the operations of the base station device 3 and the terminal device 1 equivalent to the beam management are defined by the assumption of the QCL in the spatial domain and the radio resources (time and / or frequency) as the beam management and the beam instruction / report. Good.
 以下、サブフレームについて説明する。本実施形態ではサブフレームと称するが、リソースユニット、無線フレーム、時間区間、時間間隔などと称されてもよい。 Hereinafter, the subframe will be described. In this embodiment, it is called a subframe, but may be called a resource unit, a radio frame, a time section, a time interval, or the like.
 図3は、本発明の第1の実施形態に係る上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは10個のサブフレームおよびW個のスロットから構成される。また、1スロットは、X個のOFDMシンボルで構成される。つまり、1サブフレームの長さは1msである。スロットのそれぞれは、サブキャリア間隔によって時間長が定義される。例えば、OFDMシンボルのサブキャリア間隔が15kHz、NCP(Normal Cyclic Prefix)の場合、X=7あるいはX=14であり、それぞれ0.5msおよび1msである。また、サブキャリア間隔が60kHzの場合は、X=7あるいはX=14であり、それぞれ0.125msおよび0.25msである。また、例えば、X=14の場合、サブキャリア間隔が15kHzの場合はW=10であり、サブキャリア間隔が60kHzの場合はW=40である。図3は、X=7の場合を一例として示している。なお、X=14の場合にも同様に拡張できる。また、上りリンクスロットも同様に定義され、下りリンクスロットと上りリンクスロットは別々に定義されてもよい。また、図3のセルの帯域幅は帯域の一部(BWP:BandWidth Part)として定義されてもよい。また、スロットは、送信時間間隔(TTI:Transmission Time Interval)と定義されてもよい。スロットは、TTIとして定義されなくてもよい。TTIは、トランスポートブロックの送信期間であってもよい。 FIG. 3 is a diagram showing an example of a schematic configuration of the uplink and downlink slots according to the first embodiment of the present invention. Each of the radio frames is 10 ms long. Each radio frame is composed of 10 subframes and W slots. One slot is composed of X OFDM symbols. That is, the length of one subframe is 1 ms. Each slot has a time length defined by a subcarrier interval. For example, when the subcarrier interval of the OFDM symbol is 15 kHz and NCP (Normal Cyclic Prefix), X = 7 or X = 14, which are 0.5 ms and 1 ms, respectively. When the subcarrier interval is 60 kHz, X = 7 or X = 14, which are 0.125 ms and 0.25 ms, respectively. For example, when X = 14, W = 10 when the subcarrier interval is 15 kHz, and W = 40 when the subcarrier interval is 60 kHz. FIG. 3 shows a case where X = 7 as an example. It should be noted that the same applies to the case where X = 14. Also, an uplink slot is defined similarly, and a downlink slot and an uplink slot may be defined separately. Further, the bandwidth of the cell in FIG. 3 may be defined as a part of the bandwidth (BWP: BandWidth Part). Further, a slot may be defined as a transmission time interval (TTI: Transmission @ Time @ Interval). A slot may not be defined as a TTI. The TTI may be a transmission period of a transport block.
 スロットのそれぞれにおいて送信される信号または物理チャネルは、リソースグリッドによって表現されてよい。リソースグリッドは、複数のサブキャリアと複数のOFDMシンボルによって定義される。1つのスロットを構成するサブキャリアの数は、セルの下りリンクおよび上りリンクの帯域幅にそれぞれ依存する。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルの番号とを用いて識別されてよい。 The signal or physical channel transmitted in each of the slots may be represented by a resource grid. A resource grid is defined by multiple subcarriers and multiple OFDM symbols. The number of subcarriers forming one slot depends on the downlink and uplink bandwidth of the cell, respectively. Each of the elements in the resource grid is called a resource element. Resource elements may be identified using subcarrier numbers and OFDM symbol numbers.
 リソースグリッドは、ある物理下りリンクチャネル(PDSCHなど)あるいは上りリンクチャネル(PUSCHなど)のリソースエレメントのマッピングを表現するために用いられる。例えば、サブキャリア間隔が15kHzの場合、サブフレームに含まれるOFDMシンボル数X=14で、NCPの場合には、1つの物理リソースブロックは、時間領域において14個の連続するOFDMシンボルと周波数領域において12*Nmax個の連続するサブキャリアとから定義される。Nmaxは、後述するサブキャリア間隔設定μにより決定されるリソースブロックの最大数である。つまり、リソースグリッドは、(14*12*Nmax,μ)個のリソースエレメントから構成される。ECP(Extended CP)の場合、サブキャリア間隔60kHzにおいてのみサポートされるので、1つの物理リソースブロックは、例えば、時間領域において12(1スロットに含まれるOFDMシンボル数)*4(1サブフレームに含まれるスロット数)=48個の連続するOFDMシンボルと、周波数領域において12*Nmax,μ個の連続するサブキャリアとにより定義される。つまり、リソースグリッドは、(48*12*Nmax,μ)個のリソースエレメントから構成される。 The resource grid is used to represent the mapping of resource elements of a certain physical downlink channel (such as PDSCH) or uplink channel (such as PUSCH). For example, when the subcarrier interval is 15 kHz, the number of OFDM symbols included in the subframe is X = 14. In the case of NCP, one physical resource block is composed of 14 consecutive OFDM symbols in the time domain and 14 in the frequency domain. It is defined from 12 * Nmax consecutive subcarriers. Nmax is the maximum number of resource blocks determined by a subcarrier interval setting μ described later. That is, the resource grid is composed of (14 * 12 * Nmax, μ) resource elements. In the case of ECP (Extended @ CP), since it is supported only at a subcarrier interval of 60 kHz, one physical resource block is, for example, 12 (the number of OFDM symbols included in one slot) * 4 (included in one subframe) in the time domain. (Number of slots to be used) = 48 continuous OFDM symbols and 12 * Nmax, μ continuous subcarriers in the frequency domain. That is, the resource grid is composed of (48 * 12 * Nmax, μ) resource elements.
 リソースブロックとして、参照リソースブロック、共通リソースブロック、物理リソースブロック、仮想リソースブロックが定義される。1リソースブロックは、周波数領域で連続する12サブキャリアとして定義される。参照リソースブロックは、全てのサブキャリアにおいて共通であり、例えば15kHzのサブキャリア間隔でリソースブロックを構成し、昇順に番号が付されてよい。参照リソースブロックインデックス0におけるサブキャリアインデックス0は、参照ポイントAと称されてよい(単に“参照ポイント”と称されてもよい)。共通リソースブロックは、参照ポイントAから各サブキャリア間隔設定μにおいて0から昇順で番号が付されるリソースブロックである。上述のリソースグリッドはこの共通リソースブロックにより定義される。物理リソースブロックは、後述する帯域部分(BWP)の中に含まれる0から昇順で番号が付されたリソースブロックであり、物理リソースブロックは、帯域部分(BWP)の中に含まれる0から昇順で番号が付されたリソースブロックである。ある物理上りリンクチャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。 参照 Reference resource blocks, common resource blocks, physical resource blocks, and virtual resource blocks are defined as resource blocks. One resource block is defined as 12 continuous subcarriers in the frequency domain. The reference resource block is common to all subcarriers. For example, a resource block may be configured at a subcarrier interval of 15 kHz, and may be numbered in ascending order. Subcarrier index 0 in reference resource block index 0 may be referred to as reference point A (or simply referred to as "reference point"). The common resource block is a resource block that is numbered in ascending order from 0 at each subcarrier interval setting μ from the reference point A. The resource grid described above is defined by this common resource block. The physical resource blocks are resource blocks numbered in ascending order from 0 included in a bandwidth portion (BWP) described later, and the physical resource blocks are allocated in ascending order from 0 included in the bandwidth portion (BWP). This is a numbered resource block. A physical uplink channel is first mapped to a virtual resource block. Thereafter, the virtual resource blocks are mapped to physical resource blocks.
 次に、サブキャリア間隔設定μについて説明する。上述のようにNRでは、複数のOFDMヌメロロジーがサポートされる。あるBWPにおいて、サブキャリア間隔設定μ(μ=0,1,...,5)と、サイクリックプレフィックス長は、下りリンクのBWPに対して上位レイヤ(上位層)で与えられ、上りリンクのBWPにおいて上位レイヤで与えられる。ここで、μが与えられると、サブキャリア間隔Δfは、Δf=2^μ・15(kHz)で与えられる。  Next, the subcarrier interval setting μ will be described. As mentioned above, NR supports multiple OFDM numerologies. In a certain BWP, a subcarrier interval setting μ (μ = 0, 1,..., 5) and a cyclic prefix length are given in an upper layer (upper layer) with respect to a downlink BWP, Provided in the upper layer in BWP. Here, when μ is given, the subcarrier interval Δf is given by Δf = 2 ^ μ · 15 (kHz).
 サブキャリア間隔設定μにおいて、スロットは、サブフレーム内で0からN^{subframe,μ}_{slot}-1に昇順に数えられ、フレーム内で0からN^{frame,μ}_{slot}-1に昇順に数えられる。スロット設定およびサイクリックプレフィックスに基づいてN^{slot}_{symb}の連続するOFDMシンボルがスロット内にある。N^{slot}_{symb}は14である。サブフレーム内のスロットn^{μ}_{s}のスタートは、同じサブフレーム内のn^{μ}_{s} N^{slot}_{symb}番目のOFDMシンボルのスタートと時間でアラインされている。 In the subcarrier interval setting μ, slots are counted in ascending order from 0 to N ^ {subframe, μ} _ {slot} -1 in a subframe, and from 0 to N ^ {frame, μ} _ {slot } -1 is counted in ascending order. Based on the slot configuration and the cyclic prefix, N ^ {slot} _ {symb} consecutive OFDM symbols are in the slot. N ^ {slot} _ {symb} is 14. The start of slot n ^ {μ} _ {s} in a subframe is the start and time of the n ^ {μ} _ {s} N ^ {slot} _ {symb} th OFDM symbol in the same subframe. Are aligned.
 次に、サブフレーム、スロット、ミニスロットについて説明する。図4は、サブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。同図のように、3種類の時間ユニットが定義される。サブフレームは、サブキャリア間隔によらず1msであり、スロットに含まれるOFDMシンボル数は7または14であり、スロット長はサブキャリア間隔により異なる。ここで、サブキャリア間隔が15kHzの場合、1サブフレームには14OFDMシンボル含まれる。下りリンクスロットはPDSCHマッピングタイプAと称されてよい。上りリンクスロットはPUSCHマッピングタイプAと称されてよい。 Next, subframes, slots, and minislots will be described. FIG. 4 is a diagram showing the relationship in the time domain between subframes, slots, and minislots. As shown in the figure, three types of time units are defined. The subframe is 1 ms regardless of the subcarrier interval, the number of OFDM symbols included in the slot is 7 or 14, and the slot length varies depending on the subcarrier interval. Here, when the subcarrier interval is 15 kHz, 14 OFDM symbols are included in one subframe. The downlink slot may be referred to as PDSCH mapping type A. Uplink slots may be referred to as PUSCH mapping type A.
 ミニスロット(サブスロットと称されてもよい)は、スロットに含まれるOFDMシンボル数よりも少ないOFDMシンボルで構成される時間ユニットである。同図はミニスロットが2OFDMシンボルで構成される場合を一例として示している。ミニスロット内のOFDMシンボルは、スロットを構成するOFDMシンボルタイミングに一致してもよい。なお、スケジューリングの最小単位はスロットまたはミニスロットでよい。また、ミニスロットを割り当てることを、ノンスロットベースのスケジューリングと称してもよい。また、ミニスロットをスケジューリングされることを参照信号とデータのスタート位置の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。下りリンクミニスロットはPDSCHマッピングタイプBと称されてよい。上りリンクミニスロットはPUSCHマッピングタイプBと称されてよい。 A minislot (which may be referred to as a subslot) is a time unit composed of fewer OFDM symbols than the number of OFDM symbols included in the slot. The figure shows an example where the minislot is composed of 2 OFDM symbols. An OFDM symbol in a mini-slot may coincide with the OFDM symbol timing making up the slot. The minimum unit of scheduling may be a slot or a minislot. Assigning minislots may also be referred to as non-slot based scheduling. In addition, scheduling a minislot may be expressed as scheduling a resource whose relative time position between the reference signal and the data start position is fixed. The downlink minislot may be referred to as PDSCH mapping type B. An uplink minislot may be referred to as PUSCH mapping type B.
 図5は、スロットフォーマットの一例を示す図である。ここでは、サブキャリア間隔15kHzにおいてスロット長が1msの場合を例として示している。同図において、Dは下りリンク、Uは上りリンクを示している。同図に示されるように、ある時間区間内(例えば、システムにおいて1つのUEに対して割り当てなければならない最小の時間区間)においては、
・下りリンクシンボル
・フレキシブルシンボル
・上りリンクシンボル
のうち1つまたは複数を含んでよい。なお、これらの割合はスロットフォーマットとして予め定められてもよい。また、スロット内に含まれる下りリンクのOFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてもよい。また、スロット内に含まれる上りリンクのOFDMシンボルまたはDFT-S-OFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてよい。なお、スロットをスケジューリングされることを参照信号とスロット境界の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。
FIG. 5 is a diagram illustrating an example of the slot format. Here, a case where the slot length is 1 ms at a subcarrier interval of 15 kHz is shown as an example. In the figure, D indicates downlink and U indicates uplink. As shown in the figure, within a certain time interval (for example, the minimum time interval that must be assigned to one UE in the system)
One or more of downlink symbols, flexible symbols, and uplink symbols may be included. Note that these ratios may be predetermined as a slot format. Also, it may be defined by the number of downlink OFDM symbols included in the slot or the start position and the end position in the slot. Also, it may be defined by the number of uplink OFDM symbols or DFT-S-OFDM symbols included in the slot, or the start position and the end position in the slot. It should be noted that scheduling a slot may be expressed as scheduling a resource whose relative time position between the reference signal and the slot boundary is fixed.
 端末装置1は、下りリンクシンボルまたはフレキシブルシンボルで下りリンク信号または下りリンクチャネルを受信してよい。端末装置1は、上りリンクシンボルまたはフレキシブルシンボルで上りリンク信号または下りリンクチャネルを送信してよい。 The terminal device 1 may receive a downlink signal or a downlink channel using a downlink symbol or a flexible symbol. The terminal device 1 may transmit an uplink signal or a downlink channel using an uplink symbol or a flexible symbol.
 図5(a)は、ある時間区間(例えば、1UEに割当可能な時間リソースの最小単位、またはタイムユニットなどとも称されてよい。また、時間リソースの最小単位を複数束ねてタイムユニットと称されてもよい。)で、全て下りリンク送信に用いられている例であり、図5(b)は、最初の時間リソースで例えばPDCCHを介して上りリンクのスケジューリングを行い、PDCCHの処理遅延及び下りから上りの切り替え時間、送信信号の生成を含むフレキシブルシンボルを介して上りリンク信号を送信する。図5(c)は、最初の時間リソースでPDCCHおよび/または下りリンクのPDSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介してPUSCHまたはPUCCHの送信に用いられる。ここで、一例としては、上りリンク信号はHARQ-ACKおよび/またはCSI、すなわちUCIの送信に用いられてよい。図5(d)は、最初の時間リソースでPDCCHおよび/またはPDSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介して上りリンクのPUSCHおよび/またはPUCCHの送信に用いられる。ここで、一例としては、上りリンク信号は上りリンクデータ、すなわちUL-SCHの送信に用いられてもよい。図5(e)は、全て上りリンク送信(PUSCHまたはPUCCH)に用いられている例である。 FIG. 5A may be referred to as a certain time section (for example, a minimum unit of a time resource that can be allocated to one UE, a time unit, or the like. Also, a bundle of a plurality of minimum units of a time resource is referred to as a time unit. FIG. 5B illustrates an example in which uplink scheduling is performed using, for example, a PDCCH in the first time resource, and processing delay of the PDCCH and downlink are performed. To transmit an uplink signal through a flexible symbol including an uplink switching time and generation of a transmission signal. FIG. 5 (c) is used for transmission of the PDCCH and / or the downlink PDSCH in the first time resource, and includes PUSCH or PUCCH via a processing delay and a switching time from downlink to uplink, a gap for generation of a transmission signal. Is used for transmission. Here, as an example, the uplink signal may be used for transmission of HARQ-ACK and / or CSI, that is, UCI. FIG. 5 (d) is used for transmission of the PDCCH and / or PDSCH in the first time resource, and the PUSCH and / or the uplink are transmitted via a processing delay and a switching time from downlink to uplink, and a gap for generating a transmission signal. Alternatively, it is used for PUCCH transmission. Here, as an example, the uplink signal may be used for transmission of uplink data, that is, UL-SCH. FIG. 5 (e) shows an example in which all are used for uplink transmission (PUSCH or PUCCH).
 上述の下りリンクパート、上りリンクパートは、LTEと同様複数のOFDMシンボルで構成されてよい。 下 り The above-mentioned downlink part and uplink part may be composed of a plurality of OFDM symbols as in LTE.
 図6は、ビームフォーミングの一例を示した図である。複数のアンテナエレメントは1つの送信ユニット(TXRU: Transceiver unit)50に接続され、アンテナエレメント毎の位相シフタ51によって位相を制御し、アンテナエレメント52から送信することで送信信号に対して任意の方向にビームを向けることができる。典型的には、TXRUがアンテナポートとして定義されてよく、端末装置1においてはアンテナポートのみが定義されてよい。位相シフタ51を制御することで任意の方向に指向性を向けることができるため、基地局装置3は端末装置1に対して利得の高いビームを用いて通信することができる。 FIG. 6 is a diagram showing an example of beam forming. The plurality of antenna elements are connected to one transmission unit (TXRU: Transceiver unit) 50, the phase is controlled by a phase shifter 51 for each antenna element, and transmitted from the antenna element 52 to transmit a signal in an arbitrary direction. Can direct the beam. Typically, TXRU may be defined as an antenna port, and in terminal device 1, only an antenna port may be defined. By controlling the phase shifter 51, directivity can be directed in an arbitrary direction, so that the base station apparatus 3 can communicate with the terminal apparatus 1 using a beam having a high gain.
 以下、帯域部分(BWP, Bandwidth part)について説明する。BWPは、キャリアBWPとも称される。BWPは、下りリンクと上りリンクのそれぞれに設定されてよい。BWPは、共通リソースブロックの連続するサブセットから選択された連続する物理リソースの集合として定義される。端末装置1は、ある時間に1つの下りリンクキャリアBWP(DL BWP)が活性化される4つまでのBWPを設定されうる。端末装置1は、ある時間に1つの上りリンクキャリアBWP(UL BWP)が活性化される4つまでのBWPを設定されうる。キャリアアグリゲーションの場合には、BWPは各サービングセルで設定されてもよい。このとき、あるサービングセルにおいてBWPが1つ設定されていることを、BWPが設定されていないと表現されてもよい。また、BWPが2つ以上設定されていることをBWPが設定されていると表現されてもよい。 Hereinafter, the band portion (BWP, {Bandwidth} part) will be described. BWP is also called carrier BWP. The BWP may be set for each of the downlink and the uplink. BWP is defined as a set of contiguous physical resources selected from a contiguous subset of a common resource block. The terminal device 1 can set up to four BWPs in which one downlink carrier BWP (DL @ BWP) is activated at a certain time. The terminal device 1 can set up to four BWPs in which one uplink carrier BWP (UL @ BWP) is activated at a certain time. In the case of carrier aggregation, BWP may be set in each serving cell. At this time, the fact that one BWP is set in a certain serving cell may be expressed as not setting the BWP. The setting of two or more BWPs may be expressed as the setting of the BWP.
<MAC entity動作>
 活性化されたサービングセルにおいて、常に一つのアクティブな(活性化された)BWPがある。あるサービングセルに対するBWP切り替え(BWP switching)は、インアクティブな(非活性化された)BWPを活性化(activate)し、アクティブな(活性化された)BWPを非活性化(deactivate)するために使用される。あるサービングセルに対するBWP切り替え(BWP switching)は、下りリンク割り当てまたは上りリンクグラントを示すPDCCHによって制御される。あるサービングセルに対するBWP切り替え(BWP switching)は、さらに、BWPインアクティブタイマー(BWP inactivity timer)や、RRCシグナリングによってや、ランダムアクセスプロシージャの開始時にMACエンティティ自身によって制御されてもよい。SpCell(PCellまたはPSCell)の追加または、SCellの活性化において、一つのBWPが、下りリンク割り当てまたは上りリンクグラントを示すPDCCHを受信することなしに初期的にアクティブである。初期的にアクティブなDL BWPおよびUL BWPは、基地局装置3から端末装置1に送られるRRCメッセージで指定されるかもしれない。あるサービングセルに対するアクティブなBWPは、基地局装置3から端末装置1に送られるRRCまたはPDCCHで指定される。アンペアードスペクトラム(Unpaired spectrum)(TDDバンドなど)では、DL BWPとUL BWPはペアされていて、BWP切り替えは、ULとDLに対して共通である。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、アクティブなBWPにおいて、端末装置1のMACエンティティは、ノーマル処理を適用する。ノーマル処理には、UL-SCHを送信する、RACHを送信する、PDCCHをモニタする、PUCCHを送信する、SRSを送信する、およびDL-SCHを受信することを含む。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、インアクティブなBWPにおいて、端末装置1のMACエンティティは、UL-SCHを送信しない、RACHを送信しない、PDCCHをモニタしない、PUCCHを送信しない、SRSを送信しない、およびDL-SCHを受信しない。あるサービングセルが非活性化された場合、アクティブなBWPは、存在しないようにしてもよい(例えば、アクティブなBWPは非活性化される)。
<MAC entity operation>
In an activated serving cell, there is always one active (activated) BWP. BWP switching for a serving cell is used to activate an inactive (deactivated) BWP and deactivate an active (activated) BWP. Is done. BWP switching for a certain serving cell is controlled by a PDCCH indicating a downlink assignment or an uplink grant. BWP switching for a serving cell may be further controlled by a BWP inactivity timer, RRC signaling, or by the MAC entity itself at the start of the random access procedure. In addition of SpCell (PCell or PSCell) or activation of SCell, one BWP is initially active without receiving a PDCCH indicating a downlink assignment or an uplink grant. The initially active DL BWP and UL BWP may be specified in an RRC message sent from the base station device 3 to the terminal device 1. The active BWP for a certain serving cell is specified by RRC or PDCCH sent from base station apparatus 3 to terminal apparatus 1. In an unpaired spectrum (such as a TDD band), DL BWP and UL BWP are paired, and BWP switching is common to UL and DL. In the active BWP for each of the activated serving cells in which the BWP is set, the MAC entity of the terminal device 1 applies a normal process. Normal processing includes transmitting a UL-SCH, transmitting a RACH, monitoring a PDCCH, transmitting a PUCCH, transmitting an SRS, and receiving a DL-SCH. In the inactive BWP for each activated serving cell for which BWP is set, the MAC entity of the terminal device 1 does not transmit the UL-SCH, does not transmit the RACH, does not monitor the PDCCH, does not transmit the PUCCH, No SRS is transmitted and no DL-SCH is received. If a serving cell is deactivated, there may be no active BWP (eg, the active BWP is deactivated).
<RRC動作>
 RRCメッセージ(報知されるシステム情報や、専用RRCメッセージで送られる情報)に含まれるBWPインフォメーションエレメント(IE)は、BWPを設定するために使われる。基地局装置3から送信されたRRCメッセージは、端末装置1によって受信される。それぞれのサービングセルに対して、ネットワーク(基地局装置3など)は、少なくとも下りリンクのBWPと1つ(もしサービングセルが上りリンクの設定された場合など)または2つ(付録のアップリンク(supplementary uplink)が使われる場合など)の上りリンクBWPを含む少なくとも初期BWP(initial BWP、初期的なBWP)を、端末装置1に対して、設定する。さらに、ネットワークは、追加の上りリンクBWPや下りリンクBWPをあるサービングセルに対して設定するかもしれない。BWP設定は、上りリンクパラメータと下りリンクパラメータに分けられる。また、BWP設定は、共通(common)パラメータと専用(dedicated)パラメータに分けられる。共通パラメータ(BWP上りリンク共通IEやBWP下りリンク共通IEなど)は、セル特有である。プライマリセルの初期BWPの共通パラメータは、システム情報でも提供される。他のすべてのサービングセルに対しては、ネットワークは専用信号で共通パラメータを提供する。BWPは、BWP IDで識別される。初期BWPは、BWP ID(BWP識別子)が0である。他のBWPのBWP IDは、1から4までの値を取る。
<RRC operation>
A BWP information element (IE) included in an RRC message (system information to be broadcast or information sent in a dedicated RRC message) is used for setting BWP. The RRC message transmitted from the base station device 3 is received by the terminal device 1. For each serving cell, the network (such as base station apparatus 3) has at least one downlink BWP and one (for example, if the serving cell is configured for uplink) or two (appendix uplink (supplementary uplink)). In this case, at least an initial BWP (initial BWP) including the uplink BWP in the case where is used is set for the terminal device 1. Further, the network may configure additional uplink and downlink BWPs for certain serving cells. BWP configuration is divided into uplink parameters and downlink parameters. The BWP setting is divided into a common parameter and a dedicated parameter. Common parameters (such as BWP uplink common IE and BWP downlink common IE) are cell-specific. Common parameters of the primary BWP of the primary cell are also provided in the system information. For all other serving cells, the network provides common parameters with dedicated signals. BWP is identified by BWP ID. The initial BWP has a BWP ID (BWP identifier) of 0. BWP IDs of other BWPs take values from 1 to 4.
 端末装置1は、1つのプライマリセルと15までのセカンダリセルが設定されてよい。 In the terminal device 1, one primary cell and up to 15 secondary cells may be set.
 本実施形態のランダムアクセス手順(Random Access procedure)について説明する。ランダムアクセス手順は、競合ベース(CB:Contention Based)と非競合ベース(non-CB)(CF:Contention Freeと称してもよい)の2つの手順に分類される。競合ベースランダムアクセスはCBRA、非競合ベースランダムアクセスはCFRAとも称される << Random access procedure (Random Access procedure) of this embodiment is demonstrated. The random access procedure is classified into two procedures: a contention-based (CB: Content @ Base) and a non-contention-based (non-CB) (CF: Content: Free). Contention-based random access is also called CBRA, and non-contention-based random access is also called CFRA
 ランダムアクセス手順は、(i)PRACHにおけるランダムアクセスプリアンブル(メッセージ1、Msg1)の送信、(ii)PDCCH/PDSCHを伴うランダムアクセス応答(RAR)メッセージ(メッセージ2、Msg2)の受信、および、適用可能な場合、(iii)メッセージ3PUSCH(Msg3 PUSCH)の送信、(iv)衝突解消のためのPDSCHの受信、を有してもよい。 The random access procedure includes (i) transmission of a random access preamble (message 1, Msg1) on PRACH, (ii) reception of a random access response (RAR) message with PDCCH / PDSCH (message 2, Msg2), and applicable. In such a case, (iii) transmission of message 3 PUSCH (Msg3 PUSCH) and (iv) reception of PDSCH for resolving collision may be included.
 図10は、本実施形態に係る端末装置1のランダムアクセス手順の一例を示すフロー図である。 FIG. 10 is a flowchart illustrating an example of the random access procedure of the terminal device 1 according to the present embodiment.
 <ランダムアクセス手順の開始(S1001)>
 図10において、S1001はランダムアクセス手順の開始(random access procedure initialization)に関する手順である。S1001において、ランダムアクセス手順は、PDCCHオーダー、MACエンティティ、下位レイヤからのビーム失敗(beam failure)の通知、あるいはRRC等によって開始(initiate)される。SCellにおけるランダムアクセス手順は0b000000にセットしないra-PreambleIndexを含むPDCCHオーダーのみによって開始される。
<Start of random access procedure (S1001)>
In FIG. 10, S1001 is a procedure relating to the start of a random access procedure (random access procedure initialization). In S1001, the random access procedure is initiated by a PDCCH order, a notification of a beam failure from a MAC entity, a lower layer, an RRC, or the like. The random access procedure in SCell is started only by the PDCCH order including the ra-PreambleIndex which is not set to 0b000000.
 S1001において、端末装置1は、ランダムアクセス手順を開始する(initiate)前に上位層を介してランダムアクセス設定情報を受信する。該ランダムアクセス設定情報には下記の情報または下記の情報を決定/設定するための情報が含まれてよい。
・prach-ConfigIndex:ランダムアクセスプリアンブルの送信に利用可能な1つまたは複数の時間/周波数リソース(ランダムアクセスチャネル機会(occasion)、PRACH機会(PRACH occasion)、RACH機会とも称される)のセット
・preambleReceivedTargetPower:プリアンブルの初期電力(目標受信電力であってよい)
・rsrp-ThresholdSSB:SS/PBCHブロック(関連するランダムアクセスプリアンブルおよび/またはPRACH機会であってもよい)の選択のための参照信号受信電力(RSRP)の閾値
・rsrp-ThresholdCSI-RS:CSI-RS(関連するランダムアクセスプリアンブルおよび/またはPRACH機会であってもよい)の選択のための参照信号受信電力(RSRP)の閾値
・rsrp-ThresholdSSB-SUL:NUL(Normal Uplink)キャリアとSUL(Supplementary Uplink)キャリアとの間の選択のための参照信号受信電力(RSRP)の閾値
・powerControlOffset:ランダムアクセス手順がビーム失敗リカバリのために開始された場合にrsrp-ThresholdSSBとrsrp-ThresholdCSI-RSとの間の電力オフセット
・powerRampingStep:パワーランピングステップ(パワーランピングファクター)。プリアンブル送信カウンタPREAMBLE_TRANSMISSION_COUNTERに基づいてランプアップされる送信電力のステップを示す
・ra-PreambleIndex:利用可能な1つまたは複数のランダムアクセスプリアンブルあるいは前記複数のランダムアクセスプリアンブルグループにおいて利用可能な1つまたは複数のランダムアクセスプリアンブル
・ra-ssb-OccasionMaskIndex:MACエンティティがランダムアクセスプリアンブルを送信するSS/PBCHブロックに割り当てられたPRACH機会を決定するための情報・ra-OccasionList:MACエンティティがランダムアクセスプリアンブルを送信するCSI-RSに割り当てられたPRACH機会を決定するための情報・preamTransMax:プリアンブル送信の最大回数
・ssb-perRACH-OccasionAndCB-PreamblesPerSSB(SpCell only):各PRACH機会にマップされるSS/PBCHブロックの数および各SS/PBCHブロックにマップされるランダムアクセスプリアンブルの数を示すパラメータ
・ra-ResponseWindow: ランダムアクセス応答(SpCell only)をモニタするタイムウィンドウ
・ra-ContentionResolutionTimer:衝突解消(コンテンションレゾリューション:Contention Resolution)タイマー
・numberOfRA-PreamblesGroupA:各SS/PBCHブロックのためのランダムアクスプリアンブルグループA内のランダムアクセスプリアンブルの数・PREAMBLE_TRANSMISSION_COUNTER:プリアンブル送信カウンタ
・DELTA_PREAMBLE:ランダムアクセスプリアンブルフォーマットに基づく電力オフセット値
・PREAMBLE_POWER_RAMPING_COUNTER:プリアンブル電力ランピングカウンタ
・PREAMBLE_RECEIVED_TARGET_POWER:初期ランダムアクセスプリアンブル電力。ランダムアクセスプリアンブル送信に対する初期送信電力を示す。
・PREAMBLE_BACKOFF:ランダムアクセスプリアンブル送信のタイミングを調整するために使われる。
In S1001, the terminal device 1 receives random access setting information via an upper layer before starting (initiate) a random access procedure. The random access setting information may include the following information or information for determining / setting the following information.
• prach-ConfigIndex: a set of one or more time / frequency resources (also referred to as random access channel occasions, PRACH occasions, RACH occasions) available for transmission of the random access preamble • premableReceivedTargetPower : Initial power of preamble (may be target received power)
Rsrp-ThresholdSSB: Reference signal received power (RSRP) threshold for selection of SS / PBCH block (which may be the associated random access preamble and / or PRACH opportunity) rsrp-ThresholdCSI-RS: CSI-RS Reference signal received power (RSRP) threshold for selection of (which may be an associated random access preamble and / or PRACH opportunity) rsrp-ThresholdSSB-SUL: NUL (Normal Uplink) carrier and SUL (Supplementary Uplink) Reference signal received power (RSRP) threshold for selection with carrier powerControlOffset: rsrp-ThresholdSSB if random access procedure is started for beam failure recovery rsrp-ThresholdCSI-RS between the power offset · powerRampingStep: power ramping step (power ramping factor). Indicates the step of the transmission power to be ramped up based on the preamble transmission counter PREAMBLE_TRANSMISSION_COUNTER.ra-PreambleIndex: One or more available random access preambles or one or more available in the plurality of random access preamble groups. Random access preamble ra-ssb-OccationMaskIndex: Information for determining the PRACH opportunity allocated to the SS / PBCH block in which the MAC entity transmits the random access preamble ra-OccasionList: CSI in which the MAC entity transmits the random access preamble -Information for determining the PRACH opportunity assigned to the RS-premTransMax Maximum number of preamble transmissions ssb-perRACH-OccationAndCB-PreamblesPer SSB (SpCell only): Parameter indicating the number of SS / PBCH blocks mapped to each PRACH opportunity and the number of random access preambles mapped to each SS / PBCH block. ra-ResponseWindow: Time window for monitoring random access response (SpCell only) ra-ContentionResolutionTimer: Contention Resolution timer, numberOfRA-PreamblesGroupA: Random burst for each SS / PBCH block Number of random access preambles in group A · PREAM BLE_TRANSMISSION_COUNTER: Preamble transmission counter DELTA_PREAMBLE: Power offset value based on random access preamble format PREAMBLE_POWER_RAMPING_COUNTER: Preamble power ramping counter PREAMBLE_RECEIVED_TARGET_POWER: Initial random access preamble 5 shows an initial transmission power for random access preamble transmission.
PREAMBLE_BACKOFF: Used to adjust the timing of random access preamble transmission.
 あるサービングセルにランダムアクセス手順が開始される時に、MACエンティティは、Msg3バッファをフレッシュし、状態変数PREAMBLE_TRANSMISSION_COUNTERを1にセットし、状態変数PREAMBLE_POWER_RAMPING_COUNTERを1にセットし、状態変数PREAMBLE_BACKOFFを0msにセットする。ランダムアクセス手順に使われるキャリアが明示的に通知されるならば、MACエンティティは、ランダムアクセス手順を行うために通知されたキャリアを選択し、状態変数PCMAXを通知されたキャリアの最大送信電力値にセットする。MACエンティティは、ランダムアクセス手順に使われるキャリアが明示的に通知されない、かつ、該サービングセルに対してSULキャリアが設定されており、かつ、下りリンクパスロス参照のRSRPがrsrp-ThresholdSSB-SULにより小さい場合に、ランダムアクセス手順を行うためにSULキャリアを選択し、状態変数PCMAXをSULキャリアの最大送信電力値にセットする。その以外の場合に、MACエンティティは、ランダムアクセス手順を行うためにNULキャリアを選択し、状態変数PCMAXをNULキャリアの最大送信電力値にセットする。 When the random access procedure for a certain serving cell is started, the MAC entity flushes the Msg3 buffer, sets the state variable PREAMBLE_TRANSMISSION_COUNTER to 1, sets the state variable PREAMBLE_POWER_RAMPING_COUNTER to 1, and sets the state variable PREAMBLE_BACKOFF to 0ms. If the carrier used for the random access procedure is explicitly reported, the MAC entity selects the reported carrier for performing the random access procedure and sets the state variable PCMAX to the maximum transmission power value of the reported carrier. set. When the MAC entity does not explicitly notify the carrier used for the random access procedure, and the SUL carrier is set for the serving cell, and the RSRP for downlink path loss reference is smaller than rsrp-ThresholdSSB-SUL Then, the SUL carrier is selected for performing the random access procedure, and the state variable PCMAX is set to the maximum transmission power value of the SUL carrier. Otherwise, the MAC entity selects a NUL carrier for performing the random access procedure and sets the state variable PCMAX to the maximum transmission power value of the NUL carrier.
 <ランダムアクセス手順の開始(S1002)>
 S1002はランダムアクセスリソースの選択手順(random access resource selection)である。以下、端末装置1のMACレイヤにおけるランダムアクセスリソース(時間/周波数リソースおよび/またはプリアンブルインデックスを含む)の選択手順について説明する。
<Start of random access procedure (S1002)>
S1002 is a random access resource selection procedure (random access resource selection). Hereinafter, a procedure for selecting a random access resource (including a time / frequency resource and / or a preamble index) in the MAC layer of the terminal device 1 will be described.
 端末装置1は、送信するランダムアクセスプリアンブルのプリアンブルインデックス(PREAMBLE_INDEXと称されてもよい)に対して下記の手順で値をセットする。 The terminal device 1 sets a value for a preamble index (may be referred to as PREAMBLE_INDEX) of a random access preamble to be transmitted in the following procedure.
 端末装置1(MACエンティティ)は、(1)下位レイヤからのビーム失敗の通知によってランダムアクセス手順が開始され、(2)RRCパラメータでSS/PBCHブロック(SSBとも称される)またはCSI-RSに関連付けられたビーム失敗リカバリ要求のための非競合ベースランダムアクセスのためのランダムアクセスリソース(PRACH機会であってもよい)が提供されており、かつ(3)一つ以上のSS/PBCHブロックまたはCSI-RSのRSRPが所定の閾値を超えている場合に、RSRPが前記所定の閾値を超えているSS/PBCHブロックまたはCSI-RSを選択する。CSI-RSが選択された、かつ、選択されたCSI-RSに関連つけられるra-PreambleIndexがなければ、MACエンティティは、選択されたSS/PBCHブロックに関連付けられたra-PreambleIndexをプリアンブルインデックス(PREAMBLE_INDEX)にセットしてもよい。それ以外の場合、MACエンティティは、該選択されたSS/PBCHブロックまたはCSI-RSに関連付けられたra-PreambleIndexをプリアンブルインデックスにセットする。 The terminal device 1 (MAC entity) starts (1) the random access procedure by the notification of the beam failure from the lower layer, and (2) transmits the SS / PBCH block (also referred to as SSB) or CSI-RS with the RRC parameter. Random access resources (which may be PRACH opportunities) for non-contention based random access for the associated beam failure recovery request are provided, and (3) one or more SS / PBCH blocks or CSI If the RSRP of the RS exceeds a predetermined threshold, select an SS / PBCH block or CSI-RS whose RSRP exceeds the predetermined threshold. If the CSI-RS is selected and if there is no ra-PreambleIndex associated with the selected CSI-RS, the MAC entity determines the ra-PreambleIndex associated with the selected SS / PBCH block with a preamble index (PREAMBLE_INDEX). ) May be set. Otherwise, the MAC entity sets the ra-PreambleIndex associated with the selected SS / PBCH block or CSI-RS to the preamble index.
 端末装置1は、(1)PDCCHまたはRRCでra-PreambleIndexが提供され、(2)該ra-PreambleIndexの値が競合ベースランダムアクセス手順を指示する値(例えば0b000000)ではなく、かつ(3)RRCでSS/PBCHブロックまたはCSI-RSと非競合ベースランダムアクセスのためのランダムアクセスリソースが関連付けられていない場合に、シグナルされたra-PreambleIndexをプリアンブルインデックスにセットする。0bxxxxxxは、6ビットの情報フィールドに配置されているビット列を意味している。 The terminal device 1 (1) is provided with the ra-PreambleIndex on the PDCCH or RRC, (2) the value of the ra-PreambleIndex is not the value (for example, 0b000000) indicating the contention-based random access procedure, and (3) the RRC If the SS / PBCH block or CSI-RS is not associated with a random access resource for contention-based random access, the signaled ra-PreambleIndex is set to the preamble index. 0bxxxxxx means a bit string arranged in a 6-bit information field.
 端末装置1は、(1)SS/PBCHブロックと関連付けられる非競合ベースランダムアクセスのためのランダムアクセスリソースがRRCから提供されており、かつ(2)関連付けられたSS/PBCHブロックのうちRSRPが所定の閾値を超えるSS/PBCHブロックが1つ以上利用可能である場合に、RSRPが前記所定の閾値を超えているSS/PBCHブロックのうち1つを選択し、該選択されたSS/PBCHブロックに関連付けられたra-PreambleIndexをプリアンブルインデックスにセットする。 The terminal device 1 provides (1) a random access resource for non-contention-based random access associated with the SS / PBCH block from the RRC, and (2) a predetermined RSRP among the associated SS / PBCH blocks. When one or more SS / PBCH blocks exceeding the threshold value are available, one of the SS / PBCH blocks whose RSRP exceeds the predetermined threshold value is selected, and the selected SS / PBCH block is Set the associated ra-PreambleIndex to the preamble index.
 端末装置1は、(1)RRCでCSI-RSと非競合ベースランダムアクセスのためのランダムアクセスリソースが関連付けられており、かつ(2)関連付けられたCSI-RSのうちRSRPが所定の閾値を超えるCSI-RSが1つ以上利用可能である場合に、RSRPが前記所定の閾値を超えているCSI-RSの1つを選択し、該選択されたCSI-RSに関連付けられたra-PreambleIndexをプリアンブルインデックスにセットする。    The terminal device 1 (1) associates a CSI-RS with a random access resource for non-contention-based random access by RRC, and (2) RSRP of the associated CSI-RS exceeds a predetermined threshold If one or more CSI-RSs are available, select one of the CSI-RSs whose RSRP exceeds the predetermined threshold and preamble the ra-PreambleIndex associated with the selected CSI-RS. Set to index.
 端末装置1は、上記条件のいずれの条件も満たさない場合、競合ベースランダムアクセス手順を行なう。競合ベースランダムアクセス手順においては、端末装置1は、設定された閾値を超えるSS/PBCHブロックのRSRPを持つSS/PBCHブロックを選択し、プリアンブルグループの選択を行う。SS/PBCHブロックとランダムアクセスプリアンブルの関係が設定されている場合は、端末装置1は、選択されたSS/PBCHブロックと選択されたプリアンブルグループに関連付けられた1つまたは複数のランダムアクセスプリアンブルからランダムにra-PreambleIndexを選択し、選択されたra-PreambleIndexをプリアンブルインデックスにセットする。 If the terminal device 1 does not satisfy any of the above conditions, the terminal device 1 performs a contention-based random access procedure. In the contention-based random access procedure, the terminal device 1 selects an SS / PBCH block having an RSRP of an SS / PBCH block exceeding a set threshold, and selects a preamble group. When the relationship between the SS / PBCH block and the random access preamble has been set, the terminal device 1 determines a random number from one or more random access preambles associated with the selected SS / PBCH block and the selected preamble group. , Select ra-PreambleIndex, and set the selected ra-PreambleIndex to the preamble index.
 MACエンティティは、1つのSS/PBCHブロックを選択し、かつPRACH機会とSS/PBCHブロックの関連付け(association)が設定されている場合、選択したSS/PBCHブロックに関連付けられているPRACH機会のうち次に利用可能なPRACH機会を決定してもよい。ただし、端末装置1は、1つのCSI-RSを選択し、かつPRACH機会とCSI-RSの関連付け(association)が設定されている場合、選択したCSI-RSに関連付けられているPRACH機会のうち次に利用可能なPRACH機会を決定してもよい。 The MAC entity selects one SS / PBCH block, and if an association between the PRACH opportunity and the SS / PBCH block is set, the next of the PRACH opportunities associated with the selected SS / PBCH block May determine available PRACH opportunities. However, the terminal device 1 selects one CSI-RS, and if the association (association) between the PRACH opportunity and the CSI-RS is set, the terminal device 1 selects the next PRACH opportunity among the PRACH opportunities associated with the selected CSI-RS. May determine available PRACH opportunities.
 利用可能なPRACH機会は、マスクインデックス情報、SSBインデックス情報、RRCパラメータで設定されるリソース設定、および/または選択された参照信号(SS/PBCHブロックまたはCSI-RS)に基づいて、特定されてもよい。RRCパラメータで設定されるリソース設定は、SS/PBCHブロック毎のリソース設定、および/またはCSI-RS毎のリソース設定を含む。 Available PRACH opportunities may also be identified based on mask index information, SSB index information, resource settings configured with RRC parameters, and / or a selected reference signal (SS / PBCH block or CSI-RS). Good. The resource settings set by the RRC parameters include resource settings for each SS / PBCH block and / or resource settings for each CSI-RS.
 基地局装置3は、RRCメッセージで、SS/PBCHブロック毎のリソース設定および/またはCSI-RS毎のリソース設定を、端末装置1に送信してもよい。端末装置1は、RRCメッセージで、SS/PBCHブロック毎のリソース設定および/またはCSI-RS毎のリソース設定を、基地局装置3から受信する。基地局装置3は、マスクインデックス情報および/またはSSBインデックス情報を端末装置1に送信してもよい。端末装置1は、マスクインデックス情報および/またはSSBインデックス情報を、基地局装置3から取得する。端末装置1は、ある条件に基づいて、参照信号(SS/PBCHブロックまたはCSI-RS)を選択してもよい。端末装置1は、次に利用可能なPRACH機会を、マスクインデックス情報、SSBインデックス情報、RRCパラメータで設定されるリソース設定、および選択された参照信号(SS/PBCHブロックまたはCSI-RS)に基づいて特定してもよい。端末装置1のMACエンティティは、選択されたPRACH機会を使用してランダムアクセスプリアンブルを送信するように物理レイヤに指示してもよい。 The base station device 3 may transmit the resource setting for each SS / PBCH block and / or the resource setting for each CSI-RS to the terminal device 1 by an RRC message. The terminal device 1 receives the resource setting for each SS / PBCH block and / or the resource setting for each CSI-RS from the base station device 3 in the RRC message. The base station device 3 may transmit the mask index information and / or the SSB index information to the terminal device 1. The terminal device 1 acquires the mask index information and / or the SSB index information from the base station device 3. The terminal device 1 may select a reference signal (SS / PBCH block or CSI-RS) based on a certain condition. The terminal device 1 determines the next available PRACH opportunity based on the mask index information, the SSB index information, the resource setting configured by the RRC parameter, and the selected reference signal (SS / PBCH block or CSI-RS). It may be specified. The MAC entity of the terminal device 1 may instruct the physical layer to transmit the random access preamble using the selected PRACH opportunity.
 マスクインデックス情報は、ランダムアクセスプリアンブルの送信に利用可能なPRACH機会のインデックスを示す情報である。マスクインデックス情報は、prach-ConfigurationIndexで定められる1つまたは複数のPRACH機会のグループの一部のPRACH機会を示す情報であってもよい。また、マスクインデックス情報は、SSBインデックス情報で特定される特定のSSBインデックスがマップされたPRACH機会のグループ内の一部のPRACH機会を示す情報であってもよい。 Mask index information is information indicating an index of a PRACH opportunity that can be used for transmitting a random access preamble. The mask index information may be information indicating a PRACH opportunity of a part of one or a plurality of groups of PRACH opportunities defined by theprach-ConfigurationIndex. Further, the mask index information may be information indicating some PRACH opportunities in a group of PRACH opportunities to which a specific SSB index specified by the SSB index information is mapped.
 SSBインデックス情報は、基地局装置3が送信する1つまたは複数のSS/PBCHブロックのいずれかひとつに対応するSSBインデックスを示す情報である。メッセージ0を受信した端末装置1は、SSBインデックス情報で示されるSSBインデックスがマップされたPRACH機会のグループを特定する。各PRACH機会にマップされるSSBインデックスは、PRACH設定インデックスと上位レイヤパラメータSB-perRACH-Occasion、および上位レイヤパラメータcb-preamblePerSSBによって決まる。 The SSB index information is information indicating an SSB index corresponding to one of one or a plurality of SS / PBCH blocks transmitted by the base station device 3. The terminal device 1 that has received the message 0 specifies a group of PRACH opportunities to which the SSB index indicated by the SSB index information is mapped. The SSB index that is mapped to each PRACH opportunity is determined by the PRACH setting index, the upper layer parameter SB-perRACH-Occasion, and the upper layer parameter cb-preamblePerSSB.
 <ランダムアクセスプリアンブルの送信(S1003)>
 S1003はランダムアクセスプリアンブルの送信(random access preamble transmission)に関する手順である。各ランダムアクセスプリアンブルに対して、MACエンティティは、(1)状態変数PREAMBLE_TRANSMISSION_COUNTERが1より大きい、かつ(2)上位レイヤから停止されている電力ランプカウンタの通知が受信されていない、かつ(3)選択されたSS/PBCHブロックが変更されていない場合に、状態変数PREAMBLE_POWER_RAMPING_COUNTERを1つインクリメントする。
<Transmission of random access preamble (S1003)>
S1003 is a procedure related to transmission of a random access preamble (random access preamble transmission). For each random access preamble, the MAC entity determines (1) that the state variable PREAMBLE_TRANSMISSION_COUNTER is greater than 1 and (2) that no notification of a stopped power ramp counter has been received from higher layers, and (3) the selection If the changed SS / PBCH block has not been changed, the state variable PREAMBLE_POWER_RAMPING_COUNTER is incremented by one.
 次に、MACエンティティは、DELTA_PREAMBLEの値を選択し、状態変数PREAMBLE_RECEIVED_TARGET_POWERを所定の値にセットする。所定の値はpreambleReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER―1)*powerRampingStepによって算出される。 Next, the MAC entity selects the value of DELTA_PREAMBLE, and sets the state variable PREAMBLE_RECEIVED_TARGET_POWER to a predetermined value. The predetermined value is calculated by preambleReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_POWER_RAMPING_COUNTER-1) * powerRampingStep.
 次に、MACエンティティは、ビーム失敗リカバリ要求のために非競合ベースランダムアクセスプリアンブル以外の場合に、ランダムアクセスプリアンブルが送信されるPRACH機会に関連付けられるRA-RNTIを算出する。該RA-RNTIは、RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_idによって算出される。ここで、s_idは、送信されるPRACHの最初のOFDMシンボルのインデックスであり、0から13までの値を取る。t_idは、システムフレーム内のPRACHの最初のスロットのインデックスであり、0から79までの値を取る。f_idは、周波数領域でPRACHのインデックスであり、0から7までの値を取る。ul_carrier_idはMsg1送信に使われる上りリンクキャリアである。NULキャリアに対するul_carrier_idは0であり、SULキャリアに対するul_carrier_idは1である。 Next, the MAC entity calculates the RA-RNTI associated with the PRACH opportunity where the random access preamble is transmitted, other than the non-contention based random access preamble due to the beam failure recovery request. The RA-RNTI is calculated by RA-RNTI = 1 + s_id + 14 × t_id + 14 × 80 × f_id + 14 × 80 × 8 × ul_carrier_id. Here, s_id is the index of the first OFDM symbol of the PRACH to be transmitted, and takes a value from 0 to 13. t_id is the index of the first slot of the PRACH in the system frame, and takes a value from 0 to 79. f_id is a PRACH index in the frequency domain, and takes a value from 0 to 7. ul_carrier_id is an uplink carrier used for Msg1 transmission. The ul_carrier_id for the NUL carrier is 0, and the ul_carrier_id for the SUL carrier is 1.
 MACエンティティは、選択されたPRACHを用いてランダムアクセスプリアンブルを送信するように物理レイヤに指示する。 The MAC entity instructs the physical layer to transmit a random access preamble using the selected PRACH.
 <ランダムアクセス応答の受信(S1004)>
 S1004はランダムンダムアクセス応答の受信(random access response reception)に関する手順である。一旦ランダムアクセスプリアンブルが送信されると、MACエンティティは、測定ギャップの可能な発生に関わらず、以下の動作を行う。
<Reception of random access response (S1004)>
S1004 is a procedure for receiving a random access response. Once the random access preamble has been transmitted, the MAC entity performs the following operations regardless of the possible occurrence of measurement gaps.
 S1004において、MACエンティティがビーム失敗リカバリ要求のために非競合ベースランダムアクセスプリアンブルを送信したならば、MACエンティティはランダムアクセスプリアンブル送信の終わりから最初のPDCCH機会で、ランダムアクセス応答ウインドウ(ra-ResponseWindow)をスタートする。そして、ランダムアクセス応答ウインドウがランニングしている間に、MACエンティティはビーム失敗リカバリ要求への応答のために、C-RNTIによって識別されたSpCellのPDCCHをモニタする。ここで、ランダムアクセス応答ウインドウの期間(ウインドウサイズ)は上位レイヤパラメータBeamFailureRecoveryConfigに含まれるra-ResponseWindowによって与えられる。それ以外の場合、MACエンティティはランダムアクセスプリアンブル送信の終わりから最初のPDCCH機会で、ランダムアクセス応答ウインドウ(ra-ResponseWindow)をスタートする。ここで、ランダムアクセス応答ウインドウの期間(ウインドウサイズ)は上位レイヤパラメータRACH-ConfigCommonに含まれるra-ResponseWindowによって与えられる。そして、MACエンティティは、ランダムアクセス応答ウインドウがランニングしている間に、MACエンティティはランダムアクセス応答のために、RA-RNTIによって識別されたSpCellのPDCCHをモニタする。ここで、インフォメーションエレメントBeamFailureRecoveryConfigは、ビーム失敗検出の場合に、端末装置1に対してビーム失敗リカバリのためにRACHリソースおよび候補ビームの設定に使われる。インフォメーションエレメントRACH-ConfigCommonは、セル固有のランダムアクセスパラメータを指定するために使われる。 In S1004, if the MAC entity has transmitted a non-contention-based random access preamble for a beam failure recovery request, the MAC entity uses a random access response window (ra-ResponseWindow) at the first PDCCH opportunity from the end of the random access preamble transmission. Start. Then, while the random access response window is running, the MAC entity monitors the SpCell PDCCH identified by the C-RNTI for a response to the beam failure recovery request. Here, the period (window size) of the random access response window is given by ra-ResponseWindow included in the upper layer parameter BeamFailureRecoveryConfig. Otherwise, the MAC entity starts a random access response window (ra-ResponseWindow) at the first PDCCH opportunity from the end of the random access preamble transmission. Here, the period (window size) of the random access response window is given by ra-ResponseWindow included in the upper layer parameter RACH-ConfigCommon. Then, while the random access response window is running, the MAC entity monitors the SpCell PDCCH identified by the RA-RNTI for a random access response. Here, the information element BeamFailureRecoveryConfig is used for setting a RACH resource and a candidate beam for the terminal apparatus 1 for beam failure recovery in the case of beam failure detection. The information element RACH-ConfigCommon is used to specify a cell-specific random access parameter.
 MACエンティティは、(1)下位レイヤからPDCCH送信の受信通知が受け取られ、かつ(2)PDCCH送信がC-RNTIによってスクランブルされ、かつ(3)MACエンティティがビーム失敗リカバリ要求のために非競合ベースランダムアクセスプリアンブルを送信した場合に、ランダムアクセス手順が成功裏に完了したとみなしてもよい。 The MAC entity may (1) receive acknowledgment of the PDCCH transmission from the lower layer, (2) the PDCCH transmission may be scrambled by the C-RNTI, and (3) the MAC entity may use a non-contention based When the random access preamble is transmitted, the random access procedure may be deemed to have been successfully completed.
 次に、MACエンティティは、(1)下りリンクアサインメントがRA-RNTIのPDCCHにおいて受信され、かつ(2)受信されたトランスポートブロックが成功裏にデコードされる場合に、以下の動作を行う。 Next, the MAC entity performs the following operations when (1) the downlink assignment is received on the PDCCH of RA-RNTI and (2) the received transport block is successfully decoded.
 MACエンティティは、ランダムアクセス応答がBackofIndicatorを含むMAC subPDUを含んでいる場合に、PREAMBLE_BACKOFFをMAC subPDUに含まれるBIフィールドの値に設定する。それ以外の場合、MACエンティティはPREAMBLE_BACKOFFを0msにセットする。 When the random access response includes the MAC @ subPDU including the BackoffIndicator, the MAC entity sets PREAMBLE_BACKOFF to the value of the BI field included in the MAC @ subPDU. Otherwise, the MAC entity sets PREAMBLE_BACKOFF to 0 ms.
 MACエンティティは、ランダムアクセス応答が送信されたPREAMBLE_INDEXに対応するランダムアクセスプリアンブル識別子を含むMAC subPDUを含んでいる場合に、ランダムアクセス応答の受信が成功したとみなしてもよい。 The $ MAC entity may deem that the random access response has been successfully received if the MAC entity includes a MAC $ subPDU that includes the random access preamble identifier corresponding to the transmitted PREAMBLE_INDEX.
 (1)ランダムアクセス応答の受信が成功したとみなし、且つ(2)該ランダムアクセス応答がRAPIDを含むMAC subPDUのみを含む場合に、MACエンティティはランダムアクセス手順が成功裏に完了したとみなし、そして、SIリクエスト(symstem information request)に対する肯定応答(acknowledgement)の受信を上位レイヤに示す。ここで、条件(2)が満たされない場合、MACエンティティは、ランダムアクセスプリアンブルが送信されるサービングセルに以下の動作Aを適用する。 The MAC entity considers that the random access procedure has been successfully completed if (1) the reception of the random access response is considered successful and (2) the random access response includes only the MAC @ subPDU containing the RAPID; , The reception of the acknowledgment (acknowledgement) to the SI request (symstem @ information @ request) is indicated to the upper layer. Here, if the condition (2) is not satisfied, the MAC entity applies the following operation A to the serving cell where the random access preamble is transmitted.
<動作Aの開始>
 MACエンティティは、受信した送信タイミング調整情報(Timing Advance Command)を処理し、下位レイヤに最新のランダムアクセスプリアンブル送信に適用されるpreambleReceivedTargetPowerおよびパワーランピングの量を示す。ここで、該送信タイミング調整情報は、受信したランダムアクセスプリアンブルから端末装置1と基地局装置3との間の送信タイミングのずれを調整するために用いられる。
<Start of operation A>
The MAC entity processes the received transmission timing adjustment information (Timing Advance Command), and indicates to the lower layer the preambleReceivedTargetPower and the amount of power ramping applied to the latest random access preamble transmission. Here, the transmission timing adjustment information is used to adjust a shift in transmission timing between the terminal device 1 and the base station device 3 from the received random access preamble.
 ランダムアクセス手順に対するサービングセルがSRSのみのためのSCellである場合、MACエンティティは受信したULグラントを無視してもよい。それ以外の場合、MACエンティティは受信したULグラントの値を処理し下位レイヤに示す。 If the serving cell for the random access procedure is a SCell for SRS only, the MAC entity may ignore the received UL grant. Otherwise, the MAC entity processes the received UL grant value and indicates it to the lower layer.
 ランダムアクセスプリアンブルがMACエンティティによって競合ベースランダムアクセスプリアンブルの範囲の中から選択されない場合、MACエンティティはランダムアクセス手順が成功裏に完了したとみなしてもよい。 If the random access preamble is not selected by the MAC entity from the contention-based random access preamble range, the MAC entity may consider the random access procedure successfully completed.
<動作Aの終了>
 ランダムアクセスプリアンブルがMACエンティティによって競合ベースランダムアクセスプリアンブルの範囲の中から選択される場合、MACエンティティはTEMPORARY_C-RNTIを受信したランダムアクセス応答に含まれるTemporary C-RNTIフィールドの値にセットする。続いて、該ランダムアクセス応答がこのランダムアクセス手順の中で初めて成功裏に受信された場合、MACエンティティは、CCCH論理チャネル(common control channel logical channel)に対して送信が行われていないならば、次の上りリンク送信にC-RNTI MAC CEを含むことを所定のエンティティ(Multiplexing and assembly enity)に通知し、そして、所定のエンティティ(Multiplexing and assembly enity)から送信用のMAC PDUを取得し、取得したMAC PDUをMsg3バッファに格納する。MACエンティティは、CCCH論理チャネルに対して送信が行われる場合に、所定のエンティティ(Multiplexing and assembly enity)から送信用のMAC PDUを取得し、取得したMAC PDUをMsg3バッファに格納する。
<End of operation A>
If the random access preamble is selected by the MAC entity from the range of contention based random access preamble, the MAC entity sets TEMPORARY_C-RNTI to the value of the Temporary C-RNTI field included in the received random access response. Subsequently, if the random access response is successfully received for the first time in this random access procedure, then the MAC entity may, if not transmitting on the CCCH logical channel (common control channel logical channel), Notify a predetermined entity (multiplexing and assembly entity) that the C-RNTI MAC CE will be included in the next uplink transmission, and obtain and obtain a MAC PDU for transmission from the predetermined entity (multiplexing and assembly entity) The stored MAC PDU is stored in the Msg3 buffer. When transmission is performed on the CCCH logical channel, the MAC entity acquires a MAC PDU for transmission from a predetermined entity (multiplexing and assembly entity), and stores the acquired MAC PDU in the Msg3 buffer.
 MACエンティティは、以下の条件(3)から(4)の少なくとも1つが満たされるならば、ランダムアクセス応答が成功裏に受信されていないとみなし、プリアンブル送信カウンタ(PREAMBLE_TRANSMISSION_COUNTER)を1つインクリメントする。MACエンティティは、プリアンブル送信カウンタの値が所定の値(プリアンブル送信の最大回数+1)に達し、且つ、ランダムアクセスプリアンブルがSpCellで送信される場合に、上位レイヤにランダムアクセス問題を示す。そして、ランダムアクセス手順がSIリクエストのために開始された場合、MACエンティティは、ランダムアクセス手順が成功裏に完了していないとみなす。 If at least one of the following conditions (3) to (4) is satisfied, the MAC entity considers that the random access response has not been successfully received, and increments the preamble transmission counter (PREAMBLE_TRANSMISSION_COUNTER) by one. When the value of the preamble transmission counter reaches a predetermined value (maximum number of preamble transmissions + 1) and the random access preamble is transmitted by SpCell, the MAC entity indicates a random access problem to an upper layer. Then, if the random access procedure is started for the SI request, the MAC entity considers that the random access procedure has not been successfully completed.
 MACエンティティは、プリアンブル送信カウンタの値が所定の値(プリアンブル送信の最大回数+1)に達し、且つ、ランダムアクセスプリアンブルがSCellで送信される場合に、ランダムアクセス手順が成功裏に完了していないとみなす。 When the value of the preamble transmission counter reaches a predetermined value (maximum number of preamble transmissions + 1) and the random access preamble is transmitted in SCell, the MAC entity determines that the random access procedure has not been successfully completed. I reckon.
 条件(3)は、RACH-ConfigCommonで設定されたランダムアクセス応答ウインドウの期間が満了し(expired)、且つ、送信されたプリアンブルインデックスと一致するランダムアクセスプリアンブル識別子を含むランダムアクセス応答が受信されていないということである。条件(4)は、BeamFailureRecoveryConfigで設定されたランダムアクセス応答ウインドウの期間が満了し(expired)、且つ、C-RNTIによってスクランブルされるPDCCHが受信されていないということである。 Condition (3) is that the period of the random access response window set in the RACH-ConfigCommon expires (expired), and that a random access response including a random access preamble identifier matching the transmitted preamble index has not been received. That's what it means. The condition (4) is that the period of the random access response window set in the BeamFailureRecoveryConfig expires (expired), and that the PDCCH scrambled by the C-RNTI has not been received.
 ランダムアクセス手順が完了していない場合、MACエンティティは、該ランダムアクセス手順でランダムアクセスプリアンブルがMAC自身によって競合ベースランダムアクセスプリアンブルの範囲の中から選択されたならば、0とPREAMBLE_BACKOFFとの間でランダムバックオフ時間を選択し、選択されたバックオッフ時間で次のランダムアクセスプリアンブル送信を遅らせ、そして、S1002を実行する。ランダムアクセス手順が完了していない場合、MACエンティティは、該ランダムアクセス手順でランダムアクセスプリアンブルがMAC自身によって競合ベースランダムアクセスプリアンブルの範囲の中から選択されていないならば、S1002を実行する。 If the random access procedure has not been completed, the MAC entity may determine whether the random access preamble is selected by the MAC itself from the range of contention-based random access preambles, if the random access procedure is between 0 and PREAMBLE_BACKOFF. A backoff time is selected, transmission of the next random access preamble is delayed by the selected backoff time, and S1002 is executed. If the random access procedure has not been completed, the MAC entity performs S1002 if the random access preamble has not been selected from the range of the contention-based random access preamble by the MAC itself in the random access procedure.
 MACエンティティは、送信されたプリアンブルインデックスと一致するランダムアクセスプリアンブル識別子を含むランダムアクセス応答を成功裏に受信したら、ランダムアクセス応答ウインドウをストップしてもよい。 The MAC entity may stop the random access response window upon successfully receiving a random access response including a random access preamble identifier matching the transmitted preamble index.
 端末装置1はULグラントに基づいてPUSCHでメッセージ3を送信する。 The terminal device 1 transmits the message 3 on the PUSCH based on the UL grant.
 <衝突解消(S1005)>
 S1005は衝突解消(Contention Resolution)に関する手順である。
<Collision resolution (S1005)>
S1005 is a procedure related to contention resolution.
 一旦Msg3が送信されると、MACエンティティは、衝突解消タイマーをスタートし、および、各HARQ再送信時に衝突解消タイマーを再スタートする。MACエンティティは、測定ギャップの可能な発生に関わらず、衝突解消タイマーがランニングしている間にPDCCHをモニタする。 {Once Msg3 is transmitted, the MAC entity starts a collision resolution timer and restarts the collision resolution timer at each HARQ retransmission. The MAC entity monitors the PDCCH while the collision resolution timer is running, regardless of the possible occurrence of measurement gaps.
 下位レイヤからPDCCH送信の受信通知を受け取って、かつ、C-RNTI MAC CEがMsg3に含まれている場合、MACエンティティは、以下の条件(5)から(7)の少なくとも1つが満たされるならば、競合解消が成功するとみなし、衝突解消タイマーをストップし、TEMPORARY_C-RNTIを破棄し、ランダムアクセス手順が成功裏に完了したとみなす。 In the case where the reception notification of the PDCCH transmission is received from the lower layer and the C-RNTI {MAC} CE is included in Msg3, the MAC entity determines that at least one of the following conditions (5) to (7) is satisfied: , Deem the contention resolution to be successful, stop the collision resolution timer, discard the TEMPORARY_C-RNTI, and deem that the random access procedure has been successfully completed.
 条件(5)は、ランダムアクセス手順がMACサブレイア自身またはRRCサブレイアによって開始され、PDCCH送信がC-RNTIによってスクランブルされ、且つ、該PDCCH送信が初期送信のための上りリンクグラントを含むということである。条件(6)は、ランダムアクセス手順がPDCCHオーダーによって開始され、かつ、PDCCH送信はC-RNTIによってスクランブルされるということである。条件(7)は、ランダムアクセス手順がビーム失敗リカバリのために開始され、且つ、PDCCH送信はC-RNTIによってスクランブルされるということである。 Condition (5) is that the random access procedure is initiated by the MAC sublayer itself or the RRC sublayer, the PDCCH transmission is scrambled by the C-RNTI, and the PDCCH transmission includes an uplink grant for the initial transmission. . Condition (6) is that the random access procedure is started by PDCCH order and PDCCH transmission is scrambled by C-RNTI. Condition (7) is that the random access procedure is started for beam failure recovery, and the PDCCH transmission is scrambled by C-RNTI.
 CCCH SDU(UE contention resolution Identiy)がMsg3に含まれ、且つ、PDCCH送信がTEMPORARY_C-RNTIによってスクランブルされる場合、MACエンティティは、MAC PDUが成功裏にデコードされるならば、衝突解消タイマーをストップする。続いて、成功裏にデコードされたMAC PDUがUE衝突解消アイデンティティ(UE contention resolution identity)MAC CEを含み、且つ、MAC CE内のUE衝突解消アイデンティティがMsg3で送信されたCCCH SDUとマッチする場合、MACエンティティは、衝突解消が成功するとみなし、MAC PDUの分解(disassembly)および逆多重化(demultiplexing)を終了する。そして、ランダムアクセス手順がSIリクエストのために開始された場合に、MACエンティティはSIリクエストに対する肯定応答の受信を上位レイヤに示す。ランダムアクセス手順がSIリクエストのために開始されない場合、MACエンティティはC-RNTIをTEMPORARY_C-RNTIの値にセットする。続いて、MACエンティティは、TEMPORARY_C-RNTIを破棄し、ランダムアクセス手順が成功裏に完了するとみなす。 If CCCH SDU (UE contention resolution Identiy) is included in Msg3 and the PDCCH transmission is scrambled by TEMPORARY_C-RNTI, the MAC entity stops the collision resolution timer if the MAC PDU is successfully decoded. . Subsequently, if the successfully decoded MAC PDU includes a UE contention resolution identity MAC CE, and the UE collision resolution identity in the MAC CE matches the CCCH SDU transmitted on Msg3, The MAC entity considers that the collision resolution is successful and ends the disassembly and demultiplexing of the MAC @ PDU. Then, when the random access procedure is started for the SI request, the MAC entity indicates to the upper layer the receipt of the acknowledgment for the SI request. If the random access procedure is not started due to the SI request, the MAC entity sets C-RNTI to the value of TEMPORARY_C-RNTI. Subsequently, the MAC entity discards the TEMPORARY_C-RNTI and considers the random access procedure to be successfully completed.
 MACエンティティは、MAC CE内のUE衝突解消アイデンティティがMsg3で送信されたCCCH SDUとマッチしない場合に、TEMPORARY_C-RNTIを破棄し、衝突解消が成功しないとみなし、成功裏にデコードされたMAC PDUを破棄する。 If the UE collision resolution identity in the MAC $ CE does not match the CCCH $ SDU sent in Msg3, the MAC entity discards the TEMPORARY_C-RNTI, assumes that the collision resolution is not successful, and returns the successfully decoded MAC $ PDU. Discard.
 MACエンティティは、衝突解消タイマーが満了した場合に、TEMPORARY_C-RNTIを破棄し(discard)、競合解消が成功しないとみなす。MACエンティティは、競合解消が成功しないとみなされる場合に、Msg3バッファ内のMAC PDUの送信に使われるHARQバッファをフラッシュし、プリアンブル送信カウンタ(PREAMBLE_TRANSMISSION_COUNTER)を1つインクリメントする。プリアンブル送信カウンタの値が所定の値(プリアンブル送信の最大回数+1)に達したら、MACエンティティは上位レイヤにランダムアクセス問題を示す。そして、ランダムアクセス手順がSIリクエストのために開始された場合、MACエンティティは、ランダムアクセス手順が成功裏に完了していないとみなす。 When the conflict resolution timer expires, the MAC entity discards the TEMPORARY_C-RNTI (discard) and regards the contention resolution as unsuccessful. The MAC entity flushes the HARQ buffer used for transmitting the MAC @ PDU in the Msg3 buffer and increments the preamble transmission counter (PREAMBLE_TRANSMISSION_COUNTER) by one if the contention resolution is not considered to be successful. When the value of the preamble transmission counter reaches a predetermined value (maximum number of preamble transmissions + 1), the MAC entity indicates a random access problem to an upper layer. Then, if the random access procedure is started for the SI request, the MAC entity considers that the random access procedure has not been successfully completed.
 ランダムアクセス手順が完了していない場合、MACエンティティは、0とPREAMBLE_BACKOFFとの間でランダムバックオフ時間を選択し、選択されたバックオッフ時間で次のランダムアクセスプリアンブル送信を遅らせ、S1002を実行する。 If the random access procedure is not completed, the MAC entity selects a random backoff time between 0 and PREAMBLE_BACKOFF, delays the next random access preamble transmission by the selected backoff time, and executes S1002.
 ランダムアクセス手順が完了すると、MACエンティティは、ビーム失敗リカバリ要求のための非競合ベースランダムアクセス手順以外の非競合ベースランダムアクセス手順に対して、明示的にシグナリングされた非競合ベースランダムアクセスリソースを破棄し、Msg3バッファ内のMAC PDUの送信に使われるHARQバッファをフラッシュする。 Upon completion of the random access procedure, the MAC entity discards explicitly signaled non-contention based random access resources for non-contention based random access procedures other than the non-contention based random access procedure for beam failure recovery request. Then, the HARQ buffer used for transmitting the MAC @ PDU in the Msg3 buffer is flushed.
 以下、本実施形態におけるコントロールリソースセット(CORESET)について説明する。 Hereinafter, the control resource set (CORESET) in the present embodiment will be described.
 コントロールリソースセット(CORESET, Control resource set)は下りリンク制御情報をサーチするための時間および周波数リソースである。CORESETの設定情報には、CORESETの識別子(ControlResourceSetId、CORESET-ID)とCORESETの周波数リソースを特定する情報が含まれる。インフォメーションエレメントControlResourceSetId(CORESETの識別子)は、あるサービングセルにおけるコントロールリソースセットを特定するために使われる。CORESETの識別子は、あるサービングセルにおけるBWP間で使われる。CORESETの識別子は、サービングセルにおけるBWP間でユニークである。各BWPのCORESETの数は、初期的なCORESETを含めて、3に制限される。あるサービングセルにおいて、CORESETの識別子の値は、0から11までの値を取る。 The control resource set (CORESET, Control resource set) is a time and frequency resource for searching for downlink control information. The coreset setting information includes a coreset identifier (ControlResourceSetId, coreset-id) and information for specifying a coreset frequency resource. The information element ControlResourceSetId (identifier of CORESET) is used to specify a control resource set in a certain serving cell. The CORESET identifier is used between BWPs in a certain serving cell. The CORESET identifier is unique among BWPs in the serving cell. The number of coresets for each BWP is limited to three, including the initial coreset. In a certain serving cell, the value of the identifier of CORRESET takes a value from 0 to 11.
 CORESETの識別子0(ControlResourceSetId 0)で特定されるコントロールリソースセットはCORESET#0と称する。CORESET#0は、MIBに含まれるpdcch-ConfigSIB1、または、ServingCellCongfigCommonに含まれるPDCCH-ConfigCommonによって設定されてもよい。即ち、CORESET#0の設定情報は、MIBに含まれるpdcch-ConfigSIB1、または、ServingCellCongfigCommonに含まれるPDCCH-ConfigCommonであってもよい。CORESET#0の設定情報はPDCCH-ConfigCommonに含まれるcontrolResourceSetZeroによって設定されてもよい。pdcch-ConfigSIB1で示されるCORESETは、CORESET#0である。CORESET#0に対するCORESETの設定情報pdcch-ConfigSIB1には、CORESETの識別子とCORESETの周波数リソースを明示的に特定する情報は含まれないが、CORESET#0に対するCORESETの周波数リソースは、pdcch-ConfigSIB1に含まれる情報によって暗示的に特定できる。インフォメーションエレメントPDCCH-ConfigCommonは、SIBで提供されるセル固有のPDCCHパラメータを設定するために用いられる。また、PDCCH-ConfigCommonはハンドオーバ、および、PSCellおよび/またはSCellの追加時にも提供されてもよい。CORESET#0の設定情報は、初期的BWPの設定の中に含まれる。即ち、CORESET#0の設定情報は、初期的BWP以外のBWPの設定の中に含まれなくてもよい。 The control resource set specified by the 識別 子 CORESET identifier 0 (ControlResourceSetId) 0) is referred to as RESET # 0. CORESET # 0 may be set by pdcch-ConfigSIB1 included in MIB or PDCCH-ConfigCommon included in ServingCellConfigCommon. That is, the setting information of CORRESET # 0 may be pdcch-ConfigSIB1 included in MIB, or PDCCH-ConfigCommon included in ServingCellConfigConfig. The setting information of RESET # 0 may be set by controlResourceSetZero included in PDCCH-ConfigCommon. CORESET indicated by pdcch-ConfigSIB1 is CORESET # 0. The RESET setting information pdcch-ConfigSIB1 for RESET # 0 does not include information for explicitly specifying the RESET identifier and the RESET frequency resource, but the RESET frequency resource for RESET # 0 is included in the pdcch-ConfigSIB1. Information can be specified implicitly. The information element PDCCH-ConfigCommon is used to set a cell-specific PDCCH parameter provided in the SIB. Also, the PDCCH-ConfigCommon may be provided at the time of handover and addition of PSCell and / or SCell. The setting information of the coreset # 0 is included in the setting of the initial BWP. That is, the setting information of CORRESET # 0 may not be included in the settings of BWP other than the initial BWP.
 追加のコモンCORESET(additional common control resource set)の設定情報は、PDCCH-ConfigCommonに含まれるcommonControlResourceSetによって設定されてもよい。追加のコモンCORESETの設定情報は、ランダムアクセス手順に使われる追加のコモンCORESETを指定するために使用されてもよい。追加のコモンCORESETの設定情報は、各BWPの設定の中に含まれてもよい。commonControlResourceSetに示されるCORESETの識別子は0以外の値を取る。 The setting information of the additional common CORRESET (additional common control resource set) may be set by a commonControlResourceSet included in the PDCCH-ConfigCommon. The configuration information of the additional common coreset may be used to specify the additional common coreset used for the random access procedure. Additional common CORESET configuration information may be included in each BWP configuration. The identifier of the RESET shown in the commonControlResourceSet takes a value other than 0.
 コモンCORESETは、ランダムアクセス手順に使われるCORESET(例えば、追加のコモンCORESET)であってもよい。また、本実施形態において、コモンCORESETには、CORESET#0および/または追加のコモンCORESETの設定情報で設定されたCORESETが含まれてもよい。つまり、コモンCORESETはCORESET#0および/または追加のコモンCORESETを含んでもよい。CORESET#0はコモンCORESET#0と称してもよい。端末装置1、コモンCORESETが設定されているBWP以外のBWPにおいても、コモンCORESETの設定情報を参照(取得)してもよい。 Common CORESET may be a CORESET used for a random access procedure (eg, an additional common CORESET). In the present embodiment, the common CORESET may include CORESET # 0 and / or CORESET set by additional common CORESET setting information. That is, the common coreset may include coreset # 0 and / or additional common coresets. CORESET # 0 may be called common CORESET # 0. The terminal device 1 and the BWP other than the BWP in which the common CORESET is set may refer to (acquire) the setting information of the common CORESET.
 一つまたは複数のCORESETの設定情報は、PDCCH-Configによって設定されてもよい。インフォメーションエレメントPDCCH-Configは、あるBWPに対してUE固有のPDCCHパラメータ(例えば、CORSET、サーチスペースなど)を設定するために用いられる。PDCCH-Configは、各BWPの設定の中に含まれてもよい。 The configuration information of one or more coresets may be configured by PDCCH-Config. The information element PDCCH-Config is used to set UE-specific PDCCH parameters (for example, CORSET, search space, etc.) for a certain BWP. The PDCCH-Config may be included in each BWP setting.
 即ち、本実施形態において、MIBで示されるコモンCORESETの設定情報はpdcch-ConfigSIB1であり、PDCCH-ConfigCommonで示されるコモンCORESETの設定情報はcontrolResourceSetZeroであり、PDCCH-ConfigCommonで示されるコモンCORESET(追加のコモンCORESET)の設定情報はcommonControlResourceSetである。また、PDCCH-Configで示される一つまたは複数のCORESET(UE specifically configured Control Resource Sets、UE固有CORESET)の設定情報はcontrolResourceSetToAddModListである。 That is, in the present embodiment, the setting information of the common CORESET indicated by the MIB is pdcch-ConfigSIB1, the setting information of the common CORESET indicated by the PDCCH-ConfigCommon is controlResourceSetZero, and the additional information of the common CORESET indicated by the PDCCH-ConfigCommon. The setting information of the common RESET is commonControlResourceSet. Also, the setting information of one or more coresets (UE specifically configured control resources set, UE specific coresets) indicated by PDCCH-Config is controlResourceSetToAddModList.
 サーチスペースはPDCCH候補(PDCCH candidates)をサーチするために定義される。サーチスペースの設定情報に含まれるsearchSpaceTypeは、該サーチスペースがコモンサーチスペース(Common Search Space, CSS)であるかUE固有サーチスペース(UE-specific Search Space, USS)であるを示す。UE固有サーチスペースは、少なくとも、端末装置1がセットしているC-RNTIの値から導き出される。すなわち、UE固有サーチスペースは、端末装置1毎に個別に導き出される。コモンサーチスペースは、複数の端末装置1の間で共通のサーチスペースであり、予め定められたインデックスのCCE(Control Channel Element)から構成される。CCEは、複数のリソースエレメントから構成される。サーチスペースの設定情報には、該サーチスペースでモニタされるDCIフォーマットの情報が含まれる。 The search space is defined to search for PDCCH candidates (PDCCH candidates). The searchSpaceType included in the search space setting information indicates that the search space is a common search space (Common Search Space, CSS) or a UE-specific search space (UE-specific Search Space, USS). The UE-specific search space is derived from at least the value of the C-RNTI set by the terminal device 1. That is, the UE-specific search space is derived individually for each terminal device 1. The common search space is a common search space among the plurality of terminal devices 1 and is configured by a CCE (Control \ Channel \ Element) having a predetermined index. The CCE is composed of a plurality of resource elements. The setting information of the search space includes information of the DCI format monitored in the search space.
 サーチスペースの設定情報には、CORESETの設定情報で特定されるCORESETの識別子が含まれる。サーチスペースの設定情報の中に含まれるCORESETの識別子で特定されるCORESETは、該サーチスペースと関連付けられる。言い換えると、該サーチスペースに関連付けられるCORESETは、該サーチスペースに含まれるCORESETの識別子で特定するCORESETである。該サーチスペースの設定情報で示されるDCIフォーマットは、関連付けられるCORESETでモニタされる。各サーチスペースは一つのCORESETに関連付けられる。例えば、ランダムアクセス手順のためのサーチスペースの設定情報はra-SearchSpaceによって設定されてもよい。即ち、ra-SearchSpaceと関連付けられるCORESETでRA-RNTIまたはTC-RNTIによってスクランブルされるCRCが付加されたDCIフォーマットがモニタされる。 (4) The search space setting information includes the coreset identifier specified by the coreset setting information. The coreset specified by the coreset identifier included in the search space setting information is associated with the search space. In other words, the coreset associated with the search space is the coreset specified by the coreset identifier included in the search space. The DCI format indicated by the setting information of the search space is monitored by the associated CORRESET. Each search space is associated with one coreset. For example, the setting information of the search space for the random access procedure may be set by ra-SearchSpace. That is, the DCI format to which the CRC scrambled by the RA-RNTI or the TC-RNTI is added in the CORESET associated with the ra-SearchSpace is monitored.
 端末装置1は、PDCCHをモニタリングするように設定されているそれぞれのアクティブなサービングセルに配置される、一つまたは複数のCORESETにおいて、PDCCHの候補のセットをモニタする。PDCCHの候補のセットは、一つまたは複数のサーチスペースセットに対応している。モニタリングすることは、モニタされる一つまたは複数のDCIフォーマットに応じてそれぞれのPDCCHの候補をデコードすることを意味する。端末装置1がモニタするPDCCHの候補のセットは、PDCCHサーチスペースセットPDCCH search space sets)で定義される。一つのサーチスペースセットは、コモンサーチスペースセットまたはUE固有サーチスペースセットである。上記では、サーチスペースセットをサーチスペース、コモンサーチスペースセットをコモンサーチスペース、UE固有サーチスペースセットをUE固有サーチスペースと称している。端末装置1は、一つまたは複数の以下のサーチスペースセットでPDCCH候補をモニタする。- タイプ0PDCCHコモンサーチスペースセット(a Type0-PDCCH common search space set): このサーチスペースセットは、上位層のパラメータである、MIBで示されるサーチスペースゼロ(searchSpaceZero)またはPDCCH-ConfigCommonで示されるサーチスペースSIB1(searchSpaceSIB1)によって設定される。このサーチスペースは、プライマリセルにおけるSI-RNRIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
- タイプ0APDCCHコモンサーチスペースセット(a Type0A-PDCCH common search space set): このサーチスペースセットは、上位層のパラメータである、PDCCH-ConfigCommonで示されるサーチスペースOSI(searchSpace-OSI)によって設定される。このサーチスペースは、プライマリセルにおけるSI-RNRIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
- タイプ1PDCCHコモンサーチスペースセット(a Type1-PDCCH common search space set): このサーチスペースセットは、上位層のパラメータである、PDCCH-ConfigCommonで示されるランダムアクセス手順のためのサーチスペース(ra-SearchSpace)によって設定される。このサーチスペースは、プライマリセルにおけるRA-RNRIまたはTC-RNTIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
- タイプ2PDCCHコモンサーチスペースセット(a Type2-PDCCH common search space set): このサーチスペースセットは、上位層のパラメータである、PDCCH-ConfigCommonで示されるページング手順のためのサーチスペース(pagingSearchSpace)によって設定される。このサーチスペースは、プライマリセルにおけるP-RNTIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
- タイプ3PDCCHコモンサーチスペースセット(a Type3-PDCCH common search space set): このサーチスペースセットは、上位層のパラメータである、PDCCH-Configで示されるサーチスペースタイプがコモンのサーチスペース(SearchSpace)によって設定される。このサーチスペースは、INT-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、またはTPC-SRS-RNTIでスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。プライマリライセルに対しては、C-RNTI、またはCS-RNTI(s)でスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
- UE固有サーチスペースセット(a UE-specific search space set): このサーチスペースセットは、上位層のパラメータである、PDCCH-Configで示されるサーチスペースタイプがUE固有のサーチスペース(SearchSpace)によって設定される。このサーチスペースは、C-RNTI、またはCS-RNTI(s)でスクランブルされたCRCのDCIフォーマットのモニタリングのためのものである。
The terminal device 1 monitors a set of PDCCH candidates in one or more coresets arranged in each active serving cell set to monitor the PDCCH. The set of PDCCH candidates corresponds to one or more search space sets. Monitoring means decoding each PDCCH candidate according to one or more DCI formats to be monitored. A set of PDCCH candidates monitored by the terminal device 1 is defined by a PDCCH search space set. One search space set is a common search space set or a UE-specific search space set. In the above description, the search space set is called a search space, the common search space set is called a common search space, and the UE-specific search space set is called a UE-specific search space. The terminal device 1 monitors PDCCH candidates in one or a plurality of the following search space sets. -A Type 0-PDCCH common search space set: This search space set is a search space zero (searchSpaceZero) indicated by MIB or a search space indicated by PDCCH-ConfigCommon, which is an upper layer parameter. This is set by SIB1 (searchSpaceSIB1). This search space is for monitoring the DCI format of the CRC scrambled with the SI-RNRI in the primary cell.
A Type 0A-PDCCH common search space set: This search space set is set by a search space OSI (searchSpace-OSI) indicated by PDCCH-ConfigCommon, which is a parameter of an upper layer. This search space is for monitoring the DCI format of the CRC scrambled with the SI-RNRI in the primary cell.
-A Type1-PDCCH common search space set: This search space set is a search space (ra-SearchSpace) for a random access procedure indicated by PDCCH-ConfigCommon, which is an upper layer parameter. Is set by This search space is for monitoring the DCI format of the CRC scrambled with RA-RNRI or TC-RNTI in the primary cell.
-A Type2-PDCCH common search space set: This search space set is set by the paging search space (pagingSearchSpace) for the paging procedure indicated by the upper layer parameter, PDCCH-ConfigCommon. You. This search space is for monitoring the DCI format of the CRC scrambled with the P-RNTI in the primary cell.
-Type 3 PDCCH common search space set (a Type3-PDCCH common search space set): This search space set is set by a search space (SearchSpace) in which the search space type indicated by PDCCH-Config which is a parameter of an upper layer is common. You. This search space is for monitoring the DCI format of the CRC scrambled by the INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, or TPC-SRS-RNTI. For the primary lycel, it is for monitoring the DCI format of the CRC scrambled with the C-RNTI or CS-RNTI (s).
-UE-specific search space set: In this search space set, a search space type indicated by PDCCH-Config, which is a parameter of an upper layer, is set by a UE-specific search space. . This search space is for monitoring the DCI format of the CRC scrambled with C-RNTI or CS-RNTI (s).
 BWPの設定情報はDL BWPの設定情報とUL BWPの設定情報に分けられる。BWPの設定情報には、インフォメーションエレメントbwp-Id(BWPの識別子)が含まれる。DL BWPの設定情報に含まれるBWPの識別子は、あるサービングセルにおけるDL BWPを特定(参照)するために使われる。UL BWPの設定情報に含まれるBWPの識別子は、あるサービングセルにおけるUL BWPを特定(参照)するために使われる。BWPの識別子はDL BWPとUL BWPのそれぞれに対して付与される。例えば、DL BWPに対応するBWPの識別子はDL BWP インデックス(DL BWP index)と称してもよい。UL BWPに対応するBWPの識別子はUL BWP インデックス(UL BWP index)と称してもよい。初期的なDL BWPは、DL BWPの識別子0によって参照される。初期的なUL BWPは、UL BWPの識別子0によって参照される。他のDL BWPまたは他のUL BWPのそれぞれは、BWPの識別子 1からmaxNrofBWPsまでに参照されてもよい。つまり、0にセットしたBWPの識別子(bwp-Id=0)は、初期的なBWPに関連つけられ、他のBWPに使われることができない。maxNrofBWPsはサービングセルあたりのBWPの最大数であり、4である。即ち、他のBWPの識別子の値は、1から4までの値を取る。他の上位レイヤの設定情報は、BWPの識別子を利用して特定のBWPに関連付けられる。 The setting information of $ BWP is divided into setting information of DL @ BWP and setting information of UL @ BWP. The BWP setting information includes an information element bwp-Id (BWP identifier). The BWP identifier included in the DL @ BWP setting information is used to specify (refer to) the DL @ BWP in a certain serving cell. The BWP identifier included in the UL @ BWP setting information is used to specify (refer to) UL @ BWP in a certain serving cell. The BWP identifier is given to each of DL @ BWP and UL @ BWP. For example, the identifier of the BWP corresponding to DL @ BWP may be referred to as DL @ BWP @ index (DL @ BWP @ index). The identifier of the BWP corresponding to UL @ BWP may be referred to as UL @ BWP @ index (UL @ BWP @ index). The initial DL @ BWP is referenced by the DL @ BWP identifier 0. The initial UL @ BWP is referenced by the UL @ BWP identifier 0. Each of the other DL @ BWPs or other UL @ BWPs may be referenced from BWP identifier # 1 to maxNrofBWPs. That is, the BWP identifier (bwp-Id = 0) set to 0 is associated with the initial BWP and cannot be used for another BWP. maxNofBWPs is the maximum number of BWPs per serving cell, and is 4. That is, the values of the identifiers of other BWPs take values from 1 to 4. The other upper layer setting information is associated with a specific BWP by using the BWP identifier.
 図8は本発明の実施形態に関わるBWP設定の一例を示す図である。 FIG. 8 is a diagram showing an example of the BWP setting according to the embodiment of the present invention.
 各サービングセルに対して、少なくとも1つのDL BWPと1つのUL BWPを含む1つ初期的なBWPが設定される。そして、あるサービングセルに対して、追加のBWP(追加のUL BWPと追加のDL BWP)が設定されてもよい。追加のBWPが最大4つまで設定されてもよい。しかし、1つのサービングセルにおいて、アクティブになるDL BWPは1つであり、アクティブになるUL BWPは1つである。 {One initial BWP including at least one DL @ BWP and one UL @ BWP is set for each serving cell. Then, additional BWP (additional UL @ BWP and additional DL @ BWP) may be set for a certain serving cell. Up to four additional BWPs may be set. However, in one serving cell, one DL @ BWP becomes active and one UL @ BWP becomes active.
 図8において、あるサービングセルにおいて、端末装置1に対して1つの初期的なBWP(BWP#0)と2つの追加のBWP(BWP#1とBWP#2)が設定されている。801は初期的なDL BWP(DL BWP#0)である。802は初期的なUL BWP(UL BWP#0)である。805は追加のDL BWP(DL BWP#1)である。806は追加のUL BWP(UL BWP#1)。808は追加のDL BWP(DL BWP#2)である。809は追加のUL BWP(UL BWP#2)。以下、DL BWP#1がアクティベートされ、UL BWP#0がアクティベートされるということを想定する。つまり、DL BWP#0とUL BWP#1はインアクティブなBWPである。DL BWP#2とUL BWP#2はインアクティブなBWPである。この場合、アクティベートされたDL BWP#1はアクティブなDL BWP(アクティブなDL BWP、currently active DL BWP)と称してもよい。アクティベートされた初期的なUL BWP#0は初期的にアクティブなULBWPと称してもよい。端末装置1は、アクティブなDL BWP#1で下りリンク受信を実行し、初期的にアクティブなUL BWPで上りリンク送信を実行する。 In FIG. 8, one initial BWP (BWP # 0) and two additional BWPs (BWP # 1 and BWP # 2) are set for a terminal device 1 in a certain serving cell. Reference numeral 801 denotes an initial DL @ BWP (DL @ BWP # 0). Reference numeral 802 denotes an initial UL @ BWP (UL @ BWP # 0). Reference numeral 805 denotes an additional DL @ BWP (DL @ BWP # 1). Reference numeral 806 denotes an additional UL @ BWP (UL @ BWP # 1). Reference numeral 808 denotes an additional DL @ BWP (DL @ BWP # 2). 809 is an additional UL @ BWP (UL @ BWP # 2). Hereinafter, it is assumed that DL @ BWP # 1 is activated and UL @ BWP # 0 is activated. That is, DL @ BWP # 0 and UL @ BWP # 1 are inactive BWPs. DL @ BWP # 2 and UL @ BWP # 2 are inactive BWPs. In this case, the activated DL @ BWP # 1 may be referred to as an active DL @ BWP (active DL @ BWP, currently @ active @ DL @ BWP). The activated initial UL @ BWP # 0 may be referred to as an initially active ULBWP. The terminal device 1 performs downlink reception with the active DL @ BWP # 1, and performs uplink transmission with the initially active UL @ BWP.
 803は初期的なDL BWPに対して設定されるCORESET#0である。804は初期的なDL BWPに対して設定される追加のコモンCORESETである。807は追加のBWP#1に対して設定されるCORESETである。810は追加のBWP#2に対して設定されるCORESETである。807と810はUE固有CORESET(UE specifically configured Control Resource Sets)と称してもよい。前述のように、CORESET#0(803)の設定情報はpdcch-ConfigSIB1、または、PDCCH-ConfigCommonによって設定されてもよい。追加のコモンCORESET(804)の設定情報は、PDCCH-ConfigCommonに含まれるcommonControlResourceSetによって設定されてもよい。CORESET(807と810)の設定情報は、PDCCH-Configに含まれるcontrolResourceSetToAddModListによって設定されてもよい。803のCORESETの識別子の値は0で与えられる。804のCORESETの識別子の値は1で与えられてもよい。807のCORESETの識別子の値は3で与えられてもよい。810のCORESETの識別子の値は6で与えられてもよい。DL BWP#0に対してra-searchspaceが含まれるCORESETの識別子の値は1にセットされ、DL BWP#2に対してra-searchspaceが含まれるCORESETの識別子の値は6にセットされる。 $ 803 is a reset # 0 set for the initial DL $ BWP. 804 is an additional common coreset set for the initial DL @ BWP. Reference numeral 807 denotes a reset that is set for the additional BWP # 1. Reference numeral 810 denotes a coreset set for the additional BWP # 2. 807 and 810 may be referred to as UE-specific CORESET (UE \ specifically \ configured \ Control \ Resource \ Sets). As described above, the setting information of CORRESET # 0 (803) may be set by pdcch-ConfigSIB1 or PDCCH-ConfigCommon. The setting information of the additional common CORESET (804) may be set by commonControlResourceSet included in the PDCCH-ConfigCommon. The setting information of RESET (807 and 810) may be set by controlResourceSetToAddModList included in PDCCH-Config. The value of the identifier of the RESET of 803 is given as 0. The value of the RESET identifier of 804 may be given as one. The value of the identifier of the RESET of 807 may be given by 3. The value of the identifier of the RESET at 810 may be given by 6. For the DL @ BWP # 0, the value of the identifier of the RESET including the ra-searchspace is set to 1, and for the DL @ BWP # 2, the value of the identifier of the RESET including the ra-searchspace is set to 6.
 図8において、DL BWP#0、DL BWP#1およびDL BWP#2のそれぞれに対してra-searchspaceが設定されている。前述のように、ランダムアクセス手順のためのサーチスペースの設定情報はra-SearchSpaceによって設定されてもよい。第一の例として、あるDL BWPに対して設定されているra-searchspaceに含まれるCORESETの識別子は該DL BWPに対して設定されているCORESETの設定情報を特定するCORESETの識別子の値にセットしてもよいし、または、初期的なBWPに対して設定されているra-SearchSpaceに含まれるCORESETの識別子の値にセットしてもよい。即ち、あるDL BWPに対して設定されているra-searchspaceは該DL BWPに対して設定されているCORESETの設定情報を特定するCORESETの識別子を示してもよいし、または、初期的なBWPに対して設定されているra-SearchSpaceに含まれるCORESETの識別子を示してもよい。つまり、あるDL BWPに対して設定されているra-searchspaceは該DL BWPおよび初期的なDL BWP以外の他のDL BWPに対して設定されているコモンおよびUE固有CORESETの識別子を示されなくてもよい。別の言い方で言えば、基地局装置3が、あるDL BWPに対して設定されているra-searchspaceは該DL BWPおよび初期的なDL BWP以外の他のDL BWPに対して設定されているコモンおよびUE固有CORESETの識別子を示されないようにRRCメッセージを送信してもよい。例えば、DL BWP#1に対してra-searchspaceが含まれるCORESETの識別子の値は1にセットされてもよいし、3にセットされてもよい。DL BWP#1に対してra-searchspaceが含まれるCORESETの識別子の値は6にセットされない。DL BWP#1に対してra-searchspaceが含まれるCORESETの識別子の値が1にセットされた場合、端末装置1、CORESETの識別子1で特定されるCORESET#1(804)の設定情報に基づいて、アクティブなDL BWP#1で該ra-searchspaceに含まれるDCIフォーマットをモニタする。DL BWP#1に対してra-searchspaceが含まれるCORESETの識別子の値が3にセットされた場合、端末装置1、CORESETの識別子3で特定されるCORESET#3(807)の設定情報に基づいて、アクティブなDL BWP#1で該ra-searchspaceに含まれるDCIフォーマットをモニタする。即ち、あるDL BWPに対して設定されているra-searchspaceは、コモンCORESETの設定情報を特定するCORESETの識別子を示してもよい。例えば、DL BWP#1に対してra-searchspaceが含まれるCORESETの識別子の値は、1にセットされてもよい。すなわち、初期的なDL BWPに、CORESET#1が設定されている場合は、CORESET#0は、ra-searchspaceとして呼び出すことができない。初期的なDL BWPに、CORESET#1が設定されていない場合は、CORESET#0は、ra-searchspaceとして呼び出すことができる。ただし、第一の例の拡張として、初期的なDL BWPに、CORESET#1が設定されている場合にも、CORESET#0を、該DL BWPが、ra-searchspaceとして呼び出すことができるようにしてもよい。 In FIG. 8, ra-searchspace is set for each of DL @ BWP # 0, DL @ BWP # 1, and DL @ BWP # 2. As described above, the setting information of the search space for the random access procedure may be set according to ra-SearchSpace. As a first example, the identifier of the RESET included in the ra-searchspace set for a certain DL @ BWP is set to the value of the identifier of the RESET that specifies the setting information of the RESET set for the DL @ BWP. Alternatively, it may be set to the value of the identifier of CORESET included in the ra-SearchSpace set for the initial BWP. That is, the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the RESET that specifies the setting information of the RESET set for the DL @ BWP, or the The identifier of CORESET included in the set ra-SearchSpace may be indicated. That is, the ra-searchspace set for a certain DL @ BWP does not indicate the identifier of the common and UE-specific CORESET set for the DL @ BWP and other DL @ BWPs other than the initial DL @ BWP. Is also good. In other words, the ra-searchspace set by the base station apparatus 3 for a certain DL @ BWP is a common set for the DL @ BWP other than the DL @ BWP and the initial DL @ BWP. And the RRC message may be transmitted so as not to indicate the identifier of the UE-specific CORRESET. For example, for the DL @ BWP # 1, the value of the identifier of the RESET including the ra-searchspace may be set to 1, or may be set to 3. The value of the identifier of the RESET including the ra-searchspace for DL @ BWP # 1 is not set to 6. When the value of the identifier of the RESET including the ra-searchspace for DL @ BWP # 1 is set to 1, the terminal device 1 is set based on the setting information of the RESET # 1 (804) specified by the identifier 1 of the RESET. The active DL @ BWP # 1 monitors the DCI format included in the ra-searchspace. When the value of the identifier of the RESET including the ra-searchspace for DL @ BWP # 1 is set to 3, the terminal device 1 is set based on the setting information of the RESET # 3 (807) specified by the identifier 3 of the RESET. The active DL @ BWP # 1 monitors the DCI format included in the ra-searchspace. That is, the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the coreset that specifies the setting information of the common coreset. For example, the value of the identifier of CORESET including ra-searchspace for DL @ BWP # 1 may be set to 1. In other words, if RESET # 1 is set in the initial DL @ BWP, RESET # 0 cannot be called as ra-searchspace. If RESET # 1 is not set in the initial DL @ BWP, RESET # 0 can be called as ra-searchspace. However, as an extension of the first example, even when RESET # 1 is set in the initial DL @ BWP, the RESET # 0 can be called by the DL @ BWP as a ra-searchspace. Is also good.
 また、第二の例として、あるDL BWPに対して設定されているra-searchspaceに含まれるCORESETの識別子は該DL BWPに対して設定されているコモンCORESETの設定情報を特定するCORESETの識別子の値にセットされてもよいし、または、他のBWPに対して設定されているランダムアクセス手続きのためのコモンCORESETの識別子の値にセットしてもよい。即ち、あるDL BWPに対して設定されているra-searchspaceは該DL BWPに対して設定されているコモンCORESETの設定情報を特定するCORESETの識別子を示してもよいし、または、他のBWPに対して設定されているランダムアクセス手続きのためのコモンCORESETの識別子を示してもよい。例えば、DL BWP#1に対してra-searchspaceが含まれるCORESETの識別子の値は1にセットされてもよいし、3にセットされてもよいし、6にセットされてもよい。すなわち、初期的なDL BWPに、CORESET#1が設定されている場合は、CORESET#0は、該DL BWPのra-searchspaceとして呼び出すことができない。初期的なDL BWPに、CORESET#1が設定されていない場合は、CORESET#0は、該DL BWPのra-searchspaceとして呼び出すことができる。 Further, as a second example, the identifier of the RESET included in the ra-searchspace set for a certain DL @ BWP is the identifier of the RESET that specifies the setting information of the common RESET set for the DL @ BWP. It may be set to a value, or may be set to the value of the identifier of the common coreset for the random access procedure set for another BWP. That is, the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the RESET that specifies the setting information of the common RESET that is set for the DL @ BWP, or may indicate to other BWPs. The identifier of the common CORESET for the random access procedure set for this may be indicated. For example, with respect to DL @ BWP # 1, the value of the identifier of the RESET including the ra-searchspace may be set to 1, 3, or 6, may be set. That is, when RESET # 1 is set in the initial DL @ BWP, CORRESET # 0 cannot be called as the ra-searchspace of the DL @ BWP. If the RESET # 1 is not set in the initial DL @ BWP, the RESET # 0 can be called as the DL-BWP ra-searchspace.
 また、第三の例として、あるDL BWPに対して設定されているra-searchspaceに含まれるCORESETの識別子は端末装置1に設定されているすべてのコモンCORESETの識別子の値にセットされてもよい。即ち、あるDL BWPに対して設定されているra-searchspaceは該サービングセルに設定されているすべてのコモンCORESETの設定情報を特定するCORESETの識別子をしめしてもよい。例えば、DL BWP#1に対してra-searchspaceが含まれるCORESETの識別子の値は0、1、3、6にセットされてもよい。 Further, as a third example, the identifier of CORESET included in the ra-searchspace set for a certain DL @ BWP may be set to the value of the identifier of every common CORESET set in the terminal device 1. . That is, the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the coreset that specifies the setting information of all the common coresets set in the serving cell. For example, the value of the identifier of the coreset including ra-searchspace for DL @ BWP # 1 may be set to 0, 1, 3, or 6.
 該DL BWPに対して設定されているCORESETの設定情報を特定するCORESETの識別子の値にセットしてもよいし、または、他のBWPに対して設定されているCORESETの識別子の値にセットしてもよい。即ち、あるDL BWPに対して設定されているra-searchspaceは該DL BWPに対して設定されているCORESETの設定情報を特定するCORESETの識別子を示してもよいし、または、他のBWPに対して設定されているコモンCORESETの識別子を示してもよい。例えば、DL BWP#1に対してra-searchspaceが含まれるCORESETの識別子の値は0にセットされてもよいし、1にセットされてもよいし、3にセットされてもよいし、6にセットされてもよい。 The setting information of the coreset set for the DL @ BWP may be set to the value of the coreset identifier for specifying the coreset, or set to the value of the coreset identifier set for another BWP. You may. That is, the ra-searchspace set for a certain DL @ BWP may indicate the identifier of the RESET that specifies the setting information of the RESET set for the DL @ BWP, or may be used for another BWP. May be indicated. For example, for DL @ BWP # 1, the value of the identifier of CORESET including ra-searchspace may be set to 0, may be set to 1, may be set to 3, or may be set to 6. May be set.
 本実施形態において、前述したサービングセルにおけるランダムアクセス手順の開始時に、MACエンティティは、このサービングセルに対してBWPを切り替えするかどうかを判断する。以下、サービングセルにおけるランダムアクセス手順の開始時にBWP切り替えについて説明する。 In this embodiment, at the start of the above-described random access procedure in the serving cell, the MAC entity determines whether to switch BWP for this serving cell. Hereinafter, BWP switching at the start of the random access procedure in the serving cell will be described.
 本実施形態において、あるサービングセルにおけるランダムアクセス手順の開始時に、MACエンティティは、以下の要素(i)から要素(vi)の一部、または、全部に少なくとも基づいて、アクティブなDL BWPを現在のDL BWPから他のDL BWP(例えば、初期的なDL BWP、最初にアクティブなDL BWP、アクティブなUL BWPと同じBWP識別子を有するDL BWP)に切り替えるかどうかを判断し、ランダムアクセス手順が実行できるBWPを決定してもよい。
・(i)アクティブなUL BWPに対してPRACH機会が設定されているかどうか、・(ii)そのサービングセルがSpCellであるかどうか
・(iii)アクティブなDL BWPの識別子とアクティブなUL BWPの識別子が同じであるかどうか
・(v)アクティブなDL BWPに対して設定されているra-SearchSpaceに関連付けられるコントロールリソースセットを特定するCORESETの識別子とアクティブなUL BWPと同じBWPの識別子を有するDL BWPに対して設定されているra-SearchSpaceに関連付けられるCORESETの識別子が同じであるかどうか
・(vi)アクティブなDL BWPに対してra-SearchSpaceが設定されているかどうか
In this embodiment, at the start of the random access procedure in a certain serving cell, the MAC entity determines the active DL BWP based on at least some or all of the following elements (i) to (vi): Determine whether to switch from BWP to another DL BWP (e.g., initial DL BWP, first active DL BWP, DL BWP having the same BWP identifier as active UL BWP), and BWP capable of performing a random access procedure May be determined.
(I) whether the PRACH opportunity is set for the active UL BWP, (ii) whether the serving cell is a SpCell, or (iii) the identifier of the active DL BWP and the identifier of the active UL BWP. (V) In the DL BWP having the same identifier of the CORSET specifying the control resource set associated with the ra-SearchSpace set for the active DL BWP and the same BWP identifier as the active UL BWP. Whether the identifier of the RESET associated with the set ra-SearchSpace is the same. (Vi) whether the ra-SearchSpace is set for the active DL BWP.
 PRACH機会はランダムアクセスプリアンブルの送信に利用可能な時間および周波数リソースである。PRACH機会について後述する。 The PRACH opportunity is the time and frequency resources available for transmitting the random access preamble. The PRACH opportunity will be described later.
 図9は、サービングセルにおけるランダムアクセス手順の開始時にMACエンティティがそのサービングセルに対してBWP切り替えの判断に関する疑似コードを示す図である。 FIG. 9 is a diagram showing pseudo code regarding a MAC entity at the start of a random access procedure in a serving cell, the BWP switching determination for the serving cell.
 図9において、条件Aは、アクティブなUL BWPに対してPRACH機会が設定されていないことである。条件Bは、該サービングセルがSpCellであることである。条件Cは、アクティブなDL BWPがアクティブなUL BWPと同じbwp-Idを有しないことである。条件Dは、アクティブなDL BWPに対して設定されているra-SearchSpaceが、アクティブなUL BWPと同じBWPの識別子を有するDL BWPに対して設定されているra-SearchSpaceと同じCORESETの識別子を有しないことである。または、条件Dは、アクティブなDL BWPに対して設定されているra-SearchSpaceが、アクティブなUL BWPと同じBWPの識別子を有するDL BWPに対して設定されているra-SearchSpaceと同じCORESETの識別子に関連付けられていないことである。または、条件Dは、アクティブなDL BWPに対して設定されているra-SearchSpaceに示されるCORESETの識別子が、アクティブなUL BWPと同じBWPの識別子を有するDL BWPに対して設定されているra-SearchSpaceに示されるCORESETの識別子と異なることである。また、条件Dが満たされることは、条件Eと条件Fの両方が満たされないことを意味してもよい。条件Dが満たされないことは、条件Eと条件Fの内何れかが満たされることを意味してもよい。条件Eと条件Fが後述する。 In FIG. 9, condition A is that no PRACH opportunity is set for the active UL @ BWP. Condition B is that the serving cell is SpCell. Condition C is that the active DL @ BWP does not have the same bwp-Id as the active UL @ BWP. Condition D is that the ra-SearchSpace set for the active DL @ BWP has the same CORESET identifier as the ra-SearchSpace set for the DL @ BWP that has the same BWP identifier as the active UL @ BWP. That is not to do. Alternatively, condition D is that the ra-SearchSpace set for the active DL @ BWP has the same BWP identifier as the active UL @ BWP, and the same RESET identifier as the ra-SearchSpace set for the DL @ BWP. Is not associated with Alternatively, the condition D is that the identifier of the RESET shown in the ra-SearchSpace set for the active DL @ BWP is set for the DL @ BWP having the same BWP identifier as the active UL @ BWP. This is different from the CORSET identifier shown in the SearchSpace. Satisfaction of the condition D may mean that both the condition E and the condition F are not satisfied. Unsatisfaction of condition D may mean that either condition E or condition F is satisfied. Conditions E and F will be described later.
 処理Aは、MACエンティティがアクティブなUL BWPを初期的なUL BWPに切り替えることである。処理Bは、MACエンティティがアクティブなDL BWPを初期的なDL BWPに切り替えることである。処理Cは、MACエンティティがアクティブなDL BWPをアクティブなUL BWPと同じBWPの識別子を有するDL BWPに切り替えることである。処理Dは、MACエンティティがSpCellのアクティブなDL BWPおよびサービングセルのアクティブなUL BWPにおいてランダムアクセス手順を実行することである。 Process A is for the MAC entity to switch the active UL BWP to the initial UL BWP. Process B is that the MAC entity switches the active DL @ BWP to the initial DL @ BWP. Process C is for the MAC entity to switch the active DL @ BWP to a DL @ BWP having the same BWP identifier as the active UL @ BWP. Process D is that the MAC entity performs a random access procedure on the active DL @ BWP of the SpCell and the active UL @ BWP of the serving cell.
 図9において、MACエンティティは、S11の条件Aに基づいて、次にどのステップを選択し進むかを決定してもよい。条件Aが満たされない場合、MACエンティティはS15へ進む。条件Aが満たされる場合、MACエンティティはS12へ進む。即ち、条件Aが満たされる場合、MACエンティティはS12の処理Aを実行する。続いて、MACエンティティは、S13の条件Bを判断する。条件Bが満たされる場合、MACエンティティは処理Bを実行する。条件Bが満たされない場合、MACエンティティはS20へ進む。即ち、条件Aおよび条件Bが満たされる場合、MACエンティティは処理Bを実行する。条件Aが満たされ、且つ、条件Bが満たされない場合、MACエンティティはS20へ進む。 In FIG. 9, the MAC entity may determine which step to select and proceed next based on the condition A in S11. If the condition A is not satisfied, the MAC entity proceeds to S15. If the condition A is satisfied, the MAC entity proceeds to S12. That is, when the condition A is satisfied, the MAC entity executes the process A of S12. Subsequently, the MAC entity determines the condition B in S13. If the condition B is satisfied, the MAC entity executes the process B. If the condition B is not satisfied, the MAC entity proceeds to S20. That is, when the condition A and the condition B are satisfied, the MAC entity executes the process B. If the condition A is satisfied and the condition B is not satisfied, the MAC entity proceeds to S20.
 S15は条件Aが満たされないことである。即ち、S15はアクティブなUL BWPに対してPRACH機会が設定されていることである。S15へ進むと、MACエンティティは、S16の条件Bに基づいて、次にどのステップを選択し進むかを決定してもよい。ここで、S16の条件Bが満たされない場合、MACエンティティはS20へ進む。即ち、条件Aが満たされない、且つ、条件Bが満たされない場合、MACエンティティはS20へ進む。 S15 is that the condition A is not satisfied. That is, S15 is that the PRACH opportunity is set for the active UL @ BWP. Proceeding to S15, the MAC entity may determine which step to select and proceed next based on condition B of S16. Here, if the condition B of S16 is not satisfied, the MAC entity proceeds to S20. That is, when the condition A is not satisfied and the condition B is not satisfied, the MAC entity proceeds to S20.
 S16の条件Bが満たされる場合、MACエンティティはS17へ進む。ここで、条件Cおよび条件Dが満たされる場合、MACエンティティはS19の処理Cを実行する。即ち、条件Aが満たされなく、且つ、条件Bが満たされ、且つ、条件Cが満たされ、且つ、条件Dが満たされる場合、MACエンティティはS19の処理Cを実行する。条件Aが満たされなく、且つ、条件Bが満たされ、且つ、条件Cまたは条件Dの内少なくとも一方が満たされない場合、MACエンティティはS19の処理Cを実行せず、S20へ進む。S20において、MACエンティティは処理Dを実行する。 $ If the condition B of S16 is satisfied, the MAC entity proceeds to S17. Here, when the condition C and the condition D are satisfied, the MAC entity executes the process C of S19. That is, when the condition A is not satisfied, the condition B is satisfied, the condition C is satisfied, and the condition D is satisfied, the MAC entity executes the process C of S19. If the condition A is not satisfied, the condition B is satisfied, and at least one of the condition C and the condition D is not satisfied, the MAC entity does not execute the process C of S19, and proceeds to S20. In S20, the MAC entity executes the process D.
 図11は、サービングセルにおけるランダムアクセス手順の開始時にMACエンティティがこのサービングセルに対してBWP切り替えの判断に関する疑似コードの他の一例を示す図である。 FIG. 11 is a diagram showing another example of the pseudo code related to the MAC entity determining the BWP switching for the serving cell at the start of the random access procedure in the serving cell.
 また、図9において、あるサービングセルでランダムアクセス手順を開始するMACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されていない場合に、アクティブなUL BWPを初期的な(initial)UL BWPに切り替える。そして、MACエンティティは、該サービングセルがSpCellであり、且つ、アクティブなDL BWP対してra-SearchSpaceが設定されていない場合(S13)に、アクティブなDL BWPを初期的な(initial) DL BWPに切り替える。即ち、図9において、S13の条件は、該サービングセルがSpCellであり、および/または、アクティブなDL BWP対してra-SearchSpaceが設定されていないということであってもよい。 Also, in FIG. 9, the MAC entity that starts the random access procedure in a certain serving cell sets the active UL @ BWP to the initial (initial) UL @ BWP when the PRACH opportunity is not set for the active UL @ BWP. Switch. Then, when the serving cell is SpCell and ra-SearchSpace is not set for the active DL @ BWP (S13), the MAC entity switches the active DL @ BWP to the initial (initial) @ DL @ BWP. . That is, in FIG. 9, the condition of S13 may be that the serving cell is SpCell and / or that no ra-SearchSpace is set for the active DL @ BWP.
 以下の態様において、第1の情報は第1のDL BWPに対して設定されているra-SearchSpaceである。第2の情報は第1のUL BWPと同じBWPの識別子を有する第2のDL BWPに対して設定されているra-SearchSpaceである。第1のUL BWPは、この時点で、アクティブなUL BWPに設定されているUL BWPである。第1のDL BWPは、この時点で、アクティブなDL BWPに設定されているDL BWPである。第2のDL BWPは第1のUL BWPと同じBWPの識別子を有するDL BWPである。 In the following embodiment, the first information is the ra-SearchSpace set for the first DL @ BWP. The second information is the ra-SearchSpace set for the second DL @ BWP having the same BWP identifier as the first UL @ BWP. The first UL @ BWP is the UL @ BWP set to the active UL @ BWP at this time. The first DL @ BWP is the DL @ BWP set to the active DL @ BWP at this time. The second DL @ BWP is a DL @ BWP having the same BWP identifier as the first UL @ BWP.
 本実施形態の態様A(S15以降のステップ)において、第1のDL BWPに対して設定されている第1の情報に関連付けられるコントロールリソースセットが第1のUL BWPと同じBWPの識別子を有する第2のDL BWPに対して設定されている第2の情報に関連付けられるコントロールリソースセット(CORESET)と同じCORESETの識別子を有するかどうかに基づいて、アクティブなDL BWPを第2のDL BWPに切り替えるかどうかを決定する。例えば、MACエンティティは、第1の情報に関連付けられるコントロールリソースセット(CORESET)が第2の情報に関連付けられるコントロールリソースセットと同じCORESETの識別子を有しない場合に、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えてもよい。MACエンティティは、第1の情報に関連付けられるコントロールリソースセットが第2の情報に関連付けられるコントロールリソースセットと同じCORESETの識別子を有する場合に、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしなくてもよい。MACエンティティは、該サービングセルがSpCellであり、且つ、アクティブなUL BWPに設定されている第1のUL BWPに対してPRACH機会が設定され、かつ、アクティブなDL BWPに設定されている第1のDL BWPが第1のUL BWPと同じBWPの識別子を有しない場合に、上記の決定を行うようにしてもよい。 In aspect A of this embodiment (steps subsequent to S15), the control resource set associated with the first information set for the first DL @ BWP has the same BWP identifier as the first UL @ BWP. Switch the active DL @ BWP to the second DL @ BWP based on whether or not it has the same CORRESET identifier as the control resource set (CORESET) associated with the second information set for the second DL @ BWP Determine whether or not. For example, the MAC entity may change the active DL @ BWP to the first DL if the control resource set (CORESET) associated with the first information does not have the same CORESET identifier as the control resource set associated with the second information. You may switch from BWP to 2nd DL @ BWP. The MAC entity converts the active DL @ BWP from the first DL @ BWP to the second DL if the control resource set associated with the first information has the same CORRESET identifier as the control resource set associated with the second information. It is not necessary to switch to BWP. The MAC entity determines that the serving cell is a SpCell, and a PRACH opportunity is set for a first UL @ BWP set to an active UL @ BWP, and a first is set to an active DL @ BWP. The above determination may be made when the DL @ BWP does not have the same BWP identifier as the first UL @ BWP.
 また、態様Aを言い換えると、MACエンティティは、第1の情報に示される(含まれる)CORESETの識別子が第2の情報に示される(含まれる)CORESETの識別子と同じであるかどうかに基づいて、アクティブなDL BWPを第2のDL BWPに切り替えるかどうかを決定する。MACエンティティは、第1の情報に示されるCORESETの識別子が第2の情報に示されるCORESETの識別子と異なる場合に、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えてもよい。MACエンティティは、第1の情報に示されるCORESETの識別子が第2の情報に示されるCORESETの識別子と同じ場合に、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしなくてもよい。MACエンティティは、該サービングセルがSpCellであり、且つ、アクティブなUL BWPに設定されている第1のUL BWPに対してPRACH機会が設定され、かつ、アクティブなDL BWPに設定されている第1のDL BWPが第1のUL BWPと同じBWPの識別子を有しない場合に、上記の決定を行うようにしてもよい。 In other words, in other words in aspect A, the MAC entity determines whether the identifier of the coreset indicated (included) in the first information is the same as the identifier of the coreset indicated (included) in the second information. , Determine whether to switch the active DL @ BWP to the second DL @ BWP. The MAC entity may switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP when the identifier of the RESET shown in the first information is different from the identifier of the RESET shown in the second information. Good. The MAC entity does not switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP when the identifier of the RESET shown in the first information is the same as the identifier of the RESET shown in the second information. You may. The MAC entity determines that the serving cell is a SpCell, and a PRACH opportunity is set for a first UL @ BWP set to an active UL @ BWP, and a first is set to an active DL @ BWP. The above determination may be made when the DL @ BWP does not have the same BWP identifier as the first UL @ BWP.
 本実施形態の態様B(S15以降のステップ)について説明する。態様Bにおいて、条件Eは、第1の情報に示されるCORESETの識別子で特定されるCORESETの設定情報が設定されているDL BWPのBWP識別子が第1のUL BWPのBWP識別子と同じであることである。または、条件Eは、第1の情報に示されるCORESETの識別子で特定されるCORESETの設定情報が設定されているDL BWPと同じBWPの識別子を有するUL BWPが第1のUL BWPであることである。条件Fは、第2の情報に示されるCORESETの識別子で特定されるCORESETの設定情報が設定されているDL BWPがアクティブなDL BWPであることである。 態 様 The mode B (steps after S15) of the present embodiment will be described. In the aspect B, the condition E is that the BWP identifier of the DL @ BWP in which the setting information of the RESET specified by the identifier of the RESET shown in the first information is set is the same as the BWP identifier of the first UL @ BWP. It is. Alternatively, the condition E is that UL @ BWP having the same BWP identifier as DL @ BWP in which the RESET setting information specified by the RESET identifier indicated in the first information is set is the first UL @ BWP. is there. Condition F is that the DL @ BWP in which the RESET setting information specified by the RESET identifier indicated in the second information is set is the active DL @ BWP.
 本実施形態の態様Bにおいて、MACエンティティは、条件Eと条件Fの内何れかが満たされる場合に、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしなくてもよい。また、MACエンティティは、条件Eと条件Fの両方が満たされない場合に、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしてもよい。MACエンティティは、該サービングセルがSpCellであり、且つ、アクティブなUL BWPに設定されている第1のUL BWPに対してPRACH機会が設定され、かつ、アクティブなDL BWPに設定されている第1のDL BWPが第1のUL BWPと同じBWPの識別子を有しない場合に、上記の条件Eと条件Fの決定を行うようにしてもよい。 In aspect B of the present embodiment, the MAC entity does not have to switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP when either of the condition E or the condition F is satisfied. . Further, the MAC entity may switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP when both the condition E and the condition F are not satisfied. The MAC entity determines that the serving cell is a SpCell, and a PRACH opportunity is set for a first UL @ BWP set to an active UL @ BWP, and a first is set to an active DL @ BWP. When the DL @ BWP does not have the same BWP identifier as the first UL @ BWP, the above-described conditions E and F may be determined.
 本実施形態の態様Cにおいて、あるサービングセルでランダムアクセス手順を開始するMACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されない場合に、アクティブなUL BWPを初期的な(initial)UL BWPに切り替える。そして、MACエンティティは、該サービングセルがSpCellであり、アクティブな DL BWPに対して設定されている第1の情報に示されるCORESETの識別子で特定されるCORESETの設定情報が初期的なDL BWPに対して設定されているか否かに基づいて、アクティブなDL BWPを初期的なDL BWP(または、最初にアクティブなDL BWP)に切り替えるかどうかを決定する。例えば、MACエンティティは、該サービングセルがSpCellであり、アクティブな DL BWPに対して設定されている第1の情報に示されるCORESETの識別子で特定されるCORESETの設定情報が初期的なDL BWPに対して設定されているならば、アクティブなDL BWPを初期的なDL BWPに切り替えしなくてもよい。また、MACエンティティは、該サービングセルがSpCellであり、アクティブな DL BWPに対して設定されている第1の情報に示されるCORESETの識別子で特定されるCORESETの設定情報が初期的なDL BWP以外の他のDL BWPに対して設定されているならば、アクティブなDL BWPを初期的なDL BWPに切り替えしてもよい。 In aspect C of this embodiment, the MAC entity that starts the random access procedure in a certain serving cell changes the active UL @ BWP to the initial (initial) UL @ BWP when no PRACH opportunity is set for the active UL @ BWP. Switch. Then, the MAC entity determines that the serving cell is SpCell and that the setting information of the RESET specified by the identifier of the RESET shown in the first information set for the active DL @ BWP is the initial DL @ BWP. It is determined whether to switch the active DL @ BWP to the initial DL @ BWP (or the first active DL @ BWP) based on whether or not the active DL @ BWP is set. For example, the MAC entity determines that the serving cell is SpCell and that the configuration information of the RESET specified by the identifier of the RESET shown in the first information set for the active DL @ BWP is the initial DL @ BWP. If it is set, it is not necessary to switch the active DL @ BWP to the initial DL @ BWP. Also, the MAC entity indicates that the serving cell is SpCell, and the configuration information of the RESET specified by the identifier of the RESET shown in the first information set for the active $ DL @ BWP is other than the initial DL @ BWP. If it is set for another DL @ BWP, the active DL @ BWP may be switched to the initial DL @ BWP.
 本実施形態の態様Dにおいて、あるサービングセルでランダムアクセス手順を開始するMACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されない場合に、アクティブなUL BWPを初期的な(initial)UL BWPに切り替える。そして、MACエンティティは、該サービングセルがSpCellであり、且つ、第1の情報に示されるCORESETの識別子で特定されるCORESETがコモンCORESETであるかどうかに基づいて、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えるかどうかを決定する。例えば、MACエンティティは、該サービングセルがSpCellであり、且つ、第1の情報に示されるCORESETの識別子で特定されるCORESETがコモンCORESETであれば、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしなくてもよい。即ち、MACエンティティは、該サービングセルがSpCellであり、第1の情報に示されるCORESETの識別子で特定されるCORESETがコモンCORESETではなければ、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしてもよい。 In aspect D of the present embodiment, the MAC entity that starts the random access procedure in a certain serving cell changes the active UL @ BWP to the initial (initial) UL @ BWP when the PRACH opportunity is not set for the active UL @ BWP. Switch. Then, the MAC entity determines the active DL @ BWP as the first DL based on whether or not the serving cell is SpCell and the RESET specified by the RESET identifier indicated in the first information is the common RESET. It is determined whether to switch from BWP to the second DL @ BWP. For example, if the serving cell is SpCell, and the CORESET specified by the CORSET identifier indicated in the first information is a common CORESET, the MAC entity changes the active DL @ BWP from the first DL @ BWP to the second DL @ BWP. It is not necessary to switch to DL @ BWP. In other words, if the serving cell is SpCell and the RESET specified by the RESET identifier indicated in the first information is not the common RESET, the MAC entity changes the active DL @ BWP from the first DL @ BWP to the second DL You may switch to BWP.
 また、本実施形態の態様E(S15以降のステップ)において、MACエンティティは、第1のDL BWPに対して設定されている第1の情報に示されるCORESETの識別子で特定されるCORESETがコモンCORESETであるかどうかに基づいて、アクティブなDL BWPを第2のDL BWPに切り替えるかどうかを決定する。例えば、MACエンティティは、第1のDL BWPに対して設定されている第1の情報に示されるCORESETの識別子で特定されるCORESETがコモンCORESETであれば、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしなくてもよい。また、MACエンティティは、第1のDL BWPに対して設定されている第1の情報に示されるCORESETの識別子で特定されるCORESETがコモンCORESETでなければ、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしてもよい。MACエンティティは、該サービングセルがSpCellであり、且つ、アクティブなUL BWPに設定されている第1のUL BWPに対してPRACH機会が設定され、かつ、アクティブなDL BWPに設定されている第1のDL BWPが第1のUL BWPと同じBWPの識別子を有しない場合に、上記の処理を行うようにしてもよい。 Also, in the aspect E (steps after S15) of the present embodiment, the MAC entity determines that the coreset specified by the coreset identifier indicated in the first information set for the first DL @ BWP is the common coreset. Is determined based on whether the active DL @ BWP is switched to the second DL @ BWP. For example, if the coreset specified by the identifier of the coreset indicated in the first information set for the first DL @ BWP is a common coreset, the MAC entity changes the active DL @ BWP to the first DL @ BWP. It is not necessary to switch from to the second DL @ BWP. In addition, the MAC entity converts the active DL @ BWP into the first DL @ BWP if the CORESET specified by the identifier of the CORESET shown in the first information set for the first DL @ BWP is not the common CORESET. May be switched to the second DL BWP. The MAC entity determines that the serving cell is a SpCell and that a PRACH opportunity is set for a first UL @ BWP that is set to an active UL @ BWP and that a first UL is set to an active DL @ BWP. The above processing may be performed when the DL @ BWP does not have the same BWP identifier as the first UL @ BWP.
 また、上記の態様において、MACエンティティは、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えない上述の条件が満たされ、且つ、第1の情報に示されるPDCCHモニタと関連するパラメータと第2の情報に示されるPDCCHモニタと関連するパラメータが同じ値を示す場合に、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしなくてもよい。即ち、MACエンティティは、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えない上述の条件が満たされる場合に、第1の情報に示されるPDCCHモニタと関連するパラメータと第2の情報に示されるPDCCHモニタと関連するパラメータが同じ値を示していないならば、アクティブなDL BWPを第1のDL BWPから第2のDL BWPに切り替えしてもよい。例えば、ra-SearchSpaceに含まれるPDCCHモニタと関連するパラメータは、monitoringSlotPeriodicityAndOffsetであってもよい。monitoringSlotPeriodicityAndOffsetはPDCCHモニタのための周期とオフセットの設定に使われる。PDCCHモニタと関連するパラメータは、monitoringSymbolsWithinSlotであってもよい。monitoringSymbolsWithinSlotは、PDCCHモニタのためのスロット内にCORESETの最初シンボルを示すために使われる。 Also, in the above aspect, the MAC entity may satisfy the above condition that the active DL @ BWP is not switched from the first DL @ BWP to the second DL @ BWP, and associate the MAC entity with the PDCCH monitor indicated in the first information. If the parameter to be performed and the parameter related to the PDCCH monitor indicated in the second information indicate the same value, it is not necessary to switch the active DL @ BWP from the first DL @ BWP to the second DL @ BWP. That is, if the above condition that the active DL @ BWP is not switched from the first DL @ BWP to the second DL @ BWP is satisfied, the MAC entity and the parameter related to the PDCCH monitor indicated in the first information and the second May be switched from the first DL @ BWP to the second DL @ BWP if the parameters related to the PDCCH monitor indicated in the information of the above do not indicate the same value. For example, the parameter related to the PDCCH monitor included in the ra-SearchSpace may be monitoringSlotPeriodicityAndOffset. monitoringSlotPeriodicityAndOffset is used to set the period and offset for PDCCH monitoring. The parameter associated with the PDCCH monitor may be monitoringSymbolsWithinSlot. monitoringSymbolsWithinSlot is used to indicate the first symbol of CORESET in the slot for PDCCH monitoring.
 図11は、サービングセルにおけるランダムアクセス手順の開始時にMACエンティティがこのサービングセルに対してBWP切り替えの判断に関する疑似コードの他の一例を示す図である。 FIG. 11 is a diagram showing another example of the pseudo code related to the MAC entity determining the BWP switching for the serving cell at the start of the random access procedure in the serving cell.
 図11において、MACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されているか否かに基づいて、次にどのステップを選択し進むかを決定してもよい。MACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されていない場合に(S21)、アクティブなUL BWPを初期的なUL BWPに切り替え(S22)、そして、S23へ進む。MACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されている場合に、S23へ進む。 In FIG. 11, the MAC entity may determine which step to select and proceed next based on whether a PRACH opportunity has been set for the active UL @ BWP. When the PRACH opportunity is not set for the active UL @ BWP (S21), the MAC entity switches the active UL @ BWP to the initial UL @ BWP (S22), and proceeds to S23. If the PRACH opportunity has been set for the active UL @ BWP, the MAC entity proceeds to S23.
 また、他の一例として、MACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されているか否かに基づいて、次にどのステップを選択し進むかを決定してもよい。MACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されていない場合に(S21)、アクティブなUL BWPを初期的なUL BWPに切り替えて(S22)、そして、S23Aへ進む。MACエンティティは、アクティブなUL BWPに対してPRACH機会が設定されている場合に、S23Aへ進む。S23Aの条件は、該サービングセルがSpCellであり、および/または、アクティブなDL BWP対してra-SearchSpaceが設定されていないということであってもよい。MACエンティティは、S23Aの条件が満たされる場合に、アクティブなDL BWPを初期的な(initial) DL BWPに切り替えて、そして、S27(またはS23)へ進む。MACエンティティは、S23Aの条件が満たされない場合に、S23へ進む。即ち、MACエンティティは、S23Aの条件が満たされない場合に、アクティブなDL BWPを初期的な(initial) DL BWPに切り替えしなくてもよい。 {Also, as another example, the MAC entity may determine which step to select and proceed next based on whether a PRACH opportunity has been set for the active UL @ BWP. When the PRACH opportunity is not set for the active UL @ BWP (S21), the MAC entity switches the active UL @ BWP to the initial UL @ BWP (S22), and proceeds to S23A. If the PRACH opportunity has been set for the active UL @ BWP, the MAC entity proceeds to S23A. The condition of S23A may be that the serving cell is SpCell and / or that no ra-SearchSpace is set for the active DL @ BWP. When the condition of S23A is satisfied, the MAC entity switches the active DL @ BWP to the initial (DL) BWP, and then proceeds to S27 (or S23). When the condition of S23A is not satisfied, the MAC entity proceeds to S23. That is, when the condition of S23A is not satisfied, the MAC entity may not switch the active DL @ BWP to the initial (initial) @ DL @ BWP.
 次に、(S23)MACエンティティは、ランダムアクセス手順が開始されるサービングセルがSpCellであるかどうかを判断する。MACエンティティは、該サービングセルがSpCellではない場合に、SpCellのアクティブなDL BWPおよび該サービングセルのアクティブなUL BWPにおいてランダムアクセス手順を実行する(S27)。 (S23) Next, the MAC entity determines whether the serving cell in which the random access procedure is started is SpCell. If the serving cell is not an SpCell, the MAC entity performs a random access procedure in the active DL @ BWP of the SpCell and the active UL @ BWP of the serving cell (S27).
 MACエンティティは、該サービングセルがSpCellである場合に(S23)、S24の条件およびS25の条件が満たされる場合に、アクティブなDL BWPをアクティブなUL BWPと同じBWPの識別子を有するDL BWPに切り替えし、そして、S27を実行してもよい。MACエンティティは、該サービングセルがSpCellである場合に(S23)、S24の条件およびS25の条件の内少なくとも一方が満たされない場合に、アクティブなDL BWPをアクティブなUL BWPと同じBWPの識別子を有するDL BWPに切り替えしなくて、そして、S27を実行してもよい。ここで、S24の条件は上述の図9における条件Cであってもよい。S25の条件は上述の図9における条件Dであってもよい。 The MAC entity switches the active DL @ BWP to the DL @ BWP having the same BWP identifier as the active UL @ BWP when the serving cell is the SpCell (S23) and when the conditions of S24 and S25 are satisfied. , And S27 may be executed. If the serving cell is a SpCell (S23), and if at least one of the conditions of S24 and S25 is not satisfied, the MAC entity converts the active DL @ BWP into a DL having the same BWP identifier as the active UL @ BWP. S27 may be executed without switching to BWP. Here, the condition of S24 may be the condition C in FIG. 9 described above. The condition of S25 may be the condition D in FIG. 9 described above.
 上述した動作により、端末装置1と基地局装置3との間で、ランダムアクセス手順が行うアクティブなDL BWPとアクティブなUL BWPを決定することができる。 に よ り With the above-described operation, it is possible to determine between the terminal device 1 and the base station device 3 an active DL @ BWP and an active UL @ BWP to be performed by the random access procedure.
 前述したように、競合ベースのランダムアクセス手順は、PDCCHオーダー、MACエンティティ、下位レイヤからのビーム失敗(beam failure)の通知、あるいはRRC等によって開始(initiate)される。ビーム失敗通知が、端末装置1のMACエンティティに端末装置1の物理レイヤから提供された場合に、ある条件を満たした場合、端末装置1のMACエンティティは、ランダムアクセス手順を開始する。ビーム失敗通知が、端末装置1のMACエンティティに端末装置1の物理レイヤから提供された場合に、ある条件を満たしたかどうかを判断し、ランダムアクセス手順を開始する手続きを、ビーム失敗リカバリ手順と称してもよい。このランダムアクセス手順は、ビーム失敗リカバリ要求のためのランダムアクセス手順である。MACエンティティによって開始されるランダムアクセス手順は、スケジューリングリクエスト手続きによって開始されるランダムアクセス手順を含む。ビーム失敗リカバリ要求のためのランダムアクセス手順は、MACエンティティによって開始されるランダムアクセス手順と考えられるかもしれないし、考えられないかもしれない。ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きによって開始されるランダムアクセス手順で、異なる手続きを行う場合があるため、ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きを、区別するようにしてもよい。ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きを、MACエンティティによって開始されるランダムアクセス手順としてもよい。ある実施形態では、スケジューリングリクエスト手続きによって開始されるランダムアクセス手順をMACエンティティによって開始されるランダムアクセス手順と称し、ビーム失敗リカバリ要求のためのランダムアクセス手順を下位レイヤからのビーム失敗の通知によるランダムアクセス手順と称するようにしてもよい。以下、下位レイヤからのビーム失敗の通知を受けた場合のランダムアクセス手順の開始は、ビーム失敗リカバリ要求のためのランダムアクセス手順の開始を意味してもよい。 As described above, the contention based random access procedure is initiated by a PDCCH order, MAC entity, notification of beam failure from lower layer, RRC, etc. When a beam failure notification is provided from the physical layer of the terminal device 1 to the MAC entity of the terminal device 1, if a certain condition is satisfied, the MAC entity of the terminal device 1 starts a random access procedure. When the beam failure notification is provided from the physical layer of the terminal device 1 to the MAC entity of the terminal device 1, a procedure for determining whether a certain condition is satisfied and starting a random access procedure is referred to as a beam failure recovery procedure. You may. This random access procedure is a random access procedure for a beam failure recovery request. The random access procedure initiated by the MAC entity includes a random access procedure initiated by a scheduling request procedure. The random access procedure for the beam failure recovery request may or may not be considered a random access procedure initiated by the MAC entity. Since the random access procedure for the beam failure recovery request and the random access procedure started by the scheduling request procedure may be different, a distinction is made between the random access procedure for the beam failure recovery request and the scheduling request procedure. You may do so. The random access procedure for the beam failure recovery request and the scheduling request procedure may be a random access procedure initiated by the MAC entity. In an embodiment, the random access procedure initiated by the scheduling request procedure is referred to as a random access procedure initiated by the MAC entity, and the random access procedure for the beam failure recovery request is referred to as a random access by a notification of a beam failure from a lower layer. It may be called a procedure. Hereinafter, the start of the random access procedure when the notification of the beam failure from the lower layer is received may mean the start of the random access procedure for the beam failure recovery request.
 端末装置1は、基地局装置3と接続(通信)していない状態からの初期アクセス時、および/または、基地局装置3と接続中であるが端末装置1に送信可能な上りリンクデータあるいは送信可能なサイドリンクデータが発生した場合のスケジューリングリクエスト時などにおいて競合ベースのランダムアクセス手順を行なう。ただし、競合ベースのランダムアクセスの用途はこれらに限定されない。 The terminal device 1 performs initial access from a state where the terminal device 1 is not connected (communicated) with the base station device 3 and / or uplink data or transmission that is connected to the base station device 3 but can be transmitted to the terminal device 1. A contention-based random access procedure is performed at the time of a scheduling request when possible side link data is generated. However, applications of contention-based random access are not limited to these.
 端末装置1に送信可能な上りリンクデータが発生していることは、送信可能な上りリンクデータに対応するバッファステータスレポートがトリガーされていることを含んでもよい。端末装置1に送信可能な上りリンクデータが発生していることは、送信可能な上りリンクデータの発生に基づいてトリガーされたスケジューリングリクエストがペンディングされていることを含んでもよい。 The fact that the uplink data that can be transmitted to the terminal device 1 has occurred may include that the buffer status report corresponding to the uplink data that can be transmitted is triggered. The occurrence of transmittable uplink data to the terminal device 1 may include the fact that a scheduling request triggered based on the occurrence of transmittable uplink data is pending.
 端末装置1に送信可能なサイドリンクデータが発生していることは、送信可能なサイドリンクデータに対応するバッファステータスレポートがトリガーされていることを含んでもよい。端末装置1に送信可能なサイドリンクデータが発生していることは、送信可能なサイドリンクデータの発生に基づいてトリガーされたスケジューリングリクエストがペンディングされていることを含んでもよい。 The occurrence of the transmittable side link data to the terminal device 1 may include the fact that the buffer status report corresponding to the transmittable side link data has been triggered. The occurrence of transmittable sidelink data to the terminal device 1 may include the fact that a scheduling request triggered based on the occurrence of transmittable sidelink data is pending.
 非競合ベースのランダムアクセス手順は、端末装置1が基地局装置3からランダムアクセス手順の開始を指示する情報を受けた場合に開始されてもよい。非競合ベースランダムアクセス手順は、端末装置1のMACレイヤが、下位レイヤからビーム失敗の通知を受けた場合に開始されてもよい。 The non-contention-based random access procedure may be started when the terminal device 1 receives, from the base station device 3, information indicating the start of the random access procedure. The non-contention based random access procedure may be started when the MAC layer of the terminal device 1 receives a beam failure notification from a lower layer.
 非競合ベースのランダムアクセスは、基地局装置3と端末装置1とが接続中であるがハンドオーバや移動局装置の送信タイミングが有効でない場合に、迅速に端末装置1と基地局装置3との間の上りリンク同期をとるために用いられてよい。非競合ベースランダムアクセスは、端末装置1においてビーム失敗が発生した場合にビーム失敗リカバリ要求を送信するために用いられてよい。ただし、非競合ベースのランダムアクセスの用途はこれらに限定されない。 The non-contention based random access is performed between the terminal device 1 and the base station device 3 quickly when the base station device 3 and the terminal device 1 are connected but the handover or the transmission timing of the mobile station device is not valid. May be used for uplink synchronization. Non-contention based random access may be used to transmit a beam failure recovery request when a beam failure occurs in the terminal device 1. However, the application of the non-contention based random access is not limited to these.
 ただし、ランダムアクセス設定情報には、セル内で共通の情報が含まれてもよく、端末装置1毎に異なる専用(dedicated)の情報が含まれてもよい。 However, the random access setting information may include common information in the cell, or may include dedicated information that differs for each terminal device 1.
 ただし、ランダムアクセス設定情報の一部は、SSバーストセット内の全てのSS/PBCHブロックに関連付けられていてもよい。ただし、ランダムアクセス設定情報の一部は設定された1つまたは複数のCSI-RSの全てに関連付けられてもよい。ただし、ランダムアクセス設定情報の一部は1つの下りリンク送信ビーム(あるいはビームインデックス)に関連付けられていてもよい。 {However, a part of the random access setting information may be associated with all SS / PBCH blocks in the SS burst set. However, a part of the random access setting information may be associated with one or more of the set CSI-RSs. However, a part of the random access setting information may be associated with one downlink transmission beam (or beam index).
 ただし、ランダムアクセス設定情報の一部はSSバーストセット内の1つのSS/PBCHブロックに関連付けられていてもよい。ただし、ランダムアクセス設定情報の一部は設定された1つまたは複数のCSI-RSのうちの1つに関連付けられてもよい。ただし、ランダムアクセス設定情報の一部は1つの下りリンク送信ビーム(あるいはビームインデックス)に関連付けられていてもよい。ただし、1つのSS/PBCHブロック、1つのCSI-RS、および/または1つの下りリンク送信ビームに関連付けられた情報には、対応する1つのSS/PBCHブロック、1つのCSI-RS、および/または1つの下りリンク送信ビームを特定するためのインデックス情報(例えば、SSBインデックス、ビームインデックス、あるいはQCL設定インデックスであってよい)が含まれてもよい。 However, part of the random access setting information may be associated with one SS / PBCH block in the SS burst set. However, part of the random access setting information may be associated with one of the set one or more CSI-RSs. However, a part of the random access setting information may be associated with one downlink transmission beam (or beam index). However, information associated with one SS / PBCH block, one CSI-RS, and / or one downlink transmit beam includes a corresponding one SS / PBCH block, one CSI-RS, and / or Index information for identifying one downlink transmission beam (for example, may be an SSB index, a beam index, or a QCL setting index) may be included.
 ただし、SSバーストセット内のSS/PBCHブロック毎にランダムアクセス設定情報が設定されてもよいし、SSバーストセット内の全てのSS/PBCHブロックで共通の1つのランダムアクセス設定情報が設定されてもよい。端末装置1は、下りリンク信号によって1つまたは複数のランダムアクセス設定情報を受信し、該1つまたは複数のランダムアクセス設定情報のそれぞれがSS/PBCHブロック(CSI-RSまたは下りリンク送信ビームであってもよい)に関連付けられていてもよい。端末装置1は、受信した1つまたは複数のSS/PBCHブロック(CSI-RSまたは下りリンク送信ビームであってもよい)のうちの1つを選択し、選択したSS/PBCHブロックに関連付けられたランダムアクセス設定情報を用いてランダムアクセス手順を行なってもよい。 However, random access setting information may be set for each SS / PBCH block in the SS burst set, or one common random access setting information may be set for all SS / PBCH blocks in the SS burst set. Good. The terminal device 1 receives one or a plurality of random access setting information by a downlink signal, and each of the one or a plurality of random access setting information is an SS / PBCH block (CSI-RS or a downlink transmission beam. May be associated). The terminal device 1 selects one of the received one or a plurality of SS / PBCH blocks (which may be a CSI-RS or a downlink transmission beam) and is associated with the selected SS / PBCH block. A random access procedure may be performed using the random access setting information.
 以下、PRACH機会について説明する。 The PRACH opportunity will be described below.
 ランダムアクセスプリアンブルの送信に利用可能な1つまたは複数のPRACH機会のセットは、上位レイヤ(上位レイヤ信号)で提供される上位レイヤパラメータprach-ConfigIndexで特定されてよい。prach-ConfigIndexで与えられるPRACH設定(物理ランダムアクセスチャネル設定)インデックスと、予め定められたテーブル(ランダムアクセスチャネル設定(PRACH config)テーブルとも称される)に従い、ランダムアクセスプリアンブルの送信に利用可能な1つまたは複数のPRACH機会のセットが特定される。ただし、特定される1つまたは複数のPRACH機会は、基地局装置3が送信する1つまたは複数のSS/PBCHブロックのそれぞれに関連付けられるPRACH機会の集合であってよい。 セ ッ ト The set of one or more PRACH opportunities available for transmission of the random access preamble may be specified by an upper layer parameter pach-ConfigIndex provided in an upper layer (upper layer signal). According to the PRACH setting (physical random access channel setting) index given by the "prach-ConfigIndex" and a predetermined table (also referred to as a random access channel setting (PRACH @ config) table), one that can be used for random access preamble transmission is used. A set of one or more PRACH opportunities is identified. However, the specified one or more PRACH opportunities may be a set of PRACH opportunities associated with each of one or more SS / PBCH blocks transmitted by the base station device 3.
 ただし、PRACH設定インデックスは、ランダムアクセス設定テーブルに示されるPRACH機会のセットが時間的に繰り返される周期(PRACH設定周期(物理ランダムアクセスチャネル設定周期:PRACH configuration period))、ランダムアクセスプリアンブルを送信可能なサブキャリアインデックス、リソースブロックインデックス、サブフレーム番号、スロット番号、システムフレーム番号、シンボル番号、および/または、プリアンブルのフォーマットの設定に用いられてもよい。 However, the PRACH configuration index can transmit a period (PRACH configuration period (physical random access channel configuration period: PRACH configuration period)) in which the set of PRACH opportunities indicated in the random access configuration table is repeated temporally, and a random access preamble. The subcarrier index, resource block index, subframe number, slot number, system frame number, symbol number, and / or format of the preamble may be used.
 ただし、各PRACH機会にマップされるSS/PBCHブロックの数は、上位レイヤで提供される上位レイヤパラメータSSB-perRACH-Occasionで示されてよい。SSB-perRACH-Occasionが1より小さい値である場合は、連続する複数のPRACH機会に対して1つのSS/PBCHブロックがマップされる。 {However, the number of SS / PBCH blocks mapped to each PRACH opportunity may be indicated by an upper layer parameter SSB-perRACH-Occation provided in an upper layer. If SSB-perRACH-Occasion is a value less than 1, one SS / PBCH block is mapped for a plurality of consecutive PRACH opportunities.
 ただし、各SS/PBCHブロックにマップされるランダムアクセスプリアンブルの数は、上位レイヤで提供される上位レイヤパラメータcb-preamblePerSSBで示されてよい。各PRACH機会で各SS/PBCHブロックにマップされるランダムアクセスプリアンブルの数は、SSB-perRACH-Occasionとcb-preamblePerSSBから算出されてよい。各PRACH機会で各SS/PBCHブロックにマップされるランダムアクセスプリアンブルのインデックスは、SB-perRACH-Occasion、cb-preamblePerSSB、および、SSBインデックスから特定されてよい。 {However, the number of random access preambles mapped to each SS / PBCH block may be indicated by an upper layer parameter cb-preamblePerSSB provided in an upper layer. The number of random access preambles mapped to each SS / PBCH block at each PRACH opportunity may be calculated from SSB-perRACH-Occation and cb-preamblePerSSB. The index of the random access preamble mapped to each SS / PBCH block at each PRACH opportunity may be identified from the SB-perRACH-Occation, cb-preamblePerSSB, and SSB index.
 PRACH機会に対して、SSBインデックスは下記のルールでマップされてよい。
(1)1番目に、1つのPRACH機会でプリアンブルインデックスの昇順でマップされる。例えば、PRACH機会のプリアンブル数が64であり、各PRACH機会で各SS/PBCHブロックにマップされるランダムアクセスプリアンブルの数が32である場合に、あるPRACH機会にマップされるSSBインデックスはnとn+1となる。
(2)2番目に、周波数多重された複数のPRACH機会に対して周波数リソースインデックスの昇順でマップされる。例えば、2つのPRACH機会が周波数多重されており、周波数リソースインデックスの小さいPRACH機会にマップされるSSBインデックスがnとn+1である場合、周波数リソースインデックスの大きいPRACH機会にマップされるSSBインデックスはn+2とn+3となる。
(3)3番目に、PRACHスロット内で時間多重された複数のPRACH機会に対して時間リソースインデックスの昇順でマップされる。例えば、上記(2)の例に加えてPRACHスロット内で時間方向に更に2つのPRACH機会が多重されている場合、これらのPRACH機会にマップされるSSBインデックスはn+4、n+5およびn+6、n+7となる。
(4)4番目に、複数のPRACHスロットに対しインデックスの昇順でマップされる。例えば、上記(3)の例に加えて次のPRACHスロットにRACH機会が存在する場合に、マップされるSSBインデックスはn+8、n+9、…となる。ただし、上記の例において、n+xが、SSBインデックスの最大値より大きくなった場合には、SSBインデックスの値は0に戻る。
For PRACH opportunities, the SSB index may be mapped according to the following rules.
(1) First, mapping is performed in ascending order of preamble index in one PRACH opportunity. For example, if the number of preambles of a PRACH opportunity is 64 and the number of random access preambles mapped to each SS / PBCH block at each PRACH opportunity is 32, the SSB indexes mapped to a certain PRACH opportunity are n and n + 1. Becomes
(2) Second, a plurality of frequency-multiplexed PRACH opportunities are mapped in ascending order of frequency resource index. For example, if two PRACH opportunities are frequency-multiplexed and the SSB indexes mapped to PRACH opportunities with small frequency resource indexes are n and n + 1, the SSB indexes mapped to PRACH opportunities with large frequency resource indexes are n + 2. n + 3.
(3) Third, a plurality of PRACH opportunities time-multiplexed in the PRACH slot are mapped in ascending order of the time resource index. For example, if two more PRACH opportunities are multiplexed in the PRACH slot in the time direction in addition to the example of (2) above, the SSB indexes mapped to these PRACH opportunities are n + 4, n + 5 and n + 6, n + 7. .
(4) Fourth, multiple PRACH slots are mapped in ascending index order. For example, when there is a RACH opportunity in the next PRACH slot in addition to the example of the above (3), the mapped SSB indexes are n + 8, n + 9,. However, in the above example, when n + x becomes larger than the maximum value of the SSB index, the value of the SSB index returns to 0.
 図7は、本発明の実施形態に係るPRACH機会に対するSSBインデックスの割当の一例を示す図である。図7は、ある時間区間で2つのPRACHスロットが存在し、1つのPRACHスロット内に時間方向に2つ、周波数方向に2つのPRACH機会(RO)が存在し、SSBインデックスが0~11まで存在する場合の例を示している。1つのPRACH機会には2つのSSBインデックスがマップされており、上記(1)~(4)のルールに従いSSBインデックスがマップされ、7つ目のPRACH機会から再度SSBインデックス0からマップされている。 FIG. 7 is a diagram illustrating an example of SSB index allocation for PRACH opportunities according to an embodiment of the present invention. FIG. 7 shows that two PRACH slots exist in a certain time interval, two PRACH opportunities (ROs) exist in one PRACH slot in the time direction and two PRACH opportunities exist in the frequency direction, and the SSB index exists from 0 to 11. An example of the case is shown. Two SSB indices are mapped to one PRACH opportunity, SSB indices are mapped according to the rules (1) to (4), and SSB index 0 is mapped again from the seventh PRACH opportunity.
 各PRACH機会に対してSSBインデックスがマップされるが、prach-ConfigIndexで特定されるPRACH設定周期内の全てのPRACH機会を用いた場合でも全てのSSBインデックス(基地局装置3が送信する全てのSS/PBCHブロック)にマップされない場合、SSBインデックスは複数のPRACH設定周期にわたってマップされてもよい。ただし、基地局装置3が送信する全てのSS/PBCHブロックの数は上位レイヤパラメータによって示されてもよい。全てのSSBインデックスが少なくとも1回マップされるようにPRACH設定周期を所定の回数繰り返した周期をアソシエーション周期(association period)と称する。アソシエーション周期を構成するPRACH設定周期の回数は、予め定められた複数の値のセットから上記条件を満たす最小の値が用いられてよい。該予め定められた複数の値のセットは、PRACH設定周期毎に定められていてもよい。ただし、アソシエーション周期内のPRACH機会に対して全てのSSBインデックスがマップされた上で、残されたPRACH機会の数がSS/PBCHブロックの数より多い場合には、再度SSBインデックスがマップされてもよい。ただし、アソシエーション周期内のPRACH機会に対して全てのSSBインデックスがマップされた上で、残されたPRACH機会の数がSS/PBCHブロックの数より少ない場合には、残されたPRACH機会にはSSBインデックスがマップされなくてもよい。全てのSSBインデックスに対して1度ずつPRACH機会が割り当てられるサイクルをSSBインデックス割当サイクルと称する。SSB-perRACH-Occasionが1以上である場合、1度のSSBインデックス割当サイクルに各SSBインデックスは1つのPRACH機会にマップされる。SSB-perRACH-Occasionが1より小さい値である場合、1度のSSBインデックス割当サイクルに各SSBインデックスは1/SSB-perRACH-OccasionのPRACH機会にマップされる。端末装置1は、PRACH設定インデックスで示されるPRACH設定周期と上位レイヤ(上位レイヤ信号)で提供される上位レイヤパラメータで特定されるSS/PBCHブロックの数に基づいてアソシエーション周期を特定してもよい。 Although the SSB index is mapped to each PRACH opportunity, even when all the PRACH opportunities within the PRACH setting cycle specified by theprach-ConfigIndex are used, all the SSB indexes (all the SSS indexes transmitted by the base station apparatus 3) are used. / PBCH block), the SSB index may be mapped over multiple PRACH configuration periods. However, the number of all SS / PBCH blocks transmitted by the base station device 3 may be indicated by higher layer parameters. A cycle in which the PRACH setting cycle is repeated a predetermined number of times so that all SSB indexes are mapped at least once is referred to as an association cycle (association @ period). As the number of PRACH setting periods that constitute the association period, a minimum value that satisfies the above condition from a predetermined set of a plurality of values may be used. The set of the plurality of predetermined values may be determined for each PRACH setting cycle. However, if all the SSB indexes are mapped for the PRACH opportunities in the association cycle and the number of remaining PRACH opportunities is larger than the number of SS / PBCH blocks, the SSB indexes may be mapped again. Good. However, if all the SSB indices are mapped to the PRACH opportunities in the association cycle and the number of remaining PRACH opportunities is smaller than the number of SS / PBCH blocks, the remaining PRACH opportunities have SSB The index need not be mapped. A cycle in which a PRACH opportunity is assigned once for every SSB index is called an SSB index assignment cycle. If the SSB-perRACH-Occasion is 1 or more, each SSB index is mapped to one PRACH opportunity in one SSB index allocation cycle. If SSB-perRACH-Occasion is a value less than 1, each SSB index is mapped to PRACH opportunity of 1 / SSB-perRACH-Occasion in one SSB index allocation cycle. The terminal device 1 may specify the association cycle based on the PRACH setting cycle indicated by the PRACH setting index and the number of SS / PBCH blocks specified by the upper layer parameter provided in the upper layer (upper layer signal). .
 ランダムアクセス設定情報に含まれる1つまたは複数のランダムアクセスプリアンブルグループのそれぞれは、参照信号(例えば、SS/PBCHブロック、CSI-RSまたは下りリンク送信ビーム)毎に関連付けられていてもよい。端末装置1は受信した参照信号(例えば、SS/PBCHブロック、CSI-RSまたは下りリンク送信ビーム)に基づいてのランダムアクセスプリアンブルグループを選択してもよい。 1 One or more random access preamble groups included in the random access setting information may be associated with each reference signal (eg, SS / PBCH block, CSI-RS, or downlink transmission beam). The terminal device 1 may select a random access preamble group based on the received reference signal (for example, SS / PBCH block, CSI-RS, or downlink transmission beam).
 ただし、各SS/PBCHブロックに関連付けられているランダムアクセスプリアンブルグループは、上位層で通知される1つまたは複数のパラメータによって特定されてもよい。該1つまたは複数のパラメータの1つは、利用可能な1つまたは複数のプリアンブルのうちの1つのインデックス(例えばスタートインデックス)であってもよい。1つまたは複数のパラメータの1つは、SS/PBCHブロックあたりで競合ベースランダムアクセスに使用可能なプリアンブルの数であってもよい。該1つまたは複数のパラメータの1つは、SS/PBCHブロックあたりで競合ベースランダムアクセスに使用可能なプリアンブルの数と非競合ベースランダムアクセスに使用可能なプリアンブルの数の合計であってもよい。該1つまたは複数のパラメータの1つは、1つのPRACH機会に関連付けられているSS/PBCHブロックの数であってもよい。 However, the random access preamble group associated with each SS / PBCH block may be specified by one or more parameters notified by an upper layer. One of the one or more parameters may be an index (eg, a start index) of one or more available preambles. One of the one or more parameters may be a number of preambles available for contention based random access per SS / PBCH block. One of the one or more parameters may be the sum of the number of preambles available for contention-based random access and the number of preambles available for non-contention-based random access per SS / PBCH block. One of the one or more parameters may be a number of SS / PBCH blocks associated with one PRACH opportunity.
 ただし、端末装置1は、それぞれ1つの下りリンク送信ビームを用いて送信された1つまたは複数の下りリンク信号を受信し、その中の1つの下りリンク信号に関連付けられたランダムアクセス設定情報を受信し、該受信したランダムアクセス設定情報に基づいてランダムアクセス手順を行なってもよい。端末装置1は、SSバーストセット内の1つまたは複数のSS/PBCHブロックを受信し、その中の1つのSS/PBCHブロックに関連付けられたランダムアクセス設定情報を受信し、該受信したランダムアクセス設定情報に基づいてランダムアクセス手順を行なってもよい。端末装置1は、1つまたは複数のCSI-RSを受信し、その中の1つのCSI-RSに関連付けられたランダムアクセス設定情報を受信し、該受信したランダムアクセス設定情報に基づいてランダムアクセス手順を行なってもよい。 However, the terminal device 1 receives one or a plurality of downlink signals transmitted using one downlink transmission beam and receives random access setting information associated with one downlink signal among the downlink signals. Then, a random access procedure may be performed based on the received random access setting information. The terminal device 1 receives one or more SS / PBCH blocks in the SS burst set, receives random access setting information associated with one SS / PBCH block in the SS burst set, and receives the received random access setting information. A random access procedure may be performed based on the information. The terminal device 1 receives one or a plurality of CSI-RSs, receives random access setting information associated with one of the CSI-RSs, and performs a random access procedure based on the received random access setting information. May be performed.
 ランダムアクセスチャネル設定の中に参照信号毎のランダムアクセスに関するパラメータが含まれてもよい。 パ ラ メ ー タ Parameters regarding random access for each reference signal may be included in the random access channel setting.
 物理ランダムアクセスチャネル設定中に参照信号毎の物理ランダムアクセスチャネルに関するパラメータ(PRACH設定のインデックス、PRACH機会など)が含まれてもよい。 パ ラ メ ー タ Parameters (PRACH setting index, PRACH opportunity, etc.) related to the physical random access channel for each reference signal may be included in the physical random access channel setting.
 1つのランダムアクセス設定情報は、1つの参照信号に対応するランダムアクセスに関するパラメータを示し、複数のランダムアクセス設定情報は、複数の参照信号に対応する複数のランダムアクセスに関するパラメータを示してもよい。 One random access setting information may indicate a parameter related to random access corresponding to one reference signal, and a plurality of random access setting information may indicate parameters related to a plurality of random access corresponding to a plurality of reference signals.
 1つのランダムアクセス設定情報は、1つの参照信号に対応する物理ランダムアクセスに関するパラメータを示し、複数の参照信号に対応する複数のランダムアクセスに関するパラメータを示してもよい。 One random access setting information indicates a parameter related to physical random access corresponding to one reference signal, and may indicate a parameter related to a plurality of random accesses corresponding to a plurality of reference signals.
 対応する参照信号が選択されれば、参照信号に対応するランダムアクセス設定情報(参照信号に対応するランダムアクセスチャネル設定、参照信号に対応する物理ランダムアクセスチャネル設定)が選択されるようにしてもよい。 If the corresponding reference signal is selected, random access setting information (random access channel setting corresponding to the reference signal, physical random access channel setting corresponding to the reference signal) corresponding to the reference signal may be selected. .
 ただし、端末装置1は、ランダムアクセスプリアンブルを送信する基地局装置3および/または送受信点4とは異なる基地局装置3および/または送受信点4から一つまたは複数のランダムアクセス設定情報を受信してもよい。例えば、端末装置1は第1の基地局装置3から受信したランダムアクセス設定情報の少なくとも1つに基づいて第2の基地局装置3へランダムアクセスプリアンブルを送信してもよい。 However, the terminal device 1 receives one or a plurality of random access setting information from the base station device 3 and / or the transmission / reception point 4 different from the base station device 3 and / or the transmission / reception point 4 transmitting the random access preamble. Is also good. For example, the terminal device 1 may transmit a random access preamble to the second base station device 3 based on at least one of the random access setting information received from the first base station device 3.
 ただし、基地局装置3は、端末装置1が送信したランダムアクセスプリアンブルを受信することにより、該端末装置1へ下りリンク信号を送信する際に適用すべき下りリンク送信ビームを決定してもよい。端末装置1は、ある下りリンク送信ビームに関連付けられたランダムアクセス設定情報に示されるPRACH機会を用いてランダムアクセスプリアンブルを送信してもよい。基地局装置3は、端末装置1から受信したランダムアクセスプリアンブル、および/または、該ランダムアクセスプリアンブルを受信したPRACH機会に基づいて、該端末装置1へ下りリンク信号を送信する際に適用すべき下りリンク送信ビームを決定してもよい。 However, the base station device 3 may determine a downlink transmission beam to be applied when transmitting a downlink signal to the terminal device 1 by receiving the random access preamble transmitted by the terminal device 1. The terminal device 1 may transmit the random access preamble using the PRACH opportunity indicated in the random access setting information associated with a certain downlink transmission beam. The base station apparatus 3 transmits the downlink signal to the terminal apparatus 1 based on the random access preamble received from the terminal apparatus 1 and / or the PRACH opportunity receiving the random access preamble. The link transmit beam may be determined.
 基地局装置3は、端末装置1に対して、1つまたは複数のランダムアクセス設定情報(ランダムアクセスリソースを含んでもよい)を含むRRCパラメータをRRCメッセージとして端末装置1に送信する。 The base station device 3 transmits to the terminal device 1 an RRC parameter including one or more pieces of random access setting information (which may include random access resources) as an RRC message.
 端末装置1は、基地局装置3との間の伝搬路特性に基づいてランダムアクセス手順に使用する1つまたは複数の利用可能なランダムアクセスプリアンブルおよび/または1つまたは複数の利用可能なPRACH機会を選択してもよい。端末装置1は、基地局装置3から受信した参照信号(例えば、SS/PBCHブロックおよび/またはCSI-RS)により測定した伝搬路特性(例えば参照信号受信電力(RSRP)であってよい)に基づいてランダムアクセス手順に使用する1つまたは複数の利用可能なランダムアクセスプリアンブルおよび/または1つまたは複数のPRACH機会を選択してもよい。 The terminal device 1 sets one or a plurality of available random access preambles and / or one or a plurality of available PRACH opportunities to be used for a random access procedure based on channel characteristics with the base station device 3. You may choose. The terminal device 1 is based on a propagation path characteristic (for example, reference signal reception power (RSRP)) measured by a reference signal (for example, SS / PBCH block and / or CSI-RS) received from the base station device 3. One or more available random access preambles and / or one or more PRACH opportunities to use for the random access procedure.
 前述のように、追加のコモンCORESETの設定情報は、ランダムアクセス手順に使われる追加のコモンCORESETを指定するために使用されてもよい。また、本実施形態において、追加のコモンCORESETの設定情報は、システム情報および/またはページング手順のための追加のコモンCORESETを指定するために使用されてもよい。つまり、追加のコモンCORESETは、SIB1、および/または、SIメッセージ(other system information、例えば、SIB2とSIB2以降のSIB)、および、ページング、および、RARの受信に用いられてもよい。別の言い方で言えば、SIB1ためのコモンサーチスペースセット(例えば、タイプ0PDCCHコモンサーチスペースセット)は追加のコモンCORESETに関連付けられてもよい。SIメッセージためのコモンサーチスペースセット(例えば、タイプ0APDCCHコモンサーチスペースセット)は追加のコモンCORESETに関連付けられてもよい。ページングためのコモンサーチスペースセット(例えば、タイプ2PDCCHコモンサーチスペースセット)は追加のコモンCORESETに関連付けられてもよい。RARためのコモンサーチスペースセット(例えば、タイプ1PDCCHコモンサーチスペースセット)は追加のコモンCORESETに関連付けられてもよい。 As described above, the configuration information of the additional common coreset may be used to specify the additional common coreset used for the random access procedure. Also, in this embodiment, the additional common CORESET configuration information may be used to specify additional common CORESET for system information and / or paging procedures. That is, the additional common CORESET may be used for receiving SIB1 and / or SI messages (other \ system \ information, for example, SIB2 and SIB after SIB2), paging, and RAR. Stated another way, the common search space set for SIB1 (eg, type 0 PDCCH common search space set) may be associated with an additional common coreset. A common search space set for SI messages (eg, type 0 APDCCH common search space set) may be associated with an additional common CORRESET. A common search space set for paging (eg, type 2 PDCCH common search space set) may be associated with an additional common CORRESET. A common search space set for the RAR (eg, a type 1 PDCCH common search space set) may be associated with an additional common coreset.
 本実施形態において、タイプ0PDCCHコモンサーチスペース(SIB1のためのコモンサーチスペース)はMIBに含まれるsearchSpaceZero、または、ServingCellConfigCommonに含まれるsearchSpaceSIB1によって設定されてもよい。 In the present embodiment, the type 0 PDCCH common search space (common search space for SIB1) may be set by searchSpaceZero included in MIB or searchSpaceSIB1 included in ServingCellConfigCommon.
 端末装置1には上位層のパラメータsearchSpaceOtherSystemInformationが提供されない場合、タイプ0APDCCHコモンサーチスペースセットに対するPDCCHモニタリング機会(monitoring occasions)とSS/PBCHブロックインデックスとの関連付けは、タイプ0PDCCHコモンサーチスペースセットに対するPDCCHモニタリング機会とSS/PBCHブロックインデックスとの関連付けと同様であってもよい。また、端末装置1には上位層のパラメータpagingSearchSpaceが提供されない場合、タイプ2PDCCHコモンサーチスペースセットに対するPDCCHモニタリング機会(monitoring occasions)とSS/PBCHブロックインデックスとの関連付けは、タイプ0PDCCHコモンサーチスペースセットに対するPDCCHモニタリング機会とSS/PBCHブロックインデックスとの関連付けと同様であってもよい。 When the upper layer parameter searchSpaceOtherSystemInformation is not provided to the terminal device 1, the association between the PDCCH monitoring opportunity (monitoring @ occasions) for the type 0 APDCCH common search space set and the SS / PBCH block index is the PDCCH monitoring opportunity for the type 0 PDCCH common search space set. And the association with the SS / PBCH block index. Also, when the upper layer parameter pagingSearchSpace is not provided to the terminal device 1, the association between the PDCCH monitoring opportunity (monitoring @ occasions) for the type 2 PDCCH common search space set and the SS / PBCH block index is the PDCCH for the type 0 PDCCH common search space set. It may be the same as the association between the monitoring opportunity and the SS / PBCH block index.
 本実施形態において、初期DL BWPは、タイプ0PDCCHコモンサーチスペースのためのコントロールリソースセット(CORESET、CORESET#0)のためのPRB位置(location)と連続的なPRBの数、サブキャリア間隔、および、サイクリックプレフィックスによって定義されてもよい。即ち、初期DL BWPはMIBに含まれるpdcch-ConfigSIB1、または、ServingCellCongfigCommonに含まれるPDCCH-ConfigCommonによって設定されてもよい。インフォメーションエレメントServingCellCongfigCommonは端末装置1に対するサービングセルのセル固有パラメータを設定するために使われる。具体的に言うと、初期DL BWPの帯域幅は、CORESET#0の帯域幅である。CORESET#0の設定情報を示すcontrolResourceSetZeroは、pdcch-ConfigSIB1の内4ビット(例えば、MSB 4ビット、最上位ビットの4ビット)に対応する。controlResourceSetZeroはPDCCH-ConfigSIB1またはPDCCH-ConfigCommonに含まれてもよい。SearchSpace#0(サーチスペース#0)の設定情報を示すsearchSpaceZeroは、pdcch-ConfigSIB1の内4ビット(例えば、LSB 4ビット、最下位ビットの4ビット)に対応する。つまり、初期DL BWPのサイズはNsize BWP、0(第1のサイズ、CORESETのサイズ)である。Nsize BWP、0は初期DL BWPの帯域幅を示すリソースブロックの数である。ここで、初期DL BWPは第1のサイズの初期DL BWPと称してもよい。 In this embodiment, the initial DL BWP is the number of PRB locations and consecutive PRBs for the control resource set (CORESET, CORRESET # 0) for the type 0 PDCCH common search space, the subcarrier spacing, and It may be defined by a cyclic prefix. That is, the initial DL BWP may be set by pdcch-ConfigSIB1 included in MIB or PDCCH-ConfigCommon included in ServingCellConfigCommon. The information element ServingCellConfigCommon is used to set a cell-specific parameter of the serving cell for the terminal device 1. Specifically, the bandwidth of the initial DL BWP is the bandwidth of CORRESET # 0. The controlResourceSetZero indicating the setting information of CORRESET # 0 corresponds to 4 bits (for example, 4 bits of MSB, 4 bits of the most significant bit) of pdcch-ConfigSIB1. The controlResourceSetZero may be included in PDCCH-ConfigSIB1 or PDCCH-ConfigCommon. SearchSpaceZero indicating the setting information of SearchSpace # 0 (search space # 0) corresponds to 4 bits (for example, 4 bits of LSB, 4 bits of the least significant bit) in pdcch-ConfigSIB1. That is, the size of the initial DL BWP is N size BWP, 0 (the first size, the size of the RESET). N size BWP, 0 is the number of resource blocks indicating the bandwidth of the initial DL BWP. Here, the initial DL BWP may be referred to as a first size initial DL BWP.
 また、端末装置1には、初期DL BWPがSIB1(systemInformationBlockType1)またはServingCellCongfigCommon(例えば、ServingCellConfigCommonSIB)によって提供されてもよい。具体的に言うと、初期DL BWPはBWP-DownlinkCommonに含まれる上位層のパラメータlocationAndBandwidthによって示される。初期DL BWPの周波数領域の位置と帯域幅は、該locationAndBandwidthに基づき、与えられてもよい。インフォメーションエレメントBWP-DownlinkCommonはServingCellCongfigCommonまたはSIB1に含まれてもよい。インフォメーションエレメントServingCellCongfigCommonSIBは、SIB1内の端末装置1に対するサービングセルのセル固有パラメータを設定するために使われる。この場合、初期DL BWPのサイズはNsize BWP、1とします。つまり、Nsize BWP、1はSIB1(SystemInformationBlockType1)またはServingCellConfigCommonによって示される初期DL BWPのリソースブロックの数である。Nsize BWP、1はNsize BWP、0と等しいでもよいsize BWP、1はNsize BWP、0と異なってもよい。ここで、初期DL BWPはサイズNsize BWP、1(第2のサイズ)の初期DL BWPと称してもよい。 Further, the terminal device 1 may be provided with the initial DL BWP by SIB1 (systemInformationBlockType1) or ServingCellConfigCommon (for example, ServingCellConfigCommonSIB). Specifically, the initial DL BWP is indicated by the upper layer parameter locationAndBandwidth included in BWP-DownlinkCommon. The position and bandwidth of the frequency domain of the initial DL BWP may be given based on the locationAndBandwidth. The information element BWP-DownlinkCommon may be included in ServingCellConfigCommon or SIB1. The information element ServingCellConfigCommonSIB is used to set a cell-specific parameter of a serving cell for the terminal device 1 in the SIB1. In this case, the size of the initial DL BWP is N size BWP, 1 . That is, N size BWP, 1 is the number of resource blocks of the initial DL BWP indicated by SIB1 (SystemInformationBlockType1) or ServingCellConfigCommon. N size BWP, 1 may be equal to N size BWP, 0 . N size BWP, 1 may be different from N size BWP, 0 . Here, the initial DL BWP may be referred to as an initial DL BWP of size N size BWP, 1 (second size).
 本実施形態において、2つの初期DL BWPがあってもよい。この場合、初期DL BWPは第1のサイズの初期DL BWPと第2のサイズの初期DL BWPとして区別されてもよい。 In the present embodiment, there may be two initial DLs BWP. In this case, the initial DL @ BWP may be distinguished as a first size initial DL @ BWP and a second size initial DL @ BWP.
 また、本実施形態において、1つの初期DL BWPがあってもよい。この場合、初期DL BWPは上述した第2のサイズの初期DL BWPである。そして、上述した第1のサイズの初期DL BWPはCORESET#0の帯域幅(サイズ)と称してもよい。また、第1のサイズの初期DL BWPは初期アクティブDL BWPと称してもよい。つまり、初期アクティブDL BWPは、タイプ0PDCCHコモンサーチスペースのためのコントロールリソースセット(CORESET、CORESET#0)のためのPRB位置(location)と連続的なPRBの数、サブキャリア間隔、および、サイクリックプレフィックスによって定義されてもよい。即ち、本実施形態において、明示しない限り、初期DL BWPは第2のサイズの初期DL BWPを意味してもよい。 In the present embodiment, there may be one initial DL BWP. In this case, the initial DL @ BWP is the above-described initial DL @ BWP of the second size. Then, the above-mentioned initial DL @ BWP of the first size may be referred to as a bandwidth (size) of CORESET # 0. Also, the initial DL @ BWP of the first size may be referred to as an initial active DL @ BWP. That is, the initial active DL @ BWP is the number of PRB locations and the number of consecutive PRBs for the control resource set (CORESET, CORRESET # 0) for the type 0 PDCCH common search space, the subcarrier interval, and the cyclic. May be defined by a prefix. That is, in this embodiment, the initial DL @ BWP may mean the initial DL @ BWP of the second size unless otherwise specified.
 端末装置1には、初期UL BWPがSIB1(systemInformationBlockType1)またはinitialUplinkBWPによって提供されてもよい。インフォメーションエレメントinitialUplinkBWPは、初期UL BWPを設定するために使われる。 The terminal device 1 may be provided with the initial UL \ BWP by SIB1 (systemInformationBlockType1) or initialUplinkBWP. The information element initialUplinkBWP is used to set an initial UL @ BWP.
 前述のように、端末装置1に対して複数のDL BWPが設定されていてもよい。そして、端末装置1に対して設定されているDL BWPの内、上位層のパラメータdefaultDownlinkBWP-IdによりデフォルトDL BWPが設定されることができる。端末装置1に対して上位層のパラメータdefaultDownlinkBWP-Idが提供されない場合、デフォルトDL BWPは初期DL BWPである。ここで、初期DL BWPは第2のサイズの初期DL BWPであってもよい。 よ う As described above, a plurality of DLWBWPs may be set for the terminal device 1. Then, of the DL @ BWP set for the terminal device 1, the default DL @ BWP can be set by the upper layer parameter defaultDownlinkBWP-Id. When the upper layer parameter defaultDownlinkBWP-Id is not provided to the terminal device 1, the default DL @ BWP is the initial DL @ BWP. Here, the initial DL @ BWP may be the initial DL @ BWP of the second size.
 以下、本実施形態において、追加のBWPがCORESET#0および/またはSearchSpace#0の設定情報を参照する条件について説明する。 In the following, a description will be given of a condition in this embodiment in which an additional BWP refers to the setting information of CORET # 0 and / or SearchSpace # 0.
 前述のように、CORESET#0の設定情報は、初期DL BWPの設定の中に含まれる。CORESET#0の設定情報は、初期DL BWP以外のBWP(追加のBWP)の設定の中に含まれなくてもよい。SearchSpace#0の設定情報は、初期DL BWPの設定の中に含まれる。SearchSpace#0の設定情報は、初期DL BWP以外のBWP(追加のBWP)の設定の中に含まれなくてもよい。初期DL BWP以外のBWP(追加のBWP)がCORESET#0の設定情報および/またはSearchSpace#0の設定情報を参照(refer, acquireなど)する場合には、周波数領域においてCORESET#0およびSSブロックが追加のBWPに含まれ、且つ、同じサブキャリア間隔を用いることを少なくとも満たすことが必要かもしれない。同じサブキャリア間隔を用いることは、追加のDL BWPに対するサブキャリア間隔と初期DL BWP(またはCORESET#0)に対するサブキャリア間隔が同じであることである。別の言い方で言えば、初期BWP以外のBWP(追加のBWP)がCORESET#0および/またはSearchSpace#0を参照(refer, acquireなど)する場合には、周波数領域において初期DL BWPの帯域幅およびSSブロックが追加のBWPに含まれ、且つ、同じサブキャリア間隔を用いることを少なくとも満たすことが必要かもしれない。この時、追加のBWPに対して設定されているサーチスペースは、CORESET#0の識別子0を示すことにより、CORESET#0の設定情報を参照(refer, acquireなど)することができる。即ち、この時、CORESET#0が初期DL BWPのみに対して設定されているが、他のBWP(追加のBWP)でオペレーティングしている端末装置1は、CORESET#0の設定情報を参照することができる。追加のBWPに対して設定されているサーチスペースは、サーチスペースの識別子0を示すことにより、SearchSpace#0の設定情報を参照(refer, acquireなど)することができる。即ち、この時、SearchSpace#0が初期DL BWPのみに対して設定されているが、他のBWP(追加のBWP)でオペレーティングしている端末装置1は、SearchSpace#0の設定情報を参照することができる。 {As described above, the setting information of CORRESET # 0 is included in the setting of the initial DL $ BWP. The setting information of CORESET # 0 may not be included in the setting of BWP (additional BWP) other than the initial DL @ BWP. The setting information of SearchSpace # 0 is included in the setting of the initial DL @ BWP. The setting information of SearchSpace # 0 may not be included in the setting of BWP (additional BWP) other than the initial DL @ BWP. When BWPs (additional BWPs) other than the initial DL @ BWP refer to the setting information of the RESET # 0 and / or the setting information of the SearchSpace # 0 (refer, @acquire, etc.), the RESET # 0 and the SS block in the frequency domain. It may be necessary to at least satisfy that it is included in the additional BWP and uses the same subcarrier spacing. Using the same subcarrier interval means that the subcarrier interval for the additional DL @ BWP and the subcarrier interval for the initial DL @ BWP (or CORRESET # 0) are the same. Stated another way, if a BWP other than the initial BWP (additional BWP) refers to CORRESET # 0 and / or SearchSpace # 0 (refer, @acquire, etc.), the initial DL @ BWP bandwidth and It may be necessary to at least satisfy that the SS block is included in the additional BWP and use the same subcarrier spacing. At this time, the search space set for the additional BWP can refer to the setting information of CORESET # 0 (refer, @acquire, etc.) by indicating the identifier 0 of CORESET # 0. That is, at this time, although the RESET # 0 is set only for the initial DL @ BWP, the terminal device 1 operating with another BWP (additional BWP) refers to the setting information of the RESET # 0. Can be. The search space set for the additional BWP can refer to the setting information of SearchSpace # 0 (refer, @acquire, etc.) by indicating the search space identifier 0. That is, at this time, SearchSpace # 0 is set only for the initial DL @ BWP, but the terminal device 1 operating with another BWP (additional BWP) refers to the setting information of SearchSpace # 0. Can be.
 また、周波数領域において初期DL BWPの帯域幅(またはCORESET#0の帯域幅)が追加のDL BWPに含まれ、且つ、SSブロックが追加のDL BWPに含まれ、且つ、同じサブキャリア間隔を用いる条件の内何れかが満たさない場合、端末装置1は追加のDL BWPがCORESET#0の設定情報および/またはSearchSpace#0の設定情報を参照することを期待しなくてもよい。即ち、この場合、基地局装置3は、端末装置1に対して追加のDL BWPがCORESET#0の設定情報および/またはSearchSpace#0の設定情報を参照することを設定しなくてもよい。ここで、初期DL BWPはサイズNsize BWP、0(第1のサイズ)の初期DL BWPであってもよい。また、初期DL BWPはサイズNsize BWP、1(第2のサイズ)の初期DL BWPであってもよい。 Also, in the frequency domain, the bandwidth of the initial DL BWP (or the bandwidth of CORRESET # 0) is included in the additional DL BWP, and the SS block is included in the additional DL BWP, and uses the same subcarrier interval. If any of the conditions is not satisfied, the terminal device 1 does not have to expect that the additional DL BWP refers to the setting information of CORET # 0 and / or the setting information of SearchSpace # 0. That is, in this case, the base station apparatus 3 does not have to set the additional DL BWP for the terminal apparatus 1 to refer to the setting information of CORRESET # 0 and / or the setting information of SearchSpace # 0. Here, the initial DL BWP may be an initial DL BWP of size N size BWP, 0 (first size). Further, the initial DL BWP may be an initial DL BWP of a size N size BWP, 1 (second size).
 上述したSSブロックは初期DL BWPに関連してもよい。SSブロックは、セルためのcell-defining SSブロックであってもよい。cell-defining SSブロックはCORESET#0と関連してもよい。端末装置1は、Cell-defining SSブロックによって、タイプ0PDCCHコモンサーチスペースセットのためのCORESET(CORESET#0)を決定してもよい。cell-defining SSブロックではないSSブロックは、CORESET#0と関連しなくてもよい。つまり、端末装置1は、cell-defining SSブロックではないSSブロックによって、CORESET#0の設定情報を取得することができない。 The SS block described above may be associated with the initial DL BWP. The SS block may be a cell-defining @ SS block for a cell. The cell-defining @ SS block may be associated with CORRESET # 0. The terminal device 1 may determine the RESET (CORESET # 0) for the type 0 PDCCH common search space set by the Cell-defining @ SS block. An SS block that is not cell-defining @ SS block does not have to be associated with CORRESET # 0. That is, the terminal device 1 cannot acquire the setting information of CORESET # 0 by an SS block that is not the cell-defining @ SS block.
 本実施形態において、基地局装置3は、特定の目的のために、RRC接続状態での端末装置1に対して、RRCレコンフィグレーション手順を開始してもよい。RRCレコンフィグレーション手順(RRC reconfiguration procedure)の目的は、端末装置1に対するRRC接続(RRC connection)を変更することである。例えば、無線ベアラ(radio bearer)を確立/変更/リーリスしたり、同期と伴うレコンフィグレーションを実行したり、測定を設定/変更/リーリスしたり、SCellとセルグループを追加/変更/リーリスしたりすることである。RRCReconfiguratonメッセージは、RRC接続を変更するコマンドである。RRCReconfiguratonメッセージは、masterCellGroupを含んでもよい。masterCellGroupはマスターセルグループ(MCG)のコンフィグレーションのために用いられる。masterCellGroup内のCellGroupConfigはspCellConfigを含んでいる。spCellConfigはMCGのPCellのパラメータである。SpCell変更、PSCell追加、セキュリティキー変更の場合、spCellConfigはreconfigurationWithSyncフィールドを必ず含む。reconfigurationWithSyncは、ターゲットSpCellへの同期レコンフィグレーションのためのパラメータである。 In the present embodiment, the base station device 3 may start the RRC reconfiguration procedure for the terminal device 1 in the RRC connection state for a specific purpose. The purpose of the RRC reconfiguration procedure (RRC reconfiguration procedure) is to change the RRC connection (RRC connection) to the terminal device 1. For example, establishing / changing / releasing radio bearers, performing reconfiguration with synchronization, setting / changing / releasing measurements, adding / changing / releasing SCells and cell groups. It is to be. The RRCReconfiguraton message is a command for changing the RRC connection. The RRCReconfiguraton message may include a masterCellGroup. masterCellGroup is used for configuration of a master cell group (MCG). CellGroupConfig in masterCellGroup includes spCellConfig. spCellConfig is a PCell parameter of MCG. In the case of changing the SpCell, adding the PSCell, and changing the security key, spCellConfig always includes the reconfigurationWithSync field. reconfigurationWithSync is a parameter for synchronous reconfiguration to the target SpCell.
 そして、端末装置1は、reconfigurationWithSyncがMCGのspCellConfigに含まれた場合に、アクティブなDL BWPに対してコモンサーチスペースが設定されているならば、または、上記のCORESET#0および/またはSearchSpace#0の設定情報を参照する条件が満たされているならば、MCGのターゲットSpCellのSIB1を取得(acquire)してもよい。アクティブなDL BWPは、MCGのターゲットSpCellのためのfirstActiveDownlinkBWP-Idによって示される。この場合、アクティブなDL BWPは第一にアクティブなDL BWP(first active DL BWP)と称してもよい。本実施形態において、SpCell(PCellまたはPSCell)の追加または、SCellの活性化において、一つのBWPが、下りリンク割り当てまたは上りリンクグラントを示すPDCCHを受信することなしに第一にアクティブである。第一にアクティブなDL BWPおよびUL BWP(first active UL BWP)は、基地局装置3から端末装置1に送られるRRCメッセージで指定されるかもしれない。あるサービングセルに対するアクティブなBWPは、基地局装置3から端末装置1に送られるRRCまたはPDCCHで指定される。また、第一にアクティブなDL BWP (first active DL BWP) およびUL BWP(first active UL BWP)は、メッセージ4に含まれてもよい。 Then, when reconfigurationWithSync is included in spCellConfig of the MCG, if the common search space is set for the active DL @ BWP, or the above-described CORRESET # 0 and / or SearchSpace # 0 If the condition for referring to the setting information is satisfied, the SIB1 of the target SpCell of the MCG may be acquired (acquire). The active DL @ BWP is indicated by the firstActiveDownlinkBWP-Id for the target SpCell of the MCG. In this case, the active DL @ BWP may be referred to as the first active DL @ BWP (first @ active @ DL @ BWP). In this embodiment, in addition of SpCell (PCell or PSCell) or activation of SCell, one BWP is first active without receiving a PDCCH indicating a downlink assignment or an uplink grant. First, the active DL @ BWP and UL @ BWP (first @ active @ UL @ BWP) may be specified in the RRC message sent from the base station apparatus 3 to the terminal apparatus 1. The active BWP for a certain serving cell is specified by RRC or PDCCH sent from the base station device 3 to the terminal device 1. In addition, the first active DL {BWP} (first active DL DL BWP) and UL BWP (first active UL UL BWP) may be included in the message 4.
 アクティブなDL BWPに対してコモンサーチスペースが設定されていることは、該DL BWPに対するインフォメーションエレメントPDCCH-configcommonがSIB1のためのコモンサーチスペース(例えば、searchSpaceSIB1)を示すことを意味してもよい。端末装置1は、該コモンサーチスペースに示される情報と該コモンサーチスペースに関連付けられるCORESETの設定情報に基づき、SIB1をスケジュールするDCIフォーマットをモニタする。端末装置1は、該DCIフォーマットの検出によって、MCGのターゲットSpCellのSIB1を取得することができる。 The fact that the common search space is set for the {active DL} BWP may mean that the information element PDCCH-configcommon for the DL @ BWP indicates a common search space for the SIB1 (for example, searchSpaceSIB1). The terminal device 1 monitors the DCI format for scheduling the SIB1 based on the information indicated in the common search space and the setting information of the RESET associated with the common search space. The terminal device 1 can acquire the SIB1 of the target SpCell of the MCG by detecting the DCI format.
 また、端末装置1は、アクティブなDL BWPに対してコモンサーチスペースが設定されなくても、CORESET#0および/またはSearchSpace#0の設定情報を参照する条件が満たされた場合に、MCGのターゲットSpCellのSIB1を取得(acquire)してもよい。つまり、端末装置1は、アクティブなDL BWPに対してコモンサーチスペースが設定されなくても、周波数領域において初期DL BWPの帯域幅およびSSブロックが該アクティブDL BWPに含まれ、且つ、同じサブキャリア間隔を用いる条件が満たされれば、MCGのターゲットSpCellのSIB1を取得(acquire)してもよい。この時、端末装置1は、SearchSpace#0の設定情報とCORESET#0の設定情報に基づき、SIB1をスケジュールするDCIフォーマットをモニタする。端末装置1は、該DCIフォーマットの検出によって、MCGのターゲットSpCellのSIB1を取得することができる。 In addition, even if the common search space is not set for the active DL @ BWP, the terminal device 1 can set the target of the MCG when the condition for referring to the setting information of CORRESET # 0 and / or SearchSpace # 0 is satisfied. The SCell 1 of the SpCell may be acquired. That is, even if the common search space is not set for the active DL @ BWP, the terminal apparatus 1 includes the bandwidth of the initial DL @ BWP and the SS block in the frequency domain and includes the same subcarrier If the condition using the interval is satisfied, SIB1 of the target SpCell of the MCG may be acquired. At this time, the terminal device 1 monitors the DCI format for scheduling the SIB1 based on the setting information of SearchSpace # 0 and the setting information of CORRESET # 0. The terminal device 1 can acquire the SIB1 of the target SpCell of the MCG by detecting the DCI format.
 ここで、SIB1をスケジュールするDCIフォーマットはSI-RNTIまたはSIB1-RNTIによってスクランブルされたCRCパリティビットが付加されるDCIフォーマット1_0であってもよい。SI-RNTIはシステム情報のブロードキャストのために用いられてもよい。SIB1-RNTIはSIB1のシステム情報のブロードキャストのために用いられてもよい。 Here, the DCI format for scheduling SIB1 may be DCI format 1_0 to which CRC parity bits scrambled by SI-RNTI or SIB1-RNTI are added. SI-RNTI may be used for broadcasting system information. SIB1-RNTI may be used for broadcasting system information of SIB1.
 以下、本実施形態において、追加のBWPが初期DL BWPに対して設定されている追加のコモンCORESETの設定情報を参照する条件について説明する。 Hereinafter, a description will be given of a condition in the present embodiment in which the additional BWP refers to the setting information of the additional common CORESET set for the initial DL @ BWP.
 ある(追加)DL BWPが他のBWPの追加のコモンCORESETの設定情報を参照(refer, acquireなど)する場合には、周波数領域においてそのコモンCORESET(または、そのBWPの帯域幅)および/またはそのBWPが含む(関連する)SSブロックが追加のBWPに含まれ、且つ、同じサブキャリア間隔を用いることを少なくとも満たすことが必要かもしれない。つまり、周波数領域においてそのCORESET(または、そのBWPの帯域幅)が追加のDL BWPに含まれ、且つ、そのBWPが含む(関連する)SSブロックが追加のDL BWPに含まれ、且つ、同じサブキャリア間隔を用る条件の内何れかが満たさない場合、端末装置1は追加のDL BWPがそのBWPに対して設定されているCORESETの設定情報を参照することを期待しなくてもよい。そのBWPが含む(関連する)SSブロックは、追加のコモンCORESETが関連するSSブロックである。 When a certain (additional) DL @ BWP refers to additional common CORESET setting information of another BWP (refer, @acquire, etc.), the common CORESET (or the bandwidth of the BWP) and / or the same in the frequency domain. It may be necessary to at least satisfy that the SS blocks that the BWP contains (relevant to) are included in the additional BWP and use the same subcarrier spacing. That is, in the frequency domain, the coreset (or the bandwidth of the BWP) is included in the additional DL @ BWP, and the SS block (related) included in the BWP is included in the additional DL @ BWP, and If any of the conditions using the carrier interval is not satisfied, the terminal device 1 does not have to expect the additional DL @ BWP to refer to the setting information of the RESET set for the BWP. The SS blocks that the BWP contains (associated with) are the SS blocks with which the additional common CORESET is associated.
 具体的に言うと、例えば、端末装置1は、アクティブなDL BWPに対してコモンサーチスペースが設定されないならば、周波数領域において該アクティブなDL BWPが他のBWPに対して設定されている追加のコモンCORESETの帯域幅(または、その他のBWPの帯域幅)を含み、且つ、該アクティブなDL BWPが他のBWP(他のBWPに対して設定されている追加のコモンCORESET)が含む(または、関連する)SSブロックを含み、且つ、同じサブキャリア間隔を用いた場合に、SIB1を取得(acquire)してもよい。この時、端末装置1は、追加のコモンCORESETの設定情報と該追加のコモンCORESETに関連するコモンサーチスペースの設定情報に基づき、SIB1をスケジュールするDCIフォーマットをモニタする。端末装置1は、該DCIフォーマットの検出によって、SIB1を取得することができる。ここで、コモンサーチスペースはSIB1のためのコモンサーチスペースであってもよい。即ち、他のBWPに対して、SIB1のためのコモンサーチスペースは追加のコモンCORESETと関連付けられてもよい。追加のコモンCORESETが設定されている他のBWPは初期DL BWPであってもよい。また、追加のコモンCORESETが設定されている他のBWPは追加のDL BWPであってもよい。ここで、他のBWPが初期DL BWPである場合、SIB1のためのコモンサーチスペースはsearchSpaceZeroによって示されるSearchSpace#0であってもよいし、searchspaceSIB1によって示されるコモンサーチスペース(サーチスペース識別子0以外のコモンサーチスペース)であってもよい。他のBWPが追加のDL BWPである場合、SIB1のためのコモンサーチスペースはsearchspaceSIB1によって示されるコモンサーチスペース(サーチスペース識別子0以外のコモンサーチスペース)であってもよい。 More specifically, for example, if the common search space is not set for the active DL @ BWP, the terminal device 1 may add the additional DL in which the active DL @ BWP is set for another BWP in the frequency domain. Includes the bandwidth of the common CORESET (or the bandwidth of another BWP), and the active DL @ BWP includes another BWP (an additional common CORESET set for the other BWP) (or SIB1 may be acquired in the case of including the (related) SS block and using the same subcarrier interval. At this time, the terminal device 1 monitors the DCI format for scheduling the SIB1 based on the setting information of the additional common CORESET and the setting information of the common search space related to the additional common CORESET. The terminal device 1 can acquire the SIB1 by detecting the DCI format. Here, the common search space may be a common search space for SIB1. That is, for other BWPs, the common search space for SIB1 may be associated with an additional common coreset. Another BWP for which the additional common CORESET is set may be the initial DL @ BWP. Further, another BWP in which the additional common CORESET is set may be additional DL @ BWP. Here, when the other BWP is the initial DL @ BWP, the common search space for SIB1 may be SearchSpace # 0 indicated by searchSpaceZero, or the common search space indicated by searchspaceSIB1 (other than search space identifier 0). Common search space). If the other BWP is additional DL @ BWP, the common search space for SIB1 may be the common search space indicated by searchspaceSIB1 (common search space other than search space identifier 0).
 また、上記の例の拡張として、例えば、上記の条件において、他のBWP(他のBWPに対して設定されている追加のコモンCORESET)が関連するSSブロックがcell-defining SSブロックである場合、アクティブなDL BWPが他のBWPが含む(関連する)SSブロックを含まなくてもよい。つまり、端末装置1は、アクティブなDL BWPが他のBWPが含む(関連する)SSブロックを含まなくても、アクティブなDL BWPが追加のコモンCORESETの帯域幅(または、その他のBWPの帯域幅)を含み、且つ、同じサブキャリア間隔を用いた場合に、追加のコモンCORESETの設定情報を取得してもよい。つまり、この場合、端末装置1は、アクティブなDL BWPに対してコモンサーチスペースが設定されないならば、周波数領域において該アクティブなDL BWPが他のBWPに対して設定されている追加のコモンCORESETの帯域幅(または、その他のBWPの帯域幅)を含み、且つ、同じサブキャリア間隔を用いた場合に、SIB1を取得(acquire)してもよい。 Further, as an extension of the above example, for example, when the SS block associated with another BWP (an additional common CORESET set for another BWP) is a cell-defining @ SS block under the above conditions, The active DL @ BWP may not include the SS block that the other BWP includes (associated with). In other words, even if the active DL @ BWP does not include the SS block included in (related to) the other BWP, the active DL @ BWP does not include the additional common coreset bandwidth (or the other BWP bandwidth). ) And using the same subcarrier interval, additional common CORESET setting information may be obtained. That is, in this case, if the common search space is not set for the active DL @ BWP, the terminal device 1 sets the additional common CORESET in which the active DL @ BWP is set for another BWP in the frequency domain. The SIB1 may be acquired (acquired) when the bandwidth includes the bandwidth (or other BWP bandwidth) and uses the same subcarrier interval.
 また、他のBWP(他のBWPに対して設定されている追加のコモンCORESET)が関連するSSブロックがcell-defining SSブロックではない場合、アクティブなDL BWPが他のBWPが含む(関連する)SSブロックを含む必要はある。アクティブなDL BWPが他のBWPが含む(関連する)SSブロックを含まないと、端末装置1は、アクティブなDL BWPで他のBWPに対して設定されている追加のコモンCORESETの設定情報を取得することができない。この場合、端末装置1は、アクティブなDL BWPに対してコモンサーチスペースが設定されないならば、周波数領域において該アクティブなDL BWPが他のBWPに対して設定されている追加のコモンCORESETの帯域幅(または、その他のBWPの帯域幅)を含み、且つ、該アクティブなDL BWPが他のBWP(他のBWPに対して設定されている追加のコモンCORESET)が含む(または、関連する)SSブロックを含み、且つ、同じサブキャリア間隔を用いた場合に、SIB1を取得(acquire)してもよい。 Also, if the SS block associated with another BWP (additional common CORESET set for another BWP) is not a cell-defining @ SS block, the active DL @ BWP includes (related) the other BWP. It is necessary to include the SS block. When the active DL @ BWP does not include the SS block included in (related to) the other BWP, the terminal device 1 acquires the setting information of the additional common CORESET set for the other BWP in the active DL @ BWP. Can not do it. In this case, if the common search space is not set for the active DL @ BWP, the terminal device 1 sets the bandwidth of the additional common CORRESET in which the active DL @ BWP is set for another BWP in the frequency domain. SS block that contains (or the bandwidth of another BWP), and that the active DL @ BWP contains (or is associated with) another BWP (an additional common coreset set for the other BWP) And when the same subcarrier interval is used, SIB1 may be acquired.
 本実施形態において、基地局装置3は、端末装置1に対して、UECapabilityEnquiryメッセージを用いて端末装置1のケイパビリティ情報を要求する。つまり、UECapabilityEnquiryメッセージは、NRおよび他のRAT(Radio Access Technology、無線アクセス方式)に対する端末装置1の無線アクセスケイパビリティを要求するために使用される。そして、UECapabilityEnquiryメッセージを受信した端末装置1は、ケイパビリティ情報を基地局装置3へ送信(報告)する。 In the present embodiment, the base station device 3 requests the terminal device 1 for the capability information of the terminal device 1 using a UECapabilityEnquiry message. That is, the UECapabilityEnquiry message is used to request the wireless access capability of the terminal device 1 for the NR and other RATs (Radio Access Technology, a wireless access method). Then, the terminal device 1 that has received the UECapabilityEnquiry message transmits (reports) the capability information to the base station device 3.
 基地局装置3に送信する端末装置1のケイパビリティ情報はBWPオペレーションに関するケイパビリティ情報を含んでもよい。例えば、第1のBWPオペレーションケイパビリティ情報は、周波数領域において初期DL BWPの帯域幅およびセルためのSSブロックの内何れか一方または両方を含まなくてもよい追加のBWPを設定できることを示してもよい。 ケ イ The capability information of the terminal device 1 to be transmitted to the base station device 3 may include capability information relating to the BWP operation. For example, the first BWP operation capability information may indicate that an additional BWP may be configured in the frequency domain that may not include either or both of the initial DL BWP bandwidth and / or SS blocks for the cell. .
 端末装置1が第1のBWPオペレーションケイパビリティを示しない場合、基地局装置3は、該端末装置1に対して、周波数領域において初期DL BWPの帯域幅およびセルためのSSブロックの両方を含む追加のBWPのみを設定する。端末装置1が第1のBWPオペレーションケイパビリティを示した場合、基地局装置3は、該端末装置1に対して、周波数領域において初期DL BWPの帯域幅およびセルためのSSブロックの内何れか一方または両方を含まなくてもよい追加のBWPを設定してもよい。 If the terminal device 1 does not indicate the first BWP operation capability, the base station device 3 adds, to the terminal device 1, an additional bandwidth including both the initial DL @ BWP bandwidth and the SS block for the cell in the frequency domain. Set only BWP. When the terminal device 1 indicates the first BWP operation capability, the base station device 3 provides the terminal device 1 with any one of the initial DL @ BWP bandwidth and the SS block for the cell in the frequency domain, or An additional BWP that does not need to include both may be set.
 本実施形態において、端末装置1が第1のBWPオペレーションケイパビリティを示した場合、前述したCORESET#0の設定情報および/またはSearchSpace#0の設定情報を参照する条件を変更してみよい。例えば、端末装置1が第1のBWPオペレーションケイパビリティを示した場合、且つ、追加のBWPが周波数領域において初期DL BWP(CORESET#0)の帯域幅を含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、端末装置1は追加のBWPでCORESET#0および/またはSearchSpace#0を参照(refer, acquireなど)することができる。ここで、追加のBWPはセルのSSブロックを含まなくてもよい。ただし、端末装置1が第1のBWPオペレーションケイパビリティを示さない、且つ、追加のBWPが周波数領域において初期DL BWP(CORESET#0)の帯域幅を含み、且つ、初期DL BWPと同じサブキャリア間隔を用いる場合、且つ、該追加のBWPがセルのSSブロックを含まないならば、端末装置1は追加のBWPでCORESET#0および/またはSearchSpace#0を参照(refer, acquireなど)することができない。 In the present embodiment, when the terminal device 1 indicates the first BWP operation capability, the condition for referring to the above-described setting information of CORRESET # 0 and / or SearchSpace # 0 may be changed. For example, when the terminal device 1 indicates the first BWP operation capability, and the additional BWP includes the bandwidth of the initial DL BWP (CORESET # 0) in the frequency domain, and the same subcarrier interval as the initial DL BWP If the terminal device 1 is used, the terminal device 1 can refer to CORRESET # 0 and / or SearchSpace # 0 (refer, $ acquire, etc.) with additional BWP. Here, the additional BWP may not include the SS block of the cell. However, the terminal device 1 does not show the first BWP operation capability, and the additional BWP includes the bandwidth of the initial DL @ BWP (CRESET # 0) in the frequency domain, and has the same subcarrier interval as the initial DL @ BWP. When used, and if the additional BWP does not include the SS block of the cell, the terminal device 1 cannot refer to CORRESET # 0 and / or SearchSpace # 0 (refer, @acquire, etc.) with the additional BWP.
 以下、本実施形態における装置の構成について説明する。 Hereinafter, the configuration of the device according to the present embodiment will be described.
 図12は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13を含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、無線リソース制御層処理部16を含んで構成される。無線送受信部10を送信部、受信部、モニタ部、または、物理層処理部とも称する。上位層処理部14を測定部、選択部または制御部とも称する。 FIG. 12 is a schematic block diagram showing the configuration of the terminal device 1 of the present embodiment. As illustrated, the terminal device 1 is configured to include a wireless transmission / reception unit 10 and an upper layer processing unit 14. The wireless transmitting / receiving unit 10 includes an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13. The upper layer processing unit 14 includes a medium access control layer processing unit 15 and a radio resource control layer processing unit 16. The wireless transmission / reception unit 10 is also called a transmission unit, a reception unit, a monitor unit, or a physical layer processing unit. The upper layer processing unit 14 is also referred to as a measurement unit, a selection unit, or a control unit.
 上位層処理部14は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロックと称されてもよい)を、無線送受信部10に出力する。上位層処理部14は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の一部あるいはすべての処理を行なう。上位層処理部14は、1つまたは複数の参照信号から、それぞれの参照信号の測定値に基づいて1つの参照信号を選択する機能を有してもよい。上位層処理部14は、1つまたは複数のPRACH機会から、選択した1つの参照信号に関連付けられたPRACH機会を選択する機能を有してもよい。上位層処理部14は、無線送受信部10で受信したランダムアクセス手順の開始を指示する情報に含まれるビット情報が所定の値であった場合に、上位レイヤ(例えばRRCレイヤ)で設定された1つまたは複数のインデックスから1つのインデックスを特定し、プリアンブルインデックスにセットする機能を有してもよい。上位層処理部14は、RRCで設定された1つまたは複数のインデックスのうち、選択した参照信号に関連付けられたインデックスを特定し、プリアンブルインデックスにセットする機能を有してもよい。上位層処理部14は、受信した情報(例えば、SSBインデックス情報および/またはマスクインデックス情報)に基づいて、次に利用可能なPRACH機会を決定する機能を有してもよい。上位層処理部14は、受信した情報(例えば、SSBインデックス情報)に基づいて、SS/PBCHブロックを選択する機能を有してもよい。 (4) The upper layer processing unit 14 outputs the uplink data (which may be referred to as a transport block) generated by a user operation or the like to the wireless transmission / reception unit 10. The upper layer processing unit 14 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: \ RLC) layer, and a radio resource control (Radio). Resource Control: RRC) Performs some or all of the layers. The upper layer processing unit 14 may have a function of selecting one reference signal from one or a plurality of reference signals based on a measured value of each reference signal. The upper layer processing unit 14 may have a function of selecting a PRACH opportunity associated with one selected reference signal from one or a plurality of PRACH opportunities. When the bit information included in the information for instructing the start of the random access procedure received by the wireless transmission / reception unit 10 has a predetermined value, the upper layer processing unit 14 sets the 1 It may have a function of specifying one index from one or a plurality of indexes and setting the same as a preamble index. The upper layer processing unit 14 may have a function of identifying an index associated with the selected reference signal among one or a plurality of indexes set by the RRC, and setting the index to a preamble index. The upper layer processing unit 14 may have a function of determining the next available PRACH opportunity based on the received information (for example, SSB index information and / or mask index information). The upper layer processing unit 14 may have a function of selecting an SS / PBCH block based on the received information (for example, SSB index information).
 上位層処理部14が備える媒体アクセス制御層処理部15は、MACレイヤ(媒体アクセス制御層)の処理を行なう。媒体アクセス制御層処理部15は、無線リソース制御層処理部16によって管理されている各種設定情報/パラメータに基づいて、スケジューリング要求の伝送の制御を行う。 (4) The medium access control layer processing unit 15 provided in the upper layer processing unit 14 performs processing of a MAC layer (medium access control layer). The medium access control layer processing unit 15 controls transmission of a scheduling request based on various setting information / parameters managed by the radio resource control layer processing unit 16.
 上位層処理部14が備える無線リソース制御層処理部16は、RRCレイヤ(無線リソース制御層)の処理を行なう。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。 (4) The radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the RRC layer (radio resource control layer). The radio resource control layer processing unit 16 manages various setting information / parameters of the own device. The radio resource control layer processing unit 16 sets various setting information / parameters based on the upper layer signal received from the base station device 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station device 3.
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、基地局装置3から受信した信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化することによって送信信号を生成し、基地局装置3に送信する。無線送受信部10は、あるセルにおける1つまたは複数の参照信号を受信する機能を有してもよい。無線送受信部10は、1つまたは複数のPRACH機会を特定する情報(例えば、SSBインデックス情報および/またはマスクインデックス情報)を受信する機能を有してもよい。無線送受信部10は、ランダムアクセス手順の開始を指示する指示情報を含む信号を受信する機能を有してもよい。無線送受信部10は、所定のインデックスを特定する情報を受信する情報を受信する機能を有してもよい。無線送受信部10は、ランダムアクセスプリンブルのインデックスを特定する情報を受信する機能を有してもよい。無線送受信部10は、上位層処理部14で決定したPRACH機会でランダムアクセスプリアンブルを送信する機能を有してもよい。 The wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding. The wireless transmission / reception unit 10 separates, demodulates, and decodes the signal received from the base station device 3 and outputs the decoded information to the upper layer processing unit 14. The wireless transmission / reception unit 10 generates a transmission signal by modulating and encoding data, and transmits the transmission signal to the base station device 3. The wireless transmission / reception unit 10 may have a function of receiving one or a plurality of reference signals in a certain cell. The wireless transmission / reception unit 10 may have a function of receiving information (for example, SSB index information and / or mask index information) specifying one or a plurality of PRACH opportunities. The wireless transmission / reception unit 10 may have a function of receiving a signal including instruction information for instructing start of a random access procedure. The wireless transmission / reception unit 10 may have a function of receiving information for receiving information for specifying a predetermined index. The wireless transmission / reception unit 10 may have a function of receiving information for specifying an index of a random access preamble. The wireless transmission / reception unit 10 may have a function of transmitting a random access preamble at the PRACH opportunity determined by the upper layer processing unit 14.
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。 The RF unit 12 converts a signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down conversion: down covert), and removes unnecessary frequency components. The RF unit 12 outputs the processed analog signal to the baseband unit.
 ベースバンド部13は、RF部12から入力されたアナログ信号を、アナログ信号をデジタル信号に変換する。ベースバンド部13は、変換したデジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。 The baseband unit 13 converts an analog signal input from the RF unit 12 into a digital signal. The baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs fast Fourier transform (Fast Fourier Transform: FFT) on the signal from which the CP has been removed, and converts the frequency domain signal. Extract.
 ベースバンド部13は、データを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのデジタル信号を生成し、ベースバンドのデジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。 The baseband unit 13 performs an inverse fast Fourier transform (Inverse フ ー Fast Fourier Transform: IFFT) on the data, generates an OFDM symbol, adds a CP to the generated OFDM symbol, generates a baseband digital signal, The digital signal of the band is converted into an analog signal. The baseband unit 13 outputs the converted analog signal to the RF unit 12.
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する機能を備えてもよい。RF部12を送信電力制御部とも称する。 The RF unit 12 removes extra frequency components from the analog signal input from the baseband unit 13 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits the analog signal via the antenna unit 11. I do. Further, the RF unit 12 amplifies the power. Further, the RF unit 12 may have a function of determining the transmission power of the uplink signal and / or the uplink channel transmitted in the serving cell. The RF unit 12 is also called a transmission power control unit.
 図13は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、モニタ部、または、物理層処理部とも称する。また様々な条件に基づき各部の動作を制御する制御部を別途備えてもよい。上位層処理部34を、端末制御部とも称する。 FIG. 13 is a schematic block diagram showing the configuration of the base station device 3 of the present embodiment. As illustrated, the base station device 3 is configured to include a radio transmission / reception unit 30 and an upper layer processing unit 34. The wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33. The upper layer processing unit 34 is configured to include a medium access control layer processing unit 35 and a radio resource control layer processing unit 36. The wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, a monitor unit, or a physical layer processing unit. Further, a control unit for controlling the operation of each unit based on various conditions may be separately provided. The upper layer processing unit 34 is also called a terminal control unit.
 上位層処理部34は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の一部あるいはすべての処理を行なう。上位層処理部34は、無線送受信部30で受信したランダムアクセスプリアンブルに基づいて、1つまたは複数の参照信号から1つの参照信号を特定する機能を有してもよい。上位層処理部34は、少なくともSSBインデックス情報とマスクインデックス情報とからランダムアクセスプリアンブルをモニタするPRACH機会を特定してもよい。 The upper-layer processing unit 34 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: \ RLC) layer, and a radio resource control (Radio Resource Control). Resource Control: RRC) Performs some or all of the layers. The upper layer processing unit 34 may have a function of specifying one reference signal from one or a plurality of reference signals based on the random access preamble received by the wireless transmission / reception unit 30. The upper layer processing unit 34 may specify a PRACH opportunity to monitor a random access preamble from at least the SSB index information and the mask index information.
 上位層処理部34が備える媒体アクセス制御層処理部35は、MACレイヤの処理を行なう。媒体アクセス制御層処理部35は、無線リソース制御層処理部36によって管理されている各種設定情報/パラメータに基づいて、スケジューリングリクエストに関する処理を行う。 (4) The medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the MAC layer. The medium access control layer processing unit 35 performs a process related to a scheduling request based on various setting information / parameters managed by the radio resource control layer processing unit 36.
 上位層処理部34が備える無線リソース制御層処理部36は、RRCレイヤの処理を行なう。無線リソース制御層処理部36は、物理下りリンク共用チャネルに配置される下りリンクデータ(トランスポートブロック)、システム情報、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。無線リソース制御層処理部36は、あるセルにおける複数の参照信号の設定を特定するための情報を送信/報知してもよい。 (4) The radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of the RRC layer. The radio resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC @ CE (Control @ Element), and the like arranged in the physical downlink shared channel, or obtains it from the upper node. , To the wireless transmission / reception unit 30. Further, the radio resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1. The radio resource control layer processing unit 36 may set various setting information / parameters for each of the terminal devices 1 via a signal of an upper layer. That is, the radio resource control layer processing unit 36 transmits / reports information indicating various setting information / parameters. The radio resource control layer processing unit 36 may transmit / broadcast information for specifying settings of a plurality of reference signals in a certain cell.
 基地局装置3から端末装置1にRRCメッセージ、MAC CE、および/またはPDCCHを送信し、端末装置1がその受信に基づいて処理を行う場合、基地局装置3は、端末装置が、その処理を行っていることを想定して処理(端末装置1やシステムの制御)を行う。すなわち、基地局装置3は、端末装置にその受信に基づく処理を行わせるようにするRRCメッセージ、MAC CE、および/またはPDCCHを端末装置1に送っている。 When transmitting an RRC message, MAC @ CE, and / or PDCCH from the base station apparatus 3 to the terminal apparatus 1 and performing processing based on the reception, the base station apparatus 3 The processing (control of the terminal device 1 and the system) is performed assuming that the processing is performed. That is, the base station device 3 sends the terminal device 1 an RRC message, MAC @ CE, and / or PDCCH that causes the terminal device to perform processing based on the reception.
 無線送受信部30は、1つまたは複数の参照信号を送信する機能を有する。また、無線送受信部30は、端末装置1から送信されたビーム失敗リカバリ要求を含む信号を受信する機能を有してもよい。無線送受信部30は、端末装置1に1つまたは複数のPRACH機会を特定する情報(例えば、SSBインデックス情報および/またはマスクインデックス情報)を送信する機能を有してもよい。無線送受信部30は、所定のインデックスを特定する情報を送信する機能を有してもよい。無線送受信部30は、ランダムアクセスプリアンブルのインデックスを特定する情報を送信する機能を有してもよい。無線送受信部30は、上位層処理部34で特定されたPRACH機会でランダムアクセスプリアンブルをモニタする機能を有してもよい。その他、無線送受信部30の一部の機能は、無線送受信部10と同様であるため説明を省略する。なお、基地局装置3が1つまたは複数の送受信点4と接続している場合、無線送受信部30の機能の一部あるいは全部が、各送受信点4に含まれてもよい。 The wireless transmission / reception unit 30 has a function of transmitting one or a plurality of reference signals. Further, the wireless transmission / reception unit 30 may have a function of receiving a signal including a beam failure recovery request transmitted from the terminal device 1. The wireless transmission / reception unit 30 may have a function of transmitting information (for example, SSB index information and / or mask index information) specifying one or a plurality of PRACH opportunities to the terminal device 1. The wireless transmission / reception unit 30 may have a function of transmitting information specifying a predetermined index. The wireless transmission / reception unit 30 may have a function of transmitting information for specifying the index of the random access preamble. The wireless transmission / reception unit 30 may have a function of monitoring the random access preamble at the PRACH opportunity specified by the upper layer processing unit 34. Other functions of the wireless transmission / reception unit 30 are the same as those of the wireless transmission / reception unit 10, and thus description thereof is omitted. When the base station device 3 is connected to one or a plurality of transmission / reception points 4, some or all of the functions of the radio transmission / reception unit 30 may be included in each transmission / reception point 4.
 また、上位層処理部34は、基地局装置3間あるいは上位のネットワーク装置(MME、S-GW(Serving-GW))と基地局装置3との間の制御メッセージ、またはユーザデータの送信(転送)または受信を行なう。図13において、その他の基地局装置3の構成要素や、構成要素間のデータ(制御情報)の伝送経路については省略してあるが、基地局装置3として動作するために必要なその他の機能を有する複数のブロックを構成要素として持つことは明らかである。例えば、上位層処理部34には、無線リソース管理(Radio Resource Management)層処理部や、アプリケーション層処理部が存在している。また上位層処理部34は、無線送受信部30から送信する複数の参照信号のそれぞれに対応する複数のスケジューリング要求リソースを設定する機能を有してもよい。 The upper layer processing unit 34 transmits (transfers) a control message or user data between the base station devices 3 or between a higher network device (MME, S-GW (Serving-GW)) and the base station device 3. ) Or receive. In FIG. 13, other components of the base station device 3 and a transmission path of data (control information) between the components are omitted, but other functions necessary to operate as the base station device 3 are shown. It is clear that the block has a plurality of blocks. For example, the upper layer processing unit 34 includes a radio resource management (Radio Resource Management) layer processing unit and an application layer processing unit. Further, the upper layer processing unit 34 may have a function of setting a plurality of scheduling request resources corresponding to each of a plurality of reference signals transmitted from the wireless transmission / reception unit 30.
 なお、図中の「部」とは、セクション、回路、構成装置、デバイス、ユニットなど用語によっても表現される、端末装置1および基地局装置3の機能および各手順を実現する要素である。 Note that “units” in the figure are elements that realize the functions and procedures of the terminal device 1 and the base station device 3 that are also expressed by terms such as sections, circuits, constituent devices, devices, and units.
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。 部 Each of the units denoted by reference numerals 10 to 16 included in the terminal device 1 may be configured as a circuit. Each of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
 (1)より具体的には、本発明の第1の態様における端末装置1は、RRCReconfiguratonメッセージを受信する受信部10と、SIB1を受信するためのサーチスペースの設定情報とCORESETの設定情報を決定する制御部16と、を備え、前記メッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記制御部は、アクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、searchspace#0の設定情報とCORESET#0の設定情報を決定し、決定した前記searchspace#0の設定情報と前記CORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得し、前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される。 (1) More specifically, the terminal device 1 according to the first embodiment of the present invention determines the receiving unit 10 that receives the RRCReconfiguraton message, and the setting information of the search space and the setting information of the RESET for receiving the SIB1. A control unit 16 which performs the first parameter reconfigurationWithSync in the message, the control unit determines that the active DL @ BWP is a bandwidth of the initial DL @ BWP and the SS block to which the initial DL @ BWP is related in the frequency domain. If it is included and the same subcarrier interval as the initial DL @ BWP is used, the setting information of searchspace # 0 and the setting information of RESET # 0 are determined, and the setting information of the determined searchspace # 0 and the setting of RESET # 0 are determined. SIB1 is acquired by the active DL @ BWP based on the information, and the first parameter is acquired. Is a parameter for synchronous reconfiguration to the target cell SpCell, the RESET # 0 is set by controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is a parameter for the initial DL @ BWP. , Set by searchSpaceZero.
 (2)本発明の第2の態様における基地局装置3は、RRCReconfiguratonメッセージを送信する送信部30と、端末装置がSIB1を取得するためのサーチスペースとCORESETを制御する制御部36と、を備え、前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記制御部は、前記端末装置がオペレーティングしているアクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、前記端末装置をsearchspace#0の設定情報とCORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得させ、前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される。 (2) The base station device 3 according to the second aspect of the present invention includes a transmitting unit 30 that transmits an RRCReconfiguraton message, and a control unit 36 that controls a search space for the terminal device to acquire the SIB1 and a RESET. If the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the control unit determines that the active DL @ BWP operated by the terminal device is an SS block associated with the initial DL @ BWP bandwidth and the initial DL @ BWP in the frequency domain. And if the same subcarrier interval as the initial DL @ BWP is used, the terminal device is caused to acquire SIB1 by the active DL @ BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0, 1 parameter is synchronization to target cell SpCell This is a parameter for reconfiguration. The RESET # 0 is set by the controlResourceSetZero for the initial DL @ BWP, and the searchspace # 0 is set by the searchSpaceZero for the initial DL @ BWP.
 これにより、端末装置1は、効率的に基地局装置3と通信することができる。 Thereby, the terminal device 1 can communicate with the base station device 3 efficiently.
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。 The program that operates on the device according to the present invention may be a program that controls a central processing unit (CPU) or the like to cause a computer to function so as to realize the functions of the embodiment according to the present invention. The program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage system.
 尚、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。 Note that a program for realizing the functions of the embodiment according to the present invention may be recorded on a computer-readable recording medium. The program may be realized by causing a computer system to read and execute the program recorded on the recording medium. Here, the “computer system” is a computer system built in the device, and includes an operating system and hardware such as peripheral devices. The “computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium for dynamically storing a program for a short time, or another recording medium readable by a computer. Is also good.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。 Each functional block or various features of the device used in the above-described embodiment may be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits. An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other Logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof. A general purpose processor may be a microprocessor, or may be a conventional processor, controller, microcontroller, or state machine. The above-described electric circuit may be constituted by a digital circuit or may be constituted by an analog circuit. In addition, in the case where a technology for forming an integrated circuit that replaces a current integrated circuit appears with the progress of semiconductor technology, one or more aspects of the present invention can use a new integrated circuit based on the technology.
 なお、本発明に関わる実施形態では、基地局装置と端末装置で構成される通信システムに適用される例を記載したが、D2D(Device to Device)のような、端末同士が通信を行うシステムにおいても適用可能である。 In the embodiment according to the present invention, an example is described in which the present invention is applied to a communication system including a base station device and a terminal device. However, in a system in which terminals communicate with each other, such as D2D (Device @ to \ Device), Is also applicable.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 発 明 Note that the present invention is not limited to the above embodiment. In the embodiment, an example of the device is described. However, the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, for example, AV devices, kitchen devices, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to the embodiments, and may include design changes within the scope of the present invention. Further, the present invention can be variously modified within the scope shown in the claims, and the technical scope of the present invention includes embodiments obtained by appropriately combining technical means disclosed in different embodiments. It is. The elements described in the above embodiments also include a configuration in which elements having the same effects are replaced.

Claims (6)

  1.  RRCレコンフィグレーション手順を行う端末装置であり、
     RRCReconfiguratonメッセージを受信する受信部と、
     SIB1を受信するためのサーチスペースの設定情報とCORESETの設定情報を決定する制御部と、
    を備え、
     前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記制御部は、アクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、searchspace#0の設定情報とCORESET#0の設定情報を決定し、決定した前記searchspace#0の設定情報と前記CORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得し、
     前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、
     前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、
     前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される
     端末装置。
    A terminal device that performs an RRC reconfiguration procedure,
    A receiver for receiving the RRCReconfiguraton message,
    A control unit for determining search space setting information and CORESET setting information for receiving SIB1,
    With
    When the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the control unit determines that the active DL BWP includes an SS block in which the initial DL BWP bandwidth and the initial DL BWP are related in the frequency domain, and the initial DL BWP and If the same subcarrier interval is used, the setting information of searchspace # 0 and the setting information of CORESET # 0 are determined, and based on the determined setting information of searchspace # 0 and the setting information of CORESET # 0, the active DL BWP is determined. To get SIB1,
    The first parameter is a parameter for synchronous reconfiguration to the target cell SpCell,
    The RESET # 0 is set by the controlResourceSetZero for the initial DL BWP,
    The terminal device, wherein the searchspace # 0 is set by searchSpaceZero for the initial DL BWP.
  2.  RRCレコンフィグレーション手順を行う端末装置と通信する基地局装置であり、
     RRCReconfiguratonメッセージを送信する送信部と、
     前記端末装置がSIB1を取得するためのサーチスペースとCORESETを制御する制御部と、
     を備え、
     前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記制御部は、前記端末装置がオペレーティングしているアクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、前記端末装置をsearchspace#0の設定情報とCORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得させ、
     前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、
     前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、
     前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される
     基地局装置。
    A base station device that communicates with a terminal device that performs an RRC reconfiguration procedure,
    A transmitting unit for transmitting an RRCReconfiguraton message,
    A control unit that controls a search space and a RESET for the terminal device to acquire SIB1,
    With
    When the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the control unit determines that the active DL BWP operated by the terminal device is in the frequency domain, the initial DL BWP bandwidth and the SS block to which the initial DL BWP is related. Including, and if the same subcarrier interval as the initial DL BWP is used, the terminal device is caused to acquire SIB1 by the active DL BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0,
    The first parameter is a parameter for synchronous reconfiguration to the target cell SpCell,
    The RESET # 0 is set by the controlResourceSetZero for the initial DL BWP,
    The search space # 0 is set by searchSpaceZero with respect to the initial DL BWP.
  3.  RRCレコンフィグレーション手順を行う端末装置の通信方法であって、
     RRCReconfiguratonメッセージを受信するし、
     SIB1を受信するためのサーチスペースの設定情報とCORESETの設定情報を決定し、
     前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、アクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、searchspace#0の設定情報とCORESET#0の設定情報を決定し、決定した前記searchspace#0の設定情報と前記CORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得し、
     前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、
     前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、
     前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される
     通信方法。
    A communication method of a terminal device performing an RRC reconfiguration procedure,
    Receive RRCReconfiguraton message,
    Determine search space setting information and CORESET setting information for receiving SIB1,
    If the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the active DL BWP includes the bandwidth of the initial DL BWP and the SS block to which the initial DL BWP is related in the frequency domain, and has the same subcarrier interval as the initial DL BWP. If used, the setting information of searchspace # 0 and the setting information of CORRESET # 0 are determined, and based on the determined setting information of searchspace # 0 and the setting information of CORRESET # 0, SIB1 is acquired by the active DL BWP. ,
    The first parameter is a parameter for synchronous reconfiguration to the target cell SpCell,
    The RESET # 0 is set by the controlResourceSetZero for the initial DL BWP,
    The communication method in which searchspace # 0 is set by searchSpaceZero with respect to the initial DL BWP.
  4.  RRCレコンフィグレーション手順を行う端末装置と通信する基地局装置の通信方法であり、
     RRCReconfiguratonメッセージを送信し、
     前記端末装置がSIB1を取得するためのサーチスペースとCORESETを制御し、
     前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記端末装置がオペレーティングしているアクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、前記端末装置をsearchspace#0の設定情報とCORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得させ、
     前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、
     前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、
     前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される
     通信方法。
    A communication method of a base station apparatus communicating with a terminal apparatus performing an RRC reconfiguration procedure,
    Send RRCReconfiguraton message,
    The terminal device controls a search space and a RESET for acquiring SIB1,
    If the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the active DL BWP operated by the terminal device includes an initial DL BWP bandwidth and an SS block associated with the initial DL BWP in a frequency domain, and If the same subcarrier interval as DL BWP is used, the terminal apparatus is caused to acquire SIB1 by the active DL BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0,
    The first parameter is a parameter for synchronous reconfiguration to the target cell SpCell,
    The RESET # 0 is set by the controlResourceSetZero for the initial DL BWP,
    The communication method in which searchspace # 0 is set by searchSpaceZero with respect to the initial DL BWP.
  5.  RRCレコンフィグレーション手順を行う端末装置に実装される集積回路であって、
     RRCReconfiguratonメッセージを受信する機能と、
     SIB1を受信するためのサーチスペースの設定情報とCORESETの設定情報を決定する機能と、前記端末装置に発揮させ、
     前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、アクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、searchspace#0の設定情報とCORESET#0の設定情報を決定し、決定した前記searchspace#0の設定情報と前記CORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得し、
     前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、
     前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、
     前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される
     集積回路。
    An integrated circuit mounted on a terminal device that performs an RRC reconfiguration procedure,
    The ability to receive RRCReconfiguraton messages,
    A function of determining the setting information of the search space for receiving the SIB1 and the setting information of the RESET;
    If the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the active DL BWP includes the bandwidth of the initial DL BWP and the SS block to which the initial DL BWP is related in the frequency domain, and has the same subcarrier interval as the initial DL BWP. If used, the setting information of searchspace # 0 and the setting information of CORRESET # 0 are determined, and based on the determined setting information of searchspace # 0 and the setting information of CORRESET # 0, SIB1 is acquired by the active DL BWP. ,
    The first parameter is a parameter for synchronous reconfiguration to the target cell SpCell,
    The RESET # 0 is set by the controlResourceSetZero for the initial DL BWP,
    The searchspace # 0 is set by searchSpaceZero for the initial DL BWP integrated circuit.
  6.  RRCレコンフィグレーション手順を行う端末装置と通信する基地局装置に実装される集積回路であって、
     RRCReconfiguratonメッセージを送信する機能と、
     前記端末装置がSIB1を取得するためのサーチスペースとCORESETを制御する機能と、前記基地局装置に発揮させ、
     前記RRCReconfiguratonメッセージに第1のパラメータreconfigurationWithSyncが含まれる場合、前記端末装置がオペレーティングしているアクティブDL BWPが周波数領域において初期DL BWPの帯域幅および初期DL BWPが関連するSSブロックを含み、且つ、初期DL BWPと同じサブキャリア間隔を用いるならば、前記端末装置をsearchspace#0の設定情報とCORESET#0の設定情報に基づき、前記アクティブDL BWPでSIB1を取得させ、
     前記第1のパラメータは、ターゲットセルSpCellへの同期レコンフィグレーションためのパラメータであり、
     前記CORESET#0は、前記初期DL BWPに対して、controlResourceSetZeroによって設定され、
     前記searchspace#0は、前記初期DL BWPに対して、searchSpaceZeroによって設定される
     集積回路。
    An integrated circuit mounted on a base station device that communicates with a terminal device that performs an RRC reconfiguration procedure,
    The ability to send RRCReconfiguraton messages,
    A function of controlling a search space and a RESET in which the terminal device acquires SIB1, a function of controlling the base station device,
    If the first parameter reconfigurationWithSync is included in the RRCReconfiguraton message, the active DL BWP operated by the terminal device includes an initial DL BWP bandwidth and an SS block associated with the initial DL BWP in a frequency domain, and If the same subcarrier interval as DL BWP is used, the terminal apparatus is caused to acquire SIB1 by the active DL BWP based on the setting information of searchspace # 0 and the setting information of CORRESET # 0,
    The first parameter is a parameter for synchronous reconfiguration to the target cell SpCell,
    The RESET # 0 is set by the controlResourceSetZero for the initial DL BWP,
    The searchspace # 0 is set by searchSpaceZero for the initial DL BWP integrated circuit.
PCT/JP2019/027107 2018-08-07 2019-07-09 Base station device, terminal device, communication method, and integrated circuit WO2020031588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-148467 2018-08-07
JP2018148467A JP2020025181A (en) 2018-08-07 2018-08-07 Base station device, terminal device, method for communication, and integrated circuit

Publications (1)

Publication Number Publication Date
WO2020031588A1 true WO2020031588A1 (en) 2020-02-13

Family

ID=69415507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027107 WO2020031588A1 (en) 2018-08-07 2019-07-09 Base station device, terminal device, communication method, and integrated circuit

Country Status (2)

Country Link
JP (1) JP2020025181A (en)
WO (1) WO2020031588A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004271A1 (en) * 2020-06-30 2022-01-06 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method
US20220132624A1 (en) * 2018-10-04 2022-04-28 Google Llc Method for Handling a Radio Resource Control Cell Group Configuration
WO2022213257A1 (en) * 2021-04-06 2022-10-13 Lenovo (Beijing) Limited Method and apparatus for bandwidth part configuration
WO2023084642A1 (en) * 2021-11-10 2023-05-19 株式会社Nttドコモ Terminal, wireless communication method, and base station
WO2023084643A1 (en) * 2021-11-10 2023-05-19 株式会社Nttドコモ Terminal, radio communication method, and base station
EP4247078A4 (en) * 2020-11-10 2024-04-17 Denso Corporation Base station and user apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "CSS configuration for SI acquisition in non-initial BWP [C077]", 3GPP TSG RAN WG2 ADHOC_2018_07_NR, R2-1810493, 22 June 2018 (2018-06-22) *
ERICSSON: "Remaining issues of PDCCH", 3GPP TSG RAN WG1 #93, R1-1807246, 12 May 2018 (2018-05-12), XP051462979 *
MEDIATEK INC.: "Summary of bandwidth part remaining issues", 3GPP TSG RAN WG1 #92BIS, R1-1805658, 19 April 2018 (2018-04-19), XP051427784 *
MEDIATEK INC.: "Summary of bandwidth part remaining issues", 3GPP TSGRAN WG1 #92BIS, R1-1805543, 18 April 2018 (2018-04-18), XP051435622 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220132624A1 (en) * 2018-10-04 2022-04-28 Google Llc Method for Handling a Radio Resource Control Cell Group Configuration
US12101846B2 (en) 2018-10-04 2024-09-24 Google Llc Method for handling a radio resource control cell group configuration
US12101845B2 (en) * 2018-10-04 2024-09-24 Google Llc Method for handling a radio resource control cell group configuration
WO2022004271A1 (en) * 2020-06-30 2022-01-06 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method
EP4247078A4 (en) * 2020-11-10 2024-04-17 Denso Corporation Base station and user apparatus
WO2022213257A1 (en) * 2021-04-06 2022-10-13 Lenovo (Beijing) Limited Method and apparatus for bandwidth part configuration
WO2023084642A1 (en) * 2021-11-10 2023-05-19 株式会社Nttドコモ Terminal, wireless communication method, and base station
WO2023084643A1 (en) * 2021-11-10 2023-05-19 株式会社Nttドコモ Terminal, radio communication method, and base station

Also Published As

Publication number Publication date
JP2020025181A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP7197297B2 (en) BASE STATION DEVICE, TERMINAL DEVICE, AND COMMUNICATION METHOD
JP7271097B2 (en) BASE STATION DEVICE, TERMINAL DEVICE, AND COMMUNICATION METHOD
JP7286288B2 (en) BASE STATION DEVICE, TERMINAL DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
JP7158174B2 (en) BASE STATION DEVICE, TERMINAL DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
WO2020017391A1 (en) Base station device, terminal device, communication method, and integrated circuit
JP7240843B2 (en) BASE STATION DEVICE, TERMINAL DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
WO2020026988A1 (en) Base station device, terminal device, and communication method
US20220132436A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20220124633A1 (en) Communication method, terminal apparatus, base station apparatus, and integrated circuit
WO2020129783A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
WO2020170972A1 (en) Base station device, terminal device, communication method, and integrated circuit
WO2020166695A1 (en) Base station device, terminal device, communication method, and integrated circuit
WO2020031588A1 (en) Base station device, terminal device, communication method, and integrated circuit
WO2020066854A1 (en) Base station apparatus, terminal device, communication method, and integrated circuit
WO2020129784A1 (en) Base station device, terminal device, communication method, and integrated circuit
WO2020075775A1 (en) Base station device, terminal device, communication method, and integrated circuit
JP2020162018A (en) Base station device, terminal device, communication method, and integrated circuit
WO2019244861A1 (en) Terminal device, communication method, and integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847107

Country of ref document: EP

Kind code of ref document: A1