WO2020031484A1 - 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 - Google Patents

冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 Download PDF

Info

Publication number
WO2020031484A1
WO2020031484A1 PCT/JP2019/022378 JP2019022378W WO2020031484A1 WO 2020031484 A1 WO2020031484 A1 WO 2020031484A1 JP 2019022378 W JP2019022378 W JP 2019022378W WO 2020031484 A1 WO2020031484 A1 WO 2020031484A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
refrigerant
point
composition
r1234yf
Prior art date
Application number
PCT/JP2019/022378
Other languages
English (en)
French (fr)
Inventor
瞬 大久保
眸 黒木
板野 充司
山田 拓郎
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US17/265,368 priority Critical patent/US20210292626A1/en
Priority to EP19846559.3A priority patent/EP3835391A4/en
Priority to CN201980054059.XA priority patent/CN112585234A/zh
Publication of WO2020031484A1 publication Critical patent/WO2020031484A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • C10M2207/2815Esters of (cyclo)aliphatic monocarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • C10M2209/043Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present disclosure relates to a composition containing a refrigerant, a refrigeration method using the composition, a method of operating a refrigeration apparatus, and a refrigeration apparatus.
  • Patent Document 1 describes, among the above fluorinated hydrocarbons, a two-component mixed refrigerant composed of R32 / R125 having a composition of 50/50% by mass (R410A).
  • the present disclosure provides a refrigerant-containing composition having a refrigerating capacity and a coefficient of performance (hereinafter, also simply referred to as COP) equivalent to R410A and using a refrigerant having a small GWP (2000 or less). With the goal.
  • COP coefficient of performance
  • Still another object of the present disclosure is to provide a refrigeration method, a method of operating a refrigeration apparatus, and a refrigeration apparatus using the composition.
  • Item 1 A composition containing a refrigerant,
  • the refrigerant contains difluoromethane (R32) and pentafluoroethane (R125), the total concentration of R32 and R125 is 99.5% by mass or more, and For the total mass of R32 and R125, The content ratio of R32 is 53.1 to 56.0% by mass, A composition wherein the content of R125 is 44.0 to 46.9% by mass.
  • a composition containing a refrigerant contains difluoromethane (R32) and pentafluoroethane (R125), the total concentration of R32 and R125 is 99.5% by mass or more, and For the total mass of R32 and R125, The content ratio of R32 is 60.5 to 62.5 mass%, A composition wherein the content of R125 is 37.5 to 39.5% by mass.
  • Item 3. The composition according to Item 1 or 2, wherein the refrigerant comprises only R32 and R125.
  • a composition containing a refrigerant contains difluoromethane (R32), pentafluoroethane (R125) and 2,3,3,3-tetrafluoropropene (R1234yf), and the total concentration of the three components is 99.5% by mass or more, and ,
  • composition according to Item 4 which is within a region surrounded by a rectangle having the four points as vertices.
  • composition according to item 4 or 5 wherein the composition is within a region surrounded by a rectangle having the four points as vertices.
  • Item 7. The composition according to any one of Items 4 to 6, wherein the refrigerant consists only of R32, R125 and R1234yf.
  • Item 8. A composition containing a refrigerant, The refrigerant contains difluoromethane (R32), pentafluoroethane (R125) and trans-1,3,3,3-tetrafluoropropene (R1234ze (E)), and the total concentration of the three components is 99.5% by mass.
  • the composition according to Item 8 which is within a region surrounded by a rectangle having the four points as vertices.
  • composition according to item 8 or 9, wherein the composition is within an area surrounded by a rectangle having the four points as vertices.
  • Item 11. Item 11.
  • Item 12. Item 12.
  • Item 13 Item 13.
  • Item 14. Item 14.
  • Item 15. Item 15. The composition according to Item 14, wherein the refrigerator oil contains at least one polymer selected from the group consisting of polyalkylene glycol (PAG), polyol ester (POE) and polyvinyl ether (PVE).
  • PAG polyalkylene glycol
  • POE polyol ester
  • PVE polyvinyl ether
  • Item 16 A refrigeration method comprising a step of operating a refrigeration cycle using the composition according to any one of items 1 to 15.
  • Item 17. Item 16.
  • Item 18. Item 17.
  • a refrigeration apparatus comprising the composition according to any one of Items 1 to 15 as a working fluid.
  • the refrigeration apparatus is an air conditioner, a refrigerator, a freezer, a water cooler, an ice machine, a refrigerated showcase, a refrigerated showcase, a refrigerated refrigeration unit, a refrigerated warehouse refrigerator, a vehicle-mounted air conditioner, a turbo refrigerator or a screw refrigerator.
  • Item 19 A refrigeration apparatus according to Item 18.
  • Item 20. The composition according to any one of Items 1 to 15, which is used as a refrigerant.
  • Item 21. The composition according to Item 20, which is used as a refrigerant in a refrigeration apparatus.
  • the refrigeration apparatus is an air conditioner, a refrigerator, a freezer, a water cooler, an ice machine, a refrigerated showcase, a refrigerated showcase, a refrigerated refrigeration unit, a refrigerated warehouse refrigerator, a vehicle-mounted air conditioner, a turbo refrigerator or a screw refrigerator.
  • Item 23 The composition according to Item 21, wherein Item 23. Use of the composition according to any one of items 1 to 15 as a refrigerant.
  • Item 24. The use according to Item 23 in a refrigeration apparatus.
  • Item 25 The use according to Item 23 in a refrigeration apparatus.
  • the refrigeration apparatus is an air conditioner, a refrigerator, a freezer, a water cooler, an ice machine, a refrigerated showcase, a refrigerated showcase, a refrigerated refrigeration unit, a refrigerated warehouse refrigerator, a vehicle-mounted air conditioner, a turbo refrigerator or a screw refrigerator. Use according to claim 24.
  • composition containing the refrigerant of the present disclosure has characteristics that it has the same refrigerating capacity and COP as R410A, and has a small GWP (2000 or less).
  • FIG. 1 In the triangular composition diagram of R32, R125, and R1234yf, the mass ratio of R32, R125, and R1234yf contained in the refrigerant of the present disclosure (region surrounded by a quadrangle having four points of points A, B, C, and D as vertices) FIG. In the triangular composition diagram of R32, R125 and R1234ze (E), the mass ratio of R32, R125 and R1234ze (E) contained in the refrigerant of the present disclosure (a square having four points at points P, Q, R and S as vertices) FIG. It is a schematic diagram of an experimental device for determining flammability (combustible or non-combustible).
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that a composition containing R32 and R125 at a specific concentration as a refrigerant has the above characteristics.
  • the present invention includes the following embodiments.
  • refrigerant includes at least a compound with a refrigerant number (ASHRAE number) starting with R representing the type of refrigerant, which is defined by ISO817 (International Organization for Standardization), and further includes a refrigerant number. Even if they are not yet attached, those having the same properties as refrigerants are included.
  • ASHRAE number refrigerant number
  • ISO817 International Organization for Standardization
  • fluorocarbon compounds are broadly classified into “fluorocarbon compounds” and “non-fluorocarbon compounds” in terms of the structure of the compounds.
  • the “fluorocarbon compound” includes chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC).
  • Examples of the “non-fluorocarbon compound” include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), and ammonia (R717).
  • composition containing a refrigerant includes: (1) refrigerant itself (including a mixture of refrigerants, that is, “mixed refrigerant”); (2) a composition further comprising other components, which can be used to obtain a working fluid for a refrigerator by mixing with at least a refrigerator oil; And (3) a refrigeration system working fluid containing refrigeration oil.
  • the composition of (2) is referred to as a “refrigerant composition” to distinguish it from the refrigerant itself (including the mixed refrigerant).
  • the working fluid for the refrigerating apparatus of (3) is referred to as “refrigerating machine oil-containing working fluid” to be distinguished from “refrigerant composition”.
  • the second refrigerant is used only by changing a few parts (at least one of refrigerating machine oil, gasket, packing, expansion valve, dryer and other parts) and adjusting equipment as necessary Means that it can be operated under optimal conditions. That is, this type refers to operating the same device by “substituting” the refrigerant.
  • this type of “alternative” “drop-in (drop ⁇ in) alternative”, “nearly drop-in ( There can be “nealy drop in replacement” and “retrofit”.
  • a refrigerating device refers to a conversion device that obtains energy from the outside, performs work, and converts energy to transfer heat from a lower temperature to a higher temperature.
  • a refrigeration apparatus is synonymous with a heat pump.
  • a refrigeration apparatus in a narrow sense, is used to be distinguished from a heat pump depending on a temperature range to be used and an operating temperature.
  • a device that places a low-temperature heat source in a temperature region lower than the atmospheric temperature is called a refrigeration device, whereas a device that uses a heat radiation effect by driving a refrigeration cycle by placing a low-temperature heat source near the atmospheric temperature is used.
  • vehicle air conditioner is a type of refrigeration equipment used in automobiles such as gasoline cars, hybrid cars, electric cars, and hydrogen cars.
  • In-vehicle air conditioning equipment means that a liquid refrigerant exchanges heat with an evaporator, the evaporated refrigerant gas is sucked by a compressor, and the adiabatic compressed refrigerant gas is cooled and liquefied by a condenser, and further an expansion valve And a refrigerating device comprising a refrigeration cycle which is supplied to the evaporator again as a liquid refrigerant after being adiabatically expanded.
  • a centrifugal chiller is a type of large-sized refrigeration system, in which heat is exchanged with a liquid refrigerant in an evaporator, and the evaporated refrigerant gas is sucked in by a centrifugal compressor, and adiabatic compression is performed.
  • This refers to a refrigeration apparatus comprising a refrigeration cycle in which a refrigerant gas is cooled and liquefied by a condenser, further adiabatically expanded by passing through an expansion valve, and then supplied to the evaporator again as a liquid refrigerant.
  • the “large refrigerator” refers to a large air conditioner for the purpose of air conditioning in a building unit.
  • the refrigerant is ⁇ non-flammable ''
  • the U.S. ANSI / ASHRAE34-2013 standard is determined that the WCF (Worst case of formulation for flammability) composition, which is the most flammable composition in the refrigerant allowable concentration, is ⁇ Class 1 ''. Means to be done.
  • the refrigerant is “slightly flammable” means that the WCF composition is determined to be “class 2L” in the US ANSI / ASHRAE34-2013 standard.
  • GWP means a value based on the value of the IPCC (Intergovernmental Panel On Change) fourth report.
  • GWP (AR5) means a value based on the value in the IPCC Fifth Report.
  • composition of the present disclosure contains a refrigerant, and the refrigerant includes “refrigerant 1,” “refrigerant 2,” “refrigerant 3,” and “refrigerant 4.”
  • the refrigerant 1, the refrigerant 2, the refrigerant 3, and the refrigerant 4 will be described respectively.
  • the “refrigerant of the present disclosure” means the refrigerant 1, the refrigerant 2, the refrigerant 3, and the refrigerant 4.
  • the refrigerant of the present disclosure can be roughly classified into Embodiments 1, 2, 3, and 4 (also referred to as refrigerant 1, refrigerant 2, refrigerant 3 and refrigerant 4, respectively) when roughly classified according to each embodiment.
  • Refrigerant 1 (R32 / R125)
  • Refrigerant 1 contains R32 and R125 as essential components.
  • the total concentration of R32 and R125 in the entire refrigerant 1 is 99.5% by mass or more.
  • the refrigerant 1 contains R32 and R125 in a total sum of these concentrations of 99.5% by mass or more.
  • Refrigerant 1 has an R32 content of 53.1 to 56.0% by mass and an R125 content of 44.0 to 46.9% by mass based on the total mass of R32 and R125.
  • Refrigerant 1 having such a configuration allows (1) GWP (AR4) to be small (2000 or less), (2) non-combustible, and (3) when used as a substitute refrigerant for R410A, It has various characteristics that it has the same refrigeration capacity and COP as R410A.
  • the refrigerant 1 has a property that the GWP (AR4) is 1800 or more and 2000 or less and is nonflammable.
  • the refrigerant 1 may have a refrigerating capacity for R410A of 85% or more, preferably 90% or more, more preferably 95% or more, and particularly preferably 100% or more.
  • Refrigerant 1 has a GWP (AR4) of 2,000 or less, so that the environmental load can be significantly reduced as compared with other general-purpose refrigerants from the viewpoint of global warming.
  • AR4 GWP
  • Refrigerant 1 preferably has a high ratio of the power consumed in the refrigeration cycle to R410A and the refrigerating capacity (coefficient of performance (COP)) with respect to energy consumption efficiency.
  • the COP for R410A is 98% or more. Is preferably, more preferably 99% or more, and particularly preferably 100% or more.
  • the refrigerant 1 preferably has an R32 content of 53.2 to 55.9% by mass and an R125 content of 44.1 to 46.8% by mass based on the total mass of R32 and R125.
  • the refrigerant 1 has a GWP (AR4) of 2000 or less, is nonflammable, has a COP equivalent to that of R410A, and has an excellent refrigeration capacity for R410A.
  • Refrigerant 1 preferably has a R32 content of 53.5 to 55.5% by mass and a R125 content of 44.5 to 46.5% by mass based on the total mass of R32 and R125.
  • the refrigerant 1 has a GWP (AR4) of 2000 or less, is nonflammable, has a COP equivalent to that of R410A, and has more excellent refrigeration capacity for R410A.
  • Refrigerant 1 contains 99.5% by mass or more of R32 and R125 in total of these concentrations, and among them, the total amount of R32 and R125 in the entire refrigerant 1 is preferably 99.7% by mass or more, more preferably 99.8% by mass or more. It is more preferable if the amount is 99.9% by mass or more.
  • the refrigerant 1 may further contain other refrigerants in addition to R32 and R125 as long as the above characteristics are not impaired.
  • the content ratio of the other refrigerant in the entire refrigerant 1 is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, further preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
  • the other refrigerant is not particularly limited, and can be widely selected from known refrigerants widely used in this field.
  • Refrigerant 1 may include another refrigerant alone, or may include two or more other refrigerants.
  • the refrigerant 1 is composed of only R32 and R125. In other words, it is particularly preferable that the total concentration of R32 and R125 in the refrigerant 1 is 100% by mass.
  • refrigerant 1 When the refrigerant 1 is composed of only R32 and R125, the content of R32 is preferably 53.1 to 56.0% by mass, and the content of R125 is preferably 44.0 to 46.9% by mass based on the total mass of R32 and R125. .
  • refrigerant 1 has (1) small GWP (AR4) (2000 or less), (2) non-combustible, and (3) refrigeration capacity equivalent to R410A when used as an alternative refrigerant to R410A. And have a COP.
  • the refrigerant 1 When the refrigerant 1 is composed of only R32 and R125, the content of R32 is 53.2 to 55.9% by mass and the content of R125 is 44.1 to 46.8% by mass based on the total mass of R32 and R125. preferable. In this case, the refrigerant 1 has a GWP (AR4) of 2000 or less, is nonflammable, has a COP equivalent to that of R410A, and has an excellent refrigeration capacity for R410A.
  • AR4 GWP
  • the refrigerant 1 When the refrigerant 1 is composed of only R32 and R125, the content of R32 is 53.5 to 55.5% by mass and the content of R125 is 44.5 to 46.5% by mass based on the total mass of R32 and R125. preferable. In this case, the refrigerant 1 has a GWP (AR4) of 2000 or less, is nonflammable, has a COP equivalent to that of R410A, and has more excellent refrigeration capacity for R410A.
  • AR4 GWP
  • Refrigerant 1 is nonflammable (class 1 in the ASHRAE flammability class in the US ANSI / ASHRAE34-2013 standard), similar to R410A, and therefore has higher safety and a wider usable range than flammable refrigerants.
  • the refrigerant 1 When the combustion range was measured using a measuring device based on ASTM No. E681-09 (see FIG. 3), the refrigerant 1 was found to be non-combustible under high-temperature and high-humidity conditions (relative humidity 50% at 36 ° C.). It has the characteristic that Therefore, the refrigerant 1 is nonflammable even under conditions of high temperature and high humidity (50% relative humidity at 36 ° C.), and is a safe refrigerant from the viewpoint of combustibility.
  • the refrigerant 1 has a characteristic that the ASHRAE combustion component in the US ANSI / ASHRAE34-2013 standard is class 1 and that it is nonflammable even under conditions assuming high temperature and high humidity (relative humidity 50% at 36 ° C). Having.
  • Refrigerant 2 (R32 / R125) Refrigerant 2, R32 and R125 are contained as essential components.
  • the total concentration of R32 and R125 in the entire refrigerant 2 is 99.5% by mass or more. In other words, the refrigerant 2 contains 99.5% by mass or more of R32 and R125 in total of these concentrations.
  • Refrigerant 2 has an R32 content of 60.5 to 62.5% by mass and an R125 content of 37.5 to 39.5% by mass based on the total mass of R32 and R125.
  • Refrigerant 2 having such a configuration has (1) a small GWP (AR4) (1800 or less) and (2) non-combustible (the ASHRAE flammability classification in the US ANSI / ASHRAE34-2013 standard is class 1). (3) When used as a substitute refrigerant for R410A, it has various characteristics that it has the same refrigerating capacity and COP as R410A.
  • AR4 small GWP
  • R410A When used as a substitute refrigerant for R410A, it has various characteristics that it has the same refrigerating capacity and COP as R410A.
  • Refrigerant 2 may have a refrigerating capacity for R410A of 85% or more, preferably 90% or more, more preferably 95% or more, still more preferably 100% or more, and more preferably 103% or more. Is particularly preferred.
  • Refrigerant 2 having a GWP of 1800 or less can significantly reduce the environmental load as compared with other general-purpose refrigerants from the viewpoint of global warming.
  • Refrigerant 2 preferably has a high ratio of the power consumed in the refrigeration cycle to R410A and the refrigerating capacity (coefficient of performance (COP)) from the viewpoint of energy consumption efficiency.
  • the COP for R410A is 98% or more. Is preferably, 100% or more, more preferably 101% or more.
  • the refrigerant 2 preferably has an R32 content of 61 to 62.5% by mass and an R125 content of 37.5 to 39% by mass based on the total mass of R32 and R125.
  • the refrigerant 2 has a GWP (AR4) of 1800 or less, is nonflammable, has a COP equivalent to that of R410A, and has an excellent refrigeration capacity for R410A.
  • Refrigerant 2 preferably has a R32 content of 61.5 to 62.5% by mass and a R125 content of 37.5 to 38.5% by mass based on the total mass of R32 and R125.
  • the refrigerant 2 has a GWP (AR4) of 1800 or less, is nonflammable, has a COP equivalent to that of R410A, and has more excellent refrigeration capacity for R410A.
  • Refrigerant 2 contains 99.5% by mass or more of R32 and R125 in total of these concentrations, and among them, the total amount of R32 and R125 in the entire refrigerant 1 is preferably 99.7% by mass or more, more preferably 99.8% by mass or more. It is more preferable if the amount is 99.9% by mass or more.
  • the refrigerant 2 can further contain other refrigerants in addition to R32 and R125 as long as the above characteristics are not impaired.
  • the content ratio of the other refrigerant in the entire refrigerant 2 is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, further preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
  • the other refrigerant is not particularly limited, and can be widely selected from known refrigerants widely used in this field.
  • the refrigerant 2 may include another refrigerant alone, or may include two or more other refrigerants.
  • the refrigerant 2 is composed of only R32 and R125. In other words, it is particularly preferable that the total concentration of R32 and R125 in the refrigerant 2 is 100% by mass.
  • refrigerant 2 When the refrigerant 2 is composed of only R32 and R125, the content of R32 is preferably 60.5 to 62.5% by mass, and the content of R125 is preferably 37.5 to 39.5% by mass based on the total mass of R32 and R125. .
  • refrigerant 2 has (1) low GWP (AR4) (1800 or less), (2) non-combustible, and (3) refrigeration capacity equivalent to R410A when used as an alternative refrigerant to R410A. And have a COP.
  • the content of R32 is preferably 61 to 62.5% by mass and the content of R125 is preferably 37.5 to 39% by mass based on the total mass of R32 and R125. preferable.
  • the refrigerant A has a GWP (AR4) of 1800 or less, is nonflammable, has a COP equivalent to that of R410A, and has an excellent refrigeration capacity for R410A.
  • the refrigerant 2 consists only of R32 and R125
  • the content of R32 is 61.5 to 62.5% by mass and the content of R125 is 37.5 to 38.5% by mass based on the total mass of R32 and R125.
  • the refrigerant A has a GWP (AR4) of 1800 or less, is nonflammable, has a COP equivalent to that of R410A, and has more excellent refrigeration capacity for R410A.
  • Refrigerant 2 is nonflammable (class 1 in the ASHRAE flammability class in the US ANSI / ASHRAE34-2013 standard), similar to R410A, and therefore has higher safety and a wider usable range than flammable refrigerants.
  • Refrigerant 3 (R32 / R125 / R1234yf)
  • Refrigerant 3 contains R32, R125 and R1234yf as essential components.
  • R32, R125, and R1234yf are also referred to as “three components”.
  • the total concentration of the three components in the entire refrigerant 3 is 99.5% by mass or more.
  • the refrigerant 3 contains 99.5% by mass or more of the three components in total of these concentrations.
  • a triangular composition diagram having three components at each vertex is, as shown in FIG. 1, the above three components (R32, R125 and R1234yf) as vertices, and the sum of the concentrations of R32, R125 and R1234yf is 100 mass.
  • % Means a three-component composition diagram.
  • the refrigerant 3 has (1) a small GWP (AR5) (2000 or less), (2) non-combustible, and (3) when used as a substitute refrigerant for R410A, It has various characteristics that it has the same refrigeration capacity and COP as R410A. Since the refrigerant 3 is nonflammable like R410A, it has higher safety and a wider usable range than the flammable refrigerant.
  • AR5 small GWP
  • a straight line a passing through two points A and B is a nonflammability limit line.
  • the three-component mixed refrigerant becomes incombustible.
  • a straight line b passing through the two points B and C is a straight line indicating a mass ratio where the refrigerating capacity is 85% with respect to R410A.
  • the refrigeration capacity of the three-component mixed refrigerant exceeds 85% with respect to R410A.
  • the straight line c passing through the two points C and D is a straight line indicating the mass ratio at which the GWP (AR5) is 2000.
  • the GWP (AR5) of the three-component mixed refrigerant is less than 2000.
  • a straight line d passing through the two points A and D is a straight line indicating a mass ratio at which the concentration (% by mass) of R1234yf becomes 1% by mass.
  • R1234yf of the three-component mixed refrigerant exceeds 1% by mass.
  • Refrigerant 3 which is a ternary mixed refrigerant of R32, R125, and R1234yf, has a GWP at a mass ratio within an area surrounded by a rectangle (ABCD area) having four points at points A, B, C, and D as vertices. (AR5) is 2000 or less, non-combustible, and refrigeration capacity is 85% or more of R410A.
  • the point E is on a straight line b passing through the two points B and C.
  • the straight line b is as described above.
  • a straight line e passing through the two points of the point E and the point F is a straight line indicating a mass ratio at which the GWP (AR4) becomes 2000.
  • the GWP (AR4) of the three-component mixed refrigerant is less than 2000.
  • the point E is the intersection of the straight line b and the straight line e.
  • the point F is on a straight line d passing through the two points A and D.
  • the straight line d is as described above.
  • the point F is an intersection of the straight line d and the straight line e.
  • Refrigerant 3 which is a ternary mixed refrigerant of R32, R125, and R1234yf, has a GWP at a mass ratio within a rectangular area (ABEF area) having four points at points A, B, E, and F as vertices. (AR4) is 2000 or less, non-combustible, and refrigeration capacity is 85% or more of R410A.
  • the point G is on a straight line a passing through two points A and B.
  • the straight line a is as described above.
  • a straight line f passing through the two points G and H is a straight line indicating a mass ratio at which the refrigerating capacity is 90% with respect to R410A.
  • the refrigeration capacity of the three-component mixed refrigerant exceeds 90% of that of R410A.
  • the point G is the intersection of the straight line a and the straight line f.
  • the point H is on a straight line e passing through the two points E and F.
  • the straight line e is as described above. Note that the point H is the intersection of the straight line e and the straight line f.
  • the point F is on a straight line d passing through the two points A and D.
  • the straight line d is as described above. Note that the point F is an intersection of the straight line d and the straight line e.
  • Refrigerant 3 which is a ternary mixed refrigerant of R32, R125, and R1234yf, has a GWP at a mass ratio in the range of an area surrounded by a rectangle having four vertices of points A, G, H, and F (AGHF area).
  • AR4 is 2000 or less, non-combustible, and refrigeration capacity is 90% or more of R410A.
  • Refrigerant 3 contains R32, R125 and R1234yf in a total sum of these concentrations of 99.5% by mass or more, among which, if the total amount of R32, R125 and R1234yf in the entire refrigerant 3 is 99.7% by mass or more, preferably 99.8% by mass. It is more preferably at least 9 mass%, more preferably at least 99.9 mass%.
  • the refrigerant 3 can further contain another refrigerant in addition to R32, R125, and R1234yf as long as the above characteristics are not impaired.
  • the content ratio of the other refrigerant in the entire refrigerant 3 is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, further preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
  • the other refrigerant is not particularly limited, and can be widely selected from known refrigerants widely used in this field.
  • the refrigerant 3 may include another refrigerant alone, or may include two or more other refrigerants.
  • the refrigerant 3 consists only of R32, R125 and R1234yf. In other words, it is particularly preferable that the total concentration of R32, R125 and R1234yf in the refrigerant 3 is 100% by mass.
  • the refrigerant 3 which is a ternary mixed refrigerant of R32, R125 and R1234yf has a mass ratio within the range (ABCD region) surrounded by a rectangle having four points A, B, C and D as vertices.
  • GWP AR5
  • non-combustible and refrigeration capacity is 85% or more of R410A.
  • the refrigerant 3 which is a ternary mixed refrigerant of R32, R125 and R1234yf has a mass ratio within a range (ABEF region) surrounded by a rectangle having four points A, B, E and F as vertices.
  • GWP AR4
  • GWP AR4
  • non-combustible non-combustible
  • refrigeration capacity is 85% or more of R410A.
  • the refrigerant 3 which is a ternary mixed refrigerant of R32, R125 and R1234yf has a mass ratio within a range (AGHF region) surrounded by a rectangle having four points A, G, H and F as vertices.
  • GWP AR4
  • GWP AR4
  • non-combustible non-combustible
  • refrigeration capacity 90% or more of R410A.
  • Refrigerant 4 (R32 / R125 / R1234ze (E))
  • Refrigerant 4 contains R32, R125 and R1234ze (E) as essential components.
  • R32, R125, and R1234ze (E) are also referred to as “three components”.
  • the total concentration of the three components in the entire refrigerant 4 is 99.5% by mass or more.
  • the refrigerant 4 contains 99.5% by mass or more of the three components in total of these concentrations.
  • a triangular composition diagram having three components at each vertex is, as shown in FIG. 2, the above three components (R32, R125 and R1234ze (E)) as vertices, and R32, R125 and R1234ze (E) This means a three-component composition diagram with the total concentration being 100% by mass.
  • the refrigerant 4 has (1) a small GWP (AR5) (2000 or less), (2) non-combustible, and (3) when used as a substitute refrigerant for R410A, It has various characteristics that it has the same refrigeration capacity and COP as R410A.
  • the refrigerant 4 is non-flammable similarly to R410A, and thus has higher safety and a wider usable range than the flammable refrigerant.
  • a straight line g passing through two points P and Q is a nonflammability limit line.
  • the three-component mixed refrigerant becomes incombustible.
  • a straight line h passing through the two points of the point Q and the point R is a straight line indicating a mass ratio where the refrigerating capacity is 85% with respect to R410A.
  • the refrigeration capacity of the three-component mixed refrigerant exceeds 85% with respect to R410A.
  • a straight line i passing through the two points R and S is a straight line indicating a mass ratio at which GWP (AR5) becomes 2000.
  • the GWP (AR5) of the three-component mixed refrigerant is less than 2000.
  • a straight line j passing through the two points S and P is a straight line indicating the mass ratio at which the concentration (% by mass) of R1234ze (E) is 1% by mass.
  • R1234ze (E) of the three-component mixed refrigerant exceeds 1% by mass.
  • Refrigerant 4 which is a ternary refrigerant mixture of R32, R125, and R1234ze (E), has a mass ratio within the range of a region (PQRS region) surrounded by a rectangle having four points P, Q, R, and S as vertices.
  • GWP AR5
  • GWP AR5
  • non-combustible and refrigeration capacity is 85% or more of R410A.
  • the point T is on a straight line h passing through two points, the point Q and the point R.
  • the straight line h is as described above.
  • a straight line k passing through the two points of the point T and the point U is a straight line indicating the mass ratio at which the GWP (AR4) becomes 2000.
  • the GWP (AR4) of the three-component mixed refrigerant is less than 2000.
  • the point T is an intersection of the straight line h and the straight line k.
  • the point U is on a straight line j passing through two points S and P.
  • the straight line j is as described above.
  • Refrigerant 4 which is a ternary refrigerant mixture of R32, R125, and R1234ze (E), has a mass ratio within the range (PQTU region) surrounded by a rectangle having four points P, Q, T, and U as vertices.
  • GWP (AR4) is 2000 or less, non-combustible, and refrigeration capacity is 85% or more of R410A.
  • Point V is on a straight line g passing through two points P and Q.
  • the straight line g is as described above.
  • the point V is an intersection of a straight line g and a straight line l passing through the two points V and R.
  • the point W is on a straight line l passing through two points, the point V and the point R.
  • the straight line 1 is a straight line indicating a mass ratio where the refrigerating capacity is 90% with respect to R410A.
  • the refrigerating capacity of the three-component mixed refrigerant exceeds 90% with respect to R410A.
  • the point W is an intersection of a straight line l and a straight line k passing through two points T and U.
  • the point U is on a straight line j passing through two points S and P.
  • the straight line j is as described above.
  • Point U is the intersection of line j and line k.
  • Refrigerant 4 which is a ternary mixed refrigerant of R32, R125, and R1234ze (E), has a mass ratio within the range (PVWU region) surrounded by a rectangle having four points P, V, W, and U as vertices.
  • GWP (AR4) is 2000 or less, non-combustible, and refrigeration capacity is 90% or more of R410A.
  • Refrigerant 4 contains R32, R125 and R1234ze (E) in a total sum of these concentrations of 99.5% by mass or more, and among them, the total amount of R32, R125 and R1234ze (E) in the entire refrigerant 4 is 99.7% by mass or more. Is preferred, more preferably 99.8% by mass or more, and even more preferably 99.9% by mass or more.
  • the refrigerant 4 can further contain other refrigerants in addition to R32, R125, and R1234ze (E) as long as the above-described characteristics are not impaired.
  • the content ratio of the other refrigerant in the entire refrigerant 4 is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, further preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
  • the other refrigerant is not particularly limited, and can be widely selected from known refrigerants widely used in this field.
  • the refrigerant 4 may include another refrigerant alone, or may include two or more other refrigerants.
  • the refrigerant 4 is particularly preferably composed of only R32, R125 and R1234ze (E). In other words, it is particularly preferable that the total concentration of R32, R125 and R1234ze (E) in the refrigerant 4 is 100% by mass.
  • the refrigerant 4 which is a ternary mixed refrigerant of R32, R125, and R1234ze (E), is within a rectangular area (ABCD area) surrounded by four points P, Q, R, and S.
  • GWP AR5
  • the refrigerating capacity is 85% or more of R410A.
  • the refrigerant 4 which is a ternary mixed refrigerant of R32, R125, and R1234ze (E), is within the area (PQTU area) surrounded by a rectangle having four points P, Q, T, and U as vertices.
  • GWP is 2000 or less
  • non-combustible is 85% or more of R410A.
  • the refrigerant 4 which is a ternary mixed refrigerant of R32, R125, and R1234ze (E), is within the area (PVWU area) surrounded by a rectangle having four points P, V, W, and U as vertices.
  • GWP (AR4) is 2000 or less, non-combustible, and refrigeration capacity is 90% or more of R410A.
  • Refrigerant 1, Refrigerant 2, Refrigerant 3 and Refrigerant 4 have the same refrigerating capacity as R410A, which is currently widely used, and have low GWP (less than 2000). Particularly suitable for use as a refrigerant.
  • composition of the present disclosure containing these refrigerants can be used as a working fluid in the following manner: 1) a refrigeration method including a step of operating a refrigeration cycle, 2) a method of operating a refrigeration apparatus that operates a refrigeration cycle. Can be widely used for applications.
  • the refrigeration cycle is performed by using the composition of the present disclosure via the compressor in the state of only the refrigerant (refrigerant 1, refrigerant 2, refrigerant 3 and refrigerant 4), or a refrigerant composition described below or a refrigerating machine oil-containing working fluid.
  • refrigerant 1, refrigerant 2, refrigerant 3 and refrigerant 4 refrigerant composition described below or a refrigerating machine oil-containing working fluid.
  • the present disclosure also includes inventions of the use of the composition of the present disclosure in a refrigeration method, uses of the composition of the present disclosure in a method of operating a refrigeration apparatus, and further includes a refrigeration apparatus having the composition of the present disclosure. ing.
  • applicable refrigeration equipment is not limited. Equipment, a turbo refrigerator or a screw refrigerator.
  • the refrigerant composition of the present disclosure includes at least the refrigerant of the present disclosure and can be used for the same applications as the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure can be used to obtain a working fluid for a refrigeration apparatus by further mixing at least with a refrigerating machine oil.
  • the refrigerant composition of the present disclosure further contains at least one other component in addition to the refrigerant of the present disclosure.
  • the refrigerant composition of the present disclosure may include at least one of the following other components as necessary.
  • the refrigerant composition of the present disclosure when using the refrigerant composition of the present disclosure as a working fluid in a refrigeration apparatus, it is generally used by mixing at least with refrigeration oil.
  • the refrigerant composition of the present disclosure is preferably substantially free of refrigerating machine oil.
  • the refrigerant composition of the present disclosure has a refrigerating machine oil content of preferably 0 to 1% by mass, more preferably 0 to 0.5% by mass, and still more preferably 0 to 0.5% by mass based on the entire refrigerant composition.
  • the content is 0.25% by mass, particularly preferably 0 to 0.1% by mass.
  • 2.1 refrigerant composition of the water present disclosure may include trace amounts of water.
  • the water content in the refrigerant composition is preferably from 0 to 0.1% by mass, more preferably from 0 to 0.075% by mass, even more preferably from 0 to 0.05% by mass, based on the whole refrigerant. It is particularly preferred that the content is 0.025% by mass.
  • the refrigerant composition contains a trace amount of water, the intramolecular double bond of the unsaturated fluorocarbon compound that can be contained in the refrigerant is stabilized, and the oxidation of the unsaturated fluorocarbon compound is less likely to occur. In addition, the stability of the refrigerant composition is improved.
  • the tracer is added to the refrigerant composition of the present disclosure at a detectable concentration so that any change, dilution, contamination, or other change of the refrigerant composition of the present disclosure can be tracked.
  • the refrigerant composition of the present disclosure may contain the above tracer alone or in combination of two or more.
  • the tracer is not particularly limited and can be appropriately selected from commonly used tracers.
  • a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as a tracer.
  • hydrofluorocarbon, hydrochlorofluorocarbon, chlorofluorocarbon, hydrochlorocarbon, fluorocarbon and fluoroether are preferred.
  • HCC-40 chloromethane, CH 3 Cl
  • HFC-41 fluoromethane, CH 3 F
  • HFC-161 fluoroethane, CH 3 CH 2 F
  • HFC-245fa (1,1,1,3,3-pentafluoropropane, CF 3 CH 2 CHF 2
  • HFC-236fa (1,1,1,3,3,3-hexafluoropropane, CF 3 CH 2 CF 3
  • HFC-236ea 1,1,1,2,3,3-hexafluoropropane, CF 3 CHFCHF 2
  • HCFC-22 chlorodifluoromethane, CHClF 2
  • HCFC-31 chlorofluoromethane, CH 2 ClF
  • the tracer compound can be present in the refrigerant composition at a total concentration of 10 parts per million (ppm) to 1000 ppm.
  • the tracer compound is preferably present in the refrigerant composition at a total concentration of 30 ppm to 500 ppm, more preferably at a total concentration of 50 ppm to 300 ppm, and more preferably at a total concentration of 75 ppm to 250 ppm. More preferably, it is present in the refrigerant composition in a total concentration of 100 ppm to 200 ppm.
  • the refrigerant composition of the present disclosure may contain one ultraviolet fluorescent dye alone, or may contain two or more ultraviolet fluorescent dyes.
  • the ultraviolet fluorescent dye is not particularly limited and can be appropriately selected from commonly used ultraviolet fluorescent dyes.
  • ultraviolet fluorescent dye examples include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, and fluorescein, and derivatives thereof.
  • naphthalimide and coumarin are preferred.
  • the refrigerant composition of the present disclosure may contain one stabilizer alone, or may contain two or more stabilizers.
  • the stabilizer is not particularly limited, and can be appropriately selected from commonly used stabilizers.
  • Examples of the stabilizer include nitro compounds, ethers, and amines.
  • nitro compound examples include aliphatic nitro compounds such as nitromethane and nitroethane, and aromatic nitro compounds such as nitrobenzene and nitrostyrene.
  • ethers examples include 1,4-dioxane.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine, diphenylamine and the like.
  • the stabilizer examples include butyl hydroxyxylene, benzotriazole, and the like in addition to the nitro compound, ethers, and amines.
  • the content ratio of the stabilizer is not particularly limited, and is usually 0.01 to 5% by mass, preferably 0.05 to 3% by mass, more preferably 0.1 to 2% by mass, and 0.25 to 1.5% by mass based on the whole refrigerant. % Is more preferable, and 0.5 to 1% by mass is particularly preferable.
  • the method for evaluating the stability of the refrigerant composition of the present disclosure is not particularly limited, and can be evaluated by a generally used technique. As an example of such a method, there is a method of evaluating the amount of free fluorine ions as an index according to ASHRAE Standard 97-2007. In addition, there is a method of evaluating the total acid value (total acid number) as an index. This method can be performed, for example, according to ASTM No. D # 974-06.
  • the refrigerant composition of the present disclosure may contain one polymerization inhibitor alone, or may contain two or more polymerization inhibitors.
  • the polymerization inhibitor is not particularly limited, and can be appropriately selected from commonly used polymerization inhibitors.
  • Examples of the polymerization inhibitor include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, benzotriazole and the like.
  • the content ratio of the polymerization inhibitor is not particularly limited, and is usually 0.01 to 5% by mass, preferably 0.05 to 3% by mass, more preferably 0.1 to 2% by mass, and 0.25 to 1.5% by mass based on the whole refrigerant. % By mass is more preferable, and 0.5 to 1% by mass is particularly preferable.
  • the refrigerant composition of the present disclosure includes the following components.
  • the fluorinated hydrocarbon as another component is not particularly limited, and includes at least one fluorinated hydrocarbon selected from the group consisting of HCFC-1122, HCFC-124 and CFC-1113.
  • X is independently a fluorine atom, a chlorine atom or a bromine atom
  • m is 1 or 2, 2m + 2 ⁇ n + p, and p ⁇ 1.
  • the halogenated organic compound is not particularly limited, for example, difluorochloromethane, chloromethane, 2-chloro-1,1,1,2,2-pentafluoroethane, 2-chloro-1,1,1,2- Preferred are tetrafluoroethane, 2-chloro-1,1-difluoroethylene, trifluoroethylene and the like.
  • the content of the fluorinated hydrocarbon, the halogenated organic compound represented by the formula (A), and the organic compound represented by the formula (B) is not limited, but the total amount of these is the total amount of the refrigerant composition. Is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less.
  • Refrigeration oil-containing working fluid includes at least the refrigerant or the refrigerant composition of the present disclosure and refrigeration oil, and is used as a working fluid in a refrigeration apparatus.
  • the refrigerating machine oil-containing working fluid of the present disclosure is obtained by mixing a refrigerating machine oil used in a compressor of a refrigerating device with a refrigerant or a refrigerant composition.
  • the content ratio of the refrigerating machine oil is not particularly limited, and is usually 10 to 50% by mass, preferably 12.5 to 45% by mass, more preferably 15 to 40% by mass, based on the entire refrigerating machine oil-containing working fluid. It is more preferably from 17.5 to 35% by mass, particularly preferably from 20 to 30% by mass.
  • composition of the present disclosure may contain one type of refrigerator oil alone, or may contain two or more types of refrigerator oil.
  • the refrigerating machine oil is not particularly limited, and can be appropriately selected from commonly used refrigerating machine oils. In that case, if necessary, the mixture of the refrigerant of the present disclosure (mixed refrigerant of the present disclosure) is more excellent in terms of miscibility and the effect of improving the stability and the like of the mixed refrigerant of the present disclosure. Refrigeration oil can be appropriately selected.
  • the base oil of the refrigerator oil for example, at least one selected from the group consisting of polyalkylene glycol (PAG), polyol ester (POE), and polyvinyl ether (PVE) is preferable.
  • PAG polyalkylene glycol
  • POE polyol ester
  • PVE polyvinyl ether
  • the refrigerating machine oil may further contain an additive in addition to the base oil.
  • the additive is at least one selected from the group consisting of an antioxidant, an extreme pressure agent, an acid scavenger, an oxygen scavenger, a copper deactivator, a rust inhibitor, an oil agent and an antifoaming agent. Is also good.
  • the refrigerating machine oil preferably has a kinematic viscosity at 40 ° C of 5 to 400 cSt.
  • the refrigerating machine oil-containing working fluid of the present disclosure may further include at least one additive as necessary.
  • the additives include the following compatibilizers.
  • the refrigerating machine oil-containing working fluid of the present disclosure may contain one compatibilizer alone, or may contain two or more compatibilizers.
  • the compatibilizer is not particularly limited and can be appropriately selected from commonly used compatibilizers.
  • compatibilizer examples include polyoxyalkylene glycol ether, amide, nitrile, ketone, chlorocarbon, ester, lactone, aryl ether, fluoroether, 1,1,1-trifluoroalkane and the like.
  • polyoxyalkylene glycol ether is preferred.
  • the COP and refrigerating capacity of the mixed refrigerants shown in each Example and Comparative Example, and the COP and refrigerating capacity of R410A, R32, R452B, R454B and R447B were measured by the National Institute of Science and Technology (NIST), Reference Fluid Thermodynamic and Transport. It was determined by performing a refrigeration cycle theoretical calculation of a mixed refrigerant under the following conditions using the Properties Database (Refprop 9.0). Evaporation temperature 45 ° C Condensing temperature 5 °C Superheat temperature 5K Supercooling temperature 5K Compressor efficiency 70%
  • Tables 1 to 3 the COP ratio and the refrigeration capacity ratio indicate the ratio (%) to R410A.
  • COP (refrigeration capacity or heating capacity) / power consumption
  • the flammability of the mixed refrigerant was determined by measuring the combustion rate in accordance with the ANSI / ASHRAE34-2013 standard with the mixed composition of the mixed refrigerant as the WCF concentration. Those with a burning speed of 0 cm / s to 10 cm / s were classified as “Class 2L (slightly flammable)”, and those with no flame propagation were classified as “Class 1 (non-flammable)”.
  • the “ASHRAE flammability category” in Table 1 below indicates a result based on this criterion.
  • the burning rate test was performed as follows. First, the mixed refrigerant used was 99.5% or more pure and degassed by repeating the cycle of freezing, pumping and thawing until no traces of air were seen on the vacuum gauge. The burning rate was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by creating an electrical spark between the electrodes at the center of the sample cell. The duration of the discharge was 1.0-9.9 ms and the ignition energy was typically about 0.1-1.0 J. The spread of the flame was visualized using Schlieren photographs. A cylindrical vessel (inner diameter: 155 mm, length: 198 mm) provided with two acrylic windows through which light passes was used as a sample cell, and a xenon lamp was used as a light source. Flame schlieren images were recorded with a high-speed digital video camera at a framing speed of 600 fps and stored on a PC.
  • test conditions for Examples 4 to 25, Comparative Examples 3 to 7 and Reference Example 1 are as follows.
  • the “combustion test by the ASTM method” in Tables 2 and 3 below shows the results based on the criteria described in the following test conditions.
  • T GWP based on AR4 is 2000, and the mass ratio U is 85% relative to R410A.
  • G4 based on AR4 is 2000
  • R1234ze (E) concentration (% by mass) is 1% by mass
  • V non-combustible
  • refrigeration capacity is 90% by mass relative to R410A
  • W W : A mass ratio where the GWP based on AR4 is 2000 and the refrigerating capacity is 90% with respect to R410A
  • g Nonflammable limit line
  • h A straight line i indicating the mass ratio where the refrigerating capacity is 85% with respect to R410A: AR5 Indicates the mass ratio at which the standard GWP is 2000
  • Line j Straight line indicating the mass ratio at which the concentration (% by mass) of R1234ze (E) is 1% by mass
  • k Straight line indicating the mass ratio at which the GWP based on AR4 is 2000 1:
  • the refrigeration capacity is 90% of R410A Straight line indicating the mass ratio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

本開示は、GWPが小さいこと、R410Aと同等の冷凍能力及びCOPを有すること、という特性を有する冷媒を含有する組成物を提供する。本開示は、具体的には、冷媒を含有する組成物であって、当該冷媒が、ジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含有し、R32及びR125の総濃度が99.5質量%以上であり、且つ、R32及びR125の全質量に対して、R32の含有割合が53.1~56.0質量%であり、R125の含有割合が44.0~46.9質量%である、組成物を提供する。

Description

冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
 本開示は、冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置に関する。
 近年、エアコン、冷凍装置、冷蔵庫等に使用される冷媒としては、ジフルオロメタン(CH2F2、R32、沸点-52℃)、ペンタフルオロエタン(CF3CHF2、R125、沸点-48℃)、1,1,1,2-テトラフルオロエタン(CF3CH2F、R134a、沸点-26℃)、2,3,3,3-テトラフルオロプロペン(CF3CF=CH2、R1234yf、沸点-29℃)、E-又はZ-1,3,3,3-テトラフルオロプロペン(CF3CH=CHF、R1234ze、沸点-19℃)、等のフッ素化炭化水素の混合物が用いられている。
 特許文献1には、上記フッ素化炭化水素のうち、R32/R125からなる2成分混合冷媒であって、その組成が50/50質量%であるもの(R410A)が記載されている。
国際公開第1991/005027号
 本開示は、R410Aと同等の冷凍能力及びCoefficient Of Performance(以下、単にCOPともいう。)を有し、且つGWPが小さい(2000以下)冷媒を用いた、冷媒を含有する組成物
を提供することを目的とする。
 更に、本開示は、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置を提供することも目的とする。
 本開示は、下記に掲げる態様の発明を提供する。
項1. 
 冷媒を含有する組成物であって、
 前記冷媒が、ジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含有し、R32及びR125の総濃度が99.5質量%以上であり、且つ、
 R32及びR125の全質量に対して、
R32の含有割合が53.1~56.0質量%であり、
R125の含有割合が44.0~46.9質量%である、組成物。
項2. 
 冷媒を含有する組成物であって、
 前記冷媒が、ジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含有し、R32及びR125の総濃度が99.5質量%以上であり、且つ、
 R32及びR125の全質量に対して、
R32の含有割合が60.5~62.5質量%であり、
R125の含有割合が37.5~39.5質量%である、組成物。
項3. 
 前記冷媒が、R32及びR125のみからなる、項1又は2に記載の組成物。
項4. 
 冷媒を含有する組成物であって、
 前記冷媒が、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)及び2,3,3,3-テトラフルオロプロペン(R1234yf)を含有し、該三成分の総濃度が99.5質量%以上であり、且つ、
 該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点B(R32/R125/R1234yf=36.5/30.0/33.5質量%)、
点C(R32/R125/R1234yf=26.2/57.5/16.3質量%)及び
点D(R32/R125/R1234yf=45.8/53.2/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にある、組成物。
項5. 
 冷媒を含有する組成物であって、
 前記冷媒が、R32、R125及びR1234yfを含有し、該三成分の総濃度が99.5質量%以上であり、且つ、
 該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点B(R32/R125/R1234yf=36.5/30.0/33.5質量%)、
点E(R32/R125/R1234yf=28.3/51.6/20.1質量%)及び
点F(R32/R125/R1234yf=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にある、項4に記載の組成物。
項6. 
 冷媒を含有する組成物であって、
 前記冷媒が、R32、R125及びR1234yfを含有し、該三成分の総濃度が99.5質量%以上であり、且つ、
 該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点G(R32/R125/R1234yf=35.4/50.3/14.3質量%)、
点H(R32/R125/R1234yf=43.0/31.7/25.3質量%)及び
点F(R32/R125/R1234yf=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にある、項4又は5に記載の組成物。
項7. 
 前記冷媒が、R32、R125及びR1234yfのみからなる、項4~6のいずれか1項に記載の組成物。
項8. 
 冷媒を含有する組成物であって、
 前記冷媒が、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)及びトランス-1,3,3,3-テトラフルオロプロペン(R1234ze(E))を含有し、該三成分の総濃度が99.5質量%以上であり、且つ、
 該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点Q(R32/R125/R1234ze(E)=44.0/30.3/25.7質量%)、
点R(R32/R125/R1234ze(E)=29.9/56.7/13.4質量%)及び
点S(R32/R125/R1234ze(E)=45.8/53.2/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にある、組成物。
項9. 
 冷媒を含有する組成物であって、
 前記冷媒が、R32、R125及びR1234ze(E)を含有し、該三成分の総濃度が99.5質量%以上であり、且つ、
 該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点Q(R32/R125/R1234ze(E)=44.0/30.3/25.7質量%)、
点T(R32/R125/R1234ze(E)=33.4/50.6/16.0質量%)及び
点U(R32/R125/R1234ze(E)=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にある、項8に記載の組成物。
項10. 
 冷媒を含有する組成物であって、
 前記冷媒が、R32、R125及びR1234ze(E)を含有し、該三成分の総濃度が99.5質量%以上であり、且つ、
 該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点V(R32/R125/R1234ze(E)=49.0/32.0/19.0質量%)、
点W(R32/R125/R1234ze(E)=39.2/49.5/11.3質量%)及び
点U(R32/R125/R1234ze(E)=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にある、項8又は9に記載の組成物。
項11. 
 前記冷媒が、R32、R125及びR1234ze(E)のみからなる、項8~10のいずれか1項に記載の組成物。
項12. 
 前記冷媒は、R410Aの代替冷媒として用いられる、項1~11のいずれか1項に記載の組成物。
項13. 
 水、トレーサー、紫外線蛍光染料、安定剤及び重合禁止剤からなる群より選択される少なくとも1種の物質を含有する、項1~12のいずれか1項に記載の組成物。
項14. 
 更に、冷凍機油を含有し、冷凍装置用作動流体として用いられる、項1~13のいずれか1項に記載の組成物。
項15. 
 前記冷凍機油は、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも1種のポリマーを含有する、項14に記載の組成物。
項16. 
 項1~15のいずれか1項に記載の組成物を用いて冷凍サイクルを運転する工程を含む冷凍方法。
項17. 
 項1~15のいずれか1項に記載の組成物を用いて冷凍サイクルを運転する冷凍装置の運転方法。
項18. 
 項1~15のいずれか1項に記載の組成物を作動流体として含む、冷凍装置。
項19. 
 前記冷凍装置が、空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機又はスクリュー冷凍機である、項18に記載の冷凍装置。
項20. 
 冷媒として用いられる、項1~15のいずれか1項に記載の組成物。
項21. 
 冷凍装置における冷媒として用いられる、項20に記載の組成物。
項22. 
 前記冷凍装置が、空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機又はスクリュー冷凍機である、項21に記載の組成物。
項23. 
 冷媒としての、項1~15のいずれか1項に記載の組成物の使用。
項24. 
 冷凍装置における、項23に記載の使用。
項25. 
 前記冷凍装置が、空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機又はスクリュー冷凍機である、項24に記載の使用。
 本開示の冷媒を含有する組成物は、R410Aと同等の冷凍能力及びCOPを有すること、並びにGWPが小さい(2000以下)こと、という特性を有する。
R32、R125及びR1234yfの三角組成図における、本開示の冷媒に含有されるR32、R125及びR1234yfの質量比(点A、B、C及びDの4点を頂点とする四角形で囲まれた領域)を示す図である。 R32、R125及びR1234ze(E)の三角組成図における、本開示の冷媒に含有されるR32、R125及びR1234ze(E)の質量比(点P、Q、R及びSの4点を頂点とする四角形で囲まれた領域)を示す図である。 燃焼性(可燃又は不燃)の判別をするための実験装置の模式図である。
 本発明者らは、上記の課題を解決すべく、鋭意研究を行った結果、冷媒としてR32及びR125を特定濃度で含有する組成物が、上記特性を有していることを見出した。
 本開示は、かかる知見に基づき、更に研究を重ねた結果完成されたものである。本発明は、以下の実施形態を含む。
<用語の定義>
 本明細書中、語句「含有」及び語句「含む」は、語句「実質的にからなる」及び語句「のみからなる」という概念を意図して用いられる。
 本明細書において用語「冷媒」には、ISO817(国際標準化機構)で定められた、冷媒の種類を表すRで始まる冷媒番号(ASHRAE番号)が付された化合物が少なくとも含まれ、更に冷媒番号が未だ付されていないとしても、それらと同等の冷媒としての特性を有するものが含まれる。
 冷媒は、化合物の構造の面で、「フルオロカーボン系化合物」と「非フルオロカーボン系化合物」とに大別される。「フルオロカーボン系化合物」には、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が含まれる。「非フルオロカーボン系化合物」としては、プロパン(R290)、プロピレン(R1270)、ブタン(R600)、イソブタン(R600a)、二酸化炭素(R744)及びアンモニア(R717)等が挙げられる。
 本明細書において、用語「冷媒を含有する組成物」には、
(1)冷媒そのもの(冷媒の混合物、すなわち「混合冷媒」を含む)と、
(2)その他の成分を更に含み、少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることのできる組成物と、
(3)冷凍機油を含有する冷凍装置用作動流体と、が少なくとも含まれる。
 本明細書においては、これら三態様のうち、(2)の組成物のことを、冷媒そのもの(混合冷媒を含む)と区別して「冷媒組成物」と表記する。また、(3)の冷凍装置用作動流体のことを「冷媒組成物」と区別して「冷凍機油含有作動流体」と表記する。
 本明細書において、用語「代替」は、第一の冷媒を第二の冷媒で「代替」するという文脈で用いられる場合、第一の類型として、第一の冷媒を使用して運転するために設計された機器において、必要に応じてわずかな部品(冷凍機油、ガスケット、パッキン、膨張弁、ドライヤその他の部品のうち少なくとも一種)の変更及び機器調整のみを経るだけで、第二の冷媒を使用して、最適条件下で運転することができることを意味する。すなわち、この類型は、同一の機器を、冷媒を「代替」して運転することを指す。この類型の「代替」の態様としては、第二の冷媒への置き換えの際に必要とされる変更乃至調整の度合いが小さい順に、「ドロップイン(drop in)代替」、「ニアリー・ドロップイン(nealy drop in)代替」及び「レトロフィット(retrofit)」があり得る。
 第二の類型として、第二の冷媒を用いて運転するために設計された機器を、第一の冷媒の既存用途と同一の用途のために、第二の冷媒を搭載して用いることも、用語「代替」に含まれる。この類型は、同一の用途を、冷媒を「代替」して提供することを指す。
 本明細書において用語「冷凍装置」とは、物又は空間の熱を奪い去ることにより、周囲の外気よりも低い温度にし、かつこの低温を維持する装置全般のことをいう。言い換えれば、広義には、冷凍装置は温度の低い方から高い方へ熱を移動させるために、外部からエネルギーを得て仕事を行いエネルギー変換する変換装置のことをいう。本開示において、広義には、冷凍装置はヒートポンプと同義である。
 また、本開示において、狭義には、利用する温度領域及び作動温度の違いにより冷凍装置はヒートポンプとは区別して用いられる。この場合、大気温度よりも低い温度領域に低温熱源を置くものを冷凍装置といい、これに対して低温熱源を大気温度の近くに置いて冷凍サイクルを駆動することによる放熱作用を利用するものをヒートポンプということもある。なお、「冷房モード」及び「暖房モード」等を有するエアコン等のように、同一の機器であるにもかかわらず、狭義の冷凍装置及び狭義のヒートポンプの機能を兼ね備えるものも存在する。本明細書においては、特に断りのない限り、「冷凍装置」及び「ヒートポンプ」は全て広義の意味で用いられる。
 本明細書において、「車載用空調機器」とは、ガソリン車、ハイブリッド自動車、電気自動車、水素自動車などの自動車で用いられる冷凍装置の一種である。車載用空調機器とは、蒸発器にて液体の冷媒に熱交換を行わせ、蒸発した冷媒ガスを圧縮機が吸い込み、断熱圧縮された冷媒ガスを凝縮器で冷却して液化させ、さらに膨張弁を通過させて断熱膨張させた後、蒸発機に再び液体の冷媒として供給する冷凍サイクルからなる冷凍装置を指す。
 本明細書において、「ターボ冷凍機」とは、大型冷凍装置の一種であって、蒸発器にて液体の冷媒に熱交換を行わせ、蒸発した冷媒ガスを遠心式圧縮機が吸い込み、断熱圧縮された冷媒ガスを凝縮器で冷却して液化させ、さらに膨張弁を通過させて断熱膨張させた後、蒸発機に再び液体の冷媒として供給する冷凍サイクルからなる冷凍装置を指す。なお、上記「大型冷凍機」とは、建物単位での空調を目的とした大型空調機を指す。
 本明細書における不燃及び微燃の技術的意味は次の通りである。
 本明細書において冷媒が「不燃」であるとは、米国ANSI/ASHRAE34-2013規格において冷媒許容濃度のうち最も燃えやすい組成であるWCF(Worst case of formulation for flammability)組成が「クラス1」と判断されることを意味する。
 本明細書において冷媒が「微燃」であるとは、米国ANSI/ASHRAE34-2013規格においてWCF組成が「クラス2L」と判断されることを意味する。
 本明細書において、GWP(AR4)は、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいた値を意味する。
 本明細書において、GWP(AR5)は、IPCC第5次報告書の値に基づいた値を意味する。
1.組成物
 本開示の組成物は冷媒を含有し、当該冷媒としては、「冷媒1」、「冷媒2」、「冷媒3」及び「冷媒4」が挙げられる。以下、冷媒1、冷媒2、冷媒3及び冷媒4についてそれぞれ説明する。
 以下、本明細書において、「本開示の冷媒」とは冷媒1、冷媒2、冷媒3及び冷媒4を意味する。
 本開示の冷媒は、実施形態ごとに大別すると、実施形態1、2、3及び4(それぞれ冷媒1、冷媒2、冷媒3及び冷媒4ともいう)に分けることができる。
1.1 冷媒成分
1.1.1 実施形態1:冷媒1(R32/R125)
 冷媒1は、R32及びR125を必須成分として含有する。
 冷媒1全体における、R32及びR125の総濃度は99.5質量%以上である。換言すると、冷媒1は、R32及びR125をこれらの濃度の総和で99.5質量%以上含有する。
 冷媒1は、R32及びR125の全質量に対して、R32の含有割合が53.1~56.0質量%であり、且つR125の含有割合が44.0~46.9質量%である。
 冷媒1は、このような構成を有することによって、(1)GWP(AR4)が小さいこと(2000以下)、(2)不燃であること、並びに(3)R410Aの代替冷媒として用いた場合に、R410Aと同等の冷凍能力及びCOPを有すること、という諸特性を有する。
 また、冷媒1は、上記構成を有することによって、GWP(AR4)が1800以上2000以下であり、且つ不燃であるという特性を有する。
 冷媒1は、R410Aに対する冷凍能力は85%以上であればよいが、90%以上であることが好ましく、95%以上であることがより好ましく、100%以上であることが特に好ましい。
 冷媒1は、GWP(AR4)が2000以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
 冷媒1は、エネルギー消費効率の点から、R410Aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が高いことが好ましく、具体的には、R410Aに対するCOPは98%以上であることが好ましく、99%以上であることがより好ましく、100%以上であることが特に好ましい。
 冷媒1は、R32及びR125の全質量に対して、R32の含有割合が53.2~55.9質量%であり、R125の含有割合が44.1~46.8質量%であることが好ましい。この場合、冷媒1はGWP(AR4)が2000以下であり、不燃であり、R410Aと同等のCOPを有し、且つR410Aに対する冷凍能力が優れたものとなる。
 冷媒1は、R32及びR125の全質量に対して、R32の含有割合が53.5~55.5質量%であり、R125の含有割合が44.5~46.5質量%であることがより好ましい。この場合、冷媒1は、GWP(AR4)が2000以下であり、不燃であり、R410Aと同等のCOPを有し、且つR410Aに対する冷凍能力がより優れたものとなる。
 冷媒1は、R32及びR125をこれらの濃度の総和で99.5質量%以上含有するが、その中でも、冷媒1全体におけるR32及びR125の合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
 冷媒1は、上記の特性を損なわない範囲内で、R32及びR125に加えて、更に他の冷媒を含有することができる。この場合、冷媒1全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒1は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
 冷媒1は、R32及びR125のみからなることが特に好ましい。換言すると、冷媒1は、冷媒1全体におけるR32及びR125の総濃度が100質量%であることが特に好ましい。
 冷媒1が、R32及びR125のみからなる場合、R32及びR125の全質量に対して、R32の含有割合が53.1~56.0質量%であり、R125の含有割合が44.0~46.9質量%であることが好ましい。この場合、冷媒1は、(1)GWP(AR4)が小さいこと(2000以下)、(2)不燃であること、並びに(3)R410Aの代替冷媒として用いた場合に、R410Aと同等の冷凍能力及びCOPを有すること、という諸特性を有する。
 冷媒1が、R32及びR125のみからなる場合、R32及びR125の全質量に対して、R32の含有割合が53.2~55.9質量%であり、R125の含有割合が44.1~46.8質量%であることがより好ましい。この場合、冷媒1は、GWP(AR4)が2000以下であり、不燃であり、R410Aと同等のCOPを有し、且つR410Aに対する冷凍能力が優れたものとなる。
 冷媒1が、R32及びR125のみからなる場合、R32及びR125の全質量に対して、R32の含有割合が53.5~55.5質量%であり、R125の含有割合が44.5~46.5質量%であることが更に好ましい。この場合、冷媒1は、GWP(AR4)が2000以下であり、不燃であり、R410Aと同等のCOPを有し、且つR410Aに対する冷凍能力がより優れたものとなる。
 冷媒1は、R410Aと同様に不燃(米国ANSI/ASHRAE34-2013規格におけるASHRAE燃焼性区分がクラス1)であることによって、可燃性冷媒に比して安全性が高く使用可能範囲が広い。
 また、冷媒1は、ASTM E681-09に基づく測定装置(図3を参照)を用いて燃焼範囲を測定した場合、高温多湿を想定した条件下(36℃での相対湿度50%)において、不燃であるという特性を有する。よって、冷媒1は、高温多湿を想定した条件下(36℃での相対湿度50%)においても不燃であるため、燃焼性の観点で安全な冷媒である。
 即ち、冷媒1は、米国ANSI/ASHRAE34-2013規格における、ASHRAE燃焼成分がクラス1であり、且つ高温多湿を想定した条件下(36℃での相対湿度50%)においても不燃である、という特性を有する。
1.1.2 実施形態2:冷媒2(R32/R125)
 冷媒2、R32及びR125を必須成分として含有する。
 冷媒2全体における、R32及びR125の総濃度は99.5質量%以上である。換言すると、冷媒2は、R32及びR125をこれらの濃度の総和で99.5質量%以上含有する。
 冷媒2は、R32及びR125の全質量に対して、R32の含有割合が60.5~62.5質量%であり、且つR125の含有割合が37.5~39.5質量%である。
 冷媒2は、このような構成を有することによって、(1)GWP(AR4)が小さいこと(1800以下)、(2)不燃(米国ANSI/ASHRAE34-2013規格におけるASHRAE燃焼性区分がクラス1)であること、並びに(3)R410Aの代替冷媒として用いた場合に、R410Aと同等の冷凍能力及びCOPを有すること、という諸特性を有する。
 冷媒2は、R410Aに対する冷凍能力は85%以上であればよいが、90%以上であることが好ましく、95%以上であることがより好ましく、100%以上であることが更に好ましく、103%以上であることが特に好ましい。
 冷媒2は、GWPが1800以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
 冷媒2は、エネルギー消費効率の点から、R410Aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が高いことが好ましく、具体的には、R410Aに対するCOPは98%以上であることが好ましく、100%以上であることがより好ましく、101%以上であることが特に好ましい。
 冷媒2は、R32及びR125の全質量に対して、R32の含有割合が61~62.5質量%であり、R125の含有割合が37.5~39質量%であることが好ましい。この場合、冷媒2はGWP(AR4)が1800以下であり、不燃であり、R410Aと同等のCOPを有し、且つR410Aに対する冷凍能力が優れたものとなる。
 冷媒2は、R32及びR125の全質量に対して、R32の含有割合が61.5~62.5質量%であり、R125の含有割合が37.5~38.5質量%であることがより好ましい。この場合、冷媒2は、GWP(AR4)が1800以下であり、不燃であり、R410Aと同等のCOPを有し、且つR410Aに対する冷凍能力がより優れたものとなる。
 冷媒2は、R32及びR125をこれらの濃度の総和で99.5質量%以上含有するが、その中でも、冷媒1全体におけるR32及びR125の合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
 冷媒2は、上記の特性を損なわない範囲内で、R32及びR125に加えて、更に他の冷媒を含有することができる。この場合、冷媒2全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
 冷媒2は、R32及びR125のみからなることが特に好ましい。換言すると、冷媒2は、冷媒2全体におけるR32及びR125の総濃度が100質量%であることが特に好ましい。
 冷媒2が、R32及びR125のみからなる場合、R32及びR125の全質量に対して、R32の含有割合が60.5~62.5質量%であり、R125の含有割合が37.5~39.5質量%であることが好ましい。この場合、冷媒2は、(1)GWP(AR4)が小さいこと(1800以下)、(2)不燃であること、並びに(3)R410Aの代替冷媒として用いた場合に、R410Aと同等の冷凍能力及びCOPを有すること、という諸特性を有する。
 冷媒2が、R32及びR125のみからなる場合、R32及びR125の全質量に対して、R32の含有割合が61~62.5質量%であり、R125の含有割合が37.5~39質量%であることがより好ましい。この場合、冷媒Aは、GWP(AR4)が1800以下であり、不燃であり、R410Aと同等のCOPを有し、且つR410Aに対する冷凍能力が優れたものとなる。
 冷媒2が、R32及びR125のみからなる場合、R32及びR125の全質量に対して、R32の含有割合が61.5~62.5質量%であり、R125の含有割合が37.5~38.5質量%であることが更に好ましい。この場合、冷媒Aは、GWP(AR4)が1800以下であり、不燃であり、R410Aと同等のCOPを有し、且つR410Aに対する冷凍能力がより優れたものとなる。
 冷媒2は、R410Aと同様に不燃(米国ANSI/ASHRAE34-2013規格におけるASHRAE燃焼性区分がクラス1)であることによって、可燃性冷媒に比して安全性が高く使用可能範囲が広い。
1.1.3 実施形態3:冷媒3(R32/R125/R1234yf)
 冷媒3は、R32、R125及びR1234yfを必須成分として含有する。以下、本項目において、R32、R125及びR1234yfを「三成分」とも称する。
 冷媒3全体における、三成分の総濃度は99.5質量%以上である。換言すると、冷媒3は、三成分をこれらの濃度の総和で99.5質量%以上含有する。
 冷媒3において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点B(R32/R125/R1234yf=36.5/30.0/33.5質量%)、
点C(R32/R125/R1234yf=26.2/57.5/16.3質量%)及び
点D(R32/R125/R1234yf=45.8/53.2/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にある。
 本項目において、三成分を各頂点とする三角組成図とは、図1に示すように、上記三成分(R32、R125及びR1234yf)を頂点とし、R32、R125及びR1234yfの濃度の総和を100質量%とする三成分組成図を意味する。
 冷媒3は、このような構成を有することによって、(1)GWP(AR5)が小さいこと(2000以下)、(2)不燃であること、並びに(3)R410Aの代替冷媒として用いた場合に、R410Aと同等の冷凍能力及びCOPを有すること、という諸特性を有する。冷媒3は、R410Aと同様に不燃であることによって、可燃性冷媒に比して安全性が高く使用可能範囲が広い。
 点A及び点Bの二点を通る直線aは、不燃限界線である。直線aよりも三角組成図の頂点R125側の領域では、三成分の混合冷媒は不燃になる。
 点B及び点Cの二点を通る直線bは、冷凍能力がR410Aに対して85%である質量比を示す直線である。直線bよりも三角組成図の頂点R32側の領域では、三成分の混合冷媒の冷凍能力がR410Aに対して85%を超える。
 点C及び点Dの二点を通る直線cは、GWP(AR5)が2000となる質量比を示す直線である。直線cよりも三角組成図の頂点R32側及び頂点R1234yf側の領域では、三成分の混合冷媒のGWP(AR5)が2000未満である。
 点A及び点Dの二点を通る直線dでは、R1234yfの濃度(質量%)が1質量%となる質量比を示す直線である。直線dよりも三角組成図の頂点R1234yf側の領域では、三成分の混合冷媒のR1234yfが1質量%を超える。
 R32、R125及びR1234yfの三元混合冷媒である冷媒3は、点A、B、C及びDの4点を頂点とする四角形で囲まれた領域(ABCD領域)の範囲内の質量比において、GWP(AR5)が2000以下、不燃、且つ冷凍能力がR410Aに対して85%以上となる。
 冷媒3において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点B(R32/R125/R1234yf=36.5/30.0/33.5質量%)、
点E(R32/R125/R1234yf=28.3/51.6/20.1質量%)及び
点F(R32/R125/R1234yf=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることが好ましい。
 上記三成分を各頂点とする三角組成図については、上記の通りである。
 点A及び点Bの二点を通る直線aについては、上記の通りである。
 点Eは、点B及び点Cの二点を通る直線b上にある。直線bについては、上記の通りである。
 点E及び点Fの二点を通る直線eは、GWP(AR4)が2000となる質量比を示す直線である。直線eよりも三角組成図の頂点R32側及び頂点R1234yf側の領域では、三成分の混合冷媒のGWP(AR4)が2000未満である。なお、点Eは、直線bと直線eとの交点である。
 点Fは、点A及び点Dの二点を通る直線d上にある。直線dについては、上記の通りである。なお、点Fは、直線dと直線eとの交点である。
 R32、R125及びR1234yfの三元混合冷媒である冷媒3は、点A、B、E及びFの4点を頂点とする四角形で囲まれた領域(ABEF領域)の範囲内の質量比において、GWP(AR4)が2000以下、不燃、且つ冷凍能力がR410Aに対して85%以上となる。
 冷媒3において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点G(R32/R125/R1234yf=35.4/50.3/14.3質量%)、
点H(R32/R125/R1234yf=43.0/31.7/25.3質量%)及び
点F(R32/R125/R1234yf=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることが好ましい。
 上記三成分を各頂点とする三角組成図については、上記の通りである。
 点Gは、点A及び点Bの二点を通る直線a上にある。直線aについては、上記の通りである。
 点G及び点Hの二点を通る直線fは、冷凍能力がR410Aに対して90%である質量比を示す直線である。直線fよりも三角組成図の頂点R32側の領域では、三成分の混合冷媒の冷凍能力がR410Aに対して90%を超える。なお、点Gは、直線aと直線fとの交点である。
 点Hは、点E及び点Fの二点を通る直線e上にある。直線eについては、上記の通りである。なお、点Hは、直線eと直線fとの交点である。
 点Fは、点A及び点Dの二点を通る直線d上にある。直線dについては、上記の通りである。なお、点Fは、直線dと直線eとの交点である。
 R32、R125及びR1234yfの三元混合冷媒である冷媒3は、点A、G、H及びFの4点を頂点とする四角形で囲まれた領域(AGHF領域)の範囲内の質量比において、GWP(AR4)が2000以下、不燃、且つ冷凍能力がR410Aに対して90%以上となる。
 冷媒3は、R32、R125及びR1234yfをこれらの濃度の総和で99.5質量%以上含有するが、その中でも、冷媒3全体におけるR32、R125及びR1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
 冷媒3は、上記の特性を損なわない範囲内で、R32、R125及びR1234yfに加えて、更に他の冷媒を含有することができる。この場合、冷媒3全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒3は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
 冷媒3は、R32、R125及びR1234yfのみからなることが特に好ましい。換言すると、冷媒3は、冷媒3全体におけるR32、R125及びR1234yfの総濃度が100質量%であることが特に好ましい。
 冷媒3は、R32、R125及びR1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点B(R32/R125/R1234yf=36.5/30.0/33.5質量%)、
点C(R32/R125/R1234yf=26.2/57.5/16.3質量%)及び
点D(R32/R125/R1234yf=45.8/53.2/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることが好ましい。
 この場合、R32、R125及びR1234yfの三元混合冷媒である冷媒3は、点A、B、C及びDの4点を頂点とする四角形で囲まれた領域(ABCD領域)の範囲内の質量比において、GWP(AR5)が2000以下、不燃、且つ冷凍能力がR410Aに対して85%以上となる。
 冷媒3は、R32、R125及びR1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点B(R32/R125/R1234yf=36.5/30.0/33.5質量%)、
点E(R32/R125/R1234yf=28.3/51.6/20.1質量%)及び
点F(R32/R125/R1234yf=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることがより好ましい。
 この場合、R32、R125及びR1234yfの三元混合冷媒である冷媒3は、点A、B、E及びFの4点を頂点とする四角形で囲まれた領域(ABEF領域)の範囲内の質量比において、GWP(AR4)が2000以下、不燃、且つ冷凍能力がR410Aに対して85%以上となる。
 冷媒3は、R32、R125及びR1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
点G(R32/R125/R1234yf=35.4/50.3/14.3質量%)、
点H(R32/R125/R1234yf=43.0/31.7/25.3質量%)及び
点F(R32/R125/R1234yf=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることが更に好ましい。
 この場合、R32、R125及びR1234yfの三元混合冷媒である冷媒3は、点A、G、H及びFの4点を頂点とする四角形で囲まれた領域(AGHF領域)の範囲内の質量比において、GWP(AR4)が2000以下、不燃、且つ冷凍能力がR410Aに対して90%以上となる。
1.1.4 実施形態4:冷媒4(R32/R125/R1234ze(E))
 冷媒4は、R32、R125及びR1234ze(E)を必須成分として含有する。以下、本項目において、R32、R125及びR1234ze(E)を「三成分」とも称する。
 冷媒4全体における、三成分の総濃度は99.5質量%以上である。換言すると、冷媒4は、三成分をこれらの濃度の総和で99.5質量%以上含有する。
 冷媒4において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点Q(R32/R125/R1234ze(E)=44.0/30.3/25.7質量%)、
点R(R32/R125/R1234ze(E)=29.9/56.7/13.4質量%)及び
点S(R32/R125/R1234ze(E)=45.8/53.2/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にある。
 本項目において、三成分を各頂点とする三角組成図とは、図2に示すように、上記三成分(R32、R125及びR1234ze(E))を頂点とし、R32、R125及びR1234ze(E)の濃度の総和を100質量%とする三成分組成図を意味する。
 冷媒4は、このような構成を有することによって、(1)GWP(AR5)が小さいこと(2000以下)、(2)不燃であること、並びに(3)R410Aの代替冷媒として用いた場合に、R410Aと同等の冷凍能力及びCOPを有すること、という諸特性を有する。冷媒4は、R410Aと同様に不燃であることによって、可燃性冷媒に比して安全性が高く使用可能範囲が広い。
 点P及び点Qの二点を通る直線gは、不燃限界線である。直線gよりも三角組成図の頂点R125側の領域では、三成分の混合冷媒は不燃になる。
 点Q及び点Rの二点を通る直線hは、冷凍能力がR410Aに対して85%である質量比を示す直線である。直線hよりも三角組成図の頂点R32側の領域では、三成分の混合冷媒の冷凍能力がR410Aに対して85%を超える。
 点R及び点Sの二点を通る直線iは、GWP(AR5)が2000となる質量比を示す直線である。直線iよりも三角組成図の頂点R32側及び頂点R1234ze(E)側の領域では、三成分の混合冷媒のGWP(AR5)が2000未満である。
 点S及び点Pの二点を通る直線jでは、R1234ze(E)の濃度(質量%)が1質量%となる質量比を示す直線である。直線jよりも三角組成図の頂点R1234ze(E)側の領域では、三成分の混合冷媒のR1234ze(E)が1質量%を超える。
 R32、R125及びR1234ze(E)の三元混合冷媒である冷媒4は、点P、Q、R及びSの4点を頂点とする四角形で囲まれた領域(PQRS領域)の範囲内の質量比において、GWP(AR5)が2000以下、不燃、且つ冷凍能力がR410Aに対して85%以上となる。
 冷媒4において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点Q(R32/R125/R1234ze(E)=44.0/30.3/25.7質量%)、
点T(R32/R125/R1234ze(E)=33.4/50.6/16.0質量%)及び
点U(R32/R125/R1234ze(E)=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることが好ましい。
 上記三成分を各頂点とする三角組成図については、上記の通りである。
 点P及び点Qの二点を通る直線gについては、上記の通りである。
 点Tは、点Q及び点Rの二点を通る直線h上にある。直線hについては、上記の通りである。
 点T及び点Uの二点を通る直線kは、GWP(AR4)が2000となる質量比を示す直線である。直線kよりも三角組成図の頂点R32側及び頂点R1234ze(E)側の領域では、三成分の混合冷媒のGWP(AR4)が2000未満である。なお、点Tは、直線hと直線kとの交点である。
 点Uは、点S及び点Pの二点を通る直線j上にある。直線jについては、上記の通りである。
 R32、R125及びR1234ze(E)の三元混合冷媒である冷媒4は、点P、Q、T及びUの4点を頂点とする四角形で囲まれた領域(PQTU領域)の範囲内の質量比において、GWP(AR4)が2000以下、不燃、且つ冷凍能力がR410Aに対して85%以上となる。
 冷媒4において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点V(R32/R125/R1234ze(E)=49.0/32.0/19.0質量%)、
点W(R32/R125/R1234ze(E)=39.2/49.5/11.3質量%)及び
点U(R32/R125/R1234ze(E)=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることが好ましい。
 上記三成分を各頂点とする三角組成図については、上記の通りである。
 点Vは、点P及び点Qの二点を通る直線g上にある。直線gについては、上記の通りである。点Vは、直線gと、点V及び点Rの二点を通る直線lとの交点である。
 点Wは、点V及び点Rの二点を通る直線l上にある。直線lは、冷凍能力がR410Aに対して90%である質量比を示す直線である。直線lよりも三角組成図の頂点R32側の領域では、三成分の混合冷媒の冷凍能力がR410Aに対して90%を超える。点Wは、直線lと、点T及び点Uの二点を通る直線kとの交点である。
 点Uは、点S及び点Pの二点を通る直線j上にある。直線jについては、上記の通りである
。点Uは、直線jと直線kとの交点である。
 R32、R125及びR1234ze(E)の三元混合冷媒である冷媒4は、点P、V、W及びUの4点を頂点とする四角形で囲まれた領域(PVWU領域)の範囲内の質量比において、GWP(AR4)が2000以下、不燃、且つ冷凍能力がR410Aに対して90%以上となる。
 冷媒4は、R32、R125及びR1234ze(E)をこれらの濃度の総和で99.5質量%以上含有するが、その中でも、冷媒4全体におけるR32、R125及びR1234ze(E)の合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
 冷媒4は、上記の特性を損なわない範囲内で、R32、R125及びR1234ze(E)に加えて、更に他の冷媒を含有することができる。この場合、冷媒4全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒4は、他の冷媒を単独で含んでい
てもよいし、他の冷媒を2種以上含んでいてもよい。
 冷媒4は、R32、R125及びR1234ze(E)のみからなることが特に好ましい。換言すると、冷媒4は、冷媒4全体におけるR32、R125及びR1234ze(E)の総濃度が100質量%であることが特に好ましい。
 冷媒4は、R32、R125及びR1234ze(E)のみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点Q(R32/R125/R1234ze(E)=44.0/30.3/25.7質量%)、
点R(R32/R125/R1234ze(E)=29.9/56.7/13.4質量%)及び
点S(R32/R125/R1234ze(E)=45.8/53.2/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることが好ましい。
 この場合、R32、R125及びR1234ze(E)の三元混合冷媒である冷媒4は、点P、Q、R及びSの4点を頂点とする四角形で囲まれた領域(ABCD領域)の範囲内の質量比において、GWP(AR5)が2000以下、不燃、且つ冷凍能力がR410Aに対して85%以上となる。
 冷媒4は、R32、R125及びR1234ze(E)のみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点Q(R32/R125/R1234ze(E)=44.0/30.3/25.7質量%)、
点T(R32/R125/R1234ze(E)=33.4/50.6/16.0質量%)及び
点U(R32/R125/R1234ze(E)=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることがより好ましい。
 この場合、R32、R125及びR1234ze(E)の三元混合冷媒である冷媒4は、点P、Q、T及びUの4点を頂点とする四角形で囲まれた領域(PQTU領域)の範囲内の質量比において、GWP(AR4)が2000以下、不燃、且つ冷凍能力がR410Aに対して85%以上となる。
 冷媒4は、R32、R125及びR1234ze(E)のみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
点V(R32/R125/R1234ze(E)=49.0/32.0/19.0質量%)、
点W(R32/R125/R1234ze(E)=39.2/49.5/11.3質量%)及び
点U(R32/R125/R1234ze(E)=51.9/47.1/1.0質量%)、
の4点を頂点とする四角形で囲まれた領域の範囲内にあることが更に好ましい。
 この場合、R32、R125及びR1234ze(E)の三元混合冷媒である冷媒4は、点P、V、W及びUの4点を頂点とする四角形で囲まれた領域(PVWU領域)の範囲内の質量比において、GWP(AR4)が2000以下、不燃、且つ冷凍能力がR410Aに対して90%以上となる。
1.2 用途
 冷媒1、冷媒2、冷媒3及び冷媒4は、それぞれ現在汎用されているR410Aと同等の冷凍能力を有し、且つGWPが小さい(2000以下)という性能を有するため、R410Aの代替冷媒としての使用に特に適している。
 さらに、これらの冷媒を含有する本開示の組成物は、作動流体として、1)冷凍サイクルを運転する工程を含む冷凍方法、2)冷凍サイクルを運転する冷凍装置の運転方法等における既存の冷媒の用途に幅広く利用することができる。
 ここで、上記冷凍サイクルは、圧縮機を介して本開示の組成物を上記冷媒(冷媒1、冷媒2、冷媒3及び冷媒4)のみの状態、又は後述する冷媒組成物或いは冷凍機油含有作動流体の状態で冷凍装置の内部を循環させてエネルギー変換することを意味する。
 従って、本開示には、冷凍方法における本開示の組成物の使用の発明、冷凍装置の運転方法における本開示の組成物の使用の発明、更には本開示の組成物を有する冷凍装置も包含されている。
 なお、適用できる冷凍装置は限定的ではないが、例えば、空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機又はスクリュー冷凍機が挙げられる。
2.冷媒組成物
 本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。
 また、本開示の冷媒組成物は、更に少なくとも冷凍機油と混合することにより冷凍装置用作動流体を得るために用いることができる。
 本開示の冷媒組成物は、本開示の冷媒に加えて、更に少なくとも1種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも1種を含有していてもよい。
 上述の通り、本開示の冷媒組成物を、冷凍装置における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。
 ここで、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは0~1質量%であり、より好ましくは0~0.5質量%であり、更に好ましくは0~0.25質量%であり、特に好ましくは0~0.1質量%である。
2.1 
 本開示の冷媒組成物は微量の水を含んでもよい。
 冷媒組成物における含水割合は、冷媒全体に対して、0~0.1質量%であることが好ましく、0~0.075質量%であることがより好ましく、0~0.05質量%であることが更に好ましく、0~0.025質量%であることが特に好ましい。
 冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。
2.2 トレーサー
 トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
 本開示の冷媒組成物は、上記トレーサーを1種単独で含有してもよいし、2種以上を含有してもよい。
 上記トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。好ましくは、本開示の冷媒に不可避的に混入する不純物とはなり得ない化合物をトレーサーとして選択する。
 上記トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。これらの中でも、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが好ましい。
 上記トレーサーとしては、具体的には、以下の化合物(以下、トレーサー化合物とも称する)がより好ましい。
HCC-40(クロロメタン、CH3Cl)
HFC-41(フルオロメタン、CH3F)
HFC-161(フルオロエタン、CH3CH2F)
HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、CF3CH2CHF2
HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン、CF3CH2CF3
HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CF3CHFCHF2
HCFC-22(クロロジフルオロメタン、CHClF2
HCFC-31(クロロフルオロメタン、CH2ClF)
CFC-1113(クロロトリフルオロエチレン、CF2=CClF)
HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CF3OCHF2
HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CF3OCH2F)
HFE-143a(トリフルオロメチル-メチルエーテル、CF3OCH3
HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CF3OCHFCF3
HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CF3OCH2CF3
 上記トレーサー化合物は、10質量百万分率(ppm)~1000ppmの合計濃度で冷媒組成物中に存在し得る。上記トレーサー化合物は30ppm~500ppmの合計濃度で冷媒組成物中に存在することが好ましく、50ppm~300ppmの合計濃度で冷媒組成物中に存在することがより好ましく、75ppm~250ppmの合計濃度で冷媒組成物中に存在することが更に好ましく、100ppm~200ppmの合計濃度で冷媒組成物中に存在することが特に好ましい。
2.3 紫外線蛍光染料
 本開示の冷媒組成物は、紫外線蛍光染料を1種単独で含有してもよいし、2種以上を含有してもよい。
 上記紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
 上記紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。これらの中でも、ナフタルイミド及びクマリンが好ましい。
2.4 安定剤
 本開示の冷媒組成物は、安定剤を1種単独で含有してもよいし、2種以上を含有してもよい。
 上記安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
 上記安定剤としては、例えば、ニトロ化合物、エーテル類、アミン類等が挙げられる。
 ニトロ化合物としては、例えば、ニトロメタン、ニトロエタン等の脂肪族ニトロ化合物、及びニトロベンゼン、ニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
 エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
 アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
 上記安定剤としては、上記ニトロ化合物、エーテル類及びアミン類以外にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
 上記安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%であり、0.05~3質量%が好ましく、0.1~2質量%がより好ましく、0.25~1.5質量%が更に好ましく、0.5~1質量%が特に好ましい。
 なお、本開示の冷媒組成物の安定性の評価方法は、特に限定されず、一般的に用いられる手法で評価することができる。そのような手法の一例として、ASHRAE標準97-2007にしたがって遊離フッ素イオンの量を指標として評価する方法等が挙げられる。その他にも、全酸価(total acid number)を指標として評価する方法等も挙げられる。この方法は、例えば、ASTM D 974-06にしたがって行うことができる。
2.5 重合禁止剤
 本開示の冷媒組成物は、重合禁止剤を1種単独で含有してもよいし、2種以上を含有してもよい。
 上記重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
 上記重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
 上記重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%であり、0.05~3質量%が好ましく、0.1~2質量%がより好ましく、0.25~1.5質量%が更に好ましく、0.5~1質量%が特に好ましい。
2.6 冷媒組成物に含み得るその他の成分
 本開示の冷媒組成物は、以下の成分も含み得るものとして挙げられる。
 例えば、前述の冷媒とは異なるフッ素化炭化水素を含有することができる。他の成分としてのフッ素化炭化水素は特に限定されず、HCFC-1122、HCFC-124及びCFC-1113からなる群より選択される少なくとも一種のフッ素化炭化水素が挙げられる。
 また、その他の成分としては、例えば、式(A):CmHnXp[式中、Xはそれぞれ独立してフッ素原子、塩素原子又は臭素原子を表し、mは1又は2であり、2m+2≧n+pであり、p≧1である。]で表される少なくとも一種のハロゲン化有機化合物を含有することができる。上記ハロゲン化有機化合物は特に限定されず、例えば、ジフルオロクロロメタン、クロロメタン、2-クロロ-1,1,1,2,2-ペンタフルオロエタン、2-クロロ-1,1,1,2-テトラフルオロエタン、2-クロロ-1,1-ジフルオロエチレン、トリフルオロエチレン等が好ましい。
 更に、その他の成分としては、例えば、式(B):CmHnXp[式中、Xはそれぞれ独立してハロゲン原子ではない原子を表し、mは1又は2であり、2m+2≧n+pであり、p≧1である。]で表される少なくとも一種の有機化合物を含有することができる。上記有機化合物は特に限定されず、例えば、プロパン、イソブタン等が好ましい。
 これらのフッ素化炭化水素、式(A)で表わされるハロゲン化有機化合物、及び式(B)で表わされる有機化合物の含有量は限定的ではないが、これらの合計量として、冷媒組成物の全量に対して0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.1質量%以下が特に好ましい。
3.冷凍機油含有作動流体
 本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍装置における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍装置の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。
 上記冷凍機油の含有割合は、特に限定されず、冷凍機油含有作動流体全体に対して、通常、10~50質量%であり、12.5~45質量%が好ましく、15~40質量%がより好ましく、17.5~35質量%が更に好ましく、20~30質量%が特に好ましい。
3.1 冷凍機油
 本開示の組成物は、冷凍機油を1種単独で含有してもよいし、2種以上を含有してもよい。
 上記冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、本開示の冷媒の混合物(本開示の混合冷媒)との相溶性(miscibility)及び本開示の混合冷媒の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
 上記冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
 上記冷凍機油は、上記基油に加えて、更に添加剤を含んでいてもよい。
 上記添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも1種であってもよい。
 上記冷凍機油としては、潤滑の点から、40℃における動粘度が5~400cStであるものが好ましい。
 本開示の冷凍機油含有作動流体は、必要に応じて、更に少なくとも1種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
3.2 相溶化剤
 本開示の冷凍機油含有作動流体は、相溶化剤を一種単独で含有してもよいし、二種以上を含有してもよい。
 上記相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
 上記相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテル、1,1,1-トリフルオロアルカン等が挙げられる。これらの中でも、ポリオキシアルキレングリコールエーテルが好ましい。
 以下に、実施例を挙げて更に詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
<実施例1~25、比較例1~7及び参考例1>
 各実施例、比較例及び参考例に示される混合冷媒のGWPは、IPCC第4次報告書及びIPCC第5次報告書の値に基づいて評価した。
 R410A(R32/R125=50/50質量%)、R32(R32=100質量%)、R452B(R32/R125/R1234yf=67/7/26質量%)、R454B(R32/R1234yf=68.9/31.1質量%)及びR447B(R32/R125/R1234ze(E)=68/8/24質量%)のGWPについても、IPCC第4次報告書又はIPCC第5次報告書の値に基づいて評価した。
 各実施例及び比較例に示される混合冷媒のCOP及び冷凍能力、並びに、R410A、R32、R452B、R454B及びR447BのCOP及び冷凍能力は、National Institute of Science and Technology(NIST)、Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することによ
り求めた。
蒸発温度   45℃
凝縮温度    5℃
過熱温度    5K
過冷却温度   5K
圧縮機効率  70%
 これらの結果をもとに算出したGWP、COP及び冷凍能力を以下の表1~3に示す。表1~3において、COP比及び冷凍能力比は、R410Aに対する割合(%)を示す。
 成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
 混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。燃焼速度が0cm/s~10cm/sとなるものは「クラス2L(微燃)」であるとし、火炎伝播がないものは「クラス1(不燃)」であるとした。以下の表1における「ASHRAE燃焼性区分」とは、この判定基準に基づく結果を示している。
 燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
 混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置を用いて測定を実施した(図3を参照)。
 具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。実施例1~3、比較例1~2及び参考例1についての試験条件は以下の通りである。
 <試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分(高温多湿条件):乾燥空気1gにつき0.0187g±0.0005g(36℃における相対湿度50%の水分量)
冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
 実施例4~25、比較例3~7及び参考例1についての試験条件は以下の通りである。
以下の表2及び表3における「ASTM法での燃焼試験」とは、以下の試験条件に記載の判定基準に基づく結果を示している。
 <試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)
冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1.仕込みライン
2.サンプリングライン
3.温度計
4.圧力計
5.電極
6.撹拌羽根(PTFE製)
A:不燃であって、R1234yfの濃度(質量%)が1質量%である質量比
B:不燃であって、冷凍能力がR410Aに対して85%である質量比
C:AR5基準のGWPが2000であって、冷凍能力がR410Aに対して85%である質量比
D:AR5基準のGWPが2000であって、R1234yfの濃度(質量%)が1質量%である質量比
E:AR4基準のGWPが2000であって、冷凍能力がR410Aに対して85%である質量比
F:AR4基準のGWPが2000であって、R1234yfの濃度(質量%)が1質量%である質量比
G:不燃であって、冷凍能力がR410Aに対して90%である質量比
H:AR4基準のGWPが2000であって、冷凍能力がR410Aに対して90%である質量比
a:不燃限界線
b:冷凍能力がR410Aに対して85%である質量比を示す直線
c:AR5基準のGWPが2000となる質量比を示す直線
d:R1234yfの濃度(質量%)が1質量%となる質量比を示す直線
e:AR4基準のGWPが2000となる質量比を示す直線
f:冷凍能力がR410Aに対して90%である質量比を示す直線
P:不燃であって、R1234ze(E)の濃度(質量%)が1質量%である質量比
Q:不燃であって、冷凍能力がR410Aに対して85%である質量比
R:AR5基準のGWPが2000であって、冷凍能力がR410Aに対して85%である質量比
S:AR5基準のGWPが2000であって、R1234ze(E)の濃度(質量%)が1質量%である質量比
T:AR4基準のGWPが2000であって、冷凍能力がR410Aに対して85%である質量比
U:AR4基準のGWPが2000であって、R1234ze(E)の濃度(質量%)が1質量%である質量比
V:不燃であって、冷凍能力がR410Aに対して90%である質量比
W:AR4基準のGWPが2000であって、冷凍能力がR410Aに対して90%である質量比
g:不燃限界線
h:冷凍能力がR410Aに対して85%である質量比を示す直線
i:AR5基準のGWPが2000となる質量比を示す直線
j:R1234ze(E)の濃度(質量%)が1質量%となる質量比を示す直線
k:AR4基準のGWPが2000となる質量比を示す直線
l:冷凍能力がR410Aに対して90%である質量比を示す直線

Claims (19)

  1.  冷媒を含有する組成物であって、
     前記冷媒が、ジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含有し、R32及びR125の総濃度が99.5質量%以上であり、且つ
     R32及びR125の全質量に対して、
    R32の含有割合が53.1~56.0質量%であり、
    R125の含有割合が44.0~46.9質量%である、組成物。
  2.  冷媒を含有する組成物であって、
     前記冷媒が、ジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含有し、R32及びR125の総濃度が99.5質量%以上であり、且つ
     R32及びR125の全質量に対して、
    R32の含有割合が60.5~62.5質量%であり、
    R125の含有割合が37.5~39.5質量%である、組成物。
  3.  前記冷媒が、R32及びR125のみからなる、請求項1又は2に記載の組成物。
  4.  冷媒を含有する組成物であって、
     前記冷媒が、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)及び2,3,3,3-テトラフルオロプロペン(R1234yf)を含有し、該三成分の総濃度が99.5質量%以上であり、且つ
     該三成分の質量比が、該三成分を各頂点とする三角組成図において、
    点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
    点B(R32/R125/R1234yf=36.5/30.0/33.5質量%)、
    点C(R32/R125/R1234yf=26.2/57.5/16.3質量%)及び
    点D(R32/R125/R1234yf=45.8/53.2/1.0質量%)、
    の4点を頂点とする四角形で囲まれた領域の範囲内にある、組成物。
  5.  冷媒を含有する組成物であって、
     前記冷媒が、R32、R125及びR1234yfを含有し、該三成分の総濃度が99.5質量%以上であり、且つ
     該三成分の質量比が、該三成分を各頂点とする三角組成図において、
    点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
    点B(R32/R125/R1234yf=36.5/30.0/33.5質量%)、
    点E(R32/R125/R1234yf=28.3/51.6/20.1質量%)及び
    点F(R32/R125/R1234yf=51.9/47.1/1.0質量%)、
    の4点を頂点とする四角形で囲まれた領域の範囲内にある、請求項4に記載の組成物。
  6.  冷媒を含有する組成物であって、
     前記冷媒が、R32、R125及びR1234yfを含有し、該三成分の総濃度が99.5質量%以上であり、且つ
     該三成分の質量比が、該三成分を各頂点とする三角組成図において、
    点A(R32/R125/R1234yf=62.2/36.8/1.0質量%)、
    点G(R32/R125/R1234yf=35.4/50.3/14.3質量%)、
    点H(R32/R125/R1234yf=43.0/31.7/25.3質量%)及び
    点F(R32/R125/R1234yf=51.9/47.1/1.0質量%)、
    の4点を頂点とする四角形で囲まれた領域の範囲内にある、請求項4又は5に記載の組成物。
  7.  前記冷媒が、R32、R125及びR1234yfのみからなる、請求項4~6のいずれか1項に記載の組成物。
  8.  冷媒を含有する組成物であって、
     前記冷媒が、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)及びトランス-1,3,3,3-テトラフルオロプロペン(R1234ze(E))を含有し、該三成分の総濃度が99.5質量%以上であり、且つ
     該三成分の質量比が、該三成分を各頂点とする三角組成図において、
    点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
    点Q(R32/R125/R1234ze(E)=44.0/30.3/25.7質量%)、
    点R(R32/R125/R1234ze(E)=29.9/56.7/13.4質量%)及び
    点S(R32/R125/R1234ze(E)=45.8/53.2/1.0質量%)、
    の4点を頂点とする四角形で囲まれた領域の範囲内にある、組成物。
  9.  冷媒を含有する組成物であって、
     前記冷媒が、R32、R125及びR1234ze(E)を含有し、該三成分の総濃度が99.5質量%以上であり、且つ
     該三成分の質量比が、該三成分を各頂点とする三角組成図において、
    点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
    点Q(R32/R125/R1234ze(E)=44.0/30.3/25.7質量%)、
    点T(R32/R125/R1234ze(E)=33.4/50.6/16.0質量%)及び
    点U(R32/R125/R1234ze(E)=51.9/47.1/1.0質量%)、
    の4点を頂点とする四角形で囲まれた領域の範囲内にある、請求項8に記載の組成物。
  10.  冷媒を含有する組成物であって、
     前記冷媒が、R32、R125及びR1234ze(E)を含有し、該三成分の総濃度が99.5質量%以上であり、且つ
     該三成分の質量比が、該三成分を各頂点とする三角組成図において、
    点P(R32/R125/R1234ze(E)=62.2/36.8/1.0質量%)、
    点V(R32/R125/R1234ze(E)=49.0/32.0/19.0質量%)、
    点W(R32/R125/R1234ze(E)=39.2/49.5/11.3質量%)及び
    点U(R32/R125/R1234ze(E)=51.9/47.1/1.0質量%)、
    の4点を頂点とする四角形で囲まれた領域の範囲内にある、請求項8又は9に記載の組成物。
  11.  前記冷媒が、R32、R125及びR1234ze(E)のみからなる、請求項8~10のいずれか1項に記載の組成物。
  12.  前記冷媒は、R410Aの代替冷媒として用いられる、請求項1~11のいずれか1項に記載の組成物。
  13.  水、トレーサー、紫外線蛍光染料、安定剤及び重合禁止剤からなる群より選択される少なくとも1種の物質を含有する、請求項1~12のいずれか1項に記載の組成物。
  14.  更に、冷凍機油を含有し、冷凍装置用作動流体として用いられる、請求項1~13のいずれか1項に記載の組成物。
  15.  前記冷凍機油は、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも1種のポリマーを含有する、請求項14に記載の組成物。
  16.  請求項1~15のいずれか1項に記載の組成物を用いて冷凍サイクルを運転する工程を含む冷凍方法。
  17.  請求項1~15のいずれか1項に記載の組成物を用いて冷凍サイクルを運転する冷凍装置の運転方法。
  18.  請求項1~15のいずれか1項に記載の組成物を作動流体として含む、冷凍装置。
  19.  前記冷凍装置が、空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機又はスクリュー冷凍機である、請求項18に記載の冷凍機。
PCT/JP2019/022378 2018-08-09 2019-06-05 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 WO2020031484A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/265,368 US20210292626A1 (en) 2018-08-09 2019-06-05 Composition containing refrigerant, freezing method using said composition, operating method of refrigerator, and refrigerator
EP19846559.3A EP3835391A4 (en) 2018-08-09 2019-06-05 COMPOSITION CONTAINING A REFRIGERANT, METHOD OF FREEZING USING THE SAME COMPOSITION, METHOD OF REFRIGERATOR OPERATION AND REFRIGERATOR
CN201980054059.XA CN112585234A (zh) 2018-08-09 2019-06-05 含有制冷剂的组合物、以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018150252 2018-08-09
JP2018-150252 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020031484A1 true WO2020031484A1 (ja) 2020-02-13

Family

ID=69414734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022378 WO2020031484A1 (ja) 2018-08-09 2019-06-05 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置

Country Status (5)

Country Link
US (1) US20210292626A1 (ja)
EP (1) EP3835391A4 (ja)
JP (1) JP6658948B2 (ja)
CN (1) CN112585234A (ja)
WO (1) WO2020031484A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005027A1 (en) 1989-09-26 1991-04-18 Allied-Signal Inc. Azeotrope-like compositions of pentafluoroethane and difluoromethane
JPH04222893A (ja) * 1990-12-25 1992-08-12 Daikin Ind Ltd 共沸および共沸様混合物
JP2016014100A (ja) * 2014-07-01 2016-01-28 株式会社富士通ゼネラル 混合冷媒およびこれを用いた空気調和機
JP2016503450A (ja) * 2012-11-21 2016-02-04 ハネウェル・インターナショナル・インコーポレーテッド 低gwpの熱伝達組成物
JP2016186073A (ja) * 2010-05-11 2016-10-27 アルケマ フランス ジフルオロメタンと、ペンタフルオロエタンと、テトラフルオロプロペンとをベースにした三元熱伝導流体
JP2016538365A (ja) * 2013-10-10 2016-12-08 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ジフルオロメタン、ペンタフルオロエタン及びテトラフルオロプロペンを含む冷媒混合物並びにその使用
JP2018501334A (ja) * 2014-11-11 2018-01-18 トレイン インターナショナル インク 冷媒組成物及び使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2056229T3 (es) * 1988-11-22 1994-10-01 Du Pont Purificacion de halocarburos saturados.
US5403504A (en) * 1990-12-17 1995-04-04 E. I. Du Pont De Nemours And Company Process for heating and cooling using substantially constant boiling compositions of fluorinated hydrocarbons
CN1029625C (zh) * 1990-12-17 1995-08-30 纳幕尔杜邦公司 氟化烃的恒沸组合物
CN1314640C (zh) * 2002-07-02 2007-05-09 昭和电工株式会社 五氟乙烷的纯化方法、其制备方法及其用途
US20070191652A1 (en) * 2004-03-29 2007-08-16 Hiromoto Ohno Process for production of 1,1,1,2- tetrafluoroethane and/or pentafluorethane and applications of the same
FR2904975A1 (fr) * 2006-08-21 2008-02-22 Arkema France Fluide frigorigene
JP5556813B2 (ja) * 2008-07-01 2014-07-23 ダイキン工業株式会社 ジフルオロメタン(HFC32)、ペンタフルオロエタン(HFC125)及び2,3,3,3−テトラフルオロプロペン(HFO1234yf)を含む冷媒組成物
FR2950067B1 (fr) * 2009-09-11 2011-10-28 Arkema France Fluide de transfert de chaleur en remplacement du r-410a
CN101735774A (zh) * 2010-01-12 2010-06-16 山东东岳化工有限公司 一种替代r410a的环保制冷剂
FR3010415B1 (fr) * 2013-09-11 2015-08-21 Arkema France Fluides de transfert de chaleur comprenant du difluoromethane, du pentafluoroethane, du tetrafluoropropene et eventuellement du propane
CN105349105B (zh) * 2014-08-21 2019-03-26 詹治平 冷媒组合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005027A1 (en) 1989-09-26 1991-04-18 Allied-Signal Inc. Azeotrope-like compositions of pentafluoroethane and difluoromethane
JPH06914B2 (ja) * 1989-09-26 1994-01-05 アライド―シグナル・インコーポレーテッド ペンタフルオロエタンとジフルオロメタンの共沸混合物様組成物
JPH04222893A (ja) * 1990-12-25 1992-08-12 Daikin Ind Ltd 共沸および共沸様混合物
JP2016186073A (ja) * 2010-05-11 2016-10-27 アルケマ フランス ジフルオロメタンと、ペンタフルオロエタンと、テトラフルオロプロペンとをベースにした三元熱伝導流体
JP2016503450A (ja) * 2012-11-21 2016-02-04 ハネウェル・インターナショナル・インコーポレーテッド 低gwpの熱伝達組成物
JP2016538365A (ja) * 2013-10-10 2016-12-08 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ジフルオロメタン、ペンタフルオロエタン及びテトラフルオロプロペンを含む冷媒混合物並びにその使用
JP2016014100A (ja) * 2014-07-01 2016-01-28 株式会社富士通ゼネラル 混合冷媒およびこれを用いた空気調和機
JP2018501334A (ja) * 2014-11-11 2018-01-18 トレイン インターナショナル インク 冷媒組成物及び使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3835391A4

Also Published As

Publication number Publication date
JP6658948B2 (ja) 2020-03-04
EP3835391A4 (en) 2022-07-13
CN112585234A (zh) 2021-03-30
JP2020026514A (ja) 2020-02-20
EP3835391A1 (en) 2021-06-16
US20210292626A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
JP6696633B1 (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
JP7328550B2 (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
JP6642757B2 (ja) 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
JP6870727B2 (ja) 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
US11834601B2 (en) Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
JP6791414B2 (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
JP6658948B2 (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
KR102666677B1 (ko) 냉매를 함유하는 조성물, 그리고, 그 조성물을 이용한 냉동 방법, 냉동 장치의 운전 방법 및 냉동 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846559

Country of ref document: EP

Effective date: 20210309