WO2020031266A1 - Object orbit changing system and object orbit changing method - Google Patents
Object orbit changing system and object orbit changing method Download PDFInfo
- Publication number
- WO2020031266A1 WO2020031266A1 PCT/JP2018/029633 JP2018029633W WO2020031266A1 WO 2020031266 A1 WO2020031266 A1 WO 2020031266A1 JP 2018029633 W JP2018029633 W JP 2018029633W WO 2020031266 A1 WO2020031266 A1 WO 2020031266A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- projectile
- trajectory
- wire
- main body
- changing system
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/64—Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
Definitions
- the present invention relates to an object orbit changing system and an object orbit changing method.
- Patent Documents 1 and 2 Non-Patent Documents 1-3.
- Patent Document 1 a method of changing the trajectory of space debris using a conductive tether has been proposed (Patent Document 1).
- an artificial satellite is brought close to space debris, and a conductive tether is attached to space debris by a robot hand. Since an electromagnetic effect (Lorentz force) acts on the conductive tether under the influence of the surrounding magnetic field, the space debris is pulled by the effect and the space debris falls.
- an electromagnetic effect Liperentz force
- a technique has been proposed in which a harpoon is launched from an artificial satellite and is driven into a cavity of space debris and captured (Patent Document 2).
- a speed reducer such as a conductive tether is connected to the harpoon so that the orbit of the space debris can be changed.
- This method can also be applied to space debris with irregular movements that are difficult to rendezvous or dock.
- JP 2016-2813 A Japanese Patent No. 5781623
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an object trajectory changing system and an object trajectory changing method that can change the trajectory of an object in outer space. is there.
- An object trajectory changing system includes a projectile that captures an object orbiting an orbit around a celestial body, a main body, and the projectile mounted on the main body to capture the object. And a towing body connected to the projectile so as to be able to tow an object captured by the projectile.
- the method of changing the trajectory of an object includes launching a projectile that captures an object circling an orbit around a celestial body from a launch unit attached to a main body, and projecting the object captured by the projectile. , Which is towed by a towable body connected to be able to tow.
- an object orbit changing system and an object orbit changing method that can change the orbit of an object in outer space.
- FIG. 1 is a diagram schematically illustrating a basic configuration of an object trajectory changing system according to a first embodiment.
- FIG. 1 is a diagram schematically illustrating a configuration of an object trajectory changing system according to a first embodiment.
- FIG. 2 is a diagram showing an operation method of the object trajectory changing system according to the first embodiment.
- 4 is a flowchart illustrating a trajectory changing operation of the object trajectory changing system according to the first embodiment;
- FIG. 4 is a diagram illustrating a relationship between a launch direction of a projectile and an object.
- FIG. 3 is a diagram illustrating a movement path of a main body of the object trajectory changing system according to the first exemplary embodiment; It is a figure which shows the positional relationship of a wire and an object, and the motion of a projectile.
- FIG. 13 is a flowchart illustrating a trajectory changing operation of the object trajectory changing system according to the third embodiment.
- FIG. 15 is a diagram showing the development of a parachute in the third embodiment. It is a figure which shows typically the structure of the trajectory change system of the object concerning Embodiment 4.
- 14 is a flowchart showing a trajectory changing operation of the object trajectory changing system according to the fourth embodiment.
- FIG. 14 is a diagram showing the development of the parachute according to the fourth embodiment.
- the object trajectory changing system described in the following embodiment is configured to solve the above problem.
- the trajectory changing system for an object is configured as a system that changes the trajectory of an object by firing a projectile and capturing the object, and the towing body pulls the object through a wire.
- a trajectory change system that changes the trajectory of an object such as space debris orbiting on a predetermined trajectory around the celestial body under the gravity of the celestial body (for example, the earth) will be described.
- FIG. 1 schematically shows a basic configuration of an object trajectory changing system 100 according to the first embodiment.
- the object trajectory changing system 100 includes at least a launch unit 1, a wire 2, a projectile 3, a towing unit 4, and a main unit 5.
- the launching unit 1 is configured to launch the projectile 3 into outer space outside the main body 5.
- the launching unit 1 includes various types of devices such as an electromagnetic accelerator such as a rail gun that launches the projectile 3 by electromagnetic acceleration, a device that pushes the projectile 3 by spring force, and a device that launches the projectile 3 by explosive force of explosive. You may comprise as a launching apparatus. In consideration of launching the projectile 3 in outer space, it is preferable to use an electromagnetic accelerator that can reduce the number of movable parts and generates less waste after launch.
- the towing body 4 is configured to have a positive or negative charge.
- the electric charge may be given to the towing body 4 in advance by the object orbit changing system 100, or the towing body 4 may generate the electric charge autonomously.
- the towing body 4 can be configured as a necessary housing in a metal housing, for example. Electric charges are generated when the traction body 4 collides with ions or electrons in plasma in outer space. When an artificial satellite or the like is exposed to sunlight, electrons on the surface of the housing are likely to be emitted into space as photoelectrons, so that the towing body 4 in this case is positively charged. On the other hand, when the vehicle is in a shade where no sunlight is exposed, the towing body 4 is negatively charged.
- the polarity of the charge is controlled by an ion emitter or current emitter by utilizing the above-mentioned property that objects in outer space are easily charged.
- the towing body 4 can be charged.
- One end 2A of the wire 2 is connected to the projectile 3, and the other end 2B is connected to the towing body 4. Note that the projectile 3 and the towing body 4 may be connected to the wire 2 at a position other than the end. As the projectile 3 is launched from the launch unit 1 and moves away from the main unit 5, the wire 2 is sent out of the main unit 5.
- the wire 2 is made of a lightweight and tough material.
- the wire 2 it is desirable to use a carbon fiber cable reinforced with a material woven from carbon fibers.
- the wire 2 may be made of a resin material having a sufficient strength or various metals.
- FIG. 2 schematically shows a configuration of the object trajectory changing system 100 according to the first embodiment.
- the object orbit changing system 100 is configured as an artificial satellite capable of moving in space by itself.
- the object trajectory changing system 100 shown in FIG. 2 includes a wire sending unit 6 and a propulsion unit 7 in addition to the launch unit 1, the wire 2, the projectile 3, the towing unit 4, and the main unit 5.
- the launch unit 1, the wire sending unit 6, and the propulsion unit 7 are fixed to the main body unit 5, and integrally constitute an artificial satellite.
- the wire 2 and the projectile 3 are housed in an artificial satellite constituted by the launching unit 1, the main unit 5, the wire sending unit 6, and the propulsion unit 7, and are stored in an outer space outside the artificial satellite as necessary, as described later. Released.
- the towing body 4 is detachably attached to the main body 5 as needed.
- the object trajectory changing system 100 is configured to be accommodated in a mother ship such as a space station, for example, and released into space as needed.
- the object trajectory changing system 100 can move in space by itself by the propulsion unit 7 such as a thruster.
- the wire feeding section 6 stores the wire 2 of a predetermined length. As the projectile 3 is fired from the firing unit 1 and moves away from the main unit 5, the wire 2 is sent out of the main unit 5 from the wire sending unit 6.
- the wire feeder 6 can measure the length of the wire 2 that has been sent out. For example, when detecting that the wire 2 has been sent out by a predetermined length, the wire feeder 6 can stop sending out the wire 2 as necessary. . Further, the wire feeder 6 can also cut the wire 2 as necessary.
- FIG. 3 shows an operation method of the object trajectory changing system 100 according to the first embodiment.
- the object trajectory changing system 100 is configured to be accommodated in a mother ship 20 such as a space station.
- the mother ship 20 can search for the object 10 orbiting the earth, such as space debris, using a search device such as a radar. Further, the object 10 can be found by a radar or the like installed at a base on the ground. Upon finding an object 10 orbiting the earth, the object orbit changing system 100 is released from the mother ship 20 into space.
- FIG. 4 is a flowchart showing a trajectory changing operation of the object trajectory changing system 100 according to the first embodiment. Hereinafter, each step of the trajectory changing operation of the object trajectory changing system 100 will be described.
- Step S11 Object Position Tracking
- the object orbit changing system 100 continuously tracks the position of the object 10 such as space debris orbiting a predetermined orbit after being released into the outer space.
- the object orbit changing system 100 may track the position of the object 10 by receiving position information of the object 10 from another artificial satellite such as the ground or a mother ship, or may be provided in the object orbit changing system 100.
- the position of the object 10 may be tracked using a detection device such as a radar.
- Step S12 Object Capture
- the firing unit 1 fires the projectile 3 to capture the object 10.
- a method of capturing the object 10 by winding the wire 2 sent from the object trajectory changing system 100 by moving the projectile 3 around the object 10 (referred to as a winding method) will be described.
- Step S121 Approaching the Object
- the object trajectory changing system 100 drives the propulsion unit 7 to approach the object 10 based on the position information of the object 10. At this time, the object trajectory changing system 100 approaches the object 10 to a position closer than the length of the wire 2 connecting the projectile 3 and the towed body 4.
- Step S122 Launch the projectile After the approach to the object 10 is completed, the launching unit 1 launches the projectile 3 near the object 10 so that the projectile 3 does not collide with the object 10.
- FIG. 5 shows the relationship between the launch direction of the projectile 3 and the object.
- Step S123 Movement of main body After firing projectile 3, main body 5 moves in a direction D2 (second direction) that is not parallel to moving direction D1 (first direction) of projectile 3.
- FIG. 6 shows a movement route of the main body unit 5 according to the first embodiment. As a result, the main body 5 moves to a position outside the moving direction D1 of the projectile 3.
- the main body 5 is at least orthogonal to the moving direction D1 which is the path along which the projectile moves, and passes through the center of gravity of the object 10 from the moving direction D1. It is desirable to move in the direction D2 which is the direction.
- Step S124 Stop Wire Feeding After the movement of the main body 5 is completed, the wire feeding unit 6 stops feeding the wire 2.
- the wire feed stop may be performed by a feed stop mechanism provided in the wire feed unit 6.
- the feeding of the wire 2 can also be stopped when the entire wire 4 is sent out and pulled by the pulling body 4.
- Step S125 Wire Contact with Object After sending out the wire 2, the projectile 3 moves and the wire 2 is tensioned.
- FIG. 7 shows the relationship between the wire 2 and the object 10 and the movement of the projectile 3. Based on the positional relationship between the main body 5, the projectile 3, and the object 10, if the projectile 3 continues to move after the wire 2 is stopped, a part of the wire 2 comes into contact with the object 10 at a certain point. Needless to say, the wire 2 may come into contact with the object 10 before the feeding of the wire 2 is stopped. Further, as long as the wire 2 can come into contact with the object 10, the above-mentioned wire sending stop can be performed before the movement of the main body 5 is completed.
- Step S126 Wire Winding
- the projectile 3 is pulled by the wire 2 and starts rotating with respect to the object 10.
- the wire 2 is wound around the object 10.
- the length of the wire 2 between the contact portion between the wire 2 and the object 10 and the projectile 3 becomes shorter, so that the rotation speed of the projectile 3 increases.
- the wire 2 is wound around the object 10 a plurality of times by taking a sufficient length of the wire 2 because it is in a weightless state or a low gravity state that can approximate the weightless state.
- the main body 5 moves within a plane where the center of gravity of the projectile 3 and the center of gravity of the object 10 belong.
- the moving direction D1 (first direction) and the direction D2 (second direction) of the projectile 3 are desirably parallel to the plane to which the center of gravity of the projectile 3 and the center of gravity of the object 10 belong.
- the main body 5 move strictly within this plane, but it is desirable that the main body 5 move along this plane to the extent that the wire 2 can be wound around the object 10.
- the projectile 3 may be provided with a clamp member such as a hook for clamping irregularities on the surface of the object 10 when the projecting body 3 comes into contact with the object 10 as the winding of the wire 2 proceeds.
- the projectile 3 may be provided with a magnet, or the projectile 3 may be made of a magnet so that the projectile 3 is attracted to the object 10. Thereby, the firing 4 is fixed to the object 10 and the wire 2 can be prevented from being unraveled.
- Step S13 Disconnect After the winding of the wire 2 is completed, the main body 5 separates the towing body 4 and discharges it to outer space. In addition, as long as the wire 2 cannot be unwound, the towing body 4 may be disconnected even before the winding of the wire 2 is completed.
- Step S14 Recovery After separating the towing body 4, the main unit 5 drives the propulsion unit 7 to return to the mother ship such as a space station. Thereby, the mother ship can collect
- FIG. 8 shows the Lorentz force F acting when the towing body 4 has a positive charge.
- the direction perpendicular to the paper surface and going from the front to the back of the paper surface is defined as the direction of the geomagnetism B.
- the speed at which the object 10 orbits the orbit ORB before being captured by the projectile 3 is V0.
- the towing body 4 moves along the trajectory ORB of the object 10 in a direction intersecting the direction of the geomagnetism B. Therefore, the Lorentz force F is applied to the towing body 4 in the same direction as the gravity G, that is, in the direction toward the celestial body AST (vertically downward). Since the object 10 is pulled downward by the wire 2 that has been tensioned by the Lorentz force F, the object 10 moves in the direction DF and decreases in altitude, and as a result, the trajectory changes.
- FIG. 9 shows the Lorentz force F acting when the towing body 4 has a negative charge.
- the direction of the geomagnetism B is perpendicular to the plane of the paper and goes from the front to the rear of the plane of the paper as in FIG.
- the towing body 4 moves in the direction crossing the direction of the geomagnetism B along the trajectory ORB of the object 10 as in the case of FIG. Therefore, the Lorentz force F is applied to the towing body 4 in the direction opposite to the gravity G, that is, in the direction opposite to the celestial body AST (vertically upward). Since the object 10 is pulled upward by the wire 2 that has been tensioned by the Lorentz force F, the object 10 moves in the direction DF and increases in altitude, and as a result, the trajectory changes.
- the trajectory of the object 10 is changed to a lower trajectory or a higher trajectory.
- the Lorentz force F acts on the towing body 4 in a direction that makes a tolerance with the trajectory of the object 10 and the direction of the geomagnetism
- the trajectory of the object 10 is changed to a lower trajectory or a higher trajectory.
- the distance between the main body 5 and the object 10 can be sufficiently increased. Therefore, the collision between the main body 5 and the object 10 can be prevented, and the main body 5 can be quickly approached to the object 10 without fear of collision. As a result, it is possible to quickly change the trajectory of the object.
- Embodiment 2 An object trajectory changing system 200 according to the second embodiment will be described.
- the projectile 3 captures the object 10 by wrapping the wire 2 around the object 10 without colliding with the object 10.
- the trajectory changing system 200 according to the present embodiment is configured as one in which the projectile launched from the launch unit 1 contacts and captures the object 10 (referred to as a direct capture method).
- FIG. 10 schematically shows a configuration of an object trajectory changing system 200 according to the second embodiment.
- the object trajectory changing system 200 has a configuration in which the projectile 3 of the object trajectory changing system 100 is replaced with a projectile 8.
- the launch unit 1 launches the projectile 8 toward the object 10, and the projectile 8 comes into direct contact with the object 10 so that the object 10 is captured.
- FIG. 11 shows a harpoon 81 which is an example of the projectile 8.
- the harpoon 81 has a sharp tip 81A so as to penetrate the object 10.
- the harpoon 81 may have a coming-off prevention mechanism.
- a return 81B for preventing detachment may be provided near the distal end 81A, or an anchor 81C that automatically deploys after the harpoon 81 has penetrated the outer shell 10A of the object 10 may be provided.
- FIG. 12 shows a net 82 which is another example of the projectile 8.
- the net 82 is loaded in a state where it is folded into the launching unit 1, deploys after being launched from the launching unit 1, and heads toward the object 10.
- the object 10 is captured when the net 82 reaches the object 10 and wraps around the object 10.
- the net 82 may naturally wrap the object 10 by inertial force, or may be configured to automatically close and capture the object 10 when it comes into contact with the object 10.
- the net 82 may be provided with a hook or the like for clamping the object 10.
- the net 82 can reduce the probability that a part of the object 10 separates or scatters when the object 10 is captured, as compared with the harpoon 81, and thus can capture the object 10 more preferably.
- the probability that new space debris will occur due to collision with the object 10 can be reduced, so that space debris can be removed more efficiently.
- the net 82 has been described, but it goes without saying that a member other than the net, such as a sheet, may be used as the projectile as long as the object 10 can be wrapped.
- the harpoon 81 and the net 82 have been described, but it goes without saying that, as long as the object 10 can be captured, a member of another shape may be appropriately used as the projectile.
- FIG. 13 is a flowchart illustrating a trajectory changing operation of the object trajectory changing system 200 according to the second embodiment. Hereinafter, each step of the trajectory changing operation of the object trajectory changing system 200 will be described.
- Step S21 Object Position Tracking
- the object trajectory changing system 200 continuously performs an operation of tracking the position of the object 10 such as space debris orbiting a predetermined orbit.
- Step S22 Object Capture
- the launch unit 1 launches the projectile 8 toward the object 10 and captures the object 10.
- the harpoon 81 is used as the projectile will be described.
- Step S221 Approaching the Object Similar to step S121, the trajectory changing system 200 for the object approaches the object 10 based on the position information of the object 10.
- Step S222 Launch the projectile After the approach to the object is completed, the launching unit 1 launches the harpoon 81 toward the object 10.
- FIG. 14 shows an example in which the harpoon 81 captures the object 10. At this time, as the harpoon 81 moves, the wire 2 is fed from the wire feeder 6.
- Step S223 Projectile Captures Object When the harpoon 81 reaches the object 10, it penetrates the object 10 and captures the object 10.
- Step S23 Separation When the harpoon 81 captures the object 10, the feeding of the wire 2 is decelerated or stopped, so that the wire feeding unit 6 can detect that the harpoon 81 has captured the object 10. When the capture of the object 10 is detected, the main body 5 disconnects the traction body 4 connected to the wire 2 and discharges the traction body 4 into outer space.
- Step S24 Recovery As in step S14, the main unit 5 drives the propulsion unit 7 to return to the mother ship such as a space station.
- the object 10 is captured by the projectile 8 and the object 10 is towed by the towing body 4, so that the trajectory of the object 10 is reduced to a lower trajectory or a higher trajectory as in the first embodiment.
- the object 10 can be captured more easily and in a shorter time than the object trajectory changing system 100.
- Embodiment 3 In the trajectory changing system 200 for an object according to the second embodiment, the trajectory of the object is changed by towing the object captured by the direct capture method by the Lorentz force acting on the charged towing body 4.
- the object trajectory changing system 300 changes the trajectory of the object by using the parachute as a towing body.
- the trajectory change system 300 will be described.
- FIG. 15 schematically shows a configuration of an object trajectory changing system 300 according to the third embodiment.
- the object trajectory changing system 300 uses the parachute 4A stored in the storage unit 9 as a towing body.
- the wire feeding unit 6 of the object trajectory changing system 200 is removed.
- the wire 2 and the parachute 4 are stored in a storage section 9, and the storage section 9 is fired together with the projectile 8 from the firing section 1.
- the parachute 4A be made of a lightweight and tough material.
- a carbon fiber composite material reinforced with a material woven from carbon fibers may be made of a resin material having sufficient strength, a metal foil, a laminate of a resin film and a metal film, or the like.
- FIG. 16 is a flowchart illustrating a trajectory changing operation of the object trajectory changing system 300 according to the third embodiment. Hereinafter, each step of the trajectory changing operation of the object trajectory changing system 300 will be described.
- Step S31 Object Position Tracking
- the object trajectory changing system 300 continuously performs an operation of tracking the position of the object 10 such as space debris orbiting a predetermined trajectory.
- Step S32 Object Capture
- the launching unit 1 launches the projectile 8 and the storage unit 9 toward the object 10 to capture the object 10.
- the object capture will be described.
- Step S321 Approaching the Object Similar to step S221, the trajectory changing system 300 of the object approaches the object 10 based on the position information of the object 10.
- Step S322 Launch the projectile As in step S222, after the approach to the object is completed, the launch unit 1 launches the harpoon 81 and the storage unit 9 toward the object 10.
- Step S323 Parachute Release
- FIG. 17 shows the development of the parachute 4A.
- the parachute 4 ⁇ / b> A is stored at the rear of the storage unit 9, and is discharged to the storage unit 9 in a direction opposite to the traveling direction of the storage unit 9 by, for example, a release mechanism using a spring or the like.
- Step S324 Parachute Deployment
- the parachute 4A naturally deploys by receiving the drag (that is, fluid resistance) of the diluted atmosphere in outer space. Since the deployment of the parachute 4A is performed by the drag of the lean atmosphere, the deployment of the parachute 4A may be performed before the projectile 8 captures the object 10, or even after the projectile 8 captures the object 10. Good.
- Step S325 Projectile Captures Object
- harpoon 81 reaches object 10, it penetrates object 10 and captures object 10. Since the parachute 4A has already been deployed, it receives the drag of the lean atmosphere. Thus, the object 10 moving on the orbit is decelerated by being pulled in the direction opposite to the moving direction.
- Step S33 Recovery As in step S24, the main unit 5 drives the propulsion unit 7 to return to the mother ship such as a space station.
- the trajectory of the object 10 can be changed to a lower trajectory by capturing the object 10 with the projectile 8 and decelerating the object 10 with a parachute. Accordingly, by moving or removing an object in a desired orbit, it is possible to prevent an artificial satellite or the like to be put into the desired orbit from colliding with another object such as space debris.
- the parachute receives the resistance of the lean atmosphere, but the density of the lean atmosphere increases as the altitude of the object 10 decreases, so that the deceleration effect increases. That is, since the deceleration of the object 10 increases as the altitude decreases, the trajectory of the object 10 can be changed efficiently.
- the parachute 4A does not require a mechanism or an electric component for charging. Therefore, the configuration becomes simpler, and the cost required for changing the trajectory of the object can be reduced.
- Embodiment 4 In the object orbit changing system 100 according to the first embodiment, the object captured by the winding method is towed by Lorentz force acting on the charged towing body 4 to change the orbit of the object.
- the object trajectory changing system 400 according to the present embodiment is configured to change the trajectory of the object by using a parachute as a towed body, as in the third embodiment.
- an object trajectory changing system 400 according to the fourth embodiment will be described.
- FIG. 18 schematically shows a configuration of an object trajectory changing system 400 according to the fourth embodiment.
- the object trajectory changing system 400 uses the parachute 4A as a towing body.
- the object trajectory changing system 400 is configured to decelerate the object 10 captured by the winding method according to the first embodiment with the parachute 4A according to the third embodiment.
- FIG. 19 is a flowchart illustrating the trajectory changing operation of the object trajectory changing system 400 according to the fourth embodiment. Hereinafter, each step of the trajectory changing operation of the object trajectory changing system 400 will be described.
- Step S41 Object Position Tracking
- the object trajectory changing system 400 continuously performs an operation of tracking the position of the object 10 such as space debris orbiting a predetermined orbit.
- Step S42 Object Capture
- the launch unit 1 launches the projectile 3 in order to capture the object 10.
- the object 10 is captured by the winding method as in the object trajectory changing system 100 according to the first embodiment.
- the object capture will be described.
- Step S421 Approaching the Object Similar to step S121, the trajectory changing system 400 of the object approaches the object 10 based on the position information of the object 10.
- Step S422 Launch the projectile As in step S122, after the approach to the object 10 is completed, the launch unit 1 launches the projectile 3 near the object 10 so that the projectile 3 does not collide with the object 10.
- Step S423 Movement of the main body As in step S123, after firing the projectile 3, the main body 5 moves in a direction D2 that is not parallel to the moving direction D1 of the projectile 3. As a result, the main body 5 moves to a position outside the moving direction D1 of the projectile 3.
- Step S424 Parachute Release
- FIG. 20 shows the development of the parachute 4A.
- the parachute 4A is stored at the rear of the storage unit 9, and is discharged into the storage unit 9 in a direction opposite to the traveling direction of the storage unit 9 by, for example, a release mechanism using a spring or the like. You.
- Step S425 Parachute Deployment Like the step S324, the parachute 4A naturally deploys by receiving the drag (ie, fluid resistance) of the lean atmosphere in outer space. Since the deployment of the parachute 4A is performed by the drag of the lean atmosphere, the deployment of the parachute 4A may be performed before the projectile 3 captures the object 10, or even after the projectile 3 captures the object 10. Good.
- the drag ie, fluid resistance
- Step S426 Stop Wire Feeding After the movement of the main body 5 and the development of the parachute are completed, the wire feeding unit 6 stops feeding the wire 2.
- Step S427 Wire Contact with Object Similar to Step S125, after the feeding of the wire 2 is stopped, the tension of the wire 2 is generated by the movement of the projectile 3. As a result, a part of the wire 2 comes into contact with the object 10 at a certain time.
- Step S428 Wire Wrapping
- the wire 2 is wound around the object 10.
- the length of the wire 2 between the contact portion between the wire 2 and the object 10 and the projectile 3 becomes shorter, so that the rotation speed of the projectile 3 increases.
- the wire 2 is wound around the object 10 a plurality of times by taking a sufficient length of the wire 2 because it is in a weightless state or a low gravity state that can approximate the weightless state.
- Step S43 Wire Cutting After the winding of the wire is completed, the wire feeder 6 cuts the wire 2.
- Step S44 Recovery As in step S14, the main unit 5 drives the propulsion unit 7 after cutting the wire 2 and returns to the mother ship such as a space station.
- the trajectory of the object 10 can be changed to a lower trajectory by decelerating the object 10 with a parachute. Accordingly, by moving or removing an object in a desired orbit, it is possible to prevent an artificial satellite or the like to be put into the desired orbit from colliding with another object such as space debris.
- the parachute receives the drag of the lean atmosphere, but the lower the altitude of the object 10, the greater the density of the lean atmosphere, and thus the greater the deceleration effect. That is, since the deceleration of the object 10 increases as the altitude decreases, the trajectory of the object 10 can be changed efficiently, similarly to the object trajectory changing system 300 according to the third embodiment.
- the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist.
- the projectile may be fired a plurality of times, and the trajectory may be changed by towing the object 10 with the plurality of towed bodies.
- the trajectory of the object 10 can be changed more quickly.
- the material of the wire 2 is not particularly limited, and a conductive or insulating material may be appropriately used.
- the configuration using the towing body 4 to be charged is described, but a conductive tether may be used instead of the towing body to be charged.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
Provided are an object orbit changing system and object orbit changing method that can change the orbit of an object in space. This object orbit changing system (100) has a projectile (3), a towing body (4), and a main body (5). A launcher (1) is attached to the main body (5) and launches the projectile (3) so as to capture an object (10) that orbits the celestial body. The towing body (4) is connected to the projectile (3) so as to be capable of towing the object captured by the projectile (3).
Description
本発明は、物体の軌道変更システム及び物体の軌道変更方法に関する。
The present invention relates to an object orbit changing system and an object orbit changing method.
近年、地球を周回するスペースデブリの影響が問題となっている。そのため、スペースデブリを除去する様々な手法が提案されている(特許文献1及び2、非特許文献1-3)。
In recent years, the impact of space debris orbiting the earth has become a problem. Therefore, various techniques for removing space debris have been proposed ( Patent Documents 1 and 2, Non-Patent Documents 1-3).
例えば、導電性テザーを用いてスペースデブリの軌道を変化させる手法が提案されている(特許文献1)。この手法では、スペースデブリに人工衛星を近接させ、ロボットハンドで導電性テザーをスペースデブリに取り付ける。導電性テザーには周囲磁場の影響によって電磁気的作用(ローレンツ力)が働くので、当該作用によってスペースデブリが引っ張られてスペースデブリが降下する。
For example, a method of changing the trajectory of space debris using a conductive tether has been proposed (Patent Document 1). In this method, an artificial satellite is brought close to space debris, and a conductive tether is attached to space debris by a robot hand. Since an electromagnetic effect (Lorentz force) acts on the conductive tether under the influence of the surrounding magnetic field, the space debris is pulled by the effect and the space debris falls.
また、人工衛星から銛を発射して、スペースデブリの空洞部に打ち込んで捕獲する手法が提案されている(特許文献2)。銛には導電性テザーなどの減速装置が接続されており、これによってスペースデブリの軌道を変更することができる。この手法は、ランデブーやドッキングが困難な、不規則な運動を行っているスペースデブリにも適用することができる。
手法 Also, a technique has been proposed in which a harpoon is launched from an artificial satellite and is driven into a cavity of space debris and captured (Patent Document 2). A speed reducer such as a conductive tether is connected to the harpoon so that the orbit of the space debris can be changed. This method can also be applied to space debris with irregular movements that are difficult to rendezvous or dock.
地球を周回するスペースデブリを除去するためにスペースデブリの軌道を変化させる手法を用いる場合、高い確率で軌道を変更させることができる方法が求められている。
(4) When using the technique of changing the orbit of space debris to remove space debris orbiting the earth, a method capable of changing the orbit with high probability is required.
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
{Other problems and novel features will be apparent from the description of this specification and the accompanying drawings.
本発明は上記の事情に鑑みて成されたものであり、本発明の目的は、宇宙空間の物体の軌道を変更することができる物体の軌道変更システム及び物体の軌道変更方法を提供することである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an object trajectory changing system and an object trajectory changing method that can change the trajectory of an object in outer space. is there.
一実施の形態にかかる物体の軌道変更システムは、天体の周りの軌道を周回する物体を捕獲する発射体と、本体部と、前記本体部に取り付けられ、前記物体を捕獲するために前記発射体を発射する発射部と、前記発射体に捕獲された物体を牽引可能に前記発射体と接続される牽引体と、を有するものである。
An object trajectory changing system according to one embodiment includes a projectile that captures an object orbiting an orbit around a celestial body, a main body, and the projectile mounted on the main body to capture the object. And a towing body connected to the projectile so as to be able to tow an object captured by the projectile.
一実施の形態にかかる物体の軌道変更方法は、天体の周りの軌道を周回する物体を捕獲する発射体を、本体部に取り付けられた発射部から発射し、前記発射体に捕獲された物体を、前記を牽引可能に接続された牽引体で牽引するものである。
The method of changing the trajectory of an object according to one embodiment includes launching a projectile that captures an object circling an orbit around a celestial body from a launch unit attached to a main body, and projecting the object captured by the projectile. , Which is towed by a towable body connected to be able to tow.
一実施の形態によれば、宇宙空間の物体の軌道を変更することができる物体の軌道変更システム及び物体の軌道変更方法を提供することができる。
According to one embodiment, it is possible to provide an object orbit changing system and an object orbit changing method that can change the orbit of an object in outer space.
以下、図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and a repeated description will be omitted as necessary.
以下の実施の形態では、宇宙空間において中心力が作用することで所定の軌道上を周回する物体の軌道を変更するシステムについて説明する。
In the following embodiment, a system that changes the trajectory of an object orbiting a predetermined trajectory by applying a central force in outer space will be described.
一般に、例えば軌道上を周回するスペースデブリを除去するには、人工衛星がスペースデブリの近傍に接近するとともに、スペースデブリと衝突しないようにスペースデブリとランデブー又はドッキングする必要がある。この場合、人工衛星の速度や姿勢の制御動作に時間を要するだけでなく、不規則な運動をしているスペースデブリに対応することが原理的に困難である。
Generally, to remove space debris orbiting, for example, it is necessary for a satellite to approach the space debris and rendezvous or dock with the space debris so as not to collide with the space debris. In this case, not only does it take time to control the speed and attitude of the artificial satellite, but also it is difficult in principle to respond to space debris that is moving irregularly.
スペースデブリから離隔した位置から銛を発射し、スペースデブリの空洞部に銛を打ち込んでスペースデブリを捕獲することも考え得る。しかし、スペースデブリが不規則な運動をしている場合、選択的に空洞部に銛を打ち込むことはそもそも困難である。予期しない位置に銛が打ち込まれた場合、スペースデブリが破損し、スペースデブリを増加させてしまうおそれもある。
銛 It is also conceivable to launch a harpoon from a position away from space debris and capture the space debris by driving a harpoon into the cavity of the space debris. However, if the space debris is moving irregularly, it is difficult to selectively hammer into the cavity. If a harpoon is driven into an unexpected position, the space debris may be damaged and the space debris may increase.
以下の実施の形態で説明する物体の軌道変更システムは、上記の問題を解決するものとして構成される。以下の実施の形態にかかる物体の軌道変更システムは、発射体を発射して物体を捕獲し、牽引体がワイヤを介して物体を牽引することで、物体の軌道を変化させるシステムとして構成される。ここでは、例として、天体(例えば地球)の重力を受けて、天体の周りの所定の軌道上を周回しているスペースデブリなどの物体の軌道を変更する軌道変更システムについて説明する。
物体 The object trajectory changing system described in the following embodiment is configured to solve the above problem. The trajectory changing system for an object according to the following embodiments is configured as a system that changes the trajectory of an object by firing a projectile and capturing the object, and the towing body pulls the object through a wire. . Here, as an example, a trajectory change system that changes the trajectory of an object such as space debris orbiting on a predetermined trajectory around the celestial body under the gravity of the celestial body (for example, the earth) will be described.
実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。図1に、実施の形態1にかかる物体の軌道変更システム100の基本構成を模式的に示す。物体の軌道変更システム100は、少なくとも発射部1、ワイヤ2、発射体3、牽引体4及び本体部5で構成される。Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a basic configuration of an objecttrajectory changing system 100 according to the first embodiment. The object trajectory changing system 100 includes at least a launch unit 1, a wire 2, a projectile 3, a towing unit 4, and a main unit 5.
以下、図面を参照して本発明の実施の形態について説明する。図1に、実施の形態1にかかる物体の軌道変更システム100の基本構成を模式的に示す。物体の軌道変更システム100は、少なくとも発射部1、ワイヤ2、発射体3、牽引体4及び本体部5で構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a basic configuration of an object
発射部1は、発射体3を本体部5の外部の宇宙空間に発射可能に構成される。発射部1は、例えば、電磁加速によって発射体3を発射するレールガンなどの電磁加速装置、バネ力によって発射体3を押し出す装置、火薬の爆発力によって発射体3を発射する装置などの、各種の発射装置として構成してもよい。宇宙空間において発射体3を発射することを考慮すると、可動部品を少なくでき、かつ、発射後の廃棄物が少ない電磁加速装置を用いることが好ましい。
The launching unit 1 is configured to launch the projectile 3 into outer space outside the main body 5. The launching unit 1 includes various types of devices such as an electromagnetic accelerator such as a rail gun that launches the projectile 3 by electromagnetic acceleration, a device that pushes the projectile 3 by spring force, and a device that launches the projectile 3 by explosive force of explosive. You may comprise as a launching apparatus. In consideration of launching the projectile 3 in outer space, it is preferable to use an electromagnetic accelerator that can reduce the number of movable parts and generates less waste after launch.
牽引体4は、正又は負の電荷を帯びるように構成される。電荷は、物体の軌道変更システム100によって予め牽引体4に与えられてもよいし、牽引体4が自律的に電荷を発生させてもよい。牽引体4は、例えば金属の筐体の内部に必要な機器が納めされたものとして構成することができる。牽引体4が宇宙空間のプラズマ中のイオンや電子と衝突することで電荷が生じる。人工衛星などが太陽光を浴びると筐体表面の電子が光電子として宇宙空間に放出されやすいため、この場合の牽引体4は正に帯電する。一方、太陽光を浴びない日陰にある場合には、牽引体4は負に帯電する。一般的に人工衛星などでは帯電を防止する措置がとられるが、本構成では宇宙空間における物体が帯電しやすい上記性質を利用して、イオンエミッタや電流エミッタで帯電の極性を制御することで、牽引体4を帯電させることができる。
The towing body 4 is configured to have a positive or negative charge. The electric charge may be given to the towing body 4 in advance by the object orbit changing system 100, or the towing body 4 may generate the electric charge autonomously. The towing body 4 can be configured as a necessary housing in a metal housing, for example. Electric charges are generated when the traction body 4 collides with ions or electrons in plasma in outer space. When an artificial satellite or the like is exposed to sunlight, electrons on the surface of the housing are likely to be emitted into space as photoelectrons, so that the towing body 4 in this case is positively charged. On the other hand, when the vehicle is in a shade where no sunlight is exposed, the towing body 4 is negatively charged. In general, measures are taken to prevent electrification in artificial satellites, etc., but in this configuration, the polarity of the charge is controlled by an ion emitter or current emitter by utilizing the above-mentioned property that objects in outer space are easily charged. The towing body 4 can be charged.
ワイヤ2の一方の端部2Aは発射体3に接続されており、他方の端部2Bは牽引体4に接続されている。なお、発射体3及び牽引体4は、端部以外の位置でワイヤ2と接続されていてもよい。発射体3が発射部1から発射されて本体部5から離れるにしたがって、ワイヤ2が本体部5の外部へ送り出される。
One end 2A of the wire 2 is connected to the projectile 3, and the other end 2B is connected to the towing body 4. Note that the projectile 3 and the towing body 4 may be connected to the wire 2 at a position other than the end. As the projectile 3 is launched from the launch unit 1 and moves away from the main unit 5, the wire 2 is sent out of the main unit 5.
ワイヤ2は、軽量かつ強靱な素材で構成することが望ましい。例えば、ワイヤ2は、炭素繊維を編み上げた素材で強化された炭素繊維ケーブルを用いることが望ましい。また、ワイヤ2は、十分な強度を有する樹脂素材や各種の金属で構成されてもよい。
It is desirable that the wire 2 is made of a lightweight and tough material. For example, as the wire 2, it is desirable to use a carbon fiber cable reinforced with a material woven from carbon fibers. Further, the wire 2 may be made of a resin material having a sufficient strength or various metals.
物体の軌道変更システム100の構成についてより詳細に説明する。図2に、実施の形態1にかかる物体の軌道変更システム100の構成を模式的に示す。物体の軌道変更システム100は、宇宙空間を自力にて移動可能な人工衛星として構成される。図2の物体の軌道変更システム100は、発射部1、ワイヤ2、発射体3、牽引体4及び本体部5の他に、ワイヤ送り出し部6及び推進部7を有する。
The configuration of the object trajectory changing system 100 will be described in more detail. FIG. 2 schematically shows a configuration of the object trajectory changing system 100 according to the first embodiment. The object orbit changing system 100 is configured as an artificial satellite capable of moving in space by itself. The object trajectory changing system 100 shown in FIG. 2 includes a wire sending unit 6 and a propulsion unit 7 in addition to the launch unit 1, the wire 2, the projectile 3, the towing unit 4, and the main unit 5.
発射部1、ワイヤ送り出し部6及び推進部7は、本体部5に固定されており、一体となって人工衛星を構成する。ワイヤ2及び発射体3は、発射部1、本体部5、ワイヤ送り出し部6及び推進部7が構成する人工衛星に収納され、後述するように、必要に応じて人工衛星の外部の宇宙空間に放出される。牽引体4は、必要に応じて、本体部5から切り離し可能に取り付けられている。
(5) The launch unit 1, the wire sending unit 6, and the propulsion unit 7 are fixed to the main body unit 5, and integrally constitute an artificial satellite. The wire 2 and the projectile 3 are housed in an artificial satellite constituted by the launching unit 1, the main unit 5, the wire sending unit 6, and the propulsion unit 7, and are stored in an outer space outside the artificial satellite as necessary, as described later. Released. The towing body 4 is detachably attached to the main body 5 as needed.
物体の軌道変更システム100は、例えば宇宙ステーションなどの母船に収容可能に構成され、必要に応じて宇宙空間に放出される。物体の軌道変更システム100は、スラスターなどの推進部7により、宇宙空間を自力で移動することが可能である。
The object trajectory changing system 100 is configured to be accommodated in a mother ship such as a space station, for example, and released into space as needed. The object trajectory changing system 100 can move in space by itself by the propulsion unit 7 such as a thruster.
ワイヤ送り出し部6は、所定の長さのワイヤ2が収納されている。発射体3が発射部1から発射されて本体部5から離れるにしたがって、ワイヤ2がワイヤ送り出し部6から本体部5の外部へ送り出される。
The wire feeding section 6 stores the wire 2 of a predetermined length. As the projectile 3 is fired from the firing unit 1 and moves away from the main unit 5, the wire 2 is sent out of the main unit 5 from the wire sending unit 6.
ワイヤ送り出し部6は、送り出したワイヤ2の長さを測定可能であり、例えばワイヤ2を所定の長さだけ送り出したことを検知した場合、必要に応じてワイヤ2の送り出しを停止することができる。また、ワイヤ送り出し部6は、必要に応じてワイヤ2を切断することも可能である。
The wire feeder 6 can measure the length of the wire 2 that has been sent out. For example, when detecting that the wire 2 has been sent out by a predetermined length, the wire feeder 6 can stop sending out the wire 2 as necessary. . Further, the wire feeder 6 can also cut the wire 2 as necessary.
次いで、物体の軌道変更システム100による物体の軌道変更動作について説明する。図3に、実施の形態1にかかる物体の軌道変更システム100の運用方法を示す。物体の軌道変更システム100は、宇宙ステーションなどの母船20に収容可能に構成されている。母船20は、例えばレーダなどの探索装置により、スペースデブリなどの地球を周回する物体10を探索可能である。また、物体10は、地上の基地に設置されたレーダなどによって発見することも可能である。地球を周回する物体10を発見したならば、物体の軌道変更システム100は母船20から宇宙空間に放出される。
Next, an operation of changing the trajectory of the object by the trajectory changing system 100 will be described. FIG. 3 shows an operation method of the object trajectory changing system 100 according to the first embodiment. The object trajectory changing system 100 is configured to be accommodated in a mother ship 20 such as a space station. The mother ship 20 can search for the object 10 orbiting the earth, such as space debris, using a search device such as a radar. Further, the object 10 can be found by a radar or the like installed at a base on the ground. Upon finding an object 10 orbiting the earth, the object orbit changing system 100 is released from the mother ship 20 into space.
図4は、実施の形態1にかかる物体の軌道変更システム100の軌道変更動作を示すフローチャートである。以下、物体の軌道変更システム100の軌道変更動作の各ステップについて説明する。
FIG. 4 is a flowchart showing a trajectory changing operation of the object trajectory changing system 100 according to the first embodiment. Hereinafter, each step of the trajectory changing operation of the object trajectory changing system 100 will be described.
ステップS11:物体位置追跡
物体の軌道変更システム100は、宇宙空間に放出された後、所定の軌道を周回するスペースデブリなどの物体10の位置を継続的に追跡する。物体の軌道変更システム100は、地上や母船などの他の人工衛星などから物体10の位置情報を受け取ることで物体10の位置を追跡してもよいし、物体の軌道変更システム100に設けられたレーダ等の検出装置などを用いて物体10の位置を追跡してもよい。 Step S11: Object Position Tracking The objectorbit changing system 100 continuously tracks the position of the object 10 such as space debris orbiting a predetermined orbit after being released into the outer space. The object orbit changing system 100 may track the position of the object 10 by receiving position information of the object 10 from another artificial satellite such as the ground or a mother ship, or may be provided in the object orbit changing system 100. The position of the object 10 may be tracked using a detection device such as a radar.
物体の軌道変更システム100は、宇宙空間に放出された後、所定の軌道を周回するスペースデブリなどの物体10の位置を継続的に追跡する。物体の軌道変更システム100は、地上や母船などの他の人工衛星などから物体10の位置情報を受け取ることで物体10の位置を追跡してもよいし、物体の軌道変更システム100に設けられたレーダ等の検出装置などを用いて物体10の位置を追跡してもよい。 Step S11: Object Position Tracking The object
ステップS12:物体捕獲
発射部1は、物体10を捕獲するため、発射体3を発射する。ここでは、発射体3が移動することで物体の軌道変更システム100から送り出されたワイヤ2が物体10に巻き付くことで物体10を捕獲する方法(巻き付け法と称する)について説明する。 Step S12: Object Capture Thefiring unit 1 fires the projectile 3 to capture the object 10. Here, a method of capturing the object 10 by winding the wire 2 sent from the object trajectory changing system 100 by moving the projectile 3 around the object 10 (referred to as a winding method) will be described.
発射部1は、物体10を捕獲するため、発射体3を発射する。ここでは、発射体3が移動することで物体の軌道変更システム100から送り出されたワイヤ2が物体10に巻き付くことで物体10を捕獲する方法(巻き付け法と称する)について説明する。 Step S12: Object Capture The
ステップS121:物体へ接近
物体の軌道変更システム100は、物体10の位置情報に基づいて、推進部7を駆動して物体10へ接近する。この際、物体の軌道変更システム100は、発射体3と牽引体4とを連結するワイヤ2の長さよりも近い位置まで物体10に接近する。 Step S121: Approaching the Object The objecttrajectory changing system 100 drives the propulsion unit 7 to approach the object 10 based on the position information of the object 10. At this time, the object trajectory changing system 100 approaches the object 10 to a position closer than the length of the wire 2 connecting the projectile 3 and the towed body 4.
物体の軌道変更システム100は、物体10の位置情報に基づいて、推進部7を駆動して物体10へ接近する。この際、物体の軌道変更システム100は、発射体3と牽引体4とを連結するワイヤ2の長さよりも近い位置まで物体10に接近する。 Step S121: Approaching the Object The object
ステップS122:発射体を発射
物体10への接近終了後、発射部1は、発射体3が物体10に衝突しないように、物体10の近傍へ発射体3を発射する。図5に、発射体3の発射方向と物体との関係を示す。 Step S122: Launch the projectile After the approach to theobject 10 is completed, the launching unit 1 launches the projectile 3 near the object 10 so that the projectile 3 does not collide with the object 10. FIG. 5 shows the relationship between the launch direction of the projectile 3 and the object.
物体10への接近終了後、発射部1は、発射体3が物体10に衝突しないように、物体10の近傍へ発射体3を発射する。図5に、発射体3の発射方向と物体との関係を示す。 Step S122: Launch the projectile After the approach to the
ステップS123:本体部の移動
発射体3を発射した後、本体部5は、発射体3の移動方向D1(第1の方向)と平行ではない方向D2(第2の方向)に移動する。図6に、実施の形態1にかかる本体部5の移動経路を示す。これにより、本体部5は、発射体3の移動方向D1から外れた位置に移動することとなる。 Step S123: Movement of main body After firing projectile 3,main body 5 moves in a direction D2 (second direction) that is not parallel to moving direction D1 (first direction) of projectile 3. FIG. 6 shows a movement route of the main body unit 5 according to the first embodiment. As a result, the main body 5 moves to a position outside the moving direction D1 of the projectile 3.
発射体3を発射した後、本体部5は、発射体3の移動方向D1(第1の方向)と平行ではない方向D2(第2の方向)に移動する。図6に、実施の形態1にかかる本体部5の移動経路を示す。これにより、本体部5は、発射体3の移動方向D1から外れた位置に移動することとなる。 Step S123: Movement of main body After firing projectile 3,
このとき、ワイヤ2を効率的に物体10に巻き付けるため、本体部5は、少なくとも、前記発射体が移動する経路である移動方向D1と直交し、かつ、移動方向D1から物体10の重心を通る方向である方向D2に移動することが望ましい。
At this time, in order to wind the wire 2 around the object 10 efficiently, the main body 5 is at least orthogonal to the moving direction D1 which is the path along which the projectile moves, and passes through the center of gravity of the object 10 from the moving direction D1. It is desirable to move in the direction D2 which is the direction.
ステップS124:ワイヤ送り出し停止
本体部5の移動完了後、ワイヤ送り出し部6は、ワイヤ2の送り出しを停止する。ワイヤの送り出し停止は、ワイヤ送り出し部6に設けた送り出し停止機構によって行ってもよい。ワイヤ4が全て送り出されて牽引体4によって引っ張られることでも、ワイヤ2の送り出しを停止することができる。 Step S124: Stop Wire Feeding After the movement of themain body 5 is completed, the wire feeding unit 6 stops feeding the wire 2. The wire feed stop may be performed by a feed stop mechanism provided in the wire feed unit 6. The feeding of the wire 2 can also be stopped when the entire wire 4 is sent out and pulled by the pulling body 4.
本体部5の移動完了後、ワイヤ送り出し部6は、ワイヤ2の送り出しを停止する。ワイヤの送り出し停止は、ワイヤ送り出し部6に設けた送り出し停止機構によって行ってもよい。ワイヤ4が全て送り出されて牽引体4によって引っ張られることでも、ワイヤ2の送り出しを停止することができる。 Step S124: Stop Wire Feeding After the movement of the
ステップS125:ワイヤが物体と接触
ワイヤ2の送り出し停止後、発射体3の移動によってワイヤ2には張力が生じる。図7に、ワイヤ2及び物体10の関係と発射体3の運動を示す。本体部5、発射体3及び物体10の位置関係から、ワイヤ2の送り出し停止後に発射体3が移動し続けると、ある時点でワイヤ2の一部が物体10と接触する。なお、ワイヤ2の送り出し停止前にワイヤ2が物体10と接触し得る場合があることは、言うまでもない。また、ワイヤ2が物体10と接触できる限り、上記のワイヤの送り出し停止は、本体部5の移動完了前に行うことも可能である。 Step S125: Wire Contact with Object After sending out thewire 2, the projectile 3 moves and the wire 2 is tensioned. FIG. 7 shows the relationship between the wire 2 and the object 10 and the movement of the projectile 3. Based on the positional relationship between the main body 5, the projectile 3, and the object 10, if the projectile 3 continues to move after the wire 2 is stopped, a part of the wire 2 comes into contact with the object 10 at a certain point. Needless to say, the wire 2 may come into contact with the object 10 before the feeding of the wire 2 is stopped. Further, as long as the wire 2 can come into contact with the object 10, the above-mentioned wire sending stop can be performed before the movement of the main body 5 is completed.
ワイヤ2の送り出し停止後、発射体3の移動によってワイヤ2には張力が生じる。図7に、ワイヤ2及び物体10の関係と発射体3の運動を示す。本体部5、発射体3及び物体10の位置関係から、ワイヤ2の送り出し停止後に発射体3が移動し続けると、ある時点でワイヤ2の一部が物体10と接触する。なお、ワイヤ2の送り出し停止前にワイヤ2が物体10と接触し得る場合があることは、言うまでもない。また、ワイヤ2が物体10と接触できる限り、上記のワイヤの送り出し停止は、本体部5の移動完了前に行うことも可能である。 Step S125: Wire Contact with Object After sending out the
ステップS126:ワイヤ巻き付き
ワイヤ2が物体10と接触すると、発射体3はワイヤ2に引っ張られて、物体10に対して回転運動を開始する。これにより、ワイヤ2が物体10に巻き付くこととなる。ワイヤ2が巻き付くにつれて、ワイヤ2と物体10との接触部と発射体3との間のワイヤ2の長さが短くなるので、発射体3の回転速度が大きくなってゆく。宇宙空間では、無重力状態ないしは無重力状態に近似しうる程度に低重力状態であるので、ワイヤ2の長さを十分にとることで、ワイヤ2を物体10に複数回巻き付けることができる。 Step S126: Wire Winding When thewire 2 comes into contact with the object 10, the projectile 3 is pulled by the wire 2 and starts rotating with respect to the object 10. As a result, the wire 2 is wound around the object 10. As the wire 2 is wound, the length of the wire 2 between the contact portion between the wire 2 and the object 10 and the projectile 3 becomes shorter, so that the rotation speed of the projectile 3 increases. In the outer space, the wire 2 is wound around the object 10 a plurality of times by taking a sufficient length of the wire 2 because it is in a weightless state or a low gravity state that can approximate the weightless state.
ワイヤ2が物体10と接触すると、発射体3はワイヤ2に引っ張られて、物体10に対して回転運動を開始する。これにより、ワイヤ2が物体10に巻き付くこととなる。ワイヤ2が巻き付くにつれて、ワイヤ2と物体10との接触部と発射体3との間のワイヤ2の長さが短くなるので、発射体3の回転速度が大きくなってゆく。宇宙空間では、無重力状態ないしは無重力状態に近似しうる程度に低重力状態であるので、ワイヤ2の長さを十分にとることで、ワイヤ2を物体10に複数回巻き付けることができる。 Step S126: Wire Winding When the
なお、ワイヤ2を効率的に物体10に巻き付けるには、本体部5は、発射体3の重心と物体10の重心とが属する平面内で移動することが望ましい。換言すれば、発射体3の移動方向D1(第1の方向)と方向D2(第2の方向)とは、発射体3の重心と物体10の重心とが属する平面と平行であることが望ましい。但し、本体部5が厳密にこの平面内で移動することが求められるものではなく、物体10にワイヤ2を巻き付けることができる程度に、この平面に沿って移動することが望ましい。
In order to efficiently wind the wire 2 around the object 10, it is desirable that the main body 5 moves within a plane where the center of gravity of the projectile 3 and the center of gravity of the object 10 belong. In other words, the moving direction D1 (first direction) and the direction D2 (second direction) of the projectile 3 are desirably parallel to the plane to which the center of gravity of the projectile 3 and the center of gravity of the object 10 belong. . However, it is not required that the main body 5 move strictly within this plane, but it is desirable that the main body 5 move along this plane to the extent that the wire 2 can be wound around the object 10.
発射体3には、ワイヤ2の巻き付きが進んで発射体3と物体10と接触したときに物体10の表面の凹凸などをクランプするフック等のクランプ部材を設けてもよい。また、フックの他に、物体10が金属である場合、発射体3に磁石を設け、又は、発射体3を磁石で構成することで、発射体3を物体10に吸着させてもよい。これにより、発射4が物体10に固定され、ワイヤ2が解けることを防止できる。
(4) The projectile 3 may be provided with a clamp member such as a hook for clamping irregularities on the surface of the object 10 when the projecting body 3 comes into contact with the object 10 as the winding of the wire 2 proceeds. When the object 10 is metal other than the hook, the projectile 3 may be provided with a magnet, or the projectile 3 may be made of a magnet so that the projectile 3 is attracted to the object 10. Thereby, the firing 4 is fixed to the object 10 and the wire 2 can be prevented from being unraveled.
ステップS13:切り離し
ワイヤ2の巻き付け完了後、本体部5は、牽引体4を切り離して宇宙空間に放出する。なお、ワイヤ2が解けない限りにおいては、ワイヤ2の巻き付け完了前でも牽引体4を切り離してもよい。 Step S13: Disconnect
After the winding of thewire 2 is completed, the main body 5 separates the towing body 4 and discharges it to outer space. In addition, as long as the wire 2 cannot be unwound, the towing body 4 may be disconnected even before the winding of the wire 2 is completed.
ワイヤ2の巻き付け完了後、本体部5は、牽引体4を切り離して宇宙空間に放出する。なお、ワイヤ2が解けない限りにおいては、ワイヤ2の巻き付け完了前でも牽引体4を切り離してもよい。 Step S13: Disconnect
After the winding of the
ステップS14:回収
牽引体4を切り離した後、本体部5は、推進部7を駆動して宇宙ステーションなどの母船に帰還する。これにより、母船は、本体部5を適宜回収することができる。回収後に、必要に応じて消費したワイヤ2、発射体3及び牽引体4を補充することで、物体の軌道変更システムとして再度の利用を行うことができることは言うまでもない。また、宇宙ステーションなどの母船が、例えばロボットアームなどの回収装置を使用して、本体部5を回収してもよい。 Step S14: Recovery After separating the towingbody 4, the main unit 5 drives the propulsion unit 7 to return to the mother ship such as a space station. Thereby, the mother ship can collect | recover the main-body part 5 suitably. Needless to say, by replenishing the consumed wire 2, the projectile 3 and the towed body 4 as needed after collection, the object can be reused as a trajectory change system for the object. Further, a mother ship such as a space station may collect the main body 5 using a collection device such as a robot arm.
牽引体4を切り離した後、本体部5は、推進部7を駆動して宇宙ステーションなどの母船に帰還する。これにより、母船は、本体部5を適宜回収することができる。回収後に、必要に応じて消費したワイヤ2、発射体3及び牽引体4を補充することで、物体の軌道変更システムとして再度の利用を行うことができることは言うまでもない。また、宇宙ステーションなどの母船が、例えばロボットアームなどの回収装置を使用して、本体部5を回収してもよい。 Step S14: Recovery After separating the towing
次いで、本体部5から牽引体4を切り離した後の物体10の挙動について説明する。牽引体4は、物体10とワイヤ2で連結されているので、物体10の軌道に沿って移動することとなる。牽引体4は正又は負の電荷を帯びているので、牽引体4にはローレンツ力が作用する。
Next, the behavior of the object 10 after the towing body 4 is separated from the main body 5 will be described. Since the towing body 4 is connected to the object 10 by the wire 2, the towing body 4 moves along the trajectory of the object 10. Since the towing body 4 has a positive or negative charge, Lorentz force acts on the towing body 4.
図8に、牽引体4が正の電荷を帯びている場合に作用するローレンツ力Fを示す。図8では、紙面に垂直かつ紙面手前から奥に向かう方向を地磁気Bの方向としている。図8では、物体10が発射体3に捕獲される前に軌道ORBを周回する速度をV0とした。牽引体4は、物体10の軌道ORBに沿って、地磁気Bの方向と交差する方向に移動する。そのため、牽引体4には、重力Gと同じ方向、すなわち天体ASTに向く方向(鉛直下向き)にローレンツ力Fが加わる。物体10は、ローレンツ力Fにより張力が生じたワイヤ2に下向きに牽引されるので、物体10は方向DFに移動して高度が下がり、その結果として軌道が変化する。
FIG. 8 shows the Lorentz force F acting when the towing body 4 has a positive charge. In FIG. 8, the direction perpendicular to the paper surface and going from the front to the back of the paper surface is defined as the direction of the geomagnetism B. In FIG. 8, the speed at which the object 10 orbits the orbit ORB before being captured by the projectile 3 is V0. The towing body 4 moves along the trajectory ORB of the object 10 in a direction intersecting the direction of the geomagnetism B. Therefore, the Lorentz force F is applied to the towing body 4 in the same direction as the gravity G, that is, in the direction toward the celestial body AST (vertically downward). Since the object 10 is pulled downward by the wire 2 that has been tensioned by the Lorentz force F, the object 10 moves in the direction DF and decreases in altitude, and as a result, the trajectory changes.
図9に、牽引体4が負の電荷を帯びている場合に作用するローレンツ力Fを示す。図9では、図8と同様に、紙面に垂直かつ紙面手前から奥に向かう方向を地磁気Bの方向としている。牽引体4は、図8の場合と同様に、物体10の軌道ORBに沿って、地磁気Bの方向と交差する方向に移動する。そのため、牽引体4には、重力Gと反対の方向、すなわち天体ASTと反対の方向(鉛直上向き)にローレンツ力Fが加わる。物体10は、ローレンツ力Fによって張力が生じたワイヤ2に上向きに牽引されるので、物体10は方向DFに移動して高度が上がり、その結果として軌道が変化する。
FIG. 9 shows the Lorentz force F acting when the towing body 4 has a negative charge. 9, the direction of the geomagnetism B is perpendicular to the plane of the paper and goes from the front to the rear of the plane of the paper as in FIG. The towing body 4 moves in the direction crossing the direction of the geomagnetism B along the trajectory ORB of the object 10 as in the case of FIG. Therefore, the Lorentz force F is applied to the towing body 4 in the direction opposite to the gravity G, that is, in the direction opposite to the celestial body AST (vertically upward). Since the object 10 is pulled upward by the wire 2 that has been tensioned by the Lorentz force F, the object 10 moves in the direction DF and increases in altitude, and as a result, the trajectory changes.
物体10の運動の状態によっては、ワイヤ2が全て物体10に巻き付いて、物体10と牽引体4とが実質的に一体となる状況が考え得る。しかし、この場合でも、帯電した牽引体4に働くローレンツ力により、上記した様に物体10の軌道を変更できることが理解できる。これに対し、上述の特許文献及び非特許文献の様に導電性テザーを用いる場合、導電性テザーが物体10に巻き取られてしまうと導電性テザーの電流制御ができなくなり、物体の軌道変更が困難となる。しかし、本構成では、導電性テザーを用いる一般的な方法と異なり、物体10の運動の影響を受けることなく、物体10の軌道を変更することができる。
に よ っ て Depending on the state of movement of the object 10, a situation in which the wire 2 is entirely wrapped around the object 10 and the object 10 and the towing body 4 are substantially integrated can be considered. However, even in this case, it can be understood that the trajectory of the object 10 can be changed as described above by the Lorentz force acting on the charged traction body 4. In contrast, when a conductive tether is used as in the above-described patent documents and non-patent documents, if the conductive tether is wound around the object 10, the current control of the conductive tether cannot be performed, and the trajectory of the object is changed. It will be difficult. However, in the present configuration, unlike a general method using a conductive tether, the trajectory of the object 10 can be changed without being affected by the motion of the object 10.
以上説明したように、本構成では、牽引体4には物体10の軌道及び地磁気の方向と公差する方向にローレンツ力Fが働くので、物体10の軌道を、より低い軌道又はより高い軌道に変化させることができる。これにより、所望の軌道の物体を移動ないしは除去することで、当該所望の軌道に投入される人工衛星等がスペースデブリなどの他の物体と衝突することを防止することができる。
As described above, in the present configuration, since the Lorentz force F acts on the towing body 4 in a direction that makes a tolerance with the trajectory of the object 10 and the direction of the geomagnetism, the trajectory of the object 10 is changed to a lower trajectory or a higher trajectory. Can be done. Accordingly, by moving or removing an object in a desired orbit, it is possible to prevent an artificial satellite or the like to be put into the desired orbit from colliding with another object such as space debris.
また、本実施の形態においては、物体10に接近してドッキング又はランデブーするような一般的な手法と異なり、本体部5と物体10との距離を十分にとることができる。そのため、本体部5と物体10との衝突を防止できるとともに、衝突を懸念することなく迅速に本体部5を物体10へ接近させることができる。その結果、物体の軌道変更を迅速に実行することが可能である。
In addition, in the present embodiment, unlike the general method of docking or rendezvous approaching the object 10, the distance between the main body 5 and the object 10 can be sufficiently increased. Therefore, the collision between the main body 5 and the object 10 can be prevented, and the main body 5 can be quickly approached to the object 10 without fear of collision. As a result, it is possible to quickly change the trajectory of the object.
実施の形態2
実施の形態2にかかる物体の軌道変更システム200について説明する。実施の形態1にかかる物体の軌道変更システム100では、発射体3は物体10に衝突することなく、ワイヤ2が物体10に巻き付くことで物体10を捕獲していた。これに対し、本実施の形態にかかる軌道変更システム200は、発射部1から発射された発射体が物体10に接触して捕獲するもの(直接捕獲法と称する)として構成される。Embodiment 2
An objecttrajectory changing system 200 according to the second embodiment will be described. In the object trajectory changing system 100 according to the first embodiment, the projectile 3 captures the object 10 by wrapping the wire 2 around the object 10 without colliding with the object 10. On the other hand, the trajectory changing system 200 according to the present embodiment is configured as one in which the projectile launched from the launch unit 1 contacts and captures the object 10 (referred to as a direct capture method).
実施の形態2にかかる物体の軌道変更システム200について説明する。実施の形態1にかかる物体の軌道変更システム100では、発射体3は物体10に衝突することなく、ワイヤ2が物体10に巻き付くことで物体10を捕獲していた。これに対し、本実施の形態にかかる軌道変更システム200は、発射部1から発射された発射体が物体10に接触して捕獲するもの(直接捕獲法と称する)として構成される。
An object
図10に、実施の形態2にかかる物体の軌道変更システム200の構成を模式的に示す。物体の軌道変更システム200は、物体の軌道変更システム100の発射体3を、発射体8に置換した構成を有する。発射部1は、発射体8を物体10へ向けて発射し、発射体8が物体10と直接的に接触することで物体10が捕獲される。
FIG. 10 schematically shows a configuration of an object trajectory changing system 200 according to the second embodiment. The object trajectory changing system 200 has a configuration in which the projectile 3 of the object trajectory changing system 100 is replaced with a projectile 8. The launch unit 1 launches the projectile 8 toward the object 10, and the projectile 8 comes into direct contact with the object 10 so that the object 10 is captured.
図11に、発射体8の一例である銛81を示す。銛81は、物体10に貫入するように、先端81Aが鋭利な形状となっている。銛81が物体10の外殻10Aに貫入した後に抜けることを防止するため、銛81は抜け防止機構を有していてもよい。抜け防止機構としては、例えば先端81A近傍に抜け防止用の返し81Bを設けてもよいし、銛81が物体10の外殻10Aに貫入した後に自動的に展開するアンカー81Cを設けてもよい。
FIG. 11 shows a harpoon 81 which is an example of the projectile 8. The harpoon 81 has a sharp tip 81A so as to penetrate the object 10. In order to prevent the harpoon 81 from coming out after penetrating the outer shell 10A of the object 10, the harpoon 81 may have a coming-off prevention mechanism. As the detachment preventing mechanism, for example, a return 81B for preventing detachment may be provided near the distal end 81A, or an anchor 81C that automatically deploys after the harpoon 81 has penetrated the outer shell 10A of the object 10 may be provided.
図12に、発射体8の他の一例であるネット82を示す。ネット82は、発射部1に折りたたまれた状態で装填されており、発射部1から発射された後に展開して、物体10に向かう。ネット82が物体10に到達して物体10を包み込むことで、物体10が捕獲される。ネット82は、慣性力によって自然に物体10を包み込んでもよいし、物体10と接触したときに自動的に閉じて物体10を捕獲するように構成されてもよい。また、ネット82には、物体10をクランプするためのフック等が設けられてよい。
FIG. 12 shows a net 82 which is another example of the projectile 8. The net 82 is loaded in a state where it is folded into the launching unit 1, deploys after being launched from the launching unit 1, and heads toward the object 10. The object 10 is captured when the net 82 reaches the object 10 and wraps around the object 10. The net 82 may naturally wrap the object 10 by inertial force, or may be configured to automatically close and capture the object 10 when it comes into contact with the object 10. The net 82 may be provided with a hook or the like for clamping the object 10.
ネット82は、銛81と比べて、物体10の捕獲時に物体10の一部が分離又は飛散する確率を小さくすることができるので、より好適に物体10を捕獲することができる。物体10がスペースデブリである場合、ネット82を用いることで、物体10との衝突によって新たなスペースデブリが発生する確率を小さくすることができるので、より効率的にスペースデブリを除去することができる。
The net 82 can reduce the probability that a part of the object 10 separates or scatters when the object 10 is captured, as compared with the harpoon 81, and thus can capture the object 10 more preferably. When the object 10 is space debris, by using the net 82, the probability that new space debris will occur due to collision with the object 10 can be reduced, so that space debris can be removed more efficiently. .
ここでは、ネット82について説明したが、物体10を包み込めるならば、シートなどのネット以外の部材を発射体として用いてもよいことは、言うまでもない。
Here, the net 82 has been described, but it goes without saying that a member other than the net, such as a sheet, may be used as the projectile as long as the object 10 can be wrapped.
本実施の形態では、銛81及びネット82について説明したが、物体10を捕獲できるならば、適宜他の形状の部材を発射体として用いてもよいことは、言うまでもない。
In the present embodiment, the harpoon 81 and the net 82 have been described, but it goes without saying that, as long as the object 10 can be captured, a member of another shape may be appropriately used as the projectile.
次いで、物体の軌道変更システム200による物体に軌道変更動作について説明する。図13は、実施の形態2にかかる物体の軌道変更システム200の軌道変更動作を示すフローチャートである。以下、物体の軌道変更システム200の軌道変更動作の各ステップについて説明する。
Next, the operation of changing the trajectory of the object by the object trajectory changing system 200 will be described. FIG. 13 is a flowchart illustrating a trajectory changing operation of the object trajectory changing system 200 according to the second embodiment. Hereinafter, each step of the trajectory changing operation of the object trajectory changing system 200 will be described.
ステップS21:物体位置追跡
ステップS11と同様に、物体の軌道変更システム200は、所定の軌道を周回するスペースデブリなどの物体10の位置を追跡する動作を継続的に行う。 Step S21: Object Position Tracking As in step S11, the objecttrajectory changing system 200 continuously performs an operation of tracking the position of the object 10 such as space debris orbiting a predetermined orbit.
ステップS11と同様に、物体の軌道変更システム200は、所定の軌道を周回するスペースデブリなどの物体10の位置を追跡する動作を継続的に行う。 Step S21: Object Position Tracking As in step S11, the object
ステップS22:物体捕獲
発射部1は、発射体8を物体10へ向けて発射し、物体10を捕獲する。ここでは、発射体として銛81を用いる場合について説明する。 Step S22: Object Capture Thelaunch unit 1 launches the projectile 8 toward the object 10 and captures the object 10. Here, a case where the harpoon 81 is used as the projectile will be described.
発射部1は、発射体8を物体10へ向けて発射し、物体10を捕獲する。ここでは、発射体として銛81を用いる場合について説明する。 Step S22: Object Capture The
ステップS221:物体へ接近
ステップS121と同様に、物体10の位置情報に基づいて、物体の軌道変更システム200は物体10に接近する。 Step S221: Approaching the Object Similar to step S121, thetrajectory changing system 200 for the object approaches the object 10 based on the position information of the object 10.
ステップS121と同様に、物体10の位置情報に基づいて、物体の軌道変更システム200は物体10に接近する。 Step S221: Approaching the Object Similar to step S121, the
ステップS222:発射体を発射
物体への接近終了後、発射部1は、物体10へ向けて銛81を発射する。図14に、銛81が物体10を捕獲する例を示す。このとき、銛81が移動するに伴って、ワイヤ送り出し部6からワイヤ2が送り出される。 Step S222: Launch the projectile After the approach to the object is completed, thelaunching unit 1 launches the harpoon 81 toward the object 10. FIG. 14 shows an example in which the harpoon 81 captures the object 10. At this time, as the harpoon 81 moves, the wire 2 is fed from the wire feeder 6.
物体への接近終了後、発射部1は、物体10へ向けて銛81を発射する。図14に、銛81が物体10を捕獲する例を示す。このとき、銛81が移動するに伴って、ワイヤ送り出し部6からワイヤ2が送り出される。 Step S222: Launch the projectile After the approach to the object is completed, the
ステップS223:発射体が物体を捕獲
銛81が物体10に到達すると、物体10に貫入して、物体10を捕獲する。 Step S223: Projectile Captures Object When theharpoon 81 reaches the object 10, it penetrates the object 10 and captures the object 10.
銛81が物体10に到達すると、物体10に貫入して、物体10を捕獲する。 Step S223: Projectile Captures Object When the
ステップS23:切り離し
銛81が物体10を捕獲すると、ワイヤ2の送り出しが減速又は停止するので、ワイヤ送り出し部6は銛81が物体10を捕獲したことを検知できる。物体10の捕獲を検知したならば、本体部5は、ワイヤ2に接続された牽引体4を切り離し、宇宙空間に放出する。 Step S23: Separation When theharpoon 81 captures the object 10, the feeding of the wire 2 is decelerated or stopped, so that the wire feeding unit 6 can detect that the harpoon 81 has captured the object 10. When the capture of the object 10 is detected, the main body 5 disconnects the traction body 4 connected to the wire 2 and discharges the traction body 4 into outer space.
銛81が物体10を捕獲すると、ワイヤ2の送り出しが減速又は停止するので、ワイヤ送り出し部6は銛81が物体10を捕獲したことを検知できる。物体10の捕獲を検知したならば、本体部5は、ワイヤ2に接続された牽引体4を切り離し、宇宙空間に放出する。 Step S23: Separation When the
ステップS24:回収
ステップS14と同様に、本体部5は、推進部7を駆動して宇宙ステーションなどの母船に帰還する。 Step S24: Recovery As in step S14, themain unit 5 drives the propulsion unit 7 to return to the mother ship such as a space station.
ステップS14と同様に、本体部5は、推進部7を駆動して宇宙ステーションなどの母船に帰還する。 Step S24: Recovery As in step S14, the
以上、本構成によれば、発射体8によって物体10を捕獲し、物体10を牽引体4で牽引することで、実施の形態1と同様に、物体10の軌道を、より低い軌道又はより高い軌道に変化させることができる。これにより、所望の軌道の物体を移動ないしは除去することで、当該所望の軌道に投入される人工衛星等がスペースデブリなどの他の物体と衝突することを防止することができる。
As described above, according to the present configuration, the object 10 is captured by the projectile 8 and the object 10 is towed by the towing body 4, so that the trajectory of the object 10 is reduced to a lower trajectory or a higher trajectory as in the first embodiment. Can be changed to orbit. Accordingly, by moving or removing an object in a desired orbit, it is possible to prevent an artificial satellite or the like to be put into the desired orbit from colliding with another object such as space debris.
また、発射体8の発射後に本体部5を移動させる必要がないので、物体の軌道変更システム100と比べて、より簡単かつ短時間で物体10を捕獲することが可能である。
Since the main body 5 does not need to be moved after the projectile 8 is fired, the object 10 can be captured more easily and in a shorter time than the object trajectory changing system 100.
実施の形態3
実施の形態2にかかる物体の軌道変更システム200では、直接捕獲法で捕獲した物体を、帯電した牽引体4に働くローレンツ力によって牽引することで、物体の軌道を変更した。これに対し、本実施の形態にかかる物体の軌道変更システム300は、パラシュートを牽引体として用いることで、物体の軌道を変更する。以下、軌道変更システム300について説明する。Embodiment 3
In thetrajectory changing system 200 for an object according to the second embodiment, the trajectory of the object is changed by towing the object captured by the direct capture method by the Lorentz force acting on the charged towing body 4. On the other hand, the object trajectory changing system 300 according to the present embodiment changes the trajectory of the object by using the parachute as a towing body. Hereinafter, the trajectory change system 300 will be described.
実施の形態2にかかる物体の軌道変更システム200では、直接捕獲法で捕獲した物体を、帯電した牽引体4に働くローレンツ力によって牽引することで、物体の軌道を変更した。これに対し、本実施の形態にかかる物体の軌道変更システム300は、パラシュートを牽引体として用いることで、物体の軌道を変更する。以下、軌道変更システム300について説明する。
In the
図15に、実施の形態3にかかる物体の軌道変更システム300の構成を模式的に示す。物体の軌道変更システム300は、牽引体として、収納部9に収納されたパラシュート4Aを用いる。図15に示すように、物体の軌道変更システム300は、物体の軌道変更システム200のワイヤ送り出し部6は除去されている。ワイヤ2とパラシュート4とは、収納部9に収納されており、収納部9は発射体8とともに発射部1から発射される。
FIG. 15 schematically shows a configuration of an object trajectory changing system 300 according to the third embodiment. The object trajectory changing system 300 uses the parachute 4A stored in the storage unit 9 as a towing body. As shown in FIG. 15, in the object trajectory changing system 300, the wire feeding unit 6 of the object trajectory changing system 200 is removed. The wire 2 and the parachute 4 are stored in a storage section 9, and the storage section 9 is fired together with the projectile 8 from the firing section 1.
パラシュート4Aは、軽量かつ強靱な素材で構成することが望ましい。例えば、パラシュート4Aは、炭素繊維を編み上げた素材で強化された炭素繊維複合材料を用いることが望ましい。また、パラシュート4Aは、十分な強度を有する樹脂素材、金属箔、樹脂膜と金属膜との積層体などで構成されてもよい。
It is desirable that the parachute 4A be made of a lightweight and tough material. For example, for the parachute 4A, it is desirable to use a carbon fiber composite material reinforced with a material woven from carbon fibers. The parachute 4A may be made of a resin material having sufficient strength, a metal foil, a laminate of a resin film and a metal film, or the like.
次いで、物体の軌道変更システム300による物体の軌道変更動作について説明する。図16は、実施の形態3にかかる物体の軌道変更システム300の軌道変更動作を示すフローチャートである。以下、物体の軌道変更システム300の軌道変更動作に各ステップについて説明する。
Next, an object trajectory changing operation performed by the object trajectory changing system 300 will be described. FIG. 16 is a flowchart illustrating a trajectory changing operation of the object trajectory changing system 300 according to the third embodiment. Hereinafter, each step of the trajectory changing operation of the object trajectory changing system 300 will be described.
ステップS31:物体位置追跡
ステップS21と同様に、物体の軌道変更システム300は、所定の軌道を周回するスペースデブリなどの物体10の位置を追跡する動作を継続的に行う。 Step S31: Object Position Tracking As in step S21, the objecttrajectory changing system 300 continuously performs an operation of tracking the position of the object 10 such as space debris orbiting a predetermined trajectory.
ステップS21と同様に、物体の軌道変更システム300は、所定の軌道を周回するスペースデブリなどの物体10の位置を追跡する動作を継続的に行う。 Step S31: Object Position Tracking As in step S21, the object
ステップS32:物体捕獲
発射部1は、発射体8及び収納部9を物体10へ向けて発射し、物体10を捕獲する。以下、物体捕獲について説明する。 Step S32: Object Capture Thelaunching unit 1 launches the projectile 8 and the storage unit 9 toward the object 10 to capture the object 10. Hereinafter, the object capture will be described.
発射部1は、発射体8及び収納部9を物体10へ向けて発射し、物体10を捕獲する。以下、物体捕獲について説明する。 Step S32: Object Capture The
ステップS321:物体へ接近
ステップS221と同様に、物体10の位置情報に基づいて、物体の軌道変更システム300は物体10に接近する。 Step S321: Approaching the Object Similar to step S221, thetrajectory changing system 300 of the object approaches the object 10 based on the position information of the object 10.
ステップS221と同様に、物体10の位置情報に基づいて、物体の軌道変更システム300は物体10に接近する。 Step S321: Approaching the Object Similar to step S221, the
ステップS322:発射体を発射
ステップS222と同様に、物体への接近終了後、発射部1は、物体10へ向けて銛81及び収納部9を発射する。 Step S322: Launch the projectile As in step S222, after the approach to the object is completed, thelaunch unit 1 launches the harpoon 81 and the storage unit 9 toward the object 10.
ステップS222と同様に、物体への接近終了後、発射部1は、物体10へ向けて銛81及び収納部9を発射する。 Step S322: Launch the projectile As in step S222, after the approach to the object is completed, the
ステップS323:パラシュート放出
図17に、パラシュート4Aの展開を示す。パラシュート4Aは、収納部9の後尾に収納されており、例えばバネなどを用いた放出機構によって、収納部9に対して収納部9の進行方向とは逆の方向に放出される。 Step S323: Parachute Release FIG. 17 shows the development of theparachute 4A. The parachute 4 </ b> A is stored at the rear of the storage unit 9, and is discharged to the storage unit 9 in a direction opposite to the traveling direction of the storage unit 9 by, for example, a release mechanism using a spring or the like.
図17に、パラシュート4Aの展開を示す。パラシュート4Aは、収納部9の後尾に収納されており、例えばバネなどを用いた放出機構によって、収納部9に対して収納部9の進行方向とは逆の方向に放出される。 Step S323: Parachute Release FIG. 17 shows the development of the
ステップS324:パラシュート展開
パラシュート4Aは、宇宙空間の希薄大気の抗力(すなわち、流体抵抗)を受けることで、自然に展開する。パラシュート4Aの展開は希薄大気の抗力によって行われるので、パラシュート4Aの展開は発射体8が物体10を捕獲する前であってもよいし、発射体8が物体10を捕獲する後であってもよい。 Step S324: Parachute Deployment Theparachute 4A naturally deploys by receiving the drag (that is, fluid resistance) of the diluted atmosphere in outer space. Since the deployment of the parachute 4A is performed by the drag of the lean atmosphere, the deployment of the parachute 4A may be performed before the projectile 8 captures the object 10, or even after the projectile 8 captures the object 10. Good.
パラシュート4Aは、宇宙空間の希薄大気の抗力(すなわち、流体抵抗)を受けることで、自然に展開する。パラシュート4Aの展開は希薄大気の抗力によって行われるので、パラシュート4Aの展開は発射体8が物体10を捕獲する前であってもよいし、発射体8が物体10を捕獲する後であってもよい。 Step S324: Parachute Deployment The
ステップS325:発射体が物体を捕獲
銛81が物体10に到達すると、物体10に貫入して、物体10を捕獲する。パラシュート4Aは既に展開しているので、希薄大気の希薄大気の抗力を受ける。これにより、軌道上を移動する物体10は、移動方向とは反対方向に牽引されることで減速する。 Step S325: Projectile Captures Object Whenharpoon 81 reaches object 10, it penetrates object 10 and captures object 10. Since the parachute 4A has already been deployed, it receives the drag of the lean atmosphere. Thus, the object 10 moving on the orbit is decelerated by being pulled in the direction opposite to the moving direction.
銛81が物体10に到達すると、物体10に貫入して、物体10を捕獲する。パラシュート4Aは既に展開しているので、希薄大気の希薄大気の抗力を受ける。これにより、軌道上を移動する物体10は、移動方向とは反対方向に牽引されることで減速する。 Step S325: Projectile Captures Object When
ステップS33:回収
ステップS24と同様に、本体部5は、推進部7を駆動して、宇宙ステーションなどの母船に帰還する。 Step S33: Recovery As in step S24, themain unit 5 drives the propulsion unit 7 to return to the mother ship such as a space station.
ステップS24と同様に、本体部5は、推進部7を駆動して、宇宙ステーションなどの母船に帰還する。 Step S33: Recovery As in step S24, the
以上、本構成によれば、発射体8によって物体10を捕獲し、物体10をパラシュートで減速させることで、物体10の軌道をより低い軌道に変化させることができる。これにより、所望の軌道の物体を移動ないしは除去することで、当該所望の軌道に投入される人工衛星等がスペースデブリなどの他の物体と衝突することを防止することができる。
As described above, according to this configuration, the trajectory of the object 10 can be changed to a lower trajectory by capturing the object 10 with the projectile 8 and decelerating the object 10 with a parachute. Accordingly, by moving or removing an object in a desired orbit, it is possible to prevent an artificial satellite or the like to be put into the desired orbit from colliding with another object such as space debris.
また、本構成では、パラシュートが希薄大気の抵抗を受けるが、物体10の高度が下がるほど希薄大気の密度は大きくなるので、減速効果はより大きくなる。つまり、高度が下がるにつれて物体10の減速が大きくなるので、物体10の軌道を効率的に変更することができる。
Also, in this configuration, the parachute receives the resistance of the lean atmosphere, but the density of the lean atmosphere increases as the altitude of the object 10 decreases, so that the deceleration effect increases. That is, since the deceleration of the object 10 increases as the altitude decreases, the trajectory of the object 10 can be changed efficiently.
さらに、本構成では、実施の形態1及び2で説明した帯電する牽引体4と異なり、パラシュート4Aは帯電するための機構や電機部品を設ける必要がない。そのため、構成がより簡単となるので、物体の軌道変更に要するコストを低減することができる。
Further, in the present configuration, unlike the towing body 4 to be charged described in the first and second embodiments, the parachute 4A does not require a mechanism or an electric component for charging. Therefore, the configuration becomes simpler, and the cost required for changing the trajectory of the object can be reduced.
実施の形態4
実施の形態1にかかる物体の軌道変更システム100では、巻き付け法で捕獲した物体を、帯電した牽引体4に働くローレンツ力によって牽引して物体の軌道を変更した。これに対し、本実施の形態にかかる物体の軌道変更システム400は、実施の形態3と同様にパラシュートを牽引体として用いることで物体の軌道を変更するように構成される。以下、実施の形態4にかかる物体の軌道変更システム400について説明する。Embodiment 4
In the objectorbit changing system 100 according to the first embodiment, the object captured by the winding method is towed by Lorentz force acting on the charged towing body 4 to change the orbit of the object. On the other hand, the object trajectory changing system 400 according to the present embodiment is configured to change the trajectory of the object by using a parachute as a towed body, as in the third embodiment. Hereinafter, an object trajectory changing system 400 according to the fourth embodiment will be described.
実施の形態1にかかる物体の軌道変更システム100では、巻き付け法で捕獲した物体を、帯電した牽引体4に働くローレンツ力によって牽引して物体の軌道を変更した。これに対し、本実施の形態にかかる物体の軌道変更システム400は、実施の形態3と同様にパラシュートを牽引体として用いることで物体の軌道を変更するように構成される。以下、実施の形態4にかかる物体の軌道変更システム400について説明する。
In the object
図18に、実施の形態4にかかる物体の軌道変更システム400の構成を模式的に示す。物体の軌道変更システム400は、牽引体として、パラシュート4Aを用いる。物体の軌道変更システム400は、実施の形態1にかかる巻き付け法で捕獲した物体10を、実施の形態3にかかるパラシュート4Aで減速するものとして構成される。
FIG. 18 schematically shows a configuration of an object trajectory changing system 400 according to the fourth embodiment. The object trajectory changing system 400 uses the parachute 4A as a towing body. The object trajectory changing system 400 is configured to decelerate the object 10 captured by the winding method according to the first embodiment with the parachute 4A according to the third embodiment.
次いで、物体の軌道変更システム400による物体の軌道変更動作について説明する。図19は、実施の形態4にかかる物体の軌道変更システム400の軌道変更動作を示すフローチャートである。以下、物体の軌道変更システム400の軌道変更動作に各ステップについて説明する。
Next, an object trajectory changing operation performed by the object trajectory changing system 400 will be described. FIG. 19 is a flowchart illustrating the trajectory changing operation of the object trajectory changing system 400 according to the fourth embodiment. Hereinafter, each step of the trajectory changing operation of the object trajectory changing system 400 will be described.
ステップS41:物体位置追跡
ステップS11と同様に、物体の軌道変更システム400は、所定の軌道を周回するスペースデブリなどの物体10の位置を追跡する動作を継続的に行う。 Step S41: Object Position Tracking As in step S11, the objecttrajectory changing system 400 continuously performs an operation of tracking the position of the object 10 such as space debris orbiting a predetermined orbit.
ステップS11と同様に、物体の軌道変更システム400は、所定の軌道を周回するスペースデブリなどの物体10の位置を追跡する動作を継続的に行う。 Step S41: Object Position Tracking As in step S11, the object
ステップS42:物体捕獲
発射部1は、物体10を捕獲するために、発射体3を発射する。ここでは、実施の形態1にかかる物体の軌道変更システム100と同様に巻き付け法によって物体10を捕獲する。以下、物体捕獲について説明する。 Step S42: Object Capture Thelaunch unit 1 launches the projectile 3 in order to capture the object 10. Here, the object 10 is captured by the winding method as in the object trajectory changing system 100 according to the first embodiment. Hereinafter, the object capture will be described.
発射部1は、物体10を捕獲するために、発射体3を発射する。ここでは、実施の形態1にかかる物体の軌道変更システム100と同様に巻き付け法によって物体10を捕獲する。以下、物体捕獲について説明する。 Step S42: Object Capture The
ステップS421:物体へ接近
ステップS121と同様に、物体10の位置情報に基づいて、物体の軌道変更システム400は物体10に接近する。 Step S421: Approaching the Object Similar to step S121, thetrajectory changing system 400 of the object approaches the object 10 based on the position information of the object 10.
ステップS121と同様に、物体10の位置情報に基づいて、物体の軌道変更システム400は物体10に接近する。 Step S421: Approaching the Object Similar to step S121, the
ステップS422:発射体を発射
ステップS122と同様に、物体10への接近終了後、発射部1は、発射体3が物体10に衝突しないように、物体10の近傍へ発射体3を発射する。 Step S422: Launch the projectile As in step S122, after the approach to theobject 10 is completed, the launch unit 1 launches the projectile 3 near the object 10 so that the projectile 3 does not collide with the object 10.
ステップS122と同様に、物体10への接近終了後、発射部1は、発射体3が物体10に衝突しないように、物体10の近傍へ発射体3を発射する。 Step S422: Launch the projectile As in step S122, after the approach to the
ステップS423:本体部の移動
ステップS123と同様に、発射体3を発射した後、本体部5は、発射体3の移動方向D1と平行ではない方向D2に移動する。これにより、本体部5は、発射体3の移動方向D1から外れた位置に移動することとなる。 Step S423: Movement of the main body As in step S123, after firing theprojectile 3, the main body 5 moves in a direction D2 that is not parallel to the moving direction D1 of the projectile 3. As a result, the main body 5 moves to a position outside the moving direction D1 of the projectile 3.
ステップS123と同様に、発射体3を発射した後、本体部5は、発射体3の移動方向D1と平行ではない方向D2に移動する。これにより、本体部5は、発射体3の移動方向D1から外れた位置に移動することとなる。 Step S423: Movement of the main body As in step S123, after firing the
ステップS424:パラシュート放出
図20に、パラシュート4Aの展開を示す。ステップS323と同様、パラシュート4Aは、収納部9の後尾に収納されており、例えばバネなどを用いた放出機構によって、収納部9に対して収納部9の進行方向とは逆の方向に放出される。 Step S424: Parachute Release FIG. 20 shows the development of theparachute 4A. As in step S323, the parachute 4A is stored at the rear of the storage unit 9, and is discharged into the storage unit 9 in a direction opposite to the traveling direction of the storage unit 9 by, for example, a release mechanism using a spring or the like. You.
図20に、パラシュート4Aの展開を示す。ステップS323と同様、パラシュート4Aは、収納部9の後尾に収納されており、例えばバネなどを用いた放出機構によって、収納部9に対して収納部9の進行方向とは逆の方向に放出される。 Step S424: Parachute Release FIG. 20 shows the development of the
ステップS425:パラシュート展開
ステップS324と同様、パラシュート4Aは、宇宙空間の希薄大気の抗力(すなわち、流体抵抗)を受けることで、自然に展開する。パラシュート4Aの展開は希薄大気の抗力によって行われるので、パラシュート4Aの展開は発射体3が物体10を捕獲する前であってもよいし、発射体3が物体10を捕獲する後であってもよい。 Step S425: Parachute Deployment Like the step S324, theparachute 4A naturally deploys by receiving the drag (ie, fluid resistance) of the lean atmosphere in outer space. Since the deployment of the parachute 4A is performed by the drag of the lean atmosphere, the deployment of the parachute 4A may be performed before the projectile 3 captures the object 10, or even after the projectile 3 captures the object 10. Good.
ステップS324と同様、パラシュート4Aは、宇宙空間の希薄大気の抗力(すなわち、流体抵抗)を受けることで、自然に展開する。パラシュート4Aの展開は希薄大気の抗力によって行われるので、パラシュート4Aの展開は発射体3が物体10を捕獲する前であってもよいし、発射体3が物体10を捕獲する後であってもよい。 Step S425: Parachute Deployment Like the step S324, the
ステップS426:ワイヤ送り出し停止
本体部5の移動及びパラシュート展開の完了後、ワイヤ送り出し部6は、ワイヤ2の送り出しを停止する。 Step S426: Stop Wire Feeding After the movement of themain body 5 and the development of the parachute are completed, the wire feeding unit 6 stops feeding the wire 2.
本体部5の移動及びパラシュート展開の完了後、ワイヤ送り出し部6は、ワイヤ2の送り出しを停止する。 Step S426: Stop Wire Feeding After the movement of the
ステップS427:ワイヤが物体と接触
ステップS125と同様に、ワイヤ2の送り出し停止後、発射体3の移動によってワイヤ2には張力が生じる。その結果、ある時点でワイヤ2の一部が物体10と接触する。 Step S427: Wire Contact with Object Similar to Step S125, after the feeding of thewire 2 is stopped, the tension of the wire 2 is generated by the movement of the projectile 3. As a result, a part of the wire 2 comes into contact with the object 10 at a certain time.
ステップS125と同様に、ワイヤ2の送り出し停止後、発射体3の移動によってワイヤ2には張力が生じる。その結果、ある時点でワイヤ2の一部が物体10と接触する。 Step S427: Wire Contact with Object Similar to Step S125, after the feeding of the
ステップS428:ワイヤ巻き付き
ステップS126と同様に、ワイヤ2が物体10と接触すると、発射体3はワイヤ2に引っ張られて、物体10に対して回転運動を開始する。これにより、ワイヤ2が物体10に巻き付くこととなる。ワイヤ2が巻き付くにつれて、ワイヤ2と物体10との接触部と発射体3との間のワイヤ2の長さが短くなるので、発射体3の回転速度が大きくなってゆく。宇宙空間では、無重力状態ないしは無重力状態に近似しうる程度に低重力状態であるので、ワイヤ2の長さを十分にとることで、ワイヤ2を物体10に複数回巻き付けることができる。 Step S428: Wire Wrapping As in step S126, when thewire 2 comes into contact with the object 10, the projectile 3 is pulled by the wire 2 and starts rotating with respect to the object 10. As a result, the wire 2 is wound around the object 10. As the wire 2 is wound, the length of the wire 2 between the contact portion between the wire 2 and the object 10 and the projectile 3 becomes shorter, so that the rotation speed of the projectile 3 increases. In the outer space, the wire 2 is wound around the object 10 a plurality of times by taking a sufficient length of the wire 2 because it is in a weightless state or a low gravity state that can approximate the weightless state.
ステップS126と同様に、ワイヤ2が物体10と接触すると、発射体3はワイヤ2に引っ張られて、物体10に対して回転運動を開始する。これにより、ワイヤ2が物体10に巻き付くこととなる。ワイヤ2が巻き付くにつれて、ワイヤ2と物体10との接触部と発射体3との間のワイヤ2の長さが短くなるので、発射体3の回転速度が大きくなってゆく。宇宙空間では、無重力状態ないしは無重力状態に近似しうる程度に低重力状態であるので、ワイヤ2の長さを十分にとることで、ワイヤ2を物体10に複数回巻き付けることができる。 Step S428: Wire Wrapping As in step S126, when the
ステップS43:ワイヤ切断
ワイヤの巻き付き完了後、ワイヤ送り出し部6は、ワイヤ2を切断する。 Step S43: Wire Cutting After the winding of the wire is completed, thewire feeder 6 cuts the wire 2.
ワイヤの巻き付き完了後、ワイヤ送り出し部6は、ワイヤ2を切断する。 Step S43: Wire Cutting After the winding of the wire is completed, the
ステップS44:回収
ステップS14と同様に、本体部5は、ワイヤ2を切断後に推進部7を駆動して、宇宙ステーションなどの母船に帰還する。 Step S44: Recovery As in step S14, themain unit 5 drives the propulsion unit 7 after cutting the wire 2 and returns to the mother ship such as a space station.
ステップS14と同様に、本体部5は、ワイヤ2を切断後に推進部7を駆動して、宇宙ステーションなどの母船に帰還する。 Step S44: Recovery As in step S14, the
以上、本構成によれば、実施の形態3にかかる物体の軌道変更システム300と同様に、物体10をパラシュートで減速させることで、物体10の軌道をより低い軌道に変化させることができる。これにより、所望の軌道の物体を移動ないしは除去することで、当該所望の軌道に投入される人工衛星等がスペースデブリなどの他の物体と衝突することを防止することができる。
As described above, according to this configuration, similarly to the object trajectory changing system 300 according to the third embodiment, the trajectory of the object 10 can be changed to a lower trajectory by decelerating the object 10 with a parachute. Accordingly, by moving or removing an object in a desired orbit, it is possible to prevent an artificial satellite or the like to be put into the desired orbit from colliding with another object such as space debris.
また、本構成では、パラシュートが希薄大気の抗力を受けるが、物体10の高度が下がるほど希薄大気の密度は大きくなるので、減速効果はより大きくなる。つまり、高度が下がるにつれて物体10の減速が大きくなるので、実施の形態3にかかる物体の軌道変更システム300と同様に、物体10の軌道を効率的に変更することができる。
Also, in this configuration, the parachute receives the drag of the lean atmosphere, but the lower the altitude of the object 10, the greater the density of the lean atmosphere, and thus the greater the deceleration effect. That is, since the deceleration of the object 10 increases as the altitude decreases, the trajectory of the object 10 can be changed efficiently, similarly to the object trajectory changing system 300 according to the third embodiment.
その他の実施の形態
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、発射体を複数回発射して、複数の牽引体で物体10を牽引して軌道を変更してもよいことは、言うまでもない。これにより、物体10の軌道より迅速に変更することが可能となる。 Other Embodiments The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist. For example, it goes without saying that the projectile may be fired a plurality of times, and the trajectory may be changed by towing theobject 10 with the plurality of towed bodies. As a result, the trajectory of the object 10 can be changed more quickly.
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、発射体を複数回発射して、複数の牽引体で物体10を牽引して軌道を変更してもよいことは、言うまでもない。これにより、物体10の軌道より迅速に変更することが可能となる。 Other Embodiments The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist. For example, it goes without saying that the projectile may be fired a plurality of times, and the trajectory may be changed by towing the
上述の実施の形態では、ワイヤ2の材質は特に限定されず、導電性又は絶縁性の材料を適宜用いてもよい。
In the above embodiment, the material of the wire 2 is not particularly limited, and a conductive or insulating material may be appropriately used.
上述の実施の形態1及び4では、帯電する牽引体4を用いる構成について説明したが、帯電する牽引体に代えて導電性テザーを用いてもよい。
In the first and fourth embodiments, the configuration using the towing body 4 to be charged is described, but a conductive tether may be used instead of the towing body to be charged.
1 発射部
2 ワイヤ
2A、2B 端部
3、8 発射体
4 牽引体
4A パラシュート
5 本体部
6 ワイヤ送り出し部
7 推進部
9 収納部
10 物体
20 母船
81 銛
81A 先端
82B 返し
81C アンカー
82 ネット
100、200、300、400 軌道変更システム DESCRIPTION OFSYMBOLS 1 Launch part 2 Wire 2A, 2B end part 3, 8 Projectile 4 Traction body 4A Parachute 5 Main part 6 Wire sending part 7 Propulsion part 9 Storage part 10 Object 20 Mother ship 81 Harpoon 81A Tip 82B Return 81C Anchor 82 Net 100, 200 , 300, 400 Orbit change system
2 ワイヤ
2A、2B 端部
3、8 発射体
4 牽引体
4A パラシュート
5 本体部
6 ワイヤ送り出し部
7 推進部
9 収納部
10 物体
20 母船
81 銛
81A 先端
82B 返し
81C アンカー
82 ネット
100、200、300、400 軌道変更システム DESCRIPTION OF
Claims (25)
- 天体の周りの軌道を周回する物体を捕獲する発射体と、
本体部と、
前記本体部に取り付けられ、前記物体を捕獲するために前記発射体を発射する発射部と、
前記発射体に捕獲された物体を牽引可能に前記発射体と接続される牽引体と、を備える、
物体の軌道変更システム。 Projectiles capturing objects that orbit around the celestial body;
The main body,
A launch unit attached to the main body unit and launching the projectile to capture the object;
A tow body connected to the projectile so as to be able to tow an object captured by the projectile,
Object trajectory change system. - 前記発射体と前記牽引体とを接続するワイヤを更に備え、
前記発射体は、前記物体に対して回転運動を行って前記ワイヤを前記物体に巻き付けることで、前記物体を捕獲する、
請求項1に記載の物体の軌道変更システム。 Further comprising a wire connecting the projectile and the towed body,
The projectile captures the object by performing a rotational motion on the object and winding the wire around the object.
An object trajectory changing system according to claim 1. - 前記本体部に取り付けられ、前記本体部を前記物体に対して移動させる推進部と、
前記発射体が発射された後に前記ワイヤを送り出すワイヤ送り出し部と、をさらに備え、
前記発射部は、前記物体と衝突しないように、前記物体近傍へ向けて前記発射体を発射し、
前記推進部は、少なくとも、前記発射体が進む経路と直交し、かつ、前記経路から前記物体の重心を通る方向に、前記本体部を移動させ、
前記ワイヤ送り出し部は、前記本体部の移動中又は移動後に、前記ワイヤの送り出しを停止する、
請求項2に記載の物体の軌道変更システム。 A propulsion unit attached to the main body, for moving the main body relative to the object,
Further, a wire delivery unit that sends out the wire after the projectile has been fired,
The launching unit launches the projectile toward the vicinity of the object so as not to collide with the object,
The propulsion unit is at least orthogonal to a path along which the projectile travels, and moves the main body from the path in a direction passing through the center of gravity of the object,
The wire feeding unit, during or after the movement of the main body, stops sending the wire,
An object trajectory changing system according to claim 2. - 前記発射体は、前記物体と接触したときに前記物体をクランプするクランプ部材を有する、
請求項2又は3に記載の物体の軌道変更システム。 The projectile has a clamp member that clamps the object when it comes into contact with the object,
An object trajectory changing system according to claim 2 or 3. - 前記発射体の一部又は全部は、前記物体の金属部に吸着可能な磁石で形成される、
請求項2又は3に記載の物体の軌道変更システム。 Part or all of the projectile is formed of a magnet that can be attracted to a metal part of the object,
An object trajectory changing system according to claim 2 or 3. - 前記発射体は、前記物体に貫入して前記物体を捕獲する、
請求項1に記載の物体の軌道変更システム。 The projectile penetrates the object and captures the object;
An object trajectory changing system according to claim 1. - 前記発射体は、前記物体からの脱落を防止する返し部、及び、前記物体からの脱落を防止するために前記物体に貫入した後に展開するアンカー部を有する、
請求項6に記載の物体の軌道変更システム。 The projectile has a return portion that prevents the object from falling off, and an anchor portion that expands after penetrating the object to prevent the object from falling off.
An object trajectory changing system according to claim 6. - 前記発射体は、発射後に展開可能な部材であり、展開された前記部材が前記物体を包むことで前記物体を捕獲する、
請求項1に記載の物体の軌道変更システム。 The projectile is a member that can be deployed after firing, and the deployed member captures the object by wrapping the object,
An object trajectory changing system according to claim 1. - 前記牽引体は、電荷を帯びており、
前記牽引体は、地磁気の影響により作用するローレンツ力によって前記物体を牽引する、
請求項1乃至8のいずれか一項に記載の物体の軌道変更システム。 The towing body is charged,
The tow body is tow the object by Lorentz force acting under the influence of geomagnetism,
An object trajectory changing system according to any one of claims 1 to 8. - 前記牽引体は、前記本体部に固定されており、前記発射体が発射された後に前記本体部から切り離される、
請求項9に記載の物体の軌道変更システム。 The tow body is fixed to the main body, and is separated from the main body after the projectile is fired.
An object trajectory changing system according to claim 9. - 前記牽引体は、宇宙空間の希薄大気の抗力を受ける部材として構成され、前記抗力によって前記物体を牽引する、
請求項1乃至8のいずれか一項に記載の物体の軌道変更システム。 The tow body is configured as a member that receives a drag of a rare atmosphere in outer space, and pulls the object by the drag.
An object trajectory changing system according to any one of claims 1 to 8. - 前記牽引体は、前記発射体とともに前記発射部から発射される収納部に折りたたまれて収納され、
前記収納部が発射された後に宇宙空間に放出される、
請求項11に記載の物体の軌道変更システム。 The towing body is folded and stored in a storage unit fired from the firing unit together with the projectile,
Released into outer space after the housing is fired,
An object trajectory changing system according to claim 11. - 前記物体の軌道変更システムは、他の人工衛星に収容可能に構成され、
前記物体が検出された場合に、前記物体の軌道変更システムは前記他の人工衛星から放出され、
前記発射体及び前記牽引体を宇宙空間に放出した後に、前記本体部は前記他の人工衛星に回収される、
請求項1乃至12のいずれか一項に記載の物体の軌道変更システム。 The orbit changing system for the object is configured to be accommodated in another artificial satellite,
When the object is detected, the object's orbit change system is released from the other satellite,
After releasing the projectile and the towed body into outer space, the main body is recovered by the other satellite.
An object trajectory changing system according to any one of claims 1 to 12. - 天体の周りの軌道を周回する物体を捕獲する発射体を、本体部に取り付けられた発射部から発射し、
前記発射体に捕獲された物体を、前記物体を牽引可能に接続された牽引体で前記物体を牽引する、
物体の軌道変更方法。 A projectile that captures an object that orbits around the celestial body is launched from a launch unit attached to the main unit,
Towing the object captured by the projectile with a towing body connected to the object so that the object can be towed;
How to change the trajectory of an object. - 前記発射体が前記物体に対して回転運動を行って、前記発射体と前記牽引体とを接続するワイヤを前記物体に巻き付けることで、前記物体を捕獲する、
請求項14に記載の物体の軌道変更方法。 The projectile performs a rotational motion with respect to the object, and captures the object by winding a wire connecting the projectile and the towed body around the object,
The method for changing the trajectory of an object according to claim 14. - 前記物体と衝突しないように、前記物体近傍へ向けて前記発射体を発射し、
少なくとも、前記発射体が進む経路と直交し、かつ、前記経路から前記物体の重心を通る方向に、前記本体部を移動させ、
前記本体部の移動中又は移動後に、前記本体部に取りつけられたワイヤ送り出し部から送り出される前記ワイヤの送り出しを停止する、
請求項15に記載の物体の軌道変更方法。 Firing the projectile toward the vicinity of the object so as not to collide with the object,
At least, the main body is moved in a direction orthogonal to a path along which the projectile advances, and in a direction passing through the center of gravity of the object from the path,
During or after the movement of the main body, stopping the sending of the wire sent from the wire sending unit attached to the main body,
The method for changing the trajectory of an object according to claim 15. - 前記発射体は、前記物体と接触したときに前記物体をクランプするクランプ部材を有する、
請求項15又は16に記載の物体の軌道変更方法。 The projectile has a clamp member that clamps the object when it comes into contact with the object,
The method for changing the trajectory of an object according to claim 15. - 前記発射体の一部又は全部は、前記物体の金属部に吸着可能な磁石で形成される、
請求項15又は16に記載の物体の軌道変更方法。 Part or all of the projectile is formed of a magnet that can be attracted to a metal part of the object,
The method for changing the trajectory of an object according to claim 15. - 前記発射体は、前記物体に貫入して前記物体を捕獲する、
請求項14に記載の物体の軌道変更方法。 The projectile penetrates the object and captures the object;
The method for changing the trajectory of an object according to claim 14. - 前記発射体は、前記物体からの脱落を防止する返し部、及び、前記物体からの脱落を防止するために前記物体に貫入した後に展開するアンカー部を有する、
請求項19に記載の物体の軌道変更方法。 The projectile has a return portion that prevents the object from falling off, and an anchor portion that expands after penetrating the object to prevent the object from falling off.
The method for changing the trajectory of an object according to claim 19. - 前記発射体は、発射後に展開可能な部材であり、展開された前記部材が前記物体を包むことで前記物体を捕獲する、
請求項14に記載の物体の軌道変更方法。 The projectile is a member that can be deployed after firing, and the deployed member captures the object by wrapping the object,
The method for changing the trajectory of an object according to claim 14. - 前記牽引体は、電荷を帯びており、
前記牽引体は、地磁気の影響により作用するローレンツ力によって前記物体を牽引する、
請求項14乃至21のいずれか一項に記載の物体の軌道変更方法。 The towing body is charged,
The tow body is tow the object by Lorentz force acting under the influence of geomagnetism,
A method for changing the trajectory of an object according to any one of claims 14 to 21. - 前記牽引体は、前記本体部に固定されており、前記発射体が発射された後に前記本体部から切り離される、
請求項22に記載の物体の軌道変更方法。 The tow body is fixed to the main body, and is separated from the main body after the projectile is fired.
The method for changing the trajectory of an object according to claim 22. - 前記牽引体は、宇宙空間の希薄大気の抗力を受ける部材として構成され、前記抗力によって前記物体を牽引する、
請求項14乃至21のいずれか一項に記載の物体の軌道変更方法。 The tow body is configured as a member that receives a drag of a rare atmosphere in outer space, and pulls the object by the drag.
A method for changing the trajectory of an object according to any one of claims 14 to 21. - 前記牽引体は、前記発射体とともに前記発射部から発射される収納部に折りたたまれて収納され、前記収納部が発射された後に宇宙空間に放出される、
請求項24に記載の物体の軌道変更方法。 The towed body is folded and stored in a storage unit fired from the firing unit together with the projectile, and is released into outer space after the storage unit is fired.
The method for changing the trajectory of an object according to claim 24.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/029633 WO2020031266A1 (en) | 2018-08-07 | 2018-08-07 | Object orbit changing system and object orbit changing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/029633 WO2020031266A1 (en) | 2018-08-07 | 2018-08-07 | Object orbit changing system and object orbit changing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031266A1 true WO2020031266A1 (en) | 2020-02-13 |
Family
ID=69413271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029633 WO2020031266A1 (en) | 2018-08-07 | 2018-08-07 | Object orbit changing system and object orbit changing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020031266A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07251799A (en) * | 1994-03-16 | 1995-10-03 | Toshiba Corp | Spacecraft |
US20100193640A1 (en) * | 2009-01-30 | 2010-08-05 | The Boeing Company | Method and apparatus for satellite orbital change using space debris |
JP2010285137A (en) * | 2009-06-12 | 2010-12-24 | Keisuke Ozawa | Space debris reducing apparatus |
US20120292449A1 (en) * | 2011-05-20 | 2012-11-22 | Levin Eugene M | In-space processing and delivery system |
JP2012236591A (en) * | 2011-05-09 | 2012-12-06 | Astrium Gmbh | Device for trapping space debris |
US20130075534A1 (en) * | 2011-09-16 | 2013-03-28 | Composite Technology Development, Inc. | Method for removing orbital objects from orbit using a capture net for momentum transfer |
WO2013065795A1 (en) * | 2011-11-02 | 2013-05-10 | 株式会社Ihi | Device for removing space debris and method for removing space debris |
JP2015518796A (en) * | 2012-06-07 | 2015-07-06 | エアバス・ディフェンス・アンド・スペース・リミテッド | Capturing space objects |
WO2017204320A1 (en) * | 2016-05-27 | 2017-11-30 | 株式会社アストロスケール | Capture plate, space device and capturing method |
WO2018135118A1 (en) * | 2017-01-20 | 2018-07-26 | 株式会社Ihi | Space debris capcuring device and space debris removing device |
-
2018
- 2018-08-07 WO PCT/JP2018/029633 patent/WO2020031266A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07251799A (en) * | 1994-03-16 | 1995-10-03 | Toshiba Corp | Spacecraft |
US20100193640A1 (en) * | 2009-01-30 | 2010-08-05 | The Boeing Company | Method and apparatus for satellite orbital change using space debris |
JP2010285137A (en) * | 2009-06-12 | 2010-12-24 | Keisuke Ozawa | Space debris reducing apparatus |
JP2012236591A (en) * | 2011-05-09 | 2012-12-06 | Astrium Gmbh | Device for trapping space debris |
US20120292449A1 (en) * | 2011-05-20 | 2012-11-22 | Levin Eugene M | In-space processing and delivery system |
US20130075534A1 (en) * | 2011-09-16 | 2013-03-28 | Composite Technology Development, Inc. | Method for removing orbital objects from orbit using a capture net for momentum transfer |
WO2013065795A1 (en) * | 2011-11-02 | 2013-05-10 | 株式会社Ihi | Device for removing space debris and method for removing space debris |
JP2015518796A (en) * | 2012-06-07 | 2015-07-06 | エアバス・ディフェンス・アンド・スペース・リミテッド | Capturing space objects |
WO2017204320A1 (en) * | 2016-05-27 | 2017-11-30 | 株式会社アストロスケール | Capture plate, space device and capturing method |
WO2018135118A1 (en) * | 2017-01-20 | 2018-07-26 | 株式会社Ihi | Space debris capcuring device and space debris removing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9463884B2 (en) | Space debris removing device and space debris removing method | |
JP6473960B2 (en) | Space debris orbital descent method, orbital descent system, and satellite orbit conversion method, orbit conversion system | |
EP3156336B1 (en) | Debris removal device and debris removal method | |
US7648101B2 (en) | Method and apparatus for fast deploying and retrieving of towed bodies | |
US8882048B2 (en) | In-space processing and delivery system | |
US20190359357A1 (en) | Space-debris capturing device and space-debris removing device | |
WO2018154603A1 (en) | Ultra-thin wires as drag-enhancing system for space craft, method of deployment | |
WO2011068193A1 (en) | Method for clearing space debris | |
EP3363744A1 (en) | Capturing system, aerospace vehicle, and plate-like body | |
US20240116655A1 (en) | System and method for capturing space target | |
JP2007530343A (en) | Passive deployment mechanism for space tethers | |
CN112443466B (en) | Spacecraft, propulsion system and method for enhancing thrust of ion-propelled spacecraft | |
WO2020031266A1 (en) | Object orbit changing system and object orbit changing method | |
EP4230533A1 (en) | Space navigating body and capture system | |
EP3584178A1 (en) | Capturing system, space navigation body, and plate-like body | |
JP6525595B2 (en) | Space float capture system | |
US20110309200A1 (en) | Apparatus, Satellite and Method for Trapping High-Speed Particles | |
US8590453B2 (en) | Extending boom for stabilizing projectiles launched from an apparatus | |
RU2773070C1 (en) | Method for accelerating spacecraft de-orbit | |
WO2021059406A1 (en) | Injection device and injection system | |
KR101265090B1 (en) | Separation apparatus for cap of flight vehicle and flight vehicle having the same | |
RU2574366C2 (en) | Space garbage remover and space garbage removal procedure | |
RU2783669C1 (en) | Method for accelerating deorbital space vehicle that complete active functioning | |
RU2801601C1 (en) | Method for cleaning near-earth space from large objects of space debris, including unstabilized ones | |
RU2661378C1 (en) | Method of clearing of around near-earth space from large-dimensional objects of space debris |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18929508 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18929508 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |