WO2020031250A1 - Lens and method for manufacturing lens - Google Patents

Lens and method for manufacturing lens Download PDF

Info

Publication number
WO2020031250A1
WO2020031250A1 PCT/JP2018/029546 JP2018029546W WO2020031250A1 WO 2020031250 A1 WO2020031250 A1 WO 2020031250A1 JP 2018029546 W JP2018029546 W JP 2018029546W WO 2020031250 A1 WO2020031250 A1 WO 2020031250A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
layer
lens body
diamond
carbon film
Prior art date
Application number
PCT/JP2018/029546
Other languages
French (fr)
Japanese (ja)
Inventor
大木 達彦
直 岡田
Original Assignee
株式会社大木工藝
株式会社サンレーコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大木工藝, 株式会社サンレーコーポレーション filed Critical 株式会社大木工藝
Priority to JP2019536235A priority Critical patent/JP6708868B1/en
Priority to PCT/JP2018/029546 priority patent/WO2020031250A1/en
Publication of WO2020031250A1 publication Critical patent/WO2020031250A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers

Definitions

  • the present invention relates to a lens used as an eyeglass lens, a camera lens, an industrial lens, and the like, and a method for manufacturing the lens.
  • Patent Document 2 discloses that a hard coat layer having a refractive index of 1.50 or more is formed on one surface of a plastic optical base material so that a sufficient reflectance is obtained and weather resistance is provided.
  • a first functional film layer mainly composed of an organosilicon compound and having a refractive index of 1.42 or more is formed on the code layer by a wet method, and the first functional film layer is formed on the first functional film layer by a wet method.
  • a mirror-coated optical article is disclosed in which a second functional film layer mainly composed of an organosilicon compound having a higher refractive index than the film layer is formed to constitute a mirror coat layer having a three-layer structure.
  • Patent Document 3 discloses a first step of dyeing one surface of a film made of a transparent resin in order to suitably adhere a hard coat to a surface of a dyed optical component, and a dyed state obtained in the first step.
  • a dye layer is formed by kneading a pigment into a monomer or polymer in order to stably control the color tone, but only by changing the color density, seeking more various cosmetic effects. Rather, if a gradation (blur) process that expresses light and shade of color is performed by superimposing a color on the color of the polarizing film, and then a conventional hard coat layer is applied on top of it, color loss occurs. Unstable color is also a problem.
  • an object of the present invention is to provide a lens in which a protective layer is provided on the functional layer and the dyed layer, regardless of the type of the lens body, and a method for manufacturing the lens, regardless of the type of the lens body.
  • the lens of the present invention is applied to a lens body, a functional layer or a dye layer applied to at least one surface of the lens body, and an upper layer of the functional layer or the dye layer. And a diamond-like carbon film layer.
  • the method of manufacturing a lens according to the present invention includes a mirror coating step of forming a mirror coat layer as a functional layer on one surface of the lens body at 20 ° C. to 80 ° C. by a vacuum evaporation method, and forming a mirror coat layer on the mirror coat layer.
  • the lens of the present invention may have a protective layer on the functional layer and the dyed layer, regardless of the type of the lens body. Further, according to the method for manufacturing a lens of the present invention, a lens having a protective layer on the functional layer can be easily manufactured.
  • FIG. 1 is an explanatory diagram for illustrating an example of a lens according to a first embodiment of the present invention showing a layer structure, and is a schematic cross-sectional view of the lens.
  • FIG. 4 is an explanatory diagram for illustrating an example of a lens according to a second embodiment of the present invention, illustrating a layer structure, and is a schematic cross-sectional view of the lens. It is an explanatory view for explaining an example of a lens according to a third embodiment of the present invention showing a layer structure, and is a schematic cross-sectional view of the lens.
  • the lens 1 includes a lens body 10, a functional layer 20 or a dyed layer 30 provided on at least one surface of the lens body 10, and a diamond provided on the functional layer 20 or the dyed layer 30. And a like carbon film layer 100.
  • Lens 1 includes spectacle lenses, camera lenses, sunglasses, goggles, security camera lenses, optical filters, telescope lenses, microscopes, contact lenses, magnifiers, printers, copiers, projectors, laser devices, variable fibers, optical scopes, etc.
  • the present invention can be applied to any lens such as a lens provided in a camera.
  • the present invention can be applied to any type of semi-finished lens and finished lens (including a plano lens) with or without a degree.
  • the lens 1 includes a lens using the color of the polarizing film of the polarizing lens and the colors of the various functional layers as shown in the third embodiment, a clear lens, and the like.
  • the lens body 10 is made of a synthetic resin material such as polycarbonate, polyurethane, nylon, polyamide, polyurethane, polystyrene, acrylic, allyl diglycol carbonate (CR-39, manufactured by PPG), polyethylene terephthalate (PET), and triacetate (TAC).
  • the lens may be an organic lens or an inorganic lens made of glass or the like, and the lens body may be polarized or non-polarized.
  • the lens body 10 provided with the dyed layer 30 will be described.
  • the present invention is not limited to the lens body 10 provided with the dyed layer 30. It may be colored.
  • the functional layer 20 provided on at least one surface of the lens body 10 may have various functionalities such as dimming properties, antireflection properties, durability, anti-scratch properties, strength, fashionability, and water repellency.
  • a functional layer can be applied, and examples thereof include known functional layers such as a hard coat layer, a mirror coat layer, an antireflection coat layer, and a water-repellent coat layer.
  • a dyed layer may be formed by kneading a pigment into a monomer or a polymer, or a lens may be immersed in a dye to form a dyed layer. You may.
  • the color of the dyed layer 30 may be a single color or a gradation (blur) that changes the color density.
  • the colored lens body 10 may be provided with the dyed layer 30.
  • a gradation (blur) is applied to the lens 1
  • a color is obtained by superimposing the staining layer 30 on the lens body 10 that is colored in a light color, thereby expressing the gradation.
  • the present embodiment also includes such a lens body 10 in which the diamond-like carbon film layer 100 is provided as a protective layer on the multilayer dyeing layer 30.
  • the functional layer 20 may be colored, or such a functional layer 20 may be further provided with a dyed layer 30.
  • Various known methods are used for coloring the lens 1. .
  • the lens body 10 is made of polycarbonate, for example, this material is often used because of its excellent impact resistance. However, since the material has low dyeability, it has been necessary to perform etching or the like in order to penetrate the color.
  • the diamond-like carbon film layer 100 having good adhesion is applied to the upper layer of the dyed layer 30 in which the color tone adjustment is freely performed without the need for etching and primer treatment, thereby preventing discoloration.
  • the color tone can be stabilized, and the color density can be easily controlled.
  • the diamond-like carbon film layer 100 provided on the functional layer 20 or the dyed layer 30 is an amorphous hard film layer made of carbon.
  • the diamond-like carbon film layer 100 becomes a protective layer, the hardness of the lens 1 can be improved, and low friction, abrasion resistance, corrosion resistance, It has excellent oxygen / ultraviolet barrier function and excellent insulation.
  • the protective layer is used as the protective layer for the dyed layer 30, it is possible to prevent discoloration and stabilize the color as described above.
  • the diamond-like carbon film layer 100 can be formed by any known film forming method such as a CVD method such as plasma CVD or thermal CVD, or a PVD method such as vacuum deposition, ion plating, or sputtering.
  • a CVD method such as plasma CVD or thermal CVD
  • a PVD method such as vacuum deposition, ion plating, or sputtering.
  • the method of forming the diamond-like carbon film layer 100 is selected according to the use of the lens 1, and the adjustment of the film thickness can be freely adjusted by the film forming method, processing time, and the like. For example, when the layer thickness may be around 1 ⁇ m, any of the above-described film forming methods may be used.
  • the lens 1 when used for an eyeglass lens, a contact lens, or the like, it is preferable to adopt a plasma ion implantation method and perform ion implantation and ion film formation. This will be described later.
  • the diamond-like carbon film layer 100 may be formed on the entire surface of the functional layer 20 or the upper layer of the dyed layer 30 depending on its use, or partially formed by masking and processing. Can also be applied.
  • an example used as a spectacle lens will be described in more detail based on each embodiment.
  • the first to third embodiments described below are merely examples, and the layer structure and the configuration of the lens body 10 are not limited to the following.
  • FIG. 1 shows a lens 1 in which a mirror coat layer as a functional layer 20 is provided on the surface side of a convex lens body 10 and a diamond-like carbon film layer 100 is provided thereon.
  • the lens body 10 may be an inorganic lens such as a glass material or an organic lens as described above.
  • the glass material when the lens body 10 is an inorganic lens is not particularly limited, but may be, for example, a crown and a soda material having a refractive index of 1.523 and an Abbe number of 58 to 59, or a refractive index of 1 to 5. 60 and an Abbe number of 35 to 45, or a refractive index of 1.80 and an Abbe number of 30 to 42 may be used.
  • the lens body 10 is an organic lens
  • the above-mentioned synthetic resin material is formed into a pellet shape, and is molded by flowing into a mold by an injection method.
  • a material having a refractive index of 1.59 and an Abbe number of 37 may be used.
  • CR-39 manufactured by PPG one having a refractive index of 1.498 and an Abbe number of 58 may be used.
  • the manufacturing method when the lens body 10 is an organic lens is not particularly limited, and any known method is adopted depending on the material.
  • polycarbonate and polyamide are manufactured by the above-mentioned injection method, and PPG's CR-39 and TRIX, and thiourethane (Mitsui Chemical's MR-7, MR-8, MR-10) and polyurethane are manufactured by casting. You.
  • the mirror coat layer provided as the functional layer 20 can process the surface of the lens 1 like a mirror, and is used for a lens for sunglasses and the like.
  • the mirror coat layer is made of an inorganic material, and the layer can be formed by any known method such as a vacuum evaporation method, an ion plating method, and a sputtering method.
  • a vacuum evaporation method an ion beam assist method in which an ion beam is simultaneously irradiated during the evaporation may be used.
  • ZrO 2, SiO 2, SiO, CrO, CrO 3 , TiO 2 , TiO, Ti 2 O 3 , Ti 3 O 5 , NbO, Al 2 O 3 , Ta 2 O 5 , CeO 2 , MgO, YO 2 O 3 , SnO 2 , WO 3, MgF 2 or the like can be used, and one layer or a plurality of layers may be coated. What is the layer thickness? It is 0.2 ⁇ m to 1.0 ⁇ m.
  • the diamond-like carbon film layer 100 is coated on the mirror coat layer provided as such a functional layer 20.
  • the thickness of the diamond-like carbon film layer to be coated is desirably 30 nm to 50 nm. Since the mirror coat layer is an inorganic thin film, that is, a metal thin film, it is easily damaged. Therefore, it is necessary to provide a protective film on the upper layer, but it has been said that it is difficult to further apply a coating film on the mirror coat layer. However, the inventor's earnest research has revealed that the upper layer of the mirror coat layer can be covered with the diamond-like carbon film layer 100.
  • the diamond-like carbon film layer has been found to be useful for hardening, but since it is a carbon film, it is difficult to apply to a lens in that it is colored brown or gray. .
  • the layer thickness is made as very thin as 30 nm to 50 nm, the coloring of the lens can be made almost transparent and almost transparent, and very good wear resistance test and cracking / peeling test result can be obtained. . The details and results of the test will be described later.
  • the lens body 10 is made of polycarbonate, and a mirror coat layer, which is the functional layer 20, is formed on one side of the lens body at 20 ° C. to 80 ° C. by a vacuum deposition method (mirror coating step). Then, a diamond-like carbon film layer 100 is formed on the mirror coat layer at 50 ° C. or lower within 60 to 70 minutes (DLC coating step), and the lens 1 is obtained.
  • the temperature in the mirror coating step is often 40 ° C. to 50 ° C., but may be 60 ° C. to 80 ° C. depending on the specifications of the lens body 10 and is not particularly limited.
  • the DLC coating process is performed as follows.
  • the lens body 10 provided with the mirror coat layer is accommodated in a chamber of the plasma ion implantation apparatus by hanging or the like.
  • the chamber is evacuated, and a gas containing at least one selected from the group consisting of N 2, H 2, O 2 , CF 4 , Ar, C 3 F 8 , CH 4, and NH 3 is introduced into the chamber. I do.
  • high-frequency power is applied to the conductive wire to generate plasma around the lens body 10, and then a high-voltage pulse (positive and negative high-voltage pulses) is applied to attract ions in the plasma to the lens body 10.
  • the film formation time is about 1 hour and the film formation temperature is 50 ° C. or less.
  • carbon atoms contained in the ions modify the surface of the mirror coat layer applied to the lens body 10 (sputtering process) and are implanted to a predetermined depth ( high energy ion implantation), then N 2 or by promoting a reaction for generating a polar group while applying a low voltage by introducing gas Ar, forming a diamond-like carbon film layer 100 in a state of high adhesion can do.
  • the surface modification of the mirror coat layer is performed by introducing a gas into a vacuum chamber, applying a high-frequency voltage to convert the gas into a plasma, generating ions, and accelerating and implanting the ions.
  • the plasma state varies depending on the ratio of Ar or hydrogen atoms to nitrogen atoms, and the gas type and its mixing ratio are determined depending on whether some atoms of the lens material are activated. Is preferred.
  • the high-frequency pulse power supply for generating gas plasma is very important because it carries out ion implantation with high energy, and as the high-frequency power, the frequency ranges from 0.2 MHz to 2.45 GHz, and the output ranges from 10 W to 20 kW. It is desirable that the pulse width is 1.0 ⁇ sec or more. The reason is that when the frequency is lower than 0.2 MHz, the plasma decomposition of the gas is not sufficient and the surface reforming rate is slow, and when the frequency is higher than 2.45 GHz, the stability of plasma generation and an increase in equipment cost are caused. It is. If the high-frequency output is less than 10 W, the plasma density is low, so that ion implantation can be performed, but the surface cannot be modified.
  • the high-frequency output is more than 20 kW, the power supply capacity is large and the equipment cost is increased. Further, when the pulse width is 1.0 ⁇ sec or less, the substantial ion implantation time is shortened, and in the case of an insulator, the charge-up becomes easy.
  • the film formation time is not limited to one hour, but is preferably 5 to 60 minutes. More preferably, the treatment is performed in a short time from the viewpoint of productivity, but it is necessary to select ion implantation conditions according to the material components of the lens body 10. As described above, the surface modification to the mirror coat layer 20 is very effective for the surface modification by the steps of sputtering, ion implantation with high energy, and generation of a polar group with low energy.
  • the film can be formed in the vacuum chamber and can be formed from all directions of the lens body 10, it can be processed into a three-dimensional object such as a convex lens.
  • the diamond-like carbon film layer 100 is coated on the mirror coat layer (functional layer 20) by this film forming method, a thin film is first formed on the mirror coat layer, and then the surface processing (etching) is performed. Done. Then, where the surface of the surface layer of the mirror coat layer (functional layer 20) has been modified, the diamond-like carbon film layer 100 can be formed with high adhesion by the mixing effect of ion implantation. .
  • the diamond-like carbon film layer 100 may be gasified to make the diamond-like carbon film layer 100 conductive.
  • the diamond-like carbon film layer 100 serves as an antistatic film, it can exhibit an antistatic effect and also an electromagnetic wave shielding effect.
  • Cr is used, a blue light suppressing effect can be expected.
  • FIG. 2 shows an example in which a diamond-like carbon film layer 100 is provided on both surfaces of a lens body 10 as an example different from the lens 1 shown in the first embodiment. Therefore, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and the common description will be omitted.
  • the lens 1A shown in FIG. 2 includes a hard coat layer 20 on the surface side of a convex lens body 10 which is an organic lens, and a mirror coat layer 20 is further provided thereon. That is, a plurality of functional layers 20 are formed on the surface side of the lens body 10. An anti-reflection layer is formed as a functional layer 20 on the back side of the lens body 10.
  • a diamond-like carbon film layer 100 is formed on the outermost layer of the functional layer 20 formed on the front and back of the lens body 10.
  • the hard coat layer 20 is formed by using a known ultraviolet curable or thermosetting hard coat liquid such as, for example, an acrylic or silicon (siloxane).
  • a known method for forming such a hard coat layer 20 any known method such as brush coating (dip coating), flow coating, spraying, sputtering, spin coating and the like is employed.
  • the anti-reflection layer 20 is not particularly limited, but is formed using a known anti-reflection liquid such as TiO 2 , Al 2 O 3 , SiO 2 , MgF 2 , BaF 2 , and lithium fluoride.
  • the antireflection layer 20 may also be an antireflection layer having a multilayer structure in which high refractive index layers and low refractive index layers are alternately laminated.
  • the diamond-like carbon film layer 100 covers the lens body 10 and the functional layer 20 as a protective layer, the hardness of the lens 1A is improved in addition to the effect of the functional layer 20. And excellent in low friction, abrasion resistance, corrosion resistance, oxygen / ultraviolet barrier function, and insulation. Also, when the diamond-like carbon film layer 100 is applied to both surfaces of the lens body 10 in this manner, both surfaces can be processed at once by using the manufacturing method using the chamber described in the above ⁇ Production method>.
  • the functional layer 20 may be a water-repellent layer made of a fluorine-containing organosilicon compound. Needless to say, the dyed layer 30 may be used instead of the functional layer 20. Further, since the hardness can be improved by the diamond-like carbon film layer 100, the hard coat layer 20 may not be provided.
  • FIG. 3 shows an example in which the diamond-like carbon film layer 100 is applied to a polarizing lens as an example different from the lens 1 shown in the first embodiment. Therefore, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and the common description will be omitted.
  • the lens 1B shown in FIG. 3 includes a mirror coat layer as a functional layer 20 on the surface side of the convex lens body 10, and a diamond-like carbon film layer 100 as a protective layer on the mirror coat layer.
  • the lens body 10 is formed by sandwiching a polarizing film 10b between glass wafers 10a, 10a of about 0.9 mm from both sides, and bonding them together.
  • the polarizing film 10b a film obtained by immersing a PVA (polyvinyl alcohol) film having a thickness of 20 to 30 microns in iodine and stretching the film 3 to 4 times is often used.
  • This iodine is vulnerable to heat.
  • the carbon film layer 100 is formed by the above ⁇ manufacturing method>, the film forming process can be performed at a low film forming temperature of 50 ° C., so that the lens 1B can be manufactured without adversely affecting the polarizing film 10b.
  • the diamond-like carbon film layer 100 covers the lens body 10 and the functional layer 20 as a protective layer, the hardness of the lens 1B is improved in addition to the effect of the functional layer 20. And excellent in low friction, abrasion resistance, corrosion resistance, oxygen / ultraviolet barrier function, and insulation.
  • the polarizing lens shown in FIG. 3 is an example, and for example, a thin organic lens such as polycarbonate may be used instead of the glass wafer 10a. Needless to say, the dyed layer 30 may be used instead of the functional layer 20.
  • the color of the polarizing film 10b itself is the basic color of the lens, conventionally, it is difficult to cost-effectively make color variations uniform, and usually limited to brown or gray.
  • the diamond-like carbon film layer 100 is coated as a protective layer after providing the dyeing layer 30 on the surface side of the lens body 10 and controlling the coloring density and applying a pattern by masking, it is cosmetically-friendly. It becomes possible to widen the width.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Eyeglasses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a lens in which a protective layer is applied onto a functional layer or a dyed layer regardless of the type of lens body, and a method for manufacturing the lens. This lens 1 is characterized by being provided with: a lens body 10; a functional layer 20 or a dyed layer 30 applied onto at least one surface of the lens body; and a diamond-like carbon film layer 100 that is applied onto the upper layer of the functional layer or the dyed layer.

Description

レンズ及びレンズの製造方法Lens and method for manufacturing lens
 本発明は、眼鏡レンズ、カメラレンズ、工業用レンズ等として使用されるレンズ及びレンズの製造方法に関する。 The present invention relates to a lens used as an eyeglass lens, a camera lens, an industrial lens, and the like, and a method for manufacturing the lens.
 従来、調光性、反射防止性、耐久性、傷防止性、強度性、ファッション性、撥水性等、各種機能性の向上を図るために機能性層が施されたレンズが種々知られている。
例えば特許文献1には、機能性層の密着性を良好にするため、プラスチックレンズ基材の表面上にプライマー層とハードコート層とを順に積層させた後、ハードコート層除去工程を行い、プライマー層を露出させた表面に機能性層を施す眼鏡レンズの製造方法が開示されている。
2. Description of the Related Art Conventionally, various types of lenses provided with a functional layer for improving various functions such as dimming properties, anti-reflection properties, durability, anti-scratch properties, strength, fashionability, and water repellency have been known. .
For example, in Patent Document 1, in order to improve the adhesion of the functional layer, after a primer layer and a hard coat layer are sequentially laminated on the surface of a plastic lens substrate, a hard coat layer removing step is performed. A method for manufacturing a spectacle lens in which a functional layer is provided on the exposed surface of the layer is disclosed.
 また特許文献2には、十分な反射率が得られ耐候性を備えたものとするため、プラスチック製光学基材の一方面に屈折率が1.50以上のハードコート層を形成するとともに、ハードコード層の上層に湿式法によって有機ケイ素化合物を主成分とした屈折率が1.42以上の第1の機能膜層を形成し、第1の機能膜層の上層に湿式法によって第1の機能膜層よりも屈折率の高い有機ケイ素化合物を主成分とした第2の機能膜層を形成し、3層構造のミラーコート層を構成したミラーコート光学物品が開示されている。 Patent Document 2 discloses that a hard coat layer having a refractive index of 1.50 or more is formed on one surface of a plastic optical base material so that a sufficient reflectance is obtained and weather resistance is provided. A first functional film layer mainly composed of an organosilicon compound and having a refractive index of 1.42 or more is formed on the code layer by a wet method, and the first functional film layer is formed on the first functional film layer by a wet method. A mirror-coated optical article is disclosed in which a second functional film layer mainly composed of an organosilicon compound having a higher refractive index than the film layer is formed to constitute a mirror coat layer having a three-layer structure.
 さらに特許文献3には、染色光学部品の表面にハードコートを好適に密着させるため、透明樹脂からなるフィルムの一方の面を染色する第1ステップと、該第1ステップにて得られた染色済みフィルムを用いてフィルムインサート成形により前記フィルムが一体成形されたセミレンズを得,前記フィルムの染色面がレンズ材料と接触するようにフィルムインサート成形を行う第2ステップと、を有する染色光学部品の製造方法が開示されている。 Further, Patent Document 3 discloses a first step of dyeing one surface of a film made of a transparent resin in order to suitably adhere a hard coat to a surface of a dyed optical component, and a dyed state obtained in the first step. A second step of obtaining a semi-lens in which the film is integrally formed by film insert molding using a film, and performing film insert molding such that a stained surface of the film comes into contact with a lens material. Is disclosed.
特開2012-173480号公報JP 2012-173480 A 特開2009-204759号公報JP 2009-204759 A 特開2010-281964号公報JP 2010-281964 A
 このように機能性層や染色層の上層にさらに機能性層を密着性よく施すことは難しく、さらなる改善が望まれる。
例えば、合成樹脂材からなる有機系レンズにハードコート層とミラーコート層とを施す際には、ハードコート液とレンズ本体の屈折率が同じか非常に近い数値でないと干渉縞となってレンズの表面に現れてしまう。また有機系レンズでも、硝子等の無機系レンズでもミラーコート層を施した場合、ミラーコート層の表面に傷がつきやすいため、ミラーコート層の上層にさらに保護層を施したいが、ミラーコート層の上層に機能性層が乗りづらく、剥離しやすいので、ミラーコート層の表面の傷を防ぐのは非常に困難である。
As described above, it is difficult to further apply a functional layer on the functional layer or the dyed layer with good adhesion, and further improvement is desired.
For example, when applying a hard coat layer and a mirror coat layer to an organic lens made of a synthetic resin material, if the refractive index of the hard coat liquid and the lens body are not the same or very close to each other, interference fringes will occur. Appear on the surface. When a mirror coat layer is applied to an organic lens or an inorganic lens such as glass, the surface of the mirror coat layer is easily damaged. Therefore, it is desired to further provide a protective layer on the mirror coat layer. It is very difficult to prevent scratches on the surface of the mirror coat layer because the functional layer is difficult to ride on and easily peels off.
 無機系レンズの偏光レンズでは、凸面の硝子ウエハーの内側(凹面側)にミラー蒸着を施し、その後、偏光膜と裏側の硝子ウエハーを貼りあわせることにより、硝子ウエハーでカバーされたミラーコート層が施されたレンズを得ることができる。しかしこの場合は、ミラーコート層に反射した光が硝子ウエハーの中でゴースト現象を生じてしまう。
 またこのような偏光レンズに機能性層を施す際には、例えばヨード染めの偏光膜の場合、加工時に100℃以上の熱が加われると偏光膜に悪影響が及んでしまうので、高温加工はできないという問題もある。
In the case of an inorganic lens polarized lens, mirror deposition is performed on the inner side (concave side) of the convex glass wafer, and then the polarizing film is bonded to the back glass wafer to form a mirror coat layer covered by the glass wafer. The obtained lens can be obtained. However, in this case, the light reflected on the mirror coat layer causes a ghost phenomenon in the glass wafer.
In addition, when a functional layer is applied to such a polarizing lens, for example, in the case of an iodine-dyed polarizing film, high-temperature processing cannot be performed because heat applied to the polarizing film at a temperature of 100 ° C. or more during processing adversely affects the polarizing film. There is also a problem.
 さらに有機系レンズに色をつける場合、安定して色目をコントロールするため、モノマーもしくはポリマーに顔料を練り込んで染色層を形成するが、より多様なコスメティック効果を求め、色の濃度を変化させるだけでなく、偏光膜の色にさらに色を重ねる等して、色の濃淡を表現するグラデーション(ぼかし)加工を行った場合、その上に従前のハードコート層を施すと、色抜けが発生し、色目が安定しないことも問題になっている。 Furthermore, when coloring an organic lens, a dye layer is formed by kneading a pigment into a monomer or polymer in order to stably control the color tone, but only by changing the color density, seeking more various cosmetic effects. Rather, if a gradation (blur) process that expresses light and shade of color is performed by superimposing a color on the color of the polarizing film, and then a conventional hard coat layer is applied on top of it, color loss occurs. Unstable color is also a problem.
 そこで本発明の目的は上記課題を解決するため、レンズ本体の種類を問わず、機能性層、染色層の上層に保護層が施されたレンズ及びレンズの製造方法を提供することにある。 Therefore, an object of the present invention is to provide a lens in which a protective layer is provided on the functional layer and the dyed layer, regardless of the type of the lens body, and a method for manufacturing the lens, regardless of the type of the lens body.
 上記目的を達成するために、本発明のレンズは、レンズ本体と、該レンズ本体の少なくとも一方面に施された機能性層もしくは染色層と、前記機能性層もしくは前記染色層の上層に施されたダイヤモンドライクカーボン膜層とを備えることを特徴とする。 In order to achieve the above object, the lens of the present invention is applied to a lens body, a functional layer or a dye layer applied to at least one surface of the lens body, and an upper layer of the functional layer or the dye layer. And a diamond-like carbon film layer.
 また本発明のレンズの製造方法は、レンズ本体の一方面に20℃~80℃にて真空蒸着方式により機能性層であるミラーコート層を形成するミラーコーティング工程と、該ミラーコート層の上層に50℃以下で60~70分以内でダイヤモンドライクカーボン膜層を形成するDLCコーティング工程とを備えたことを特徴とする。 The method of manufacturing a lens according to the present invention includes a mirror coating step of forming a mirror coat layer as a functional layer on one surface of the lens body at 20 ° C. to 80 ° C. by a vacuum evaporation method, and forming a mirror coat layer on the mirror coat layer. A DLC coating step of forming a diamond-like carbon film layer at 50 ° C. or less within 60 to 70 minutes.
 本発明のレンズは、レンズ本体の種類を問わず、機能性層、染色層の上層に保護層が施されたものとすることができる。また本発明のレンズの製造方法によれば、機能性層の上層に保護層を備えたレンズを容易に製造することができる。 レ ン ズ The lens of the present invention may have a protective layer on the functional layer and the dyed layer, regardless of the type of the lens body. Further, according to the method for manufacturing a lens of the present invention, a lens having a protective layer on the functional layer can be easily manufactured.
本発明の第1実施形態に係るレンズの一例を層構造を示した説明するための説明図であり、同レンズの模式的断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for illustrating an example of a lens according to a first embodiment of the present invention showing a layer structure, and is a schematic cross-sectional view of the lens. 本発明の第2実施形態に係るレンズの一例を層構造を示した説明するための説明図であり、同レンズの模式的断面図である。FIG. 4 is an explanatory diagram for illustrating an example of a lens according to a second embodiment of the present invention, illustrating a layer structure, and is a schematic cross-sectional view of the lens. 本発明の第3実施形態に係るレンズの一例を層構造を示した説明するための説明図であり、同レンズの模式的断面図である。It is an explanatory view for explaining an example of a lens according to a third embodiment of the present invention showing a layer structure, and is a schematic cross-sectional view of the lens.
 以下に、本発明の実施の形態について、添付図面を参照して説明する。
 本実施形態に係るレンズ1は、レンズ本体10と、レンズ本体10の少なくとも一方面に施された機能性層20もしくは染色層30と、機能性層20もしくは染色層30の上層に施されたダイヤモンドライクカーボン膜層100とを備える。
 レンズ1は、眼鏡レンズ、カメラレンズ、サングラス、ゴーグル、防犯カメラレンズ、光学フィルター、望遠鏡レンズ、顕微鏡、コンタクトレンズ、拡大鏡の他、プリンタ、コピー機、プロジェクター、レーザー装置、可変ファイバー、光学スコープ等に設けられるレンズ等、あらゆるレンズに適用することができる。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The lens 1 according to the present embodiment includes a lens body 10, a functional layer 20 or a dyed layer 30 provided on at least one surface of the lens body 10, and a diamond provided on the functional layer 20 or the dyed layer 30. And a like carbon film layer 100.
Lens 1 includes spectacle lenses, camera lenses, sunglasses, goggles, security camera lenses, optical filters, telescope lenses, microscopes, contact lenses, magnifiers, printers, copiers, projectors, laser devices, variable fibers, optical scopes, etc. The present invention can be applied to any lens such as a lens provided in a camera.
 眼鏡レンズに用いられるレンズ1の場合、セミフィニッシュドレンズ、フィニッシュドレンズ(プラノレンズを含む)のいずれのタイプのレンズにも度付きの有無は問わず、適用できる。またレンズ1は、第3実施形態に示すような偏光レンズの偏光膜の色や種々機能性層の色そのものの色を使用したレンズやクリアレンズ等を含むことは言うまでもない。 レ ン ズ In the case of the lens 1 used for an eyeglass lens, the present invention can be applied to any type of semi-finished lens and finished lens (including a plano lens) with or without a degree. Needless to say, the lens 1 includes a lens using the color of the polarizing film of the polarizing lens and the colors of the various functional layers as shown in the third embodiment, a clear lens, and the like.
 レンズ本体10は、ポリカーボネイト、ポリウレタン、ナイロン、ポリアミド、ポリウレタン、ポリスチレン、アクリル、アリルジグリコールカーボネート(PPG社製:CR-39)、ポリエチレンテレフタレート(PET)、トリアセテート(TAC)等の合成樹脂材からなる有機系レンズ、もしくは硝子等からなる無機系レンズとすることができ、レンズ本体は偏光、非偏光を問わない。また本実施形態では、染色層30が施されたレンズ本体10(いわゆる後染色)についても説明するが、レンズ本体10に染色層30が施されているものに限定されず、レンズ本体10自体が着色されているものであってもよい。 The lens body 10 is made of a synthetic resin material such as polycarbonate, polyurethane, nylon, polyamide, polyurethane, polystyrene, acrylic, allyl diglycol carbonate (CR-39, manufactured by PPG), polyethylene terephthalate (PET), and triacetate (TAC). The lens may be an organic lens or an inorganic lens made of glass or the like, and the lens body may be polarized or non-polarized. In the present embodiment, the lens body 10 provided with the dyed layer 30 (so-called post-dyeing) will be described. However, the present invention is not limited to the lens body 10 provided with the dyed layer 30. It may be colored.
 レンズ本体10の少なくとも一方面に施される機能性層20としては、調光性、反射防止性、耐久性、傷防止性、強度性、ファッション性、撥水性等、各種機能性を付与できる機能性層を適用でき、例えばハードコート層、ミラーコート層、反射防止コート層、撥水コート層等、公知の機能性層が挙げられる。 The functional layer 20 provided on at least one surface of the lens body 10 may have various functionalities such as dimming properties, antireflection properties, durability, anti-scratch properties, strength, fashionability, and water repellency. A functional layer can be applied, and examples thereof include known functional layers such as a hard coat layer, a mirror coat layer, an antireflection coat layer, and a water-repellent coat layer.
 レンズ本体10の少なくとも一方に施される染色層30としては、モノマーもしくはポリマー等に顔料を練り込んで染色層を形成してもよいし、染色剤に、レンズを浸漬させて染色層を形成してもよい。このとき、染色層30の色は、単色でもよいし、色の濃度を変化させるグラデーション(ぼかし)としてもよい。この場合、着色されたレンズ本体10に染色層30を備えたものであってもよい。例えばレンズ1にグラデーション(ぼかし)をいれる際には、薄い色に着色されたレンズ本体10に、染色層30を重ねて色を出し、グラデーションを表現する。よって、本実施形態は、このようなレンズ本体10の多層の染色層30の上層に保護層としてダイヤモンドライクカーボン膜層100が施されたものも含む。また機能性層20が着色されているものであってもよいし、このような機能性層20にさらに染色層30を施してもよく、レンズ1の着色方法は種々公知の手法が採用される。従来、例えばレンズ本体10がポリカーボネイトである場合、この素材は耐衝撃性に優れているので、よく用いられるが、染色性が低いため、色を浸透させるためエッチング等を行う必要があった。しかしこの場合、エッチングで染色層の一部が剥がれ落ち、この上層に塗膜されるウレタン系等のプライマー層に含まれるアルコールが染み出て、濃度のコントロールが非常に難しく、不良品も多く発生しまうという問題があった。本実施形態によれば、エッチング加工・プライマー処理が必要なく、色目調整を自在に行った染色層30の上層に密着性のよいダイヤモンドライクカーボン膜層100を施すことで、色落ちを防止し、色目の安定化を図ることができ、色濃度のコントロールも容易に行うことができる。 As the dyed layer 30 applied to at least one of the lens body 10, a dyed layer may be formed by kneading a pigment into a monomer or a polymer, or a lens may be immersed in a dye to form a dyed layer. You may. At this time, the color of the dyed layer 30 may be a single color or a gradation (blur) that changes the color density. In this case, the colored lens body 10 may be provided with the dyed layer 30. For example, when a gradation (blur) is applied to the lens 1, a color is obtained by superimposing the staining layer 30 on the lens body 10 that is colored in a light color, thereby expressing the gradation. Therefore, the present embodiment also includes such a lens body 10 in which the diamond-like carbon film layer 100 is provided as a protective layer on the multilayer dyeing layer 30. The functional layer 20 may be colored, or such a functional layer 20 may be further provided with a dyed layer 30. Various known methods are used for coloring the lens 1. . Conventionally, when the lens body 10 is made of polycarbonate, for example, this material is often used because of its excellent impact resistance. However, since the material has low dyeability, it has been necessary to perform etching or the like in order to penetrate the color. However, in this case, a part of the dyed layer is peeled off by etching, and the alcohol contained in the urethane-based primer layer coated on the upper layer is exuded, and it is very difficult to control the concentration, and many defective products are generated. There was a problem that it would. According to the present embodiment, the diamond-like carbon film layer 100 having good adhesion is applied to the upper layer of the dyed layer 30 in which the color tone adjustment is freely performed without the need for etching and primer treatment, thereby preventing discoloration. The color tone can be stabilized, and the color density can be easily controlled.
 機能性層20もしくは染色層30の上層に施されるダイヤモンドライクカーボン膜層100は、炭素からなる非晶質の硬質膜層である。これを機能性層20もしくは染色層30の上層に塗膜すれば、ダイヤモンドライクカーボン膜層100が保護層となり、レンズ1の硬度を向上させることができ、低摩擦性、耐摩耗性、耐食性、酸素・紫外線バリア機能、絶縁性に優れたものとすることできる。また染色層30の保護層とした場合は、上述のように色落ちを防止し、色目の安定化を図ることができる。ダイヤモンドライクカーボン膜層100を形成するには、プラズマCVDや熱CVD等のCVD法、真空蒸着、イオンプレーティング、スパッタ等のPVD法等、公知の任意の成膜方法で行なうことができる。ここでダイヤモンドライクカーボン膜層100の成膜方法は、レンズ1の用途に応じて選択され、膜厚の調整も成膜方法や加工時間等によって自在に調整できる。例えば層厚が1μm前後でよい場合は、上述のいずれの成膜方法でもよい。しかし、例えば、レンズ1を眼鏡レンズやコンタクトレンズ等に用いる場合は、プラズマイオン注入成膜法を採用し、イオン注入、イオン成膜を行うことが望ましい。これについては、後述する。
ダイヤモンドライクカーボン膜層100は、その用途に応じて機能性層20もしくは染色層30の上層の全面に形成してもよいし、マスキングをして加工すれば、部分的にダイヤモンドライクカーボン膜層100を施すことも可能である。
 次に眼鏡レンズとして用いた例について、各実施形態に基づき、さらに詳述する。
 なお、以下に説明する第1~第3実施形態は例示に過ぎず、層構造、レンズ本体10の構成は以下に限定されるものではない。
The diamond-like carbon film layer 100 provided on the functional layer 20 or the dyed layer 30 is an amorphous hard film layer made of carbon. When this is coated on the functional layer 20 or the upper layer of the dyed layer 30, the diamond-like carbon film layer 100 becomes a protective layer, the hardness of the lens 1 can be improved, and low friction, abrasion resistance, corrosion resistance, It has excellent oxygen / ultraviolet barrier function and excellent insulation. Further, when the protective layer is used as the protective layer for the dyed layer 30, it is possible to prevent discoloration and stabilize the color as described above. The diamond-like carbon film layer 100 can be formed by any known film forming method such as a CVD method such as plasma CVD or thermal CVD, or a PVD method such as vacuum deposition, ion plating, or sputtering. Here, the method of forming the diamond-like carbon film layer 100 is selected according to the use of the lens 1, and the adjustment of the film thickness can be freely adjusted by the film forming method, processing time, and the like. For example, when the layer thickness may be around 1 μm, any of the above-described film forming methods may be used. However, for example, when the lens 1 is used for an eyeglass lens, a contact lens, or the like, it is preferable to adopt a plasma ion implantation method and perform ion implantation and ion film formation. This will be described later.
The diamond-like carbon film layer 100 may be formed on the entire surface of the functional layer 20 or the upper layer of the dyed layer 30 depending on its use, or partially formed by masking and processing. Can also be applied.
Next, an example used as a spectacle lens will be described in more detail based on each embodiment.
The first to third embodiments described below are merely examples, and the layer structure and the configuration of the lens body 10 are not limited to the following.
<第1実施形態>
 図1には、凸状のレンズ本体10の表面側に機能性層20としてミラーコート層と、その上層にダイヤモンドライクカーボン膜層100とが施されたレンズ1が示されている。
 レンズ本体10は、硝子材等の無機系レンズであってもよいし、上述のような有機系レンズであってもよい。
 レンズ本体10を無機系レンズとする場合の硝子材は、特に限定されないが、例えばクラウンとソーダ材からなり、屈折率は1.523、アッベ数58~59のものとしてもよいし、屈折率1.60、アッベ数35~45のものや、屈折率1.80、アッベ数30~42のものを用いてもよい。
レンズ本体10を有機系レンズとする場合は、上述の合成樹脂材をペレット状にし、インジェクション方式で金型に流して成型する。例えば耐衝撃性に優れたポリカーボネイトからなるものの場合、屈折率1.59、アッベ数37のものを用いてもよい。またPPG社のCR-39からなるものの場合、屈折率1.498、アッベ数58のものを用いてもよい。レンズ本体10を有機系レンズとする場合の製造方法は、特に限定されず、材料に応じて公知の任意の方法が採用される。例えば、ポリカーボネイトやポリアミド等は上述のインジェクション方式、PPG社製のCR-39及びTRIVEX、チオウレタン系(三井ケミカル社製 MR-7, MR-8, MR-10)やポリウレタン等はキャスティングで製造される。
<First embodiment>
FIG. 1 shows a lens 1 in which a mirror coat layer as a functional layer 20 is provided on the surface side of a convex lens body 10 and a diamond-like carbon film layer 100 is provided thereon.
The lens body 10 may be an inorganic lens such as a glass material or an organic lens as described above.
The glass material when the lens body 10 is an inorganic lens is not particularly limited, but may be, for example, a crown and a soda material having a refractive index of 1.523 and an Abbe number of 58 to 59, or a refractive index of 1 to 5. 60 and an Abbe number of 35 to 45, or a refractive index of 1.80 and an Abbe number of 30 to 42 may be used.
When the lens body 10 is an organic lens, the above-mentioned synthetic resin material is formed into a pellet shape, and is molded by flowing into a mold by an injection method. For example, in the case of a material having excellent impact resistance, a material having a refractive index of 1.59 and an Abbe number of 37 may be used. In the case of CR-39 manufactured by PPG, one having a refractive index of 1.498 and an Abbe number of 58 may be used. The manufacturing method when the lens body 10 is an organic lens is not particularly limited, and any known method is adopted depending on the material. For example, polycarbonate and polyamide are manufactured by the above-mentioned injection method, and PPG's CR-39 and TRIX, and thiourethane (Mitsui Chemical's MR-7, MR-8, MR-10) and polyurethane are manufactured by casting. You.
 機能性層20として施されているミラーコート層は、レンズ1の表面を鏡のように加工することができ、サングラス用のレンズ等に用いられる。ミラーコート層は無機物からなり、層を形成する方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等、公知の任意の方法で行うことができる。真空蒸着法においては、蒸着中にイオンビームを同時に照射するイオンビームアシスト法を用いてもよい。無機物としては、ZrO2、SiO2、SiO、CrO、CrO、TiO、TiO、Ti、Ti3、NbO、Al、Ta、CeO、MgO、Y、SnO、WO3,MgFなどを用いることができ、一層を塗膜しても複数層を塗膜してもよい。層厚は。0.2μm~1.0μmとされる。 The mirror coat layer provided as the functional layer 20 can process the surface of the lens 1 like a mirror, and is used for a lens for sunglasses and the like. The mirror coat layer is made of an inorganic material, and the layer can be formed by any known method such as a vacuum evaporation method, an ion plating method, and a sputtering method. In the vacuum evaporation method, an ion beam assist method in which an ion beam is simultaneously irradiated during the evaporation may be used. As inorganic substances, ZrO 2, SiO 2, SiO, CrO, CrO 3 , TiO 2 , TiO, Ti 2 O 3 , Ti 3 O 5 , NbO, Al 2 O 3 , Ta 2 O 5 , CeO 2 , MgO, YO 2 O 3 , SnO 2 , WO 3, MgF 2 or the like can be used, and one layer or a plurality of layers may be coated. What is the layer thickness? It is 0.2 μm to 1.0 μm.
 ダイヤモンドライクカーボン膜層100は、このような機能性層20として施されているミラーコート層の上層に塗膜される。このとき被膜されるダイヤモンドライクカーボン膜層の層厚は、30nm~50nmとすることが望ましい。
 ミラーコート層は、無機物の薄膜、すなわち金属の薄膜であるので、傷がつきやすい。よって、その上層に保護膜を施すことが必要であるが、ミラーコート層の上にさらに塗膜することが難しいとされていた。しかし発明者の鋭意研究により、ミラーコート層の上層をダイヤモンドライクカーボン膜層100で被覆することが可能であることがわかった。従来より、ダイヤモンドライクカーボン膜層は、硬質化するのに有用であることはわかっていたが、炭素被膜であるので、茶色やグレーに着色されてしまう点でレンズへの適用は困難であった。しかし、層厚を30nm~50nmという極薄膜とすれば、レンズへの着色はほとんど気にならない透明近いものにでき、非常に良好な耐摩耗試験及びひび割れ・剥離試験の結果を得ることができた。試験の内容、結果については、後述する。
The diamond-like carbon film layer 100 is coated on the mirror coat layer provided as such a functional layer 20. At this time, the thickness of the diamond-like carbon film layer to be coated is desirably 30 nm to 50 nm.
Since the mirror coat layer is an inorganic thin film, that is, a metal thin film, it is easily damaged. Therefore, it is necessary to provide a protective film on the upper layer, but it has been said that it is difficult to further apply a coating film on the mirror coat layer. However, the inventor's earnest research has revealed that the upper layer of the mirror coat layer can be covered with the diamond-like carbon film layer 100. Conventionally, the diamond-like carbon film layer has been found to be useful for hardening, but since it is a carbon film, it is difficult to apply to a lens in that it is colored brown or gray. . However, if the layer thickness is made as very thin as 30 nm to 50 nm, the coloring of the lens can be made almost transparent and almost transparent, and very good wear resistance test and cracking / peeling test result can be obtained. . The details and results of the test will be described later.
<製造方法>
 図1に示すレンズ1の製造方法の一例について説明する。
ここではレンズ本体10をポリカーボネイトで製し、その一方面に20℃~80℃にて真空蒸着方式により機能性層20であるミラーコート層を形成する(ミラーコーティング工程)。そしてその後、ミラーコート層の上層に50℃以下で60~70分以内でダイヤモンドライクカーボン膜層100を形成し(DLCコーティング工程)、レンズ1を得る。
ミラーコーティング工程における温度は、40℃~50℃で行われることが多いが、レンズ本体10の仕様によっては、60℃~80℃であってもよく、特に限定されない。
<Production method>
An example of a method for manufacturing the lens 1 shown in FIG. 1 will be described.
Here, the lens body 10 is made of polycarbonate, and a mirror coat layer, which is the functional layer 20, is formed on one side of the lens body at 20 ° C. to 80 ° C. by a vacuum deposition method (mirror coating step). Then, a diamond-like carbon film layer 100 is formed on the mirror coat layer at 50 ° C. or lower within 60 to 70 minutes (DLC coating step), and the lens 1 is obtained.
The temperature in the mirror coating step is often 40 ° C. to 50 ° C., but may be 60 ° C. to 80 ° C. depending on the specifications of the lens body 10 and is not particularly limited.
 DLCコーティング工程は、以下のように行う。
 プラズマイオン注入装置のチャンバー内にミラーコート層が施されたレンズ本体10を吊り下げる等して収容する。チャンバー内を真空引きすると共にチャンバー内にN2、2、、CF、Ar、C、CH4、NH等から選択される少なくとも1種類を主成分としたガスを導入する。この状態で導電線に高周波電力を印加することによって、レンズ本体10の周囲にプラズマを発生させ、その後に高電圧パルス(正負の高圧パルス)を印加してプラズマ中のイオンをレンズ本体10に誘引させる。成膜時間は約1時間、成膜温度は50℃以下で行う。このようにレンズ本体10にイオンが誘引されると、そのイオンに含まれる炭素原子がレンズ本体10に施されたミラーコート層の表面を改質し(スパッタ処理)、所定の深さまで注入され(高エネルギーでイオン注入)、その後NあるいはArのガスを導入して低い電圧を印加しながら極性基を生成する反応を促進させることで、高密着の状態でダイヤモンドライクカーボン膜層100を成膜することができる。
 ミラーコート層の表面改質は、真空チャンバー内にガス導入を行い高周波電圧を印加してガスをプラズマ化することによってイオンを生成させ、これを加速して注入することによりなされる。
 表面改質を実施するガスの選定方法としては、Arまたは水素原子と窒素原子の割合によりプラズマ状態が異なり、さらにレンズ材質の一部原子を活性化させるかによって、ガス種とその混合割合を決定するのが好ましい。
The DLC coating process is performed as follows.
The lens body 10 provided with the mirror coat layer is accommodated in a chamber of the plasma ion implantation apparatus by hanging or the like. The chamber is evacuated, and a gas containing at least one selected from the group consisting of N 2, H 2, O 2 , CF 4 , Ar, C 3 F 8 , CH 4, and NH 3 is introduced into the chamber. I do. In this state, high-frequency power is applied to the conductive wire to generate plasma around the lens body 10, and then a high-voltage pulse (positive and negative high-voltage pulses) is applied to attract ions in the plasma to the lens body 10. Let it. The film formation time is about 1 hour and the film formation temperature is 50 ° C. or less. When the ions are attracted to the lens body 10 in this manner, carbon atoms contained in the ions modify the surface of the mirror coat layer applied to the lens body 10 (sputtering process) and are implanted to a predetermined depth ( high energy ion implantation), then N 2 or by promoting a reaction for generating a polar group while applying a low voltage by introducing gas Ar, forming a diamond-like carbon film layer 100 in a state of high adhesion can do.
The surface modification of the mirror coat layer is performed by introducing a gas into a vacuum chamber, applying a high-frequency voltage to convert the gas into a plasma, generating ions, and accelerating and implanting the ions.
As a method of selecting a gas for performing surface modification, the plasma state varies depending on the ratio of Ar or hydrogen atoms to nitrogen atoms, and the gas type and its mixing ratio are determined depending on whether some atoms of the lens material are activated. Is preferred.
 ガスプラズマを発生させる高周波パルス印加電源は高エネルギーでイオン注入を行うため、非常に重要で、高周波電力として、周波数が0.2MHz~2.45GHzまでの範囲で、出力が10W~20kWまでの範囲で、パルス幅1.0μsec以上であることが望ましい。その理由は周波数が0.2MHzより低い周波数では前記ガスのプラズマ分解が充分でなく表面改質速度が遅くなるからであり、また2.45GHzより大きいとプラズマ生成の安定性や装置コストの上昇を招くためである。高周波出力が10W以下ではプラズマ密度が低くイオン注入は出来ても表面改質が出来ないからであり、また20kW以上では電源容量が大きく装置コストの増加を招くためである。さらにパルス幅1.0μsec以下であると実質的なイオン注入時間が短くなり、また絶縁物の場合チャージアップしやすくなるためである。 The high-frequency pulse power supply for generating gas plasma is very important because it carries out ion implantation with high energy, and as the high-frequency power, the frequency ranges from 0.2 MHz to 2.45 GHz, and the output ranges from 10 W to 20 kW. It is desirable that the pulse width is 1.0 μsec or more. The reason is that when the frequency is lower than 0.2 MHz, the plasma decomposition of the gas is not sufficient and the surface reforming rate is slow, and when the frequency is higher than 2.45 GHz, the stability of plasma generation and an increase in equipment cost are caused. It is. If the high-frequency output is less than 10 W, the plasma density is low, so that ion implantation can be performed, but the surface cannot be modified. If the high-frequency output is more than 20 kW, the power supply capacity is large and the equipment cost is increased. Further, when the pulse width is 1.0 μsec or less, the substantial ion implantation time is shortened, and in the case of an insulator, the charge-up becomes easy.
 なお、成膜時間は、上記の1時間に制約されるものではないが5~60分であることが好ましい。より好ましくは生産性の観点から短時間処理であるが、レンズ本体10の材料成分によってイオン注入条件を選定する必要がある。またミラーコート層20への表面改質は、上述のようにスパッタ処理、高エネルギーによるイオン注入、低エネルギーによる極性基生成のステップが表面改質に非常に有効である。 The film formation time is not limited to one hour, but is preferably 5 to 60 minutes. More preferably, the treatment is performed in a short time from the viewpoint of productivity, but it is necessary to select ion implantation conditions according to the material components of the lens body 10. As described above, the surface modification to the mirror coat layer 20 is very effective for the surface modification by the steps of sputtering, ion implantation with high energy, and generation of a polar group with low energy.
 また上述のように真空チャンバーに投入してレンズ本体10の全方向から成膜できるので、凸状のレンズといった立体物への加工も可能である。この成膜方法によって、ミラーコート層(機能性層20)の上層にダイヤモンドライクカーボン膜層100の塗膜する場合、まずはミラーコート層の上層に薄膜を形成し、その後、表面加工(エッチング)がなされる。そしてミラーコート層(機能性層20)の表層の表面改質がなされたところに、イオン注入にされるミキシング効果によって、高い密着性を持って、ダイヤモンドライクカーボン膜層100を形成することができる。またDLCコーティング工程において、Au、Ag、Ti、Ar、Cr、Wをガス化し、ダイヤモンドライクカーボン膜層100に導電性を持たせることもできる。その場合、ダイヤモンドライクカーボン膜層100が帯電防止膜となるので、静電気防止効果を発揮するとともに、電磁波シールド効果も奏し得、Crを用いた場合、ブルーライト抑制効果も期待できる。 Further, as described above, since the film can be formed in the vacuum chamber and can be formed from all directions of the lens body 10, it can be processed into a three-dimensional object such as a convex lens. When the diamond-like carbon film layer 100 is coated on the mirror coat layer (functional layer 20) by this film forming method, a thin film is first formed on the mirror coat layer, and then the surface processing (etching) is performed. Done. Then, where the surface of the surface layer of the mirror coat layer (functional layer 20) has been modified, the diamond-like carbon film layer 100 can be formed with high adhesion by the mixing effect of ion implantation. . In the DLC coating step, Au, Ag, Ti, Ar, Cr, and W may be gasified to make the diamond-like carbon film layer 100 conductive. In this case, since the diamond-like carbon film layer 100 serves as an antistatic film, it can exhibit an antistatic effect and also an electromagnetic wave shielding effect. When Cr is used, a blue light suppressing effect can be expected.
<第2実施形態>
 図2には、第1実施形態に示すレンズ1とは異なる例として、ダイヤモンドライクカーボン膜層100がレンズ本体10の両面に施された例を示す。よって、上述の実施形態と共通する箇所には共通の符号を付し、共通する説明は省略する。
 図2に示すレンズ1Aは、有機系レンズとされた凸状のレンズ本体10の表面側にハードコート層20を備え、その上層にさらにミラーコート層20が施されている。すなわち、機能性層20がレンズ本体10の表面側に複数層形成されている。またレンズ本体10の裏面側には機能性層20として反射防止層が形成されている。そしてこれらレンズ本体10の表裏に形成された機能性層20の最も外層にダイヤモンドライクカーボン膜層100が形成されている。
<Second embodiment>
FIG. 2 shows an example in which a diamond-like carbon film layer 100 is provided on both surfaces of a lens body 10 as an example different from the lens 1 shown in the first embodiment. Therefore, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and the common description will be omitted.
The lens 1A shown in FIG. 2 includes a hard coat layer 20 on the surface side of a convex lens body 10 which is an organic lens, and a mirror coat layer 20 is further provided thereon. That is, a plurality of functional layers 20 are formed on the surface side of the lens body 10. An anti-reflection layer is formed as a functional layer 20 on the back side of the lens body 10. A diamond-like carbon film layer 100 is formed on the outermost layer of the functional layer 20 formed on the front and back of the lens body 10.
 ハードコート層20は、特に限定されないが、例えばアクリル系、シリコン系(シロキサン系)、等の公知の紫外線硬化型、熱硬化型のハードコート液を用いて形成される。このようなハードコート層20の形成方法は、刷塗り(ディップコート)、フローコート、スプレー、スパッタリング、スピンコート等、公知の任意の方法が採用される。
反射防止層20としては、特に限定されないが、例えばTiO、Al、SiO、MgF、BaF、フッ化リチウム等の公知の反射防止液を用いて形成される。反射防止層20においても、高屈折率層及び低屈折率層を交互に積層した多層構造の反射防止層であってもよい。
Although not particularly limited, the hard coat layer 20 is formed by using a known ultraviolet curable or thermosetting hard coat liquid such as, for example, an acrylic or silicon (siloxane). As a method for forming such a hard coat layer 20, any known method such as brush coating (dip coating), flow coating, spraying, sputtering, spin coating and the like is employed.
The anti-reflection layer 20 is not particularly limited, but is formed using a known anti-reflection liquid such as TiO 2 , Al 2 O 3 , SiO 2 , MgF 2 , BaF 2 , and lithium fluoride. The antireflection layer 20 may also be an antireflection layer having a multilayer structure in which high refractive index layers and low refractive index layers are alternately laminated.
 以上のような構成においても、ダイヤモンドライクカーボン膜層100が保護層としてレンズ本体10及び機能性層20を被覆しているので、機能性層20が有する効果に加えて、レンズ1Aの硬度を向上させることができ、低摩擦性、耐摩耗性、耐食性、酸素・紫外線バリア機能、絶縁性に優れたものとすることできる。またダイヤモンドライクカーボン膜層100をこのようにレンズ本体10の両面に施す際でも、上述の<製造方法>で説明したチャンバーを用いた製造方法であれば、両面を一度で加工可能である。
なお、ここでは図示していないが、機能性層20としては、フッ素含有有機ケイ素化合物からなる撥水層であってもよい。また機能性層20に替えて、染色層30としてもよいこともいうまでもない。さらにダイヤモンドライクカーボン膜層100によって、硬度を向上させることができるため、ハードコート層20が施されていなくてもよい。
Also in the above configuration, since the diamond-like carbon film layer 100 covers the lens body 10 and the functional layer 20 as a protective layer, the hardness of the lens 1A is improved in addition to the effect of the functional layer 20. And excellent in low friction, abrasion resistance, corrosion resistance, oxygen / ultraviolet barrier function, and insulation. Also, when the diamond-like carbon film layer 100 is applied to both surfaces of the lens body 10 in this manner, both surfaces can be processed at once by using the manufacturing method using the chamber described in the above <Production method>.
Although not shown here, the functional layer 20 may be a water-repellent layer made of a fluorine-containing organosilicon compound. Needless to say, the dyed layer 30 may be used instead of the functional layer 20. Further, since the hardness can be improved by the diamond-like carbon film layer 100, the hard coat layer 20 may not be provided.
<第3実施形態>
 図3には、第1実施形態に示すレンズ1とはさらに異なる例として、ダイヤモンドライクカーボン膜層100を偏光レンズに適用した例である。よって、上述の実施形態と共通する箇所には共通の符号を付し、共通する説明は省略する。
 図3に示すレンズ1Bは、凸状のレンズ本体10の表面側に機能性層20としてミラーコート層を備え、その上層に保護層としてダイヤモンドライクカーボン膜層100が形成されている。レンズ本体10は、偏光膜10bを両側から0.9mm前後の硝子ウエハー10a,10aで挟んで貼りあわせることによって構成されている。偏光膜10bは、20~30ミクロン厚のPVA(ポリビニルアルコール)フィルムをヨウ素に浸し、3~4倍に延伸させたものがよく用いられる。このヨウ素は、熱に弱く、例えば100℃以上の温度をかけると、レンズ本体10が含水している水分の影響でレンズの色が変わってしまい、不良品となる問題があったが、ダイヤモンドライクカーボン膜層100を上述の<製造方法>で形成する場合、成膜温度が50℃と低温で成膜加工ができるため、偏光膜10bに悪影響を与えることなく、レンズ1Bを製造できる。
<Third embodiment>
FIG. 3 shows an example in which the diamond-like carbon film layer 100 is applied to a polarizing lens as an example different from the lens 1 shown in the first embodiment. Therefore, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and the common description will be omitted.
The lens 1B shown in FIG. 3 includes a mirror coat layer as a functional layer 20 on the surface side of the convex lens body 10, and a diamond-like carbon film layer 100 as a protective layer on the mirror coat layer. The lens body 10 is formed by sandwiching a polarizing film 10b between glass wafers 10a, 10a of about 0.9 mm from both sides, and bonding them together. As the polarizing film 10b, a film obtained by immersing a PVA (polyvinyl alcohol) film having a thickness of 20 to 30 microns in iodine and stretching the film 3 to 4 times is often used. This iodine is vulnerable to heat. For example, when a temperature of 100 ° C. or more is applied, the color of the lens changes due to the effect of the water contained in the lens body 10, and there is a problem that the iodine becomes defective. When the carbon film layer 100 is formed by the above <manufacturing method>, the film forming process can be performed at a low film forming temperature of 50 ° C., so that the lens 1B can be manufactured without adversely affecting the polarizing film 10b.
 以上のような構成においても、ダイヤモンドライクカーボン膜層100が保護層としてレンズ本体10及び機能性層20を被覆しているので、機能性層20が有する効果に加えて、レンズ1Bの硬度を向上させることができ、低摩擦性、耐摩耗性、耐食性、酸素・紫外線バリア機能、絶縁性に優れたものとすることできる。
 図3に示す偏光レンズは、一例であって、例えば、硝子ウエハー10aに替えて、ポリカーボネイト等の薄状の有機系レンズを採用してもよい。また機能性層20に替えて、染色層30としてもよいこともいうまでもない。レンズ1Bとして示すような偏光レンズは、偏光膜10bそのものの色がレンズの基本色になるため、従来、色のバリエーションを揃えることは費用対効果的に難しく、通常は茶系もしくはグレー系に限定されがちであるが、レンズ本体10の表面側に染色層30を設け、着色濃度のコントロールやマスキングによる柄などを施した上で、ダイヤモンドライクカーボン膜層100を保護層として被覆すれば、コスメティック的な幅を広げることが可能になる。
Also in the above configuration, since the diamond-like carbon film layer 100 covers the lens body 10 and the functional layer 20 as a protective layer, the hardness of the lens 1B is improved in addition to the effect of the functional layer 20. And excellent in low friction, abrasion resistance, corrosion resistance, oxygen / ultraviolet barrier function, and insulation.
The polarizing lens shown in FIG. 3 is an example, and for example, a thin organic lens such as polycarbonate may be used instead of the glass wafer 10a. Needless to say, the dyed layer 30 may be used instead of the functional layer 20. In the case of a polarizing lens such as the lens 1B, since the color of the polarizing film 10b itself is the basic color of the lens, conventionally, it is difficult to cost-effectively make color variations uniform, and usually limited to brown or gray. However, if the diamond-like carbon film layer 100 is coated as a protective layer after providing the dyeing layer 30 on the surface side of the lens body 10 and controlling the coloring density and applying a pattern by masking, it is cosmetically-friendly. It becomes possible to widen the width.
 1,1A,1B      レンズ
 10           レンズ本体
 20           機能性層
 30           染色層
 100          ダイヤモンドライクカーボン膜層

 
1, 1A, 1B lens 10 lens body 20 functional layer 30 dyeing layer 100 diamond-like carbon film layer

Claims (6)

  1.  レンズ本体と、該レンズ本体の少なくとも一方面に施された機能性層もしくは染色層と、前記機能性層もしくは前記染色層の上層に施されたダイヤモンドライクカーボン膜層とを備えることを特徴とするレンズ。 A lens body, a functional layer or a dyed layer provided on at least one surface of the lens body, and a diamond-like carbon film layer provided on the functional layer or the dyed layer. lens.
  2.  請求項1において、
     前記機能性層が、ハードコート層、ミラーコート層、反射防止コート層のいずれかであることを特徴とするレンズ。
    In claim 1,
    The lens, wherein the functional layer is any one of a hard coat layer, a mirror coat layer, and an antireflection coat layer.
  3.  請求項1または請求項2において、
     前記ダイヤモンドライクカーボン膜層の層厚は、30nm~50nmであることを特徴とするレンズ。
    In claim 1 or claim 2,
    A lens, wherein the thickness of the diamond-like carbon film layer is 30 nm to 50 nm.
  4.  請求項1~請求項3のいずれか1項において、
     前記レンズ本体は、ポリカーボネイト、ポリウレタン、ナイロン等の合成樹脂材からなる有機系レンズ、もしくは硝子等からなる無機系レンズであり、眼鏡レンズとして使用されることを特徴とするレンズ。
    In any one of claims 1 to 3,
    The lens is characterized in that the lens body is an organic lens made of a synthetic resin material such as polycarbonate, polyurethane or nylon, or an inorganic lens made of glass or the like, and is used as a spectacle lens.
  5.  請求項1~請求項3のいずれか1項において、
     前記レンズ本体は、偏光フィルムを間に挟み硝子ウエハー同士を貼り合わせて構成されている偏光レンズことを特徴とするレンズ。
    In any one of claims 1 to 3,
    A lens, wherein the lens body is a polarizing lens formed by bonding glass wafers with a polarizing film interposed therebetween.
  6.  レンズ本体の一方面に20℃~80℃にて真空蒸着方式により機能性層であるミラーコート層を形成するミラーコーティング工程と、該ミラーコート層の上層に50℃以下で60~70分以内でダイヤモンドライクカーボン膜層を形成するDLCコーティング工程とを備えたことを特徴とするレンズの製造方法。

     
    A mirror coating step of forming a mirror coat layer, which is a functional layer, on one surface of the lens body at 20 ° C. to 80 ° C. by a vacuum deposition method, and forming an upper layer of the mirror coat layer at 50 ° C. or lower within 60 to 70 minutes. A DLC coating step of forming a diamond-like carbon film layer.

PCT/JP2018/029546 2018-08-07 2018-08-07 Lens and method for manufacturing lens WO2020031250A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019536235A JP6708868B1 (en) 2018-08-07 2018-08-07 Lens and lens manufacturing method
PCT/JP2018/029546 WO2020031250A1 (en) 2018-08-07 2018-08-07 Lens and method for manufacturing lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029546 WO2020031250A1 (en) 2018-08-07 2018-08-07 Lens and method for manufacturing lens

Publications (1)

Publication Number Publication Date
WO2020031250A1 true WO2020031250A1 (en) 2020-02-13

Family

ID=69413314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029546 WO2020031250A1 (en) 2018-08-07 2018-08-07 Lens and method for manufacturing lens

Country Status (2)

Country Link
JP (1) JP6708868B1 (en)
WO (1) WO2020031250A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501745A (en) * 1990-09-27 1994-02-24 ダイアモネックス インコーポレイテッド Abrasion resistant coated base material products
JPH06501894A (en) * 1990-10-18 1994-03-03 モンサント カンパニー Abrasion resistant polymer based products
JPH0688209A (en) * 1990-01-29 1994-03-29 Bausch & Lomb Inc Method for attaching diamond-like carbon film to substrate having low fusing point
JPH10500609A (en) * 1994-03-03 1998-01-20 モンサント カンパニー High wear resistance and flexible coatings for flexible substrates
JP2017211548A (en) * 2016-05-26 2017-11-30 三井化学株式会社 Lens and method of producing the same
US20170357033A1 (en) * 2016-06-13 2017-12-14 Viavi Solutions Inc. Protected item including a protective coating
JP2018089779A (en) * 2016-11-30 2018-06-14 イビデン株式会社 Translucent plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396069B2 (en) * 2001-08-28 2010-01-13 パナソニック電工株式会社 Metal film forming method and metal film forming apparatus
JP2004359893A (en) * 2003-06-06 2004-12-24 Tdk Corp Lubricant and magnetic recording medium using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688209A (en) * 1990-01-29 1994-03-29 Bausch & Lomb Inc Method for attaching diamond-like carbon film to substrate having low fusing point
JPH06501745A (en) * 1990-09-27 1994-02-24 ダイアモネックス インコーポレイテッド Abrasion resistant coated base material products
JPH06501894A (en) * 1990-10-18 1994-03-03 モンサント カンパニー Abrasion resistant polymer based products
JPH10500609A (en) * 1994-03-03 1998-01-20 モンサント カンパニー High wear resistance and flexible coatings for flexible substrates
JP2017211548A (en) * 2016-05-26 2017-11-30 三井化学株式会社 Lens and method of producing the same
US20170357033A1 (en) * 2016-06-13 2017-12-14 Viavi Solutions Inc. Protected item including a protective coating
JP2018089779A (en) * 2016-11-30 2018-06-14 イビデン株式会社 Translucent plate

Also Published As

Publication number Publication date
JP6708868B1 (en) 2020-06-10
JPWO2020031250A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
KR101910950B1 (en) Optical article comprising an antireflective coating with a very low reflection in the visible region
JP4796077B2 (en) Eyeglass lenses and eyeglasses
US10317577B2 (en) Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
US10845505B2 (en) Anti-static, anti-reflective coating
BR112021009280A2 (en) optical lens having an interferential coating and a multilayer system for improving abrasion resistance
BR112021009285A2 (en) optical lens having a mirror coating and a multilayer system for improving abrasion resistance
JP2007078780A (en) Optical article and its manufacturing method
US11867876B2 (en) Optical article having directional micro- or nanostructured thin film coating, and its process
WO2020031250A1 (en) Lens and method for manufacturing lens
CN112513722B (en) Ophthalmic lens with anti-reflective and electrochromic functionality
JP2022504911A (en) Optical articles with interference coatings with high wear resistance
US20230266507A1 (en) Optical article having a multilayered antireflective coating including an encapsulated metal film
CN107430211A (en) Antireflective sputtering lamination with low Rv and low Ruv
CN115427841B (en) Optical article comprising light absorbing compound and corresponding manufacturing method
WO2024004753A1 (en) Ophthalmic transmissive optical article set, ophthalmic lens set, ophthalmic transmissive optical article, eyeglasses, and binoculars
CN117377891A (en) Optical article with improved visual comfort
KR20210032855A (en) Blue light protecting and low-reflection optical member and the manufacturing method thereof
KR20030071054A (en) Plasma coating method for plastic lenz

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536235

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929224

Country of ref document: EP

Kind code of ref document: A1