WO2020030878A1 - Réservoir de stockage d'hydrogène comportant une pluralité d'éléments de séparation de type parapluie - Google Patents

Réservoir de stockage d'hydrogène comportant une pluralité d'éléments de séparation de type parapluie Download PDF

Info

Publication number
WO2020030878A1
WO2020030878A1 PCT/FR2019/051913 FR2019051913W WO2020030878A1 WO 2020030878 A1 WO2020030878 A1 WO 2020030878A1 FR 2019051913 W FR2019051913 W FR 2019051913W WO 2020030878 A1 WO2020030878 A1 WO 2020030878A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
envelope
mast
hydrogen storage
tank
Prior art date
Application number
PCT/FR2019/051913
Other languages
English (en)
Inventor
Olivier Gillia
Albin Chaise
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP19769841.8A priority Critical patent/EP3821166A1/fr
Publication of WO2020030878A1 publication Critical patent/WO2020030878A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0166Shape complex divided in several chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0176Shape variable
    • F17C2201/0185Shape variable with separating membrane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/015Bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/013Reducing manufacturing time or effort
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to the general field of hydrogen storage tanks in the form of hydrides, in particular metal hydrides.
  • Hydrogen belongs to the storable vectors of alternative energies which have been developed for several years now. Hydrogen can be obtained in various ways, for example from natural gas or other hydrocarbons, and can in particular be produced by means of the electrolysis of water at high temperature (EHT), in particular the high temperature water vapor electrolysis (EVHT), respectively designated by the English names “High Temperature Electrolysis” (HTE) and “High Temperature Steam Electrolysis” (HTSE). Hydrogen can also advantageously be used as an energy source in solid oxide fuel cells, usually designated by the acronym SOFC for "Solid Oxide Fuel Cells” in English or in fuel cells with proton exchange membranes. (or PEMFC for “Proton Exchange Membrane Fuel Cells” in English).
  • EHT electrolysis of water at high temperature
  • EVHT high temperature water vapor electrolysis
  • Hydrogen can also advantageously be used as an energy source in solid oxide fuel cells, usually designated by the acronym SOFC for "Solid Oxide Fuel Cells" in English or in fuel cells with proton exchange membranes. (or PEM
  • the invention finds applications in various fields of industry, and in particular when there is a need for hydrogen compression, such as for example hydrogen gas compressors by hydrides such as for hydrogen service stations.
  • the invention applies both to hydrogen storage solutions of stationary type and of on-board type.
  • the invention is also suitable for devices requiring the administration of a swelling of an absorbent material to another compound, such as for storing ammonia (NH 3) in AdAmmine ® of the company Amminex .
  • the invention can be used for on-board storage of hydrogen, for example for a fuel cell or heat engine, for example for the means transportation, such as boats, submarines, cars, buses, trucks, construction equipment, two wheels, among others.
  • the invention can be used in the field of transportable power supplies such as batteries for portable electronic devices such as portable telephones, portable computers, among others.
  • the invention can also be used for the stationary storage of hydrogen, for example in large quantity, as for generator sets, or for the storage of hydrogen produced in large quantity by electrolysis of water with electricity from wind turbines, photovoltaic panels, geothermal energy, among others.
  • the invention can also make it possible to store any other source of hydrogen originating for example from the reforming of hydrocarbons or from other processes for obtaining hydrogen (photo-catalysis, biological, geological, among others).
  • the invention provides a hydrogen storage tank by absorption of hydrogen in a hydrogen storage material comprising a plurality of separating elements in the form of folding structures of the umbrella type, as well as a method associated manufacturing.
  • the storage of hydrogen in a hydride is an exothermic reaction, namely that it gives off heat, while the release of hydrogen is an endothermic reaction, namely that it absorbs heat.
  • a hydride tank which consists of an envelope, a hydride, and sometimes internal tubes, with or without fins, which bring calories or frigories directly into the tank.
  • the envelope is responsible for confining the hydrogen gas part. This envelope must hold the pressure necessary for the proper functioning of the hydride, and therefore withstand the maximum pressure that can develop in the tank. It is therefore conventionally a gas tank, which can also be called an envelope, a bottle, a container of hydrogen gas, packaging, a pressure enclosure, among others.
  • the hydride can be arranged in different ways in the envelope.
  • the hydride has the property of absorbing (or adsorbing) and desorbing the hydrogen, so as to obtain a more compact storage thereof.
  • Hydride management is accompanied by thermal management, but also mechanical management, because the hydriding phenomenon is accompanied by a swelling phenomenon of the material. Hydride is therefore rarely introduced alone into the envelope under pressure, and is often accompanied by a structure allowing thermomechanical management of the sorption phenomenon.
  • the depth of the hydride bed is less than the diameter of this bed.
  • French patent application FR 2 953 820 A1 discloses the use of vertical separators in the form of cups, placed at equal distance by threading them on a porous hydrogen distribution tube at the same time as in the cylinder shell.
  • a curved edge makes it possible to create flexibility which makes it possible to put in elastic clamping the cups on the tube or the ferrule.
  • the device ensures easy passage of hydrogen to or from the hydride powder by ensuring confinement of the hydride powder in each well.
  • French patent application FR 2 996 628 A1 describes a compartmentalization of a hydride tank in the form of a vertical cylinder produced by means of buckets stacked on a central tube.
  • the central tube is made up of an assembly of tube sections, each section being mounted clamped in a central orifice of each cup. The seal between each cup is ensured by deformation of the lips.
  • Hydrogen arrives in each well because the central tube is porous to hydrogen but not to hydride powder.
  • the device makes it possible to ensure easy passage of the hydrogen to or from the hydride powder by ensuring confinement of the hydride powder in each well.
  • French patent application FR 3 014 999 A1 teaches the production of compartmentalization by means of stacked buckets.
  • the hydrogen enters through a filter incorporated in the walls of the cup, and a sealing by fitting and O-ring is carried out between each of the cups.
  • the object of the invention is to at least partially remedy the needs mentioned above and the drawbacks relating to the embodiments of the prior art.
  • the subject of the invention is therefore a hydrogen storage tank by absorption of hydrogen in a hydrogen storage material comprising: - an envelope with a longitudinal axis closed at its two longitudinal ends,
  • each separation element having a passage allowing the mounting of the separation element around the central mast, and each separation element forming a substantially bottom perpendicular to the longitudinal axis adapted to receive a hydrogen storage material so as to form a plurality of beds of hydrogen storage material.
  • the storage tank comprises a hydrogen storage material.
  • each separating element forms with the central mast an umbrella-type folding structure, each separating element comprising a plurality of ribs fixed to the central mast and on which is fixed a membrane for supporting the storage material, the largest of which transverse dimension is greater than the largest transverse dimension of the internal volume of the envelope in which the central mast, the separating elements and the hydrogen storage materials are located.
  • the support membrane (s) can, if necessary, play the role of heat conduction fins.
  • the support membrane or membranes are impermeable to grains of hydrides.
  • each separating element comprises a strip for plating the support membrane against the inner wall of the envelope, the strip for plating extending around the entire periphery of the support membrane, being able to come in contact with the envelope.
  • each separation element further comprises a plurality of forks and a sliding piece (or sliding), each fork being fixed to a whale and to the sliding piece mounted in slide connection or pivot sliding around the central pole so as to allow the deployment of the umbrella.
  • forks can for example take the form of rods and / or cords.
  • the hydrogen storage tank according to the invention may also include one or more of the following characteristics taken in isolation or according to any possible technical combination.
  • the separation elements are regularly spaced from each other along the central mast.
  • the envelope is of cylindrical shape.
  • the longitudinal axis of the envelope preferably corresponds to a vertical axis so that the envelope is preferably in the form of a vertical cylinder.
  • Each separating element can comprise a locking element in the open position of the deployed umbrella, the locking element being positioned in contact with the sliding part so that the sliding part is located between the locking element and the support membrane.
  • the envelope is preferably a bottle, in particular of gas, comprising an inlet orifice in the form of a neck of larger transverse dimension less than half of the largest transverse dimension of the internal volume of the envelope.
  • the invention can thus allow the creation of substantially horizontal partitions, filled with hydrides, in a gas cylinder provided with a narrow neck, unlike the embodiments of the prior art. More specifically, the invention can make it possible to insert, at the top of a bottle with a narrowed neck, a central mast on which are arranged n folding structures forming n bottoms creating n vertical partitions of low slenderness. These bottoms can then come into contact with the interior of the bottle and be supported by the forks in connection with the central mast, only the weight of the hydrides allowing in particular the plating of the support membrane on the interior of the bottle.
  • Each whale can be fixed to the central mast by means of a ligating element securing a portion of the whale to the central mast, the whale having a pivot link to allow its deployment and / or retraction relative to the mast central.
  • This pivot link can for example be a pivot link with clevis mounting.
  • the whales are advantageously mounted on the central mast in a sealed manner.
  • the whales can particularly be mounted tight on the central mast, being in particular fixed by means of ligating elements as described above, for example by soldering, by welding, by gluing, among others.
  • the distance, or even the longitudinal space, between two successive separation elements along the longitudinal axis can be less than the largest transverse dimension of the internal volume of the envelope.
  • the ratio between the distance between two successive separation elements and the largest transverse dimension of the internal volume of the envelope can be strictly less than 1. This value can be refined by carrying out in particular stress increase measures for beds of storage materials of different slenderness, in particular the fact that each storage material, in particular each hydride, does not exhibit the same behavior in cycling.
  • the central mast can form a hydrogen supply and collection conduit comprises a plurality of hydrogen passage orifices, for example produced by drilling, in particular at least one hydrogen passage orifice on each stage of the tank formed between two successive separation elements.
  • the mast in the form of a hydrogen supply and collection conduit can advantageously comprise a plurality of filters arranged against the conduit, each filter being opposite at least one orifice for the passage of hydrogen, the conduit comprising in particular at least one filter disposed against at least one hydrogen passage orifice formed on the mast on each stage of the tank formed between two successive separation elements.
  • the presence of a filter covering at least one hydrogen passage orifice makes it possible to prevent the storage material, in particular in the form of hydride powder, from being able to escape through the mast.
  • the filters may for example include a fabric or a fine mesh felt.
  • the filters can also comprise a metallic and / or polymeric material, or even any other type of material.
  • the filters can then be wrapped around the mast. In order to obtain a good seal, more than one winding of the filter in the form of fabric or felt around the mast can be carried out.
  • each filter can be held against the mast by means of clamping means, in particular clamps.
  • clamps can for example correspond to clamps of the Serflex or Colson type.
  • the hydrogen storage material may preferably comprise hydrides, in particular metal hydrides.
  • the subject of the invention is also, according to another of its aspects, a process for manufacturing a hydrogen storage tank as defined above, characterized in that it comprises, for each stage of the tank, storage formed by a separating element secured to the central mast, the following successive steps:
  • the hydrogen storage tank and the manufacturing method according to the invention may include any of the characteristics set out in the description, taken in isolation or in any technically possible combination with other characteristics.
  • FIGS. 1, 2 and 3 are schematic sectional views illustrating three stages of filling hydrogen storage material with an exemplary embodiment of a hydrogen storage tank according to the invention
  • FIG. 4 is an enlarged and diagrammatic view of FIGS. 1, 2 and 3, making it possible to better visualize the stages of the hydrogen storage tank,
  • FIG. 5 is a bottom view of a stage of the hydrogen storage tank
  • FIG. 6 is a schematic perspective view showing the central mast in isolation in the form of a supply and collection pipe for hydrogen from the hydrogen storage tank, and
  • the hydrogen storage material corresponds to hydrides, in particular metal hydrides, in particular in the form of powders.
  • the hydrogen storage tank described has a cylindrical shape of revolution.
  • any reservoir formed by hollow element having a longitudinal dimension greater than its transverse dimension, and having any cross section, for example circular or polygonal or ellipsoidal, does not depart from the scope of the present invention.
  • hydrides In order to facilitate the introduction of hydrides into the stages of the tank 1, they can be manufactured in the form of aggregates with good flowability. It should be noted that an activated hydride, that is to say having undergone a few cycles of absorption and desorption of hydrogen, is automatically transformed into powder, namely that it "decrepit", whose particle size depends on its nature, but is typically of the order of a few microns.
  • the filters 11 used correspond to felts made of polymer material and the clamps 12 are of the Colson type. Of course, these choices are in no way limiting.
  • FIG. 1 to 3 there is schematically illustrated in section three stages of filling with hydrogen storage material 2 of an exemplary embodiment of a hydrogen storage tank 1 according to the invention.
  • Figure 4 is an enlarged and schematic view of Figures 1, 2 and 3
  • Figure 5 is a bottom view of a stage of the hydrogen storage tank 1.
  • the reservoir 1 comprises an envelope, or ferrule 3, of longitudinal axis X closed at a lower end by a lower bottom 14.
  • the reservoir 1 also comprises an inlet orifice 13 intended to be closed after the central mast 4 has been put in place and separating elements 5 to close the upper end of the shell 3.
  • the inner wall Pi of the shell 3 makes it possible to hold the hydrogen pressure. It is also the wall on which the mechanical pressure of the hydrides is exerted. This pressure is considered negligible if the thickness of the hydride bed is small compared to its diameter, and if the hydrides have sufficient space to breathe.
  • the reservoir 1 is intended to be generally oriented so that the longitudinal axis X is substantially aligned with the direction of the gravity vector. However, during its use, for example in the case of on-board use, its orientation may change.
  • the reservoir 1 comprises a central mast 4 extending along the longitudinal axis X from the bottom bottom 14 towards the inlet orifice 13.
  • the interior of the tank 1 is divided into a plurality of stages along the longitudinal axis X and each stage comprises storage material 2.
  • These stages are produced in such a way that they prevent the passage of the storage material, in particular in the form of hydride powder, from one stage to another, thus preventing the accumulation of powder in a stage, in particular in the lower stages and the appearance of pressure stresses on the inner wall of the shell 3.
  • the tank 1 comprises a stack of a plurality of separation elements 5 along the longitudinal axis X, regularly spaced from one another along the mast 4.
  • These separation elements 5 are mounted on the mast 4 tightly, for example by brazing, welding, gluing or force fitting, or even being formed in one piece with the mast 4.
  • these separating elements 5 are here in the form of discs once deployed.
  • Each separating element 5 has a passage 6, or central orifice, which allows it to be mounted around the mast 4.
  • each separating element 5 defines a bottom substantially perpendicular to the longitudinal axis X on which hydride powder is deposited during the manufacture of the reservoir 1 to form a plurality of stages or hydride powder beds.
  • the separation elements 5 are located on the mast 4 so that the longitudinal space EL between two successive separation elements 5 is less than the internal diameter Tv of the internal volume V of the shell 3.
  • the thickness of the powder beds hydride can be controlled.
  • the EL / Tv ratio is strictly less than 1.
  • each separating element 5 forms with the central mast 4 a folding structure of the umbrella type. More specifically, as best seen in Figures 4 and 5, each separating element 5 comprises a plurality of ribs 7 fixed to the central mast 4 and on which is fixed a support membrane 8 of the storage material 2. Each whale 7 constitutes a support piece for the floor where it appears.
  • the support membrane 8 is advantageously flexible and supports the storage material 2.
  • the support membrane 8 can be permeable to hydrogen. However, it remains impermeable to hydride grains so as not to have transfer of hydrides to the lower stages, mainly due to gravity.
  • the largest transverse dimension Tm of the support membrane 8 is greater than the largest transverse dimension Tv of the internal volume V of the casing 3 in which the central mast 4, the separation elements 5 and the storage materials 2 are located hydrogen. In this way, a seal can be produced against the interior wall Pi of the envelope 3.
  • each separating element 5 comprising a plating whale 9 of the support membrane 8 against the inner wall Pi of the envelope 3.
  • This plating whale 9 extends over the entire periphery of the support membrane 8, and comes into contact with the envelope 3 at the end of the deployment of the umbrella. In this way, it is possible to seal the storage material 2 between the different stages.
  • the plating whale 9 is deformable.
  • the tacking whale 9 forms a loop.
  • the tacking whale 9 forms an arc of circle which presses the support membrane 8 against the inner wall Pi of the envelope 3.
  • the tacking whale 9 thus forms a circumferential whale which ensures circumferential contact of the support membrane 8 on the shell 3.
  • each separating element 5 comprises a plurality of forks 10, also called strut whales, and a sliding part 11.
  • Each fork 10 is fixed to a whale 7 and to the sliding part 11 mounted in sliding or pivoting link connection around the central mast 4 so as to allow the deployment of the umbrella.
  • Each fork 10 makes it possible to exert a force on a corresponding whale 7 so that the latter can press the support membrane 8 against the inner wall Pi of the envelope 3.
  • the sliding part 11 forms a part in sliding or pivoting connection with the axis 4 which enables the deployment of the umbrella.
  • each separation element 5 comprises a locking element 12 to maintain the structure 5 of the umbrella in the deployed position.
  • This locking element 12 blocks the ascent of the sliding part 11 by pressing on the axis 4.
  • this part 12 is in a groove machined in the axis 4.
  • the sliding part 11 is located between the locking element 12 and the support membrane 8.
  • the umbrella is deployed, by pushing down on the sliding part 11 then placing the blocking element 12 to force the umbrella into the open position plated on the inside of the envelope 3.
  • the storage material 2 is put in place, for example by means of a funnel 15 causing the storage material 2 to flow along the central mast 4, through the inlet orifice 13 , to reach the support membrane 8.
  • the dosage is done by weighing. The quantity to be introduced is calculated according to the experience of the designer and the storage material used.
  • the filling of one stage of the tank 1 is done one by one, so that the placement of storage material 2 on a separation element 5 is done before insertion of any other additional separation element 5.
  • the central mast 4 comes into abutment on the bottom 14 and the inlet orifice 13 of the casing 3 can be closed, by example by a plug inserted in the neck.
  • the plug can be drilled, allowing hydrogen to pass in and out.
  • This plug is generally fitted with a valve and a device for protection against overpressure (valve, rupture disc with pressure or temperature triggering, among others).
  • the inlet orifice 13 of the casing 3 corresponds to a narrow neck of a gas cylinder, the diameter Dg of which is clearly less than half the internal diameter Tv of the internal volume V of the casing 3.
  • the invention implements the insertion, through the narrow neck of a gas cylinder, of a central mast 4 provided with separation elements 5 allowing the installation of several staged compartments of small thickness in which a controlled quantity of storage material 2 is poured step by step, bringing the assembly under construction down one stage at each stage.
  • the envelope 3 is of cylindrical shape of revolution with a vertical axis X.
  • the two ends of the envelope 3 are spherical bottoms, the spherical shape being an effective shape for bottles having to contain a pressurized gas, in this case hydrogen.
  • a pressurized gas in this case hydrogen.
  • other types of shape are possible for the bottoms of the envelope 3, for example curved bottoms, flat bottoms, among others.
  • these bottles are manufactured by welding several parts together, the upper rounded bottom of which closes the bottle welded to the ferrule part of the bottle.
  • the bottles undergo a heat treatment at high temperature, then a pressure test of incompressible liquid (mostly water) in order to check their mechanical strength.
  • heat treatment and pressure test are absolutely not compatible with the presence of hydrides inside the bottle. Hydrides must therefore be introduced subsequently into the bottles.
  • one of the advantages of the invention is to take advantage of common manufacturing methods, well controlled and optimized, to manufacture the pressure envelopes of hydride tanks.
  • the central mast 4 also forms a hydrogen supply and collection conduit.
  • the mast 4 advantageously comprises a plurality of orifices 20, or holes 20, for the passage of hydrogen, for example produced by drilling. More precisely, each stage of the tank 1 has a plurality of orifices 20 at the level of the mast 4.
  • the mast 4 then advantageously comprises a filter 21 at each level to cover the orifices 20 with hydrogen passage.
  • filters 21 make it possible to prevent the hydride powder 2 from escaping through the mast 4 in the form of a conduit.
  • They can for example be made of fabric or fine mesh felt, for example comprising a material metallic and / or polymer.
  • the filters in this form are wound more than once around the mast 4.
  • clamps 22 can be used, as visible in FIG. 3, for example of the Colson type.
  • FIG. 7 also represents, in a partial section, a detail of embodiment of the attachment between a whale 7 and the central mast 4.
  • each whale 7 is fixed to the central mast 4 by means of a ligating element 25 which allows the joining of a portion of the whale 7 to the central mast 4.
  • each whale 7 has a pivot link 26, produced for example by means of a deformable link, to allow its deployment and / or retraction relative to the central mast 4.
  • connection between a whale 7 and the central mast 4 is a pivot connection with an orthoradial direction axis relative to the central mast 4.
  • the connection between a whale 7 and a fork 10 is a pivot connection with a direction axis orthoradial.
  • the connection between a fork 10 and the sliding piece 11 is a pivot connection with an axis of orthoradial direction.
  • the connection between the central mast 4 and the sliding part 11 is a sliding pivot connection with an axis of vertical direction.
  • the connection between a whale 7 and the envelope 3 is a point connection.
  • the connection between a whale 7 and the tacking whale 9 is a ball joint.
  • connection between the central mast 4 and the locking element 12 is a complete connection.
  • pivot connections envisaged in the present invention multiple possibilities exist, well known to those skilled in the art.
  • one or more of the pivot connections described above can be pivot connections with clevis mounting.
  • the use of the reservoir 1 according to the invention in storage mode is done by admitting hydrogen at a pressure capable of activating the absorption of hydrogen in the storage material 2, that is to say at a pressure higher than the pressure of hydride balance.
  • Hydrogen is supplied to the hydride, either by the central mast 4 and distribution holes 20 through each stage, or by percolation through the various hydride beds and the support membranes 8 which are then permeable to the hydrogen, but not to powder, being for example a metallic or polymeric fabric with a very fine mesh.
  • the hydride will release heat, which can be easily evacuated through the wall of the envelope 3.
  • the hydrogen leaves the storage material 2 if a sufficiently low pressure is applied at the outlet of the tank 1 compared to the equilibrium pressure of the hydride.
  • the hydrogen then exits either through the central mast 4, or by percolation through the stages of hydride and of support membranes 8, which in this case are porous with hydrogen. It is possible to facilitate this desorption by providing heat through the wall of the envelope 3 by heating, for example using a heat transfer fluid or from any other source such as an electrical heating resistance.
  • the operation of the reservoir 1 is carried out in a substantially vertical manner, the vertical being defined as the direction of earth's gravity.
  • the desired ratio would be reversed - the cavity would be deeper than wide -, and greater mechanical stresses would develop following the swelling of the hydride.
  • the vertical position also has the advantage that the actual weight of the hydride contributes to pressing the separating elements 5 against the internal wall Pi of the casing 3.
  • the locking element 12 can be formed by an unlockable ratchet system to make it possible to dismantle the separation elements 5, for example to change the storage material 2 which would have reached the end of its life.
  • the storage material 2 for example a hydride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'objet principal de l'invention est un réservoir (1) de stockage d'hydrogène comportant: une enveloppe (3) d'axe longitudinal (X); un mât central(4); et un empilement d'une pluralité d'éléments de séparation (5). Chaque élément de séparation (5) forme avec le mât central (4) une structure pliante de type parapluie, comportant une pluralité de baleines sur lesquelles est fixée une membrane de support du matériau de stockage (2).

Description

RÉSERVOIR DE STOCKAGE D'HYDROGÈNE COMPORTANT UNE PLURALITÉ D'ÉLÉMENTS
DE SÉPARATION DE TYPE PARAPLUIE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention se rapporte au domaine général des réservoirs de stockage de l'hydrogène sous forme d'hydrures, notamment des hydrures métalliques.
L'hydrogène appartient aux vecteurs stockables d'énergies alternatives développées depuis maintenant plusieurs années. L'hydrogène peut être obtenu de diverses manières, par exemple à partir de gaz naturel ou d'autres hydrocarbures, et peut notamment être produit par le biais de l'électrolyse de l'eau à haute température (EHT), en particulier l'électrolyse de la vapeur d'eau à haute température (EVHT), respectivement désignées par les appellations anglaises « High Température Electrolysis » (HTE) et « High Température Steam Electrolysis » (HTSE). L'hydrogène peut en outre avantageusement être utilisé comme source d'énergie dans des piles à combustibles à oxyde solide, désignées habituellement par l'acronyme SOFC pour « Solid Oxide Fuel Cells » en anglais ou dans des piles à combustibles à membranes échangeuses de protons (ou encore PEMFC pour « Proton Exchange Membrane Fuel Cells » en anglais).
L'invention trouve des applications dans différents domaines de l'industrie, et notamment lorsqu'il existe un besoin en compression d'hydrogène, comme par exemple pour des compresseurs de gaz hydrogène par hydrures tels que pour des stations-service à hydrogène. De plus, l'invention s'applique aussi bien à des solutions de stockage de l'hydrogène de type stationnaire que de type embarqué. En outre, l'invention est également adaptée pour des appareils nécessitant la gestion d'un gonflement d'un matériau absorbant un autre composé, comme par exemple pour le stockage de l'ammoniac (NH3) dans des AdAmmine® de la société Amminex.
Ainsi, l'invention peut être utilisée pour le stockage embarqué d'hydrogène, par exemple pour pile à combustible ou moteur thermique, par exemple pour les moyens de transport, tels que les bateaux, sous-marins, voitures, autobus, camions, engins de chantier, deux roues, entre autres.
En outre, l'invention peut être utilisée dans le domaine des alimentations transportables en énergie telles que les batteries pour appareils électroniques portables comme les téléphones portables, les ordinateurs portables, entre autres.
L'invention peut également être utilisée pour le stockage stationnaire de l'hydrogène, par exemple en grande quantité, comme pour les groupes électrogènes, ou pour le stockage de l'hydrogène produit en grande quantité par électrolyse de l'eau avec de l'électricité provenant des éoliennes, panneaux photovoltaïques, géothermie, entre autres.
Enfin, l'invention peut aussi permettre de stocker toute autre source d'hydrogène provenant par exemple de reformage d'hydrocarbures ou d'autres procédés d'obtention d'hydrogène (photo-catalyse, biologique, géologique, entre autres).
Ainsi, l'invention propose un réservoir de stockage d'hydrogène par absorption de l'hydrogène dans un matériau de stockage d'hydrogène comportant une pluralité d'éléments de séparation sous la forme de structures pliantes de type parapluie, ainsi qu'un procédé de fabrication associé.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Le stockage de l'hydrogène dans un hydrure est une réaction exothermique, à savoir qu'elle dégage de la chaleur, alors que la libération de l'hydrogène est une réaction endothermique, à savoir qu'elle absorbe de la chaleur.
Une contrainte importante dans le domaine du stockage et de la libération d'hydrogène est de pouvoir gérer au mieux les régimes de fonctionnement thermiques du réservoir à base d'hydrures. Il est par exemple intéressant de coupler cette thermique à celle d'une pile à combustible à oxyde solide (SOFC) ou d'une pile à combustible à membrane échangeuse de protons (PEMFC).
Ainsi, pour pouvoir gérer les aspects endothermiques, respectivement exothermiques, de la désorption de l'hydrogène du réservoir d'hydrures, respectivement de l'absorption de l'hydrogène, l'art antérieur enseigne classiquement de concevoir un réservoir d'hydrures qui se compose d'une enveloppe, d'un hydrure, et parfois de tubes internes, avec ou sans ailettes, qui apportent directement les calories ou frigories dans le réservoir.
L'enveloppe est chargée de confiner la partie d'hydrogène gazeuse. Cette enveloppe doit tenir la pression nécessaire au bon fonctionnement de l'hydrure, et donc résister à la pression maximale pouvant se développer dans le réservoir. C'est donc classiquement un réservoir de gaz, pouvant également être dénommé enveloppe, bouteille, conteneur de gaz hydrogène, emballage, enceinte pression, entre autres.
L'hydrure peut être agencé de différentes manières dans l'enveloppe. L'hydrure a la propriété d'absorber (ou adsorber) et désorber l'hydrogène, de sorte à obtenir un stockage plus compact de celui-ci. La gestion de l'hydrure s'accompagne d'une gestion thermique, mais aussi d'une gestion mécanique, car le phénomène d'hydruration s'accompagne d'un phénomène de gonflement du matériau. L'hydrure est donc rarement introduit seul dans l'enveloppe sous pression, et est souvent accompagné d'une structure permettant la gestion thermomécanique du phénomène de sorption.
Afin de tenir au mieux la pression d'hydrogène à l'intérieur du réservoir, certaines conceptions mettent en jeu des réservoirs sous forme de cylindres verticaux.
Toutefois, afin de pouvoir gérer au mieux les contraintes mécaniques appliquées au réservoir d'hydrures, il est bien connu d'adopter une conception étagée d'un tel cylindre vertical afin d'éviter d'avoir un lit d'hydrures trop profond. Autrement dit, de nombreuses conceptions de réservoirs d'hydrures sous la forme de cylindres verticaux prévoient la mise en place de multiples séparations dans le cylindre pour former une pluralité de lits d'hydrures espacés verticalement entre eux.
En effet, les solutions techniques ne mettant pas en place ces séparations et ne prévoyant qu'un seul lit d'hydrure au fond du cylindre vertical ne sont pas viables d'un point de vue mécanique. Le phénomène de « respiration » des hydrures lors de l'absorption et de la désorption de l'hydrogène, à savoir un gonflement et un dégonflement des hydrures pouvant atteindre 30 % sur certains hydrures, provoque l'apparition de fortes contraintes sur les parois du cylindre dénommées également virole du cylindre. Comme il a été décrit dans l'article « Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy », K. Nasako et al, janvier 1998, Journal of Alloys and Compounds, Volume 264, pages 271-276, ces contraintes augmentent avec le nombre de cycles d'absorption/désorption jusqu'à atteindre la limite élastique du matériau, ce qui est inacceptable pour un réservoir de stockage d'hydrogène. De manière empirique, il est préférable que la profondeur du lit d'hydrure soit inférieure au diamètre de ce lit.
Diverses solutions de réservoirs d'hydrures sous la forme de cylindres verticaux avec mise en place de multiples séparations ont donc été décrites dans l'art antérieur.
A titre d'exemple, la demande de brevet français FR 2 953 820 Al divulgue l'utilisation de séparateurs verticaux sous forme de coupelles, disposées à égale distance en les enfilant sur un tube poreux de distribution d'hydrogène en même temps que dans la virole du cylindre. Un bord recourbé permet de créer de la souplesse qui permet de mettre en serrage élastique les coupelles sur le tube ou la virole. Le dispositif permet d'assurer un passage aisé de l'hydrogène vers ou depuis la poudre hydrure en assurant un confinement de la poudre hydrure dans chaque godet.
Par ailleurs, la demande de brevet français FR 2 996 628 Al décrit un compartimentage d'un réservoir d'hydrures sous forme de cylindre vertical réalisé par l'intermédiaire de godets empilés sur un tube central. Le tube central est constitué d'un assemblage de tronçons de tube, chaque tronçon étant monté serré dans un orifice central de chaque godet. L'étanchéité entre chaque godet est assurée par déformation de lèvres. L'hydrogène arrive dans chaque godet car le tube central est poreux à l'hydrogène mais pas à la poudre hydrure. Le dispositif permet là aussi d'assurer un passage aisé de l'hydrogène vers ou depuis la poudre hydrure en assurant un confinement de la poudre hydrure dans chaque godet.
De plus, la demande de brevet français FR 3 014 999 Al enseigne la réalisation d'un compartimentage par l'intermédiaire de godets empilés. L'hydrogène entre par un filtre incorporé dans les parois du godet, et une étanchéité par emboîtement et joint torique est réalisée entre chacun des godets. Ainsi, diverses solutions de conception de réservoirs d'hydrures sous la forme de cylindres verticaux avec éléments de séparation ont déjà été envisagées par l'art antérieur partant du principe que, pour limiter les contraintes mécaniques, un seul lit de poudre hydrure profond et reposant sur le fond du réservoir n'était pas viable.
Par ailleurs, l'article « A study on wall stresses induced by LaNis alloy hydrogen absorption-desorption cycles », B. Y. Ao et al, 22 mars 2005, Journal of Alloys and Compounds, Volume 390, pages 122-126, l'article « Effects of cyclic hydriding-dehydriding reactions of LaNis on the thin-wall deformation of métal hydride storage vessels with various configuration », C-K. Ling et al, 29 juin 2012, Rewable Energy, Volume 48, pages 404-410, et l'article « A tool for modelling the breathing of hybride powder in its container while cyclically absorbing and desorbing hydrogen », B. Charlas et al, 8 janvier 2015, International Journal of Hydrogen Energy, Volume 40, pages 2283-2294, ont démontré que, pour limiter les contraintes mécaniques, il est nécessaire de limiter la profondeur du lit de poudre hydrure. En particulier, pour un rapport entre profondeur du lit de poudre hydrure et largeur du lit de poudre hydrure inférieur à 1, les contraintes mécaniques restent faibles.
Il existe ainsi encore un besoin pour améliorer la conception des réservoirs d'hydrures sous forme de cylindres verticaux impliquant notamment la séparation verticale du lit de poudre hydrure en une pluralité de lits d'hydrures peu profonds.
EXPOSÉ DE L'INVENTION
L'invention a pour but de remédier au moins partiellement aux besoins mentionnés précédemment et aux inconvénients relatifs aux réalisations de l'art antérieur.
L'invention vise en particulier à proposer une nouvelle conception de réservoir de stockage d'hydrogène, notamment de réservoir d'hydrures sous la forme d'un cylindre vertical, qui soit simple et pratique de sorte à rendre le montage aisé.
L'invention a ainsi pour objet, selon l'un de ses aspects, un réservoir de stockage d'hydrogène par absorption de l'hydrogène dans un matériau de stockage d'hydrogène comportant : - une enveloppe d'axe longitudinal obturée à ses deux extrémités longitudinales,
- un mât central s'étendant le long de l'axe longitudinal,
- un empilement d'une pluralité d'éléments de séparation le long de l'axe longitudinal, chaque élément de séparation comportant un passage permettant le montage de l'élément de séparation autour du mât central, et chaque élément de séparation formant un fond sensiblement perpendiculaire à l'axe longitudinal apte à recevoir un matériau de stockage d'hydrogène de sorte à former une pluralité de lits de matériau de stockage d'hydrogène.
Avantageusement, le réservoir de stockage comporte un matériau de stockage d'hydrogène.
De façon préférentielle, chaque élément de séparation forme avec le mât central une structure pliante de type parapluie, chaque élément de séparation comportant une pluralité de baleines fixées au mât central et sur lesquelles est fixée une membrane de support du matériau de stockage dont la plus grande dimension transversale est supérieure à la plus grande dimension transversale du volume interne de l'enveloppe dans lequel sont situés le mât central, les éléments de séparation et les matériaux de stockage d'hydrogène.
La ou les membranes de support peuvent, le cas échéant, jouer un rôle d'ailettes de conduction de chaleur.
Avantageusement, la ou les membranes de support sont imperméables aux grains d'hydrures.
De plus, préférentiellement encore, chaque élément de séparation comporte une baleine de plaquage de la membrane de support contre la paroi intérieure de l'enveloppe, la baleine de plaquage s'étendant sur tout le pourtour de la membrane de support, étant apte à venir au contact de l'enveloppe.
De façon avantageuse également, chaque élément de séparation comporte en outre une pluralité de fourchettes et une pièce coulissante (ou coulant), chaque fourchette étant fixée à une baleine et à la pièce coulissante montée en liaison glissière ou pivot glissant autour du mât central de sorte à permettre le déploiement du parapluie. Ces fourchettes peuvent par exemple prendre la forme de tiges et/ou de cordelettes.
Le réservoir de stockage d'hydrogène selon l'invention peut en outre comporter l'une ou plusieurs des caractéristiques suivantes prises isolément ou suivant toutes combinaisons techniques possibles.
De façon préférentielle, les éléments de séparation sont régulièrement espacés les uns des autres le long du mât central.
De façon préférentielle également, l'enveloppe est de forme cylindrique. De plus, l'axe longitudinal de l'enveloppe correspond préférentiellement à un axe vertical de sorte que l'enveloppe se présente préférentiellement sous la forme d'un cylindre vertical.
Chaque élément de séparation peut comporter un élément de verrouillage en position ouverte du parapluie déployé, l'élément de verrouillage étant positionné au contact de la pièce coulissante de sorte que la pièce coulissante soit située entre l'élément de verrouillage et la membrane de support.
L'enveloppe est préférentiellement une bouteille, notamment de gaz, comprenant un orifice d'entrée sous la forme d'un goulot de plus grande dimension transversale inférieure à la moitié de la plus grande dimension transversale du volume interne de l'enveloppe.
De façon avantageuse, l'invention peut ainsi permettre la création de séparations sensiblement horizontales, remplies d'hydrures, dans une bouteille de gaz pourvue d'un goulot étroit, contrairement aux réalisations de l'art antérieur. Plus précisément, l'invention peut permettre d'insérer, en haut d'une bouteille au goulot rétréci, un mât central sur lequel sont disposées n structures pliantes formant n fonds créant n séparations verticales de faible élancement. Ces fonds peuvent alors venir au contact de l'intérieur de la bouteille et être soutenus par les fourchettes en liaison avec le mât central, seul le poids des hydrures permettant notamment le plaquage de la membrane de support sur l'intérieur de la bouteille.
Chaque baleine peut être fixée au mât central par le biais d'un élément de ligature solidarisant une portion de la baleine au mât central, la baleine comportant une liaison pivot pour permettre son déploiement et/ou sa rétractation par rapport au mât central. Cette liaison pivot peut par exemple être une liaison pivot avec montage en chape.
Les baleines sont avantageusement montées sur le mât central de façon étanche. Les baleines peuvent particulièrement être montées serrées sur le mât central, étant notamment fixées par le biais d'éléments de ligature comme décrit précédemment, par exemple par brasage, par soudure, par collage, entre autres.
En outre, la distance, ou encore l'espace longitudinal, entre deux éléments de séparation successifs le long de l'axe longitudinal peut être inférieure à la plus grande dimension transversale du volume interne de l'enveloppe.
De cette façon, il est possible d'obtenir des lits de matériaux de stockage qui ne sont pas trop élancés longitudinalement, en particulier verticalement. Autrement dit, l'épaisseur des lits de matériaux de stockage peut être contrôlée.
Ainsi, le rapport entre la distance entre deux éléments de séparation successifs et la plus grande dimension transversale du volume interne de l'enveloppe peut être strictement inférieur à 1. Cette valeur peut être affinée en réalisant notamment des mesures d'augmentation de contraintes pour des lits de matériaux de stockage de différents élancements, en particulier du fait que chaque matériau de stockage, notamment chaque hydrure, ne présente pas le même comportement en cyclage.
Par ailleurs, le mât central peut former un conduit d'alimentation et de collecte en hydrogène comporte une pluralité d'orifices de passage d'hydrogène, par exemple réalisés par perçage, notamment au moins un orifice de passage d'hydrogène à chaque étage du réservoir formé entre deux éléments de séparation successifs.
De plus, le mât sous forme de conduit d'alimentation et de collecte en hydrogène peut avantageusement comporter une pluralité de filtres disposés contre le conduit, chaque filtre étant en vis-à-vis d'au moins un orifice de passage d'hydrogène, le conduit comportant notamment au moins un filtre disposé contre au moins un orifice de passage d'hydrogène formé sur le mât à chaque étage du réservoir formé entre deux éléments de séparation successifs. De façon avantageuse, la présence d'un filtre recouvrant au moins un orifice de passage d'hydrogène permet d'éviter que le matériau de stockage, notamment sous forme de poudre hydrure, ne puisse s'échapper au travers du mât.
Les filtres peuvent par exemple comporter un tissu ou un feutre à maille fine. Les filtres peuvent de plus comporter un matériau métallique et/ou polymère, voire tout autre type de matériau. Les filtres peuvent alors être enroulés autour du mât. Afin d'obtenir une bonne étanchéité, plus d'un enroulement du filtre sous forme de tissu ou de feutre autour du mât peut être réalisé.
Par ailleurs, chaque filtre peut être maintenu contre le mât par le biais de moyens de serrage, notamment des colliers de serrage. De tels colliers de serrage peuvent par exemple correspondre à des colliers de serrage de type Serflex ou Colson.
En outre, le matériau de stockage d'hydrogène peut préférentiellement comporter des hydrures, notamment des hydrures métalliques.
Par ailleurs, l'invention a encore pour objet, selon un autre de ses aspects, un procédé de fabrication d'un réservoir de stockage d'hydrogène tel que défini précédemment, caractérisé en ce qu'il comporte, pour chaque étage du réservoir de stockage formé par un élément de séparation solidarisé au mât central, les étapes successives suivantes :
- insertion de l'élément de séparation au travers d'un orifice d'entrée de l'enveloppe, l'élément de séparation étant sous forme non déployée du parapluie lors de son passage au travers de l'orifice d'entrée,
- déploiement du parapluie de l'élément de séparation une fois situé à l'intérieur de l'enveloppe,
- mise en place de matériau de stockage d'hydrogène sur l'élément de séparation avant insertion d'un éventuel élément de séparation supplémentaire, et en ce qu'il comporte en outre l'étape, après insertion de tous les éléments de séparation dans l'enveloppe, de fermeture de l'orifice d'entrée de l'enveloppe.
Le réservoir de stockage d'hydrogène et le procédé de fabrication selon l'invention peuvent comporter l'une quelconque des caractéristiques énoncées dans la description, prises isolément ou selon toutes combinaisons techniquement possibles avec d'autres caractéristiques.
BRÈVE DESCRIPTION DES DESSINS
L'invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d'exemples de mise en œuvre non limitatifs de celle-ci, ainsi qu'à l'examen des figures, schématiques et partielles, du dessin annexé, sur lequel :
- les figures 1, 2 et 3 sont des vues schématiques en coupe illustrant trois étapes de remplissage en matériau de stockage de l'hydrogène d'un exemple de réalisation d'un réservoir de stockage d'hydrogène conforme à l'invention,
- la figure 4 est une vue agrandie et schématisée des figures 1, 2 et 3, permettant de mieux visualiser les étages du réservoir de stockage d'hydrogène,
- la figure 5 est une vue de dessous d'un étage du réservoir de stockage d'hydrogène,
- la figure 6 est une vue schématique en perspective représentant de façon isolée le mât central sous forme de conduit d'alimentation et de collecte d'hydrogène du réservoir de stockage d'hydrogène, et
- la figure 7 représente, selon une coupe partielle, un détail de réalisation de la fixation entre une baleine et le mât central d'un réservoir de stockage d'hydrogène conforme à l'invention.
Dans l'ensemble de ces figures, des références identiques peuvent désigner des éléments identiques ou analogues.
De plus, les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Il est précisé que, dans la description qui va suivre d'exemples de réalisation particuliers de l'invention, le matériau de stockage de l'hydrogène correspond à des hydrures, notamment des hydrures métalliques, notamment sous forme de poudres. De plus, le réservoir de stockage d'hydrogène décrit présente une forme cylindrique de révolution. Néanmoins, tout réservoir formé par élément creux présentant une dimension longitudinale plus grande que sa dimension transversale, et ayant une section quelconque, par exemple circulaire ou polygonale ou ellipsoïdale, ne sort pas du cadre de la présente invention.
Afin de faciliter l'introduction des hydrures dans les étages du réservoir 1, ils peuvent être fabriqués sous forme de granulats avec une bonne coulabilité. Il est à noter qu'un hydrure activé, c'est-à-dire ayant subi quelques cycles d'absorption et désorption d'hydrogène, se transforme automatiquement en poudre, à savoir qu'il « décrépite », dont la granulométrie dépend de sa nature, mais est typiquement de l'ordre de quelques microns.
Il est de plus à noter que, dans les exemples de réalisation décrits ci-après, les filtres 11 utilisés correspondent à des feutres en matériau polymère et les colliers de serrage 12 sont de type Colson. Bien entendu, ces choix ne sont aucunement limitatifs.
En référence aux figures 1 à 3, on a illustré schématiquement en coupe trois étapes de remplissage en matériau de stockage 2 de l'hydrogène d'un exemple de réalisation d'un réservoir 1 de stockage d'hydrogène conforme à l'invention. De plus, la figure 4 est une vue agrandie et schématisée des figures 1, 2 et 3, et la figure 5 est une vue de dessous d'un étage du réservoir 1 de stockage d'hydrogène.
Le réservoir 1 comporte une enveloppe, ou virole 3, d'axe longitudinal X obturée à une extrémité inférieure par un fond inférieur 14. Le réservoir 1 comporte également un orifice d'entrée 13 destiné à être obturé après mise en place du mât central 4 et des éléments de séparation 5 pour fermer l'extrémité supérieure de la virole 3.
La paroi intérieure Pi de la virole 3 permet de tenir la pression d'hydrogène. C'est aussi la paroi sur laquelle s'exerce la pression mécanique des hydrures. Cette pression est considérée comme négligeable si l'épaisseur du lit d'hydrures est faible comparée à son diamètre, et si les hydrures disposent de suffisamment d'espace pour respirer.
Le réservoir 1 est destiné à être généralement orienté de sorte que l'axe longitudinal X soit sensiblement aligné avec la direction du vecteur gravité. Cependant, lors de son utilisation, par exemple dans le cas d'une utilisation embarquée, son orientation peut changer.
Le réservoir 1 comporte un mat central 4 s'étendant le long de l'axe longitudinal X du fond inférieur 14 vers l'orifice d'entrée 13.
Comme il sera expliqué ci-après, l'intérieur du réservoir 1 est divisé en une pluralité d'étages le long de l'axe longitudinal X et chaque étage comporte du matériau de stockage 2. Ces étages sont réalisés de telle manière qu'ils empêchent le passage du matériau de stockage, notamment sous forme de poudre hydrure, d'un étage à l'autre, évitant ainsi l'accumulation de poudre dans un étage, notamment dans les étages inférieures et l'apparition de contraintes de pression sur la paroi interne de la virole 3.
Ainsi, le réservoir 1 comporte un empilement d'une pluralité d'éléments de séparation 5 le long de l'axe longitudinal X, régulièrement espacés les uns des autres le long du mât 4. Ces éléments de séparation 5 sont montés sur le mât 4 de façon étanche, par exemple par brasage, par soudure, par collage ou par montage en force, ou encore étant formés d'une seule pièce avec le mât 4. De plus, ces éléments de séparation 5 se présentent ici sous la forme de disques une fois déployés.
Chaque élément de séparation 5 comporte un passage 6, ou orifice central, qui permet son montage autour du mât 4. De plus, chaque élément de séparation 5 définit un fond sensiblement perpendiculaire à l'axe longitudinal X sur lequel de la poudre hydrure est déposée lors de la fabrication du réservoir 1 pour former une pluralité d'étages ou lits de poudre hydrure.
Les éléments de séparation 5 sont situés sur le mât 4 de sorte que l'espace longitudinal EL entre deux éléments de séparation 5 successifs soit inférieur au diamètre interne Tv du volume interne V de la virole 3. Ainsi, l'épaisseur des lits de poudre hydrure peut être contrôlée. Autrement dit, le rapport EL/Tv est strictement inférieur à 1.
Avantageusement, chaque élément de séparation 5 forme avec le mât central 4 une structure pliante de type parapluie. Plus précisément, comme mieux visible sur les figures 4 et 5, chaque élément de séparation 5 comporte une pluralité de baleines 7 fixées au mât central 4 et sur lesquelles est fixée une membrane de support 8 du matériau de stockage 2. Chaque baleine 7 constitue une pièce de support pour l'étage où elle figure.
La membrane de support 8 est avantageusement souple et supporte le matériau de stockage 2. La membrane de support 8 peut être perméable à l'hydrogène. Toutefois, elle reste imperméable aux grains d'hydrures afin de ne pas avoir de transfert d'hydrures aux étages inférieurs, du fait de la gravité principalement.
La plus grande dimension transversale Tm de la membrane de support 8 est supérieure à la plus grande dimension transversale Tv du volume interne V de l'enveloppe 3 dans lequel sont situés le mât central 4, les éléments de séparation 5 et les matériaux de stockage 2 d'hydrogène. De la sorte, une étanchéité peut être réalisée contre la paroi intérieure Pi de l'enveloppe 3.
Plus précisément, chaque élément de séparation 5 comportant une baleine de plaquage 9 de la membrane de support 8 contre la paroi intérieure Pi de l'enveloppe 3. Cette baleine de plaquage 9 s'étend sur tout le pourtour de la membrane de support 8, et vient au contact de l'enveloppe 3 à la fin du déploiement du parapluie. De cette façon, il est possible d'assurer une étanchéité du matériau de stockage 2 entre les différents étages.
De façon avantageuse, la baleine de plaquage 9 est déformable. Lorsque le parapluie est en position pliée, la baleine de plaquage 9 forme une boucle. En revanche, lorsque le parapluie est en position dépliée, la baleine de plaquage 9 forme un arc de cercle qui plaque la membrane de support 8 contre la paroi intérieure Pi de l'enveloppe 3. La baleine de plaquage 9 forme ainsi une baleine circonférentielle qui assure un contact circonférentiel de la membrane de support 8 sur la virole 3.
En outre, chaque élément de séparation 5 comporte une pluralité de fourchettes 10, appelées encore baleines jambes de force, et une pièce coulissante 11. Chaque fourchette 10 est fixée à une baleine 7 et à la pièce coulissante 11 montée en liaison glissière ou pivot glissant autour du mât central 4 de sorte à permettre le déploiement du parapluie. Chaque fourchette 10 permet d'exercer un effort sur une baleine 7 correspondante afin que celle-ci puisse plaquer la membrane de support 8 contre la paroi intérieure Pi de l'enveloppe 3.
La pièce coulissante 11 forme une pièce en liaison glissière ou pivot glissant avec l'axe 4 qui permet d'actionner le déploiement du parapluie.
Il est par ailleurs à noter que chaque élément de séparation 5 comporte un élément de verrouillage 12 pour maintenir la structure 5 du parapluie en position déployée. Cet élément de verrouillage 12 bloque la remontée de la pièce coulissante 11 en s'appuyant sur l'axe 4. Sur la figure 4, cette pièce 12 est dans une gorge usinée dans l'axe 4. La pièce coulissante 11 est située entre l'élément de verrouillage 12 et la membrane de support 8.
Le principe d'obtention du réservoir 1 est par exemple tel que décrit ci-après. On insère plusieurs éléments de séparation 5 au travers de l'orifice d'entrée 13 de l'enveloppe 3, notamment au travers d'un goulot étroit de bouteille de gaz, chaque élément de séparation 5 étant sous forme non déployée du parapluie lors de son passage au travers de l'orifice d'entrée 13, c'est-à-dire que les pièces coulissantes 11 sont remontées au maximum.
Un fois à l'intérieur de l'enveloppe 3, le parapluie est déployé, par poussée vers le bas sur la pièce coulissante 11 puis mise en place de l'élément de blocage 12 pour forcer le parapluie en position ouverte plaqué sur l'intérieur de l'enveloppe 3. Le matériau de stockage 2 est mis en place, par exemple par le biais d'un entonnoir 15 faisant couler le matériau de stockage 2 le long du mât central 4, au travers de l'orifice d'entrée 13, pour arriver sur la membrane de support 8. Le dosage se fait par pesée. La quantité à introduire est calculée suivant l'expérience de concepteur et du matériau de stockage utilisé.
Le remplissage d'un étage du réservoir 1 se fait un par un, de sorte que la mise en place de matériau de stockage 2 sur un élément de séparation 5 se fait avant insertion d'un éventuel autre élément de séparation 5 supplémentaire. Après insertion de tous les éléments de séparation 5 dans l'enveloppe 3, comme sur la figure 3, le mât central 4 arrive en butée sur le fond 14 et l'orifice d'entrée 13 de l'enveloppe 3 peut être fermé, par exemple par un bouchon inséré dans le goulot.
Le bouchon peut être percé laissant ainsi passer l'hydrogène en entrée comme en sortie. Sur ce bouchon est généralement adaptée une vanne et un organe de protection contre les surpressions (soupape, disque de rupture à déclenchement en pression ou température, entre autres).
De façon préférentielle, l'orifice d'entrée 13 de l'enveloppe 3 correspond à un goulot étroit d'une bouteille de gaz, dont le diamètre Dg est nettement inférieur à la moitié du diamètre interne Tv du volume interne V de l'enveloppe 3.
Ainsi, l'invention met en œuvre l'insertion, au travers du goulot étroit d'une bouteille de gaz, d'un mât central 4 pourvu d'éléments de séparation 5 permettant l'installation de plusieurs compartiments étagés de faible épaisseur dans lesquels on verse étape par étape une quantité maîtrisée de matériau de stockage 2, en faisant descendre l'ensemble en construction d'un étage à chaque étape.
De façon avantageuse, l'enveloppe 3 est de forme cylindrique de révolution d'axe vertical X. Sur les figures représentées, les deux extrémités de l'enveloppe 3 sont des fonds sphériques, la forme sphérique étant une forme efficace pour des bouteilles devant contenir un gaz sous pression, en l'occurrence de l'hydrogène. Toutefois, d'autres types de forme sont possibles pour les fonds de l'enveloppe 3, par exemple des fonds bombés, des fonds plats, entre autres.
Le dimensionnement de l'enveloppe 3 est par exemple fait suivant la norme ISO 16111, lorsqu'elle s'applique, cela dépendant de l'usage et de la taille du réservoir réalisé, ou suivant la réglementation européenne des appareils sous pression, soit la Directive n°97/23/CE du 29 mai 1997. L'invention pourra ainsi être profitable lorsque des bouteilles dont les extrémités doivent être soudées avant introduction des hydrures à l'intérieur sont utilisées. C'est le cas par exemple des bouteilles classiques utilisées par des industriels des gaz pour délivrer ces gaz chez leurs clients, comme notamment la bouteille connue sous l'appellation B50, soit avec une contenance de 50 litres en équivalent eau. Dans le cas de la fabrication de ce genre de bouteilles, on ne peut pas introduire les hydrures à l'intérieur avant qu'elles ne soient terminées et certifiées. En effet, ces bouteilles sont fabriquées par soudage de plusieurs parties entre elles dont le fond bombé supérieur fermant la bouteille soudé sur la partie virole de la bouteille. A l'issu du soudage, les bouteilles subissent un traitement thermique à haute température, puis une épreuve en pression de liquide incompressible (la plupart du temps de l'eau) afin de vérifier leur tenue mécanique. Ces deux dernières opérations : traitement thermique et épreuve en pression, ne sont absolument pas compatibles avec la présence d'hydrures à l'intérieur de la bouteille. Les hydrures doivent donc être introduits par la suite dans les bouteilles.
Ainsi, un des intérêts de l'invention est de profiter des méthodes de fabrication communes, bien maîtrisées et optimisées, pour fabriquer les enveloppes pression des réservoirs hydrures. Pour utiliser ces enveloppes ou bouteilles, ou emballages, pour constituer l'enveloppe tenant la pression de gaz d'un réservoir hydrures, il faut arriver à insérer des hydrures dans les bouteilles au goulot étroit, et ceci de manière adaptée, c'est-à-dire de manière étagée comme présenté précédemment. Il faut donc faire entrer la structure d'étagement dans la bouteille qui intègre déjà ces extrémités qui ferment le cylindre principal.
Dans certaines réalisations de l'invention, le mât central 4 forme également un conduit d'alimentation et de collecte en hydrogène.
Ainsi, comme visible sur la figure 6, le mât 4 comporte avantageusement une pluralité d'orifices 20, ou trous 20, de passage d'hydrogène, par exemple réalisés par perçage. Plus précisément, chaque étage du réservoir 1 comporte une pluralité d'orifices 20 au niveau du mât 4.
Le mât 4 comporte alors de manière avantageuse un filtre 21 au niveau de chaque étage pour recouvrir les orifices 20 de passage d'hydrogène.
Ces filtres 21 permettent d'éviter que la poudre hydrure 2 ne puisse s'échapper au travers du mât 4 sous forme de conduit. Ils peuvent par exemple être réalisés en tissu ou en feutre à maille fine, comportant par exemple un matériau métallique et/ou polymère. Afin d'obtenir une bonne étanchéité, les filtres sous cette forme sont enroulés plus d'une fois autour du mât 4.
Par ailleurs, afin de permettre un maintien des filtres 21 sur le mât 4 une fois l'enroulement terminé, des colliers de serrage 22 peuvent être utilisés, comme visible sur la figure 3, par exemple de type Colson.
La figure 7 représente en outre, selon une coupe partielle, un détail de réalisation de la fixation entre une baleine 7 et le mât central 4.
Ainsi, comme visible sur cette figure 7, chaque baleine 7 est fixée au mât central 4 par le biais d'un élément de ligature 25 qui permet la solidarisation d'une portion de la baleine 7 au mât central 4.
De plus, chaque baleine 7 comporte une liaison pivot 26, réalisée par exemple par le biais d'une liaison déformable, pour permettre son déploiement et/ou sa rétractation par rapport au mât central 4.
Le principe de l'invention met donc ainsi en œuvre une pluralité de liaisons mécaniques entre les différentes pièces décrites auparavant. Plus précisément, la liaison entre une baleine 7 et le mât central 4 est une liaison pivot d'axe de direction orthoradiale par rapport au mât central 4. La liaison entre une baleine 7 et une fourchette 10 est une liaison pivot d'axe de direction orthoradiale. La liaison entre une fourchette 10 et la pièce coulissante 11 est une liaison pivot d'axe de direction orthoradiale. La liaison entre le mât central 4 et la pièce coulissante 11 est une liaison pivot glissant d'axe de direction verticale. La liaison entre une baleine 7 et l'enveloppe 3 est une liaison ponctuelle. La liaison entre une baleine 7 et la baleine de plaquage 9 est une liaison rotule. Enfin, la liaison entre le mât central 4 et l'élément de verrouillage 12 est une liaison complète. Pour toutes les liaisons pivots envisagées dans la présente invention, de multiples possibilités existent, bien connues de l'Homme du métier. A titre d'exemple, une ou plusieurs des liaisons pivots décrites précédemment peuvent être des liaisons pivots avec montage en chape.
L'utilisation du réservoir 1 conforme à l'invention en mode stockage se fait en admettant de l'hydrogène à une pression capable d'activer l'absorption de l'hydrogène dans le matériau de stockage 2, c'est-à-dire à une pression supérieure à la pression d'équilibre de l'hydrure. L'hydrogène est apporté à l'hydrure, soit par le mât central 4 et des trous de distribution 20 à travers chaque étage, soit par percolation à travers les différents lits d'hydrure et les membranes de support 8 qui sont alors perméables à l'hydrogène, mais pas à la poudre, étant par exemple un tissu métallique ou polymère à la maille très fine.
Durant le chargement, l'hydrure va libérer de la chaleur, qui pourra être facilement évacuée à travers la paroi de l'enveloppe 3. Pour gagner en efficacité d'échange thermique, et donc en vitesse de remplissage du réservoir 1, il est avantageusement possible de refroidir cette paroi avec un fluide caloporteur.
Pour la phase de purge du réservoir 1, l'hydrogène sort du matériau de stockage 2 si une pression suffisamment basse est appliquée à la sortie du réservoir 1 comparée à la pression d'équilibre de l'hydrure. L'hydrogène sort alors soit par le mât central 4, soit par percolation à travers les étages d'hydrure et de membranes de support 8, qui sont dans ce cas poreuses à l'hydrogène. Il est possible de faciliter cette désorption en apportant de la chaleur à travers la paroi de l'enveloppe 3 en chauffant par exemple à l'aide d'un fluide caloporteur ou de toutes autres sources comme une résistance électrique chauffante.
Il est à noter que, du fait de la disposition constructive adoptée - les cavités dans lesquelles se trouve l'hydrure présentent un ratio d'aspect plutôt plat, c'est-à-dire avec une hauteur plus faible que la largeur -, le fonctionnement du réservoir 1 est réalisé de manière sensiblement verticale, la verticale étant définie comme la direction de la gravité terrestre. Dans une position horizontale, le ratio désiré serait inversé - la cavité serait plus profonde que large -, et des contraintes mécaniques plus importantes se développeraient suite au gonflement de l'hydrure. La position verticale présente aussi l'avantage que le poids propre de l'hydrure contribue à plaquer les éléments de séparation 5 contre la paroi intérieure Pi de l'enveloppe 3.
Par ailleurs, il est possible de former un élément de verrouillage 12 en position ouverte du parapluie déployé qui soit plus élaboré qu'un élément coulissant sur le mât central 4 venant au contact de la pièce coulissante 11. A titre d'exemples, l'élément de verrouillage 12 peut être formé par un système de cliquet déverrouillable pour rendre possible une opération de démontage des éléments de séparation 5, par exemple pour changer le matériau de stockage 2 qui serait arrivé en fin de vie. En effet, le matériau de stockage 2, par exemple un hydrure, peut s'user, de manière prématurée ou pas, par exemple suite à une pollution de l'hydrogène par des composants néfastes à son fonctionnement tels que du monoxyde de carbone (CO), de l'eau (H20), du dioxygène (02), entre autres, ou à la décroissance naturelle de la capacité de stockage de l'hydrure par phénomène de démixtion par exemple.
Bien entendu, l'invention n'est pas limitée aux exemples de réalisation qui viennent d'être décrits. Diverses modifications peuvent y être apportées par l'homme du métier.

Claims

REVENDICATIONS
1. Réservoir (1) de stockage d'hydrogène par absorption de l'hydrogène dans un matériau de stockage (2) d'hydrogène comportant :
- un matériau de stockage (2) d'hydrogène, comportant des hydrures,
- une enveloppe (3) d'axe longitudinal (X) obturée à ses deux extrémités longitudinales,
- un mât central (4) s'étendant le long de l'axe longitudinal (X),
- un empilement d'une pluralité d'éléments de séparation (5) le long de l'axe longitudinal (X), chaque élément de séparation (5) comportant un passage (6) permettant le montage de l'élément de séparation (5) autour du mât central (4), et chaque élément de séparation (5) formant un fond sensiblement perpendiculaire à l'axe longitudinal (X) apte à recevoir ledit matériau de stockage (2) d'hydrogène de sorte à former une pluralité de lits de matériau de stockage (2) d'hydrogène,
caractérisé en ce que chaque élément de séparation (5) forme avec le mât central (4) une structure pliante de type parapluie, chaque élément de séparation (5) comportant une pluralité de baleines (7) fixées au mât central (4) et sur lesquelles est fixée une membrane de support (8) du matériau de stockage (2), imperméable aux grains d'hydrures, dont la plus grande dimension transversale (Tm) est supérieure à la plus grande dimension transversale (Tv) du volume interne (V) de l'enveloppe (3) dans lequel sont situés le mât central (4), les éléments de séparation (5) et les matériaux de stockage (2) d'hydrogène.
2. Réservoir selon la revendication 1, caractérisé en ce que chaque élément de séparation (5) comporte une baleine de plaquage (9) de la membrane de support (8) contre la paroi intérieure (Pi) de l'enveloppe (3), la baleine de plaquage (9) s'étendant sur tout le pourtour de la membrane de support (8), étant apte à venir au contact de l'enveloppe (3).
3. Réservoir selon la revendication 1 ou 2, caractérisé en ce que chaque élément de séparation (5) comporte en outre une pluralité de fourchettes (10) et une pièce coulissante (11), chaque fourchette (10) étant fixée à une baleine (7) et à la pièce coulissante (11) montée en liaison glissière ou pivot glissant autour du mât central (4) de sorte à permettre le déploiement du parapluie.
4. Réservoir selon la revendication 3, caractérisé en ce que chaque élément de séparation (5) comporte un élément de verrouillage (12) en position ouverte du parapluie déployé, l'élément de verrouillage (12) étant positionné au contact de la pièce coulissante (11) de sorte que la pièce coulissante (11) soit située entre l'élément de verrouillage (12) et la membrane de support (8).
5. Réservoir selon l'une quelconque des revendications précédentes, caractérisé en ce que l'enveloppe (3) est une bouteille, notamment de gaz, comprenant un orifice d'entrée (13) sous la forme d'un goulot de plus grande dimension transversale (Dg) inférieure à la moitié de la plus grande dimension transversale (Tv) du volume interne (V) de l'enveloppe (3).
6. Réservoir selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque baleine (7) est fixée au mât central (4) par le biais d'un élément de ligature (25) solidarisant une portion de la baleine (7) au mât central (4), la baleine (7) comportant une liaison pivot (26) pour permettre son déploiement et/ou sa rétractation par rapport au mât central (4).
7. Réservoir selon l'une quelconque des revendications précédentes, caractérisé en ce que la distance (EL) entre deux éléments de séparation (5) successifs le long de l'axe longitudinal (X) est inférieure à la plus grande dimension transversale (Tv) du volume interne (V) de l'enveloppe (3).
8. Réservoir selon l'une quelconque des revendications précédentes, caractérisé en ce que le mât central (4) forme un conduit d'alimentation et de collecte en hydrogène comporte une pluralité d'orifices (20) de passage d'hydrogène, notamment au moins un orifice (20) de passage d'hydrogène à chaque étage du réservoir (1) formé entre deux éléments de séparation (5) successifs.
9. Réservoir selon la revendication 8, caractérisé en ce que le mât (4) sous forme de conduit d'alimentation et de collecte en hydrogène comporte une pluralité de filtres (21) disposés contre le mât (4), chaque filtre (21) étant en vis-à-vis d'au moins un orifice (20) de passage d'hydrogène, le mât (4) comportant notamment au moins un filtre (21) disposé contre au moins un orifice (20) de passage d'hydrogène formé sur le mât (4) à chaque étage du réservoir (1) formé entre deux éléments de séparation (5) successifs.
10. Réservoir selon la revendication 9, caractérisé en ce que chaque filtre (21) est maintenu contre le mât (4) par le biais de moyens de serrage (22), notamment des colliers de serrage (22).
11. Réservoir selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau de stockage (2) d'hydrogène comporte des hydrures métalliques.
12. Procédé de fabrication d'un réservoir de stockage (1) d'hydrogène selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte, pour chaque étage du réservoir de stockage (1) formé par un élément de séparation (5) solidarisé au mât central (4), les étapes successives suivantes :
- insertion de l'élément de séparation (5) au travers d'un orifice d'entrée (13) de l'enveloppe (3), l'élément de séparation (5) étant sous forme non déployée du parapluie lors de son passage au travers de l'orifice d'entrée (13),
- déploiement du parapluie de l'élément de séparation (5) une fois situé à l'intérieur de l'enveloppe (3), - mise en place de matériau de stockage (2) d'hydrogène sur l'élément de séparation (5) avant insertion d'un éventuel élément de séparation (5) supplémentaire,
et en ce qu'il comporte en outre l'étape, après insertion de tous les éléments de séparation (5) dans l'enveloppe (3), de fermeture de l'orifice d'entrée (13) de l'enveloppe (3).
PCT/FR2019/051913 2018-08-10 2019-08-07 Réservoir de stockage d'hydrogène comportant une pluralité d'éléments de séparation de type parapluie WO2020030878A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19769841.8A EP3821166A1 (fr) 2018-08-10 2019-08-07 Réservoir de stockage d'hydrogène comportant une pluralité d'éléments de séparation de type parapluie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857453 2018-08-10
FR1857453A FR3084924B1 (fr) 2018-08-10 2018-08-10 Reservoir de stockage d'hydrogene comportant une pluralite d'elements de separation de type parapluie

Publications (1)

Publication Number Publication Date
WO2020030878A1 true WO2020030878A1 (fr) 2020-02-13

Family

ID=65685453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051913 WO2020030878A1 (fr) 2018-08-10 2019-08-07 Réservoir de stockage d'hydrogène comportant une pluralité d'éléments de séparation de type parapluie

Country Status (3)

Country Link
EP (1) EP3821166A1 (fr)
FR (1) FR3084924B1 (fr)
WO (1) WO2020030878A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115127014A (zh) * 2021-03-10 2022-09-30 佛吉亚排气系统有限公司 高压气体储罐
CN115783537A (zh) * 2023-02-02 2023-03-14 广东欧佩亚氢能源科技有限公司 一种集装箱的连接装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2354286A (en) * 1942-09-14 1944-07-25 Phillips Petroleum Co Automatic change-over device
FR2887013A1 (fr) * 2005-06-09 2006-12-15 Air Liquide Bouteille d'acetylene a element conducteur thermique
FR2953820A1 (fr) 2010-05-18 2011-06-17 Commissariat Energie Atomique Dispositif de stockage d'hydrogene a hydrures metalliques
FR2996628A1 (fr) 2012-10-04 2014-04-11 Commissariat Energie Atomique Reservoir de stockage d'hydrogene a hydrures metalliques de fabrication simplifiee et dispositif de stockage comportant au moins un tel reservoir
FR3014999A1 (fr) 2013-12-17 2015-06-19 Commissariat Energie Atomique Reservoir de stockage d'hydrogene a hydrures metalliques offrant un confinement efficace des hydrures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2354286A (en) * 1942-09-14 1944-07-25 Phillips Petroleum Co Automatic change-over device
FR2887013A1 (fr) * 2005-06-09 2006-12-15 Air Liquide Bouteille d'acetylene a element conducteur thermique
FR2953820A1 (fr) 2010-05-18 2011-06-17 Commissariat Energie Atomique Dispositif de stockage d'hydrogene a hydrures metalliques
FR2996628A1 (fr) 2012-10-04 2014-04-11 Commissariat Energie Atomique Reservoir de stockage d'hydrogene a hydrures metalliques de fabrication simplifiee et dispositif de stockage comportant au moins un tel reservoir
FR3014999A1 (fr) 2013-12-17 2015-06-19 Commissariat Energie Atomique Reservoir de stockage d'hydrogene a hydrures metalliques offrant un confinement efficace des hydrures

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B. CHARLAS ET AL.: "A tool for modelling the breathing of hybride powder in its container while cyclically absorbing and desorbing hydrogen", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 40, 8 January 2015 (2015-01-08), pages 2283 - 2294
B.Y. AO ET AL.: "A study on wall stresses induced by LaNi alloy hydrogen absorption-desorption cycles", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 390, 22 March 2005 (2005-03-22), pages 122 - 126, XP025330700, doi:10.1016/j.jallcom.2004.05.092
C-K. LING ET AL.: "Effects of cyclic hydriding-dehydriding reactions of LaNi on the thin-wall déformation of metal hydride storage vessels with various configuration", REWABLE ENERGY, vol. 48, 29 June 2012 (2012-06-29), pages 404 - 410
K. NASAKO ET AL.: "Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 264, January 1998 (1998-01-01), pages 271 - 276, XP004125077, doi:10.1016/S0925-8388(97)00246-6

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115127014A (zh) * 2021-03-10 2022-09-30 佛吉亚排气系统有限公司 高压气体储罐
CN115783537A (zh) * 2023-02-02 2023-03-14 广东欧佩亚氢能源科技有限公司 一种集装箱的连接装置

Also Published As

Publication number Publication date
FR3084924B1 (fr) 2020-11-20
EP3821166A1 (fr) 2021-05-19
FR3084924A1 (fr) 2020-02-14

Similar Documents

Publication Publication Date Title
EP2499418B1 (fr) Reservoir de stockage d'hydrogene a hydrures metalliques
EP3084288B1 (fr) Reservoir de stockage d'hydrogene a hydrures metalliques offrant un confinement des hydrures
EP2499088B1 (fr) Reservoir de stockage d'hydrogene a hydrures metalliques
EP3234443B1 (fr) Reservoir de stockage d'hydrogene a hydrures metalliques comprenant plusieurs étages emboités
EP2904304B1 (fr) Reservoir de stockage d'hydrogene a hydrures metalliques de fabrication simplifiee et dispositif de stockage comportant au moins un tel reservoir
WO2020030878A1 (fr) Réservoir de stockage d'hydrogène comportant une pluralité d'éléments de séparation de type parapluie
EP3084287A1 (fr) Reservoir de stockage d'hydrogene a hydrures metalliques a echanges thermiques
CA2935694A1 (fr) Systeme de stockage reversible d'h2 avec reservoir contenant des hydrures metalliques, a equilibrage de pression
EP3384200A1 (fr) Réservoir de stockage d'hydrogène réalisé dans un matériau isolant thermiquement formant des enveloppes cylindriques contenant des hydrures
FR2953820A1 (fr) Dispositif de stockage d'hydrogene a hydrures metalliques
FR2984453A1 (fr) Reservoir de stockage d'hydrogene sous la forme d'hydrures metalliques
EP3551927B1 (fr) Réservoir de stockage d'hydrogène comportant une pluralité de joints d'étanchéité
WO2018104657A2 (fr) Réservoir de stockage d'hydrogène comportant un matériau textile filtrant
EP3545225B1 (fr) Réservoir de stockage d'hydrogène sous la forme d'hydrure métallique offrant un confinement de la poudre amélioré
EP2630421A2 (fr) Système thermochimique à enveloppe en matériau composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19769841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019769841

Country of ref document: EP

Effective date: 20210209