WO2020029869A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2020029869A1
WO2020029869A1 PCT/CN2019/098957 CN2019098957W WO2020029869A1 WO 2020029869 A1 WO2020029869 A1 WO 2020029869A1 CN 2019098957 W CN2019098957 W CN 2019098957W WO 2020029869 A1 WO2020029869 A1 WO 2020029869A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
slot format
wireless communication
slot
update
Prior art date
Application number
PCT/CN2019/098957
Other languages
English (en)
French (fr)
Inventor
许晓东
陈冠宇
孙梦颖
原英婷
张文博
Original Assignee
索尼公司
许晓东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 许晓东 filed Critical 索尼公司
Priority to EP19846596.5A priority Critical patent/EP3836461A4/en
Priority to US17/259,556 priority patent/US11902944B2/en
Priority to CN201980041427.7A priority patent/CN112292829A/zh
Publication of WO2020029869A1 publication Critical patent/WO2020029869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission

Definitions

  • Embodiments of the present disclosure generally relate to the field of wireless communications, and in particular, to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device that is a parent node in an IAB (Integrated Access and Backhaul) wireless communication system, an electronic device that is a child node in an IAB wireless communication system, A wireless communication method performed by a parent node in an IAB wireless communication system, a wireless communication method performed by a child node in an IAB wireless communication system, and a computer-readable storage medium.
  • IAB Integrated Access and Backhaul
  • IAB is an important technology in NR (New Radio) communication system.
  • a DN Donor Node, donor node
  • other nodes including RN and UE (User Equipment)
  • RN Relay Node, relay node
  • the link between RN and RN or RN and DN is called a BH (Backhaul) link
  • the link between UE and RN or UE and DN is called an AC (Access) chain road.
  • the IAB system is characterized by supporting wireless backhaul links, that is, both the BH link and the AC link use wireless link transmission. Further, in order to improve the coverage performance index, etc., the number of hops between each node in the IAB system is not limited.
  • the complex multi-hop structure brings many challenges to the design of the IAB system.
  • each node needs to support the half-duplex working mode. In other words, at the same time, nodes in the IAB system can only receive data or send data. In other words, the nodes in the IAB system cannot receive and send data at the same time. Considering the limitation of this half-duplex working mode of the IAB system, how to design the frame structure for each link in the IAB system will be a new challenge.
  • time slot format In the physical layer design of the NR wireless communication system, symbol-level uplink and downlink configurations are supported. In other words, the minimum time granularity of the uplink and downlink configuration in the frame structure is reduced to one symbol. In one time slot, it is divided into DL (Downlink) symbol, UL (Uplink) symbol and X symbol (X symbol can be flexibly configured as DL symbol or UL symbol). In the prior art, several different time slot formats have been defined. The design of the time slot format brings great flexibility to the 5G wireless communication system. For example, different ratios of uplink and downlink symbols can be configured according to the characteristics of the data stream of the current system.
  • the NR wireless communication system also supports different subcarrier intervals, such as 15KHZ, 30KHZ, 60KHZ, 120KHZ, 240KHZ and so on. For systems with different subcarrier intervals, the duration of a time slot is different. Different subcarrier intervals can adapt to diverse scenarios and service flows. These characteristics of the 5G wireless communication system have brought new challenges to the frame structure design in the IAB system.
  • An object of the present disclosure is to provide an electronic device, a wireless communication method, and a computer-readable storage medium to optimize a slot format configuration in an IAB system.
  • an electronic device in an integrated access and return IAB system including a processing circuit, configured to: according to a link between the electronic device and a child node of the electronic device
  • the sub-carrier interval is configured for the sub-node link with a slot format period, the slot format period includes a predetermined number of time slots; and the link sub-node is configured at each time in a slot format period Slot time slot format.
  • an electronic device in an integrated access and return IAB system including a processing circuit, configured to receive the electronic device and the parent from a parent node of the electronic device.
  • a wireless communication method performed by an electronic device in an integrated access and backhaul IAB system, including: according to a chain between the electronic device and a child node of the electronic device
  • the subcarrier interval of the channel is configured with a slot format period for the link, and the slot format period includes a predetermined number of slots; and the time for each slot configured for the link in a slot format period Gap format.
  • a wireless communication method performed by an electronic device in an integrated access and backhaul IAB system including: receiving the electronic device and the parent from a parent node of the electronic device A slot format period of a link between nodes, the slot format period including a predetermined number of slots; receiving slot configuration information from the parent node; and determining that the link is in The slot format of each slot in a slot format period.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to perform the wireless communication method according to the present disclosure.
  • the electronic device, the wireless communication method and the computer-readable storage medium according to the present disclosure are used so that a parent node in the IAB system can configure a slot format period and a slot format according to the subcarrier interval of the link, thereby optimizing the IAB system. Time slot format configuration.
  • FIG. 1 is a structural diagram illustrating an IAB system according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing an example of a configuration of an electronic device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing a relationship between a subcarrier interval and a length of a time slot in an NR communication system according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram illustrating a relationship between a subcarrier interval and a slot format period according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram illustrating an information flow direction in a case where the RN receives information and a case where the RN sends information according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing the limitation of the half-duplex operation mode on the slot format of the IAB system
  • FIG. 7 is a schematic diagram showing a slot format of an IAB system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing a slot format of an IAB system according to an embodiment of the present disclosure.
  • FIG. 9 is a signaling flowchart illustrating a parent node link configuration slot format period and a slot format according to an embodiment of the present disclosure
  • FIG. 10 is a signaling flowchart illustrating a slot format of all links in a DN update IAB system according to an embodiment of the present disclosure
  • FIG. 11 is a signaling flowchart illustrating a slot format of all links in a DN update IAB system according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram illustrating a process in which an RN updates a slot format of a partial link in an IAB system according to an embodiment of the present disclosure
  • FIG. 13 is a signaling flowchart illustrating a time slot format of a partial link in an RN update IAB system according to an embodiment of the present disclosure
  • FIG. 14 is a signaling flowchart illustrating a time slot format of a partial link in an RN update IAB system according to an embodiment of the present disclosure
  • 15 is a block diagram illustrating an example of a configuration of an electronic device according to another embodiment of the present disclosure.
  • 16 is a flowchart illustrating a wireless communication method performed by an electronic device according to an embodiment of the present disclosure
  • 17 is a flowchart illustrating a wireless communication method performed by an electronic device according to another embodiment of the present disclosure.
  • FIG. 18 is a block diagram showing a first example of a schematic configuration of a gNB (Node B in a 5G communication system);
  • FIG. 19 is a block diagram showing a second example of a schematic configuration of a gNB
  • 20 is a block diagram showing an example of a schematic configuration of a smartphone.
  • FIG. 21 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey its scope to those skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be used, that example embodiments may be implemented in many different forms, and they should not be construed as limiting the scope of the disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • FIG. 1 is a configuration diagram illustrating an IAB system according to an embodiment of the present disclosure.
  • the IAB wireless communication system may include multiple nodes, including a DN, one or more RNs, and one or more UEs. All nodes in the IAB system can be located within the coverage of the DN. Further, the DN may communicate directly with the RN or UE, or may communicate with the RN or UE through one or more RNs.
  • the link between RN and DN or between RN and RN is called a BH link, and the link between UE and DN or between UE and RN is called an AC link.
  • the party near the DN can be called the parent node, and the other party can be called the child node.
  • Each node in the IAB system except the DN has a unique parent node, and a node in the IAB system may have no child nodes, one child node, or multiple child nodes. That is, the parent node in the IAB system can be a DN or an RN, and the child node can be an RN or a UE.
  • the IAB wireless communication system includes one DN, three RNs (RN1, RN2, and RN3) and two UEs (UE1 and UE2). Further, the DN communicates directly with RN1 through the BH1 link; the DN communicates directly with UE1 through the AC1 link; the DN communicates with RN2 through the RN1 via the BH1 link and the BH2 link; the DN communicates with the RN3 via the RN1 via the BH1 link and the BH3 link Communication; DN communicates with UE2 via RN1 via BH1 link and AC2 link.
  • RN1, RN2, and RN3 the example shown in FIG.
  • RN1 and UE1 may be referred to as child nodes of a DN, and DN may be referred to as a parent node of RN1 and UE1.
  • DN may be referred to as a parent node of RN1 and UE1.
  • RN2, RN3, and UE2 may be referred to as child nodes of RN1, and RN1 may be referred to as a parent node of RN2, RN3, and UE2.
  • FIG. 1 illustrates the structure of the IAB system in an exemplary manner.
  • the IAB system is also referred to herein as the IAB wireless communication system.
  • the IAB system is a technology in a 5G NR communication system, the embodiments shown in the present disclosure are applicable to a 5G NR communication system.
  • the DN may be a network-side device, such as any type of TRP (Transmit and Receive Port) or a base station device, such as an eNB or a gNB.
  • TRP Transmit and Receive Port
  • a base station device such as an eNB or a gNB.
  • the RN according to the present disclosure may also be a network-side device, such as a TRP, or a network-side device with certain functions of a base station device, including but not limited to a function of receiving data from the UE and the DN, and a function of sending data to the UE and the DN.
  • a network-side device such as a TRP
  • a network-side device with certain functions of a base station device including but not limited to a function of receiving data from the UE and the DN, and a function of sending data to the UE and the DN.
  • the UE may be a mobile terminal (such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable / dongle-type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device) .
  • the user equipment may also be implemented as a terminal (also called a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the terminals described above.
  • FIG. 2 is a block diagram illustrating an example of a configuration of an electronic device 200 according to an embodiment of the present disclosure.
  • the electronic device 200 here can be used as the parent node of any link in the IAB wireless communication system, and specifically, it can be a DN or RN in the IAB wireless communication system.
  • the electronic device 200 may include a period configuration unit 210 and a format configuration unit 220.
  • each unit of the electronic device 200 may be included in a processing circuit.
  • the electronic device 200 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and / or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the period configuration unit 210 may configure a slot format period for the link according to a subcarrier interval of a link between the electronic device 200 and a child node of the electronic device.
  • the slot format period includes a predetermined number of slots.
  • the period configuration unit 210 may configure a slot format period for a link between the electronic device 200 and the child node when the child node initially accesses the IAB system.
  • the parent node of the child node can be determined, and the parent node can determine the subcarrier interval of the link between the parent node and the child node and indicate the subcarrier interval to the child node through a system message
  • the period configuration unit 210 may configure a slot format period for a link with each child node.
  • the slot format period may mean a period for configuring a slot format. Take the time slot format period as two time slots as an example, and configure the time slot format with two time slot periods.
  • the format configuration unit 220 may also configure a slot format of each slot in a slot format period for the link between the electronic device 200 and the child node.
  • the format configuration unit 220 may use a slot format period as a cycle, thereby configuring a slot format for a link. Still taking the time slot format period as two time slots as an example, the format configuration unit 220 can configure the time slot format of the first time slot and the second time slot before the first time slot, and before the third time slot Configure the time slot formats for the third and fourth time slots, and configure the time slot formats for the fifth and sixth time slots before the fifth time slot. Of course, if the slot formats of the third slot and the fourth slot are the same as the slot formats of the first slot and the second slot, respectively, the configuration of the third slot and the fourth slot may be omitted. The process of the time slot format of each time slot. Similarly, since the electronic device 200 may have one child node or multiple child nodes, the format configuration unit 220 may configure a slot format for a link with each child node.
  • each time slot includes 14 OFDM symbols; in the case of an extended CP, each time slot includes 12 OFDM symbols.
  • a slot format for one slot may include uplink and downlink configuration information of the 14 OFDM symbols included in the slot, that is, each of the 14 OFDM symbols is a DL symbol, a UL The symbol is also the X symbol.
  • the format configuration unit 220 can configure the slot format of each slot included in a slot format period for the link, that is, the format configuration unit 220 can configure the link included in a slot format period.
  • the type of all OFDM symbols (DL, UL or X).
  • the slot format period and slot format can be configured for the link according to the subcarrier interval, thereby optimizing the slot format configuration in the IAB system.
  • the subcarrier interval may be 15 ⁇ 2 ⁇ KHZ.
  • may be a non-negative integer.
  • the subcarrier intervals are 15KHZ, 30KHZ, 60KHZ, 120KHZ, and 240KHZ, respectively.
  • one slot includes 14 OFDM symbols, but each OFDM symbol has a different length in the time domain. That is, for links with different subcarrier intervals, the length of a time slot in the time domain is different.
  • FIG. 3 is a diagram illustrating a relationship between a subcarrier interval and a length of a time slot in an NR communication system according to an embodiment of the present disclosure.
  • FIG. 3 shows the length of one time slot in the time domain in the case where ⁇ is 0, 1, 2, 3, and 4, respectively.
  • the shaded area indicates the length of one time slot. As shown in FIG.
  • the period configuration unit 210 may configure a slot format period for a link so that the subcarrier interval of the link is proportional to the number of slots included in the slot format period. That is, the larger the subcarrier interval of the link, the greater the number of time slots included in one slot format period of the link.
  • the period configuration unit 210 may configure the length of the slot format period of the link in the time domain to be equal to the slot format period of the link between the electronic device 200 and the parent node of the electronic device 200 at The length in the time domain is equal to the length of the time slot format period of the link between the electronic device 200 and other child nodes of the electronic device 200 in the time domain.
  • the length of the time slot format period of each link in the IAB system in the time domain may be equal.
  • the length of the time slot format period in the time domain may be a multiple of the length of one subframe (ie, 1 ms). More preferably, the length of the time slot format period in the time domain may be the length of one subframe, that is, 1 ms.
  • FIG. 4 is a schematic diagram illustrating a relationship between a subcarrier interval and a slot format period according to an embodiment of the present disclosure.
  • the length of the time slot format period in the time domain may be the length of one subframe, that is, 1 ms.
  • the length of 1ms includes one time slot, so the slot format period is 1.
  • the length of 1ms includes two time slots , So the slot format period is 2; in the case of a subcarrier interval of 60KHZ, the length of 1ms includes four slots, so the slot format period is 4; in the case of a subcarrier interval of 120KHZ, the length of 1ms includes There are eight time slots, so the time slot format period is 8.
  • the length of 1 ms includes sixteen time slots, so the time slot format period is 16. That is, in the case that ⁇ is 0, 1, 2, 3, and 4, respectively, the period configuration unit 210 may configure the slot format periods to be 1, 2, 4, 8, and 16, respectively.
  • the electronic device 200 may further include a communication unit 230 for sending and receiving information.
  • the electronic device 200 may use the communication unit 230 to periodically transmit the slot format to the child nodes.
  • the electronic device 200 may send a slot format period using high-level signaling.
  • high-level signaling includes, but is not limited to, RRC signaling.
  • Table 1 shows, in a non-limiting manner, one example of a field slotformat_cycle and a value representing a slot format period added in RRC signaling.
  • the electronic device 200 may add the following codes to the three RRC signalings of UL-DL-Configuration-common, UL-DL-Configuration-common-set2, and UL-DL-Configuration-dedicate:
  • the period configuration unit 210 may configure a slot format period for a link between the electronic device 200 and a child node of the electronic device 200. Further, the period configuration unit 210 may also send the configured slot format period to the format configuration unit 220 for the format configuration unit 220 to configure a slot format of each slot in the slot format period according to the slot format period. The operation of the format configuration unit 220 will be described in detail below.
  • FIG. 5 is a schematic diagram illustrating an information flow direction in a case where the RN receives information and a case where the RN transmits information according to an embodiment of the present disclosure.
  • the upper part of FIG. 5 is a schematic diagram showing an information flow direction in a case where the RN receives information.
  • RN2 is taken as an example.
  • the direction of the BH link between RN3 is uplink and the AC chain between UE1 and UE1.
  • the direction of the road is uplink, and the direction of the BH link with RN1 is downlink.
  • the lower part of FIG. 5 shows a schematic diagram of the information flow direction in the case where the RN sends information.
  • RN2 when RN2 sends information, it cannot receive information, so it can send information to RN3, UE1, and RN1, where the direction of the BH link with RN3 is downlink and the direction of the AC link with UE1 is downlink.
  • the direction of the BH link with RN1 is uplink. It can be seen that at the same time, the link direction between a node and its parent node and the link direction between the node and its children are opposite. Further, when a node has multiple child nodes, the link direction between the node and each child node is the same.
  • the format configuration unit 220 may configure a time slot format for a link between the electronic device 200 and its child nodes, so that the uplink and downlink configuration of each symbol in the time slot format period is the same as that of the electronic device 200 and the electronic device.
  • the uplink and downlink configurations of the corresponding symbols in the slot format period of the link between the parent nodes of the device 200 are opposite, or within the slot format period of the link between the electronic device 200 and other child nodes of the electronic device 200
  • the uplink and downlink configurations of the corresponding symbols are the same.
  • the format configuration unit 220 may configure a time slot format for a link between the electronic device 200 and its child nodes, so that the time slot
  • the uplink and downlink configuration of each symbol in the format period is opposite to the uplink and downlink configuration of the corresponding symbol in the slot format period of the link between the electronic device 200 and the parent node of the electronic device 200.
  • the uplink and downlink configurations of the link between the electronic device 200 and other child nodes of the electronic device 200 are UL, the uplink and downlink configuration of the link between the electronic device 200 and the child node DL; when the uplink and downlink of the link between the electronic device 200 and other child nodes of the electronic device 200 are configured as DL, the uplink and downlink of the link between the electronic device 200 and the child node are configured as UL; when the electronic device When the uplink and downlink of the link between 200 and other child nodes of the electronic device 200 are configured as X, the uplink and downlink of the link between the electronic device 200 and the child node are configured as X.
  • the format configuration unit 220 may configure a slot format for a link between the electronic device 200 and its child nodes, so that the time The uplink and downlink configuration of each symbol in the slot format period is the same as the uplink and downlink configuration of the corresponding symbol in the slot format period of the link between the electronic device 200 and other child nodes of the electronic device 200.
  • the uplink and downlink configurations are also UL, DL, or X. That is, the format configuration unit 220 may configure a slot format for a link between the electronic device 200 and each child node, so that the uplink and downlink configurations of each link are the same.
  • FIG. 6 is a schematic diagram showing the limitation of the half-duplex operation mode on the slot format of the IAB system.
  • the subcarrier interval of the BH2 link shown in FIG. 1 is 15KHZ
  • the subcarrier interval of the BH3 link shown in FIG. 1 is 60KHZ
  • the subcarrier spacing of the links is 120KHZ
  • all links use the slot format of the first 7 symbols as DL symbols and the last 7 symbols as UL symbols
  • Figure 6 shows the various chains within a 1ms subframe length The time slot format configuration of the channel. As shown in the dashed box in FIG.
  • the BH2 link and the AC2 link are in the downlink direction, that is, RN1 sends data
  • the BH3 link is in the uplink direction, that is, RN1 receives data.
  • RN1 In half-duplex mode, RN1 cannot send and receive data at the same time. Therefore, this time slot format is not reasonable.
  • FIG. 7 and 8 are diagrams illustrating a time slot format for designing an IAB system according to an embodiment of the present disclosure.
  • FIG. 7 there are DL, UL, and X symbols, while in FIG. 8 only DL and UL symbols exist.
  • FIG. 7 and FIG. 8 at any time point, the uplink and downlink directions of the BH2 link, the BH3 link, and the AC2 link are the same.
  • the parent node can notify the child nodes of the uplink and downlink configuration of the X symbol, and the configuration is still followed during the configuration of the X symbol.
  • the principle of the time slot format that is, the uplink and downlink configuration of the link between a node and its parent is opposite to the uplink and downlink configuration of the link between the node and its children, and the link between a node and each of its children
  • the uplink and downlink configurations are the same.
  • the uplink and downlink configuration of a link between a node and its parent node is opposite to the uplink and downlink configuration of a link between the node and its child node, and one node
  • the uplink and downlink configuration of the link between each of its child nodes is the same.
  • the link transmission direction between a node and each of its child nodes is the same, and is opposite to the link transmission direction between the node and its parent node, thereby ensuring that the node is either transmitting Information, or receiving information, so as to meet the requirements of the IAB system half-duplex working mode.
  • the electronic device 200 may further include a generating unit 240 for generating time slot configuration information, where the time slot configuration information may indicate that the link between the electronic device 200 and its child nodes is at Time slot format information for each time slot in a time slot format period. Further, the electronic device 200 may send the time slot configuration information to the child node through the communication unit 230.
  • the electronic device 200 may further include a format management unit 260 for managing various links related to the electronic device 200 (including links between the electronic device 200 and its parent node, And the time slot format of the link between the electronic device 200 and its child nodes).
  • a format management unit 260 for managing various links related to the electronic device 200 (including links between the electronic device 200 and its parent node, And the time slot format of the link between the electronic device 200 and its child nodes).
  • the time slot format may be stored in the format management unit 260 in. Therefore, both the electronic device 200 and its child nodes know the time slot format of the link between the electronic device 200 and its child nodes, and thus can perform transmission of uplink and downlink information according to the time slot format.
  • the generating unit 240 may generate time slot configuration information so that the time slot configuration information includes identification information of a time slot format of each time slot in a time slot format period. That is, taking the slot format period including 4 slots as an example, the generating unit 240 may generate the following slot configuration information: identification information of slot format 1; identification information of slot format 2; Identification information; identification information for slot format 4.
  • the generating unit 240 may determine whether the time slot format of each time slot is included in the already defined 56 time slot formats. . In the case where the slot format of a slot is already included in the defined 56 slot formats, the generating unit 240 may determine the identification information of the slot format as its corresponding number in 0-55. Further, in a case where the slot format of a slot is not included in the defined 56 slot formats, the generating unit 240 may define the identification information of the slot format of the slot as number 2. In the slot format number 2, 14 symbols are X symbols.
  • the time slot format period includes one time slot, and the time slot format of the time slot is DL, DL, DL, DL, DL, DL, DL, X, X, UL , UL, UL, UL.
  • This slot format is included in the 56 slot formats that have been defined, and the corresponding number is 45. Therefore, the generating unit 240 may generate the slot configuration information including the number 45.
  • the time slot format of this time slot is full downlink.
  • This time slot format is included in the 56 types of time slot formats that have been defined, and the corresponding number is 0;
  • the time slot format of this time slot is DL, DL, DL, DL, DL, DL, DL, DL, DL, DL, DL, DL, X, X, X, X, X.
  • This time slot format is included Among the 56 types of slot formats that have been defined, the corresponding number is 6.
  • the slot format of this slot is X, X, X, X, X, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, UL, this time slot format is included in the 56 types of time slot formats that have been defined, the corresponding number is 1. Therefore, the generating unit 240 can generate timeslot configuration information including numbers 0, 6, 6, 13 and 1, respectively.
  • the electronic device 200 may also send information about the configuration of the X symbol to the child node.
  • the electronic device 200 may send such information through low-level signaling, including but not limited to DCI.
  • the electronic device 200 may use various known means to send information about the configuration of the X symbol, which is not limited in this disclosure.
  • the time slot configuration information generated as described above is simple and clear, and is compatible with the existing standards, with minor changes to the existing standards.
  • the existence of X symbols is allowed, thereby making slot configuration more flexible.
  • the configuration information generated by the generating unit 240 may further include identification information of each time slot in one or more time slots in which an up-down conversion occurs in a time slot format period. And the identification information of the time slot format of the time slot.
  • FIG. 8 only shows a case in which a time slot format cycle occurs once in an uplink-downlink conversion. In fact, a time slot format cycle may occur in multiple uplink and downlink conversions. In this case, the time slot configuration includes identification information of the time slot in which each conversion occurs. And the time slot format of each time slot.
  • the communication unit 230 may send identification information of each time slot in one or more time slots in which the uplink and downlink conversion occurs to the child node through high-level signaling, including but not limited to RRC signaling.
  • Table 2 shows, in a non-limiting manner, an example of a field slotformat_transposition and a value added in the RRC signaling and indicating the identification information of the time slot in which the up-down conversion occurs.
  • slotformat_transpositio is a maximum of 16.
  • the electronic device 200 may add corresponding codes to RRC signaling such as UL-DL-Configuration-common, UL-DL-Configuration-common-set2, and UL-DL-Configuration-dedicate as follows.
  • the communication unit 230 may send identification information of a slot format of each slot in one or more slots where the uplink-downlink conversion occurs to the child node through low-level signaling, including but not limited to DCI.
  • Table 3 shows several new slot formats.
  • 13 new slot formats are defined in Table 3 and numbered 56-68.
  • the downlink symbols are first, the uplink symbols are last, and the number of downlink symbols is 1-13. Therefore, when the electronic device 200 transmits the identification information of the time slot format of the time slot in which the up-down conversion occurs to the child node, the electronic device 200 may directly transmit the number of the time slot format.
  • the electronic device 200 may further include a storage unit 250 for storing a correspondence between a slot format and a number newly defined in the present disclosure.
  • the format configuration unit 220 may configure the uplink and downlink configurations of the link between the electronic device 200 and the child node to be the same as the uplink and downlink configurations of the link between the electronic device 200 and other child nodes.
  • a mapping table may be generated for mapping the number of the time slot in which uplink and downlink conversion occurs in different subcarriers and the time slot of the time slot. Format number.
  • the format configuration unit 220 may determine the number of the link to be configured according to the number of the time slot where the uplink between the electronic device 200 and the child node has undergone uplink and downlink conversion and the time slot format number of the time slot. The number of the time slot where the up-down conversion occurs and the number of the time slot format of the time slot.
  • the number of time slots included in each time slot format period is different, so the number of downlink symbols included in each time slot format period is also different.
  • Table 4 shows the number of downlink symbols included in each slot format period for each of the newly added slot formats under different subcarrier intervals.
  • each slot format period includes one slot, so the number of downlink symbols in each slot format period is equal to the downlink symbols included in the corresponding slot format.
  • each slot format period includes 2 slots, so the number of downlink symbols in each slot format period is equal to the number of downlink symbols included in the corresponding slot format. 2 times the number, and so on.
  • the number of downlink symbols included in each slot format period shown in Table 4 is rounded to 14, and the obtained quotient plus 1 is the number of the slot where the uplink and downlink conversion occurs. The obtained remainder is the number of downlink symbols included in the time slot in which the uplink-downlink conversion occurs.
  • Table 5 shows the number of downlink symbols included in the time slot in which the uplink-downlink conversion occurs for different subcarrier intervals and different slot format numbers.
  • the corresponding number in Table 3 of the time slot in which the uplink-downlink conversion occurs is determined.
  • the number of downlink symbols in the time slot in which the uplink-downlink conversion occurs is 1, which corresponds to the time slot format numbered 56 in Table 3.
  • up and down occur.
  • the number of downlink symbols in the time slot of the row conversion is 2, which corresponds to the slot format numbered 57 in Table 3.
  • the number of downlink symbols in the time slot in which the uplink and downlink conversion occurs is 4.
  • Table 6 shows the mapping relationship between the number of the time slot in which the uplink and downlink conversion occurs and the number of the time slot format of the time slot in the case of different subcarriers. Among them, “none" indicates that there is no time slot in which the uplink-downlink conversion occurs.
  • the slot number indicates the number of the time slot in which the uplink-downlink conversion occurs
  • the slot format number indicates the number of the time slot format in the time slot in which the uplink-downlink conversion occurs.
  • the time slot number is 1
  • the time slot format number is 56, which indicates that the uplink and downlink conversion occurs in the first time slot
  • the time slot format of the time slot is the number shown in Table 3.
  • the format is 56.
  • an uplink-downlink conversion occurs in the first time slot
  • the time slot format of the time slot is the number 57 format shown in Table 3.
  • the storage unit 250 may further store, for example, the number of the time slot in which the uplink and downlink conversion occurs and the time slot of the time slot for different subcarriers in the case that the downlink symbol is first, as shown in Table 6. Mapping between format numbers.
  • the format configuration unit 220 may configure a slot format for other links according to the slot format of the configured link according to the mapping relationship stored in the storage unit 250.
  • new slot formats in 13 are defined and numbered 69-81.
  • the uplink symbols are first, the downlink symbols are last, and the number of uplink symbols is 1-13, respectively. Therefore, when the electronic device 200 transmits the identification information of the time slot format of the time slot in which the up-down conversion occurs to the child node, the electronic device 200 may directly transmit the number of the time slot format. Similarly, the storage unit 250 can also store these newly added time slot formats.
  • the storage unit 250 may further store, for example, in a case in which an upstream symbol precedes, as shown in Table 8, for different subcarriers, a number of a time slot in which uplink and downlink conversion occurs and a time slot of the time slot. Mapping between format numbers.
  • the format configuration unit 220 may configure a slot format for other links according to the slot format of the configured link according to the mapping relationship stored in the storage unit 250. This is similar to the case where the downlink symbol is in front, and is not repeated here.
  • the time slot configuration information generated as described above may include only a time slot number in which uplink and downlink conversion occurs and a time slot format number of the time slot, thereby saving signaling overhead. Further, in this case, the X symbol is not included in the slot format, thereby avoiding subsequent signaling overhead in order to indicate the direction of the X symbol.
  • FIG. 9 is a signaling flowchart illustrating that a parent node configures a slot format period and a slot format for a child node according to an embodiment of the present disclosure.
  • the parent node configures a slot format period for a link between the parent node and the child node.
  • the parent node configures the time slot format of each time slot in the time slot format period for the link.
  • the parent node periodically transmits the slot format of the link to the child node.
  • the parent node sends the slot format of each time slot of the link to a slot format period to the child node.
  • the child node can know the slot format period of the link between the child node and the parent node and the slot format of each slot in the slot format period.
  • a parent node in an IAB system can configure a slot format period and a slot format of each slot in the slot format period for a link between the parent node and a child node. This process usually occurs during the initial access of the child nodes.
  • each node in the IAB system can perform uplink and downlink information transmission according to the configured time slot format period and time slot format. The following will describe the process of updating the slot format of all or part of the links in the IAB system.
  • the DN can update the slot format of all links in the IAB system.
  • the DN can configure an updated slot format for each link in the IAB system for each slot in the updated slot format period, and send the updated slot configuration information to the corresponding node to update
  • the subsequent slot configuration information represents updated slot format information for each slot within a slot format period.
  • the corresponding node includes two nodes at both ends of a link.
  • the format configuration unit 220 may update the slot format according to one or more of the following information: location information of each node in the IAB system, The beam direction of each node, the BSR (Buffer Status Report) message, the traffic volume, and the priority of the data packet of each node in the IAB system.
  • the electronic device 200 may send update request information to other nodes before sending updated slot configuration information to other nodes in the IAB system.
  • the update request information includes an update start time in an update slot format.
  • the update start time may indicate the start time of all link update slot formats in the IAB system.
  • the update start time should be at the beginning of the slot format period. That is, assuming that the slot format period is the length of one subframe, that is, 1 ms, the update start time can indicate from which subframe to start using the updated slot format.
  • the electronic device 200 may send update request information to other nodes through high-level signaling including, but not limited to, RRC signaling.
  • Table 9 shows an example of a field and value that needs to be added in RRC signaling. Among them, slotformat_changetime represents the update start time of the update slot format.
  • the electronic device 200 may add the following codes to RRC signaling such as UL-DL-Configuration-common, UL-DL-Configuration-common-set2, and UL-DL-Configuration-dedicate:
  • the electronic device 200 may send update request information to all other nodes in the IAB system, and may receive update response information from other nodes. That is, in a case where other nodes receive the update request information, the other nodes may send the update response information to the electronic device 200, and thus the electronic device 200 may determine whether the other nodes have received the update request information.
  • the update response information may indicate whether the update request information has been received by itself, or itself and its child nodes (including child nodes of the child node, etc., if possible).
  • a node when it receives update request information, it can send ACK information to the parent node of the child node; when a node has child nodes, when it receives ACK information from all child nodes, An ACK message may be sent to the parent node of the node.
  • the node may send NACK information to its parent node. Therefore, the update response information from a node can indicate whether all nodes below the node have received the update request information.
  • the update request information when the update response information indicates that one or more other nodes have not received the update request information, the update request information is resent to the one or more other nodes. Only when the update response information indicates that all nodes have received the update request information, the electronic device 200 sends the updated slot configuration information to all other nodes in the IAB system.
  • the electronic device 200 sends the updated slot configuration information to all nodes only when all nodes receive the update request information including the update start time. In this way, it can be guaranteed that all nodes in the IAB system can obtain the update start time, thereby starting to update the slot format at the update start time.
  • the electronic device 200 may send updated slot configuration information to all other nodes, for example, through low-level signaling (including but not limited to DCI).
  • low-level signaling including but not limited to DCI
  • the format management unit 260 of the electronic device 200 may update the link of the electronic device 200 Time slot format. Accordingly, all other nodes also update the slot format of the link related to themselves at the update start time.
  • FIGS. 10 and 11 are signaling flowcharts illustrating a time slot format of all nodes in a DN update IAB system according to an embodiment of the present disclosure.
  • the IAB system adopts a structure as shown in FIG. 1.
  • step S1001 the DN determines that the time slot format of all links in the IAB system needs to be updated, so as to send update request information to RN1 and UE1.
  • step S1002 RN1 sends update request information to its child nodes RN2, RN3, and UE2.
  • step S1003 it is assumed that UE1 has received update request information from the DN, and therefore sends update response information including ACK information to the DN. Further, it is assumed that RN2, RN3, and UE2 have received update request information from RN1, and therefore send update response information including ACK information to RN1.
  • step S1004 since the RN1 receives the update response information including the ACK information of all the child nodes, it sends the update response information including the ACK information to the DN.
  • step S1005 since the DN receives the ACK information from all the child nodes, in step S1005, the DN sends updated slot configuration information to UE1 and RN1.
  • step S1006 RN1 sends timeslot configuration information to RN2, RN3, and UE2.
  • the slot configuration information sent to RN1 includes the slot format of links BH1, BH2, BH3, and AC2, and the slot configuration information sent to UE1 includes the slot format of link AC1, and the slot configuration information sent to RN2 It includes the slot format of link BH2, the slot configuration information sent to RN3 includes the slot format of link BH3, and the slot configuration information sent to UE2 includes the slot format of link AC2.
  • step S1007 when the update start time comes, all nodes in the IAB system update the slot format of the relevant link.
  • DN updates the slot format of links BH1 and AC1
  • RN1 updates the slot format of links BH1, BH2, BH3, and AC2
  • UE1 updates the slot format of link AC1
  • RN2 updates the slot format of link BH2
  • RN3 updates the slot format of link BH3
  • UE2 updates the slot format of link AC2.
  • step S1101 the DN determines that the time slot formats of all links in the IAB system need to be updated, thereby sending update request information to RN1 and UE1.
  • step S1102 RN1 sends update request information to its child nodes RN2, RN3, and UE2.
  • step S1103 it is assumed that UE1 has received update request information from the DN, and therefore sends update response information including ACK information to the DN.
  • RN2 and UE2 have received the update request information from RN1, and therefore send update response information including ACK information to RN1, while RN3 has not received the update request information from RN1, and therefore has not sent update response information to RN1.
  • step S1104 since RN1 has not received the update response information including the ACK information from all the child nodes, it sends the update response information including the NACK information to the DN.
  • step S1105 the DN resends the updated slot configuration information to RN1.
  • step S1106, RN1 resends the updated slot configuration information to RN3.
  • step S1107 it is assumed that RN3 has received the update request information from RN1, and therefore sends update response information to RN1.
  • step S1108 the RN1 sends update response information including ACK information to the DN.
  • step S1109 the DN sends updated slot configuration information to UE1 and RN1.
  • step S1110 RN1 sends timeslot configuration information to RN2, RN3, and UE2.
  • step S1111 when the update start time comes, all nodes in the IAB system update the slot format of the relevant link. Thus, the entire IAB system has completed the update of the slot format.
  • the DN can update the slot formats of all links of the entire IAB system, and the updated slot formats still meet the requirements of the half-duplex working mode of the IAB system.
  • the RN can update the slot format of some links in the IAB system. Further, this update is time-sensitive. That is, the RN's update of the slot format of the link is temporary.
  • the electronic device 200 when the electronic device 200 is an RN, it can update the slot format of the link between the electronic device 200 and its child nodes, and can also update the time of the link between the electronic device 200 and its parent node.
  • Gap format That is, the format configuration unit 220 may configure an updated slot format of each slot in a slot format period for the link between the electronic device 100 and its child nodes, and the communication unit 230 may provide the electronic device with The child node of 100 sends the updated slot configuration information. Further, the format configuration unit 220 may configure an updated slot format of each slot in a slot format period for the link between the electronic device 100 and its parent node, and the communication unit 230 may provide the The parent node sends updated slot configuration information.
  • the updated slot configuration information may include information indicating a slot format of each slot in an updated slot format period after the update.
  • the electronic device 200 may send updated slot configuration information to its child nodes through low-level signaling including, but not limited to, DCI, and may use low-level information including, but not limited to, UCI (Uplink Control Information). Let the parent node send updated slot configuration information.
  • the electronic device 200 when the electronic device 200 is provided with a plurality of child nodes, the electronic device 200 may update a slot format of a link with each of the plurality of child nodes.
  • the electronic device 200 may also send the update start time and update duration for updating the slot format to the child node and the parent node of the electronic device 200.
  • the update start time may represent the start time of the update slot format, and the update start time should be at the beginning of the slot format period. That is, assuming that the slot format period is the length of one subframe, that is, 1 ms, the update start time can indicate from which subframe to start using the updated slot format.
  • the update duration may represent the duration of the update slot format, and the update duration shall be an integer multiple of the slot format period.
  • the update duration can indicate that the updated slot format will last for several subframes.
  • the update start time and update duration may be included in the time slot configuration information, or may be independent of the time slot configuration information.
  • the electronic device 200 may add fields and values as shown in Table 10 to the low-level signaling to indicate the update start time and the update duration.
  • Slotformat-change-time represents the update start time
  • Slotformat-change-duration represents the update duration.
  • the number of symbols used by the electronic device 200 to transmit information may be updated.
  • the symbol used for transmitting information may be an uplink symbol or a downlink symbol.
  • the electronic device 200 increases the number of downlink symbols of the link between the electronic device 100 and its child nodes, and increases the number of uplink symbols of the link between the electronic device 100 and its parent node.
  • FIG. 12 is a schematic diagram illustrating a process in which an RN updates a slot format of some nodes in an IAB system according to an embodiment of the present disclosure.
  • RN1 is a parent node of RN2
  • RN3 is a child node of RN2
  • a link between RN2 and RN1 is BH1
  • a link between RN2 and RN3 is BH2.
  • RN2 wishes to increase the number of symbols used to send information, that is, for the BH1 link, the number of uplink symbols is increased, and for the BH2 link, the number of downlink symbols is increased.
  • RN2 can configure the updated slot format for the BH1 link and the BH2 link, and generate corresponding format configuration information. Further, RN2 may send format configuration information about the updated slot format of link BH1 to RN1, and send format configuration information about the updated slot format of link BH2 to RN3.
  • the electronic device 200 may receive response information from the child nodes and parent nodes indicating whether to agree to update the slot format. Further, when the response information from the child node of the electronic device 200 indicates that the child node agrees to update the slot format and the response information from the parent node of the electronic device 200 indicates that the parent node agrees to update the slot format, the format management unit 260 may start the update The time slot format is updated, and after the update duration, the slot format before the update is restored. In this case, the child node and the parent node may also update the slot format at the update start time, and restore the slot format before the update after the update duration.
  • the electronic device 200 may also send information indicating that the slot format is not updated to the child node and the parent node.
  • the electronic device 200 may send such information to the child node and the parent node through low-level signaling (including but not limited to DCI and UCI).
  • the DN may add fields and values shown in the following table to the RRC signaling.
  • Slotformat-changebyRN-applicable indicates whether the RN is allowed to update the slot format of some links in the IAB system.
  • the electronic device 200 can update the slot of the link between it and the child node as described above. Format and the slot format of the link between it and the parent node.
  • the following codes can be added to RRC signaling such as UL-DL-Configuration-common, UL-DL-Configuration-common-set2, and UL-DL-Configuration-dedicate:
  • FIGS. 13 and 14 are signaling flowcharts illustrating a slot format of an RN updating part of nodes in an IAB system according to an embodiment of the present disclosure.
  • RN1 is a parent node of RN2
  • RN3 is a child node of RN2.
  • step S1301 RN2 sets the updated slot format, update start time, and update duration for the BH1 link and the BH2 link.
  • step S1302 RN2 sends the updated slot format, update start time, and update duration of the BH1 link to RN1 through UCI, and sends the updated slot format of the BH2 link to RN3 through DCI, Update start time and update duration.
  • step S1303 sends response information to RN2, which indicates that RN3 agrees to update the slot format.
  • step S1304 RN1 sends response information to RN2, which indicates that RN1 agrees to update the slot format.
  • step S1305 at the update start time, RN1, RN2, and RN3 update the slot format of the relevant link. For example, RN1 updates the slot format of the BH1 link, RN2 updates the slot format of the BH1 and BH2 links, and RN3 updates the slot format of the BH2 link.
  • step S1306 after the update duration elapses, RN1, RN2, and RN3 resume the previous slot format.
  • RN2 can temporarily change the time slot format of the link between it and the child node and the link between it and the parent node.
  • step S1401 RN2 sets the updated slot format, update start time, and update duration for the BH1 link and the BH2 link.
  • step S1402 RN2 sends the updated slot format, update start time, and update duration of the BH1 link to RN1 through UCI, and sends the updated slot format of the BH2 link to RN3 through DCI, Update start time and update duration.
  • step S1403 sends response information to RN2, which indicates that RN3 agrees to update the slot format.
  • step S1404 RN1 sends response information to RN2, which indicates that RN1 does not agree to update the slot format.
  • step S1405 the RN2 sends information indicating that the time slot format is not updated to the RN1 through the UCI, and sends information indicating that the time slot format is not updated to the RN3 through the DCI.
  • RN1 does not agree with the update slot format.
  • RN2 also needs to send information to RN1 and RN3 indicating that the slot format is not updated.
  • a slot format period and a slot format can be configured for the link according to the subcarrier interval. Further, in order to save signaling overhead, the present disclosure also defines some slot formats and optimizes the method of reporting slot formats.
  • the DN can update the slot format of all links in the entire IAB system, and the RN can update the slot format of some links in the IAB system.
  • the slot format configuration process in the IAB system is optimized.
  • FIG. 15 is a block diagram illustrating a structure of an electronic device 1500 serving as a child node in an IAB wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 1500 may be an RN or a UE in an IAB wireless communication system. It is worth noting that, since the electronic device 1500 may be an RN in an IAB wireless communication system, and the electronic device 200 may also be an RN in an IAB wireless communication system, the RN may be compatible with the structures and functions of the electronic device 200 and the electronic device 1500.
  • the electronic device 1500 may include a communication unit 1510 and a demodulation unit 1520.
  • each unit of the electronic device 1500 may be included in a processing circuit. It should be noted that the electronic device 1500 may include one processing circuit or multiple processing circuits. Further, the processing circuit may include various discrete functional units to perform various different functions and / or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the communication unit 1510 may receive a slot format period of a link between the electronic device 1500 and the parent node from a parent node of the electronic device 1500, and the slot format period includes a predetermined number of time slots.
  • the communication unit 1510 may further receive time slot configuration information from a parent node.
  • the demodulation unit may demodulate the time slot configuration information, thereby acquiring the time slot format of each time slot of the link between the electronic device 1500 and the parent node within a time slot format period.
  • the electronic device 1500 can receive the slot format period and the slot format of each slot within the slot format period from the parent node, thereby optimizing the slot format in the IAB system. Configuration.
  • the communication unit 1510 may receive a slot format period of a link between the electronic device 1500 and a parent node through high-level signaling.
  • the demodulation unit 1520 may demodulate the slot configuration information to obtain identification information of a slot format of each slot in a slot format period. Next, the demodulation unit 1520 may determine the slot format of each slot according to the identification information of the slot format of each slot.
  • the electronic device 1500 may further include a format management unit 1540 for managing a slot format of a link related to the electronic device 1500.
  • the electronic device 1500 may store the time slot format acquired by the demodulation in the format management unit 1540.
  • the demodulation unit 1520 may also demodulate the time slot configuration information to obtain the identification of each time slot in one or more time slots in which an up-down conversion occurs in a time slot format period. Information and identification information in the slot format of the slot. Further, the demodulation unit 1520 may determine the uplink and downlink types of each symbol in the entire time slot format period according to the identification information of the time slot in which the uplink and downlink conversion occurs and the time slot format identification information. For example, it is assumed that the time slot format period includes 4 time slots. When the demodulation unit 1520 determines that there is only one time slot for the uplink and downlink conversion, it is the second time slot, and the time slot format of the time slot is DL, DL, DL.
  • the demodulation unit 1520 may determine that the first time slot is a time slot format of all downlink symbols, and the third time slot and The fourth slot is a slot format of all uplink symbols.
  • the communication unit 1510 may receive identification information of each time slot in one or more time slots in which the up-down conversion occurs through high-level signaling. Further, the communication unit 1510 may receive identification information in a time slot format of each time slot in one or more time slots in which uplink-downlink conversion occurs through low-level signaling.
  • the electronic device 1500 may further include a storage unit 1530 for storing a mapping relationship between the number of the newly defined slot format and the slot format. In this way, when the demodulation unit 1520 demodulates the number of the slot format, the corresponding slot format can be determined according to the table stored in the storage unit 1530.
  • the communication unit 1510 may also receive updated slot configuration information from the DN. Further, the demodulation unit 1520 may also determine a slot format of each slot in a slot format period of the link between the updated electronic device 1500 and its parent node according to the updated slot configuration information, and determine The updated format of the link between the electronic device 1500 and its child nodes is in the time slot format of each time slot within a time slot format period (if the electronic device 1500 has child nodes). That is, the demodulation unit 1520 may determine a slot format of a link related to the electronic device 1500 according to the updated slot configuration information.
  • the link related to the electronic device 1500 includes a link with the electronic device 1500 as an endpoint, including a link between the electronic device 1500 and each child node, and a link between the electronic device 1500 and a parent node.
  • the communication unit 1510 may receive the updated time slot configuration information through low-level signaling.
  • the communication unit 1510 may receive the update request information from the DN, and if the update request information is received from the DN, the communication Unit 1510 may send update response information to the DN.
  • the electronic device 1500 when the electronic device 1500 has no child nodes, in a case where the electronic device 1500 receives the update request information, the electronic device 1500 may send update response information including an ACK to the parent node of the electronic device 1500.
  • the electronic device 1500 may send an update response including the ACK to the parent node of the electronic device 1500 information.
  • the electronic device 1500 when the electronic device 1500 has a child node, when the electronic device 1500 receives update response information including NACK from one or more child nodes, or the electronic device 1500 does not receive update response information from one or more child nodes, the electronic device 1500 The device 1500 may send update response information including a NACK to a parent node of the electronic device 1500.
  • the update request information includes an update start time in an update slot format.
  • the communication unit 1510 may receive the update request information through high-level signaling.
  • the format management unit 1540 may update a slot format of each slot within a slot format period at an update start time.
  • the electronic device 1500 may update the slot format of the link related to the electronic device 1500 according to the indication of the DN.
  • the communication unit 1510 may further receive the updated time slot configuration information from the parent node of the electronic device 1500, and the demodulation unit 1520 may further determine the updated electronic device 1500 according to the updated time slot configuration information.
  • the demodulation unit 1510 may also demodulate the slot configuration information to obtain the update start time and update duration of the update slot format.
  • the communication unit 1510 may receive the updated slot configuration information from the parent node of the electronic device 1500 through low-level signaling.
  • the electronic device 1500 may further include a determining unit 1550 for determining whether to agree to update the slot format when the updated slot configuration information is received from the parent node.
  • the communication unit 1510 may send response information indicating whether to agree to update the slot format to the parent node of the electronic device 1500.
  • the format management unit 1540 may update the electronic device 1500 and the parent at the update start time.
  • the link between the nodes has a slot format for each slot within a slot format period, and after the update duration, the format management unit 1540 can restore the slot format before the update.
  • the electronic device 1500 if the electronic device 1500 receives information indicating that the slot format is not updated from the parent node before the update start time, the electronic device 1500 does not update the slot format.
  • the time slot format obtained by demodulation according to the demodulation unit 1520 is added to the time slot format of the link between the updated electronic device 1500 and the parent node, which is used for the electronic device 1500 to receive information Number of symbols.
  • the electronic device 1500 may receive the updated slot configuration information from the parent node to temporarily update the slot format of the link with the parent node. Similarly, the electronic device 1500 may also receive the updated slot configuration information from the child node to temporarily update the slot format of the link with the child node.
  • the communication unit 1510 can also receive updated slot configuration information from the child nodes of the electronic device 1500, and the demodulation unit 1520 can also determine the updated electronic device 1500 and the child nodes based on the updated slot configuration information.
  • the demodulation unit 1510 may also demodulate the slot configuration information to obtain the update start time and update duration of the update slot format.
  • the communication unit 1510 may receive the updated slot configuration information from the child node of the electronic device 1500 through low-level signaling.
  • the determining unit 1550 may be further configured to determine whether to agree to update the slot format when the updated slot configuration information is received from the child node.
  • the communication unit 1510 may send response information indicating whether to agree to update the slot format to the child nodes of the electronic device 1500.
  • the format management unit 1540 may update the electronic device 1500 and the child at the update start time.
  • the link between the nodes has a slot format for each slot within a slot format period, and after the update duration, the format management unit 1540 can restore the slot format before the update. If the electronic device 1500 receives information indicating that the slot format is not updated before the update start time, the electronic device 1500 does not update the slot format.
  • the time slot format obtained by the demodulation unit 1520 demodulation in the time slot format of the link between the updated electronic device 1500 and the child node, the number of symbols used for the electronic device 1500 to receive information is increased. .
  • the electronic device 1500 may receive a slot format period and a slot format of each slot within the slot format period from the parent node. Further, the electronic device 1500 may update the time slot format of each link in the IAB system according to the instruction of the DN, and may also update the link between the electronic device 1500 and its parent node or the The slot format of the link to the child node. In summary, according to the electronic device 1500 of the embodiment of the present disclosure, it is possible to optimize the configuration of the slot format in the IAB system.
  • the electronic device 200 may serve as a parent node in the IAB system, and the electronic device 1500 may serve as a child node in the IAB system. Therefore, all the embodiments of the electronic device 200 described in the foregoing are applicable to this.
  • FIG. 16 is a flowchart illustrating a wireless communication method performed by the electronic device 200 as a parent node in an IAB wireless communication system according to an embodiment of the present disclosure.
  • a slot format period is configured for the link according to a subcarrier interval of a link between the electronic device and a child node of the electronic device, and the slot format period includes a predetermined number of time slots.
  • step S1620 a slot format of each slot in a slot format period is configured for the link.
  • configuring the slot format period for the link includes making the subcarrier interval of the link proportional to the number of slots included in the slot format period.
  • configuring the slot format period for the link includes: configuring the length of the slot format period of the child node in the time domain to be equal to the length of one subframe.
  • the wireless communication method further comprises: sending the slot format period of the link to the child nodes.
  • sending the slot format period of the child node includes: sending the slot format period of the link to the child node through high-level signaling.
  • configuring the time slot format includes making the uplink and downlink configuration of each symbol in the time slot format period of the link corresponding to the time slot format period of the link between the electronic device and the parent node of the electronic device.
  • the uplink and downlink configurations of the symbols are opposite, or the uplink and downlink configurations of the corresponding symbols in the slot format period of the link between the electronic device and other child nodes of the electronic device are the same.
  • the wireless communication method further includes: sending the slot configuration information indicating the slot format information of each slot of the link in a slot format period to the child node.
  • the time slot configuration information includes identification information of a time slot format of each time slot in a time slot format period.
  • the time slot configuration information includes identification information of each time slot in one or more time slots in which an up-down conversion occurs in a time slot format period, and identification information of a time slot format of the time slot.
  • the wireless communication method further includes: sending identification information of each timeslot in one or more timeslots where the uplink-downlink conversion occurs to the child node through high-level signaling.
  • the wireless communication method further includes: sending identification information of a time slot format of each time slot in one or more time slots in which the up-down conversion occurs to the child node through low-level signaling.
  • the electronic device is a donor node DN.
  • the wireless communication method further includes: configuring an updated slot format of each slot in a slot format period for all links in the IAB system; and sending the updated slot to all other nodes in the IAB system. Slot configuration information.
  • the wireless communication method further includes: sending update request information to all other nodes in the IAB system; and receiving update response information from other nodes.
  • the wireless communication method further includes: when the update response information indicates that one or more other nodes have not received the update request information, resending the update request information to the one or more other nodes.
  • the wireless communication method further includes: when the update response information indicates that all nodes have received the update request information, sending the updated time slot configuration information to all other nodes in the IAB system.
  • the update request information includes an update start time in an update slot format.
  • the wireless communication method further includes: when the update response information indicates that all nodes have received the update request information, updating the slot format of each slot within a slot format period at the update start time.
  • the wireless communication method further includes: sending update request information to all other nodes through high-level signaling.
  • the wireless communication method further includes: sending updated slot configuration information to all other nodes through low-level signaling.
  • the electronic device is a relay node RN.
  • the wireless communication method further includes: configuring an updated link between the electronic device and a child node of the electronic device and a link between the electronic device and a parent node of the electronic device within a time slot format period. Time slot format of each time slot; and sending updated time slot configuration information to the child and parent nodes of the electronic device.
  • the wireless communication method further includes: sending the update start time and update duration of the update slot format to the child node and the parent node of the electronic device.
  • the wireless communication method further includes: receiving, from the child node and the parent node of the electronic device, response information indicating whether to agree to update the slot format.
  • the wireless communication method further includes: when the response information from the child node of the electronic device indicates that the child node agrees to update the slot format and the response information from the parent node of the electronic device indicates that the parent node agrees to update the slot format, The time slot format is updated, and after the update duration, the slot format before the update is restored.
  • the wireless communication method further includes: when the response information from the child node of the electronic device indicates that the child node does not agree to update the slot format and / or the response information from the parent node of the electronic device indicates that the parent node does not agree to update the slot format No time slot format is updated.
  • a symbol for the electronic device to send information is added Number of.
  • the wireless communication method further includes: sending updated slot configuration information to the child node and the parent node of the electronic device through low-level signaling.
  • the subject performing the above method may be the electronic device 200 according to the embodiment of the present disclosure, so all the embodiments of the electronic device 200 described above are applicable to this.
  • FIG. 17 is a flowchart illustrating a wireless communication method performed by an electronic device 1500 as a child node in an IAB wireless communication system according to an embodiment of the present disclosure.
  • step S1710 a slot format period of a link between the electronic device and the parent node is received from a parent node of the electronic device, and the slot format period includes a predetermined number of time slots.
  • step S1720 the slot configuration information is received from the parent node.
  • step S1730 the time slot format of each time slot of the link in a time slot format period is determined according to the time slot configuration information.
  • the receiving slot format period includes: a slot format period of a receiving link through high-level signaling.
  • the time slot configuration information includes identification information of a time slot format of each time slot in a time slot format period.
  • the time slot configuration information includes identification information of each time slot in one or more time slots in which an up-down conversion occurs in a time slot format period, and identification information of a time slot format of the time slot.
  • the wireless communication method further includes: receiving identification information of each time slot in one or more time slots in which the uplink-downlink conversion occurs through high-level signaling.
  • the wireless communication method further includes: receiving, by using low-level signaling, identification information of a time slot format of each time slot in one or more time slots in which the up-down conversion occurs.
  • the wireless communication method further includes: receiving updated slot configuration information from the donor node DN; and determining each slot of the updated link in a slot format period according to the updated slot configuration information Slot format.
  • the wireless communication method further includes: receiving update request information from the DN; and sending update response information to the DN.
  • the update request information includes an update start time in an update slot format.
  • the wireless communication method further includes: updating a slot format of each slot within a slot format period at an update start time.
  • the wireless communication method further includes: receiving update request information through high-level signaling.
  • the wireless communication method further includes: receiving updated slot configuration information through low-level signaling.
  • the wireless communication method further includes: receiving updated slot configuration information from a parent node of the electronic device; and determining, according to the updated slot configuration information, each time of the updated link in a slot format period Slot time slot format.
  • the wireless communication method further includes: receiving, from a parent node of the electronic device, an update start time and an update duration of the update slot format.
  • the wireless communication method further includes: sending response information indicating whether to agree to update the slot format to the parent node of the electronic device.
  • the wireless communication method further comprises: updating the slot format of each slot within a slot format period at the update start time, and recovering the slot format before the update after the update duration.
  • the wireless communication method further includes: when receiving information indicating that the slot format is not updated from the parent node of the electronic device, the slot format is not updated.
  • the number of symbols used by the electronic device to receive information is increased.
  • the wireless communication method further includes: receiving updated slot configuration information from a parent node of the electronic device through low-level signaling.
  • the electronic device is a relay node RN or a user equipment UE.
  • the subject performing the above method may be the electronic device 1500 according to the embodiment of the present disclosure, so all the embodiments of the electronic device 1500 described above are applicable here.
  • the technology of the present disclosure can be applied to various products.
  • the DN according to the present disclosure may be a network-side device, such as any type of TRP (Transmit and Receive Port) or a base station device, such as an eNB or a gNB.
  • the RN according to the present disclosure may also be a network-side device, such as a TRP, or a network-side device with certain functions of a base station device, including but not limited to a function of receiving data from the UE and the DN, and a function of sending data to the UE and the DN. The function of configuring certain parameters for the UE, etc.
  • the base station device can be implemented as a macro eNB and a small eNB, and can also be implemented as any type of gNB).
  • a small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a pico eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRH) provided at a place different from the main body.
  • RRH remote wireless headends
  • the UE may be implemented as a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable / dongle-type mobile router, and a digital camera device, or a vehicle-mounted terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal (also called a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the user equipments described above.
  • FIG. 18 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1800 includes one or more antennas 1810 and a base station device 1820.
  • the base station device 1820 and each antenna 1810 may be connected to each other via an RF cable.
  • Each of the antennas 1810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station device 1820 to transmit and receive wireless signals.
  • the gNB 1800 may include multiple antennas 1810.
  • multiple antennas 1810 may be compatible with multiple frequency bands used by gNB 1800.
  • FIG. 18 shows an example in which the gNB 1800 includes a plurality of antennas 1810, the gNB 1800 may also include a single antenna 1810.
  • the base station device 1820 includes a controller 1821, a memory 1822, a network interface 1823, and a wireless communication interface 1825.
  • the controller 1821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 1820. For example, the controller 1821 generates a data packet from data in a signal processed by the wireless communication interface 1825, and passes the generated packet via the network interface 1823. The controller 1821 may bundle data from multiple baseband processors to generate a bundled packet, and pass the generated bundled packet. The controller 1821 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1822 includes a RAM and a ROM, and stores a program executed by the controller 1821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1823 is a communication interface for connecting the base station device 1820 to the core network 1824.
  • the controller 1821 may communicate with a core network node or another gNB via a network interface 1823.
  • the gNB 1800 and the core network node or other gNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 1823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1823 is a wireless communication interface, compared to the frequency band used by the wireless communication interface 1825, the network interface 1823 can use a higher frequency band for wireless communication.
  • the wireless communication interface 1825 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of a gNB 1800 via an antenna 1810.
  • the wireless communication interface 1825 may generally include, for example, a baseband (BB) processor 1826 and an RF circuit 1827.
  • the BB processor 1826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and packet data convergence protocols (PDCP)).
  • the BB processor 1826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1826 may be a memory storing a communication control program or a module including a processor and related circuits configured to execute the program. Updating the program can change the functions of the BB processor 1826.
  • the module may be a card or a blade inserted into a slot of the base station device 1820. Alternatively, the module may be a chip mounted on a card or a blade.
  • the RF circuit 1827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1810.
  • the wireless communication interface 1825 may include a plurality of BB processors 1826.
  • multiple BB processors 1826 may be compatible with multiple frequency bands used by gNB 1800.
  • the wireless communication interface 1825 may include a plurality of RF circuits 1827.
  • multiple RF circuits 1827 may be compatible with multiple antenna elements.
  • FIG. 18 shows an example in which the wireless communication interface 1825 includes multiple BB processors 1826 and multiple RF circuits 1827, the wireless communication interface 1825 may also include a single BB processor 1826 or a single RF circuit 1827.
  • FIG. 19 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1930 includes one or more antennas 1940, base station equipment 1950, and RRH 1960.
  • the RRH 1960 and each antenna 1940 may be connected to each other via an RF cable.
  • the base station equipment 1950 and RRH 1960 may be connected to each other via a high-speed line such as a fiber optic cable.
  • Each of the antennas 1940 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1960 to transmit and receive wireless signals.
  • the gNB 1930 may include multiple antennas 1940.
  • multiple antennas 1940 may be compatible with multiple frequency bands used by gNB 1930.
  • FIG. 19 shows an example in which the gNB 1930 includes a plurality of antennas 1940, the gNB 1930 may also include a single antenna 1940.
  • the base station device 1950 includes a controller 1951, a memory 1952, a network interface 1953, a wireless communication interface 1955, and a connection interface 1957.
  • the controller 1951, the memory 1952, and the network interface 1953 are the same as the controller 1821, the memory 1822, and the network interface 1823 described with reference to FIG.
  • the wireless communication interface 1955 supports any cellular communication scheme such as LTE and LTE-Advanced, and provides wireless communication to a terminal located in a sector corresponding to RRH 1960 via RRH 1960 and antenna 1940.
  • the wireless communication interface 1955 may generally include, for example, a BB processor 1956.
  • the BB processor 1956 is the same as the BB processor 1826 described with reference to FIG. 18 except that the BB processor 1956 is connected to the RF circuit 1964 of the RRH 1960 via the connection interface 1957.
  • the wireless communication interface 1955 may include a plurality of BB processors 1956.
  • multiple BB processors 1956 may be compatible with multiple frequency bands used by gNB 1930.
  • FIG. 19 shows an example in which the wireless communication interface 1955 includes a plurality of BB processors 1956, the wireless communication interface 1955 may also include a single BB processor 1956.
  • connection interface 1957 is an interface for connecting the base station equipment 1950 (wireless communication interface 1955) to the RRH 1960.
  • the connection interface 1957 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1950 (wireless communication interface 1955) to the RRH 1960.
  • RRH 1960 includes a connection interface 1961 and a wireless communication interface 1963.
  • connection interface 1961 is an interface for connecting RRH 1960 (wireless communication interface 1963) to the base station equipment 1950.
  • the connection interface 1961 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1963 transmits and receives wireless signals via the antenna 1940.
  • the wireless communication interface 1963 may generally include, for example, an RF circuit 1964.
  • the RF circuit 1964 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1940.
  • the wireless communication interface 1963 may include a plurality of RF circuits 1964.
  • multiple RF circuits 1964 may support multiple antenna elements.
  • FIG. 19 shows an example in which the wireless communication interface 1963 includes a plurality of RF circuits 1964, the wireless communication interface 1963 may include a single RF circuit 1964.
  • the controller 1821 and / or the controller 1951 may perform functions of configuring a slot format period, configuring a slot format, generating configuration information, storing a slot format, and managing a slot format by executing instructions stored in a corresponding memory.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a smartphone 2000 to which the technology of the present disclosure can be applied.
  • the smart phone 2000 includes a processor 2001, a memory 2002, a storage device 2003, an external connection interface 2004, a camera device 2006, a sensor 2007, a microphone 2008, an input device 2009, a display device 2010, a speaker 2011, a wireless communication interface 2012, one or more Antenna switch 2015, one or more antennas 2016, bus 2017, battery 2018, and auxiliary controller 2019.
  • the processor 2001 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 2000.
  • the memory 2002 includes a RAM and a ROM, and stores data and programs executed by the processor 2001.
  • the storage device 2003 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2004 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smartphone 2000.
  • USB universal serial bus
  • the imaging device 2006 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 2007 may include a set of sensors such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2008 converts sound input to the smartphone 2000 into an audio signal.
  • the input device 2009 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2010, and receives an operation or information input from a user.
  • the display device 2010 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2000.
  • the speaker 2011 converts an audio signal output from the smartphone 2000 into a sound.
  • the wireless communication interface 2012 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2012 may generally include, for example, a BB processor 2013 and an RF circuit 2014.
  • the BB processor 2013 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2014 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2016.
  • the wireless communication interface 2012 may be a chip module on which the BB processor 2013 and the RF circuit 2014 are integrated. As shown in FIG. 20, the wireless communication interface 2012 may include multiple BB processors 2013 and multiple RF circuits 2014.
  • FIG. 20 shows an example in which the wireless communication interface 2012 includes a plurality of BB processors 2013 and a plurality of RF circuits 2014, the wireless communication interface 2012 may also include a single BB processor 2013 or a single
  • the wireless communication interface 2012 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 2012 may include a BB processor 2013 and an RF circuit 2014 for each wireless communication scheme.
  • Each of the antenna switches 2015 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 2012 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 2016 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 2012 to transmit and receive wireless signals.
  • the smartphone 2000 may include a plurality of antennas 2016.
  • FIG. 20 shows an example in which the smartphone 2000 includes a plurality of antennas 2016, the smartphone 2000 may include a single antenna 2016.
  • the smartphone 2000 may include an antenna 2016 for each wireless communication scheme.
  • the antenna switch 2015 may be omitted from the configuration of the smartphone 2000.
  • the bus 2017 connects the processor 2001, the memory 2002, the storage device 2003, the external connection interface 2004, the camera device 2006, the sensor 2007, the microphone 2008, the input device 2009, the display device 2010, the speaker 2011, the wireless communication interface 2012, and the auxiliary controller 2019 to each other. connection.
  • the battery 2018 supplies power to each block of the smartphone 2000 shown in FIG. 20 via a feeder, and the feeder is partially shown as a dotted line in the figure.
  • the auxiliary controller 2019 operates, for example, the minimum necessary function of the smartphone 2000 in the sleep mode.
  • FIG. 21 is a block diagram showing an example of a schematic configuration of a car navigation device 2120 to which the technology of the present disclosure can be applied.
  • Car navigation device 2120 includes a processor 2121, a memory 2122, a global positioning system (GPS) module 2124, a sensor 2125, a data interface 2126, a content player 2127, a storage medium interface 2128, an input device 2129, a display device 2130, a speaker 2131, and a wireless The communication interface 2133, one or more antenna switches 2136, one or more antennas 2137, and a battery 2138.
  • GPS global positioning system
  • the processor 2121 may be, for example, a CPU or a SoC, and controls navigation functions and other functions of the car navigation device 2120.
  • the memory 2122 includes a RAM and a ROM, and stores data and programs executed by the processor 2121.
  • the GPS module 2124 uses a GPS signal received from a GPS satellite to measure the position (such as latitude, longitude, and altitude) of the car navigation device 2120.
  • the sensor 2125 may include a set of sensors such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2126 is connected to, for example, an in-vehicle network 2141 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2127 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 2128.
  • the input device 2129 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2130, and receives an operation or information input from a user.
  • the display device 2130 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 2131 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2133 may generally include, for example, a BB processor 2134 and an RF circuit 2135.
  • the BB processor 2134 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2135 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2137.
  • the wireless communication interface 2133 may also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135.
  • FIG. 21 shows an example in which the wireless communication interface 2133 includes a plurality of BB processors 2134 and a plurality of RF circuits 2135, the wireless communication interface 2133 may include a single BB processor 2134 or a single RF circuit 2135.
  • the wireless communication interface 2133 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2133 may include a BB processor 2134 and an RF circuit 2135 for each wireless communication scheme.
  • Each of the antenna switches 2136 switches a connection destination of the antenna 2137 between a plurality of circuits included in the wireless communication interface 2133, such as circuits for different wireless communication schemes.
  • Each of the antennas 2137 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 may include a plurality of antennas 2137.
  • FIG. 21 shows an example in which the car navigation device 2120 includes a plurality of antennas 2137, the car navigation device 2120 may also include a single antenna 2137.
  • the car navigation device 2120 may include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 may be omitted from the configuration of the car navigation device 2120.
  • the battery 2138 supplies power to each block of the car navigation device 2120 shown in FIG. 21 via a feeder, and the feeder is partially shown as a dotted line in the figure.
  • the battery 2138 accumulates power provided from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 2140 including one or more of a car navigation device 2120, an in-vehicle network 2141, and a vehicle module 2142.
  • vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 2141.
  • the units shown by dashed boxes in the functional block diagram shown in the drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to achieve the required function .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processes performed in time series in the described order, but also processes performed in parallel or individually instead of having to be performed in time series. Further, even in the steps processed in a time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及电子设备、无线通信方法和计算机可读存储介质。根据本公开的综合接入和回传IAB系统中的电子设备,包括处理电路,被配置为:根据所述电子设备和所述电子设备的子节点之间的链路的子载波间隔为所述链路配置时隙格式周期,所述时隙格式周期包括预定数目的时隙;以及为所述链路配置在一个时隙格式周期内的每个时隙的时隙格式。使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,可以优化IAB系统中的时隙格式配置。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2018年8月10日提交中国专利局、申请号为201810909120.1、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为IAB(Integrated Access and Backhaul,综合接入和回传)无线通信系统中的父节点的电子设备、一种作为IAB无线通信系统中的子节点的电子设备、一种由IAB无线通信系统中的父节点执行的无线通信方法、一种由IAB无线通信系统中的子节点执行的无线通信方法以及一种计算机可读存储介质。
背景技术
IAB是NR(New Radio,新无线)通信系统中的一项重要技术。在IAB系统中,DN(Donor Node,供者节点)直接地或者通过一个或多个RN(Relay Node,中继节点)与其他节点(包括RN和UE(User Equipment,用户设备))相连。其中,RN与RN或者RN与DN之间的链路被称为BH(Backhaul,回传)链路,UE与RN或者UE与DN之间的链路被称为AC(Access,接入)链路。IAB系统的特点在于支持无线回传链路,即BH链路与AC链路均使用无线链路传输。进一步,为了提高覆盖性能指标等,不限制IAB系统中各个节点间的跳数。复杂的多跳结构为IAB系统的设计带来了很多挑战。
在IAB系统中,各个节点需要支持半双工的工作模式。也就是说,在同一个时间点,IAB系统中的节点只能接收数据,或者发送数据。换句话说,IAB系统中的节点不能同时接收数据和发送数据。考虑到IAB系统的这种半双工工作模式的限制,如何为IAB系统中的各个链路设计帧结构将是一个新的挑战。
在NR无线通信系统的物理层设计中,支持符号级的上下行配置。 也就是说,将帧结构中上下行配置的最小时间粒度缩小到一个符号。在一个时隙中,分为DL(Downlink,下行)符号,UL(Uplink,上行)符号和X符号(X符号可以被灵活配置为DL符号或UL符号)。现有的技术中已经定义了一些不同的时隙格式,时隙格式的设计为5G无线通信系统带来了很大的灵活性。例如,可以根据当前系统的数据流的特点,配置不同的上下行符号的配比。此外,NR无线通信系统还支持不同的子载波间隔,例如15KHZ、30KHZ、60KHZ、120KHZ、240KHZ等。对于具有不同的子载波间隔的系统,一个时隙的时长不同。不同的子载波间隔可以适应多样化的场景和业务流。5G无线通信系统的这些特点都为IAB系统中的帧结构设计带来了新的挑战。
因此,有必要提出一种技术方案,以结合5G无线通信系统的特点合理地为IAB系统设计帧结构。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以优化IAB系统中的时隙格式配置。
根据本公开的一方面,提供了一种综合接入和回传IAB系统中的电子设备,包括处理电路,被配置为:根据所述电子设备和所述电子设备的子节点之间的链路的子载波间隔为所述子节点链路配置时隙格式周期,所述时隙格式周期包括预定数目的时隙;以及为所述链路子节点配置在一个时隙格式周期内的每个时隙的时隙格式。
根据本公开的另一方面,提供了一种综合接入和回传IAB系统中的电子设备,包括处理电路,被配置为:从所述电子设备的父节点接收所述电子设备和所述父节点之间的链路的时隙格式周期,所述时隙格式周期包括预定数目的时隙;从所述父节点接收时隙配置信息;以及根据所述时隙配置信息确定所述链路在一个时隙格式周期内的每个时隙的时隙格式。
根据本公开的另一方面,提供了一种由综合接入和回传IAB系统中的电子设备执行的无线通信方法,包括:根据所述电子设备和所述电子设备的子节点之间的链路的子载波间隔为所述链路配置时隙格式周期,所述时隙格式周期包括预定数目的时隙;以及为所述链路配置在一个时隙格式 周期内的每个时隙的时隙格式。
根据本公开的另一方面,提供了一种由综合接入和回传IAB系统中的电子设备执行的无线通信方法,包括:从所述电子设备的父节点接收所述电子设备和所述父节点之间的链路的时隙格式周期,所述时隙格式周期包括预定数目的时隙;从所述父节点接收时隙配置信息;以及根据所述时隙配置信息确定所述链路在一个时隙格式周期内的每个时隙的时隙格式。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,使得IAB系统中的父节点可以根据链路的子载波间隔为其配置时隙格式周期以及时隙格式,从而优化IAB系统中的时隙格式配置。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的IAB系统的结构图;
图2是示出根据本公开的实施例的电子设备的配置的示例的框图;
图3是示出根据本公开的实施例的NR通信系统中的子载波间隔与时隙的长度的关系示意图;
图4是示出根据本公开的实施例的子载波间隔与时隙格式周期的关系示意图;
图5是示出根据本公开的实施例的在RN接收信息的情况下和在RN发送信息的情况下的信息流向的示意图;
图6是示出半双工工作模式对于设计IAB系统的时隙格式的限制的示意图;
图7是示出根据本公开的实施例设计IAB系统的时隙格式的示意图;
图8是示出根据本公开的实施例设计IAB系统的时隙格式的示意图;
图9是示出根据本公开的实施例的父节点链路配置时隙格式周期和时隙格式的信令流程图;
图10是示出根据本公开的实施例的DN更新IAB系统中的所有链路的时隙格式的信令流程图;
图11是示出根据本公开的实施例的DN更新IAB系统中的所有链路的时隙格式的信令流程图;
图12是示出根据本公开的实施例的RN更新IAB系统中的部分链路的时隙格式的过程示意图;
图13是示出根据本公开的实施例的RN更新IAB系统中的部分链路的时隙格式的信令流程图;
图14是示出根据本公开的实施例的RN更新IAB系统中的部分链路的时隙格式的信令流程图;
图15是示出根据本公开的另一个实施例的电子设备的配置的示例的框图;
图16是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图17是示出根据本公开的另一个实施例的由电子设备执行的无线通信方法的流程图;
图18是示出gNB(5G通信系统中的节点B)的示意性配置的第一示例的框图;
图19是示出gNB的示意性配置的第二示例的框图;
图20是示出智能电话的示意性配置的示例的框图;以及
图21是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
图1是示出根据本公开的实施例的IAB系统的结构图。IAB无线通信系统可以包括多个节点,包括一个DN、一个或多个RN以及一个或多个UE。IAB系统中的所有节点都可以位于DN的覆盖范围内。进一步,DN可以直接地与RN或者UE通信,也可以通过一个或多个RN与RN或UE通信。此外,RN与DN、或者RN与RN之间的链路被称为BH链路,UE与DN、或者UE与RN之间的链路被称为AC链路。对于IAB系统中的任意一个链路,其靠近DN的一方可以被称为父节点,另一方可以被称为子节点。IAB系统中的除DN以外的每一个节点都具有唯一的父节点,而IAB系统中的一个节点可以不具有子节点、具有一个子节点或者具有多个子节点。也就是说,IAB系统中的父节点可以是DN或者RN,子节点可以是RN或者UE。
如图1所示,该IAB无线通信系统包括一个DN、三个RN(RN1、RN2和RN3)以及两个UE(UE1和UE2)。进一步,DN通过BH1链路与RN1直接通信;DN通过AC1链路与UE1直接通信;DN通过RN1经由BH1链路和BH2链路与RN2通信;DN通过RN1经由BH1链路和BH3链路与RN3通信;DN通过RN1经由BH1链路和AC2链路与UE2通信。在图1中所示的示例中,RN1和UE1可以被称为DN的子节点,而DN可以被称为RN1和UE1的父节点。类似地,RN2、RN3和UE2可以被称为RN1的子节点,而RN1可以被称为RN2、RN3和UE2的父节点。
如上所述,图1以示例性的方式说明了IAB系统的结构。这里,由于IAB系统的BH链路与AC链路均使用无线链路传输,因此IAB系统在本文中也被称为IAB无线通信系统。此外,由于IAB系统是5G NR通信系统中的技术,因此本公开所示的实施例适用于5G NR通信系统。
根据本公开的DN可以是网络侧设备,例如任何类型的TRP(Transmit and Receive Port,发送和接收端口)或基站设备,例如可以是eNB,也可以是gNB。
根据本公开的RN也可以是网络侧设备,例如TRP,或者具备基站设备的某些功能的网络侧设备,包括但不限于从UE和DN接收数据的功能、向UE和DN发送数据的功能,为UE配置某些参数的功能等。也就是说,RN可以是被布置在DN的覆盖范围内的具备基站设备的某些功能的网络侧设备。
根据本公开的UE可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图2是示出根据本公开的实施例的电子设备200的配置的示例的框图。这里的电子设备200可以作为IAB无线通信系统中任意一条链路的父节点,具体地可以是IAB无线通信系统中的DN或RN。
如图2所示,电子设备200可以包括周期配置单元210和格式配置单元220。
这里,电子设备200的各个单元都可以包括在处理电路中。需要说明的是,电子设备200既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,周期配置单元210可以根据电子设备200和电子设备的子节点之间的链路的子载波间隔为该链路配置时隙格式周期。这里,时隙格式周期包括预定数目的时隙。
根据本公开的实施例,周期配置单元210可以在子节点初始接入IAB系统时为电子设备200和子节点之间的链路配置时隙格式周期。在子节点初始接入的过程中,可以确定该子节点的父节点,并且父节点可以确定父节点与子节点之间的链路的子载波间隔并通过系统消息向子节点指示该子载波间隔,本公开对这个过程不做详细说明。此外,由于电子设备200 可能具有一个子节点,也可能具有多个子节点,因此周期配置单元210可以为与每个子节点之间的链路配置时隙格式周期。在本公开中,时隙格式周期可以表示用于配置时隙格式的周期。以时隙格式周期为2个时隙为例,以2个时隙为周期配置时隙格式。
根据本公开的实施例,格式配置单元220还可以为电子设备200与子节点之间的链路配置在一个时隙格式周期内的每个时隙的时隙格式。
也就是说,格式配置单元220可以以时隙格式周期为周期,从而为链路配置时隙格式。仍然以时隙格式周期为2个时隙为例,格式配置单元220可以在第1个时隙之前配置第1个时隙和第2个时隙的时隙格式、在第3个时隙之前配置第3个时隙和第4个时隙的时隙格式、在第5个时隙之前配置第5个时隙和第6个时隙的时隙格式等。当然,如果第3个时隙和第4个时隙的时隙格式分别与第1个时隙和第2个时隙的时隙格式相同,也可以省去配置第3个时隙和第4个时隙的时隙格式的过程。同样地,由于电子设备200可能具有一个子节点,也可能具有多个子节点,因此格式配置单元220可以为与每个子节点之间的链路配置时隙格式。
众所周知,在常规CP(Cyclic Prefix,循环前缀)的情况下,每个时隙包括14个OFDM符号;在扩展CP的情况下,每个时隙包括12个OFDM符号。为了便于说明,在本公开中仅以每个时隙包括14个OFDM符号为例进行说明。根据本公开的实施例,针对一个时隙的时隙格式可以包括对该时隙所包括的14个OFDM符号的上下行配置信息,即14个OFDM符号中的每个OFDM符号是DL符号、UL符号还是X符号。也就是说,格式配置单元220可以为链路配置在一个时隙格式周期中包括的每个时隙的时隙格式,即格式配置单元220可以为链路配置在一个时隙格式周期中包括的所有OFDM符号的类型(DL、UL或X)。
由此可见,根据本公开的电子设备200,可以根据链路的子载波间隔为其配置时隙格式周期以及时隙格式,从而优化IAB系统中的时隙格式配置。
在5G NR通信系统中,允许不同的链路具有不同的子载波间隔。具体地,子载波间隔可以为15×2 μKHZ。这里,μ可以为非负整数。例如,当μ分别为0、1、2、3和4时,子载波间隔分别为15KHZ、30KHZ、60KHZ、120KHZ和240KHZ。进一步,针对不同的子载波间隔,一个时隙都包括14个OFDM符号,但是每个OFDM符号在时域上的长度不同。也就是说,针对具有不同子载波间隔的链路,一个时隙在时域上的长度不同。
图3是示出根据本公开的实施例的NR通信系统中的子载波间隔与时隙的长度的关系示意图。图3示出了在μ分别为0、1、2、3和4的情况下一个时隙在时域上的长度。在图3中,阴影部分表示一个时隙的长度。如图3所示,在μ=0(子载波间隔为15KHZ)的情况下,一个时隙在时域上的长度为1ms,即1ms的子帧包括一个时隙;在μ=1(子载波间隔为30KHZ)的情况下,一个时隙在时域上的长度为500μs,即1ms的子帧包括两个时隙;在μ=2(子载波间隔为60KHZ)的情况下,一个时隙在时域上的长度为250μs,即1ms的子帧包括四个时隙;在μ=3(子载波间隔为120KHZ)的情况下,一个时隙在时域上的长度为125μs,即1ms的子帧包括八个时隙;在μ=4(子载波间隔为240KHZ)的情况下,一个时隙在时域上的长度为62.5μs,即1ms的子帧包括十六个时隙。由此可见,子载波间隔越大,一个时隙在时域上的长度越短,一个1ms的子帧包括的时隙数目越多。
根据本公开的实施例,周期配置单元210可以为链路配置时隙格式周期以使得链路的子载波间隔与时隙格式周期中包括的时隙的数目成正比。也就是说,链路的子载波间隔越大,该链路的一个时隙格式周期中包括的时隙的数目越多。
根据本公开的实施例,周期配置单元210可以将链路的时隙格式周期在时域上的长度配置为等于电子设备200与电子设备200的父节点之间的链路的时隙格式周期在时域上的长度,或者等于电子设备200与电子设备200的其它子节点之间的链路的时隙格式周期在时域上的长度。
根据本公开的实施例,在IAB系统中的每条链路的时隙格式周期在时域上的长度都可以相等。优选地,时隙格式周期在时域上的长度可以为一个子帧的长度(即1ms)的倍数。更优选地,时隙格式周期在时域上的长度可以为一个子帧的长度,即1ms。
图4是示出根据本公开的实施例的子载波间隔与时隙格式周期的关系示意图。在图4所示的示例中,时隙格式周期在时域上的长度可以为一个子帧的长度,即1ms。如图4所示,在子载波间隔为15KHZ的情况下,1ms的长度包括一个时隙,因此时隙格式周期为1;在子载波间隔为30KHZ的情况下,1ms的长度包括两个时隙,因此时隙格式周期为2;在子载波间隔为60KHZ的情况下,1ms的长度包括四个时隙,因此时隙格式周期为4;在子载波间隔为120KHZ的情况下,1ms的长度包括八个时隙,因此时隙格式周期为8;在子载波间隔为240KHZ的情况下,1ms的长度包 括十六个时隙,因此时隙格式周期为16。也就是说,在μ分别为0、1、2、3和4的情况下,周期配置单元210可以分别配置时隙格式周期为1、2、4、8和16。
如图2所示,电子设备200还可以包括通信单元230,用于发送和接收信息。
根据本公开的实施例,电子设备200可以利用通信单元230将时隙格式周期发送至子节点。例如,电子设备200可以利用高层信令发送时隙格式周期。这里,高层信令包括但不限于RRC信令。表1以非限制性的方式示出了在RRC信令中添加的表示时隙格式周期的字段slotformat_cycle和值的一个示例。
表1
字段
slotformat_cycle {1,2,4,8,16}
例如,电子设备200可以在UL-DL-Configuration-common、UL-DL-Configuration-common-set2和UL-DL-Configuration-dedicate这三个RRC信令中增加如下所示的代码:
Figure PCTCN2019098957-appb-000001
Figure PCTCN2019098957-appb-000002
如上所述,周期配置单元210可以为电子设备200与电子设备200的子节点之间的链路配置时隙格式周期。进一步,周期配置单元210还可以将配置的时隙格式周期发送至格式配置单元220,以用于格式配置单元220根据时隙格式周期配置时隙格式周期中的每个时隙的时隙格式。下面将详细描述格式配置单元220的操作。
图5是示出根据本公开的实施例的在RN接收信息的情况下和在RN发送信息的情况下的信息流向的示意图。
图5的上部示出了在RN接收信息的情况下的信息流向的示意图。这里,以RN2为例,当RN2接收信息时,其不能发送信息,因此可以接收来自RN3、UE1和RN1的信息,其中与RN3之间的BH链路方向为上行,与UE1之间的AC链路的方向为上行,而与RN1之间的BH链路的方向为下行。类似地,图5的下部示出了在RN发送信息的情况下的信息流向的示意图。这里,当RN2发送信息时,其不能接收信息,因此可以向RN3、UE1和RN1发送信息,其中与RN3之间的BH链路方向为下行,与UE1之间的AC链路的方向为下行,而与RN1之间的BH链路的方向为上行。由此可见,在同一时间,一个节点与其父节点之间的链路方向和该节点与其子节点之间的链路方向相反。进一步,当一个节点具有多个子节点时,该节点与每个子节点之间的链路方向相同。
根据本公开的实施例,格式配置单元220可以为电子设备200与其子节点之间的链路配置时隙格式,从而使得时隙格式周期内的每个符号的上下行配置与电子设备200和电子设备200的父节点之间的链路的时隙格式周期内的相应符号的上下行配置相反、或者与电子设备200和电子设备200的其它子节点之间的链路的时隙格式周期内的相应符号的上下行配置相同。
根据本公开的实施例,当电子设备200为RN时,电子设备200存在父节点,因此,格式配置单元220可以为电子设备200与其子节点之间的链路配置时隙格式,从而使得时隙格式周期内的每个符号的上下行配置与电子设备200和电子设备200的父节点之间的链路的时隙格式周期内的相应符号的上下行配置相反。也就是说,针对某一个符号,当电子设备200和电子设备200的其它子节点之间的链路的上下行配置为UL时,电子设备200与该子节点之间的链路的上下行配置为DL;当电子设备200和电子设备200的其它子节点之间的链路的上下行配置为DL时,电子设 备200与该子节点之间的链路的上下行配置为UL;当电子设备200和电子设备200的其它子节点之间的链路的上下行配置为X时,电子设备200与该子节点之间的链路的上下行配置为X。
根据本公开的实施例,当电子设备200为DN时,电子设备200不存在父节点,因此,格式配置单元220可以为电子设备200与其子节点之间的链路配置时隙格式,从而使得时隙格式周期内的每个符号的上下行配置与电子设备200和电子设备200的其它子节点之间的链路的时隙格式周期内的相应符号的上下行配置相同。也就是说,针对某一个符号,当电子设备200和电子设备200的其它子节点之间的链路的上下行配置为UL、DL或X时,电子设备200与该子节点之间的链路的上下行配置也分别为UL、DL或X。也就是说,格式配置单元220可以为电子设备200与每个子节点之间的链路配置时隙格式,从而使得每条链路的上下行配置相同。
图6是示出半双工工作模式对于设计IAB系统的时隙格式的限制的示意图。如图6所示,假定在图1中所示的BH2链路的子载波间隔为15KHZ,在图1中所示的BH3链路的子载波间隔为60KHZ,并且在图1中所示的AC2链路的子载波间隔为120KHZ,并且所有链路均采用前7个符号为DL符号,后7个符号为UL符号的时隙格式,则图6示出了在1ms的子帧长度内各个链路的时隙格式配置。如图6中的虚线框中所示,在同一时间,BH2链路和AC2链路为下行方向,即RN1发送数据,BH3链路为上行方向,即RN1接收数据。而在半双工工作模式下,RN1不可能同时发送数据和接收数据。因此,这种时隙格式是不合理的。
图7和和图8是示出根据本公开的实施例设计IAB系统的时隙格式的示意图。在图7中,存在DL、UL和X符号,而在图8中仅存在DL和UL符号。如图7和图8所示,在任意时间点,BH2链路、BH3链路和AC2链路的上下行方向一致。这里,虽然在图7中存在上下行方向不确定的X符号,但是在配置了时隙格式之后,父节点可以向子节点通知X符号的上下行配置,在配置X符号的过程中仍然遵循配置时隙格式的原则,即一个节点与其父节点之间的链路的上下行配置与该节点与其子节点之间的链路的上下行配置相反,并且一个节点与其每个子节点之间的链路的上下行配置相同。
如上所述,根据本公开的实施例,在IAB系统中,一个节点与其父节点之间的链路的上下行配置与该节点与其子节点之间的链路的上下行配置相反,并且一个节点与其每个子节点之间的链路的上下行配置相同。 这样一来,在任意一个时间点,一个节点与其每个子节点之间的链路传输方向相同,并且均与该节点与其父节点之间的链路传输方向相反,从而能够保证该节点要么在发送信息,要么在接收信息,从而满足IAB系统半双工工作模式的要求。
如图2所示,根据本公开的实施例,电子设备200还可以包括生成单元240,用于生成时隙配置信息,该时隙配置信息可以表示电子设备200与其子节点之间的链路在一个时隙格式周期内的每个时隙的时隙格式的信息。进一步,电子设备200可以通过通信单元230将时隙配置信息发送至子节点。
如图2所示,根据本公开的实施例,电子设备200还可以包括格式管理单元260,用于管理与电子设备200有关的各个链路(包括电子设备200与其父节点之间的链路、以及电子设备200与其子节点之间的链路)的时隙格式。这里,当电子设备200为电子设备200与其子节点之间的链路配置好时隙格式时,除了将该时隙格式发送至子节点之外,还可以将时隙格式存储在格式管理单元260中。由此,电子设备200和其子节点都知晓电子设备200与其子节点之间的链路的时隙格式,从而可以根据时隙格式执行上下行信息的传输。
根据本公开的实施例,生成单元240可以生成时隙配置信息,以使得时隙配置信息包括在一个时隙格式周期内的每个时隙的时隙格式的识别信息。也就是说,以时隙格式周期包括4个时隙为例,生成单元240可以生成如下的时隙配置信息:时隙格式1的识别信息;时隙格式2的识别信息;时隙格式3的识别信息;时隙格式4的识别信息。
在目前的3GPP标准中,已经定义了56种不同的时隙格式,分别编号为0-55。对于每一种时隙格式,分别定义了其中包括的14个符号的类型,即UL符号、DL符号或X符号。在这些已经定义的时隙格式中,除了编号为0的时隙格式(14个符号均为DL符号)和编号为1的时隙格式(14个符号均为UL符号)外,均包括UL符号、DL符号和X符号。
根据本公开的实施例,在格式配置单元220配置好了每个时隙的时隙格式之后,生成单元240可以确定每个时隙的时隙格式是否包括在已经定义的56种时隙格式中。在一个时隙的时隙格式已经包括在定义的56种时隙格式中的情况下,生成单元240可以确定该时隙格式的识别信息为其在0-55中的相应编号。进一步,在一个时隙的时隙格式没有被包括在定义的56种时隙格式中的情况下,生成单元240可以将该时隙的时隙格式 的识别信息定义为编号2。在编号为2的时隙格式中,14个符号均为X符号。
以图7所示的示例为例,针对BH2链路,时隙格式周期包括1个时隙,该时隙的时隙格式为DL、DL、DL、DL、DL、DL、X、X、UL、UL、UL、UL、UL、UL。这种时隙格式被包括在已经定义的56种时隙格式中,对应的编号为45。因此,生成单元240可以生成包括编号45的时隙配置信息。同样地,针对BH3链路,针对第1个时隙,该时隙的时隙格式为全下行,这种时隙格式被包括在已经定义的56种时隙格式中,对应的编号为0;针对第2个时隙,该时隙的时隙格式为DL、DL、DL、DL、DL、DL、DL、DL、DL、DL、X、X、X、X,这种时隙格式被包括在已经定义的56种时隙格式中,对应的编号为6;针对第3个时隙,该时隙的时隙格式为X、X、X、X、UL、UL、UL、UL、UL、UL、UL、UL、UL、UL,这种时隙格式被包括在已经定义的56种时隙格式中,对应的编号为13;针对第4个时隙,该时隙的时隙格式为全上行,这种时隙格式被包括在已经定义的56种时隙格式中,对应的编号为1。因此,生成单元240可以生成分别包括编号0、编号6、编号13和编号1的时隙配置信息。
根据本公开的实施例,当生成单元240生成的时隙配置信息表示的时隙格式中存在X符号时,电子设备200还可以向子节点发送关于该X符号的配置的信息。优选地,电子设备200可以通过低层信令,包括但不限于DCI来发送这样的信息。电子设备200可以采用各种已知的手段来发送关于X符号的配置的信息,本公开对此不做限定。
根据本公开的实施例,如上所述生成的时隙配置信息简单明了,且与现有的标准兼容,对现有标准的改动较小。此外,在这种情况下,允许X符号的存在,从而使得时隙配置更加灵活。
根据本公开的实施例,为了节约信令开销,生成单元240生成的配置信息还可以包括在一个时隙格式周期内发生上下行转换的一个或多个时隙中的每个时隙的识别信息以及该时隙的时隙格式的识别信息。
如图8所示,针对BH2链路,在一个时隙格式周期内发生一次上下行转换,这种转换发生在第1个时隙;针对BH3链路,在一个时隙格式周期内发生一次上下行转换,这种转换发生在第2个时隙;针对AC2链路,在一个时隙格式周期内发生一次上下行转换,这种转换发生在第4个时隙。因此,只要配置信息包括发生转换的时隙的识别信息以及该时隙的 时隙格式,子节点就可以知晓在整个时隙格式周期内每个符号的上下行配置。图8中仅仅示出了一个时隙格式周期发生一次上下行转换的情形,实际上一个时隙格式周期可以发生多次上下行转换,此时时隙配置包括每次发生转换的时隙的识别信息以及各个时隙的时隙格式。
根据本公开的实施例,通信单元230可以通过高层信令,包括但不限于RRC信令向子节点发送发生上下行转换的一个或多个时隙中的每个时隙的识别信息。表2以非限制性的方式示出了在RRC信令中添加的表示发生上下行转换的时隙的识别信息的字段slotformat_transposition和值的一个示例。这里,由于一个时隙格式周期最多包括16个时隙,因此slotformat_transpositio的值最大为16。
表2
字段
slotformat_transposition {1,2,…,16}
优选地,电子设备200可以在UL-DL-Configuration-common、UL-DL-Configuration-common-set2和UL-DL-Configuration-dedicate等RRC信令中增加相应的代码如下。
Figure PCTCN2019098957-appb-000003
Figure PCTCN2019098957-appb-000004
根据本公开的实施例,通信单元230可以通过低层信令,包括但不限于DCI向子节点发送发生上下行转换的一个或多个时隙中的每个时隙的时隙格式的识别信息。
前文中提到,在目前的3GPP标准中,已经定义了56种不同的时隙格式,分别编号为0-55。在向子节点发送发生上下行转换的时隙的时隙格式的识别信息时,很有可能该时隙格式不被包括在现有的56种时隙格式中。因此,为了进一步节约开销,在本公开中定义一些新的时隙格式,并对新的时隙格式进行编号,从而当电子设备200向子节点发送发生上下行转换的时隙的时隙格式的识别信息时,只需要发送该时隙格式的编号即可。此外,为了便于说明,下文中仅以在一个时隙格式周期中发生一次上下行转换为例进行说明,本领域技术人员可以理解,本公开的方案也可以推广至一个时隙格式周期包括多次上下行转换的情形。
表3中示出了新增的几种时隙格式。
表3
Figure PCTCN2019098957-appb-000005
Figure PCTCN2019098957-appb-000006
由此可见,在表3中定义了13中新的时隙格式,编号为56-68。在这些时隙格式中,均是下行符号在前,上行符号在后,并且下行符号的个数分别为1-13。由此,在电子设备200向其子节点发送发生上下行转换的时隙的时隙格式的识别信息时,可以直接发送时隙格式的编号。
根据本公开的实施例,如图2所示,电子设备200还可以包括存储单元250,用于存储本公开中新定义的时隙格式与编号的对应关系。
此外,在前文中提到,格式配置单元220可以将电子设备200与子节点之间的链路的上下行配置配置为与电子设备200和其它子节点之间的链路的上下行配置相同。为了进一步简化格式配置单元220的计算量,根据本公开的实施例,可以生成一个映射表,用于映射在不同子载波的情况下发生上下行转换的时隙的编号以及该时隙的时隙格式的编号。这样一来,格式配置单元220可以根据已经配置好的电子设备200与子节点的链路的发生上下行转换的时隙的编号以及该时隙的时隙格式的编号确定待配置的链路的发生上下行转换的时隙的编号以及该时隙的时隙格式的编号。
根据本公开的实施例,对于不同的子载波间隔,每个时隙格式周期中包括的时隙个数不同,因此每个时隙格式周期中包括的下行符号的个数也不同。表4示出了针对上述每一种新增的时隙格式,在不同的子载波间隔的情况下,每个时隙格式周期中包括的下行符号的个数。
表4
Figure PCTCN2019098957-appb-000007
Figure PCTCN2019098957-appb-000008
如表4所示,在μ=0的情况下,每个时隙格式周期包括1个时隙,因此每个时隙格式周期中下行符号的个数等于对应的时隙格式中包括的下行符号的个数;在μ=1的情况下,每个时隙格式周期包括2个时隙,因此每个时隙格式周期中下行符号的个数等于对应的时隙格式中包括的下行符号的个数的2倍,以此类推。
根据本公开的实施例,将表4中所示的每个时隙格式周期中包括的下行符号的个数对14取余,得到的商加1即为发生上下行转换的时隙的编号,得到的余数即为发生上下行转换的时隙中包括的下行符号的个数。表5示出了针对不同的子载波间隔和不同的时隙格式编号,得到的发生上下行转换的时隙中包括的下行符号的个数。
表5
Figure PCTCN2019098957-appb-000009
Figure PCTCN2019098957-appb-000010
根据发生上下行转换的时隙中包括的下行符号的个数可以确定发生上下行转换的时隙在表3中所对应的编号。例如,在μ=0的情况下,发生上下行转换的时隙中下行符号的个数为1,对应于表3中编号为56的时隙格式,而在μ=1的情况下,发生上下行转换的时隙中下行符号的个数为2,对应于表3中编号为57的时隙格式,而在μ=2的情况下,发生上下行转换的时隙中下行符号的个数为4,对应于表3中编号为59的时隙格式,以此类推。由此可以确定表6。在表6中示出了在不同的子载波的情况下,发生上下行转换的时隙的编号和该时隙的时隙格式的编号之间的映射关系。其中,“无”表示不存在发生上下行转换的时隙。
表6
Figure PCTCN2019098957-appb-000011
Figure PCTCN2019098957-appb-000012
如表6所示,时隙编号表示发生上下行转换的时隙的编号,时隙格式编号表示发生上下行转换的时隙的时隙格式的编号。例如,在μ=0的情况下,时隙编号是1,时隙格式编号为56表示在第1个时隙发生上下行转换,且该时隙的时隙格式为表3中所示的编号为56的格式。而与其对应的在μ=1的情况下,在第1个时隙发生上下行转换,且该时隙的时隙格式为表3中所示的编号为57的格式。
根据本公开的实施例,存储单元250还可以存储例如表6所示的在下行符号在前的情况下,针对不同的子载波,发生上下行转换的时隙的编号和该时隙的时隙格式的编号之间的映射关系。这样一来,格式配置单元220可以根据存储单元250中存储的映射关系,根据已经配置好的链路的时隙格式为其它链路配置时隙格式。
以图8所示的示例为例,假定RN1已经为BH2链路配置好了时隙格式周期中包括的每个时隙的时隙格式,需要根据BH2链路的时隙格式配置BH3链路和AC2链路的时隙格式。如图8所示,对于BH2链路,μ=0,发生上下行转换的时隙编号为1,该时隙的时隙格式编号为61。根据表6可以确定针对BH3链路,在μ=2的情况下,发生上下行转换的时隙编号为2,该时隙的时隙格式编号为65,而针对AC2链路,在μ=3的情况下,发生上下行转换的时隙编号为4,该时隙的时隙格式编号为61。
在表3中示出的新增的时隙格式中,均是下行符号在前上行符号在后。类似地,根据本公开的实施例,还可以新增一些上行符号在前下行符号在后的时隙格式,如表7所示。
表7
Figure PCTCN2019098957-appb-000013
Figure PCTCN2019098957-appb-000014
如表7所示,定义了13中新的时隙格式,编号为69-81。在这些时隙格式中,均是上行符号在前,下行符号在后,并且上行符号的个数分别为1-13。由此,在电子设备200向其子节点发送发生上下行转换的时隙的时隙格式的识别信息时,可以直接发送时隙格式的编号。同样地,存储单元250也可以存储这些新增的时隙格式。
进一步,根据本公开的实施例,可以根据以上类似的方法确定在上行符号在前的情况下,针对不同的子载波,发生上下行转换的时隙的编号和该时隙的时隙格式的编号之间的映射关系。如表8所示。
表8
Figure PCTCN2019098957-appb-000015
Figure PCTCN2019098957-appb-000016
根据本公开的实施例,存储单元250还可以存储例如表8所示的在上行符号在前的情况下,针对不同的子载波,发生上下行转换的时隙的编号和该时隙的时隙格式的编号之间的映射关系。这样一来,格式配置单元220可以根据存储单元250中存储的映射关系,根据已经配置好的链路的时隙格式为其它链路配置时隙格式。这与下行符号在前的情况类似,在此不再赘述。
根据本公开的实施例,如上所述生成的时隙配置信息中,可以仅包括发生上下行转换的时隙编号以及该时隙的时隙格式编号,从而可以节约信令开销。进一步,在这种情况下,时隙格式中不包括X符号,从而可以避免后续为了指示X符号的方向而产生的信令开销。
图9是示出根据本公开的实施例的父节点为子节点配置时隙格式周期和时隙格式的信令流程图。如图9所示,在步骤S901中,父节点为父节点与子节点之间的链路配置时隙格式周期。接下来,在步骤S902中,父节点为该链路配置在一个时隙格式周期内的每个时隙的时隙格式。接下来,在步骤S903中,父节点将该链路的时隙格式周期发送至子节点。接下来,在步骤S904中,父节点将该链路的在一个时隙格式周期内的每个时隙的时隙格式发送至子节点。由此,子节点可以获知其与父节点之间的链路的时隙格式周期以及时隙格式周期中每个时隙的时隙格式。
如上所述,根据本公开的实施例,IAB系统中的父节点可以为其与子节点之间的链路配置时隙格式周期以及时隙格式周期中的每个时隙的 时隙格式。这个过程通常发生在子节点初始接入的过程中。接下来,IAB系统中的各个节点可以根据配置好的时隙格式周期和时隙格式来执行上下行信息传输。下面将描述对IAB系统中的全部链路或部分链路的时隙格式的更新过程.
根据本公开的实施例,DN可以更新IAB系统中的全部链路的时隙格式。也就是说,DN可以为IAB系统中的每条链路配置更新后的一个时隙格式周期内的每个时隙的时隙格式,并且将更新后的时隙配置信息发送到相应节点,更新后的时隙配置信息表示更新后的在一个时隙格式周期内的每个时隙的时隙格式的信息。这里,相应节点包括一条链路两端的两个节点。
根据本公开的实施例,当电子设备200是DN时,格式配置单元220可以根据以下信息中的一种或多种来更新时隙格式:IAB系统中的每个节点的位置信息、IAB系统中的每个节点的波束方向、BSR(Buffer Status Report,缓存状态报告)消息、业务量以及IAB系统中每个节点的数据包的优先级。
根据本公开的实施例,电子设备200在向IAB系统中的其它节点发送更新的时隙配置信息之前,可以向其它节点发送更新请求信息。优选地,更新请求信息包括更新时隙格式的更新开始时间。这里,更新开始时间可以表示IAB系统中所有的链路更新时隙格式的开始时间。进一步,更新开始时间应当位于时隙格式周期的起始处。也就是说,假定时隙格式周期为一个子帧的长度,即1ms,则更新开始时间可以指示从哪个子帧开始采用更新后的时隙格式。例如,电子设备200可以通过包括但不限于RRC信令的高层信令向其它节点发送更新请求信息。
表9示出了需要在RRC信令中增加的一个字段和值的一个示例。其中,slotformat_changetime表示更新时隙格式的更新开始时间。
表9
字段
slotformat_changetime BIT STRING
例如,电子设备200可以在UL-DL-Configuration-common、UL-DL-Configuration-common-set2和UL-DL-Configuration-dedicate等RRC信令中增加如下所示的代码:
Figure PCTCN2019098957-appb-000017
Figure PCTCN2019098957-appb-000018
根据本公开的实施例,电子设备200可以向IAB系统中的其它所有节点发送更新请求信息,并可以从其它节点接收更新响应信息。也就是说,在其它节点接收到更新请求信息的情况下,其它节点可以向电子设备200发送更新响应信息,由此电子设备200可以是否其它节点都接收到了更新请求信息。
根据本公开的实施例,更新响应信息可以表示自己、或者自己以及自己的子节点(如果可能,还包括子节点的子节点等)是否接收到了更新请求信息。当一个节点没有子节点时,当其接收到更新请求信息时,可以向该子节点的父节点发送ACK信息;当一个节点有子节点时,当其从所有的子节点接收到ACK信息时,可以向该节点的父节点发送ACK信息,当该节点的任意一个子节点没有反馈更新响应信息(或者反馈了NACK信息)时,该节点可以向其父节点发送NACK信息。因此,来自一个节点的更新响应信息可以表示该节点以下的所有节点是否全都接收到了更新请求信息。
根据本公开的实施例,当更新响应信息表明一个或多个其它节点没有收到更新请求信息时,向一个或多个其它节点重新发送更新请求信息。只有当更新响应信息表明所有节点均已收到更新请求信息时,电子设备 200才向IAB系统中的所有其它节点发送更新后的时隙配置信息。
如上所述,根据本公开的实施例,只有当所有节点都收到包括更新开始时间的更新请求信息时,电子设备200才向所有节点发送更新后的时隙配置信息。这样一来,可以保证IAB系统中的所有节点都能够获取更新开始时间,从而在更新开始时间处开始更新时隙格式。
根据本公开的实施例,电子设备200可以例如通过低层信令(包括但不限于DCI)向其它所有节点发送更新后的时隙配置信息。
根据本公开的实施例,在电子设备200向其它所有节点发送更新后的时隙配置信息之后,在更新开始时间处,电子设备200的格式管理单元260可以更新与电子设备200有关的链路的时隙格式。相应地,其它所有节点也都在更新开始时间处更新与自身有关的链路的时隙格式。
图10和图11是示出根据本公开的实施例的DN更新IAB系统中的所有节点的时隙格式的信令流程图。在图10和图11中,IAB系统采用如图1所示的结构。
如图10所示,在步骤S1001中,DN判定需要更新IAB系统中全部链路的时隙格式,从而向RN1和UE1发送更新请求信息。接下来,在步骤S1002中,RN1向其子节点RN2、RN3和UE2发送更新请求信息。接下来,在步骤S1003中,假定UE1接收到了来自DN的更新请求信息,因此向DN发送包括ACK信息的更新响应信息。进一步,假定RN2、RN3和UE2接收到了来自RN1的更新请求信息,因此向RN1发送包括ACK信息的更新响应信息。接下来,在步骤S1004中,由于RN1接收到了全部子节点的包括ACK信息的更新响应信息,因此向DN发送包括ACK信息的更新响应信息。接下来,由于DN接收到了来自全部子节点的ACK信息,因此在步骤S1005中,DN向UE1和RN1发送更新的时隙配置信息。接下来,在步骤S1006中,RN1向RN2、RN3和UE2发送时隙配置信息。这里,向RN1发送的时隙配置信息包括链路BH1、BH2、BH3和AC2的时隙格式,向UE1发送的时隙配置信息包括链路AC1的时隙格式,向RN2发送的时隙配置信息包括链路BH2的时隙格式,向RN3发送的时隙配置信息包括链路BH3的时隙格式,向UE2发送的时隙配置信息包括链路AC2的时隙格式。接下来,在步骤S1007中,当更新开始时间到来时,IAB系统中的所有节点都更新相关链路的时隙格式。例如,DN更新链路BH1和AC1的时隙格式,RN1更新链路BH1、BH2、BH3和AC2的时隙格式,UE1更新链路AC1的时隙格式,RN2更新链路BH2的时隙 格式,RN3更新链路BH3的时隙格式,UE2更新链路AC2的时隙格式。由此,整个IAB系统完成了时隙格式的更新。
如图11所示,在步骤S1101中,DN判定需要更新IAB系统中全部链路的时隙格式,从而向RN1和UE1发送更新请求信息。接下来,在步骤S1102中,RN1向其子节点RN2、RN3和UE2发送更新请求信息。接下来,在步骤S1103中,假定UE1接收到了来自DN的更新请求信息,因此向DN发送包括ACK信息的更新响应信息。进一步,假定RN2和UE2接收到了来自RN1的更新请求信息,因此向RN1发送包括ACK信息的更新响应信息,而RN3没有接收到来自RN1的更新请求信息,因此没有向RN1发送更新响应信息。接下来,在步骤S1104中,由于RN1没有接收到来自全部子节点的包括ACK信息的更新响应信息,因此向DN发送包括NACK信息的更新响应信息。接下来,在步骤S1105中,DN向RN1重新发送更新的时隙配置信息。接下来,在步骤S1106中,RN1向RN3重新发送更新的时隙配置信息。接下来,在步骤S1107中,假定RN3接收到了来自RN1的更新请求信息,因此向RN1发送更新响应信息。接下来,在步骤S1108中,RN1向DN发送包括ACK信息的更新响应信息。接下来,在步骤S1109中,DN向UE1和RN1发送更新的时隙配置信息。接下来,在步骤S1110中,RN1向RN2、RN3和UE2发送时隙配置信息。接下来,在步骤S1111中,当更新开始时间到来时,IAB系统中的所有节点都更新相关链路的时隙格式。由此,整个IAB系统完成了时隙格式的更新。
如上所述,根据本公开的实施例,DN可以更新整个IAB系统所有链路的时隙格式,并且更新后的时隙格式仍然符合IAB系统的半双工工作模式的要求。
根据本公开的实施例,RN可以更新IAB系统中部分链路的时隙格式。进一步,这种更新具备时效性。也就是说,RN对链路的时隙格式的更新是暂时性的。
根据本公开的实施例,当电子设备200是RN时,其可以更新电子设备200与其子节点之间的链路的时隙格式,也可以更新电子设备200与其父节点之间的链路的时隙格式。也就是说,格式配置单元220可以为电子设备100与其子节点之间的链路配置更新后的在一个时隙格式周期内的每个时隙的时隙格式,并且通信单元230可以向电子设备100的子节点发送更新后的时隙配置信息。进一步,格式配置单元220可以为电子设备 100与其父节点之间的链路配置更新后的在一个时隙格式周期内的每个时隙的时隙格式,并且通信单元230可以向电子设备100的父节点发送更新后的时隙配置信息。
根据本公开的实施例,更新后的时隙配置信息可以包括表示更新后的在一个时隙格式周期内的每个时隙的时隙格式的信息。优选地,电子设备200可以通过包括但不限于DCI的低层信令向其子节点发送更新后的时隙配置信息,并且可以通过包括但不限于UCI(Uplink Control Information,上行控制信息)的低层信令向其父节点发送更新后的时隙配置信息。
此外,根据本公开的实施例,当电子设备200具备多个子节点时,电子设备200可以更新与多个子节点中的每个子节点之间的链路的时隙格式。
进一步,根据本公开的实施例,电子设备200还可以向电子设备200的子节点和父节点发送用于更新时隙格式的更新开始时间和更新持续时间。这里,更新开始时间可以表示更新时隙格式的开始时间,更新开始时间应当在时隙格式周期的起始处。也就是说,假定时隙格式周期为一个子帧的长度,即1ms,则更新开始时间可以指示从哪个子帧开始采用更新后的时隙格式。更新持续时间可以表示更新时隙格式的持续时间,更新持续时间应当是时隙格式周期的整数倍。也就是说,假定时隙格式周期为一个子帧的长度,即1ms,则更新持续时间可以指示更新后的时隙格式将持续几个子帧。此外,更新开始时间和更新持续时间可以被包括在时隙配置信息中,也可以独立于时隙配置信息。例如,电子设备200可以在低层信令中添加如表10中所示的字段和值来表示更新开始时间和更新持续时间。其中,Slotformat-change-time表示更新开始时间,Slotformat-change-duration表示更新持续时间。
表10
字段
Slotformat-change-time BIT STRING
Slotformat-change-duration BIT STRING
根据本公开的实施例,在更新后的电子设备200和电子设备200的子节点之间的链路以及电子设备200和电子设备200的父节点之间的链路的时隙格式中,增加了用于电子设备200发送信息的符号的个数。也就是说,当电子设备200希望增加发送信息的符号的个数时,可以更新电子设 备200与其子节点、以及电子设备200与其父节点之间的链路的时隙格式。这里,用于发送信息的符号可以是上行符号,也可以是下行符号。例如,电子设备200增加电子设备100与其子节点之间的链路的下行符号的个数,并且增加电子设备100与其父节点之间的链路的上行符号的个数。
图12是示出根据本公开的实施例的RN更新IAB系统中的部分节点的时隙格式的过程示意图。如图12所示,假定RN1是RN2的父节点,RN3是RN2的子节点,RN2与RN1之间的链路为BH1,RN2与RN3之间的链路为BH2。当RN2希望增加用于发送信息的符号的个数时,即对于BH1链路而言,增加了上行符号的个数,而对于BH2链路而言,增加了下行符号的个数。在这种情况下,RN2可以为BH1链路和BH2链路配置更新后的时隙格式,并生成相应的格式配置信息。进一步,RN2可以向RN1发送关于链路BH1的更新后的时隙格式的格式配置信息,并向RN3发送关于链路BH2的更新后的时隙格式的格式配置信息。
根据本公开的实施例,当电子设备200向其子节点和父节点发送更新后的配置信息之后,可以从子节点和父节点接收表示是否同意更新时隙格式的响应信息。进一步,当来自电子设备200的子节点的响应信息表示子节点同意更新时隙格式并且来自电子设备200的父节点的响应信息表示父节点同意更新时隙格式时,格式管理单元260可以在更新开始时间更新时隙格式,并且在更新持续时间之后,恢复更新前的时隙格式。在这种情况下,子节点和父节点也可以在更新开始时间更新时隙格式,并且在更新持续时间之后,恢复更新前的时隙格式。
根据本公开的实施例,当来自电子设备200的子节点的响应信息表示子节点不同意更新时隙格式和/或来自电子设备200的父节点的响应信息表示父节点不同意更新时隙格式时,不更新时隙格式。在这种情况下,电子设备200还可以向子节点和父节点发送表示不更新时隙格式的信息。优选地,电子设备200可以通过低层信令(包括但不限于DCI和UCI)来向子节点和父节点发送这样的信息。
根据本公开的实施例,DN可以在RRC信令中添加如下表所示的字段和值。其中,Slotformat-changebyRN-applicable表示是否允许RN更新IAB系统中的部分链路的时隙格式。
表11
字段
Slotformat-changebyRN-applicable BOOLEAN
也就是说,只有在电子设备200被配置为允许更新IAB系统中的部分链路的时隙格式的情况下,电子设备200才可以如上所述更新其与子节点之间的链路的时隙格式以及其与父节点之间的链路的时隙格式。例如,可以在UL-DL-Configuration-common、UL-DL-Configuration-common-set2和UL-DL-Configuration-dedicate等RRC信令中添加如下代码:
Figure PCTCN2019098957-appb-000019
图13和图14是示出根据本公开的实施例的RN更新IAB系统中的部分节点的时隙格式的信令流程图。在图13和图14中,采用了图12中所示的结构,即RN1是RN2的父节点,RN3是RN2的子节点。
如图13所示,在步骤S1301中,RN2为BH1链路和BH2链路设置更新后的时隙格式、更新开始时间以及更新持续时间。接下来,在步骤S1302中,RN2通过UCI向RN1发送BH1链路的更新后的时隙格式、更新开始时间以及更新持续时间,并通过DCI向RN3发送BH2链路的更新后的时隙格式、更新开始时间以及更新持续时间。接下来,在步骤S1303中,RN3向RN2发送响应信息,该响应信息表示RN3同意更新时隙格式。 接下来,在步骤S1304中,RN1向RN2发送响应信息,该响应信息表示RN1同意更新时隙格式。接下来,在步骤S1305中,在更新开始时间处,RN1、RN2和RN3更新相关链路的时隙格式。例如,RN1更新BH1链路的时隙格式,RN2更新BH1和BH2链路的时隙格式,RN3更新BH2链路的时隙格式。接下来,在步骤S1306中,在更新持续时间经过以后,RN1、RN2和RN3恢复之前的时隙格式。由此,RN2可以暂时性地改变其与子节点之间的链路以及其与父节点之间的链路的时隙格式。
如图14所示,在步骤S1401中,RN2为BH1链路和BH2链路设置更新后的时隙格式、更新开始时间以及更新持续时间。接下来,在步骤S1402中,RN2通过UCI向RN1发送BH1链路的更新后的时隙格式、更新开始时间以及更新持续时间,并通过DCI向RN3发送BH2链路的更新后的时隙格式、更新开始时间以及更新持续时间。接下来,在步骤S1403中,RN3向RN2发送响应信息,该响应信息表示RN3同意更新时隙格式。接下来,在步骤S1404中,RN1向RN2发送响应信息,该响应信息表示RN1不同意更新时隙格式。接下来,在步骤S1405中,RN2通过UCI向RN1发送表示不更新时隙格式的信息,并通过DCI向RN3发送表示不更新时隙格式的信息。在图14所示的示例中,RN1不同意更新时隙格式。根据本公开的实施例,如果RN3不同意更新时隙格式,或者RN1和RN3均不同意更新时隙格式,RN2也需要向RN1和RN3发送表示不更新时隙格式的信息。
由此可见,根据本公开的实施例,可以根据链路的子载波间隔为其配置时隙格式周期以及时隙格式。进一步,为了节约信令开销,本公开还定义了一些时隙格式并优化了上报时隙格式的方法。此外,DN可以更新整个IAB系统中所有链路的时隙格式,RN可以更新IAB系统中部分链路的时隙格式。综上,根据本公开的实施例,IAB系统中的时隙格式配置过程被优化。
图15是示出根据本公开的实施例的IAB无线通信系统中的用作子节点的电子设备1500的结构的框图。具体地,电子设备1500可以为IAB无线通信系统中的RN或UE。值得注意的是,由于电子设备1500可以为IAB无线通信系统中的RN,而电子设备200也可以为IAB无线通信系统中的RN,因此RN可以兼容电子设备200和电子设备1500的结构和功能。
如图15所示,电子设备1500可以包括通信单元1510和解调单元1520。
这里,电子设备1500的各个单元都可以包括在处理电路中。需要说明的是,电子设备1500既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元1510可以从电子设备1500的父节点接收电子设备1500和父节点之间的链路的时隙格式周期,时隙格式周期包括预定数目的时隙。
根据本公开的实施例,通信单元1510还可以从父节点接收时隙配置信息。
根据本公开的实施例,解调单元可以对时隙配置信息进行解调,从而获取电子设备1500和父节点之间的链路在一个时隙格式周期内的每个时隙的时隙格式。
如上所述,根据本公开的实施例,电子设备1500可以从父节点接收时隙格式周期以及在时隙格式周期内的每个时隙的时隙格式,从而优化IAB系统中的时隙格式的配置。
根据本公开的实施例,通信单元1510可以通过高层信令接收电子设备1500与父节点之间的链路的时隙格式周期。
根据本公开的实施例,解调单元1520可以对时隙配置信息进行解调,以获取在一个时隙格式周期内的每个时隙的时隙格式的识别信息。接下来,解调单元1520可以根据每个时隙的时隙格式的识别信息确定每个时隙的时隙格式。
根据本公开的实施例,如图15所示,电子设备1500还可以包括格式管理单元1540,用于对与电子设备1500有关的链路的时隙格式进行管理。例如,电子设备1500可以将解调获取的时隙格式存储在格式管理单元1540中。
根据本公开的实施例,解调单元1520还可以对时隙配置信息进行解调,以获取在一个时隙格式周期内发生上下行转换的一个或多个时隙中的每个时隙的识别信息以及该时隙的时隙格式的识别信息。进一步,解调单元1520可以根据发生上下行转换的时隙的识别信息以及该时隙的时隙格式的识别信息来确定在整个时隙格式周期内的每个符号的上下行类型。例如,假定时隙格式周期包括4个时隙,当解调单元1520确定发生上下行 转换的时隙只有一个,是第2个时隙,并且该时隙的时隙格式为DL、DL、DL、DL、DL、DL、UL、UL、UL、UL、UL、UL、UL、UL时,解调单元1520可以确定第1个时隙为全下行符号的时隙格式,第3个时隙和第4个时隙为全上行符号的时隙格式。
根据本公开的实施例,通信单元1510可以通过高层信令接收发生上下行转换的一个或多个时隙中的每个时隙的识别信息。进一步,通信单元1510可以通过低层信令接收发生上下行转换的一个或多个时隙中的每个时隙的时隙格式的识别信息。
如前文所述,本公开定义了一些新的时隙格式,如表3和表7所示。根据本公开的实施例,如图15所示,电子设备1500还可以包括存储单元1530,用于存储新定义的时隙格式的编号和时隙格式的映射关系。这样一来,当解调单元1520解调出时隙格式的编号时,能够根据存储单元1530存储的表格来确定相应的时隙格式。
根据本公开的实施例,通信单元1510还可以从DN接收更新后的时隙配置信息。进一步,解调单元1520还可以根据更新后的时隙配置信息确定更新后的电子设备1500与其父节点之间的链路在一个时隙格式周期内的每个时隙的时隙格式,并且确定更新后的电子设备1500与其子节点之间的链路在一个时隙格式周期内的每个时隙的时隙格式(如果电子设备1500有子节点)。也就是说,解调单元1520可以根据更新后的时隙配置信息确定与电子设备1500有关的链路的时隙格式。这里,与电子设备1500有关的链路包括以电子设备1500为端点的链路,包括电子设备1500与每个子节点之间的链路以及电子设备1500与父节点之间的链路。
优选地,通信单元1510可以通过低层信令接收更新后的时隙配置信息。
进一步,根据本公开的实施例,在通信单元1510从DN接收更新后的时隙配置信息之前,通信单元1510可以从DN接收更新请求信息,并且在从DN接收到更新请求信息的情况下,通信单元1510可以向DN发送更新响应信息。
根据本公开的实施例,当电子设备1500没有子节点时,在电子设备1500接收到更新请求信息的情况下,电子设备1500可以向电子设备1500的父节点发送包括ACK的更新响应信息。当电子设备1500有子节点时,在电子设备1500从电子设备1500所有的子节点接收到包括ACK的更新 响应信息的情况下,电子设备1500可以向电子设备1500的父节点发送包括ACK的更新响应信息。进一步,当电子设备1500有子节点时,在电子设备1500从一个或多个子节点接收包括NACK的更新响应信息,或者电子设备1500没有从一个或多个子节点接收到更新响应信息的情况下,电子设备1500可以向电子设备1500的父节点发送包括NACK的更新响应信息。
根据本公开的实施例,更新请求信息包括更新时隙格式的更新开始时间。优选地,通信单元1510可以通过高层信令接收更新请求信息。
根据本公开的实施例,格式管理单元1540可以在更新开始时间处更新在一个时隙格式周期内的每个时隙的时隙格式。
如上所述,电子设备1500可以根据DN的指示更新与电子设备1500有关的链路的时隙格式。
根据本公开的实施例,通信单元1510还可以从电子设备1500的父节点接收更新后的时隙配置信息,并且解调单元1520还可以根据更新后的时隙配置信息确定更新后的电子设备1500与父节点之间的链路在一个时隙格式周期内的每个时隙的时隙格式。
优选地,解调单元1510还可以对时隙配置信息进行解调以获取更新时隙格式的更新开始时间和更新持续时间。优选地,通信单元1510可以通过低层信令从电子设备1500的父节点接收更新后的时隙配置信息。
根据本公开的实施例,如图15所示,电子设备1500还可以包括确定单元1550,用于当从父节点接收到更新后的时隙配置信息时,确定是否同意更新时隙格式。接下来,通信单元1510可以向电子设备1500的父节点发送表示是否同意更新时隙格式的响应信息。
根据本公开的实施例,如果在更新开始时间之前,电子设备1500没有从父节点接收到表示不更新时隙格式的信息,则在更新开始时间处,格式管理单元1540可以更新电子设备1500与父节点之间的链路在一个时隙格式周期内的每个时隙的时隙格式,并且在更新持续时间之后,格式管理单元1540可以恢复更新前的时隙格式。
根据本公开的实施例,如果在更新开始时间之前,电子设备1500从父节点接收到表示不更新时隙格式的信息,则电子设备1500不更新时隙格式。
根据本公开的实施例,根据解调单元1520解调获取的时隙格式,在 更新后的电子设备1500与父节点之间的链路的时隙格式中,增加了用于电子设备1500接收信息的符号的个数。
如上所述,根据本公开的实施例,电子设备1500可以从父节点接收更新后的时隙配置信息,以暂时更新与父节点之间的链路的时隙格式。类似地,电子设备1500也可以从子节点接收更新后的时隙配置信息,以暂时更新与子节点之间的链路的时隙格式。
也就是说,通信单元1510还可以从电子设备1500的子节点接收更新后的时隙配置信息,并且解调单元1520还可以根据更新后的时隙配置信息确定更新后的电子设备1500与子节点之间的链路在一个时隙格式周期内的每个时隙的时隙格式。优选地,解调单元1510还可以对时隙配置信息进行解调以获取更新时隙格式的更新开始时间和更新持续时间。优选地,通信单元1510可以通过低层信令从电子设备1500的子节点接收更新后的时隙配置信息。优选地,确定单元1550还可以用于当从子节点接收到更新后的时隙配置信息时,确定是否同意更新时隙格式。接下来,通信单元1510可以向电子设备1500的子节点发送表示是否同意更新时隙格式的响应信息。根据本公开的实施例,如果在更新开始时间之前,电子设备1500没有从子节点接收到表示不更新时隙格式的信息,则在更新开始时间处,格式管理单元1540可以更新电子设备1500与子节点之间的链路在一个时隙格式周期内的每个时隙的时隙格式,并且在更新持续时间之后,格式管理单元1540可以恢复更新前的时隙格式。如果在更新开始时间之前,电子设备1500从子节点接收到表示不更新时隙格式的信息,则电子设备1500不更新时隙格式。此外,根据解调单元1520解调获取的时隙格式,在更新后的电子设备1500与子节点之间的链路的时隙格式中,增加了用于电子设备1500接收信息的符号的个数。
如上所述,根据本公开的实施例,电子设备1500可以从父节点接收时隙格式周期以及在时隙格式周期内的每个时隙的时隙格式。进一步,电子设备1500可以根据DN的指令更新IAB系统中的每条链路的时隙格式,还可以根据电子设备1500的父节点或者子节点的指令更新其与父节点之间的链路或者其与子节点之间的链路的时隙格式。综上,根据本公开的实施例的电子设备1500,可以优化IAB系统中的时隙格式的配置。
根据本公开的实施例的电子设备200可以作为IAB系统中的父节点,电子设备1500可以作为IAB系统中的子节点,因此在前文中描述的关于电子设备200的全部实施例都适用于此。
接下来将详细描述根据本公开实施例的由IAB无线通信系统中的作为父节点的电子设备200执行的无线通信方法。
图16是示出根据本公开的实施例的由IAB无线通信系统中的作为父节点的电子设备200执行的无线通信方法的流程图。
如图16所示,在步骤S1610中,根据电子设备和电子设备的子节点之间的链路的子载波间隔为该链路配置时隙格式周期,时隙格式周期包括预定数目的时隙。
接下来,在步骤S1620中,为该链路配置在一个时隙格式周期内的每个时隙的时隙格式。
优选地,为该链路配置时隙格式周期包括:使得该链路的子载波间隔与时隙格式周期中包括的时隙的数目成正比。
优选地,为该链路配置时隙格式周期包括:将子节点的时隙格式周期在时域上的长度配置为等于一个子帧的长度。
优选地,无线通信方法还包括:将该链路的时隙格式周期发送至子节点。
优选地,发送所述子节点的时隙格式周期包括:通过高层信令将该链路的时隙格式周期发送至子节点。
优选地,配置时隙格式包括:使得所述链路的时隙格式周期内的每个符号的上下行配置与电子设备和电子设备的父节点之间的链路的时隙格式周期内的相应符号的上下行配置相反、或者与电子设备和电子设备的其它子节点之间的链路的时隙格式周期内的相应符号的上下行配置相同。
优选地,无线通信方法还包括:将表示链路在一个时隙格式周期内的每个时隙的时隙格式的信息的时隙配置信息发送至子节点。
优选地,时隙配置信息包括在一个时隙格式周期内的每个时隙的时隙格式的识别信息。
优选地,时隙配置信息包括在一个时隙格式周期内发生上下行转换的一个或多个时隙中的每个时隙的识别信息以及时隙的时隙格式的识别信息。
优选地,无线通信方法还包括:通过高层信令向子节点发送发生上下行转换的一个或多个时隙中的每个时隙的识别信息。
优选地,无线通信方法还包括:通过低层信令向子节点发送发生上下行转换的一个或多个时隙中的每个时隙的时隙格式的识别信息。
优选地,电子设备是供者节点DN。
优选地,无线通信方法还包括:为IAB系统中的所有链路配置更新后的在一个时隙格式周期内的每个时隙的时隙格式;以及向IAB系统中的其它所有节点发送更新后的时隙配置信息。
优选地,无线通信方法还包括:向IAB系统中的其它所有节点发送更新请求信息;以及接收来自其它节点的更新响应信息。
优选地,无线通信方法还包括:当更新响应信息表明一个或多个其它节点没有收到更新请求信息时,向所述一个或多个其它节点重新发送更新请求信息。
优选地,无线通信方法还包括:当更新响应信息表明所有节点均已收到更新请求信息时,向IAB系统中的所有其它节点发送更新后的时隙配置信息。
优选地,更新请求信息包括更新时隙格式的更新开始时间。
优选地,无线通信方法还包括:当更新响应信息表明所有节点均已收到更新请求信息时,在更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式。
优选地,无线通信方法还包括:通过高层信令向其它所有节点发送更新请求信息。
优选地,无线通信方法还包括:通过低层信令向其它所有节点发送更新后的时隙配置信息。
优选地,电子设备是中继节点RN。
优选地,无线通信方法还包括:为电子设备和电子设备的子节点之间的链路以及电子设备和电子设备的父节点之间的链路配置更新后的在一个时隙格式周期内的每个时隙的时隙格式;以及向电子设备的子节点和父节点发送更新后的时隙配置信息。
优选地,无线通信方法还包括:向电子设备的子节点和父节点发送更新时隙格式的更新开始时间和更新持续时间。
优选地,无线通信方法还包括:从电子设备的子节点和父节点接收 表示是否同意更新时隙格式的响应信息。
优选地,无线通信方法还包括:当来自电子设备的子节点的响应信息表示子节点同意更新时隙格式并且来自电子设备的父节点的响应信息表示父节点同意更新时隙格式时,在更新开始时间更新时隙格式,并且在更新持续时间之后,恢复更新前的时隙格式。
优选地,无线通信方法还包括:当来自电子设备的子节点的响应信息表示子节点不同意更新时隙格式和/或来自电子设备的父节点的响应信息表示父节点不同意更新时隙格式时,不更新时隙格式。
优选地,在更新后的电子设备和电子设备的子节点之间的链路以及电子设备和电子设备的父节点之间的链路的时隙格式中,增加了用于电子设备发送信息的符号的个数。
优选地,无线通信方法还包括:通过低层信令向电子设备的子节点和父节点发送更新后的时隙配置信息。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备200,因此前文中关于电子设备200的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由IAB无线通信系统中的作为子节点的电子设备1500执行的无线通信方法。
图17是示出根据本公开的实施例的由IAB无线通信系统中的作为子节点的电子设备1500执行的无线通信方法的流程图。
如图17所示,在步骤S1710中,从电子设备的父节点接收电子设备和父节点之间的链路的时隙格式周期,时隙格式周期包括预定数目的时隙。
接下来,在步骤S1720中,从父节点接收时隙配置信息。
接下来,在步骤S1730中,根据时隙配置信息确定链路在一个时隙格式周期内的每个时隙的时隙格式。
优选地,接收时隙格式周期包括:通过高层信令接收链路的时隙格式周期。
优选地,时隙配置信息包括在一个时隙格式周期内的每个时隙的时隙格式的识别信息。
优选地,时隙配置信息包括在一个时隙格式周期内发生上下行转换的一个或多个时隙中的每个时隙的识别信息以及时隙的时隙格式的识别信息。
优选地,无线通信方法还包括:通过高层信令接收发生上下行转换的一个或多个时隙中的每个时隙的识别信息。
优选地,无线通信方法还包括:通过低层信令接收发生上下行转换的一个或多个时隙中的每个时隙的时隙格式的识别信息。
优选地,无线通信方法还包括:从供者节点DN接收更新后的时隙配置信息;以及根据更新后的时隙配置信息确定更新后的链路在一个时隙格式周期内的每个时隙的时隙格式。
优选地,无线通信方法还包括:从DN接收更新请求信息;以及向DN发送更新响应信息。
优选地,更新请求信息包括更新时隙格式的更新开始时间。
优选地,无线通信方法还包括:在更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式。
优选地,无线通信方法还包括:通过高层信令接收更新请求信息。
优选地,无线通信方法还包括:通过低层信令接收更新后的时隙配置信息。
优选地,无线通信方法还包括:从电子设备的父节点接收更新后的时隙配置信息;以及根据更新后的时隙配置信息确定更新后的链路在一个时隙格式周期内的每个时隙的时隙格式。
优选地,无线通信方法还包括:从电子设备的父节点接收更新时隙格式的更新开始时间和更新持续时间。
优选地,无线通信方法还包括:向电子设备的父节点发送表示是否同意更新时隙格式的响应信息。
优选地,无线通信方法还包括:在更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式,并且在更新持续时间之后,恢复更新前的时隙格式。
优选地,无线通信方法还包括:当从电子设备的父节点接收到表示不更新时隙格式的信息时,不更新时隙格式。
优选地,在更新后的链路的时隙格式中,增加了用于电子设备接收信息的符号的个数。
优选地,无线通信方法还包括:通过低层信令从电子设备的父节点接收更新后的时隙配置信息。
优选地,电子设备是中继节点RN或者用户设备UE。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备1500,因此前文中关于电子设备1500的全部实施例均适用于此。
本公开内容的技术能够应用于各种产品。
根据本公开的DN可以是网络侧设备,例如任何类型的TRP(Transmit and Receive Port,发送和接收端口)或基站设备,例如可以是eNB,也可以是gNB。根据本公开的RN也可以是网络侧设备,例如TRP,或者具备基站设备的某些功能的网络侧设备,包括但不限于从UE和DN接收数据的功能、向UE和DN发送数据的功能,为UE配置某些参数的功能等。
基站设备可以被实现为宏eNB和小eNB,还可以被实现为任何类型的gNB)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图18是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1800包括一个或多个天线1810以及基站设备1820。基站设备1820和每个天线1810可以经由RF线缆彼此连接。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收无线信号。如图18所示,gNB 1800可以包括多个天线1810。例 如,多个天线1810可以与gNB 1800使用的多个频带兼容。虽然图18示出其中gNB 1800包括多个天线1810的示例,但是gNB 1800也可以包括单个天线1810。
基站设备1820包括控制器1821、存储器1822、网络接口1823以及无线通信接口1825。
控制器1821可以为例如CPU或DSP,并且操作基站设备1820的较高层的各种功能。例如,控制器1821根据由无线通信接口1825处理的信号中的数据来生成数据分组,并经由网络接口1823来传递所生成的分组。控制器1821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1823为用于将基站设备1820连接至核心网1824的通信接口。控制器1821可以经由网络接口1823而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1800与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1823为无线通信接口,则与由无线通信接口1825使用的频带相比,网络接口1823可以使用较高频带用于无线通信。
无线通信接口1825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1810来提供到位于gNB 1800的小区中的终端的无线连接。无线通信接口1825通常可以包括例如基带(BB)处理器1826和RF电路1827。BB处理器1826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1821,BB处理器1826可以具有上述逻辑功能的一部分或全部。BB处理器1826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1826的功能改变。该模块可以为插入到基站设备1820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1827可以包括例如混频器、滤波器和放大器,并且经由天线1810来 传送和接收无线信号。
如图18所示,无线通信接口1825可以包括多个BB处理器1826。例如,多个BB处理器1826可以与gNB 1800使用的多个频带兼容。如图18所示,无线通信接口1825可以包括多个RF电路1827。例如,多个RF电路1827可以与多个天线元件兼容。虽然图18示出其中无线通信接口1825包括多个BB处理器1826和多个RF电路1827的示例,但是无线通信接口1825也可以包括单个BB处理器1826或单个RF电路1827。
图19是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1930包括一个或多个天线1940、基站设备1950和RRH 1960。RRH 1960和每个天线1940可以经由RF线缆而彼此连接。基站设备1950和RRH 1960可以经由诸如光纤线缆的高速线路而彼此连接。
天线1940中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1960发送和接收无线信号。如图19所示,gNB 1930可以包括多个天线1940。例如,多个天线1940可以与gNB 1930使用的多个频带兼容。虽然图19示出其中gNB 1930包括多个天线1940的示例,但是gNB 1930也可以包括单个天线1940。
基站设备1950包括控制器1951、存储器1952、网络接口1953、无线通信接口1955以及连接接口1957。控制器1951、存储器1952和网络接口1953与参照图18描述的控制器1821、存储器1822和网络接口1823相同。
无线通信接口1955支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1960和天线1940来提供到位于与RRH 1960对应的扇区中的终端的无线通信。无线通信接口1955通常可以包括例如BB处理器1956。除了BB处理器1956经由连接接口1957连接到RRH 1960的RF电路1964之外,BB处理器1956与参照图18描述的BB处理器1826相同。如图19所示,无线通信接口1955可以包括多个BB处理器1956。例如,多个BB处理器1956可以与gNB 1930使用的多个频带兼容。虽然图19示出其中无线通信接口1955包括多个BB处理器1956的示例,但是无线通信接口1955也可以包括单个BB处理器1956。
连接接口1957为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的接口。连接接口1957还可以为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的上述高速线路中的通信的通信模块。
RRH 1960包括连接接口1961和无线通信接口1963。
连接接口1961为用于将RRH 1960(无线通信接口1963)连接至基站设备1950的接口。连接接口1961还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1963经由天线1940来传送和接收无线信号。无线通信接口1963通常可以包括例如RF电路1964。RF电路1964可以包括例如混频器、滤波器和放大器,并且经由天线1940来传送和接收无线信号。如图19所示,无线通信接口1963可以包括多个RF电路1964。例如,多个RF电路1964可以支持多个天线元件。虽然图19示出其中无线通信接口1963包括多个RF电路1964的示例,但是无线通信接口1963也可以包括单个RF电路1964。
在图18和图19所示的gNB 1800和gNB 1930中,通过使用图2所描述的周期配置单元210、格式配置单元220、生成单元240、存储单元250和格式管理单元260可以由控制器1821和/或控制器1951实现。功能的至少一部分也可以由控制器1821和控制器1951实现。例如,控制器1821和/或控制器1951可以通过执行相应的存储器中存储的指令而执行配置时隙格式周期、配置时隙格式、生成配置信息、存储时隙格式以及管理时隙格式的功能。
图20是示出可以应用本公开内容的技术的智能电话2000的示意性配置的示例的框图。智能电话2000包括处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012、一个或多个天线开关2015、一个或多个天线2016、总线2017、电池2018以及辅助控制器2019。
处理器2001可以为例如CPU或片上系统(SoC),并且控制智能电话2000的应用层和另外层的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。存储装置2003可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2004为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2000的接口。
摄像装置2006包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2007可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传 感器。麦克风2008将输入到智能电话2000的声音转换为音频信号。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2000的输出图像。扬声器2011将从智能电话2000输出的音频信号转换为声音。
无线通信接口2012支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2012通常可以包括例如BB处理器2013和RF电路2014。BB处理器2013可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2014可以包括例如混频器、滤波器和放大器,并且经由天线2016来传送和接收无线信号。无线通信接口2012可以为其上集成有BB处理器2013和RF电路2014的一个芯片模块。如图20所示,无线通信接口2012可以包括多个BB处理器2013和多个RF电路2014。虽然图20示出其中无线通信接口2012包括多个BB处理器2013和多个RF电路2014的示例,但是无线通信接口2012也可以包括单个BB处理器2013或单个RF电路2014。
此外,除了蜂窝通信方案之外,无线通信接口2012可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2012可以包括针对每种无线通信方案的BB处理器2013和RF电路2014。
天线开关2015中的每一个在包括在无线通信接口2012中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线2016中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2012传送和接收无线信号。如图20所示,智能电话2000可以包括多个天线2016。虽然图20示出其中智能电话2000包括多个天线2016的示例,但是智能电话2000也可以包括单个天线2016。
此外,智能电话2000可以包括针对每种无线通信方案的天线2016。在此情况下,天线开关2015可以从智能电话2000的配置中省略。
总线2017将处理器2001、存储器2002、存储装置2003、外部连接 接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012以及辅助控制器2019彼此连接。电池2018经由馈线向图20所示的智能电话2000的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2019例如在睡眠模式下操作智能电话2000的最小必需功能。
图21是示出可以应用本公开内容的技术的汽车导航设备2120的示意性配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位系统(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、存储介质接口2128、输入装置2129、显示装置2130、扬声器2131、无线通信接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图21所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图21示出 其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图21所示,汽车导航设备2120可以包括多个天线2137。虽然图21示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图21所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载系统(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别 由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (97)

  1. 一种综合接入和回传IAB系统中的电子设备,包括处理电路,被配置为:
    根据所述电子设备和所述电子设备的子节点之间的链路的子载波间隔为所述链路配置时隙格式周期,所述时隙格式周期包括预定数目的时隙;以及
    为所述链路配置在一个时隙格式周期内的每个时隙的时隙格式。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    为所述链路配置时隙格式周期以使得所述链路的子载波间隔与时隙格式周期中包括的时隙的数目成正比。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    将所述链路的时隙格式周期在时域上的长度配置为一个子帧的长度。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    将所述链路的时隙格式周期发送至所述子节点。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为:
    通过高层信令将所述链路的时隙格式周期发送至所述子节点。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    使得所述链路的时隙格式周期内的每个符号的上下行配置与所述电子设备和所述电子设备的父节点之间的链路的时隙格式周期内的相应符号的上下行配置相反、或者与所述电子设备和所述电子设备的其它子节点之间的链路的时隙格式周期内的相应符号的上下行配置相同。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    将表示所述链路在一个时隙格式周期内的每个时隙的时隙格式的信 息的时隙配置信息发送至所述子节点。
  8. 根据权利要求7所述的电子设备,其中,所述时隙配置信息包括在一个时隙格式周期内的每个时隙的时隙格式的识别信息。
  9. 根据权利要求7所述的电子设备,其中,所述时隙配置信息包括在一个时隙格式周期内发生上下行转换的一个或多个时隙中的每个时隙的识别信息以及所述时隙的时隙格式的识别信息。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    通过高层信令向所述子节点发送发生上下行转换的一个或多个时隙中的每个时隙的识别信息。
  11. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    通过低层信令向所述子节点发送发生上下行转换的一个或多个时隙中的每个时隙的时隙格式的识别信息。
  12. 根据权利要求1-11中任一项所述的电子设备,其中,所述电子设备是供者节点DN。
  13. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    为所述IAB系统中的所有链路配置更新后的在一个时隙格式周期内的每个时隙的时隙格式;以及
    向所述IAB系统中的其它所有节点发送更新后的时隙配置信息。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    向所述IAB系统中的其它所有节点发送更新请求信息;以及
    接收来自其它节点的更新响应信息。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    当所述更新响应信息表明一个或多个其它节点没有收到所述更新请求信息时,向所述一个或多个其它节点重新发送所述更新请求信息。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路还被配 置为:
    当所述更新响应信息表明所有节点均已收到所述更新请求信息时,向所述IAB系统中的所有其它节点发送更新后的时隙配置信息。
  17. 根据权利要求14-16中任一项所述的电子设备,其中,所述更新请求信息包括更新时隙格式的更新开始时间。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    当所述更新响应信息表明所有节点均已收到所述更新请求信息时,在所述更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式。
  19. 根据权利要求14-16中任一项所述的电子设备,其中,所述处理电路还被配置为:
    通过高层信令向所述其它所有节点发送所述更新请求信息。
  20. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    通过低层信令向所述其它所有节点发送更新后的时隙配置信息。
  21. 根据权利要求1-11中任一项所述的电子设备,其中,所述电子设备是中继节点RN。
  22. 根据权利要求21所述的电子设备,其中,所述处理电路还被配置为:
    为所述电子设备和所述电子设备的子节点之间的链路以及所述电子设备和所述电子设备的父节点之间的链路配置更新后的在一个时隙格式周期内的每个时隙的时隙格式;以及
    向所述电子设备的子节点和父节点发送更新后的时隙配置信息。
  23. 根据权利要求22所述的电子设备,其中,所述处理电路还被配置为:
    向所述电子设备的子节点和父节点发送更新时隙格式的更新开始时间和更新持续时间。
  24. 根据权利要求23所述的电子设备,其中,所述处理电路还被配置为:
    从所述电子设备的子节点和父节点接收表示是否同意更新时隙格式 的响应信息。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    当来自所述电子设备的子节点的响应信息表示所述子节点同意更新时隙格式并且来自所述电子设备的父节点的响应信息表示所述父节点同意更新时隙格式时,在所述更新开始时间更新时隙格式,并且在所述更新持续时间之后,恢复更新前的时隙格式。
  26. 根据权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    当来自所述电子设备的子节点的响应信息表示所述子节点不同意更新时隙格式和/或来自所述电子设备的父节点的响应信息表示所述父节点不同意更新时隙格式时,不更新时隙格式。
  27. 根据权利要求22-26中任一项所述的电子设备,其中,在更新后的所述电子设备和所述电子设备的子节点之间的链路以及所述电子设备和所述电子设备的父节点之间的链路的时隙格式中,增加了用于所述电子设备发送信息的符号的个数。
  28. 根据权利要求22-26中任一项所述的电子设备,其中,所述处理电路还被配置为:
    通过低层信令向所述电子设备的子节点和父节点发送更新后的时隙配置信息。
  29. 一种综合接入和回传IAB系统中的电子设备,包括处理电路,被配置为:
    从所述电子设备的父节点接收所述电子设备和所述父节点之间的链路的时隙格式周期,所述时隙格式周期包括预定数目的时隙;
    从所述父节点接收时隙配置信息;以及
    根据所述时隙配置信息确定所述链路在一个时隙格式周期内的每个时隙的时隙格式。
  30. 根据权利要求29所述的电子设备,其中,所述处理电路还被配置为:
    通过高层信令接收所述链路的时隙格式周期。
  31. 根据权利要求29所述的电子设备,其中,所述时隙配置信息包括在一个时隙格式周期内的每个时隙的时隙格式的识别信息。
  32. 根据权利要求29所述的电子设备,其中,所述时隙配置信息包括在一个时隙格式周期内发生上下行转换的一个或多个时隙中的每个时隙的识别信息以及所述时隙的时隙格式的识别信息。
  33. 根据权利要求32所述的电子设备,其中,所述处理电路还被配置为:
    通过高层信令接收发生上下行转换的一个或多个时隙中的每个时隙的识别信息。
  34. 根据权利要求32所述的电子设备,其中,所述处理电路还被配置为:
    通过低层信令接收发生上下行转换的一个或多个时隙中的每个时隙的时隙格式的识别信息。
  35. 根据权利要求29-34中任一项所述的电子设备,其中,所述处理电路还被配置为:
    从供者节点DN接收更新后的时隙配置信息;以及
    根据更新后的时隙配置信息确定更新后的所述链路在一个时隙格式周期内的每个时隙的时隙格式。
  36. 根据权利要求35所述的电子设备,其中,所述处理电路还被配置为:
    从所述DN接收更新请求信息;以及
    向所述DN发送更新响应信息。
  37. 根据权利要求36所述的电子设备,其中,所述更新请求信息包括更新时隙格式的更新开始时间。
  38. 根据权利要求37所述的电子设备,其中,所述处理电路还被配置为:
    在所述更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式。
  39. 根据权利要求36-38中任一项所述的电子设备,其中,所述处理电路还被配置为:
    通过高层信令接收所述更新请求信息。
  40. 根据权利要求35所述的电子设备,其中,所述处理电路还被配置为:
    通过低层信令接收更新后的时隙配置信息。
  41. 根据权利要求29-34中任一项所述的电子设备,其中,所述处理电路还被配置为:
    从所述电子设备的父节点接收更新后的时隙配置信息;以及
    根据所述更新后的时隙配置信息确定更新后的所述链路在一个时隙格式周期内的每个时隙的时隙格式。
  42. 根据权利要求41所述的电子设备,其中,所述处理电路还被配置为:
    从所述电子设备的父节点接收更新时隙格式的更新开始时间和更新持续时间。
  43. 根据权利要求41所述的电子设备,其中,所述处理电路还被配置为:
    向所述电子设备的父节点发送表示是否同意更新时隙格式的响应信息。
  44. 根据权利要求42所述的电子设备,其中,所述处理电路还被配置为:
    在所述更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式,并且在所述更新持续时间之后,恢复更新前的时隙格式。
  45. 根据权利要求43所述的电子设备,其中,所述处理电路还被配置为:
    当从所述电子设备的父节点接收到表示不更新时隙格式的信息时,不更新时隙格式。
  46. 根据权利要求41所述的电子设备,其中,在更新后的所述链路的时隙格式中,增加了用于所述电子设备接收信息的符号的个数。
  47. 根据权利要求41所述的电子设备,其中,所述处理电路还被配置为:
    通过低层信令从所述电子设备的父节点接收更新后的时隙配置信息。
  48. 根据权利要求29所述的电子设备,其中,所述电子设备是中继节点RN或者用户设备UE。
  49. 一种由综合接入和回传IAB系统中的电子设备执行的无线通信方法,包括:
    根据所述电子设备和所述电子设备的子节点之间的链路的子载波间隔为所述链路配置时隙格式周期,所述时隙格式周期包括预定数目的时隙;以及
    为所述链路配置在一个时隙格式周期内的每个时隙的时隙格式。
  50. 根据权利要求49所述的无线通信方法,其中,为所述链路配置时隙格式周期包括:
    使得所述链路的子载波间隔与时隙格式周期中包括的时隙的数目成正比。
  51. 根据权利要求49所述的无线通信方法,其中,为所述子节点配置时隙格式周期包括:
    将所述链路的时隙格式周期在时域上的长度配置为一个子帧的长度。
  52. 根据权利要求51所述的无线通信方法,其中,所述无线通信方法还包括:
    将所述链路的时隙格式周期发送至所述子节点。
  53. 根据权利要求52所述的无线通信方法,其中,发送所述子节点的时隙格式周期包括:
    通过高层信令将所述链路的时隙格式周期发送至所述子节点。
  54. 根据权利要求49所述的无线通信方法,其中,配置时隙格式包括:
    使得所述链路的时隙格式周期内的每个符号的上下行配置与所述电子设备和所述电子设备的父节点之间的链路的时隙格式周期内的相应符号的上下行配置相反、或者与所述电子设备和所述电子设备的其它子节点之间的链路的时隙格式周期内的相应符号的上下行配置相同。
  55. 根据权利要求49所述的无线通信方法,其中,所述无线通信方法还包括:
    将表示所述链路在一个时隙格式周期内的每个时隙的时隙格式的信 息的时隙配置信息发送至所述子节点。
  56. 根据权利要求55所述的无线通信方法,其中,所述时隙配置信息包括在一个时隙格式周期内的每个时隙的时隙格式的识别信息。
  57. 根据权利要求55所述的无线通信方法,其中,所述时隙配置信息包括在一个时隙格式周期内发生上下行转换的一个或多个时隙中的每个时隙的识别信息以及所述时隙的时隙格式的识别信息。
  58. 根据权利要求57所述的无线通信方法,其中,所述无线通信方法还包括:
    通过高层信令向所述子节点发送发生上下行转换的一个或多个时隙中的每个时隙的识别信息。
  59. 根据权利要求57所述的无线通信方法,其中,所述无线通信方法还包括:
    通过低层信令向所述子节点发送发生上下行转换的一个或多个时隙中的每个时隙的时隙格式的识别信息。
  60. 根据权利要求49-59中任一项所述的无线通信方法,其中,所述电子设备是供者节点DN。
  61. 根据权利要求60所述的无线通信方法,其中,所述无线通信方法还包括:
    为所述IAB系统中的所有链路配置更新后的在一个时隙格式周期内的每个时隙的时隙格式;以及
    向所述IAB系统中的其它所有节点发送更新后的时隙配置信息。
  62. 根据权利要求61所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述IAB系统中的其它所有节点发送更新请求信息;以及
    接收来自其它节点的更新响应信息。
  63. 根据权利要求62所述的无线通信方法,其中,所述无线通信方法还包括:
    当所述更新响应信息表明一个或多个其它节点没有收到所述更新请求信息时,向所述一个或多个其它节点重新发送所述更新请求信息。
  64. 根据权利要求63所述的无线通信方法,其中,所述无线通信方 法还包括:
    当所述更新响应信息表明所有节点均已收到所述更新请求信息时,向所述IAB系统中的所有其它节点发送更新后的时隙配置信息。
  65. 根据权利要求62-64中任一项所述的无线通信方法,其中,所述更新请求信息包括更新时隙格式的更新开始时间。
  66. 根据权利要求65所述的无线通信方法,其中,所述无线通信方法还包括:
    当所述更新响应信息表明所有节点均已收到所述更新请求信息时,在所述更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式。
  67. 根据权利要求62-64中任一项所述的无线通信方法,其中,所述无线通信方法还包括:
    通过高层信令向所述其它所有节点发送所述更新请求信息。
  68. 根据权利要求61所述的无线通信方法,其中,所述无线通信方法还包括:
    通过低层信令向所述其它所有节点发送更新后的时隙配置信息。
  69. 根据权利要求49-59中任一项所述的无线通信方法,其中,所述电子设备是中继节点RN。
  70. 根据权利要求69所述的无线通信方法,其中,所述无线通信方法还包括:
    为所述电子设备和所述电子设备的子节点之间的链路以及所述电子设备和所述电子设备的父节点之间的链路配置更新后的在一个时隙格式周期内的每个时隙的时隙格式;以及
    向所述电子设备的子节点和父节点发送更新后的时隙配置信息。
  71. 根据权利要求70所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述电子设备的子节点和父节点发送更新时隙格式的更新开始时间和更新持续时间。
  72. 根据权利要求71所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述电子设备的子节点和父节点接收表示是否同意更新时隙格式 的响应信息。
  73. 根据权利要求72所述的无线通信方法,其中,所述无线通信方法还包括:
    当来自所述电子设备的子节点的响应信息表示所述子节点同意更新时隙格式并且来自所述电子设备的父节点的响应信息表示所述父节点同意更新时隙格式时,在所述更新开始时间更新时隙格式,并且在所述更新持续时间之后,恢复更新前的时隙格式。
  74. 根据权利要求72所述的无线通信方法,其中,所述无线通信方法还包括:
    当来自所述电子设备的子节点的响应信息表示所述子节点不同意更新时隙格式和/或来自所述电子设备的父节点的响应信息表示所述父节点不同意更新时隙格式时,不更新时隙格式。
  75. 根据权利要求70-74中任一项所述的无线通信方法,其中,在更新后的所述电子设备和所述电子设备的子节点之间的链路以及所述电子设备和所述电子设备的父节点之间的链路的时隙格式中,增加了用于所述电子设备发送信息的符号的个数。
  76. 根据权利要求70-74中任一项所述的无线通信方法,其中,所述无线通信方法还包括:
    通过低层信令向所述电子设备的子节点和父节点发送更新后的时隙配置信息。
  77. 一种由综合接入和回传IAB系统中的电子设备执行的无线通信方法,包括:
    从所述电子设备的父节点接收所述电子设备和所述父节点之间的链路的时隙格式周期,所述时隙格式周期包括预定数目的时隙;
    从所述父节点接收时隙配置信息;以及
    根据所述时隙配置信息确定所述链路在一个时隙格式周期内的每个时隙的时隙格式。
  78. 根据权利要求77所述的无线通信方法,其中,接收时隙格式周期包括:
    通过高层信令接收所述链路的时隙格式周期。
  79. 根据权利要求77所述的无线通信方法,其中,所述时隙配置信息包括在一个时隙格式周期内的每个时隙的时隙格式的识别信息。
  80. 根据权利要求77所述的无线通信方法,其中,所述时隙配置信息包括在一个时隙格式周期内发生上下行转换的一个或多个时隙中的每个时隙的识别信息以及所述时隙的时隙格式的识别信息。
  81. 根据权利要求80所述的无线通信方法,其中,所述无线通信方法还包括:
    通过高层信令接收发生上下行转换的一个或多个时隙中的每个时隙的识别信息。
  82. 根据权利要求80所述的无线通信方法,其中,所述无线通信方法还包括:
    通过低层信令接收发生上下行转换的一个或多个时隙中的每个时隙的时隙格式的识别信息。
  83. 根据权利要求77-82中任一项所述的无线通信方法,其中,所述无线通信方法还包括:
    从供者节点DN接收更新后的时隙配置信息;以及
    根据更新后的时隙配置信息确定更新后的所述链路在一个时隙格式周期内的每个时隙的时隙格式。
  84. 根据权利要求83所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述DN接收更新请求信息;以及
    向所述DN发送更新响应信息。
  85. 根据权利要求84所述的无线通信方法,其中,所述更新请求信息包括更新时隙格式的更新开始时间。
  86. 根据权利要求85所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式。
  87. 根据权利要求84-86中任一项所述的无线通信方法,其中,所述无线通信方法还包括:
    通过高层信令接收所述更新请求信息。
  88. 根据权利要求83所述的无线通信方法,其中,所述无线通信方法还包括:
    通过低层信令接收更新后的时隙配置信息。
  89. 根据权利要求77-82中任一项所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述电子设备的父节点接收更新后的时隙配置信息;以及
    根据所述更新后的时隙配置信息确定更新后的所述链路在一个时隙格式周期内的每个时隙的时隙格式。
  90. 根据权利要求89所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述电子设备的父节点接收更新时隙格式的更新开始时间和更新持续时间。
  91. 根据权利要求89所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述电子设备的父节点发送表示是否同意更新时隙格式的响应信息。
  92. 根据权利要求90所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述更新开始时间更新在一个时隙格式周期内的每个时隙的时隙格式,并且在所述更新持续时间之后,恢复更新前的时隙格式。
  93. 根据权利要求91所述的无线通信方法,其中,所述无线通信方法还包括:
    当从所述电子设备的父节点接收到表示不更新时隙格式的信息时,不更新时隙格式。
  94. 根据权利要求89所述的无线通信方法,其中,在更新后的所述链路的时隙格式中,增加了用于所述电子设备接收信息的符号的个数。
  95. 根据权利要求89所述的无线通信方法,其中,所述无线通信方法还包括:
    通过低层信令从所述电子设备的父节点接收更新后的时隙配置信息。
  96. 根据权利要求77所述的无线通信方法,其中,所述电子设备是中继节点RN或者用户设备UE。
  97. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求49-96中任一项所述的无线通信方法。
PCT/CN2019/098957 2018-08-10 2019-08-02 电子设备、无线通信方法和计算机可读存储介质 WO2020029869A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19846596.5A EP3836461A4 (en) 2018-08-10 2019-08-02 ELECTRONIC DEVICE, WIRELESS COMMUNICATION PROCEDURE AND COMPUTER-READABLE STORAGE MEDIUM
US17/259,556 US11902944B2 (en) 2018-08-10 2019-08-02 Electronic apparatus, wireless communication method, and computer readable storage medium
CN201980041427.7A CN112292829A (zh) 2018-08-10 2019-08-02 电子设备、无线通信方法和计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810909120.1 2018-08-10
CN201810909120.1A CN110831180A (zh) 2018-08-10 2018-08-10 电子设备、无线通信方法和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020029869A1 true WO2020029869A1 (zh) 2020-02-13

Family

ID=69415362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098957 WO2020029869A1 (zh) 2018-08-10 2019-08-02 电子设备、无线通信方法和计算机可读存储介质

Country Status (4)

Country Link
US (1) US11902944B2 (zh)
EP (1) EP3836461A4 (zh)
CN (2) CN110831180A (zh)
WO (1) WO2020029869A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831180A (zh) * 2018-08-10 2020-02-21 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN110972279B (zh) * 2018-09-28 2022-07-26 成都华为技术有限公司 传输数据的方法和装置
CN111432400B (zh) * 2020-02-19 2022-10-14 成都四相致新科技有限公司 一种集群式ota升级方法及系统
US11792825B2 (en) * 2020-05-12 2023-10-17 Qualcomm Incorporated Broadcasting intended time division duplex configurations
US12052204B2 (en) * 2020-05-13 2024-07-30 Qualcomm Incorporated Requesting intended time division duplex configurations
US11690042B2 (en) * 2020-05-15 2023-06-27 Qualcomm Incorporated Reducing the overhead of timestamps in positioning state information (PSI) reports
US11800538B1 (en) * 2021-04-30 2023-10-24 T-Mobile Usa, Inc. Wireless base stations supporting wireless backhaul for rapid infrastructure deployment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018060816A1 (en) * 2016-09-30 2018-04-05 Nokia Technologies Oy Apparatus and method for subframe arrangement
WO2018089662A1 (en) * 2016-11-10 2018-05-17 Qualcomm Incorporated Techniques and apparatuses for configuring a common uplink portion in new radio
WO2018144471A1 (en) * 2017-02-02 2018-08-09 Sharp Laboratories Of America, Inc. LONG PHYSICAL UPLINK CONTROL CHANNEL (PUCCH) DESIGN FOR 5th GENERATION (5G) NEW RADIO (NR)
WO2018145019A1 (en) * 2017-02-06 2018-08-09 Intel IP Corporation Transmission of group common pdcch (physical downlink control channel) for nr (new radio)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775151B2 (en) * 2014-07-21 2017-09-26 Intel IP Corporation System and method for TDD communications
US10862639B2 (en) * 2016-11-04 2020-12-08 Qualcomm Incorporated Decoupling of synchronization raster and channel raster
CN110831180A (zh) * 2018-08-10 2020-02-21 索尼公司 电子设备、无线通信方法和计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018060816A1 (en) * 2016-09-30 2018-04-05 Nokia Technologies Oy Apparatus and method for subframe arrangement
WO2018089662A1 (en) * 2016-11-10 2018-05-17 Qualcomm Incorporated Techniques and apparatuses for configuring a common uplink portion in new radio
WO2018144471A1 (en) * 2017-02-02 2018-08-09 Sharp Laboratories Of America, Inc. LONG PHYSICAL UPLINK CONTROL CHANNEL (PUCCH) DESIGN FOR 5th GENERATION (5G) NEW RADIO (NR)
WO2018145019A1 (en) * 2017-02-06 2018-08-09 Intel IP Corporation Transmission of group common pdcch (physical downlink control channel) for nr (new radio)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Contents of the Group-Common PDCCH", 3GPP TSG RAN WG1 MEETING #90 RL-1712397, 25 August 2017 (2017-08-25), XP051315213 *
LG ELECTRONICS: "Remaining Issues on Group Common PDCCH", 3GPP TSG RAN WG1 #92 BIS R1-1804552, 20 April 2018 (2018-04-20), XP051426821 *
LG ELECTRONICS: "Remaining Issues on Group Common PDCCH", 3GPP TSG RAN WG1 #92 RL-1802208, 2 March 2018 (2018-03-02), XP051397213 *
See also references of EP3836461A4

Also Published As

Publication number Publication date
US20210168798A1 (en) 2021-06-03
US11902944B2 (en) 2024-02-13
EP3836461A1 (en) 2021-06-16
CN110831180A (zh) 2020-02-21
EP3836461A4 (en) 2021-10-27
CN112292829A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2020029869A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
US20230023099A1 (en) Electronic device, radio communication method, and computer readable storage medium
CN110769486B (zh) 通信控制装置、通信控制方法和终端装置
WO2018171313A1 (zh) 电子设备以及无线通信方法
US11849443B2 (en) Electronic device, radio communication method, and computer readable storage medium
EP4221393A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
WO2018128029A1 (ja) 端末装置、基地局装置、方法及び記録媒体
KR20220047971A (ko) 무선 통신을 위한 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
WO2022206575A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021204108A1 (zh) 电子设备、通信方法和存储介质
EP4351059A1 (en) Electronic device, wireless communication method, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846596

Country of ref document: EP

Effective date: 20210310