WO2020029691A1 - 透镜组件、太赫兹波层析成像系统、方法及过滤器 - Google Patents

透镜组件、太赫兹波层析成像系统、方法及过滤器 Download PDF

Info

Publication number
WO2020029691A1
WO2020029691A1 PCT/CN2019/092063 CN2019092063W WO2020029691A1 WO 2020029691 A1 WO2020029691 A1 WO 2020029691A1 CN 2019092063 W CN2019092063 W CN 2019092063W WO 2020029691 A1 WO2020029691 A1 WO 2020029691A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens assembly
substrate
terahertz wave
electromagnetic generating
imaged
Prior art date
Application number
PCT/CN2019/092063
Other languages
English (en)
French (fr)
Inventor
郭兰军
王春雷
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/639,849 priority Critical patent/US11067503B2/en
Publication of WO2020029691A1 publication Critical patent/WO2020029691A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • H01Q19/065Zone plate type antennas
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0633Directed, collimated illumination

Definitions

  • the present disclosure relates to a lens assembly, a terahertz wave tomography system, a terahertz wave tomography method, and a terahertz wave filter.
  • terahertz waves have been widely used in many fields, such as living body detection, non-destructive detection, security inspection, and security communications. In many applications of terahertz waves, terahertz waves need to be collected or focused.
  • a lens assembly including: a first substrate and a second substrate disposed opposite to each other; and a seal member surrounding the first substrate and the second substrate to form a cavity.
  • the cavity is filled with a magnetic fluid; and a plurality of electromagnetic generating units disposed on at least one of a first side of the first substrate close to the second substrate and a second side of the first substrate remote from the second substrate, wherein At least a part of the plurality of electromagnetic generating units is configured to generate a magnetic field when a voltage is applied, so that the magnetic fluid forms a Fresnel zone plate pattern.
  • At least one of the plurality of electromagnetic generating units includes a spiral coil.
  • the plurality of electromagnetic generating units are arranged in a concentric circle on an orthographic projection on the first substrate.
  • the orthographic projections of the plurality of electromagnetic generating units on the first substrate are in a Fresnel zone plate pattern.
  • the plurality of electromagnetic generating units are arranged in a matrix with an orthographic projection on the first substrate.
  • At least one electromagnetic generating unit of the plurality of electromagnetic generating units is disposed on the first side; the lens assembly further includes: a first insulating layer disposed on the at least one electromagnetic generating unit and Between the magnetic fluids and covering the at least one electromagnetic generating unit.
  • the lens assembly further includes: a second insulating layer disposed between the second substrate and the magnetic fluid.
  • At least one electromagnetic generating unit of the plurality of electromagnetic generating units is disposed on the second side; the lens assembly further includes: a protective layer covering the at least one electromagnetic generating unit.
  • the plurality of electromagnetic generating units are disposed symmetrically with respect to the first substrate.
  • a direction of the magnetic field is perpendicular to a plane on which the first substrate is located.
  • a plurality of thin film transistors are provided in the first substrate, and each of the plurality of thin film transistors is connected to at least one of the plurality of electromagnetic generating units.
  • the plurality of electromagnetic generating units are disposed on at least one of the first side and the second side, and a side of the second substrate close to the first substrate.
  • the plurality of electromagnetic generating units are disposed on the first side and a side of the second substrate close to the first substrate.
  • a terahertz wave tomography system comprising: the lens assembly according to any one of the above embodiments, configured to receive a terahertz wave and make transmission from the lens assembly The resulting terahertz wave is focused at the position to be imaged of the sample to be imaged.
  • the terahertz wave tomography system further includes: a transmitter configured to transmit a terahertz wave to the lens assembly; and a processing device configured to receive transmission from the sample to be imaged And processing the received terahertz wave to obtain an image of the position to be imaged.
  • the processing device includes: a collimator configured to collimate a terahertz wave transmitted from the sample to be imaged; and a focusr configured to align the terahertz wave after alignment Focus is performed; the receiver is configured to receive the focused terahertz wave; and the processor is configured to process the focused terahertz wave to obtain an image of the position to be imaged.
  • a terahertz wave filter including: the lens assembly according to any one of the above embodiments, and an aperture stop located on a light emitting side of the lens assembly, and the lens assembly is configured In order to receive and receive terahertz waves of multiple wavelengths, a terahertz wave of a set wavelength among the terahertz waves of multiple wavelengths is focused on the aperture stop.
  • a terahertz wave tomography method including: transmitting a terahertz wave to the lens assembly according to any one of the above embodiments; A part of the electromagnetic generating unit applies a voltage to cause the magnetic fluid to form a Fresnel zone plate pattern, so that the terahertz wave transmitted from the lens assembly is focused at a position to be imaged of the sample to be imaged; The terahertz wave transmitted by the sample to be imaged is described, and the received terahertz wave is processed to obtain an image of the position to be imaged.
  • the electromagnetic generating unit to which a voltage is applied and the electromagnetic generating unit to which no voltage is applied in the plurality of electromagnetic generating units are distributed in a Fresnel zone plate pattern.
  • the at least part of the electromagnetic generating unit and the other electromagnetic generating units in the plurality of electromagnetic generating units to which no voltage is applied are distributed in a Fresnel zone plate pattern.
  • a voltage is applied to at least a part of the plurality of electromagnetic generating units, so that the magnetic fluid forms a Fresnel zone plate pattern, so that too much light is transmitted from the lens assembly.
  • Focusing the Hertz wave at the position to be imaged of the sample to be imaged includes: applying a voltage to a first portion of the plurality of electromagnetic generation units to cause the magnetic fluid to form a first Fresnel zone plate pattern, thereby So that the terahertz wave transmitted from the lens assembly is focused at a first to-be-imaged position of the sample to be imaged; a voltage is applied to a second part of the plurality of electromagnetic generation units of the electromagnetic generation unit so that the The magnetic fluid forms a second Fresnel zone plate pattern, so that the terahertz wave transmitted from the lens assembly is focused at a second to-be-imaged position of the sample to be imaged; wherein the second part is electromagnetically generated
  • the unit includes at least one electromagnetic generating unit different from each of the first partial electromagnetic
  • FIG. 1A is a schematic structural diagram illustrating a lens assembly according to an embodiment of the present disclosure
  • FIG. 1B is a schematic structural diagram illustrating a lens assembly according to another embodiment of the present disclosure.
  • FIG. 1C is a schematic structural diagram illustrating a lens assembly according to still another embodiment of the present disclosure.
  • FIG. 2A is a schematic structural diagram illustrating an electromagnetic generating unit according to an embodiment of the present disclosure
  • FIG. 2B illustrates an arrangement manner of a plurality of electromagnetic generating units according to an embodiment of the present disclosure
  • 3A is a schematic diagram showing a Fresnel zone plate pattern
  • FIG. 3B is an imaging schematic diagram showing a lens assembly
  • FIG. 4A is a schematic structural diagram illustrating a lens assembly according to still another embodiment of the present disclosure.
  • 4B is a schematic structural diagram illustrating a lens assembly according to still another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram illustrating a terahertz wave tomography system according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram illustrating a terahertz wave tomography system according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram illustrating a terahertz wave filter according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart illustrating a terahertz wave tomography method according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart illustrating a method of manufacturing a lens assembly according to an embodiment of the present disclosure.
  • a specific component when it is described that a specific component is located between the first component and the second component, there may or may not be an intermediate component between the specific component and the first component or the second component.
  • the specific component When it is described that a specific component is connected to other components, the specific component may be directly connected to the other components without an intervening component, or may be directly connected to the other components without an intervening component.
  • embodiments of the present disclosure provide a variable focal length lens assembly.
  • FIG. 1A is a schematic structural diagram illustrating a lens assembly according to an embodiment of the present disclosure
  • FIG. 1B is a schematic structural diagram illustrating a lens assembly according to other embodiments of the present disclosure
  • the lens assembly includes a first substrate 101 and a second substrate 102 that are oppositely disposed.
  • the first substrate 101 and the second substrate 102 are spaced apart from each other.
  • the first substrate 101 and the second substrate 102 are glass substrates.
  • the lens assembly also includes a seal 103 such as a sealant or the like.
  • the seal 103, the first substrate 101 and the second substrate 102 surround a cavity 104, and the cavity 104 is filled with a magnetic fluid 105.
  • the magnetic fluid may include magnetic particles such as iron oxide, iron oxide, nickel, cobalt, and the like, as well as liquids such as water, organic solvents, oil, and the like.
  • the magnetic fluid may further include an active agent such as oleic acid to prevent agglomeration of the magnetic particles.
  • the cavity 104 may be a cylinder, such as a cylinder, a prism, or the like.
  • the sealing member 103 is a side surface of the pillar, and the first substrate 101 and the second substrate 102 are two bottom surfaces of the pillar.
  • the cavity 104 is not limited to a pillar, for example, the first substrate 101 and the second substrate 102 may be arranged non-parallel, so that the shape of the cavity 104 is an irregular shape.
  • the lens assembly further includes a plurality of electromagnetic generating units 106.
  • the plurality of electromagnetic generating units 106 are disposed on at least one side (also referred to as a first side) of the first substrate 101 near the second substrate 102 and one side (also referred to as a second side) remote from the second substrate 102. One side.
  • At least a part of the plurality of electromagnetic generating units 106 is configured to generate a magnetic field when a voltage is applied so that the magnetic fluid 105 forms a Fresnel zone plate pattern.
  • a voltage may be applied to a part of the plurality of electromagnetic generating units 106 so that the electromagnetic generating unit 106 to which the voltage is applied and the other electromagnetic generating units 106 to which no voltage is applied are Fresnels. Band plate pattern distribution.
  • the plurality of electromagnetic generating units 106 may be arranged to be distributed in a Fresnel zone plate pattern. In this case, a voltage may be applied to all of the plurality of electromagnetic generating units 106.
  • the plurality of electromagnetic generating units 106 are all disposed on the first side of the first substrate 101 near the second substrate 102.
  • the plurality of electromagnetic generating units 106 are all disposed on the second side of the first substrate 101 away from the second substrate 102.
  • some of the electromagnetic generating units 106 are disposed on the first side of the first substrate 101 near the second substrate 102, and other electromagnetic generating units 106 are disposed on the first A substrate 101 is far from the second side of the second substrate 102.
  • the lens assembly may further include a protective layer, such as plastic, on the second side and covering the electromagnetic generating unit 106 on the second side.
  • the protective layer can prevent the electromagnetic generating unit 106 provided on the second side from being affected by the external environment, for example, from being oxidized.
  • At least a part of the plurality of electromagnetic generating units can generate a magnetic field when a voltage is applied, so that the magnetic fluid forms a Fresnel zone plate pattern.
  • the distribution of the magnetic fluid can be changed, thereby changing the half-wave band radius of the Fresnel zone plate pattern formed by the magnetic fluid, and thereby changing the focal length of the lens assembly.
  • the focal length of such a lens assembly can be easily adjusted.
  • FIG. 2A is a schematic structural diagram illustrating an electromagnetic generating unit according to an embodiment of the present disclosure.
  • the electromagnetic generating unit 106 may be a spiral coil.
  • the number of turns of the helical coil may be, for example, one or more.
  • the shape of the coil in the helical coil may be circular, square, rectangular, or the like.
  • FIG. 2B illustrates an arrangement of a plurality of electromagnetic generating units 106 according to an embodiment of the present disclosure.
  • FIG. 2B shows the arrangement of the orthographic projections of the plurality of electromagnetic generating units 106 on the first substrate 101 by taking the electromagnetic generating unit 106 as a spiral coil as an example.
  • the orthographic projection on the first substrate 101 can be regarded as the orthographic projection on the surface of the first substrate 101.
  • the orthographic projections of the plurality of electromagnetic generating units 106 on the first substrate 101 may be arranged in a matrix, such as a matrix of rows and columns. It should be understood that such an arrangement is not intended as a limitation on the present disclosure.
  • the orthographic projections of the plurality of electromagnetic generating units 106 on the first substrate 101 may be arranged in a concentric circle or other arrangements.
  • a magnetic field that causes the magnetic fluid 106 to form a Fresnel zone plate pattern can be generated by controlling the application of voltage to a plurality of electromagnetic generating units 106.
  • a plurality of thin film transistors (TFTs) may be disposed in the first substrate 101.
  • Each TFT is connected to at least one electromagnetic generating unit, so a voltage can be applied to the corresponding one or more electromagnetic generating units 106 via each TFT.
  • the electromagnetic generating unit 106 as a spiral coil as an example, one end of the spiral coil may be connected to a TFT (positive terminal +), and the other end of the spiral coil may be connected to ground (negative terminal-).
  • the electromagnetic generation unit 106 may be configured so that a magnetic field perpendicular to a surface of the first substrate 101 is generated when a voltage is applied.
  • the spiral coil may be provided to spirally extend in a direction perpendicular to the surface of the first substrate 101.
  • the magnetic field perpendicular to the surface of the first substrate 101 makes it easier to control the distribution of the magnetic fluid 105, so that the magnetic fluid can form the Fresnel zone plate pattern more accurately.
  • a magnetic field perpendicular to the surface of the first substrate 101 can also be regarded as a magnetic field perpendicular to the plane on which the first substrate 101 is located.
  • the magnetic fluid 106 In the case where no voltage is applied to the plurality of electromagnetic generating units 106, the magnetic fluid 106 is uniformly distributed in the cavity 104. In this case, the magnetic fluid 106 absorbs or reflects the terahertz wave, so that the terahertz wave cannot pass through the cavity 104.
  • the electromagnetic generating unit 106 to which the voltage is applied and the electromagnetic generating unit 106 to which no voltage is applied can be distributed in a Fresnel zone plate pattern, that is, the electromagnetic generating unit to which the voltage is applied
  • the ring composed of 106 and the electromagnetic generation unit 106 to which no voltage is applied are arranged concentrically and staggered.
  • the electromagnetic generating unit 106 to which the voltage is applied will generate a magnetic field, and the magnetic fluid 106 gathers above the electromagnetic generating unit 106 to which the voltage is applied under the action of the magnetic field, and is roughly distributed in a circular shape.
  • a ring channel through which a terahertz wave can pass is formed above the electromagnetic generating unit 106 to which no voltage is applied. In this way, the magnetic fluid 106 will form a Fresnel zone plate pattern.
  • the application of voltage to the plurality of electromagnetic generating units 106 provided on the first side may be individually controlled so that the plurality of electromagnetic generations located on the first side are generated.
  • the ring formed by the voltage generating electromagnetic generating unit 106 and the ring formed by the voltage generating electromagnetic generating unit 106 in the unit 106 are distributed in a Fresnel zone plate pattern.
  • the application of voltage to the plurality of electromagnetic generating units 106 provided on the second side can be controlled separately, so that the plurality of electromagnetics
  • the ring formed by the voltage generating electromagnetic generating unit 106 in the generating unit 106 and the ring formed by the voltage generating electromagnetic generating unit 106 are distributed in a Fresnel zone plate pattern.
  • the application of voltage by a plurality of electromagnetic generating units 106 disposed on the first side and the second side may be controlled at the same time, so that a ring and a plurality of electromagnetic generating units 106 including a plurality of electromagnetic generating units 106 applying voltage are provided.
  • the ring formed by the electromagnetic generating units 106 to which no voltage is applied among the electromagnetic generating units 106 is distributed in a Fresnel zone plate pattern.
  • the plurality of electromagnetic generating units 106 provided on the first and second sides include at least one electromagnetic generating unit 106 provided on one of the first and second sides, and the first and second sides The other electromagnetic generating unit 106 on the other side of the side.
  • FIG. 3A is a schematic diagram showing a Fresnel zone plate pattern.
  • the black rings and the white rings are alternately arranged with O as the center.
  • the white dot in the middle is just to show the position of the circle center O.
  • the first ring is the first white ring closest to the center O
  • the second ring is the first black ring adjacent to the first white ring, and so on.
  • FIG. 3B is an imaging schematic diagram showing a lens assembly.
  • S is a point light source (for example, a terahertz wave light source)
  • R is an object distance (that is, the distance between the point light source S and the lens component)
  • b is an image distance (that is, Distance)
  • ⁇ k is the radius of the k-th half-wave band.
  • is the wavelength of light emitted by the point light source S
  • f is the focal length of the lens component
  • the focal length f is related to the radius ⁇ k and the wavelength ⁇ of the half-wave band.
  • the focal length of the lens component can be adjusted by adjusting the radius ⁇ k of the half-wave band.
  • the radius ⁇ k of the half-wave band is unchanged, light of different wavelengths can be focused at different focal points.
  • the size of the electromagnetic generating unit 106 may be set to be much smaller than the Fresnel zone plate pattern The radius ⁇ k of the half-wave band. This can prevent the shape of the electromagnetic generating unit 106 from having a great influence on the Fresnel zone plate pattern.
  • the plurality of electromagnetic generating units 106 may be symmetrically disposed on both sides of the first substrate 101.
  • the application of voltage to the plurality of electromagnetic generating units 106 on the first side and the plurality of electromagnetic generating units 106 on the second side can be controlled at the same time, so that the plurality of electromagnetic generating units 106 on the first side can be controlled.
  • the ring formed by the voltage-generating electromagnetic generating unit 106 and the voltage unapplied electromagnetic generating unit 106 are distributed in a first Fresnel zone plate pattern, and a plurality of electromagnetic generating units 106 located on the second side are formed.
  • the ring formed by the electromagnetic generating unit 106 to which the voltage is applied and the ring formed by the electromagnetic generating unit 106 to which the voltage is not applied are distributed in a second Fresnel zone plate pattern.
  • the second Fresnel zone plate pattern and the first Fresnel zone plate pattern are substantially the same.
  • the magnetic field generated by the electromagnetic generating unit 106 applying a voltage on the first side and the magnetic field generated by the electromagnetic generating unit 106 applying a voltage on the second side will be superimposed together, thereby enhancing the strength of the magnetic field for better control. Distribution of the magnetic fluid 105.
  • the application of voltage by the plurality of electromagnetic generating units 106 provided on the first side or the second side may be controlled separately, or the plurality of electromagnetic generating units provided on the first side and the second side may be controlled simultaneously.
  • 106 applied voltage In some cases, for example, in a case where a plurality of electromagnetic generating units 106 provided on one side of the first side and the second side do not work normally, another one provided on the first side and the second side may be controlled separately.
  • a plurality of electromagnetic generating units 106 on one side are applied with a voltage to generate a magnetic field that causes the magnetic fluid 105 to form a Fresnel zone plate pattern. In this way, the reliability of the lens assembly can be improved.
  • FIG. 4A is a schematic structural diagram illustrating a lens assembly according to still another embodiment of the present disclosure.
  • the lens assembly shown in FIG. 4A is different from the lens assembly shown in FIG. 1A in that it further includes at least one of a first insulating layer 401 and a second insulating layer 402.
  • the lens assembly may further include a first insulating layer 401 such as polyimide (PI) or the like provided between the electromagnetic generating unit 106 and the magnetic fluid 105 on the first side.
  • PI polyimide
  • the first insulating layer 401 covers the electromagnetic generating unit 106 provided on the first side.
  • the first insulating layer 401 can ensure insulation between the magnetic fluid 105 and the electromagnetic generating unit 106 to avoid direct contact with the electromagnetic generating unit 106 when the magnetic fluid 105 is a conductive magnetic fluid, so that the voltage applied to the electromagnetic generating unit 106 does not Will be applied to the magnetic fluid. In addition, the first insulating layer 401 can also reduce the influence of static electricity in the first substrate 101 on the distribution of the magnetic fluid 105.
  • the lens assembly may further include a second insulating layer 402, such as polyimide, disposed between the second substrate 102 and the magnetic fluid 105.
  • the second insulating layer 402 can reduce the influence of static electricity in the second substrate 102 on the distribution of the magnetic fluid 105.
  • the lens assembly may include both the first insulating layer 401 and the second insulating layer 402.
  • the first insulating layer 401 and the second insulating layer 402 can confine the magnetic fields generated by the plurality of electromagnetic generating units 106 in the cavity 104 so as to better control the distribution of the magnetic fluid 105.
  • a plurality of electromagnetic generating units in the lens assembly may be disposed on at least one side of the first substrate 101 near the first side of the second substrate 102 and the first substrate 101 away from the second side of the second substrate 102 And a side of the second substrate 102 near the first substrate 101.
  • FIG. 4B is a schematic structural diagram illustrating a lens assembly according to still another embodiment of the present disclosure.
  • a plurality of electromagnetic generating units in the lens assembly may be disposed on a first side of the first substrate 101 near the second substrate 102 and a side of the second substrate 102 near the first substrate 101.
  • FIG. 4B shows the first insulating layer 401 and the second insulating layer 402 at the same time, this is not restrictive.
  • a plurality of electromagnetic generating units in the lens assembly may be disposed on a first side of the first substrate 101 near the second substrate 102 and a side of the second substrate 102 near the first substrate 101, but the lens The component may not include the first insulating layer 401 and the second insulating layer 402, or may include one of the first insulating layer 401 and the second insulating layer 402.
  • the lens components of the embodiments of the present disclosure can be applied to, but not limited to, terahertz filtering, terahertz security checkers, terahertz non-destructive imaging, and the like.
  • the present disclosure also provides a terahertz wave tomography system.
  • the terahertz wave tomography system may include the lens assembly of any one of the above embodiments.
  • the lens assembly is configured to receive a terahertz wave and focus the terahertz wave transmitted from the lens assembly at a position to be imaged of the sample to be imaged.
  • FIG. 5 is a schematic structural diagram illustrating a terahertz wave tomography system according to an embodiment of the present disclosure.
  • the terahertz wave tomography system includes the lens assembly 501, the transmitter 502, and the processing device 503 of any one of the above embodiments.
  • the transmitter 502 is configured to transmit a terahertz wave to the lens assembly 501.
  • the lens assembly 502 is configured to receive a terahertz wave and cause the terahertz wave transmitted from the lens assembly 502 to be focused at a position to be imaged (for example, A, B, C, D, or E) of the sample 504 to be imaged.
  • the processing device 503 is configured to receive a terahertz wave transmitted from the sample 504 to be imaged and process the received terahertz wave to obtain an image of a position to be imaged. For example, an image of the position to be imaged may be obtained based on the intensity, phase, etc. of the terahertz wave transmitted from the sample 504 to be imaged.
  • the magnetic fluid 105 is caused to form a Fresnel zone plate pattern by controlling the applied voltage conditions of the plurality of electromagnetic generating units 106 in the lens assembly 501.
  • the transmitter 502 transmits a terahertz wave of a certain wavelength to the lens assembly 501
  • the terahertz wave after passing through the magnetic fluid 105 will be focused on a certain to-be-imaged position of the sample 504 to be imaged, such as the A position.
  • the focal length of the lens assembly 501 can be changed, so that the terahertz wave transmitted through the magnetic fluid 105 is focused on the sample 504 to be imaged At different locations, such as B, C, D, or E.
  • A, B, C, D, and E are on the same straight line.
  • the terahertz wave can be focused at different positions of the sample to be imaged 504 along the same straight line.
  • the terahertz wave can be focused at different positions along the other straight lines of the sample 504 to be imaged. In this way, images at different positions to be imaged can be obtained, that is, tomography is achieved.
  • the terahertz wave can be focused on different positions of the sample to be imaged, so that images of different positions to be imaged can be obtained, and tomography is realized.
  • FIG. 6 is a schematic structural diagram illustrating a terahertz wave tomography system according to another embodiment of the present disclosure.
  • the processing device 503 of the imaging system may include a collimator 513 (for example, a collimating lens), a focuser 523 (for example, a focusing lens), a receiver 533, and a processor 543.
  • a collimator 513 for example, a collimating lens
  • a focuser 523 for example, a focusing lens
  • a receiver 533 for example, a focusing lens
  • a processor 543 for example, a processor 543.
  • the collimator 513 is configured to collimate the terahertz wave transmitted from the sample 504 to be imaged.
  • the focuser 523 is configured to focus on the aligned terahertz wave.
  • the receiver 533 is configured to receive the focused terahertz wave.
  • the processor 543 is configured to process the focused terahertz wave to obtain an image of a position to be imaged.
  • processing device 503 is not limited to the specific implementation manner shown in FIG. 6.
  • the processing device 503 may additionally include other components. I will not list them one by one here.
  • FIG. 7 is a schematic structural diagram illustrating a terahertz wave filter according to an embodiment of the present disclosure.
  • the terahertz wave filter includes a lens assembly 501 and an aperture stop 701 on the light emitting side of the lens assembly.
  • the lens assembly 501 is configured to receive terahertz waves of a plurality of wavelengths and focus a terahertz wave of a set wavelength among the terahertz waves of a plurality of wavelengths at the aperture stop 701.
  • the terahertz wave filter may further include a transmitter 502 configured to emit terahertz waves of multiple wavelengths to the lens assembly 501.
  • terahertz waves of different wavelengths will focus at different positions after passing through the lens assembly 501, such as A, B, C, D, and E.
  • An aperture light 701 is provided at the position E, so a terahertz wave (ie, a terahertz wave of a predetermined wavelength) focused at the position E can pass through the aperture light 701, while a terahertz wave focused at another position will not Through the aperture Guanglan 701, the terahertz wave is filtered.
  • FIG. 8 is a schematic flowchart illustrating a terahertz wave tomography method according to an embodiment of the present disclosure.
  • step 802 a terahertz wave is transmitted to the lens assembly of any one of the above embodiments.
  • step 804 a voltage is applied to at least a part of the plurality of electromagnetic generating units, so that the magnetic fluid forms a Fresnel zone plate pattern, so that the terahertz wave transmitted from the lens assembly is focused on the sample to be imaged. To be imaged.
  • the electromagnetic generating unit to which a voltage is applied and the other electromagnetic generating units to which no voltage is applied are distributed in a Fresnel zone plate pattern.
  • the voltage generating electromagnetic generating unit generates a magnetic field that causes the magnetic fluid in the lens assembly to form a Fresnel zone plate pattern, thereby causing the magnetic fluid in the lens assembly to form a Fresnel zone plate pattern.
  • multiple electromagnetic generating units may be arranged to be distributed in a Fresnel zone plate pattern.
  • a voltage may be applied to all of the plurality of electromagnetic generating units to generate a magnetic field that causes the magnetic fluid in the lens assembly to form a Fresnel zone plate pattern, thereby causing the magnetic fluid in the lens assembly to form a Fresnel wave. Strip pattern.
  • step 806 the terahertz wave transmitted from the sample to be imaged is received and the received terahertz wave is processed to obtain an image of the position to be imaged.
  • the terahertz wave transmitted from the sample to be imaged can be processed according to the following method: first, the terahertz wave transmitted from the sample to be imaged is collimated; then, the terahertz after alignment is aligned The wave is focused; after that, the focused terahertz wave is processed to obtain an image of the position to be imaged.
  • the terahertz wave can be focused at different positions of the sample to be imaged, so that images at different positions to be imaged can be obtained, and tomography is realized.
  • step 804 in FIG. 8 may be implemented as follows:
  • a voltage is applied to a first part of the plurality of electromagnetic generating units, so that the magnetic fluid forms a first Fresnel zone plate pattern, so that the terahertz wave transmitted from the lens assembly is focused on the first At the location to be imaged;
  • a voltage is applied to a second part of the plurality of electromagnetic generating units, so that the magnetic fluid forms a second Fresnel zone plate pattern, so that the terahertz wave transmitted from the lens assembly is focused on the first Second at the imaging position.
  • the second part electromagnetic generating unit includes at least one electromagnetic generating unit different from each of the first part electromagnetic generating units, that is, the second part electromagnetic generating unit and the first part electromagnetic generating unit are not completely the same, so that the formed
  • the radius of the first half-wave band of the second Fresnel zone plate pattern is different from the radius of the first half-wave band of the first Fresnel zone plate pattern, so that the second to-be-imaged position is The imaging position is different.
  • the position to be imaged can be changed, so that images of different positions to be imaged can be obtained.
  • FIG. 9 is a flowchart illustrating a method of manufacturing a lens assembly according to an embodiment of the present disclosure.
  • a first substrate, a second substrate, and a seal are provided.
  • at least one side of the first substrate is provided with a plurality of electromagnetic generating units, such as a plurality of spiral coils.
  • a plurality of electromagnetic generating units are disposed on one side of the first substrate.
  • one side of the first substrate is provided with a plurality of electromagnetic generating units and a first insulating layer covering the plurality of electromagnetic generating units.
  • two sides of the first substrate may be provided with a plurality of electromagnetic generating units, that is, one side of the first substrate may be provided with a part of the plurality of electromagnetic generating units. One side may be provided with other electromagnetic generating units.
  • a plurality of electromagnetic generating units may be symmetrically disposed on both sides of the first substrate.
  • a seal is disposed between the first substrate and the second substrate, so that the seal, the first substrate, and the second substrate surround a cavity.
  • an opening may be provided at a predetermined position of the cavity for subsequent injection of the magnetic fluid.
  • one side of the second substrate may be provided with a second insulating layer. After the cavity is formed, the second insulating layer faces the first substrate.
  • step 906 a magnetic fluid is injected into the cavity, thereby forming a lens assembly.
  • a magnetic fluid may be dripped on one side of a first substrate provided with a plurality of electromagnetic generating units on one side, a sealant may be coated on one side of the second substrate, and the first substrate and the second substrate may be docked under vacuum To form a lens assembly.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种透镜组件、太赫兹波层析成像系统、方法及过滤器。透镜组件包括:相对设置的第一基板(101)和第二基板(102);密封件(103),与第一基板(101)和第二基(102)板围成腔体(104),腔体(104)中填充有磁流体(105);和多个电磁产生单元(106),设置在第一基板(101)靠近第二基板(102)的第一侧和远离第二基板(102)的第二侧中的至少一侧,其中,多个电磁产生单元(106)中的至少部分电磁产生单元(106)被配置为在施加电压的情况下产生磁场,以使得磁流体(105)形成菲涅尔波带片图案。

Description

透镜组件、太赫兹波层析成像系统、方法及过滤器
相关申请的交叉引用
本申请是以CN申请号为201810890496.2,申请日为2018年8月7日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及一种透镜组件、太赫兹波层析成像系统、太赫兹波层析成像方法及太赫兹波过滤器。
背景技术
随着太赫兹技术的发展,太赫兹波在诸多领域得到了广泛应用,例如,活体检测、无损探测、安检、安全通信等。在太赫兹波的很多应用领域中,需要对太赫兹波进行收集或聚焦。
发明内容
根据本公开实施例的一方面,提供一种透镜组件,包括:相对设置的第一基板和第二基板;密封件,与所述第一基板和所述第二基板围成腔体,所述腔体中填充有磁流体;和多个电磁产生单元,设置在所述第一基板靠近所述第二基板的第一侧和远离所述第二基板的第二侧中的至少一侧,其中,所述多个电磁产生单元中的至少部分电磁产生单元被配置为在施加电压的情况下产生磁场,以使得所述磁流体形成菲涅尔波带片图案。
在一些实施例中,所述多个电磁产生单元中的至少一个包括螺线圈。
在一些实施例中,所述多个电磁产生单元在与所述第一基板上的正投影呈同心圆环排列。
在一些实施例中,所述多个电磁产生单元在与所述第一基板上的正投影呈菲涅尔波带片图案。
在一些实施例中,所述多个电磁产生单元在与所述第一基板上的正投影呈矩阵排列。
在一些实施例中,所述多个电磁产生单元中的至少一个电磁产生单元设置在所述第一侧;所述透镜组件还包括:第一绝缘层,设置在所述至少一个电磁产生单元与所述磁流体之间,并且覆盖所述至少一个电磁产生单元。
在一些实施例中,所述透镜组件还包括:第二绝缘层,设置在所述第二基板与所述磁流体之间。
在一些实施例中,所述多个电磁产生单元中的至少一个电磁产生单元设置在所述第二侧;所述透镜组件还包括:覆盖所述至少一个电磁产生单元的保护层。
在一些实施例中,所述多个电磁产生单元相对于所述第一基板对称设置。
在一些实施例中,所述磁场的方向垂直于所述第一基板所在的平面。
在一些实施例中,所述第一基板中设置有多个薄膜晶体管,所述多个薄膜晶体管中的每一个与所述多个电磁产生单元中的至少一个连接。
在一些实施例中,所述多个电磁产生单元设置在所述第一侧和所述第二侧中的至少一侧、以及所述第二基板靠近所述第一基板的一侧。
在一些实施例中,所述多个电磁产生单元设置在所述第一侧和所述第二基板靠近所述第一基板的一侧。
根据本公开实施例的另一方面,提供一种太赫兹波层析成像系统,包括:上述任意一个实施例所述的透镜组件,被配置为接收太赫兹波,并使得从所述透镜组件透射出的太赫兹波聚焦在待成像样品的待成像位置处。
在一些实施例中,所述太赫兹波层析成像系统还包括:发射器,被配置为发射太赫兹波至所述透镜组件;和处理装置,被配置为接收从所述待成像样品透射出的太赫兹波并对接收到的太赫兹波进行处理,以得到所述待成像位置的图像。
在一些实施例中,所述处理装置包括:准直器,被配置为对从所述待成像样品透射出的太赫兹波进行准直;聚焦器,被配置为对准直后的太赫兹波进行聚焦;接收器,被配置为接收聚焦后的太赫兹波;和处理器,被配置为对聚焦后的太赫兹波进行处理,以得到所述待成像位置的图像。
根据本公开实施例的又一方面,提供一种太赫兹波过滤器,包括:上述任意一个实施例所述的透镜组件和位于所述透镜组件出光侧的孔径光阑,所述透镜组件被配置为接收接收多种波长的太赫兹波,并将所述多种波长的太赫兹波中设定波长的太赫兹波聚焦在所述孔径光阑处。
根据本公开实施例的再一方面,提供一种太赫兹波层析成像方法,包括:发射太赫兹波至上述任意一个实施例所述的透镜组件;对所述多个电磁产生单元中的至少部分电磁产生单元施加电压,以使所述磁流体形成菲涅尔波带片图案,从而使得从所述透镜组件透射出的太赫兹波聚焦在待成像样品的待成像位置处;和接收从所述待成像样品透射出的太赫 兹波并对接收到的太赫兹波进行处理,以得到所述待成像位置的图像。
在一些实施例中,所述多个电磁产生单元中施加电压的电磁产生单元和未施加电压的电磁产生单元呈菲涅尔波带片图案分布。
在一些实施例中,所述至少部分电磁产生单元和所述多个电磁产生单元中未施加电压的其他电磁产生单元呈菲涅尔波带片图案分布。
在一些实施例中,对所述多个电磁产生单元中的至少部分电磁产生单元施加电压,以使所述磁流体形成菲涅尔波带片图案,从而使得从所述透镜组件透射出的太赫兹波聚焦在待成像样品的待成像位置处包括:对所述多个电磁产生单元中的第一部分电磁产生单元施加电压,以使所述磁流体形成第一菲涅尔波带片图案,从而使得从所述透镜组件透射出的太赫兹波聚焦在所述待成像样品的第一待成像位置处;对所述多个电磁产生单元中的第二部分电磁产生单元施加电压,以使所述磁流体形成第二菲涅尔波带片图案,从而使得从所述透镜组件透射出的太赫兹波聚焦在所述待成像样品的第二待成像位置处;其中,所述第二部分电磁产生单元包括与所述第一部分电磁产生单元中的每一个均不同的至少一个电磁产生单元,以使得所述第二菲涅尔波带片图案的第一个半波带的半径与所述第一菲涅尔波带片图案的第一个半波带的半径不同。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征、方面及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1A是示出根据本公开一个实施例的透镜组件的结构示意图;
图1B是示出根据本公开另一个实施例的透镜组件的结构示意图;
图1C是示出根据本公开又一个实施例的透镜组件的结构示意图;
图2A是示出根据本公开一个实施例的电磁产生单元的结构示意图;
图2B是示出根据本公开一个实施例的多个电磁产生单元的排列方式;
图3A是示出菲涅尔波带片图案的示意图;
图3B是示出透镜组件的成像示意图;
图4A是示出根据本公开再一个实施例的透镜组件的结构示意图;
图4B是示出根据本公开还一个实施例的透镜组件的结构示意图;
图5是示出根据本公开一个实施例的太赫兹波层析成像系统的结构示意图;
图6是示出根据本公开另一个实施例的太赫兹波层析成像系统的结构示意图;
图7是示出根据本公开一个实施例的太赫兹波过滤器的结构示意图;
图8是示出根据本公开一个实施例的太赫兹波层析成像方法的流程示意图;
图9是示出根据本公开一个实施例的透镜组件的制造方法的流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不必然是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适 当情况下,所述技术、方法和设备应当被视为说明书的一部分。
发明人注意到,相关技术中对太赫兹波进行聚焦的透镜的焦距是固定的,这样的透镜无法应用于层析成像。
有鉴于此,本公开实施例提供了一种焦距可变的透镜组件。
图1A是示出根据本公开一个实施例的透镜组件的结构示意图;图1B是示出根据本公开另一些实施例的透镜组件的结构示意图;图1C是示出根据本公开又一些实施例的透镜组件的结构示意图。
如图1A、图1B和图1C所示,透镜组件包括相对设置的第一基板101和第二基板102。这里,第一基板101和第二基板102彼此间隔开。在一些实施例中,第一基板101和第二基板102为玻璃基板。
透镜组件还包括密封件103,例如密封胶等。密封件103、第一基板101和第二基板102围成腔体104,腔体104中填充有磁流体105。在一些实施例中,磁流体可以包括诸如三氧化二铁、四氧化三铁、镍、钴等的磁性颗粒以及诸如水、有机溶剂、油等的液体。在某些实施例中,磁流体还可以包括油酸等活性剂,以防止磁性颗粒团聚。
在一些实施例中,腔体104可以为柱体,例如圆柱体、棱柱体等。这种情况下,密封件103为柱体的侧面,第一基板101和第二基板102为柱体的两个底面。应理解,腔体104并不限于柱体,例如,第一基板101和第二基板102可以非平行地设置,从而使得腔体104的形状为不规则形状。
透镜组件还包括多个电磁产生单元106。多个电磁产生单元106设置在第一基板101靠近第二基板102的一侧(也可以称为第一侧)和远离第二基板102的一侧(也可以称为第二侧)中的至少一侧。多个电磁产生单元106中的至少部分电磁产生单元106被配置为在施加电压的情况下产生磁场,以使得磁流体105形成菲涅尔波带片图案。例如,可以对多个电磁产生单元106中的部分电磁产生单元106施加电压,以使得多个电磁产生单元106中施加电压的电磁产生单元106和未施加电压的其他电磁产生单元106呈菲涅尔波带片图案分布。又例如,多个电磁产生单元106可以被布置为呈菲涅尔波带片图案分布。这种情况下,可以对全部的多个电磁产生单元106施加电压。
在一些实施例中,如图1A所示,多个电磁产生单元106全部设置在第一基板101靠近第二基板102的第一侧。
在另一些实施例中,如图1B所示,多个电磁产生单元106全部设置在第一基板101远离第二基板102的第二侧。
在又一些实施例中,如图1C所示,多个电磁产生单元106中的部分电磁产生单元106设置在第一基板101靠近第二基板102的第一侧,其他电磁产生单元106设置在第一基板101远离第二基板102的第二侧。
在一些实现方式中,多个电磁产生单元106中的至少一个电磁产生单元106设置在第二侧。这种情况下,透镜组件还可以包括在第二侧且覆盖位于第二侧的电磁产生单元106的保护层,例如塑料等。保护层可以防止设置在第二侧的电磁产生单元106受到外界环境的影响,例如,防止被氧化等。
上述实施例中,多个电磁产生单元中的至少部分电磁产生单元在施加电压的情况下能够产生磁场,以使得磁流体形成菲涅尔波带片图案。通过控制多个电磁产生单元的施加电压的情况,可以改变磁流体的分布,从而改变磁流体形成的菲涅尔波带片图案的半波带半径,进而可以改变透镜组件的焦距。这样的透镜组件的焦距可以方便地调节。
图2A是示出根据本公开一个实施例的电磁产生单元的结构示意图。
如图2A所示,电磁产生单元106可以是螺线圈。螺线圈螺旋的圈数例如可以是一圈或多圈。螺线圈中线圈的形状可以是圆环形、方形、长方形等。
图2B是示出根据本公开一个实施例的多个电磁产生单元106的排列方式。这里,图2B以电磁产生单元106为螺线圈为例示出了多个电磁产生单元106在第一基板101上的正投影的排列方式。应理解,在第一基板101上的正投影可以视为在第一基板101的表面上的正投影。
如图2B所示,多个电磁产生单元106在第一基板101上的正投影可以呈矩阵排列,例如行列矩阵排列。应理解,这样的排列方式并非作为对本公开的限制。例如,在其他的实现方式中,多个电磁产生单元106在第一基板101上的正投影可以呈同心圆环排列等其他排列方式。
例如,可以通过控制多个电磁产生单元106的施加电压的情况来产生使磁流体106形成菲涅尔波带片图案的磁场。在一些实施例中,第一基板101中可以设置有多个薄膜晶体管(TFT)。每个TFT与至少一个电磁产生单元连接,故可以经由每个TFT向对应的一个或多个电磁产生单元106施加电压。例如,以电磁产生单元106为螺线圈为例,螺线圈的一端可以连接至一个TFT(正端+),螺线圈的另一端可以连接至地(负端-)。在一些实施例中,电磁产生单元106可以被设置为使得在被施加电压的情况下产生垂直于第一基板101的表面的磁场。例如,螺线圈可以被设置为在垂直于第一基板101的表面的方向上螺旋延伸。垂直于第一基板101的表面的磁场更容易控制磁流体105的分布,从而使得磁流 体形成菲涅尔波带片图案更为准确。应理解,这里,垂直于第一基板101的表面的磁场也可以视为垂直于第一基板101所在的平面的磁场。
在多个电磁产生单元106均未施加电压的情况下,磁流体106在腔体104中均匀分布。这种情况下,磁流体106吸收或反射太赫兹波,从而使得太赫兹波不能透过腔体104。
通过控制多个电磁产生单元106的施加电压的情况,可以使得施加电压的电磁产生单元106和未施加电压的电磁产生单元106呈菲涅尔波带片图案分布,即,施加电压的电磁产生单元106组成的圆环和未施加电压的电磁产生单元106组成的圆环同心交错地排列。这种情况下,施加电压的电磁产生单元106将产生磁场,磁流体106在磁场的作用下聚集在施加电压的电磁产生单元106上方,并大致呈圆环分布。而在未施加电压的电磁产生单元106上方则会形成太赫兹波可以通过的圆环通道。通过这样的方式,磁流体106便会形成菲涅尔波带片图案。
例如,可以单独控制设置在第一侧(即,第一基板101靠近第二基板102的一侧)的多个电磁产生单元106的施加电压的情况,以使得位于第一侧的多个电磁产生单元106中施加电压的电磁产生单元106组成的圆环和未施加电压的电磁产生单元106组成的圆环呈菲涅尔波带片图案分布。
又例如,可以单独控制设置在第二侧(即,第一基板101远离第二基板102的一侧)的多个电磁产生单元106的施加电压的情况,以使得位于第二侧的多个电磁产生单元106中施加电压的电磁产生单元106组成的圆环和未施加电压的电磁产生单元106组成的圆环呈菲涅尔波带片图案分布。
再例如,可以同时控制设置在第一侧和第二侧的多个电磁产生单元106施加电压的情况,以使得设置多个电磁产生单元106中施加电压的电磁产生单元106组成的圆环和多个电磁产生单元106中未施加电压的电磁产生单元106组成的圆环呈菲涅尔波带片图案分布。应明白,设置在第一侧和第二侧的多个电磁产生单元106包括设置在第一侧和第二侧中的一侧的至少一个电磁产生单元106、以及设置在第一侧和第二侧中的另一侧的其他电磁产生单元106。
下面结合图3A和图3B详细介绍通过改变菲涅尔波带片图案的半波带半径来改变透镜组件的焦距的原理。
图3A是示出菲涅尔波带片图案的示意图。
如图3A所示,黑色圆环和白色圆环以O为圆心交替地排列。需要指出的是,中间的白点仅仅是为了示出圆心O的位置。这里,第1个圆环为距离圆心O最近的第1个白色 圆环,第2个圆环为与第1个白色圆环相邻的第1个黑色圆环,以此类推。第k个半波带的半径ρ k为第k个圆环的内径的一半,k=1,2,3…。
图3B是示出透镜组件的成像示意图。
在图3B中,S为点光源(例如太赫兹波光源),R为物距(即点光源S与透镜组件之间的距离),b为像距(即透镜组件与成像点P0之间的距离),ρ k为第k个半波带的半径。
根据菲涅尔波带片的光学原理可得到以下公式(1)和(2):
Figure PCTCN2019092063-appb-000001
Figure PCTCN2019092063-appb-000002
根据公式(1)和(2)可以得到公式(3):
Figure PCTCN2019092063-appb-000003
在上述公式(1)、(2)和(3)中,λ为点光源S发出的光的波长,f为透镜组件的焦距。
由公式(3)可知,焦距f与半波带的半径ρ k和波长λ有关。在波长λ不变的情况下,可以通过调整半波带的半径ρ k来调整透镜组件的焦距。另外,在半波带的半径ρ k不变的情况下,可以将不同波长的光聚焦在不同的焦点处。
在一些实现方式中,电磁产生单元106的尺寸(例如螺线圈的半径)可以设置为远小于施加电压的电磁产生单元106和未施加电压的电磁产生单元106形成的菲涅尔波带片图案的半波带的半径ρ k。这样可以使得电磁产生单元106的形状不会对菲涅尔波带片图案有很大影响。
在一些实施例中,多个电磁产生单元106可以对称地设置在第一基板101的两侧。
这种情况下,可以同时控制位于第一侧的多个电磁产生单元106和位于第二侧的多个电磁产生单元106施加电压的情况,以使得位于第一侧的多个电磁产生单元106中施加电压的电磁产生单元106组成的圆环和未施加电压的电磁产生单元106组成的圆环呈第一菲涅尔波带片图案分布,并且,使得位于第二侧的多个电磁产生单元106中施加电压的电磁产生单元106组成的圆环和未施加电压的电磁产生单元106组成的圆环呈第二菲涅尔波带片图案分布。这里,第二菲涅尔波带片图案和第一菲涅尔波带片图案基本相同。这样的方式下,位于第一侧施加电压的电磁产生单元106产生的磁场和位于第二侧施加电压的电磁产生单元106产生的磁场将会叠加在一起,从而增强磁场强度,以更好地控制磁流体105 的分布。
上述实施例中,既可以单独控制设置在第一侧或第二侧的多个电磁产生单元106的施加电压的情况,也可以同时控制设置在第一侧和第二侧的多个电磁产生单元106的施加电压的情况。在某些情况下,例如,设置在第一侧和第二侧中的一侧的多个电磁产生单元106不能正常工作的情况下,可以单独控制设置在第一侧和第二侧中的另一侧的多个电磁产生单元106的施加电压的情况,以产生使磁流体105形成菲涅尔波带片图案的磁场。如此,可以提高透镜组件的可靠性。
图4A是示出根据本公开再一个实施例的透镜组件的结构示意图。
图4A所示的透镜组件与图1A所示的透镜组件的区别在于还包括第一绝缘层401和第二绝缘层402中的至少一个。
在一些实施例中,参见图4A,至少一个电磁产生单元106设置在第一基板101靠近第二基板102的一侧,即第一侧。在这种情况下,透镜组件还可以包括设置在第一侧的电磁产生单元106与磁流体105之间的第一绝缘层401,例如聚酰亚胺(PI)等。这里,第一绝缘层401覆盖设置在第一侧的电磁产生单元106。第一绝缘层401可以确保磁流体105与电磁产生单元106之间绝缘,以避免磁流体105为导电磁流体的情况下与电磁产生单元106直接接触,从而使得施加到电磁产生单元106的电压不会被施加到磁流体。另外,第一绝缘层401还可以减轻第一基板101中的静电对磁流体105分布的影响。
在一些实施例中,参见图4A,透镜组件还可以包括设置在第二基板102与磁流体105之间的第二绝缘层402,例如聚酰亚胺。第二绝缘层402可以减轻第二基板102中的静电对磁流体105分布的影响。
在一个或多个实施例中,透镜组件既可以包括第一绝缘层401,也可以包括第二绝缘层402。第一绝缘层401和第二绝缘层402可以将多个电磁产生单元106产生的磁场束缚在腔体104中,以便更好地控制磁流体105的分布。
在某些实施例中,透镜组件中的多个电磁产生单元可以设置在第一基板101靠近第二基板102的第一侧和第一基板101远离第二基板102第二侧中的至少一侧、以及第二基板102靠近第一基板101的一侧。
图4B是示出根据本公开还一个实施例的透镜组件的结构示意图。
如图4B所示,透镜组件中的多个电磁产生单元可以设置在第一基板101靠近第二基板102的第一侧和第二基板102靠近第一基板101的一侧。
需要说明的是,虽然图4B同时示出了第一绝缘层401和第二绝缘层402,但是这 并非是限制性的。例如,在某些实施例中,透镜组件中的多个电磁产生单元可以设置在第一基板101靠近第二基板102的第一侧和第二基板102靠近第一基板101的一侧,但透镜组件可以不包括第一绝缘层401和第二绝缘层402,或者,可以包括第一绝缘层401和第二绝缘层402中的一个。
本公开各实施例的透镜组件可以应用于但不限于太赫兹滤波、太赫兹安检仪、太赫兹无损成像等领域。
本公开还提供了一种太赫兹波层析成像系统,太赫兹波层析成像系统可以包括上述任意一个实施例的透镜组件。透镜组件被配置为接收太赫兹波,并使得从透镜组件透射出的太赫兹波聚焦在待成像样品的待成像位置处。
以下结合图5-图7所示实施例对透镜组件的一些应用进行介绍。
图5是示出根据本公开一个实施例的太赫兹波层析成像系统的结构示意图。
如图5所示,太赫兹波层析成像系统包括上述任意一个实施例的透镜组件501、发射器502和处理装置503。
发射器502被配置为发射太赫兹波至透镜组件501。
透镜组件502被配置为接收太赫兹波,并使得从透镜组件502透射出的太赫兹波聚焦在待成像样品504的待成像位置(例如A、B、C、D或E)处。
处理装置503被配置为接收从待成像样品504透射出的太赫兹波并对接收到的太赫兹波进行处理,以得到待成像位置的图像。例如,可以基于从待成像样品504透射出的太赫兹波的强度、相位等得到待成像位置的图像。
下面介绍成像系统的工作原理。
通过控制透镜组件501中的多个电磁产生单元106的施加电压的情况,使得磁流体105形成菲涅尔波带片图案。发射器502发射某一固定波长的太赫兹波至透镜组件501后,透过磁流体105后的太赫兹波会聚焦在待成像样品504的某一待成像位置,例如A位置。通过改变透镜组件501中磁流体105形成的菲涅尔波带片图案的半波带半径,可以改变透镜组件501的焦距,从而使得透过磁流体105后的太赫兹波聚焦在待成像样品504的不同位置处,例如B、C、D或E。这里,A、B、C、D和E位于同一直线上。
根据上述方式可以使得太赫兹波聚焦在待成像样品504沿着同一直线的不同位置处。通过调整待成像样品504的位置,可以使得太赫兹波聚焦在待成像样品504沿着其他直线的不同位置处,如此可以获得不同待成像位置的图像,也即实现了层析成像。
上述实施例的成像系统中,由于透镜组件的焦距可变,因此,可以将太赫兹波聚焦在 待成像样品不同的位置,从而可以得到不同待成像位置的图像,实现了层析成像。
图6是示出根据本公开另一个实施例的太赫兹波层析成像系统的结构示意图。
如图6所示,该成像系统的处理装置503可以包括准直器513(例如准直透镜)、聚焦器523(例如聚焦透镜)、接收器533和处理器543。
准直器513被配置为对从待成像样品504透射出的太赫兹波进行准直。聚焦器523被配置为对准直后的太赫兹波进行聚焦。接收器533被配置为接收聚焦后的太赫兹波。处理器543被配置为对聚焦后的太赫兹波进行处理,以得到待成像位置的图像。
需要说明的是,处理装置503并不限于图6所示的具体实现方式。例如,在某些实现方式中,处理装置503还可以额外地包括其他部件。在此不再一一列举。
图7是示出根据本公开一个实施例的太赫兹波过滤器的结构示意图。
如图7所示,太赫兹波过滤器包括透镜组件501和位于透镜组件出光侧的孔径光阑701。透镜组件501被配置为接收多种波长的太赫兹波,并将多种波长的太赫兹波中设定波长的太赫兹波聚焦在孔径光阑701处。在一些实施例中,太赫兹波过滤器还可以包括发射器502,被配置为发射多种波长的太赫兹波至透镜组件501。
例如,不同波长的太赫兹波经过透镜组件501后,会聚焦在不同的位置处,例如A、B、C、D、E。在位置E处设置有孔径光澜701,故聚焦到位置E处的太赫兹波(即预定波长的太赫兹波)可以透过孔径光澜701,而聚焦到其他位置处的太赫兹波不会透过孔径光澜701,从而实现了对太赫兹波的过滤。
图8是示出根据本公开一个实施例的太赫兹波层析成像方法的流程示意图。
在步骤802,发射太赫兹波至上述任意一个实施例的透镜组件。
在步骤804,对多个电磁产生单元中的至少部分电磁产生单元的施加电压,以使磁流体形成菲涅尔波带片图案,从而使得从透镜组件透射出的太赫兹波聚焦在待成像样品的待成像位置处。
在一些实施例中,多个电磁产生单元中施加电压的电磁产生单元和未施加电压的其他电磁产生单元呈菲涅尔波带片图案分布。这里,施加电压的电磁产生单元产生使透镜组件中的磁流体形成菲涅尔波带片图案的磁场,从而使透镜组件中的磁流体形成菲涅尔波带片图案。
在另一些实施例中,多个电磁产生单元可以被布置为呈菲涅尔波带片图案分布。这种情况下,可以对全部的多个电磁产生单元施加电压,以产生使透镜组件中的磁流体形成菲涅尔波带片图案的磁场,从而使透镜组件中的磁流体形成菲涅尔波带片图案。
在步骤806,接收从待成像样品透射出的太赫兹波并对接收到的太赫兹波进行处理,以得到待成像位置的图像。
在一些实现方式中,可以根据如下方式对从待成像样品透射出的太赫兹波进行处理:首先,对从待成像样品透射出的太赫兹波进行准直;然后,对准直后的太赫兹波进行聚焦;之后,对聚焦后的太赫兹波进行处理,以得到待成像位置的图像。
上述实施例中,通过改变透镜组件的焦距,可以将太赫兹波聚焦在待成像样品不同的位置,从而可以得到不同待成像位置的图像,实现了层析成像。
在一些实施例中,图8中的步骤804可以通过如下方式来实现:
对多个电磁产生单元中的第一部分电磁产生单元施加电压,以使磁流体形成第一菲涅尔波带片图案,从而使得从透镜组件透射出的太赫兹波聚焦在待成像样品的第一待成像位置处;以及
对多个电磁产生单元中的第二部分电磁产生单元施加电压,以使磁流体形成第二菲涅尔波带片图案,从而使得从透镜组件透射出的太赫兹波聚焦在待成像样品的第二待成像位置处。
这里,第二部分电磁产生单元包括至少一个与第一部分电磁产生单元中的每一个均不同的电磁产生单元,即,第二部分电磁产生单元与第一部分电磁产生单元不完全相同,以使得形成的第二菲涅尔波带片图案的第一个半波带的半径与第一菲涅尔波带片图案的第一个半波带的半径不同,从而使得第二待成像位置与第一待成像位置不同。
通过这样的方式可以改变待成像位置,如此可以得到不同待成像位置的图像。
图9是示出根据本公开一个实施例的透镜组件的制造方法的流程示意图。
在步骤902,提供第一基板、第二基板和密封件。这里,第一基板的至少一侧设置有多个电磁产生单元,例如多个螺线圈。
在一些实施例中,第一基板的一侧设置有多个电磁产生单元。在某些实施例中,第一基板的一侧设置有多个电磁产生单元和覆盖该多个电磁产生单元的第一绝缘层。
在另一些实施例中,第一基板的两侧可以设置有多个电磁产生单元,即,第一基板的一侧可以设置有多个电磁产生单元中的部分电磁产生单元,第一基板的另一侧可以设置有其他电磁产生单元。在某些实施例中,多个电磁产生单元可以对称地设置在第一基板的两侧。
在步骤904,将密封件设置在第一基板和第二基板之间,以使得密封件、第一基板和第二基板围成腔体。
例如,在形成腔体后,可以在腔体的预定位置处设置开口,以便后续注入磁流体。
在一些实施例中,第二基板的一侧可以设置有第二绝缘层。在形成腔体后,第二绝缘层朝向第一基板。
在步骤906,在腔体中注入磁流体,从而形成透镜组件。
图9所示的制造方法仅仅是示意性的,本领域技术人员根据本公开的教导也可以根据其他方式来形成透镜组件。例如,可以在一侧设置有多个电磁产生单元的第一基板的一侧滴注磁流体,在第二基板的一侧涂覆密封胶,然后在真空下将第一基板和第二基板对接,以形成透镜组件。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (20)

  1. 一种透镜组件,包括:
    相对设置的第一基板和第二基板;
    密封件,与所述第一基板和所述第二基板围成腔体,所述腔体中填充有磁流体;和
    多个电磁产生单元,设置在所述第一基板靠近所述第二基板的第一侧和远离所述第二基板的第二侧中的至少一侧,其中,所述多个电磁产生单元中的至少部分电磁产生单元被配置为在施加电压的情况下产生磁场,以使得所述磁流体形成菲涅尔波带片图案。
  2. 根据权利要求1所述的透镜组件,所述多个电磁产生单元中的至少一个包括螺线圈。
  3. 根据权利要求1所述的透镜组件,其中,所述多个电磁产生单元在所述第一基板上的正投影呈同心圆环排列。
  4. 根据权利要求3所述的透镜组件,其中,所述多个电磁产生单元在所述第一基板上的正投影呈菲涅尔波带片图案。
  5. 根据权利要求1所述的透镜组件,其中,所述多个电磁产生单元在所述第一基板上的正投影呈矩阵排列。
  6. 根据权利要求1所述的透镜组件,其中,所述多个电磁产生单元中的至少一个电磁产生单元设置在所述第一侧;
    所述透镜组件还包括:
    第一绝缘层,设置在所述至少一个电磁产生单元与所述磁流体之间,并且覆盖所述至少一个电磁产生单元。
  7. 根据权利要求1或6所述的透镜组件,还包括:
    第二绝缘层,设置在所述第二基板与所述磁流体之间。
  8. 根据权利要求1所述的透镜组件,所述多个电磁产生单元中的至少一个电磁产生单元设置在所述第二侧;
    所述透镜组件还包括:
    覆盖所述至少一个电磁产生单元的保护层。
  9. 根据权利要求1所述的透镜组件,其中,所述多个电磁产生单元相对于所述第一基板对称设置。
  10. 根据权利要求1所述的透镜组件,其中,所述磁场的方向垂直于所述第一基板所在的平面。
  11. 根据权利要求1所述的透镜组件,其中,所述第一基板中设置有多个薄膜晶体管,所述多个薄膜晶体管中的每一个与所述多个电磁产生单元中的至少一个连接。
  12. 根据权利要求1所述的透镜组件,其中,所述多个电磁产生单元设置在所述第一侧和所述第二侧中的至少一侧、以及所述第二基板靠近所述第一基板的一侧。
  13. 根据权利要求12所述的透镜组件,其中,所述多个电磁产生单元设置在所述第一侧和所述第二基板靠近所述第一基板的一侧。
  14. 一种太赫兹波层析成像系统,包括:如权利要求1-13任意一项所述的透镜组件,被配置为接收太赫兹波,并使得从所述透镜组件透射出的太赫兹波聚焦在待成像样品的待成像位置处。
  15. 根据权利要求14所述的太赫兹波层析成像系统,还包括:
    发射器,被配置为发射太赫兹波至所述透镜组件;和
    处理装置,被配置为接收从所述待成像样品透射出的太赫兹波并对接收到的太赫兹波进行处理,以得到所述待成像位置的图像。
  16. 根据权利要求15所述的太赫兹波层析成像系统,其中,所述处理装置包括:
    准直器,被配置为对从所述待成像样品透射出的太赫兹波进行准直;
    聚焦器,被配置为对准直后的太赫兹波进行聚焦;
    接收器,被配置为接收聚焦后的太赫兹波;和
    处理器,被配置为对聚焦后的太赫兹波进行处理,以得到所述待成像位置的图像。
  17. 一种太赫兹波过滤器,包括:如权利要求1-13任意一项所述的透镜组件和位于所述透镜组件出光侧的孔径光阑,所述透镜组件被配置为接收多种波长的太赫兹波,并将所述多种波长的太赫兹波中设定波长的太赫兹波聚焦在所述孔径光阑处。
  18. 一种太赫兹波层析成像方法,包括:
    发射太赫兹波至权利要求1-13任意一项所述的透镜组件;
    对所述多个电磁产生单元中的至少部分电磁产生单元施加电压,以使所述磁流体形成菲涅尔波带片图案,从而使得从所述透镜组件透射出的太赫兹波聚焦在待成像样品的待成像位置处;和
    接收从所述待成像样品透射出的太赫兹波并对接收到的太赫兹波进行处理,以得到所述待成像位置的图像。
  19. 根据权利要求18所述的太赫兹波层析成像方法,其中,所述至少部分电磁产生单元和所述多个电磁产生单元中未施加电压的其他电磁产生单元呈菲涅尔波带片图案分布。
  20. 根据权利要求19所述的太赫兹波层析成像方法,其中,对所述多个电磁产生单元中的至少部分电磁产生单元施加电压,以使所述磁流体形成菲涅尔波带片图案,从而使得从所述透镜组件透射出的太赫兹波聚焦在待成像样品的待成像位置处包括:
    对所述多个电磁产生单元中的第一部分电磁产生单元施加电压,以使所述磁流体形成第一菲涅尔波带片图案,从而使得从所述透镜组件透射出的太赫兹波聚焦在所述待成像样品的第一待成像位置处;
    对所述多个电磁产生单元中的第二部分电磁产生单元施加电压,以使所述磁流体 形成第二菲涅尔波带片图案,从而使得从所述透镜组件透射出的太赫兹波聚焦在所述待成像样品的第二待成像位置处;
    其中,所述第二部分电磁产生单元包括与所述第一部分电磁产生单元中的每一个均不同的至少一个电磁产生单元,以使得所述第二菲涅尔波带片图案的第一个半波带的半径与所述第一菲涅尔波带片图案的第一个半波带的半径不同。
PCT/CN2019/092063 2018-08-07 2019-06-20 透镜组件、太赫兹波层析成像系统、方法及过滤器 WO2020029691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/639,849 US11067503B2 (en) 2018-08-07 2019-06-20 Lens assembly, terahertz wave tomography system and method, and terahertz wave filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810890496.2A CN110824592B (zh) 2018-08-07 2018-08-07 透镜组件、太赫兹波层析成像系统、方法及过滤器
CN201810890496.2 2018-08-07

Publications (1)

Publication Number Publication Date
WO2020029691A1 true WO2020029691A1 (zh) 2020-02-13

Family

ID=69413893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092063 WO2020029691A1 (zh) 2018-08-07 2019-06-20 透镜组件、太赫兹波层析成像系统、方法及过滤器

Country Status (3)

Country Link
US (1) US11067503B2 (zh)
CN (1) CN110824592B (zh)
WO (1) WO2020029691A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526655A (zh) * 2020-11-18 2021-03-19 上海酷聚科技有限公司 液体透镜、液体透镜的使用方法及其制备方法
DE102021111253A1 (de) * 2021-04-30 2022-11-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Linsenantenne mit integrierter Interferenzfilterstruktur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449081B1 (en) * 1999-06-16 2002-09-10 Canon Kabushiki Kaisha Optical element and optical device having it
CN101501534A (zh) * 2006-08-15 2009-08-05 皇家飞利浦电子股份有限公司 可变焦透镜
CN102608814A (zh) * 2012-04-16 2012-07-25 信利半导体有限公司 一种连续变焦菲涅尔透镜
CN103038672A (zh) * 2010-07-27 2013-04-10 伦斯勒理工学院 可重构、非振荡液体透镜及成像系统
CN106338498A (zh) * 2016-11-11 2017-01-18 华讯方舟科技有限公司 水含量分布检测装置及其应用
CN106591787A (zh) * 2016-11-17 2017-04-26 燕山大学 一种厚度渐变图案化薄膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8618345D0 (en) * 1986-07-28 1986-09-03 Purvis A Optical components
JPH06130351A (ja) * 1992-10-19 1994-05-13 Toyota Motor Corp 液晶レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449081B1 (en) * 1999-06-16 2002-09-10 Canon Kabushiki Kaisha Optical element and optical device having it
CN101501534A (zh) * 2006-08-15 2009-08-05 皇家飞利浦电子股份有限公司 可变焦透镜
CN103038672A (zh) * 2010-07-27 2013-04-10 伦斯勒理工学院 可重构、非振荡液体透镜及成像系统
CN102608814A (zh) * 2012-04-16 2012-07-25 信利半导体有限公司 一种连续变焦菲涅尔透镜
CN106338498A (zh) * 2016-11-11 2017-01-18 华讯方舟科技有限公司 水含量分布检测装置及其应用
CN106591787A (zh) * 2016-11-17 2017-04-26 燕山大学 一种厚度渐变图案化薄膜的制备方法

Also Published As

Publication number Publication date
US20200363330A1 (en) 2020-11-19
CN110824592B (zh) 2021-12-21
CN110824592A (zh) 2020-02-21
US11067503B2 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2020029691A1 (zh) 透镜组件、太赫兹波层析成像系统、方法及过滤器
Wen et al. Steering valley-polarized emission of monolayer MoS2 sandwiched in plasmonic antennas
US9778520B2 (en) Liquid crystal display device
US9389454B2 (en) Liquid crystal lens, method of driving liquid crystal lens, lens unit, camera module, and capsule type medical device
Kim et al. Designing whispering gallery modes via transformation optics
US20170351111A1 (en) Electromagnetic wave focusing device and optical apparatus including the same
Pereira et al. Magnetoelectrics: Three centuries of research heading towards the 4.0 industrial revolution
TWI490591B (zh) 液晶透鏡結構
Loo et al. Broadband microwave Luneburg lens made of gradient index metamaterials
CN101655630A (zh) 液晶显示器及其制造方法
JP2011180373A (ja) 低電圧駆動液晶レンズ
Hsiang et al. Tailoring the light distribution of micro-LED displays with a compact compound parabolic concentrator and an engineered diffusor
WO2016176949A1 (zh) 薄膜晶体管及制备方法、阵列基板及制备方法、显示装置
US10606136B2 (en) Variable focal length liquid crystal lens assembly comprising a plurality of first and second conductive lines that cross each and structure thereof
DE212015000145U1 (de) Omnidirektionales Bildaufnahmegerät
Ren et al. An ultra-wideband vivaldi antenna system for long-distance electromagnetic detection
Bai et al. A non-volatile tunable terahertz metamaterial absorber using graphene floating gate
TWI692089B (zh) 顯示裝置
CN109844626A (zh) 液晶单元的制造方法和液晶单元
TWI754543B (zh) 顯示裝置
Hwang et al. Reconfigurable Single-Layer Graphene Radio Frequency Antenna Device Capable of Changing Resonant Frequency
CN104317118A (zh) 一种石墨烯基电控液晶光汇聚微透镜阵列芯片
TW201209513A (en) Aperture and camera module using same
Althuwayb et al. Realizing UWB antenna array with dual and wide rejection bands using metamaterial and electromagnetic bandgaps techniques
Li et al. Nanoscale characterization of surface plasmon-coupled photoluminescence enhancement in pseudo micro blue LEDs using near-field scanning optical microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848442

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19848442

Country of ref document: EP

Kind code of ref document: A1