WO2020029513A1 - 分子力场参数生成的计算任务管理分析系统及其运行方法 - Google Patents

分子力场参数生成的计算任务管理分析系统及其运行方法 Download PDF

Info

Publication number
WO2020029513A1
WO2020029513A1 PCT/CN2018/122777 CN2018122777W WO2020029513A1 WO 2020029513 A1 WO2020029513 A1 WO 2020029513A1 CN 2018122777 W CN2018122777 W CN 2018122777W WO 2020029513 A1 WO2020029513 A1 WO 2020029513A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculation
analysis
force field
task
computation
Prior art date
Application number
PCT/CN2018/122777
Other languages
English (en)
French (fr)
Inventor
陈勇攀
刘阳
张万超
宋翠华
韩非
温书豪
马健
赖力鹏
Original Assignee
深圳晶泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳晶泰科技有限公司 filed Critical 深圳晶泰科技有限公司
Priority to PCT/CN2018/122777 priority Critical patent/WO2020029513A1/zh
Priority to US16/630,467 priority patent/US11609807B2/en
Publication of WO2020029513A1 publication Critical patent/WO2020029513A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/547Remote procedure calls [RPC]; Web services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/54Indexing scheme relating to G06F9/54
    • G06F2209/541Client-server
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group

Definitions

  • the present invention belongs to the technical field of molecular force fields, and particularly relates to a calculation task management analysis system for generating molecular force field parameters and an operating method thereof.
  • a computer program ie, a parameterized system
  • a computer program ie, a parameterized system
  • the main modules of such systems are: automatic submission of calculation tasks, management of calculation tasks, static analysis of calculation results, and data management of force field parameters.
  • the traditional molecular force field construction system provides automatic submission, management, and static analysis functions for constructing computing tasks, which meets the basic needs of molecular force field construction workers.
  • the construction process of the force field parameters is usually not linear.
  • the data structure often presents a data structure in the form of a graph.
  • the traditional task calculation task management and presentation methods are based on the list management of a certain attribute of the task, which cannot be intuitive.
  • the graph data structure corresponding to the actual force field parameterization results in low management efficiency.
  • the calculation tasks in the construction of the force field parameters often design a large amount of data analysis. Usually, one task will be designed into thousands of molecular conformations. Traditional static analysis methods cannot well support the analysis of large-scale molecular conformations, and also limit the expansion of automated construction.
  • the present invention provides a calculation task management analysis system for molecular force field parameter generation and an operating method thereof, which meets the calculation management and analysis requirements of molecular force field construction under the background of new technologies.
  • a calculation task management analysis system for generating molecular force field parameters includes a calculation result analysis module and a calculation task management module.
  • the calculation result analysis module is connected to the calculation task management module, and the calculation task management module is constructed with the force field through a cloud computing interface. Computing server connection.
  • the calculation result analysis module includes interactive analysis, custom analysis, and automated analysis;
  • the calculation task management module includes calculation task submission, graph data structure view, calculation task template setting, calculation task result recovery, calculation path Setting;
  • the calculation task result recovery is connected with the calculation result analysis module, and the calculation task submission is connected with the cloud computing interface.
  • the operation method of the calculation task management and analysis system for generating molecular force field parameters includes the following steps:
  • the system submits a computing task to a local computing server or cluster, a supercomputing center, and a cloud service;
  • the system supports recovering the calculation result data to the local after the calculation task is completed, clearing the server or cloud computing data, and backing up important process data to the local;
  • the system can analyze the calculation results
  • an analysis template can be applied to quickly locate and analyze the abnormal data of the result
  • an automatic analysis function it can cooperate with the submission of an automated computing task to determine whether the task meets the target.
  • the present invention provides a calculation task management analysis system for molecular force field parameters and a running method thereof.
  • the core of the calculation task management is the management and scheduling of calculation tasks based on the characteristics of the actual data structure constructed by the molecular force field;
  • an interactive analysis method is used for the calculation results, which is convenient for users to quickly locate the problem, can quickly obtain the information of each abnormal data, and support the process of automated construction through function calls.
  • the calculation task management and analysis system for generating molecular force field parameters provided by the present invention and a method for operating the same, users of force field construction systems based on scientific researchers usually do not have strong open interface development capabilities, and the system provides convenience Cloud computing calling interface, which is convenient to call more computing power and improve the speed of force field construction; manages computing tasks in the form of graph data structure with characteristics of force field construction, panoramic and intuitive; provides interaction on the calculation results of force field construction
  • the analysis method is convenient for quickly locating calculation anomalies, and can support automatic processing of analysis tasks.
  • FIG. 1 is a schematic structural diagram of a structural system of the present invention
  • FIG. 2 is a flowchart of applying the present invention to different analysis scenario conditions
  • FIG. 3 is a flowchart of a manual analysis scenario using the present invention.
  • FIG. 4 is a flowchart of an automatic analysis scenario using the present invention.
  • FIG. 5 is a computing task management view of the present invention applied to a force field data structure
  • FIG. 7 is a schematic diagram of a molecular calculation path setting of the present invention.
  • a calculation task management analysis system for generating molecular force field parameters includes a calculation result analysis module and a calculation task management module.
  • the calculation result analysis module is connected to the calculation task management module, and the calculation task management module uses cloud computing.
  • the interface is connected to the force field construction computing server.
  • the calculation result analysis module includes interactive analysis, custom analysis, and automatic analysis.
  • the calculation task management module includes calculation task submission, graph data structure view, calculation task template settings, calculation task result recovery, calculation path settings, and calculation task results.
  • the recycling and calculation result analysis module is connected, and the calculation task submission is connected to the cloud computing interface.
  • the system can apply two modes of manual analysis and automatic analysis, where manual analysis is divided into interactive analysis and custom analysis; usually, automatic analysis is applied when large-scale calculations are required; in the system
  • the built-in analysis template can use interactive analysis when the analysis needs are met; use custom analysis when personalized analysis is needed, as shown in Figure 2.
  • the system can automatically recommend calculation parameters based on the type of molecules entered by a machine learning algorithm, and the user can also adjust the parameters as required. The parameters are adjusted to suit their own needs.
  • the system supports submitting computing tasks to a local computing server or cluster, a supercomputing center, and a cloud service.
  • the force field construction workers use local computing servers or supercomputing centers to perform calculations.
  • cloud services can obviously provide greater computing power to increase the speed of construction.
  • general scientific research institutions do not have the ability to develop open interfaces for cloud services, and this system can overcome this obstacle.
  • the system supports recovery of calculation result data to the local area after the calculation task is completed, and at the same time, for security considerations, it supports clearing of server or cloud computing data, while backing up important process data to the local area.
  • the system uses an interactive analysis component corresponding to the calculation template to construct an analysis report of the calculation results.
  • the conventional molecular force field construction result analysis model as an example, it will include the ratio of energy, force, and structural parameters (bond length, bond angle, dihedral angle, abnormal dihedral angle, etc.) calculated by the molecular mechanics method and the quantum mechanical method. Correct.
  • the analysis function provided by the interactive analysis is sufficient to meet the general analysis requirements, but there are situations where the user will need to analyze other data.
  • a custom analysis function can be used to import the required data for analysis. Since the molecular data submitted by the calculation task is also based on the number of the molecular conformation as the main index, the attributes or calculation results of each conformation can be obtained according to the conformation.
  • Custom analysis supports a variety of chart types. In addition to common scatter, line, bar, and pie charts, it also supports box and violin charts that are sensitive to deviations and distributions, helping users to find out more clearly. Data issues.
  • A sets the calculation path of the molecular set
  • the system supports multi-task parallel submission, and the path of molecular calculation needs to be set in advance.
  • a batch of molecules may have x alkanes, y aldols, and z nitrogen-containing compounds. It is necessary to perform three fitting calculations on x alkane first, and then complete three fitting calculations on y aldols and z nitrogen compounds simultaneously. The path at this time is shown in Figure 7.
  • the system can automatically analyze the task calculation result and save the analysis result because the automatic analysis standard was previously set. If the analysis result meets the requirements, the calculation will be continued until completion.
  • a scientific researcher of an institution plans to use 10,000 molecules to construct a new set of molecular force fields. Among them, the plan is divided into 100 tasks, and each time 100 molecules are fitted to the force field to construct the force field.
  • the person can plan the calculation path for 100 tasks in advance, and use the system's automatic matching template function to quickly set the calculation template, and then submit it to the cloud for calculation. 100 submissions. Due to the use of automated analysis, the next task can be continued directly after the completion of the task, making full use of the gap time. In addition, the computing power on the cloud is more powerful and the calculation speed is faster, so the molecular force field construction efficiency is greatly improved.
  • the construction path of the molecular force field, the data structure and the distribution and total amount of the calculation task can be clearly viewed in the calculation task management interface, and the global information of the molecular force field construction can be understood in a panoramic view.
  • the relevant information and molecular conformation at any point can be directly viewed, and it can also help the user calculate other conformations using similar parameters for observing whether there are any abnormalities; You can also use some calculation functions to quickly screen out a batch of abnormal molecules through the calculation of certain values, which greatly improves the user's efficiency.
  • a custom analysis function can also be used to meet the personalized needs of users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)

Abstract

分子力场参数生成的计算任务管理分析系统及其运行方法,包括计算结果分析模块和计算任务管理模块,计算结果分析模块与计算任务管理模块连接,计算任务管理模块通过云计算接口与力场构件计算服务器连接。运行方法为(1)选择分子力场构建计算模板,(2)选择计算任务提交平台并提交计算,(3)回收计算结果,(4)分析计算结果。系统及其方法提供了方便的云计算调用接口,提高力场构建的速度;全景化且直观;提供对力场构建计算结果的交互式分析方式,方便快速定位计算异常,且能支持自动化处理分析任务。

Description

分子力场参数生成的计算任务管理分析系统及其运行方 法
技术领域
[0001] 本发明属于分子力场技术领域, 具体涉及一种分子力场参数生成的计算任务管 理分析系统及其运行方法。
背景技术
[0002] 在传统的分子力场构建方法中, 通常使用计算机程序 (即参数化系统) 来实现 自动化计算任务的提交、 管理和计算结果的分析, 以完成分子力场的自动化构 建。 通常此类系统包含的主要模块为: 计算任务的自动化提交、 计算任务的管 理、 计算结果的静态分析、 力场参数的数据管理。 总体来说, 传统的分子力场 构建系统提供的构建计算任务的自动化提交、 管理和静态分析功能, 满足了分 子力场构建工作者的基础需要。
[0003] 随着药物、 材料和化学等工业的发展, 涉及的分子类型越来越多, 传统的分子 力场在准确性和覆盖度上越来越无法满足研发的需求。 另外, 基于传统力场构 建的方法的计算方式基于本地或者服务器集群的计算方式速度较慢, 已经无法 满足能覆盖更大化学空间的通用力场构建的需求。
[0004] 力场参数的构建过程通常不是线性的, 数据结构往往会呈现出图形式的数据结 构, 传统的任务计算任务管理和展现方式都是基于任务的某一属性的列表管理 , 无法直观的对应到实际力场参数化的图数据结构, 造成了管理效率的低下; 另外, 力场参数的构建过程中的计算任务常常设计大量的数据分析, 通常一个 任务会设计成千上万个分子构象, 传统的静态分析方法无法很好的支撑大批量 分子构象的分析工作, 也同时限制了自动化构建的拓展能力。
发明概述
技术问题
问题的解决方案 技术解决方案
[0005] 针对上述技术问题, 本发明提供一种分子力场参数生成的计算任务管理分析系 统及其运行方法, 适应新技术背景下的分子力场构建的计算管理和分析需求。
[0006] 具体技术方案为:
[0007] 分子力场参数生成的计算任务管理分析系统, , 包括计算结果分析模块和计算 任务管理模块, 计算结果分析模块与计算任务管理模块连接, 计算任务管理模 块通过云计算接口与力场构建计算服务器连接。
[0008] 其中, 所述的计算结果分析模块包括交互式分析、 自定义分析、 自动化分析; 计算任务管理模块包括计算任务提交、 图数据结构视图、 计算任务模板设置、 计算任务结果回收、 计算路径设置; 计算任务结果回收与计算结果分析模块连 接, 计算任务提交与云计算接口连接。
[0009] 该分子力场参数生成的计算任务管理分析系统的运行方法, 包括以下步骤:
[0010] ( 1) 选择分子力场构建计算模板
[0011] 对于不同类型的分子, 提交分子力场构建计算任务时会需要调整不同的参数, 系统根据输入的分子类型通过机器学习的算法自动推荐计算参数, 同时使用者 也可以根据需要对参数进行调整; 如果进行自动化计算任务提交, 还可以设置 分子计算路径;
[0012] (2) 选择计算任务提交平台并提交计算
[0013] 系统将计算任务提交到本地计算服务器或集群、 超算中心、 云服务;
[0014] (3) 回收计算结果
[0015] 系统支持在计算任务完成后, 回收计算结果数据至本地, 清除服务器或者云端 的计算数据, 同时备份重要过程数据至本地;
[0016] 计算任务回收后, 会按照力场参数的图数据结构并以力场参数为索引展示;
[0017] 4) 分析计算结果
[0018] 回收计算结果后, 系统可以对计算结果进行分析;
[0019] 如应用交互式分析功能, 可以应用分析模板快速对结果的数据异常进行定位和 分析;
[0020] 如应用自定义分析功能, 可以自定义分析图的类型和展示的数据, 生成图表, 进行分析;
[0021] 如应用自动化分析功能, 可以配合自动化计算任务提交做任务是否达标的判定
[0022] 本发明提供的分子力场参数生成的计算任务管理分析系统及其运行方法, 计算 任务管理的核心是基于分子力场构建的实际数据结构的特征来进行计算任务的 管理和调度; 另一方面对于计算结果采用交互式分析的方式, 方便使用者快速 定位问题, 能够迅速获取每一个异常数据的信息, 并通过函数的调用来支持自 动化构建的过程。
[0023] 本发明提供的分子力场参数生成的计算任务管理分析系统及其运行方法, 以科 研人员为主的力场构建系统使用者通常不具备强大的开放接口开发能力, 本系 统提供了方便的云计算调用接口, 方便调用更大算力, 提高力场构建的速度; 以力场构建特点的图数据结构的形式来管理计算任务, 全景化且直观; 提供对 力场构建计算结果的交互式分析方式, 方便快速定位计算异常, 且能支持自动 化处理分析任务。
发明的有益效果
有益效果
对附图的简要说明
附图说明
[0024] 图 1是本发明结构系统结构示意图;
[0025] 图 2是本发明应用不同分析场景条件的流程图;
[0026] 图 3是本发明使用手动分析场景的流程图;
[0027] 图 4是本发明使用自动分析场景的流程图;
[0028] 图 5是本发明应用于力场数据结构的计算任务管理视图;
[0029] 图 6是本发明的计算结果交互式分析视图;
[0030] 图 7是本发明分子计算路径设置的示意图。
发明实施例
本发明的实施方式 [0031] 结合实施例说明本发明的具体技术方案。
[0032] 如图 1所示, 分子力场参数生成的计算任务管理分析系统, 包括计算结果分析 模块和计算任务管理模块, 计算结果分析模块与计算任务管理模块连接, 计算 任务管理模块通过云计算接口与力场构建计算服务器连接。 所述的计算结果分 析模块包括交互式分析、 自定义分析、 自动化分析; 计算任务管理模块包括计 算任务提交、 图数据结构视图、 计算任务模板设置、 计算任务结果回收、 计算 路径设置; 计算任务结果回收与计算结果分析模块连接, 计算任务提交与云计 算接口连接。
[0033] 针对不同的使用场景, 本系统可以应用手动分析和自动化分析两种模式, 其中 手动分析又分为交互式分析和自定义分析; 通常在需要进行大批量计算时应用 自动化分析; 在系统自带分析模板可以满足分析需要时使用交互式分析; 需要 个性化分析时使用自定义分析, 如图 2所示。
[0034] 应用于手动分析的具体使用流程如图 3所示;
[0035] 应用于自动分析的具体使用流程如图 4所示;
[0036] 下面对图中的功能模块和流程进行说明。
[0037] 通常一次完成的分子力场的构建过程是需要多次分步计算, 手动分析的使用流 程以其中一次典型的分子力场构建计算任务的提交到分析为例。
[0038] 一般情况下会选择一批同类分子作为力场构建拟合过程的输入, 输入后, 要完 成以下步骤:
[0039] ( 1) 选择分子力场构建计算模板
[0040] 对于不同类型的分子, 提交分子力场构建计算任务时会需要调整不同的参数, 本系统能够根据输入的分子类型通过机器学习的算法自动推荐计算参数, 同时 使用者也可以根据需要对参数进行调整, 以适应自身需求。
[0041] (2) 选择计算任务提交平台并提交计算
[0042] 本系统支持将计算任务提交到本地计算服务器或集群、 超算中心、 云服务。 通 常力场构建工作者都是通过本地计算服务器或超算中心来计算, 而随着云服务 的发展, 云服务显然可以提供更大的算力, 以提升构建速度。 但一般的科研机 构不具备对云服务的开放接口开发能力, 通过本系统可以克服该障碍。 [0043] (3) 回收计算结果
[0044] 本系统支持在计算任务完成后, 回收计算结果数据至本地, 同时处于安全考虑 , 支持清除服务器或者云端的计算数据, 同时备份重要过程数据至本地。
[0045] 计算任务回收后, 会按照力场参数的图数据结构并以力场参数为索引展示, 如 图 5
[0046] (4) 结果分析
[0047] (a) 交互式分析
[0048] 根据不同的计算模板, 系统会使用对应计算模板的交互式分析组件来构建计算 结果的分析报告。 以常规的分子力场构建结果分析模式为例, 会包括分子力学 方法与量子力学方法计算出的能量、 力、 结构参数 (键长、 键角、 二面角、 反 常二面角等) 的比对。 利用交互式分析功能, 可以很快读取出离群异常点的所 有数据, 并快速定位到异常数据的分析图, 以某散点图的效果为例, 见图 6; 另 夕卜, 还可以通过一些计算函数来批量筛出离群异常点。
[0049] (b) 自定义分析
[0050] 通常使用交互式分析自带的分析功能就足以满足常规分析需求, 但也存在使用 者会需要分析其他数据的情况, 这时可以使用自定义分析功能来导入需要的数 据来进行分析。 由于计算任务提交的分子数据也是基于分子构象的编号为主索 引的, 因此可以按照构象拿到每个构象的属性或者计算结果。 自定义分析支持 多种图表类型, 除常见的散点图、 折线图、 柱状图、 饼图外, 还支持箱线图、 小提琴图等对偏差和分布敏感的图表, 帮助使用者更清晰地发现数据的问题。
[0051] 如果使用自动分析功能, 如图 4所示, 则可以通过计算路径和分析标准的设定 来连续自动执行, 具体步骤和相关的功能模块介绍如下:
[0052] A设置分子集合的计算路径
[0053] 本系统支持多任务并行提交, 需要提前设置好分子计算的路径。
[0054] 例如一批分子可能有 x个烷烃、 y个醇醛酮类、 z个含氮化合物。 需要先对 x个烷 烃进行三次拟合计算, 完成再同时对 y个醇醛酮类和 z个含氮化合物并行做三次拟 合计算。 这时的路径如图 7所示。
[0055] 需要在每一个路径上设置需要计算的分子、 计算任务的模板、 自动化分析的标 准。 其中自动化分析的标准用于判断当前任务的拟合过程是否达到要求, 如果 达到要求则进行下一步计算; 如果未达到则中断进程并通知使用者重新设定计 算条件。
[0056] B选择计算任务提交平台并提交计算
[0057] 同交互式分析。
[0058] C回收计算结果
[0059] 同交互式分析。
[0060] D自动化分析
[0061] 本系统在计算结果回收后, 由于之前设置了自动分析标准, 可以对任务计算结 果进行自动化分析, 并留存分析结果, 符合要求的则会继续计算直至完成。
[0062] 以一次完整的分子力场构建过程的情况为例来说明效益。
[0063] 某机构科研人员计划用 10000个分子来构建一套新的分子力场。 其中计划分 100 次任务, 每次 100个分子进行力场拟合来构建力场。
[0064] 通过使用本系统, 该人员可以将 100次任务提前进行计算路径规划, 并利用系 统的自动匹配模板的功能快速设置计算模板, 然后提交到云上计算, 而如果使 用传统方式则需要分次提交 100次。 由于采用了自动化分析, 任务完成后可以直 接继续下一任务, 充分利用了空隙的时间; 另外云上算力更强大, 计算速度要 更快, 因此大大提升了分子力场的构建效率。
[0065] 当计算完成后, 可以在计算任务管理界面清晰地查看分子力场的构建路径、 数 据结构和计算任务的分布以及总量, 能全景地了解此次分子力场构建的全局信 息。
[0066] 对于计算结果的交互式分析, 如图 6中, 可以直接查看任一点的相关信息和分 子构象, 还能帮助使用者计算使用了同类参数的其他构象, 用于观察是否都有 异常; 还可以利用一些计算函数通过对某些值的计算, 快速筛出一批异常分子 , 大大提高了使用者的效率。
[0067] 另外, 如有特殊的需要, 还可以使用自定义分析功能, 满足了使用者的个性化 需求。

Claims

权利要求书 [权利要求 1] 分子力场参数生成的计算任务管理分析系统, 其特征在于, 包括计算 结果分析模块和计算任务管理模块, 计算结果分析模块与计算任务管 理模块连接, 计算任务管理模块通过云计算接口与力场构建计算服务 器连接。 [权利要求 2] 根据权利要求 i所述的分子力场参数生成的计算任务管理分析系统, 其特征在于, 所述的计算结果分析模块包括交互式分析、 自定义分 析、 自动化分析; 计算任务管理模块包括计算任务提交、 图数据结构 视图、 计算任务模板设置、 计算任务结果回收、 计算路径设置; 计算 任务结果回收与计算结果分析模块连接, 计算任务提交与云计算接口 连接。 [权利要求 3] 根据权利要求 1或 2所述的分子力场参数生成的计算任务管理分析系统 的运行方法, 其特征在于, 包括以下步骤:
( 1) 选择分子力场构建计算模板
对于不同类型的分子, 提交分子力场构建计算任务时会需要调整不同 的参数, 系统根据输入的分子类型通过机器学习的算法自动推荐计算 参数, 同时使用者也可以根据需要对参数进行调整; 如果进行自动化 计算任务提交, 还可以设置分子计算路径;
(2) 选择计算任务提交平台并提交计算
系统将计算任务提交到本地计算服务器或集群、 超算中心、 云服务;
(3) 回收计算结果
系统支持在计算任务完成后, 回收计算结果数据至本地, 清除服务器 或者云端的计算数据, 同时备份重要过程数据至本地;
计算任务回收后, 会按照力场参数的图数据结构并以力场参数为索引 展示; (4) 分析计算结果
回收计算结果后, 系统对计算结果进行分析;
如应用交互式分析功能, 应用分析模板快速对结果的数据异常进行定 位和分析; 如应用自定义分析功能, 自定义分析图的类型和展示的数据, 生成图 表, 进行分析;
如应用自动化分析功能, 配合自动化计算任务提交做任务是否达标的 判定。
PCT/CN2018/122777 2018-12-21 2018-12-21 分子力场参数生成的计算任务管理分析系统及其运行方法 WO2020029513A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/122777 WO2020029513A1 (zh) 2018-12-21 2018-12-21 分子力场参数生成的计算任务管理分析系统及其运行方法
US16/630,467 US11609807B2 (en) 2018-12-21 2018-12-21 Computing task management and analysis system for molecular force field parameter building and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122777 WO2020029513A1 (zh) 2018-12-21 2018-12-21 分子力场参数生成的计算任务管理分析系统及其运行方法

Publications (1)

Publication Number Publication Date
WO2020029513A1 true WO2020029513A1 (zh) 2020-02-13

Family

ID=69413259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122777 WO2020029513A1 (zh) 2018-12-21 2018-12-21 分子力场参数生成的计算任务管理分析系统及其运行方法

Country Status (2)

Country Link
US (1) US11609807B2 (zh)
WO (1) WO2020029513A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131707A (zh) * 2006-08-25 2008-02-27 屹昂计算化学软件(上海)有限公司 分子力学力场参数的自动化生成方法
CN107239675A (zh) * 2017-07-21 2017-10-10 上海桑格信息技术有限公司 基于云平台的生物信息分析系统
CN107368700A (zh) * 2017-07-21 2017-11-21 上海桑格信息技术有限公司 基于计算云平台的微生物多样性交互分析系统及其方法
CN108664729A (zh) * 2018-05-10 2018-10-16 深圳晶泰科技有限公司 一种gromacs云计算流程控制方法
CN108804863A (zh) * 2018-05-04 2018-11-13 深圳晶泰科技有限公司 通用力场数据库及其更新方法和检索方法
CN108846253A (zh) * 2018-06-21 2018-11-20 上海理工大学 一种利用计算机模拟构建氧化石墨烯与聚碳化二亚胺交联结构模型的方法
CN109637592A (zh) * 2018-12-21 2019-04-16 深圳晶泰科技有限公司 分子力场参数生成的计算任务管理分析系统及其运行方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131707A (zh) * 2006-08-25 2008-02-27 屹昂计算化学软件(上海)有限公司 分子力学力场参数的自动化生成方法
CN107239675A (zh) * 2017-07-21 2017-10-10 上海桑格信息技术有限公司 基于云平台的生物信息分析系统
CN107368700A (zh) * 2017-07-21 2017-11-21 上海桑格信息技术有限公司 基于计算云平台的微生物多样性交互分析系统及其方法
CN108804863A (zh) * 2018-05-04 2018-11-13 深圳晶泰科技有限公司 通用力场数据库及其更新方法和检索方法
CN108664729A (zh) * 2018-05-10 2018-10-16 深圳晶泰科技有限公司 一种gromacs云计算流程控制方法
CN108846253A (zh) * 2018-06-21 2018-11-20 上海理工大学 一种利用计算机模拟构建氧化石墨烯与聚碳化二亚胺交联结构模型的方法
CN109637592A (zh) * 2018-12-21 2019-04-16 深圳晶泰科技有限公司 分子力场参数生成的计算任务管理分析系统及其运行方法

Also Published As

Publication number Publication date
US20210064427A1 (en) 2021-03-04
US11609807B2 (en) 2023-03-21

Similar Documents

Publication Publication Date Title
CN109637592B (zh) 分子力场参数生成的计算任务管理分析系统及其运行方法
US20020178075A1 (en) Method and apparatus upgrade assistance using critical historical product information
US20070216698A1 (en) Method And Apparatus For Status Display
US20080086716A1 (en) Method and apparatus for information display with intermediate datasource access
US20100205153A1 (en) Data System Architecture to Analyze Distributed Data Sets
Plale et al. From interactive applications to distributed laboratories
CN109885390A (zh) 分子对接云计算流程控制方法
WO2020029513A1 (zh) 分子力场参数生成的计算任务管理分析系统及其运行方法
CN108132802B (zh) 一种配置模型在系统开发中的应用方法
Lendermann et al. An integrated and adaptive decision-support framework for high-tech manufacturing and service networks
Qi et al. From service to digital twin service
Ragazzini et al. Modelling Manufacturing Systems for Digital Twin Through Communicating Finite State Machines
US20190087919A1 (en) Interface that provides separate data entry and data presentation in a manufacturing environment
CN101330407A (zh) 一种分布式业务系统运营监控方法
Wang et al. Research and Implementation of Bidirectional Code Association Pattern Based on Requirement Driven
Dalman et al. Workflows for metabolic flux analysis: data integration and human interaction
Dhas et al. Modern Metrics (MM): Software size estimation using function points for artificial intelligence and data analytics applications and finding the effort modifiers of the functional units using indian software industry
RU2703183C1 (ru) Интегрированная информационно-аналитическая система обеспечения качества автоматизированных систем военного назначения
Abgrall et al. Urban deployment model (udm) v1. 0
Mohammadi et al. Continuous evaluation of the performance of cloud infrastructure for scientific applications
CN117372206A (zh) 一种元宇宙统一服务集成方法与系统
Wu et al. Experimental Study on Data Update Rate of the Display Interface of Coal Mine Intelligent Production System
Koikekoi Evolution of CFD software from academic code to practical engineering software
Anandan et al. A new short kernel learning methods using cloud computing for quality inspection in information technology organization system
Liu et al. Innovative methods in the construction of digital twin factory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929198

Country of ref document: EP

Kind code of ref document: A1