WO2020029413A1 - 一种液力端阀箱内腔及柱塞端密封孔修复方法 - Google Patents

一种液力端阀箱内腔及柱塞端密封孔修复方法 Download PDF

Info

Publication number
WO2020029413A1
WO2020029413A1 PCT/CN2018/109028 CN2018109028W WO2020029413A1 WO 2020029413 A1 WO2020029413 A1 WO 2020029413A1 CN 2018109028 W CN2018109028 W CN 2018109028W WO 2020029413 A1 WO2020029413 A1 WO 2020029413A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
valve box
end valve
repair
inner cavity
Prior art date
Application number
PCT/CN2018/109028
Other languages
English (en)
French (fr)
Inventor
王贺
李杨
樊品辉
朱正玉
冯海坤
Original Assignee
上海清河机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海清河机械有限公司 filed Critical 上海清河机械有限公司
Priority to US16/464,457 priority Critical patent/US20200331088A1/en
Publication of WO2020029413A1 publication Critical patent/WO2020029413A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/164Arc welding or cutting making use of shielding gas making use of a moving fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories

Definitions

  • the invention relates to the field of welding repair, in particular to a method for repairing an inner cavity of a hydraulic end valve box and a sealing hole of a plunger end.
  • Hydraulic end valve box is a core and key component used in the field of oil drilling and production equipment. It is mainly used to fracture ground formations with a depth of 3000 to 7000 meters and to inject various proppants under high pressure to form oil reservoirs in the formation. A special equipment that can withstand high pressure, large displacement and corrosion resistance.
  • the hydraulic end of the plunger pump is mainly a device that sucks low-pressure fluid from the suction end and converts it into high-pressure fluid and discharges it from the discharge end.
  • the hydraulic end valve box is a veritable consumable part in the field of fracturing equipment, and its service life varies according to the oilfield fracturing conditions.
  • the hydraulic end valve box is a necessary and fragile part on the fracturing truck, and its performance is very important for oil extraction and fracturing operations. Because the fracturing pump has been working in harsh environments for a long time, its valve box has a complicated structure. Although it uses high-quality high-quality steel and fine processing technology, it will also be affected by ultra-high pressure, large displacement, and high sand ratio. Corrosion cracks and is scrapped. At present, the highest manufacturing level in the world. Under normal fracturing working conditions, the working time is only about 200 hours.
  • the present invention provides a method for repairing the inner cavity of a hydraulic end valve box and the sealing hole of a plunger end.
  • the repair method provided by the invention can effectively repair the inner cavity of the hydraulic end valve box and the sealing hole of the plunger end, improve the service life of the hydraulic end valve box and the plunger end, and reduce the cost of fracturing and mining.
  • the technical solution adopted by the present invention is: a method for repairing the inner cavity of a hydraulic end valve box, including the following steps:
  • the internal cavity of the hydraulic end valve box to be repaired is mechanically pre-machined, and the reserved unilateral repair size processed to the internal cavity is 4 to 5 mm; the hydraulic end valve box to be repaired is a fluid that has cracked but has not failed. Force end valve box;
  • n layers of welding cladding repairs are sequentially performed on the surface of the transition layer to form n layers of repair welding layers; the n ⁇ 2; the total effective thickness of the n-layer repair welding layers and the transition layer is ⁇ 5 mm;
  • the mechanical properties and corrosion resistance of the welding consumables used in the step (4) are higher than those of the parent material of the hydraulic end valve box to be repaired;
  • the welding in the steps (3) and (4) is a non-melting extremely inert gas tungsten electrode shielded welding.
  • the welding method in the steps (3) and (4) is a circular automatic rotary multi-pass welding
  • the automatic pulse welding frequency of the welding is independently 2.5 to 5.0 HZ, and the pulse ratio is independently 40 to 60%;
  • the welding main current is independently 150-210A;
  • the welding hot wire current is independently 30 to 70A;
  • the welding hot-wire voltage is 14V;
  • the polarity of the welding current is DC reverse connection
  • the specifications of the welding consumables are independently ⁇ 1 to 3mm;
  • the welding shielding gas is argon; the flow rate of the argon is independently 16 to 19 L / min;
  • the diameter of the welded nozzle is independently ⁇ 8-10mm;
  • the welding wire feeding speed is independently 1500 to 2000 mm / min;
  • the welding speed is independently 100 to 500 mm / min;
  • the welding interlayer temperature is independently ⁇ 200 ° C;
  • the heat input power of the welding is independently 0.4-0.6KJ / mm.
  • the material of the welding consumables in the steps (3) and (4) is independently iron-based, nickel-based, or stainless steel;
  • the welding material used in the step (4) is ER49, ER50 or ERCoCR-A;
  • the welding material in step (4) is EDZCr-C-15, ER50 or ERCoCR-A;
  • the welding material used in the step (4) is A022Mo, E317L-16, ER49, ER50, or ERCoCR-A.
  • the hydraulic end valve box is preheated before welding; the preheating temperature is 160 to 200 ° C, and the preheating time is 2 to 3h.
  • the temperature of the hydraulic end valve box during the welding in steps (3) to (4) is not lower than 150 ° C.
  • heat preservation treatment is further included; the temperature of the heat preservation is 160 to 200 ° C; and the time of the heat preservation is 4 to 5 hours.
  • the roughness of the inner cavity surface after the shot blasting in the step (2) is 1 to 100 ⁇ m.
  • the invention provides a method for repairing a seal hole at a plunger end. According to the method described in the above scheme, the inner cavity of the hydraulic end valve box to be repaired is replaced by a seal hole at the plunger end, and the seal hole at the plunger end is replaced. repair.
  • the invention provides a method for repairing the inner cavity of a hydraulic end valve box.
  • the inner cavity of the hydraulic end valve box to be repaired is machined so that the inner cavity is reserved for a single-sided repair size; and then the inner cavity is shot blasted and cleaned.
  • the inner cavity is subjected to basic repair to form a primer welding layer, and n-layer welding cladding repair is performed on the primer welding layer to form n-layer repair welding layers.
  • the inner cavity after welding repair is mechanically finished.
  • the repair method provided by the invention is simple and easy to control, and the repaired hydraulic end valve box is subjected to fracturing construction under the condition of 50 to 100 MPa, which can continue to be used for about 200 hours.
  • the repair of the hydraulic end valve box can greatly reduce the pressure. Equipment cost for cracking oil.
  • the invention also provides a method for repairing the sealing hole of the plunger end, and the repairing process is consistent with the repairing process of the inner cavity of the hydraulic end valve box. Use about 200h.
  • the invention provides a method for repairing the inner cavity of a hydraulic end valve box, including the following steps:
  • the internal cavity of the hydraulic end valve box to be repaired is mechanically pre-machined, so that the reserved unilateral repair size of the internal cavity is 4 to 5 mm; the hydraulic end valve box to be repaired is a hydraulic force that has cracked but has not failed.
  • n layers of welding cladding repairs are sequentially performed on the surface of the transition layer to form n layers of repair welding layers; the n ⁇ 2; the total effective thickness of the n-layer repair welding layers and the transition layer is ⁇ 5 mm;
  • the mechanical properties and corrosion resistance of the welding consumables in the step (4) are higher than those of the welding consumables in the step (3);
  • the internal cavity of the hydraulic end valve box to be repaired is mechanically pre-processed, and the reserved unilateral repair size processed to the internal cavity is 4 to 5 mm.
  • the hydraulic end valve box to be repaired is a hydraulic end valve box that has cracked but has not failed, and is preferably a hydraulic end valve box after 200 hours of use.
  • the invention performs mechanical pre-processing on the size of the inner cavity of the valve box to ensure that the reserved unilateral repair size is 4 to 5 mm, thereby ensuring the thickness of the repair layer.
  • the present invention has no special requirements for the specific method of the mechanical pre-processing, and it only needs to be able to reach the processing size required by the present invention, such as turning, milling, grinding, and the like.
  • the present invention sequentially performs shot blasting and cleaning processing on the surface of the inner cavity after machining.
  • the roughness of the inner cavity surface after the shot blasting treatment is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m, even more preferably 6 to 6.5 ⁇ m, and most preferably 6.3 ⁇ m.
  • the specific method of the treatment is not particularly required, and the required surface roughness can be achieved by using shot blasting treatment which is well known to those skilled in the art.
  • the invention increases the roughness of the surface of the inner cavity through shot blasting, so that the welding material of the transition layer can have sufficient adhesion with the surface of the inner cavity of the valve box.
  • the cleaning treatment is preferably gasoline cleaning; the present invention removes impurities such as oil and rust on the surface of the inner cavity through the cleaning treatment, so as to prevent the impurities from affecting the bonding performance of the welding material and the base material.
  • the present invention performs a basic welding cladding repair on the cleaned inner cavity to form a transition layer on the inner cavity surface.
  • the temperature of the pre-heat treatment is preferably 160 to 200 ° C, more preferably 180 ° C, and the preheating time is preferably 2 to 3 hours. , More preferably 2h.
  • a heat treatment furnace is preferably used to preheat the hydraulic end valve box, and the present invention provides good temperature conditions for subsequent welding by preheating.
  • the present invention takes the valve box out of the furnace and performs basic welding and cladding repair on the inner cavity.
  • the welding is preferably a non-melting extremely inert gas tungsten arc welding (TIG welding);
  • the automatic pulse welding frequency of the welding is preferably 2.5 to 5.0 HZ, more preferably 3 to 4 HZ, and the pulse ratio is preferably 40 to 60%, more preferably 50%
  • main welding current is preferably 150 to 210A, more preferably 180 to 200A
  • hot wire current for welding is preferably 30 to 70A, more preferably 40 to 60A
  • hot wire for welding The voltage is preferably 14V
  • the polarity of the welding current is preferably direct current reverse connection (DCEN)
  • the specification of the welding consumables is preferably ⁇ 1 to 3mm, more preferably ⁇ 2mm
  • the shielding gas for welding is preferably argon;
  • the mixing ratio is preferably 99.999%, the flow rate of the argon gas is preferably 16 to 19 L / min, and more preferably
  • the diameter of the welding nozzle is preferably ⁇ 8 to 10mm, and more preferably ⁇ 10mm.
  • the wire feeding speed of the welding is preferably 1500 to 2000 mm / min, more preferably 1600 to 1800 mm / min, welding speed is preferably 100 to 500 mm / min, more preferably 200 to 400 mm / min, and the interlayer temperature of welding is preferably ⁇ 200 ° C, more preferably 100 ⁇ 150 °C, the heat input power of welding is preferably 0.4 ⁇ 0.6KJ / mm, more Elected 0.5KJ / mm.
  • the welding material for basic welding is preferably a soft welding material, and the material of the welding material is preferably iron-based, nickel-based, or stainless steel; the present invention preferably selects welding according to the material of the hydraulic end valve box to be repaired.
  • the material of the material; in a specific embodiment of the present invention, the welding material for basic welding is preferably stainless steel ER309LMo.
  • the welding torch is preferably rotated at 45 ° automatically from the inside to the outside at a uniform speed to ensure that there are no broken wires or stops in the middle, thereby ensuring the performance of the material after welding.
  • the thickness of the transition layer is preferably ⁇ 1 mm, and more preferably 1 to 2 mm.
  • a transition layer is formed on the surface of the inner cavity of the valve box through basic welding to bond the base material and the repair welding layer material.
  • the present invention sequentially performs n-layer welding cladding repair on the surface of the transition layer to form an n-layer repair welding layer.
  • the n ⁇ 2, preferably 2 ⁇ 5; the total effective thickness of the n-layer repair welding layer and the transition layer is ⁇ 5mm, preferably 5 ⁇ 6mm; the invention repairs the n layer
  • the single layer thickness of the welding layer is no special requirement for the single layer thickness of the welding layer, as long as the total effective thickness of the n-layer repair welding layer and the transition layer can meet the above requirements.
  • the material of the welding consumable in step (4) is preferably iron-based, nickel-based, or stainless steel; the mechanical properties and corrosion resistance of the welding consumable in step (4) are higher than hydraulic End valve box base material; in a specific embodiment of the present invention, when the hydraulic end valve box base material is carbon steel, the welding material in step (4) is preferably ER49, ER50 or ERCoCR-A; When the base material of the hydraulic end valve box is alloy steel, the welding material used in the step (4) is preferably EDZCr-C-15, ER50 or ERCoCR-A; the base material of the hydraulic end valve box is stainless steel In this case, the welding material for welding in the step (4) is preferably A022Mo, E317L-16, ER49, ER50, or ERCoCR-A.
  • the present invention uses a high-performance welding material on the surface of the transition layer to perform multi-layer cladding repair, so that the cracks in the inner cavity of the hydraulic end valve box can be repaired well.
  • the welding welding repair of the latter layer is preferably extended to the welding trough welding of the previous layer to ensure the welding. Fusion performance between layers.
  • the welding conditions of the n-layer welding cladding repair process are consistent with the above scheme, and are not repeated here.
  • the temperature of the hydraulic end valve box during the welding in steps (3) to (4) is preferably not lower than 150 ° C, and more preferably 160 to 180 ° C.
  • the present invention guarantees the hydraulic end valve box Temperature to ensure the smooth progress of welding cladding repair.
  • the present invention preferably heats the hydraulic end valve box after the welding repair into the furnace for 4 hours to eliminate welding stress; the temperature of the heat preservation is preferably 160-200 ° C. In the embodiment, it is preferable to perform heat preservation at the welding temperature, and no additional heating or cooling is required.
  • the present invention preferably cools the hydraulic end valve box out of the oven to 50 ° C.
  • the present invention preferably detects the geometrical dimensions of the inner cavity of the hydraulic end valve box after repair to ensure that there is sufficient machining margin in the subsequent finishing process.
  • the machining allowance here is preferably determined according to the specific method adopted in the subsequent finishing process. If the turning process is subsequently used for finishing, the finishing allowance after welding repair is preferably 2 mm.
  • the present invention determines whether there is a sufficient machining allowance by detecting the geometrical dimensions of the inner cavity. If the machining allowance is insufficient, it is preferable to continue the welding cladding repair described in the above scheme until a sufficient finishing allowance is available.
  • the present invention preferably performs non-destructive testing on the repaired hydraulic end valve box.
  • the non-destructive testing preferably includes UT ultrasonic testing, PT penetration testing, and RT visual inspection.
  • the UT ultrasonic is used to detect whether there is a defect inside the valve box. (Cracks, slag inclusions, pores, unfused), detect surface defects (cracks, slag inclusions, pores) by PT penetration, and visually check whether macro surfaces are qualified (stomatals, cracks, undercuts, splashes, welds) by RT visual inspection , Weld size).
  • the non-destructive testing fails, it is preferable to remove the repair layer and perform welding repair again according to the method described in the above scheme.
  • the present invention preferably performs a mechanical performance test on the repaired hydraulic end valve box to ensure that the mechanical properties of the fusion site meet the requirements.
  • the mechanical property test is preferably performed to test the mechanical properties of the base material at a position 1.5 mm below the fusion line, and the test is performed according to the ASTM A370 standard. If the mechanical properties of the test are unsatisfactory, the present invention preferably removes the repair layer and performs welding repair again according to the method described in the above scheme.
  • the present invention preferably performs metallographic inspection on the hydraulic end valve box, and macroscopically verifies that there are no linear defects such as fusion lines, slag inclusions, pores, cracks, etc. in the welding section.
  • the present invention has no special requirements for the specific method of metallographic detection, and a metallographic detection method well known to those skilled in the art may be used.
  • the present invention if the metallographic examination is unsatisfactory, the present invention preferably removes the repair layer and performs welding repair again according to the method described in the above scheme.
  • the present invention mechanically processes the repaired hydraulic end valve box to the required finishing size.
  • the finishing is preferably turning, milling, or grinding.
  • the present invention preferably sequentially performs surface PT penetration inspection and full-size final inspection on the finished hydraulic end valve box; the present invention inspects the surface for linear defects such as slag inclusions, pores, cracks, etc. by surface PT penetration inspection; The final inspection of the full size finally determines whether the size of the repaired hydraulic end valve box meets the requirements.
  • the present invention preferably cleans, assembles, and then performs a pressure test on the hydraulic end valve box;
  • the pressure test is preferably a hydraulic pressure test, specifically, pressing the inside of the valve box to 1.5 times the rated pressure. It is maintained for 15 minutes without leakage, and then disassembled to detect whether there is deformation in the welding repair part. If deformation occurs, it is preferable to remove the repair layer and perform welding repair again according to the method described in the above scheme.
  • the invention also provides a method for repairing the sealing hole of the plunger end, replacing the inner cavity of the hydraulic end valve box to be repaired with the sealing hole of the plunger end, and performing the sealing of the plunger end according to the method described in the above scheme. Repair can be done, including mechanical pre-processing of the sealing hole at the end of the plunger, basic welding, n-layer welding cladding repair, performance testing and mechanical finishing; the operation method of each step is the same as the above solution, and will not be repeated here.
  • the seal failure or cracking problem can be repaired again using the method of the present invention.
  • the first step select the hydraulic end valve box after 200h, add some pre-processing to the inner cavity of the pressure end valve box, and the reserved unilateral repair size processed to the inner cavity size is 4 ⁇ 5mm.
  • the second step the surface of the processed inner cavity is shot blasted to ensure a surface roughness of 6.3, and to ensure that the bottom stainless steel material has sufficient adhesion to the surface of the inner hole of the valve box.
  • Step 3 Use gasoline to clean the inner cavity of the valve box to remove impurities and dirt on its surface.
  • Step 3 Preheat before welding, and adjust the temperature of the heat treatment furnace to 180 ° C.
  • Step 4 The valve box to be repaired is put into the furnace and kept warm for 2 hours.
  • Step 5 Check and confirm before welding
  • the sixth step the valve box is out of the oven, to ensure that the temperature of the valve box is repaired according to the process when the temperature is 150 ° C during welding repair.
  • the first layer is repaired with stainless steel ER309LMo welding material to control the welding cladding speed to ensure the welding layer thickness is 2mm Automatically rotates at 45 °, uniform welding from the inside to the outside, and the wire is not allowed to be broken or stopped in the middle.
  • Step 7 The second layer is repaired by using stainless steel welding material ERCCoCr-A as the main welding material to perform cladding repair.
  • the transitional layer welding trough welding guarantees the fusion performance between the welding layers.
  • Step 8 Repair the third layer and continue to use the stainless steel welding material ERCCoCr-A as the main welding material for cladding repair. Welding at the root of the trough will ensure the fusion performance between the welding layers; ensure the effective thickness of the three-layer repair welding layer overlay welding > 5mm.
  • Step 9 Put it into the furnace for 4 hours after welding to eliminate welding stress.
  • the tenth step air cooling from the oven to 50 ° C.
  • the eleventh step check the geometry of the repaired inner hole to ensure the machining allowance after welding.
  • Step 12 Perform non-destructive testing on the repaired hydraulic end valve box, including UT ultrasonic testing, PT penetration testing and RT visual inspection; the non-destructive testing results are qualified.
  • Step 13 Test the mechanical properties of the base material at 1.5 mm below the fusion line, and test in accordance with ASTM A370 standards. The results show that the mechanical properties are acceptable.
  • Step 14 Metallographic inspection of the repaired hydraulic end valve box shows that there are no linear defects such as fusion lines, slag inclusions, porosity, cracks, etc. in the weld section.
  • Step 15 Mechanically finish the repaired hydraulic end valve box to the final finished size.
  • Step 16 Perform surface PT penetration inspection on the finished hydraulic valve box, and the results show that the surface is free of linear defects such as slag inclusions, pores, and cracks.
  • Step 17 Final inspection at full size
  • Step 19 Pressure test to verify seal fit
  • Step 20 Disassembly inspection shows that there is no deformation in the repaired part.
  • the repaired hydraulic end valve box will continue to be put into use, and the site fracturing will be performed under the condition of 50 ⁇ 100MPa, and the service time can reach 200h.
  • the other steps are the same as those in Embodiment 1. Only the welding parameters in the fifth step are changed.
  • the welding parameters are as follows:
  • the repaired hydraulic end valve box is sequentially inspected for geometric dimensions, non-destructive testing, mechanical properties testing and metallographic testing, and the test results are all qualified;
  • the repaired hydraulic end valve box will continue to be put into use, and the site fracturing will be performed under the condition of 50 ⁇ 100MPa, and the service time can reach 200h.
  • the other steps are the same as those in Embodiment 1. Only the welding parameters in the fifth step are changed.
  • the welding parameters are as follows:
  • the repaired hydraulic end valve box is sequentially inspected for geometric dimensions, non-destructive testing, mechanical properties testing and metallographic testing, and the test results are all qualified;
  • the repaired hydraulic end valve box will continue to be put into use, and the site fracturing will be performed under the condition of 50 ⁇ 100MPa, and the service time can reach 200h.
  • the method provided by the present invention has simple steps, easy operation, and good repair effect.

Abstract

一种液力端阀箱内腔的修复方法,首先对待修复液力端阀箱内腔进行机械加工,使内腔预留单边修复尺寸;然后对内腔进行抛丸处理和清洁处理;再对内腔进行基础修复,形成打底焊层,在打底焊层上进行n层焊接熔覆修复,形成n层修复焊层,最后将焊接修复后的内腔进行机械精加工;该修复方法同样适用于柱塞端密封孔的修复;该修复方法简单,容易控制,且修复后的液力端阀箱和柱塞端密封孔在50~100MPa条件下现场压裂施工,使用时间可以达到200h;通过对液力端阀箱和柱塞端密封孔的修复可以大幅降低压裂石油的设备成本。

Description

一种液力端阀箱内腔及柱塞端密封孔修复方法
本申请要求于2018年8月10日提交中国专利局、申请号为201810908256.0、发明名称为“一种液力端阀箱内腔及柱塞端密封孔修复方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉焊接修复领域,尤其涉及一种液力端阀箱内腔及柱塞端密封孔修复方法。
背景技术
液力端阀箱是应用于石油钻采设备领域的一种核心关键部件,主要是用于压裂地层3000~7000米的深度形成地缝并利用高压注入各种支撑剂,在地层形成储油层的一种承受高压、大排量、耐腐蚀的专用设备。
柱塞泵液力端主要是靠吸入端自吸入低压流体并将其转换为高压流体从排出端排出的一种装置。液力端阀箱在压裂设备领域是名副其实的易损件,使用寿命根据油田压裂工况不同也不尽相同,在低压的常规水力压裂工艺条件(低酸、低压、小排量、间歇作业)下可以使用300~500小时;高压高酸大排量间歇作业条件下可以使用200~240小时;页岩气、油、致密油气、煤层气等非常规开采条件下(高酸、高压、大排量、连续作业)其使用寿命只有160~220小时。而一台液力端的总成本需要几十万人民币,尽管工程师们采取了改进材料、优化结构、运用新的表面处理工艺等等方面提高其使用寿命,但收到的效果只能达到20~30%的寿命提升,但在成本上还是增加了不少,综合一下在成本和效率上并没有多少提高。所以降低液力端阀箱的制造成本,提高液力端阀箱的使用寿命是降低我国石油开采成本是重要的一环。
液力端阀箱是压裂车上必备的易损部件,其性能对石油开采及压裂作业至关重要。由于压裂泵长期工作于恶劣的环境下,其阀箱结构复杂,尽管采用了成本很高的优质钢材和精细加工工艺,也会因超高压、大排量、高砂比的作用下,很快腐蚀开裂而报废,目前国际上最高的制造水平,在常规压裂工作条件下,工作时间不过在200小时左右。
通过大量对现场已经失效开裂的液力端阀箱和柱塞端做的失效分析报告显示,其主要失效的方式是由点腐蚀造成的密封失效和开裂。失效阀箱部位和柱塞端本体取样显示其材料的力学性能较原始状态的力学性能的并没有多大损失,性能衰减平均在10%左右,所以材料本身的开裂并不是达到了极限使用寿命,因此在阀箱和柱塞端没有失效前对其修复使其可以达到再次使用的性能可以最大限度的提高使用寿命,降低压裂开采成本。但是,目前并没有有效的修复方法。
发明内容
为了克服现有技术的上述缺点,本发明提供一种液力端阀箱内腔及柱塞端密封孔修复方法。本发明提供的修复方法可以对液力端阀箱内腔和柱塞端密封孔进行有效修复,提高液力端阀箱和柱塞端的使用寿命,降低压裂开采的成本。
为了解决上述技术问题,本发明采用的技术方案是:一种液力端阀箱内腔修复方法,包括以下步骤:
(1)对待修复液力端阀箱内腔进行机械预加工,加工至内腔的预留单边修复尺寸为4~5mm;所述待修复液力端阀箱为出现开裂但未失效的液力端阀箱;
(2)对机械加工后的内腔表面依次进行抛丸处理和清洁处理;
(3)对清洁处理后的内腔进行基础焊接熔覆修复,在内腔表面形成一层过渡层;所述过渡层的厚度≥1mm;所述基础焊接用焊材为软质焊材;
(4)在所述过渡层表面依次进行n层焊接熔覆修复,形成n层修复焊层;所述n≥2;所述n层修复焊层和过渡层的总堆焊有效厚度≥5mm;所述步骤(4)中焊接用焊材的力学性能和抗腐蚀性能高于待修复液力端阀箱母材;
(5)将所述步骤(4)焊接修复后的液力端阀箱内腔进行机械精加工。
优选的,所述步骤(3)和步骤(4)中的焊接为非熔化极惰性气体钨极保护焊。
优选的,所述步骤(3)和步骤(4)中焊接的方法为环形自动旋转多道焊;
所述焊接的自动脉冲焊频率独立地为2.5~5.0HZ,脉冲比独立地为40~60%;
所述焊接的主电流独立地为150~210A;
所述焊接的热丝电流独立地为30~70A;
所述焊接的热丝电压为14V;
所述焊接的电流极性为直流反接;
所述焊接用焊材规格独立地为φ1~3mm;
所述焊接的保护气体为氩气;所述氩气的流量独立地为16~19L/min;
所述焊接的喷嘴直径尺寸独立地为φ8~10mm;
所述焊接的送丝速度独立地为1500~2000mm/min;
所述焊接的速度独立地为100~500mm/min;
所述焊接的层间温度独立地为<200℃;
所述焊接的热输入功率独立地为0.4~0.6KJ/mm。
优选的,所述步骤(3)和步骤(4)中焊接用焊材的材质独立地为铁基、镍基或不锈钢;
优选的,所述液力端阀箱母材为碳钢时,所述步骤(4)中焊接用焊材为ER49、ER50或ERCoCR-A;
优选的,所述液力端阀箱母材为合金钢时,所述步骤(4)中焊接用焊材为EDZCr-C-15、ER50或ERCoCR-A;
优选的,所述液力端阀箱母材为不锈钢时,所述步骤(4)中焊接用焊材为A022Mo、E317L-16、ER49、ER50或ERCoCR-A。
优选的,所述步骤(3)中基础焊接熔覆修复前还包括液力端阀箱焊前预热;所述预热的温度为160~200℃,预热的时间为2~3h。
优选的,所述步骤(3)~(4)的焊接过程中液力端阀箱的温度不低于150℃。
优选的,所述步骤(4)中n层焊接熔覆修复后还包括保温处理;所述保温的温度为160~200℃;所述保温的时间为4~5h。
优选的,所述步骤(2)中抛丸处理后内腔表面的粗糙度为1~100μm。
本发明提供了一种柱塞端密封孔的修复方法,按照上述方案所述的方 法,将所述待修复液力端阀箱内腔替换为柱塞端密封孔,对柱塞端密封孔进行修复。
本发明提供了一种液力端阀箱内腔修复方法,首先对待修复液力端阀箱内腔进行机械加工,使内腔预留单边修复尺寸;然后对内腔进行抛丸处理和清洁处理;再对内腔进行基础修复,形成打底焊层,在打底焊层上进行n层焊接熔覆修复,形成n层修复焊层,最后将焊接修复后的内腔进行机械精加工。本发明提供的修复方法简单,容易控制,且修复后的液力端阀箱在50~100MPa条件下进行压裂施工,可继续使用200h左右,通过对液力端阀箱的修复可以大幅降低压裂石油的设备成本。
本发明还提供了一种柱塞端密封孔的修复方法,修复过程和液力端阀箱内腔的修复过程一致;修复后的柱塞端在50~100MPa条件下进行压裂施工,可继续使用200h左右。
具体实施方式
下面结合实施例对本发明进一步说明。
本发明提供了一种液力端阀箱内腔修复方法,包括以下步骤:
(1)对待修复液力端阀箱内腔进行机械预加工,使内腔的预留单边修复尺寸为4~5mm;所述待修复液力端阀箱为出现开裂但未失效的液力端阀箱;
(2)对机械预加工后的内腔表面依次进行抛丸处理和清洁处理;
(3)对清洁处理后的内腔进行基础焊接熔覆修复,在内腔表面形成一层过渡层;所述过渡层的厚度≥1mm;
(4)在所述过渡层表面依次进行n层焊接熔覆修复,形成n层修复焊层;所述n≥2;所述n层修复焊层和过渡层的总堆焊有效厚度≥5mm;所述步骤(4)中焊接用焊材的力学性能和抗腐蚀性能高于步骤(3)中焊接用焊材;
(5)将所述步骤(4)焊接修复后的液力端阀箱内腔进行机械精加工。
本发明对待修复液力端阀箱内腔进行机械预加工,加工至内腔的预留单边修复尺寸为4~5mm。在本发明中,所述待修复液力端阀箱为出现开裂但未失效的液力端阀箱,优选为使用200h后的液力端阀箱。本发明对阀箱内腔尺寸进行机械预加工,保证预留的单边修复尺寸为4~5mm,从 而保证修复层厚度。本发明对所述机械预加工的具体方法没有特殊要求,能够达到本发明要求的加工尺寸即可,具体的如车、铣、磨等。
预加工完成后,本发明对机械加工后的内腔表面依次进行抛丸处理和清洁处理。在本发明中,所述抛丸处理后内腔表面的粗糙度优选1~100μm,更优选为1~20μm,进一步优选为6~6.5μm,最优选为6.3μm;本发明对所述抛丸处理的具体方法没有特殊要求,使用本领域技术人员熟知的抛丸处理,能够达到要求的表面粗糙度即可。本发明通过抛丸处理增加内腔表面的粗糙度,从而使过渡层焊接材料能与阀箱内腔表面有足够的黏合性。
在本发明中,所述清洁处理优选为采用汽油清洗;本发明通过清洁处理去除内腔表面的油污、锈迹等杂质污垢,避免杂质对焊接材料与基体材料的粘合性能产生影响。
清洁处理完成后,本发明对清洁处理后的内腔进行基础焊接熔覆修复,在内腔表面形成一层过渡层。本发明优选对液力端阀箱进行预热处理后再进行基础焊接,所述预热处理的温度优选为160~200℃,更优选为180℃,所述预热的时间优选为2~3h,更优选为2h。本发明优选使用热处理炉对液力端阀箱进行预热,本发明通过预热为后续的焊接提供良好的温度条件。
预热完成后,本发明将阀箱出炉,对内腔进行基础焊接熔覆修复。在本发明中,所述焊接优选为非熔化极惰性气体钨极保护焊(TIG焊);所述焊接的自动脉冲焊频率优选为2.5~5.0HZ,更优选为3~4HZ,脉冲比优选为40~60%,更优选为50%,焊接的主电流优选为150~210A,更优选为180~200A,焊接的热丝电流优选为30~70A,更优选为40~60A,焊接的热丝电压优选为14V,焊接的电流极性优选为直流反接(DCEN),焊接用焊材的规格优选为φ1~3mm,更优选为φ2mm,焊接的保护气体优选为氩气;所述氩气的混合比优选为99.999%,所述氩气的流量优选为16~19L/min,更优选为18L/min,焊接的喷嘴直径尺寸优选为φ8~10mm,更优选为φ10mm,焊接的送丝速度优选为1500~2000mm/min,更优选为1600~1800mm/min,焊接的速度优选为100~500mm/min,更优选为200~400mm/min,焊接的层间温度优选为<200℃,更优选为100~150℃,焊接的热输入功率优选为0.4~0.6KJ/mm,更优选为0.5KJ/mm。
在本发明中,所述基础焊接用焊材优选为软质焊材,所述焊材的材质优选为铁基、镍基或不锈钢;本发明优选根据待修复液力端阀箱的材质选择焊材的材质;在本发明的具体实施例中,所述基础焊接用焊材优选为不锈钢ER309LMo。在焊接过程中,焊枪优选呈45°自动旋转从内向外匀速焊接,确保中间不出现断丝或者停止,从而保证焊后材料的性能。
在本发明中,所述过渡层的厚度优选≥1mm,更优选为1~2mm。本发明通过基础焊接在阀箱内腔表面形成一层过渡层,以粘合基体材料与修复焊层材料。
基础焊接完成后,本发明在过渡层表面依次进行n层焊接熔覆修复,形成n层修复焊层。在本发明中,所述n≥2,优选为2~5;所述n层修复焊层和过渡层的总堆焊有效厚度≥5mm,优选为5~6mm;本发明对所述n层修复焊层的单层厚度没有特殊要求,只要n层修复焊层和过渡层的总堆焊有效厚度能够达到上述要求即可。
在本发明中,所述步骤(4)中焊接用焊材的材质优选为铁基、镍基或不锈钢;所述步骤(4)中焊接用焊材的力学性能和抗腐蚀性能高于液力端阀箱母材;在本发明的具体实施例中,所述液力端阀箱母材为碳钢时,所述步骤(4)中焊接用焊材优选为ER49、ER50或ERCoCR-A;所述液力端阀箱母材为合金钢时,所述步骤(4)中焊接用焊材优选为EDZCr-C-15、ER50或ERCoCR-A;所述液力端阀箱母材为不锈钢时,所述步骤(4)中焊接用焊材优选为A022Mo、E317L-16、ER49、ER50或ERCoCR-A。本发明通过在过渡层表面使用高性能焊材进行多层熔覆修复,使液力端阀箱内腔的开裂处能够得到良好的修复。
在本发明的具体实施例中,优选在过渡层表面依次进行第一层至第n层焊接熔覆修复,后一层焊接熔覆修复优选延前一层焊层的焊接波谷焊接,以保证焊层之间熔合性能。在本发明中,所述n层焊接熔覆修复过程的焊接条件和上述方案一致,在此不再赘述。
在本发明中,所述步骤(3)~(4)的焊接过程中液力端阀箱的温度优选不低于150℃,更优选为160~180℃;本发明通过保证液力端阀箱的温度以确保焊接熔覆修复的顺利进行。
n层焊接熔覆修复完成后,本发明优选将焊接修复后的液力端阀箱入 炉保温4小时,以消除焊接应力;所述保温的温度优选为160~200℃,在本发明的具体实施例中,优选在焊接温度下进行保温即可,无需进行额外的加热或降温。
保温完成后,本发明优选将液力端阀箱出炉空冷至50℃。
空冷后,本发明优选检测修复后的液力端阀箱内腔的几何尺寸,以确保后续精加工过程中有足够的加工余量。本发明优选根据后续精加工过程采用的具体方法来确定此处的加工余量,若后续采用车工进行精加工,则焊接修复后的精加工余量优选为2mm。本发明通过内腔几何尺寸检测确定是否有足够的加工余量,若加工余量不够,则优选再继续进行上述方案所述的焊接熔覆修复,直至有足够的精加工余量。
几何尺寸检测后,本发明优选对修复后的液力端阀箱进行无损检测,所述无损检测优选包括UT超声波检测、PT渗透检测和RT目视检测,通过UT超声波检测阀箱内部是否有缺陷(裂纹、夹渣、气孔、未熔合),通过PT渗透检测表面是否有缺陷(裂纹、夹渣、气孔),通过RT目视检测宏观表面是否合格(气孔、裂纹、底切、飞溅、焊瘤、焊缝尺寸)。在本发明中,若无损检测不合格,则优选去除修复层,重新按照上述方案所述方法进行焊接修复。
无损检测完成后,本发明优选对修复后的液力端阀箱进行力学性能检测,以确保熔合部位力学性能符合要求。在本发明中,所述力学性能检测优选测试熔合线下1.5mm处基体材料的力学性能,按照ASTM A370标准进行检测。若检测力学性能不合格,本发明优选去除修复层,重新按照上述方案所述方法进行焊接修复。
无损检测完成后,本发明优选对液力端阀箱进行金相检测,宏观验证焊接截面无熔合线,夹渣、气孔、裂纹等线性缺陷。本发明对所述金相检测的具体方法没有特殊要求,使用本领域技术人员熟知的金相检测方法即可。在本发明中,若金相检测不合格,本发明优选去除修复层,重新按照上述方案所述方法进行焊接修复。
金相检测完成后,本发明将修复后的液力端阀箱进行机械精加工,加工至所需的精加工尺寸。在本发明中,所述精加工优选为车、铣、磨。
精加工后,本发明优选依次对精加工后的液力端阀箱进行表面PT渗 透探伤和全尺寸终检;本发明通过表面PT渗透探伤检查表面有无夹渣、气孔、裂纹等线性缺陷;通过全尺寸终检最终确定修复后的液力端阀箱的尺寸是否符合要求。
全尺寸终检合格后,本发明优选将液力端阀箱进行清理,装配,然后进行压力测试;所述压力测试优选为水压测试,具体为在阀箱内部打压至额定压力的1.5倍,并保压15分钟不泄露,然后解体检测焊接修复部位是否出现变形,若出现变形,则优选去除修复层,重新按照上述方案所述方法进行焊接修复。
本发明还提供了一种柱塞端密封孔的修复方法,将所述待修复液力端阀箱内腔替换为柱塞端密封孔,按照上述方案所述的方法对柱塞端密封孔进行修复即可,具体的包括柱塞端密封孔的机械预加工、基础焊接、n层焊接熔覆修复、性能检测和机械精加工;各个步骤的操作方法和上述方案一致,在此不再赘述。
在本发明中,若修复后的液力端阀箱和柱塞端密封孔使用一段时间后再次出现密封失效或开裂问题,可再次使用本发明的方法进行修复。
下面结合实施例对本发明提供的一种液力端阀箱内腔及柱塞端密封孔修复方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
第一步:选使用200h后的液力端阀箱,对压力端阀箱内腔进行加些预加工,加工至内腔尺寸的预留单边修复尺寸为4~5mm。
第二步:加工后的内腔表面经抛丸处理保证表面粗糙度6.3,保证打底不锈钢材料能与阀箱内孔表面有足够的黏合性。
第三步:使用汽油清洁阀箱内腔,去除其表面杂质污垢。
第三步:焊前预热,调整热处理炉温度至180℃。
第四步:待修复阀箱入炉保温2小时。
第五步:焊前检查确认
设备TIG焊(Tungsten Inert Gas Welding)非熔化极惰性气体钨极保护焊
焊接方法GTAW-Pulsed-Hot wire自动旋转多道焊(环形)
自动脉冲焊频率 2.5~5.0HZ 脉冲比50%
主电流 150A
热丝电流 30A
热丝电压 14V
电流极性 DCEN
焊材规格 φ1.2mm
保护气体Ar 混合比99.999% 流量16L/min
喷嘴直径尺寸 φ10mm
送丝速度 1500mm/min
焊接速度 300mm/min
层间温度 <200℃
热输入功率 0.5KJ/mm
第六步:阀箱出炉,保证焊接修复时温度阀箱≮150℃状态下按照工艺进行修复,修复第一层采用不锈钢ER309LMo焊材打底,控制焊接熔覆速度,保证焊层厚度2mm,焊枪呈45°自动旋转从内向外匀速焊接,中间不允许断丝或者停止。
第七步:修复第二层采用高于母材性能不锈钢焊材ERCCoCr-A作为主焊材进行熔覆修复,延过渡层焊接波谷焊接保证焊层之间熔合性能。
第八步:修复第三层继续用不锈钢焊材ERCCoCr-A作为主焊材进行熔覆修复,延最根部波谷焊接保证焊层之间的熔合性能;保证三层修复焊层堆焊有效厚度>5mm。
第九步:焊后入炉保温4小时,消除焊接应力。
第十步:出炉空冷至50℃。
第十一步:修复内孔几何尺寸检查保证焊接后加工余量。
第十二步:对修复后的液力端阀箱进行无损检测,包括UT超声波检测、PT渗透检测和RT目视检测;无损检测结果合格。
第十三步:测试熔合线下1.5mm处基体材料的力学性能,按照ASTM A370标准进行检测,结果显示力学性能合格。
第十四步:对修复后的液力端阀箱进行金相检测,显示焊接截面无熔合线,夹渣、气孔、裂纹等线性缺陷。
第十五步:对修复后的液力端阀箱进行机械精加工至最终精加工尺寸。
第十六步:对精加工后的液力端阀箱进行表面PT渗透探伤,结果显示表面没有无夹渣、气孔、裂纹等线性缺陷。
第十七步:全尺寸终检
第十八步:清理、装配
第十九步:压力测试,检验密封配合性能
第二十步:解体检查,显示焊接修复部位没有出现变形。
将修复后的液力端阀箱继续投入使用,在50~100MPa条件下现场压裂施工,使用时间可以达到200h。
实施例2
其他步骤和实施例1一致,仅将第五步中焊接参数进行改变,所述焊接的参数如下:
设备TIG焊(Tungsten Inert Gas Welding)非熔化极惰性气体钨极保护焊
焊接方法GTAW-Pulsed-Hotwire 自动旋转多道焊(环形)
自动脉冲焊频率 2.5~5.0HZ 脉冲比50%
主电流 180A
热丝电流 60A
热丝电压14V
电流极性 DCEN
焊材规格 φ1.2mm
保护气体Ar 混合比99.999% 流量19L/min
喷嘴直径尺寸φ10mm
送丝速度 2000mm/min
焊接速度 500mm/min
层间温度<200℃
热输入功率 0.5KJ/mm;
焊接完成后对修复后的液力端阀箱依次进行几何尺寸检查、无损检测、力学性能检测和金相检测,检测结果均为合格;
对修复后的液力端阀箱进行机械精加工至最终精加工尺寸;对精加工后的液力端阀箱进行表面PT渗透探伤,结果显示表面没有无夹渣、气孔、裂纹等线性缺陷。
对精加工后的液力端阀箱依次进行全尺寸终检、清理和装配,然后进行压力测试,解体检查,显示焊接修复部位没有出现变形。
将修复后的液力端阀箱继续投入使用,在50~100MPa条件下现场压裂施工,使用时间可以达到200h。
实施例3
其他步骤和实施例1一致,仅将第五步中焊接参数进行改变,所述焊接的参数如下:
设备TIG焊(Tungsten Inert Gas Welding)非熔化极惰性气体钨极保护焊
焊接方法GTAW-Pulsed-Hot wire自动旋转多道焊(环形)
自动脉冲焊频率 2.5~5.0HZ 脉冲比50%
主电流 210A
热丝电流 70A
热丝电压 14V
电流极性 DCEN
焊材规格 φ1.2mm
保护气体Ar 混合比99.999% 流量18L/min
喷嘴直径尺寸 φ10mm
送丝速度 1800mm/min
焊接速度 200mm/min
层间温度 <200℃
热输入功率 0.5KJ/mm;
焊接完成后对修复后的液力端阀箱依次进行几何尺寸检查、无损检测、力学性能检测和金相检测,检测结果均为合格;
对修复后的液力端阀箱进行机械精加工至最终精加工尺寸;对精加工后的液力端阀箱进行表面PT渗透探伤,结果显示表面没有无夹渣、气孔、裂纹等线性缺陷。
对精加工后的液力端阀箱依次进行全尺寸终检、清理和装配,然后进行压力测试,解体检查,显示焊接修复部位没有出现变形。
将修复后的液力端阀箱继续投入使用,在50~100MPa条件下现场压裂施工,使用时间可以达到200h。
由以上实施例可知,本发明提供修复方法步骤简单,容易操作,修复效果好。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种液力端阀箱内腔修复方法,包括以下步骤:
    (1)对待修复液力端阀箱内腔进行机械预加工,加工至内腔的预留单边修复尺寸为4~5mm;所述待修复液力端阀箱为出现开裂但未失效的液力端阀箱;
    (2)对机械加工后的内腔表面依次进行抛丸处理和清洁处理;
    (3)对清洁处理后的内腔进行基础焊接熔覆修复,在内腔表面形成一层过渡层;所述过渡层的厚度≥1mm;所述基础焊接用焊材为软质焊材;
    (4)在所述过渡层表面依次进行n层焊接熔覆修复,形成n层修复焊层;所述n≥2;所述n层修复焊层和过渡层的总堆焊有效厚度≥5mm;所述步骤(4)中焊接用焊材的力学性能和抗腐蚀性能高于待修复液力端阀箱母材;
    (5)将所述步骤(4)焊接修复后的液力端阀箱内腔进行机械精加工。
  2. 根据权利要求1所述的修复方法,其特征在于,所述步骤(3)和步骤(4)中的焊接为非熔化极惰性气体钨极保护焊。
  3. 根据权利要求1或2所述的修复方法,其特征在于,所述步骤(3)和步骤(4)中焊接的方法为环形自动旋转多道焊;
    所述焊接的自动脉冲焊频率独立地为2.5~5.0HZ,脉冲比独立地为40~60%;
    所述焊接的主电流独立地为150~210A;
    所述焊接的热丝电流独立地为30~70A;
    所述焊接的热丝电压为14V;
    所述焊接的电流极性为直流反接;
    所述焊接用焊材规格独立地为φ1~3mm;
    所述焊接的保护气体为氩气;所述氩气的流量独立地为16~19L/min;
    所述焊接的喷嘴直径尺寸独立地为φ8~10mm;
    所述焊接的送丝速度独立地为1500~2000mm/min;
    所述焊接的速度独立地为100~500mm/min;
    所述焊接的层间温度独立地为<200℃;
    所述焊接的热输入功率独立地为0.4~0.6KJ/mm。
  4. 根据权利要求1或2所述的修复方法,其特征在于,所述步骤(3)和步骤(4)中焊接用焊材的材质独立地为铁基、镍基或不锈钢。
  5. 根据权利要求1所述的修复方法,其特征在于,所述液力端阀箱母材为碳钢时,所述步骤(4)中焊接用焊材为ER49、ER50或ERCoCR-A。
  6. 根据权利要求1所述的修复方法,其特征在于,所述液力端阀箱母材为合金钢时,所述步骤(4)中焊接用焊材为EDZCr-C-15、ER50或ERCoCR-A。
  7. 根据权利要求1所述的修复方法,其特征在于,所述液力端阀箱母材为不锈钢时,所述步骤(4)中焊接用焊材为A022Mo、E317L-16、ER49、ER50或ERCoCR-A。
  8. 根据权利要求1所述的修复方法,其特征在于,所述步骤(3)中基础焊接熔覆修复前还包括液力端阀箱焊前预热;所述预热的温度为160~200℃,预热的时间为2~3h。
  9. 根据权利要求1所述的修复方法,其特征在于,所述步骤(3)~(4)的焊接过程中液力端阀箱的温度不低于150℃。
  10. 根据权利要求1所述的修复方法,其特征在于,所述步骤(4)中n层焊接熔覆修复后还包括保温处理;所述保温的温度为160~200℃;所述保温的时间为4~5h。
  11. 根据权利要求1所述的修复方法,其特征在于,所述步骤(2)中抛丸处理后内腔表面的粗糙度为1~100μm。
  12. 一种柱塞端密封孔的修复方法,其特征在于,按照权利要求1~11任意一项所述的方法,将所述待修复液力端阀箱内腔替换为柱塞端密封孔,对柱塞端密封孔进行修复。
PCT/CN2018/109028 2018-08-10 2018-09-30 一种液力端阀箱内腔及柱塞端密封孔修复方法 WO2020029413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/464,457 US20200331088A1 (en) 2018-08-10 2018-09-30 Repairing methods for hydraulic-end valve cage cavity and plunger-end seal hole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810908256.0 2018-08-10
CN201810908256.0A CN109128683B (zh) 2018-08-10 2018-08-10 一种液力端阀箱内腔及柱塞端密封孔修复方法

Publications (1)

Publication Number Publication Date
WO2020029413A1 true WO2020029413A1 (zh) 2020-02-13

Family

ID=64792648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109028 WO2020029413A1 (zh) 2018-08-10 2018-09-30 一种液力端阀箱内腔及柱塞端密封孔修复方法

Country Status (3)

Country Link
US (1) US20200331088A1 (zh)
CN (1) CN109128683B (zh)
WO (1) WO2020029413A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113492250A (zh) * 2020-03-20 2021-10-12 上海电气电站设备有限公司 一种阀座的焊接方法
CN115351502A (zh) * 2022-08-11 2022-11-18 湖北航达科技有限公司 空客空气调节系统的深度修理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109128683B (zh) * 2018-08-10 2020-07-10 上海清河机械有限公司 一种液力端阀箱内腔及柱塞端密封孔修复方法
CN111461671B (zh) * 2020-04-09 2023-08-18 海默潘多拉数据科技(深圳)有限公司 阀箱工作时长检测方法、系统、计算机设备和存储介质
CN112171177A (zh) * 2020-10-11 2021-01-05 浙江翰德圣智能再制造技术有限公司 一种干燥器聚丙烯搅拌转子断裂后的再制造方法
CN114505656B (zh) * 2022-03-22 2023-06-06 烟台杰瑞石油装备技术有限公司 柱塞泵壳体的制作工艺、柱塞泵壳体及柱塞泵

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060090336A1 (en) * 2004-10-29 2006-05-04 Graham James H Adaptive machining and weld repair process
CN101239413A (zh) * 2008-03-07 2008-08-13 重庆大学 废旧模具电磁堆焊修复和表面改性方法与设备
CN101797676A (zh) * 2010-01-13 2010-08-11 西安热工研究院有限公司 一种脱硫循环泵的修复与表面防护工艺
CN104907762A (zh) * 2015-07-02 2015-09-16 南车株洲电机有限公司 一种电机端盖轴承室修复方法
CN107470851A (zh) * 2017-08-17 2017-12-15 嘉兴翰德圣激光再制造技术有限公司 通用型皮托管泵喷嘴磨损或断裂冷金属过渡焊接修复方法
US9868180B2 (en) * 2013-03-14 2018-01-16 Ansaldo Energia Ip Uk Limited Turbine blade tip repair using dual fusion welding
CN109128683A (zh) * 2018-08-10 2019-01-04 上海清河机械有限公司 一种液力端阀箱内腔及柱塞端密封孔修复方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113173A2 (en) * 2004-05-21 2005-12-01 Smith International, Inc. Friction stirring and its application to drill bits, oil field and mining tools, and components in other industrial applications
US20090057275A1 (en) * 2007-08-31 2009-03-05 General Electric Company Method of Repairing Nickel-Based Alloy Articles
US20140272393A1 (en) * 2013-03-15 2014-09-18 Rolls-Royce Corporation Anti-fret coating system
CN103264267A (zh) * 2013-06-07 2013-08-28 山东塔高矿业机械装备制造有限公司 综采液压支架再制造工艺
CN107470849A (zh) * 2017-08-14 2017-12-15 浙江今泰汽车零部件制造有限公司 模具腐蚀部位修复工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060090336A1 (en) * 2004-10-29 2006-05-04 Graham James H Adaptive machining and weld repair process
CN101239413A (zh) * 2008-03-07 2008-08-13 重庆大学 废旧模具电磁堆焊修复和表面改性方法与设备
CN101797676A (zh) * 2010-01-13 2010-08-11 西安热工研究院有限公司 一种脱硫循环泵的修复与表面防护工艺
US9868180B2 (en) * 2013-03-14 2018-01-16 Ansaldo Energia Ip Uk Limited Turbine blade tip repair using dual fusion welding
CN104907762A (zh) * 2015-07-02 2015-09-16 南车株洲电机有限公司 一种电机端盖轴承室修复方法
CN107470851A (zh) * 2017-08-17 2017-12-15 嘉兴翰德圣激光再制造技术有限公司 通用型皮托管泵喷嘴磨损或断裂冷金属过渡焊接修复方法
CN109128683A (zh) * 2018-08-10 2019-01-04 上海清河机械有限公司 一种液力端阀箱内腔及柱塞端密封孔修复方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113492250A (zh) * 2020-03-20 2021-10-12 上海电气电站设备有限公司 一种阀座的焊接方法
CN115351502A (zh) * 2022-08-11 2022-11-18 湖北航达科技有限公司 空客空气调节系统的深度修理方法

Also Published As

Publication number Publication date
CN109128683A (zh) 2019-01-04
US20200331088A1 (en) 2020-10-22
CN109128683B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2020029413A1 (zh) 一种液力端阀箱内腔及柱塞端密封孔修复方法
CN107520526B (zh) 一种防硫井口阀体焊接修复方法
CN104816076B (zh) 一种连续管的管管对接焊工艺方法
CN103639643B (zh) 阀门密封面检修工艺
CN104801839B (zh) 奥氏体不锈钢与铬钼耐热钢的焊接工艺
CN107723699B (zh) 一种修复耐热合金的方法
CN105127562A (zh) 一种复合板异种材料焊接接头的焊接方法
CN104923928B (zh) 一种用于起重机臂架的q690d钢管纵缝焊接方法
CN110421238B (zh) 一种高强度筒体对接焊的焊接工艺
CN1974116A (zh) 管壳、板换热器防渗漏制造工艺
CN109986279B (zh) 一种裂解炉高压蒸汽锅炉给水阀焊接修复方法
CN101623790A (zh) 白铜焊件焊接方法
CN102500993A (zh) 马氏体不锈钢特大深孔的焊接修复方法
WO2021073628A1 (zh) 一种应用于液压支架立柱的包覆焊方法
CN105108297B (zh) 一种整体复合法兰及其制造方法
CN110280967B (zh) 钢制大规格部件免焊后热处理的同种钢焊接修复方法
RU178157U1 (ru) Многослойная заготовка для горячей прокатки
CN106312438A (zh) 阀门密封面检修工艺
CN107775156B (zh) 一种水下承压铸铝发射筒焊接成型方法及产品
CN113547190A (zh) 一种tc4钛合金板焊接的气体保护装置和工艺方法
CN111421296B (zh) 用于碳钢支管焊缝维修的在线堆焊修复方法
CN111151845A (zh) 一种核主泵试验台主回路及其内壁堆焊和环缝对接焊方法
CN114734128A (zh) 一种阀门阀座密封面的焊接修复方法
CN113510342B (zh) 液压支架用q690级别调质钢中厚板低预热焊接方法
CN105312790A (zh) QCr0.8与高强不锈钢的CMT焊接工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929392

Country of ref document: EP

Kind code of ref document: A1