WO2020028962A1 - Dispositivo de detecção, contagem remota, automática e ininterrupta de pragas-alvo e controlador perimetral de lepidópteros - Google Patents

Dispositivo de detecção, contagem remota, automática e ininterrupta de pragas-alvo e controlador perimetral de lepidópteros Download PDF

Info

Publication number
WO2020028962A1
WO2020028962A1 PCT/BR2019/050300 BR2019050300W WO2020028962A1 WO 2020028962 A1 WO2020028962 A1 WO 2020028962A1 BR 2019050300 W BR2019050300 W BR 2019050300W WO 2020028962 A1 WO2020028962 A1 WO 2020028962A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartment
insect
sensors
internal
perimeter
Prior art date
Application number
PCT/BR2019/050300
Other languages
English (en)
French (fr)
Inventor
Joelcio COSME CARVALHO ERVILHA
Original Assignee
Cosme Carvalho Ervilha Joelcio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosme Carvalho Ervilha Joelcio filed Critical Cosme Carvalho Ervilha Joelcio
Publication of WO2020028962A1 publication Critical patent/WO2020028962A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/02Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
    • A01M1/023Attracting insects by the simulation of a living being, i.e. emission of carbon dioxide, heat, sound waves or vibrations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/02Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/02Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
    • A01M1/04Attracting insects by using illumination or colours
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/10Catching insects by using Traps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/16Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves
    • A01M29/18Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves using ultrasonic signals

Definitions

  • the present invention consists of a device that enables a physical and technical structure for the incorporation of two independent and, at the same time, complementary processes, for monitoring pest insects and perimetral control of lepidopterans, in agricultural production activities and / or storage of products, such as grains, for example. Its field of application is extensive, and this device can be used in the most diverse agricultural crops, such as soybeans, corn, cotton, coffee, bananas, citrus, sugar cane, among others, as long as there is a need to monitor pests specific to any of these crops.
  • the proposed technology acts remotely and automatically, reducing the cost of labor and decreasing the damage of these pest insects and lepidopterans to the economic activity in question.
  • a monitoring device capable of being used in open areas and also in food storage centers (grains) that are located in the perimeter regions, such as the borders of crops, that perform the counting, monitoring of pest insects and also the perimeter blocking of secondary insects.
  • the device proposed here includes decoy products and a series of sensors arranged inside. Based on a plurality of signals received, during the device's execution time, this information is transferred to the data center to communicate the various captured records, such as temperature and humidity at the time of registration, target pest infestation level. on-site, battery charge, general device conditions, such as component errors, the need to change parts or regular operating status, among other information.
  • the device as it has an electronic component for georeferencing, offers the ideal conditions to guide the user when making the application of inputs, individually in the areas where monitoring takes place. This mechanism allows the applications to be precise and individualized to each device, with this it is possible to generate a more timely and effective application through spray systems on edges or in predefined radii according to the surveys carried out, so that the costs are further reduced to the end user.
  • the technology in question is also complementary to the electronic pest monitoring solution, taking advantage of the spatial dispersion of the device for monitoring target pests as well as batteries, making it possible to also install a perimeter locking system for lepidopterans, with operation with wavelength and periodicity defined by the user, in order to emit sound signals that mimic a natural predator of this group of insects.
  • the device includes an ultrasonic signal emission system to mimic the wave frequency of natural predators of lepidopterans (bats), thus, these insects undergo changes in their habits, such as stealth flights and do not attack the areas with the same intensity. monitored.
  • the innovation of this process in the proposed device is in the condition of achieving an effective perimeter block for the use of ultrasonic signal emission equipment, in open, long extension and remote agricultural areas.
  • the emission of an ultrasonic signal by means of several devices installed in the perimeter of the area, allowing the formation of an integrated network of emitters that make it difficult for these lepidopterans to enter the agricultural area.
  • the proposed technology allows the installation and remote automation of the processes of counting and monitoring the entry and exit of insects, as well as the reduction of the resistance formation on the part of lepidopterans to transgenic technology.
  • the entire operating process of such a device is viewed in real time by the user, through a communication system - IOT (Internet of Things) technology, operating in a multi-platform system (tablets, computers, cell phones).
  • IOT Internet of Things
  • the technology can be applied to stored grain pests or agricultural crops, such as: cotton weevil (Anthonomus grandis), orange borer (Cratossomus flavofasciatus), banana urchin (Cosmopolites sordidus), sugarcane borer (Diatrea spp. ), cane beak (Sphenophorus spp.), brown stink bug (Euschistus heros), cereal beetle (Ryzopertha dominica), among other pests that are attracted via a specific decoy, such as pheromones, light or coloring, for example.
  • cotton weevil Anthonomus grandis
  • orange borer Cratossomus flavofasciatus
  • banana urchin Cosmopolites sordidus
  • sugarcane borer Diatrea spp.
  • cane beak Sphenophorus spp.
  • brown stink bug Euschistus heros
  • cereal beetle
  • the present technology is projected as one of the important means to automate and improve the process of monitoring and control of pests in agriculture, in order to meet a growing world demand for reduction in the use of insecticides, enabling the creation of cheaper and safer options for agricultural products and food. DESCRIPTION OF THE FIGURES
  • Figure 1 External Vision Device has a cylindrical shape (1), with decoy coloring, depending on the target pest, a fitting (9) for a rod to be fixed to the ground, a cap (2) that unifies another cylinder internal (containing the electrical / electronic solution) and the upper part (red - resonance chamber) (3) where the ultrasonic frequency sensor - buzzer is installed.
  • Figure 2 Lateral section of the device, showing the installation channel for the activation-detection sensors (4), for the remote and simultaneous counting of target pests and the interlocking mechanisms between the internal and external parts of the device.
  • the external cylinder (green) (1) is completely perforated, to facilitate the exhalation of pheromones, taking advantage of the cylindrical shape for the passage of the wind and improvement of this volatile emission flow.
  • the pheromone support (5) is installed exactly in the upper part of the exit hole of the channel (6) for accessing the target pest, with the objective of intensifying the odor and attracting the insect even more easily.
  • Figure 3 View of the internal components of the device.
  • the inner cylinder (7) is screwed to the cover (2), completely closed to prevent infiltration.
  • the pheromone support (5) (white rectangle) is positioned at the top of the exit channel (6) for the insect's entrance, which is strategically positioned to increase the attraction of the insect until the exit of the device.
  • FIG. 21 Figure 6. Vertical section of the device, showing the resonance chamber of the ultrasonic device (3) (red cube) and also the cylinder internal (7) where all the electric / electronic instruments of the solution are stored, installed in the region of item 4. Detail for insect passage channel (8) and fitting for support (9)
  • FIG. 7 Illustrative view of the AUTOMATIC, REMOTE AND UNINTERRUPTED TARGET MONITORING PROCESS, the focus area / installation of the monitoring (15) is surrounded with the counting devices (10), these devices perform automatic and remote counting of pest insects by sending information to a LPWAN communication center (11), the captured data feeds into a cloud database (12), the information in this database is purified, feeding decision-making systems (13) through different platforms, such as tablets, cell phones, desktop computers, among others
  • FIG. 23 Figure 8 - Detail of the Counting Device (10) installed in the trap; 16 - microprocessor with installed sensors; 17 - battery.
  • the device proposed here is characterized by monitoring insect pests of agricultural crops, with the integration of two distinct processes, the first being remote, simultaneous and automatic counting of insect pests (described in patent application BR 10 2018 016067 2), and the perimeter control of lepidopterans (described in patent application BR 10 2018 016070 2), by ultrasonic sound system.
  • the monitoring device determines, quantifies and identifies, in real time, within a radius of significance of the invention, the pest population in specific monitored, being activated remotely, through a combination of sensors that, when their signals are interrupted, generate the insect counting, either in the direction of entry or exit of the device, thus facilitating the analysis and interpretation of the monitoring flow of the target pest.
  • the technology performs the emission of ultrasonic pulses, in ultrasonic frequency and period of operation, pre-determined by the user, allowing the perimeter control of lepidopterans, in the same monitoring area.
  • the device presented in this document, is a trap that combines the ability of remote, uninterrupted and automatic monitoring of a target insect, and the ability to suppress peripetral lepidopterans by means of an ultrasonic signal.
  • the proposed device is implemented through a combination of hardware and software. It is understood, the concept that the present device (10) combines a series of electronic devices, such as microcontrollers (16) (arduino, or similar equipment), boards for base interface of other electronic components (protoboard, or similar equipment to that), devices for signal emission and communication of the device with an available data network, such a network (11) comprises the most diverse amplitudes and pluralities of data systems, such as a mobile data telephone network (3G, 4G, for example), bluetooth, Sigfox, LORA (low range), other networks coming from IOT (Internet of Things) components, electronic monitoring sensors, such as optical switch, infrared sensors, piezoelectric, bioimpedance, switch switch, approximation and magnetic.
  • a network (11) comprises the most diverse amplitudes and pluralities of data systems, such as a mobile data telephone network (3G, 4G, for example), bluetooth, Sigfox, LORA (low range), other networks coming from IOT (Internet of Things) components, electronic monitoring sensors
  • the set of devices (10) within a production area or storage location form a remote and automated pest monitoring system (14).
  • Each device (10) is at a defined distance, a device between 100 - 600 m apart, at a height from the ground varying from 30 to 400 cm, covering an area equivalent to approximately 1 - 25 hectares. The distance between devices may vary depending on the target pest to be monitored.
  • the device (10) which monitors the population of insects within its radius of coverage, uses bait (sexual pheromone of the monitoring target insect, for example) and attractive colors (yellow, fluorescent tones, etc.) that attract target insects into the device, where electronic sensors detect it during its movement in the direction of the bait.
  • the device (10) has an ultrasound compartment (3) that serves as support and coupling for an electronic device, called Buzzer, which emits ultrasonic waves, at programmable frequencies (0.3 to 100 KHz), in order to mimic natural enemies of insects of the order Lepidoptera.
  • the frequencies are adjustable, preferably between 33 to 65 kHz to affect the behavior of this order of insects and cause stress to the insect, generating a defense reaction.
  • the ultrasound compartment (3) was produced in ABS Plastic, or similar to this one, and designed so that there is resonance in the emission of the ultrasonic pulse, allowing greater amplitude and also a unilateral direction of the ultrasonic signal.
  • This ultrasound compartment (3) contains part of its internal wall to couple the ultrasonic emitter, Buzzer, so that the internal surface allows the creation of resonance in the emitted signal, in addition to giving a unilateral direction to the same signal, generating through the dissipation of ultrasonic waves a barrier which, when the lepidopteran approaches this barrier, initiates a defense reaction in the insect's organism, identical to the reaction when the insect feels the ultrasonic waves emitted by the bat, one of its natural enemies. In this way, the insect understands that this barrier would be a place with the possible presence of its natural enemy and, as a form of defense, it makes a stealthy flight in the opposite direction to that of the ultrasonic wave barrier.
  • the device (10) consists of a modular structure, with several combinations of sensors, rigid plastic structures and with UV resistance can be combined aiming at the best suitability for a type of insect pest to be monitored or seeking a better performance. Extremely, the device consists of a rigid plastic structure (1) with an attractive characteristic color to insects, such as fluorescent shades, shades of green, yellow, among others, coated with UV protector.
  • the set of structures that make up the device (10) is divided into 4 elements: external compartment (1), perforated and with a characteristic color; internal compartment (7), closed and shaped for pheromone support and storage of electrical / electronic components; cover (2), responsible for the junction of both compartments and support of the ultrasound compartment (3); ultrasound compartment (3), support element and direction of the ultrasonic sound signal emitted by the Buzzer.
  • the external compartment (1) has uniform perforations and in parallelepiped format, on the entire surface of the lateral body, which has the purpose of dispersing the decoy (ex: pheromone), and the lateral arrangement to the perforation compartment is intended to enhance the exhalation of the attraction pheromone, unlike the current conventional traps, which are sunk and with pheromone dispersion only through the bottom.
  • the external compartment (1) is completely hollow and shaped to allow a perfect fit with the internal compartment (7).
  • the external compartment has, at the bottom, some perforations similar to those on the side, in order to avoid the accumulation of water inside the device.
  • the lower part also has a fitting (9) for a support rod, which will support the invention at a predetermined height from the ground, to be defined by the user, according to the pest to be controlled, being adapted to the height from the top of the plant, which can vary between 30 to 400 cm.
  • the internal compartment (7) has no perforations in the side body, being completely sealed. This compartment is the structural basis for allocating the various electronic components of the device.
  • a series of mixed circuit boards combine to create the system that automates insect detection. The composition of this system is as follows:
  • - protoboard board support structure for the connection and installation of the other electronic components
  • - communication board electronic component that communicates with a Sigfox or LoRa data network with a star topology, similar to a cell phone network, but with long range, signal quality and low energy consumption of its components. Your information is sent using 128-bit AES encryption.
  • sensors combination of 2 or more infrared sensors that read the presence of the insect via signal interruption.
  • the ultrasonic frequency emission sensor, Buzzer which emits sound waves at programmable frequencies.
  • the device contains a protoboard, or similar equipment, where the various electronic components are allocated.
  • the microcontroller board (16) connects to the protoboard and, to it, the different sensors are connected.
  • the sensors generate output signals to the microcontroller (16), in response to the interruption of signals by displacing the insect-pest within of the device, translating into the presence of the insect.
  • the microcontroller (16) processes the information received, and sends it to the communication board that transmits the information through the data network, which are centralized in a base station (11).
  • the information received at the base station (1 1) is sent to a cloud data storage system (12) where, the data management software will access and properly process data, through decision systems (13) on platforms varied, such as tablets, computers and cell phones, for example.
  • the microcontroller (16) also conditions the continuous and uninterrupted emission of ultrasonic waves, through the emitting sensor, Buzzer, in order to condition a barrier of entry of lepidopterans in the perimeter of the cultivation area.
  • the data captured by moving the insect inside the device (10), are sent to a cloud storage system (12), where they can be accessed by the data management software.
  • This software performs the treatment and analysis of this data in an editable way by the user. For example, analyzes of the periodicity of activity of the target insect in the crop, georeferenced mapping of sites with the presence of the target insect defined in desired periods, evolution of the insect population rate in different periods, correlations between insect population and efficiency of agricultural treatments for your control, among others.
  • the only entrance and exit region of its interior is in its lower part, where there is an entrance / exit orifice (channel - 8) with a dimension defined for the target insect, this dimension is between 3-5 mm wide.
  • this structure there is also a support (5), which is used to store the attraction pheromone, in the upper part at the exit of the channel (6).
  • the channel (8) aims to direct the insect-pest to move towards the pheromone, during this displacement, the sensors present in the activation-detection structure (4) coupled to the internal compartment (7), perform the reading of the insect, when it interrupts the infrared signals emitted by the sensors.
  • the interrupted signals When passing through this section, in one direction, the interrupted signals count an input count, the interruption on the opposite signal, count an output count. THE The identification of insects occurs from the degree of interruption of the signals, that means, the sensors emit the signals with a certain intensity (quantifiable) and each insect that passes through them when interrupting the signal, given the characteristics of its body, make the interruption with a different intensity, for example, if an infrared signal set oscillates with a signal intensity of 300, we can easily identify insects such as the cotton weevil, which cause the signal strength to fall to the range of 30-100, while flies or ants cause the signal strength to drop to 200-250. Given the shape of the body of these insects, the way they generate the interruption of the signal, makes it possible to identify the same group.
  • the target insect when passing through the channel exit (6), goes to the empty area formed between the concentric compartments (1 and 7), where it is then stored.
  • This internal compartment (7) in addition to the channel (8), has its interior completely protected, thus allowing the installation of all the necessary electronic components in the region identified by item 4.
  • the lid (2) has a beveled external shape, which prevents the accumulation of dirt and water retention, functioning as a roof, and its shape facilitates the operation of opening and installing items in the device (pheromone and electronics ). Its unique format allows the creation of a design with 2 concentric cylinders, hiding all the electronics. Therefore, it is the unifying element of the invention, used to give the necessary support to the external (1) and internal (7) compartments, as well as for the ultrasound compartment (3).
  • the external compartment (1) fits through a plug with the cover (2).
  • the internal compartment (7) is threaded on the cover (2), allowing total sealing and preventing the entry of liquids and foreign bodies.
  • the ultrasound compartment (3) fits in the upper part of the cover (2), by means of a clamp system and is directly connected to the internal compartment, facilitating the passage of wires for electrical connections.
  • the target insect is attracted, by means of a decoy (for example, pheromone or attractive coloring), it enters the detection region (counting channel) (4), where when passing through the combination of sensors in each individualized channel, interrupts a detection-activation signal that is positioned in a predetermined section of the channel (4), in this process of interruption of the signal, the insect is accounted for.
  • the signal in question can be electric - infrared, for example, mechanical - key switch, for example, magnetic - solenoid, for example.
  • the individualized channel consists of a region that delimits the entry of insects and thus allows counting them.
  • the interrupted signal is then processed by the algorithm installed on the processor board, which decodes it in the form of an arithmetic count. Each interruption corresponds to 1 (one) number in the count.
  • the count performed is then stored in the memory of the electronic device (miniprocessor and electronic components) and the data is transmitted via LPWAN signal to the processing center, where a software compiles the received data and generates the result in real time to the user.
  • the principle of technology is that each insect (beaked) that enters is automatically counted and notified to the farm team.
  • the control applications will be EMBROIDERED, following the IMAmt technical regulations and the insect displacement profile (IMAmt). 58. - The border area is 10% of the total planting area
  • the device presents as a great innovation the ability to combine the solution with the monitoring of a group of target insects and, at the same time, the control of another group of target insects (Lepidoptera). This wide range of activities means that the activity of monitoring and controlling pests is developed with more agility, precision, rigor and assertiveness.
  • the present provision expects to improve the conditions of production and agricultural management and, finally, to increase the competitiveness of agriculture.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Birds (AREA)
  • Catching Or Destruction (AREA)

Abstract

O presente invento consiste em um dispositivo que possibilita uma estrutura física e técnica para a incorporação de dois processos independentes e, ao mesmo tempo complementares, de monitoramento de insetos-praga e de controle perimetral de lepidópteros, em atividades de produção agrícola e/ou armazenagem de produtos, como grãos, por exemplo. Seu campo de aplicação é extenso, podendo, este dispositivo, ser utilizado nas mais diversas culturas agrícolas, como soja, milho, algodão, café, banana, citrus, cana-de-açúcar, entre outros, desde que haja a necessidade de monitoramento de pragas específicas a algum destes cultivos. A tecnologia proposta atua remota e automaticamente, reduzindo o custo com mão-de-obra e diminuindo os danos destes insetos-praga e dos lepidópteros à atividade econômica em questão.

Description

RELATÓRIO DESCRITIVO
DISPOSITIVO DE DETECÇÃO, CONTAGEM REMOTA, AUTOMÁTICA E ININTERRUPTA DE PRAGAS-ALVO E CONTROLADOR
PERIME TRAL DE LEPIDÓPTEROS
CAMPO TÉCNICO DA INVENÇÃO
1. O presente invento consiste em um dispositivo que possibilita uma estrutura física e técnica para a incorporação de dois processos independentes e, ao mesmo tempo complementares, de monitoramento de insetos-praga e de controle perimetral de lepidópteros, em atividades de produção agrícola e/ou armazenagem de produtos, como grãos, por exemplo. Seu campo de aplicação é extenso, podendo, este dispositivo, ser utilizado nas mais diversas culturas agrícolas, como soja, milho, algodão, café, banana, citrus, cana-de -açúcar, entre outros, desde que haja a necessidade de monitoramento de pragas específicas a algum destes cultivos. A tecnologia proposta atua remota e automaticamente, reduzindo o custo com mão- de-obra e diminuindo os danos destes insetos-praga e dos lepidópteros à atividade económica em questão.
ESTADO DA TÉCNICA
2. A crescente demanda mundial de alimentos saudáveis e mais sustentáveis, associada à contribuição das mudanças climáticas para a disseminação de pragas invasivas, geram um entorno de elevado desafio para atender a esta demanda, visto que os mecanismos de controle e monitoramento de pragas passam por um processo adaptativo que muitas vezes não atuam com a mesma rapidez que as pragas evoluem.
3. Para melhorar o controle e tomada de decisão sobre o melhor momento de intervir nas populações de insetos pragas, deve-se ter como passo fundamental o monitoramento e manejo de pragas. Essa prática determina a situação das pragas, a evolução populacional, os danos e prejuízos que estão ocorrendo, além de ser o ponto de referência para a determinação do momento ideal de intervenção, seja por meio de aplicação de algum insumo, ou tomada de medida complementar - intervenção mecânica, reconhecimento da frustração económica, por exemplo.
4. No entanto, o modo como se faz o monitoramento de pragas agrícolas é dificultado pela morosidade e pelos elevados custos físicos do mesmo, visto que exige alta capacidade técnica e mão de obra constante, o que limita a eficiência em grandes superfícies. Adicionalmente, a baixa cobertura de comunicação das áreas produtivas, faz com que a quase totalidade das áreas não apresentem inovação em tal sentido de automatização de processos.
5. Para solucionar este problema se propõe um dispositivo de monitoramento, capaz de ser utilizado em áreas abertas e também em centros de armazenamento de alimentos (grãos) que seja localizado nas regiões perimetrais como as bordaduras dos cultivos, que realize a contagem, monitoramento de insetos-pragas e também o bloqueio perimetral de insetos secundários.
6. O dispositivo aqui proposto inclui produtos chamarizes e uma série de sensores dispostos no seu interior. Baseando-se numa pluralidade dos sinais recebidos, ao longo do tempo de execução do dispositivo, estas informações são transferidas para a central de dados para comunicar os diversos registros capturados, como temperatura e umidade no momento do registro, nível de infestação da praga-alvo no local, carga da bateria, condições gerais do dispositivo, como erros de componentes, necessidade de trocas de peças ou status regular de funcionamento, entre diversas outras informações.
7. Como inovação complementar à contagem simultânea, automática e transmissão da informação, destaca-se que o dispositivo, por apresentar componente eletrónico para georreferenciamento, oferece as condições ideais para orientar ao usuário no momento de fazer a aplicação de insumos, de modo individualizado nas áreas onde ocorre o monitoramento. Este mecanismo permite que as aplicações sejam precisas e individualizadas a cada dispositivo, com isso pode-se gerar uma aplicação mais oportuna e efetiva por meio de sistemas de pulverização em bordes ou em raios pré-definidos de acordo com os levantamentos realizados, para que os custos sejam ainda mais reduzidos ao usuário final. 8. A tecnologia em questão também tem a complementariedade à solução eletrónica de monitoramento de pragas, aproveitando da dispersão espacial do dispositivo para o monitoramento de pragas-alvos assim como das baterias, sendo possível também instalar um sistema de bloqueio perimetral para lepidópteros, com funcionamento com comprimento de onda e periodicidade definidos pelo usuário, de modo a emitir sinais sonoros que mimetizem um predador natural deste grupo de insetos.
9. O dispositivo contempla um sistema de emissão de sinal ultrassónico para mimetização da frequência de onda dos predadores naturais de lepidópteros (morcegos), com isso, tais insetos sofrem modificações nos seus hábitos, como voos furtivos e não atacam com a mesma intensidade as áreas monitoradas. A inovação deste processo no dispositivo proposto está na condição de se conseguir um bloqueio perimetral eficaz para o uso de equipamentos de emissão de sinal ultrassónico, em áreas agrícolas abertas, de longa extensão e remotas. A emissão de sinal ultrassónico, por meio de vários dispositivos instalados no perímetro da área, permitindo a formação de uma rede integrada de emissores que dificultam a entrada destes lepidópteros na área agrícola.
10. Outros documentos de patentes citam sistemas de monitoramento de insetos-alvo, porém com diferenciação em uso de tecnologia e de modalidade de usos. O documento BR 11 2013 0094001 0, cita o monitoramento automático de população de insetos para pomares e outras árvores frutíferas. Esta referida tecnologia, diferentemente da presente invenção, necessita de um sistema com controlador eletrónico para fazer a identificação do inseto via inclinação, amplitude, tempo de elevação, tempo de queda, frequência de toque de pulso elétrico, por meio do contato direto com pelo menos 1 sensor de bioimpedância (e atordoamento do inseto). No caso do presente dispositivo proposto, a própria combinação de sensores, pela disposição dos mesmos no dispositivo, realiza a identificação do inseto-alvo, ao mesmo tempo que se realiza sua contagem. Adicionalmente, BR 11 2013 0094001 0 quando não está conectada a um computador diretamente, necessita uma estação base integrada para receber as informações entre armadilhas, além de necessitar de uma bateria central, impedindo o uso em grandes áreas.
11. Na atualidade, não existem soluções similares, principalmente em função da fusão de atividades na zona perimetral do cultivo ou da área a ser monitorada (armazenamento de grãos), realizando simultaneamente a contagem remota de insetos-alvo e supressão populacional de lepidópteros.
12. A tecnologia proposta permite a instalação e automação remota dos processos de contagem e monitoramento de entrada e saída de insetos, assim como a redução da formação de resistência por parte dos lepidópteros à tecnologia transgênica. Todo o processo de funcionamento de tal dispositivo é visualizado em tempo real pelo usuário, por meio de um sistema de comunicação - tecnologia IOT (Internet das Coisas), funcionando em um sistema de multi -plataformas (tablets, computadores, celulares).
13. A tecnologia pode ser aplicada à pragas de grãos armazenados ou de cultivos agrícolas, como: bicudo do algodoeiro (Anthonomus grandis), broca da laranjeira (Cratossomus flavofasciatus), moleque da bananeira (Cosmopolites sordidus), broca da cana (Diatrea spp.), bicudo da cana (Sphenophorus spp.), percevejo marrom (Euschistus heros), besourinho dos cereais (Ryzopertha dominica), entre outras pragas que são atraídas via algum chamariz específico, como feromônios, luz ou coloração, por exemplo.
14. Esta solução toma-se ainda mais relevante ao considerar o contexto da produção alimentar mundial, com alto índice de aplicação de inseticidas, aumento da resistência dos insetos-pragas e aumento do grau de contaminação dos alimentos, gerando prejuízos financeiros, ambientais e sociais.
15. Desta forma, a presente tecnologia se projeta como um dos importantes meios para automatizar e melhorar o processo de monitoramento e controle de pragas na agricultura, a fim de atender a uma crescente demanda mundial por redução no uso de inseticidas, possibilitando a criação de opções mais baratas e seguras de produtos agrícolas e alimentos. DESCRIÇÃO DAS FIGURAS
16. Figura 1. Dispositivo Visão Externa, apresenta formato cilíndrico (1), com coloração chamariz, a depender da praga-alvo, um encaixe (9) para uma haste a ser fixado ao solo, uma tampa (2) que unifica outro cilindro interno (contendo a solução elétrica/eletrônica) e a parte superior (vermelha - câmara de ressonância) (3) onde é instalado o sensor sonoro de frequência ultrassónica - buzzer.
17. Figura 2. Corte Lateral do dispositivo, apresentando a canaleta de instalação dos sensores de ativação-detecção (4), para a contagem remota e simultânea de pragas-alvo e os mecanismos de encaixe entre as partes interna e externa do dispositivo. O cilindro externo (verde) (1) é completamente perfurado, para facilitar a exalação de feromônios, aproveitando do formato cilíndrico para a passagem do vento e melhoria deste fluxo de emissão de voláteis. O suporte do feromônio (5) é instalado exatamente na parte superior ao orifício de saída da canaleta (6) de acesso da praga-alvo, com o objetivo de intensificar o odor e atrair ainda mais facilmente o inseto. A canaleta de passagem do inseto (8) e o encaixe para sustentação do dispositivo ao solo (9)
18. Figura 3. Vista dos componentes internos do dispositivo. O cilindro interno (7) é rosqueado à tampa (2), completamente fechado para evitar infiltração. Na parte superior à saída da canaleta (6) de entrada do inseto é posicionado o suporte do feromônio (5) (retângulo branco) que está estrategicamente posicionado para aumentar a atração do inseto até a saída do dispositivo.
19. Figura 4. O posicionamento do dispositivo nas bordas da área agrícola tem a finalidade de fazer a cobertura perimetral e possibilitar a correta contagem e também controle de lepidópteros. Detalhe para o encaixe de sustentação (9).
20. Figura 5. Vista inferior do dispositivo, apresentando o canal de entrada (8) do inseto, que é atraído pelo feromônio, posicionado no lado oposto da entrada.
21. Figura 6. Corte vertical do dispositivo, apresentando a câmara de ressonância do dispositivo ultrassónico (3) (cubo vermelho) e também o cilindro interno (7) onde é guardada todos os instrumentos elétricos/eletrônicos da solução, instalados na região do item 4. Detalhe para canaleta de passagem do inseto (8) e encaixe para sustentação (9)
22. Figura 7. Visão ilustrativa do PROCESSO DE MONITORAMENTO AUTOMÁTICO, REMOTO E ININTERRUPTO DE PRAGAS -ALVO, a área/instalação foco do monitoramento (15) é cercada com os dispositivos de contagem (10), esses dispositivos realizam a contagem automática e remota dos insetos-praga enviando informações à uma central de comunicação (11) LPWAN, os dados capturados alimentam um banco de dados em nuvem (12), as informações deste banco de dados são depuradas, alimentando sistemas decisores (13) através de diferentes plataformas, como tablets, celulares, computadores desktops, entre outros
23. Figura 8 - Detalhamento do Dispositivo de Contagem (10) instalado na armadilha; 16 - microprocessador com sensores instalados; 17 - bateria.
DESCRIÇÃO RESUMIDA DA INVENÇÃO
24. O dispositivo aqui proposto caracteriza-se por realizar o monitoramento de insetos-praga de cultivos agrícolas, com a integração de dois processos distintos, sendo o primeiro a contagem remota, simultânea e automática de insetos-praga (descrito no pedido de patente BR 10 2018 016067 2), e o controle perimetral de lepidópteros (descrito no pedido de patente BR 10 2018 016070 2), por sistema sonoro ultrassónico. O dispositivo de monitoramento determina, quantifica e identifica, em tempo real, dentro de um raio de significância da invenção, a população da praga em específico monitorada, sendo ativada remotamente, através de uma combinação de sensores que ao terem seus sinais interrompidos, geram a contagem do inseto, seja no sentido de entrada ou de saída do dispositivo, facilitando assim a análise e interpretação do fluxo de monitoramento da praga- alvo. 25. Adicionalmente, a tecnologia realiza a emissão de pulsos ultrassónicos, em frequência ultrassónica e período de funcionamento, pré-determinados pelo usuário, possibilitando o controle perimetral de lepidópteros, na mesma área de monitoramento.
DESCRIÇÃO DETALHADA DA INVENÇÃO
26. O dispositivo, apresentado neste documento, é uma armadilha que congrega a capacidade de monitoramento remoto, ininterrupto e automático de um inseto- alvo, e a capacidade de supressão perimetral de lepidópteros por meio de sinal ultrassónico.
27. O dispositivo proposto é implementado através da combinação de hardware e software. Entende-se, o conceito que o presente dispositivo (10) combina uma série de dispositivos eletroeletrônicos, tais como microcontroladores (16) (arduíno, ou equipamentos semelhantes a esse), placas para interface base de outros componentes eletrónicos (protoboard, ou equipamentos semelhantes a esse), dispositivos para emissão de sinal e comunicação do dispositivo com uma rede de dados disponível, tal rede (11) compreende-se das mais diversas amplitudes e pluralidades de sistema de dados, como rede telefónica de dados móveis (3G, 4G, por exemplo), bluetooth, Sigfox, LORA (low range), outras redes provenientes de componentes IOT (Internet das Coisas, em inglês), sensores de monitoramento eletrónico, tais como chave óptica, sensores infravermelhos, piezoelétrico, bioimpedância, chave switch, aproximação e magnético.
28. O conjunto de dispositivos (10) compreendidos dentro de uma área de produção ou local de armazenagem (por exemplo, uma lavoura de algodão) formam um sistema de monitoramento de pragas remoto e automatizado (14). Cada dispositivo (10) fica a uma distância definida, dispositivo entre 100 - 600 m distantes, a uma altura do solo variando de 30 a 400cm, cobrindo uma área equivalente à 1 - 25 hectares, aproximadamente. A distância entre os dispositivos pode variar dependendo da praga-alvo a ser monitorada. 29. O dispositivo (10), que monitora a população de insetos no seu raio de abrangência, utiliza-se de uma isca (feromônio sexual do inseto-alvo de monitoramento, por exemplo) e cores atrativas (amarelo, tons fluorescentes, etc) que atraem os insetos-alvo para o interior do dispositivo, onde os sensores eletrónicos o detectam durante seu deslocamento no sentido da isca.
30. Além da atração do inseto-alvo, o dispositivo (10) possui um compartimento do ultrassom (3) que serve de suporte e acoplamento para um dispositivo eletrónico, denominado Buzzer, que emite ondas ultrassónicas, em frequências programáveis (0,3 a 100 KHz), a fim de mimetizar inimigos naturais de insetos da ordem Lepidoptera. As frequências são ajustáveis, preferencialmente entre 33 a 65 kHz para afetar o comportamento desta ordem de insetos e provocar stress ao inseto, gerando uma reação de defesa. O compartimento do ultrassom (3) foi produzido em Plástico ABS, ou semelhantes a esse, e desenhado para que haja ressonância na emissão do pulso ultrassónico, possibilitando maior amplitude e também um direcionamento unilateral do sinal ultrassónico. Este compartimento do ultrassom (3) contém uma parte da sua parede interna para acoplar o emissor ultrassónico, Buzzer, de modo que a superfície interna possibilite a criação de ressonância no sinal emitido, além de dar uma direção unilateral ao mesmo sinal, gerando através da dissipação das ondas ultrassónicas uma barreira que, o lepidóptero, ao se aproximar desta barreira, inicia-se uma reação de defesa no organismo do inseto, idêntica à reação quando o inseto sente as ondas ultrassónicas emitidas pelo morcego, um de seus inimigos naturais. Desta forma, o inseto entende que essa barreira seria um local com possível presença de seu inimigo natural e, como forma de defesa, realiza um voo furtivo no sentido oposto ao da barreira de ondas ultrassónicas.
31. O dispositivo (10) consiste de uma estrutura modular, com diversas combinações de sensores, estruturas plásticas rígidas e com resistência UV podem ser combinadas visando a melhor adequação para um tipo de inseto-praga a ser monitorado ou buscando um melhor desempenho. Extemamente, o dispositivo é constituído de uma estrutura plástica rígida (1) de coloração característica atrativa a insetos, como tons fluorescentes, tons de verde, amarelo, entre outros, revestida com protetor UV. O conjunto de estruturas que compõem o dispositivo (10) está dividido em 4 elementos: compartimento externo (1), perfurado e de coloração característica; compartimento interno (7), fechado e com formato para suporte de feromônio e armazenamento dos componentes elétricos/eletrônicos; tampa (2), responsável pela junção de ambos compartimentos e suporte do compartimento do ultrassom (3); compartimento do ultrassom (3), elemento de suporte e direcionamento do sinal sonoro ultrassónico emitido pelo Buzzer.
32. O compartimento externo (1) apresenta perfurações uniformes e em formato paralelepipédico, em toda superfície do corpo lateral, que tem a finalidade de dispersar o chamariz (ex: feromônio), e a disposição lateral ao compartimento das perfurações tem o intuito de potencializar a exalação do feromônio de atração, diferentemente das armadilhas convencionais atuais, que são afundados e com dispersão de feromônio somente pela parte inferior. O compartimento externo (1) é completamente oco e com formato que permite o encaixe perfeito com o compartimento interno (7). O compartimento externo tem na parte inferior, algumas perfurações semelhantes às da lateral, com a finalidade de evitar o acúmulo de água no interior do dispositivo. Além disso, a parte inferior também conta com um encaixe (9) para uma haste de suporte, que sustentará a invenção a uma altura predeterminada do solo, a definir-se pelo usuário, de acordo à praga a ser controlada, sendo adaptado à altura do topo da planta, o que pode variar entre 30 a 400 cm.
33. O compartimento interno (7) não apresenta perfurações no corpo lateral, sendo totalmente selado. Este compartimento é a base estrutural para alocação dos diversos componentes eletroeletrônicos do dispositivo. Uma série de placas de circuitos mistos se combinam, a fim de criar o sistema que automatiza a detecção de insetos. A composição deste sistema se dá na seguinte forma:
34. - placa protoboard: estrutura de suporte para a conexão e instalação dos demais componentes eletrónicos; 35. - placa microcontrolador (16): arduíno, que armazenará o algoritmo de funcionamento tanto do dispositivo de contagem remota, como do emissor de sinais ultrassónicos, fazendo a gestão e armazenamento dos dados na sua memória interna e ativando o envio dos sinais capturados à placa de comunicação dispositivo. Sua programação é definida de acordo com a utilidade fim, podendo ser estabelecido diferentemente, de acordo com a combinação de sensores que possui.
36. - placa comunicação : componente eletrónico que se comunica com uma rede de dados Sigfox ou LoRa com topologia estrela, similar a uma rede de telefone celular, porém com longo alcance, qualidade de sinal e baixo consumo energético de seus componentes. Suas informações são enviadas com uma criptografia AES de 128 bits.
37. - sensores: combinação de 2 ou mais sensores infravermelhos que realizam a leitura de presença do inseto via da interrupção do sinal. Adicionalmente, o sensor de emissão de frequências ultrassónicas, Buzzer, que emite ondas sonoras em frequências programáveis.
38. - baterias recarregáveis (17): fornece energia para funcionamento do sistema, através de tensão mínima de 5 volts, com capacidade de carga mínima de 10.000 mAh.
39. É possível ainda acoplar outros módulos, como de localização geoespacial (GPS), sensores de temperatura e umidade (Dht22) para medir condições ambientais do entorno, durante o momento de contagem dos insetos, painéis fotovoltaicos para a recarga das baterias (17) que alimentam o sistema e assim permita o uso ininterrupto ao longo do ano.
40. Conforme mencionado anteriormente, o dispositivo contém uma placa protoboard, ou equipamentos semelhantes a esse, onde são alocados os diversos componentes eletrónicos. A placa microcontroladora (16), arduíno ou equipamentos semelhantes a esse, se conecta à protoboard e, a ele, são conectados os diversos sensores. Os sensores geram sinais de saída ao microcontrolador (16), em resposta à interrupção de sinais através do deslocamento do inseto-praga dentro do dispositivo, traduzindo-se na presença do inseto. O microcontrolador (16) processa a informação recebida, e envia para a placa de comunicação que transmite a informação através da rede de dados, que são centralizadas em uma estação base (11). As informações recebidas na estação base (1 1) são enviadas para um sistema de armazenamento de dados em nuvem (12) onde, o software de gerenciamento de dados fará o acesso e devido tratamento de dados, através de sistemas decisores (13) em plataformas variadas, como tablets, computadores e celulares, por exemplo. O microcontrolador (16), ainda, condiciona a emissão contínua e ininterrupta de ondas ultrassónicas, através do sensor emissor, Buzzer, a fim de condicionar uma barreira de entrada de lepidópteros na região perimetral da área de cultivo.
41. Os dados capturados através do deslocamento do inseto no interior do dispositivo (10), são enviados para um sistema de armazenamento em nuvem (12), onde podem ser acessados pelo software de gerenciamento de dados. Este software realiza o tratamento e análise destes dados de forma editável pelo usuário. Por exemplo, análises da periodicidade de atividade do inseto-alvo na lavoura, mapeamento georreferenciado de locais com presença do inseto-alvo definidos em períodos desejados, evolução da taxa populacional do inseto em diferentes períodos, correlações entre população do inseto e eficiência dos tratamentos agrícolas para seu controle, entre outros.
42. No dispositivo (10), a única região de entrada e saída de seu interior está na sua parte inferior, onde consta um orifício de entrada/saída (canaleta - 8) com dimensão definida para o inseto-alvo, essa dimensão é entre 3-5 mm de largura. Nessa estrutura há, também, um suporte (5), que é utilizado para armazenar o feromônio de atração, na parte superior à saída da canaleta (6). A canaleta (8) tem o objetivo de direcionar o inseto-praga a se deslocar em sentido ao feromônio, durante esse deslocamento, os sensores presentes na estrutura de ativação-detecção (4) acoplada ao compartimento interno (7), realiza a leitura do inseto, quando o mesmo interrompe os sinais infravermelhos emitidos pelos sensores. Ao passar por esta secção, em um sentido, os sinais interrompidos contabilizam uma contagem de entrada, a interrupção no sinal contrário, contabilizam uma contagem de saída. A identificação dos insetos ocorre a partir do grau de interrupção dos sinais, isso significa que, os sensores emitem os sinais com uma certa intensidade (quantificável) e cada inseto que passa por eles ao interromper o sinal, dadas as características do seu corpo, fazem a interrupção com uma intensidade diferente, por exemplo, se um conjunto de sinal infravermelho oscila com uma intensidade de sinal de 300, podemos, facilmente identificar insetos como o bicudo do algodoeiro, que fazem a intensidade do sinal cair para a faixa de 30-100, enquanto moscas ou formigas fazem a intensidade do sinal cair para 200-250. Dado o formato do corpo destes insetos, o modo como eles geram a interrupção do sinal, possibilita a identificação do mesmo grupo. O inseto-alvo ao passar pela saída da canaleta (6), se direciona para a área vazia formada entre os compartimentos concêntricos (1 e 7), onde ele então é armazenado. Este compartimento interno (7), além da canaleta (8), apresenta seu interior completamente protegido, permitindo assim a instalação de todos os componentes eletroeletrônicos necessários na região identificada pelo item 4.
43. A tampa (2) possui um formato externo chanfrado, o que impede o acúmulo de sujidades e a retenção de água, funcionando como um telhado, e o seu formato facilita a operação de abertura e instalação dos itens no dispositivo (feromônio e eletrónicos). Seu formato único permite a criação de um desenho com 2 cilindros concêntricos, ocultando toda a eletrónica. Portanto, trata-se do elemento unificador da invenção, utilizada para dar a sustentação necessária aos compartimentos externo (1) e interno (7), como para o compartimento do ultrassom (3). O compartimento externo (1) se encaixa por meio de um plug com a tampa (2). O compartimento interno (7) é rosqueado na tampa (2), permitindo total vedação e impedindo entrada de líquidos e corpos estranhos. O compartimento do ultrassom (3) se encaixa na parte superior da tampa (2), por meio de um sistema de presilhas e está diretamente ligado ao compartimento interno, facilitando a passagem de fios das conexões elétricas. EXPERIMENTOS DE DEMONSTRAÇÃO
44. Inicialmente o inseto-alvo é atraído, por meio de um chamariz (por exemplo, feromônio ou coloração atrativa), o mesmo entra na região de detecção (canaleta de contagem) (4), onde ao passar pela combinação de sensores em cada canal individualizado, interrompe um sinal de detecção-ativação que está posicionado em uma secção predeterminada da canaleta (4), neste processo de interrupção do sinal é que ocorre a contabilização do inseto. O sinal em questão pode ser elétrico - infravermelho, por exemplo, mecânico - chave switch, por exemplo, magnético - solenoide, por exemplo. O canal individualizado consiste em uma região que delimita a entrada dos insetos e com isso permite a contagem dos mesmos.
45. O sinal interrompido é então processado pelo algoritmo instalado na placa processadora, que faz a decodificação dele na forma da contagem aritmética. Cada interrupção corresponde a 1 (um) número na contagem. A contagem realizada é então armazenada na memória do dispositivo eletrónico (miniprocessador e componentes eletrónicos) e os dados são transmitidos via sinal LPWAN para a central de processamentos, onde um software faz a compilação dos dados recebidos e gera o resultado em tempo real ao usuário.
46. Para tal fim foram realizados testes em espaços fechados e avaliado o comportamento do bicudo do algodoeiro, ao passar por dois sistemas distintos, dentro do dispositivo proposto neste documento, sendo um sistema composto por um trajeto com a presença de sensores infravermelhos e outro sem nenhum tipo de sensor, a fim de quantificar a população final de insetos no fim do trajeto estabelecido. Primeiramente, foram liberados 6 insetos no dispositivo sem presença de sensores infravermelhos no trajeto até o ponto final, durante 8 baterias de testes, repetições. Posteriormente, os mesmos 6 insetos foram liberados no dispositivo com a presença dos sensores infravermelho em funcionamento, também em 8 baterias de teste. De acordo com os resultados, não foi observada nenhuma alteração no seu comportamento e nenhuma diferença estatística no número de insetos finais capturados no fim do trajeto, conforme mostra dados da tabela abaixo. 47. Tabela 1 - Ensaio número insetos capturados em trajeto com e sem presença de sensores infravermelhos
Figure imgf000016_0001
48. Tal experimento foi realizado por não haver, na literatura, nenhuma referência que apontasse qualquer tipo de informação sobre o comportamento de bicudo do algodoeiro ao se atravessar um trajeto definido com a presença de sinal infravermelho.
49. Confirmada a aplicabilidade da solução, calculou-se com base nas estimativas de custos e economias geradas, comparando o uso da invenção em questão e da solução atualmente empregada (armadilha manual). Os dados de referência foram obtidos na análise de monitoramento do bicudo pré-plantio, realizada pelo IMAmt para todas as regiões do Mato Grosso, e disponibilizado na internet (http://www.imamt.com.br/system/anexos/arquivos/332/original/SAP- e_BICUDO_06_2015-2016.pdf? 1454443210), pelas últimas 4 safras (de 2014 a 2018). Este relatório foi utilizado como base para estimar a quantidade de aplicações necessárias, pela via convencional, seguindo para isso a normativa técnica de manejo do próprio IMAmt. Base de dados
50. Baseado no BAS (Bicudos Armadilhados Semanalmente) apresentado neste relatório foi estimada a quantidade de aplicações totais no terreno, seguindo a recomendação técnica de aplicações necessárias do próprio IMAmt, chegando ao total de 18 aplicações na safra para o Mato Grosso.
Relatório Norma Técnica IMAmt
51. Depois de definida a quantidade de aplicações em área total, se estimou o custo por hectare para controle do bicudo. Para isso, foi utilizado como base a informação disponível no Livro“A Cadeia do Algodão Brasileiro 16/17” - R$ 1.532,00/30 aplicações = R$ 51, 07/aplicação e R$ 767,52/15 aplicações = R$ 5 l, l7/aplicação.
52. Em resumo, 18 aplicações x R$ 51, 17 (preço médio) = R$ 921, 06/ha. Esta é a condição atual de aplicações, com o uso do armadilhamento convencional. A este valor ainda deve-se considerar e contabilizar, potenciais aplicações de bordadura, assim como o custo de monitoramento (convencional R$ 20, Tubo Mata Bicudo R$ 70, mão de obra da equipe de monitoramento em tomo de R$ 9,00/ha), por isso estimou-se um custo entre R$ 1.000 - R$ 1.500/ha.
Resultados
53. Com relação ao Monitoramento Remoto, automático e em Tempo Real de Bicudos:
54. A tecnologia tem como princípio de funcionamento, que cada inseto (bicudo) que entra é automaticamente contabilizado e avisado à equipe da fazenda.
55. Por isso, foi considerado que a partir do Io bicudo que entre na armadilha, se iniciem as aplicações de inseticidas, seguindo a norma técnica do IMAmt de supressão do inseto e aproveitando da possibilidade de se passar a receber o aviso em tempo real. Para tal fim, foram respeitadas as seguintes condições:
56. - Cada bicudo contabilizado será controlado no mesmo dia ou em até 2 dias após seu registro.
57. - As aplicações para controle serão EM BORDADURA, seguindo a normativa técnica do IMAmt e o perfil de deslocamento do inseto (IMAmt). 58. - A área de bordadura é 10% da área total do plantio
59. - Considerando os bicudos capturados por armadilha semanalmente (BAS), registrados pelo IMAmt, ao substituir a armadilha convencional pela inovação seria possível realizar o controle somente na bordadura e não seria necessário o manejo em área total, já que se conhece o perfil de deslocamento do inseto.
60. - O monitoramento a partir do primeiro botão floral seguirá a normativa técnica do IMAmt, lembrando que é possível já atuar no momento da entrada do primeiro bicudo, o que possibilita também aplicações de contenção, via bordadura em momentos pré-floração.
61. - Todas as considerações anteriores e outras potencialidades da inovação foram validadas em consultas com especialistas da Embrapa-Algodão e evidências técnicas no tema.
62. Baseado nas considerações anteriores, analisando o BAS do IMAmt, chegou-se a estimativa de 45 aplicações de bordadura (equivalente a 4,5 aplicações em área total) e uma estimativa de outras 5 aplicações de área total depois do primeiro botão floral (50 aplicações de bordadura) - baseado nas consultas realizadas com os especialistas.
63. No total estaríamos considerando 9,5 aplicações em área total, utilizando a tecnologia, contra as 18 aplicações calculadas para a armadilha convencional.
64. Por essa razão, e considerando a diversidade com outras áreas produtoras, optou-se, tecnicamente, por uma avaliação ainda mais conservadora e chegando a redução de 30%, ou seja, do custo convencional de R$ 1.000 - 1.500/ha, seria considerado uma redução de R$ 300 - 450/ha.
65. Adicional à redução de custo deve-se considerar que existe uma possibilidade de aumento de produtividade, pelo menor número de ataques de bicudos e danos em botões florais, além do aumento da eficiência da mão-de-obra disponível na fazenda, já que não será necessário realizar vistorias semanais. O técnico iria somente para a troca de feromônio, a cada 14 dias, havendo tempo hábil para contribuir com outras atividades internas da fazenda. CONCLUSÃO
66. O dispositivo apresenta como grande inovação a capacidade de congregar a solução ao monitoramento de um grupo de insetos-alvo e ao mesmo tempo, o controle de outro grupo de insetos-alvo (Lepidópteros). Esta ampla gama de atuação faz com que a atividade de monitoramento e controle de pragas seja desenvolvida com mais agilidade, precisão, rigor e assertividade.
67. Se busca a partir da presente invenção, garantir ao usuário a apresentação de todas as informações de maior importância para que se possa tomar a decisão no momento adequado, reduzindo custos, garantindo qualidade e protegendo o meio ambiente, a sociedade e sua própria saúde.
68. A partir do presente dispositivo se espera a melhoria das condições de produção e manejo agrícola e por fim, o aumento da competitividade da agricultura.

Claims

REIVINDICAÇÕES
1. Dispositivo de detecção, contagem remota, automática e ininterrupta de pragas-alvo e controlador perimetral de lepidópteros caracterizado por compreender uma estrutura modular plástica rígida; com iscas (feromônio) e coloração característica atrativa a insetos (tons fluorescentes, verde, amarelo, entre outros); ter diversas combinações de sensores; revestida com protetor ultra violeta; podendo ter painéis fotovoltaicos em seu exterior; dividido em quatro compartimentos: compartimento externo (1); compartimento interno (7); tampa (2); e compartimento do ultrassom (3); distantes de 100 a 600 metros um dos outros; e um encaixe (9) para a haste de suporte a uma altura do solo variando de 30 a 400cm.
2. Dispositivo, de acordo com a reivindicação 1, caracterizado por o compartimento externo (1) ser completamente oco e com formato que permite o encaixe com o compartimento interno (7), apresentar em sua superfície lateral perfurações uniformes e em formato paralelepipédico; na parte inferior, apresentar perfurações e um encaixe (9) para uma haste de suporte.
3. Dispositivo, de acordo com as reivindicações 1 e 2, caracterizado por o compartimento interno (7) não apresentar perfurações no corpo lateral, sendo totalmente selado; na parte inferior, apresenta um orifício, denominado canaleta (8), com dimensão adaptada que permite a passagem dos insetos-praga; e um suporte (5) na parte superior à saída da canaleta (6).
4. Dispositivo, de acordo com as reivindicações 1, 2 e 3, caracterizado por o compartimento interno (7) receber em seu interior os componentes eletroeletrônicos, tais como: microcontroladores/arduíno (16); protoboard; placa de emissão de sinal e comunicação com uma rede de dados disponível, como rede telefónica de dados móveis (3G, 4G, por exemplo), bluetooth, Sigfox, LORA ( low range), outras redes provenientes de componentes IOT (Internet das Coisas); baterias (17); GPS; sensores de monitoramento eletrónico, tais como chave óptica, sensores infravermelhos, piezoelétrico, bioimpedância, chave switch, de aproximação, magnético, e sensores de temperatura e umidade); compreendendo o sistema de detecção automatizado do dispositivo, que envia os dados para uma estação base (11), posteriormente a um sistema de armazenamento em nuvem (12) para utilização pelos sistemas decisores (13), tais como tablets, computadores, celulares ou semelhantes a estes.
5. Dispositivo, de acordo com a reivindicação 1, caracterizado por tampa (2) ter o formato externo chanfrado; unir os compartimentos externo (1) e interno (7), e receber o compartimento do ultrassom (3), sendo o encaixe com o compartimento externo (1) por meio de um plug, rosqueada com o compartimento interno (7), e na parte superior por um sistema de presilhas com o compartimento do ultrassom (3).
6. Dispositivo, de acordo com as reivindicações 1 e 5, caracterizado por compreender um compartimento do ultrassom (3) produzido em plástico ABS, ou semelhantes a esse; com uma parede interna em que se acopla o emissor ultrassónico (buzzer); com ressonância na emissão do pulso em direção unilateral, em frequências programáveis (0,3 a 100 KHz), preferencialmente entre 33 a 65 kHz.
7. Dispositivo, de acordo com a reivindicação 1 e 3, caracterizado por a canaleta (8), do compartimento interno (7), ser a secção de entrada do inseto-alvo, com combinação de sensores (elétrico, mecânico, magnético), com dimensão entre 3-5 mm de largura.
8. Dispositivo, de acordo com a reivindicação 1 e 3, caracterizado por o suporte (5), do compartimento interno (7), compreender o local que será armazenado os feromônios de atração do inseto-alvo.
9. Uso do dispositivo, de acordo com qualquer uma das reivindicações anteriores, caracterizado por ser para detecção, contagem remota, automática e ininterrupta de pragas-alvo e controlador perimetral de lepidópteros, e utilizado contra pragas de grãos armazenados ou de cultivos agrícolas, como: lepidópteros; e insetos-praga bicudo do algodoeiro ( Anthonomus grandis), broca da laranjeira (Cratossomus flavofasciatus), moleque da bananeira (Cosmopolites sordidus), broca da cana ( Diatrea spp .), bicudo da cana ( Sphenophorus spp .), percevejo marrom ( Euschistus heros), besourinho dos cereais ( Ryzopertha dominica), entre outras.
PCT/BR2019/050300 2018-08-06 2019-07-27 Dispositivo de detecção, contagem remota, automática e ininterrupta de pragas-alvo e controlador perimetral de lepidópteros WO2020028962A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102018016071-0A BR102018016071A2 (pt) 2018-08-06 2018-08-06 Dispositivo de detecção, contagem remota, automática e ininterrupta de pragas-alvo e contolador perimetral de lepidópteros
BRBR1020180160710 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020028962A1 true WO2020028962A1 (pt) 2020-02-13

Family

ID=69413227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050300 WO2020028962A1 (pt) 2018-08-06 2019-07-27 Dispositivo de detecção, contagem remota, automática e ininterrupta de pragas-alvo e controlador perimetral de lepidópteros

Country Status (2)

Country Link
BR (1) BR102018016071A2 (pt)
WO (1) WO2020028962A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210259230A1 (en) * 2018-11-08 2021-08-26 Joelcio COSME CARVALHO ERVILHA Adapter for automation of detection devices, remote, automatic and uninterrupted counting of target pests and lepidopteran perimeter controller
AT525646A4 (de) * 2022-06-21 2023-06-15 Witasek Pflanzenschutz Gmbh Insektenfalle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646404A (en) * 1995-02-17 1997-07-08 The United States Of America As Represented By The Secretary Of Agriculture Electronic grain probe insect counter (EGPIC)
JP2010207175A (ja) * 2009-03-12 2010-09-24 Daitsu:Kk 農圃における超音波防虫装置
JP2013051925A (ja) * 2011-09-05 2013-03-21 National Agriculture & Food Research Organization 害虫防除装置
CN203324781U (zh) * 2013-06-09 2013-12-04 浙江大学 一种害虫诱捕装置和害虫远程识别监控系统
WO2014037936A1 (en) * 2012-09-04 2014-03-13 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) System for automatic trapping and counting of flying insects
BR112013009401A2 (pt) * 2010-10-17 2016-07-26 Purdue Research Foundation monitoração automática de populações de insetos
WO2017213531A1 (pt) * 2016-06-07 2017-12-14 Pinheiro Pinto Sobreiro Luís Filipe Máquina para captura, contagem e monitorização de insetos

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646404A (en) * 1995-02-17 1997-07-08 The United States Of America As Represented By The Secretary Of Agriculture Electronic grain probe insect counter (EGPIC)
JP2010207175A (ja) * 2009-03-12 2010-09-24 Daitsu:Kk 農圃における超音波防虫装置
BR112013009401A2 (pt) * 2010-10-17 2016-07-26 Purdue Research Foundation monitoração automática de populações de insetos
JP2013051925A (ja) * 2011-09-05 2013-03-21 National Agriculture & Food Research Organization 害虫防除装置
WO2014037936A1 (en) * 2012-09-04 2014-03-13 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) System for automatic trapping and counting of flying insects
CN203324781U (zh) * 2013-06-09 2013-12-04 浙江大学 一种害虫诱捕装置和害虫远程识别监控系统
WO2017213531A1 (pt) * 2016-06-07 2017-12-14 Pinheiro Pinto Sobreiro Luís Filipe Máquina para captura, contagem e monitorização de insetos

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210259230A1 (en) * 2018-11-08 2021-08-26 Joelcio COSME CARVALHO ERVILHA Adapter for automation of detection devices, remote, automatic and uninterrupted counting of target pests and lepidopteran perimeter controller
AT525646A4 (de) * 2022-06-21 2023-06-15 Witasek Pflanzenschutz Gmbh Insektenfalle
AT525646B1 (de) * 2022-06-21 2023-06-15 Witasek Pflanzenschutz Gmbh Insektenfalle

Also Published As

Publication number Publication date
BR102018016071A2 (pt) 2020-02-27

Similar Documents

Publication Publication Date Title
Rogers et al. Evaluation of high tunnels for management of Drosophila suzukii in fall-bearing red raspberries: potential for reducing insecticide use
Tonina et al. Spillover of Drosophila suzukii between noncrop and crop areas: implications for pest management
US20170094960A1 (en) Insect control device and method of using the same
Bergh et al. Characterizing spring emergence of adult H alyomorpha halys using experimental overwintering shelters and commercial pheromone traps
WO2013063670A1 (pt) Método e sistema de controle e eliminação de pragas
BR102013017279A2 (pt) Armadilha de observação mata insetos para a captura massiva e controle do bicudo do algodoeiro
WO2020028962A1 (pt) Dispositivo de detecção, contagem remota, automática e ininterrupta de pragas-alvo e controlador perimetral de lepidópteros
Bergh et al. Can the dispersal behavior of Halyomorpha halys (Hemiptera: Pentatomidae) inform the use of insecticide-treated netting to mitigate homeowner issues from its fall invasion?
Ascolese et al. E‐traps: A valuable monitoring tool to be improved
Ndjomatchoua et al. Spatial and temporal spread of maize stem borer Busseola fusca (Fuller)(Lepidoptera: Noctuidae) damage in smallholder farms
Westermann et al. Synthetic pheromones as a management technique–dispensers reduce Linepithema humile activity in a commercial vineyard
Gonzalez et al. Research paper (integrated management: insects) red palm weevil (Rhynchophorus ferrugineus Olivier): recent advances
CN206851822U (zh) 一种白蚁诱捕盒
Il'ichev et al. Distribution of the oriental fruit moth Grapholita molesta Busck (Lep., Tortricidae) infestation on newly planted peaches before and during 2 years of mating disruption
WO2020028960A1 (pt) Processo de detecção, contagem remota, automática e ininterrupta de insetos-praga, com transmissão das informações por meio de sistemas de comunicação em áreas abertas e fechadas
KR200433451Y1 (ko) 해충밀도자동측정기
Comeau et al. Effects of reflective groundcovers on ground beetles (Coleoptera: Carabidae) in red raspberry (Rubus idaeus) cropping systems
Ellis et al. Factors influencing adult male G rapholita molesta dispersal in commercial M alus and P runus host crops
CN216533393U (zh) 智能虫情监测系统
CN212325239U (zh) 一种百香果大棚的天敌杀虫植入盒
CN213121843U (zh) 一种稻田长势监测装置
Laub et al. Compact soil sampling strategy for white grubs
CN211153441U (zh) 一种露天菜地用飞蛾激素诱捕装置
Sallam et al. Implementation of a risk assessment program to forecast greyback canegrub damage in Mulgrave sugarcane fields
US11726439B1 (en) Rapid disease response via particle monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847102

Country of ref document: EP

Kind code of ref document: A1