WO2020028834A1 - A viewing system with interpupillary distance compensation based on head motion - Google Patents

A viewing system with interpupillary distance compensation based on head motion Download PDF

Info

Publication number
WO2020028834A1
WO2020028834A1 PCT/US2019/044953 US2019044953W WO2020028834A1 WO 2020028834 A1 WO2020028834 A1 WO 2020028834A1 US 2019044953 W US2019044953 W US 2019044953W WO 2020028834 A1 WO2020028834 A1 WO 2020028834A1
Authority
WO
WIPO (PCT)
Prior art keywords
ipd
user
head
viewing
detector
Prior art date
Application number
PCT/US2019/044953
Other languages
French (fr)
Inventor
Samuel A. Miller
Original Assignee
Magic Leap, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap, Inc. filed Critical Magic Leap, Inc.
Priority to JP2021505669A priority Critical patent/JP7401519B2/en
Priority to CN201980061450.2A priority patent/CN112740665A/en
Priority to EP19843487.0A priority patent/EP3831058A4/en
Publication of WO2020028834A1 publication Critical patent/WO2020028834A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0181Adaptation to the pilot/driver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/383Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes

Definitions

  • This invention is related to connected mobile computing systems, methods, and configurations, and more specifically to mobile computing systems, methods, and configurations featuring at least one wearable component which may be utilized for virtual and/or augmented reality operation.
  • mixed reality, or augmented reality, near-eye displays be lightweight, low-cost, have a small form-factor, have a wide virtual image field of view, and be as transparent as possible.
  • the invention provides a viewing system. Including an interpupillary distance (IPD) detector that is positionable to detect an IPD of a user and generate IPD data, a head movement detector device that generates head movement data based on movement of a head of the user, a correlator connected to the IPD detector and the head movement detection device to generate a correlation between the IPD data and the head movement data and a storing system connected to the correlator to store the correlation.
  • IPD interpupillary distance
  • the viewing device may further include an apparatus frame securable to a head of the user, the IPD detector and head movement device being secured to the apparatus frame.
  • the viewing device may further include that the IPD detector is a camera with a field of capture oriented towards eyes of the user.
  • the viewing device may further include that the head movement detector includes one or more accelerometers, gyroscopes, inertial measurement units (IMU’s) or cameras.
  • the head movement detector includes one or more accelerometers, gyroscopes, inertial measurement units (IMU’s) or cameras.
  • the viewing device may further include that the head movement detector determines a least one rotation and position of the head of the user.
  • the viewing device may further include a mouth bit interface for the user to bite on to fixedly attach the apparatus frame to the head of the user.
  • the viewing device may further include that the user can accelerate their head while the IPD data is collected.
  • the viewing device may further include an IPD compensation factor calculator that calculates an IPD compensation factor based on the correlation.
  • the viewing device may further include an augmented reality system that generates a visual presentation to a user based at least in part on an IPD of the user and an IPD compensator that adjusts the visual representation based on the IPT compensation factor.
  • the invention also provides a viewing system, including an augmented reality system that generates a visual presentation to a user based at least in part on an IPD of the user, and an IPD compensator that adjusts the visual presentation based on an IPD compensation factor.
  • the viewing system may further include a pitch angle detector that detects pitch angle of a head of the user, wherein the IPD compensation factor is dependent on the pitch angle by the pitch angle detector.
  • the viewing system may further include a viewing calibration system that guides the user through a series of viewing exercises to determine one or more IPD compensation factors.
  • the viewing system may further include an IPD detector that is positionable to detect an IPD of a user and generate IPD data, a head movement detector device that generates head movement data based on movement of a head of the user, a correlator connected to the IPD detector and the head movement detection device to generate a correlation between the IPD data and the head movement data and a storing system connected to the correlator to store the correlation.
  • IPD detector that is positionable to detect an IPD of a user and generate IPD data
  • a head movement detector device that generates head movement data based on movement of a head of the user
  • a correlator connected to the IPD detector and the head movement detection device to generate a correlation between the IPD data and the head movement data
  • a storing system connected to the correlator to store the correlation.
  • the viewing system may further include an apparatus frame securable to a head of the user, the IPD detector and head movement device being secured to the apparatus frame.
  • the viewing system may further include that the IPD detector is a camera with a field of capture oriented towards eyes of the user.
  • the viewing system may further include that the head movement detector includes one or more accelerometers, gyroscopes, inertial measurement units (IMU’s) or cameras.
  • the head movement detector includes one or more accelerometers, gyroscopes, inertial measurement units (IMU’s) or cameras.
  • the viewing system may further include that the head movement detector determines a least one rotation and position of the head of the user.
  • the viewing system may further include a mouth bit interface for the user to bite on to fixedly attach the apparatus frame to the head of the user.
  • the viewing system may further include that the user can accelerate their head while the IPD data is collected.
  • Figure l is a schematic drawing illustrating an augmented reality viewing system
  • Figure 2 is a schematic drawing of a user, illustrating various head movements by the user and changes in an interpupillary distance (IPD) of the user;
  • IPD interpupillary distance
  • Figure 3 is a view similar to Figure 2 with the user tilting their head in an upward direction;
  • Figures 4A and 4B are perspective views illustrating a user with an experimental apparatus that is used to detect IPD compensations based on head motions;
  • Figure 5 is a graph illustrating IPD compensating factors relative to head pitch
  • Figure 6A is a flow chart illustrating IPD head rotation compensation
  • Figure 6B is a flow chart illustrating IPD head rotation compensation
  • Figure 6C is a flow chart illustrating IPD head rotation compensation
  • Figure 7 is a partial top plan view and partial block diagram of an augmented reality system.
  • Figure 8 is a top plan view of the augmented reality system illustrating IPD compensating features thereof.
  • an augmented reality system featuring a head-worn viewing component (2), a hand-held controller component (4), and an interconnected auxiliary computing or controller component (6) which may be configured to be worn as a belt pack or the like on the user.
  • Each of these components may be operatively coupled (10, 12, 14, 16, 17, 18) to each other and to other connected resources (8) such as cloud computing or cloud storage resources via wired or wireless communication configurations, such as those specified by IEEE 802.11, Bluetooth (RTM), and other connectivity standards and configurations.
  • connected resources such as cloud computing or cloud storage resources via wired or wireless communication configurations, such as those specified by IEEE 802.11, Bluetooth (RTM), and other connectivity standards and configurations.
  • RTM Bluetooth
  • Patent Application Serial Numbers 14/555,585, 14/690,401, 14/331,218, 15/481,255, and 62/518,539 each of which is incorporated by reference herein in its entirety, various aspects of such components are described, such as various embodiments of the two depicted optical elements (20) through which the user may see the world around them along with visual components which may be produced by the associated system components, for an augmented reality experience.
  • one or more of the components may feature devices or subcomponents, such as accelerometers, gyroscopes, potentiometers, integrated inertial measurement units (“IMU”), and cameras, which may be utilized to determine or estimate the position and/or orientation of an intercoupled user body part (such as the position or orientation of a user’s head when coupled to an instrumented head-worn viewing component (2)), as well as assist in determining velocities and/or accelerations thereof, linearly and/or angularly.
  • IMU integrated inertial measurement units
  • the system may be valuable for the system to utilize as at least one input the inter-pupillary distance (“IPD”) of the individual user in presenting such user with visual information pertaining to the augmented or virtual reality experience.
  • IPD inter-pupillary distance
  • This may be related to at least some of these users experiencing an actual or functional change in IPD as they change the pitch of their head, yaw their head to the side, or even roll their head (i.e., such as about a z-axis extending perpendicularly from their nose).
  • a variation in the IPD information inputted into the pertinent calculations which may be correlated with head orientation (such as in the form of an equation or lookup table correlating IPD adjustment factor or compensation with head orientation), may be utilized as a compensating variable to generate the presented augmented reality information to the user in such configurations.
  • FIG. 2 a representation of a user’s body (30) with attached head (32) is shown, the user being positioned within a room comprising fixed walls (22, 24), floor (28), and ceiling (26), which together may be associated with a global coordinate system for such room featuring C,U,Z cartesian coordinates (40, 42, 44, respectively), for example.
  • Another coordinate system may be associated with the head (32) of the user, such that the Z axis (38) is approximately straight out from the face, and the X (34) and Y (36) axes are orthogonal to the Z axis (38) as shown in Figure 2.
  • the user’s head (32) is oriented such that the Z axis (38) is approximately parallel with the Z axis of the room global coordinate system (44), and the gaze vectors (52, 54) from the eyes of the user are focused on a target (46), which may be virtual or actual, at the position of the left wall (22), at a position that causes level eye gaze (52, 54) to be approximately parallel to the Z axis (38) of the user’s head, which, as noted above for this example, is approximately level with the floor, or approximately parallel with the Z axis (44) of the room coordinate system. From such a position, the user may pitch their head down toward the floor, or up toward the ceiling.
  • This depicted position may be deemed a zero rotation position, for example, with pitch down toward the floor up to about -90 degrees, and up toward the ceiling by about +90 degrees, capable by the typical person.
  • the IPD (50) may be measured manually and/or automatically using aspects of the augmented reality system wearable component (2).
  • the same user (30, 32) is illustrated, with the user’s head rotated up (56) to a pitch of about +50 degrees relative to the plane of the floor (28; or the Z axis of the room coordinate system 44), and the gaze of the eyes (52, 54) of the augmented reality system wearable component (2) user are directed toward a second target (48).
  • the IPD may be measured manually and/or automatically using aspects of the augmented reality system wearable component (2).
  • IPD the IPD (50) as the head pitch angle is varied.
  • the depicted apparatus comprises a high resolution camera (62) with a field of capture oriented toward the eyes (70) of the user such that the user’s IPD may be measured from video information captured by an intercoupled (64) computing system and may also comprise one or more angular or linear motion measurement devices, such as one or more accelerometers, gyroscopes, IMU’s, or cameras which may be operatively coupled to the apparatus frame (68) and configured to be utilized to determine rotation/position based upon captured imagery from surroundings (i.e., such as“head pose” determination based upon computer vision techniques).
  • angular or linear motion measurement devices such as one or more accelerometers, gyroscopes, IMU’s, or cameras which may be operatively coupled to the apparatus frame (68) and configured to be utilized to determine rotation/position based upon captured imagery from surroundings (i.e., such as“head pose” determination based upon computer vision techniques).
  • the apparatus frame (68), to which the camera device (62) is fixedly coupled, is removably coupled to the head of the user using a mouth bit interface (66) for the user to bite on such that the user can move and accelerate his head about relatively easily while data is acquired pertaining to his eyes and IPD.
  • a chart (72) of sample data from a group of user subjects is illustrated, featuring a plot (76) of diopter error versus head pitch angle; also shown is a polynomial equation mathematically fit through this sample data (74), which may be utilized as an IPD compensating factor (with zero pitch being as shown in Figure 2; pitch in degrees; -90 being user looking approximately straight down at the floor; +90 being user looking approximately straight up at the ceiling).
  • the associated IPD compensating factor (74) developed for this sample experimental data may be utilized as an input to the augmented reality system such that focus is maintained during pitch rotation of the head of a user from this sample, for example.
  • An apparatus such as that depicted in Figures 4A and 4B, or a virtual or augmented reality system with appropriate componentry, such as that illustrated in Figures 1 and 2, may be utilized to not only gain information between the relationship of measured IPD and head pitch angle position, but also linear and/or angular velocity in pitch relative to surroundings, and linear and/or angular acceleration in pitch relative to surroundings. Further, such relationships may be determined for other axes, such as an orthogonal yaw axis, or an orthogonal roll axis. We have experimentally seen variations in eye positioning associated with position, velocity, and acceleration changes about each of these axes.
  • FIG. 6A a configuration is illustrated without IPD-head-rotation compensation, wherein a user is wearing a calibrated (i.e., with initial input or determination of IPD) augmented reality system (80), for example.
  • the system is configured to generate a visual presentation or portion thereof pertaining to that user’s gaze at the first target, based at least in part upon that user’s IPD (84).
  • the user may change gaze to a second target (86), and the system may be similarly configured to generate a visual presentation or portion thereof pertaining to that user’s gaze at the second target, based at least in part upon, again, that user’s IPD (88) (i.e., which has not been compensated for head position or rotation related variables).
  • a compensated configuration is illustrated, wherein after initial calibration (80) and gaze at a first target (82), the system is configured to generate visual presentation or portion thereof pertaining to the user’s gaze at the first target, based at least in part upon an IPD compensated for head orientation (such as head pitch angle when viewing the first target, the pitch angle being determined by the system). Then if the user changes gaze to a second target (86), the system is configured to generate visual presentation or portion thereof pertaining to the user’s gaze at the second target, based at least in part upon an IPD compensated for head orientation (such as head pitch angle when viewing the second target, the pitch angle being determined by the system).
  • an IPD compensated for head orientation such as head pitch angle when viewing the first target, the pitch angle being determined by the system.
  • the system itself may be utilized to develop one or more compensating relationships for the particular user.
  • a user may be wearing calibrated augmented reality system (for example, with IPD determined by system at level head pitch angle, such as that associated with gaze to infinity over substantially level horizon) (100).
  • calibrated augmented reality system for example, with IPD determined by system at level head pitch angle, such as that associated with gaze to infinity over substantially level horizon
  • a viewing calibration system may guide the user through a series of viewing exercises (i.e., wherein he positions, accelerates his head and wherein the system is configured to capture data pertaining to actual and/or functional IPD) (102).
  • the system may be configured to determine IPD compensation configuration (such as a lookup table or one or more mathematical relationships) for the user that is variable with the various positions, angular or linear velocities, or angular or linear accelerations (104), completing the user’s IPD compensation configuration (106). Then when the user gazes at a first target in space (82), the system may be configured to generate visual presentation or portions thereof pertaining to the user’s gaze at the first target, based at least in part upon the user’s IPD compensation configuration for the position, velocity, and/or acceleration (angular and/or cartesian) of the user’s head for the gaze at the first target (108).
  • IPD compensation configuration such as a lookup table or one or more mathematical relationships
  • the system may be configured to generate visual presentation or portions thereof pertaining to the user’s gaze at the second target, based at least in part upon the user’s IPD compensation configuration for the position, velocity, and/or acceleration (angular and/or cartesian) of the user’s head for the gaze at the second target (110).
  • Figure 7 illustrates an augmented reality system 142 of the in more detail.
  • the system 142 includes a stereoscopic analyzer 144 that is connected to the rendering engine 130 and forms part of the vision data and algorithms.
  • the system 142 further includes left and right projectors 166 A and 166B and left and right waveguides 170A and 170B.
  • the left and right projectors 166A and 166B are connected to power supplies.
  • Each projector 166 A and 166B has a respective input for image data to be provided to the respective projector 166A or 166B.
  • the respective projector 166A or 166B when powered, generates light in two-dimensional patterns and emanates the light therefrom.
  • the left and right waveguides 170A and 170B are positioned to receive light from the left and right projectors 166A and 166B, respectively.
  • the left and right waveguides 170A and 170B are transparent waveguides.
  • a user mounts the head mountable frame 140 to their head.
  • Components of the head mountable frame 140 may, for example, include a strap (not shown) that wraps around the back of the head of the user.
  • the left and right waveguides 170A and 170B are then located in front of left and right eyes 220A and 220B of the user.
  • the rendering engine 130 enters the image data that it receives into the stereoscopic analyzer 144.
  • the image data is projected onto a plurality of virtual planes.
  • the stereoscopic analyzer 144 analyzes the image data to determine left and right image data sets based on the image data for projection onto each depth plane.
  • the left and right image data sets are data sets that represent two-dimensional images that are projected in three-dimensions to give the user a perception of a depth.
  • the stereoscopic analyzer 144 enters the left and right image data sets into the left and right projectors 166 A and 166B.
  • the left and right projectors 166 A and 166B then create left and right light patterns.
  • the components of the system 142 are shown in plan view, although it should be understood that the left and right patterns are two-dimensional patterns when shown in front elevation view.
  • Each light pattern includes a plurality of pixels.
  • light rays 224 A and 226 A from two of the pixels are shown leaving the left projector 166A and entering the left waveguide 170A.
  • the light rays 224A and 226A reflect from sides of the left waveguide 170A. It is shown that the light rays 224A and 226 A propagate through internal reflection from left to right within the left waveguide 170A, although it should be understood that the light rays 224A and 226A also propagate in a direction into the paper using refractory and reflective systems.
  • the light rays 224A and 226A exit the left light waveguide 170A through a pupil 228 A and then enter a left eye 220 A through a pupil 230 A of the left eye 220 A.
  • the light rays 224 A and 226A then fall on a retina 232A of the left eye 220A.
  • the left light pattern falls on the retina 232A of the left eye 220A.
  • the user is given the perception that the pixels that are formed on the retina 232A are pixels 234A and 236A that the user perceives to be at some distance on a side of the left waveguide 170A opposing the left eye 220A. Depth perception is created by manipulating the focal length of the light.
  • the stereoscopic analyzer 144 enters the right image data set into the right projector 166B.
  • the right projector 166B transmits the right light pattern, which is represented by pixels in the form of light rays 224B and 226B.
  • the light rays 224B and 226B reflect within the right waveguide 170B and exit through a pupil 228B.
  • the light rays 224B and 226B then enter through a pupil 230B of the right eye 220B and fall on a retina 232B of a right eye 220B.
  • the pixels of the light rays 224B and 226B are perceived as pixels 134B and 236B behind the right waveguide 170B.
  • the patterns that are created on the retinas 232A and 232B are individually perceived as left and right images.
  • the left and right images differ slightly from one another due to the functioning of the stereoscopic analyzer 144.
  • the left and right images are perceived in a mind of the user as a three-dimensional rendering.
  • the left and right waveguides 170A and 170B are transparent. Light from a real-life object such as the table 116 on a side of the left and right waveguides 170A and 170B opposing the eyes 220A and 220B can project through the left and right waveguides 170A and 170B and fall on the retinas 232 A and 232B.
  • FIG 8 shows further details of the device 142 as it relates to IPD compensation as hereinbefore described.
  • the device further includes an IPD camera 302 that serves as an IPD detector, a world camera 304 and an IMU 306 that detect head motion, correlator 308, a storing system 310, an IPD compensation factor calculator 312, an IPD compensator 314 and a viewing calibration system 316.
  • the correlator 308 is connected to the IPD camera 302, the world camera 304 and the IMU 306.
  • the correlator 308 correlates head movement data from the world camera 304 and the IMU 306 with IPD data from the IPD camera 302.
  • the storing system 310 is connected to the correlator 308 and stores the correlation that is generated by the correlator 308.
  • the IPD compensation factor calculator 312 calculates an IPD compensation factor.
  • the IPD compensator 314 is connected to the IPD compensation factor calculator 312 and the rendering engine 130 is connected to the IPD compensator 314.
  • the IPD compensator 314 modifies the visualization created by the rendering engine 130 based on the IPD compensation factor calculator 312.
  • the viewing calibration system 316 prompts the user through a series of vision tests to generate one or more IPD compensation factors such as the IPD compensation factor calculator 312.

Abstract

The invention provides a viewing system including an augmented reality system that generates a visual presentation to a user based at least in part on an IPD of the user, and an IPD compensator that adjusts the visual presentation based on an IPD compensation factor.

Description

A VIEWING SYSTEM WITH INTERPUPILLARY DISTANCE COMPENSATION
BASED ON HEAD MOTION
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority from U.S. Provisional Patent Application No.
62/714,056, filed on August 2, 2018, all of which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
[0002] This invention is related to connected mobile computing systems, methods, and configurations, and more specifically to mobile computing systems, methods, and configurations featuring at least one wearable component which may be utilized for virtual and/or augmented reality operation.
Background
[0003] It is desirable that mixed reality, or augmented reality, near-eye displays be lightweight, low-cost, have a small form-factor, have a wide virtual image field of view, and be as transparent as possible. In addition, it is desirable to have configurations that present virtual image information in multiple focal planes (for example, two or more) in order to be practical for a wide variety of use-cases without exceeding an acceptable allowance for vergence- accommodation mismatch. SUMMARY OF THE INVENTION
[0004] The invention provides a viewing system. Including an interpupillary distance (IPD) detector that is positionable to detect an IPD of a user and generate IPD data, a head movement detector device that generates head movement data based on movement of a head of the user, a correlator connected to the IPD detector and the head movement detection device to generate a correlation between the IPD data and the head movement data and a storing system connected to the correlator to store the correlation.
[0005] The viewing device may further include an apparatus frame securable to a head of the user, the IPD detector and head movement device being secured to the apparatus frame.
[0006] The viewing device may further include that the IPD detector is a camera with a field of capture oriented towards eyes of the user.
[0007] The viewing device may further include that the head movement detector includes one or more accelerometers, gyroscopes, inertial measurement units (IMU’s) or cameras.
[0008] The viewing device may further include that the head movement detector determines a least one rotation and position of the head of the user.
[0009] The viewing device may further include a mouth bit interface for the user to bite on to fixedly attach the apparatus frame to the head of the user.
[0010] The viewing device may further include that the user can accelerate their head while the IPD data is collected.
[0011] The viewing device may further include an IPD compensation factor calculator that calculates an IPD compensation factor based on the correlation.
[0012] The viewing device may further include an augmented reality system that generates a visual presentation to a user based at least in part on an IPD of the user and an IPD compensator that adjusts the visual representation based on the IPT compensation factor. [0013] The invention also provides a viewing system, including an augmented reality system that generates a visual presentation to a user based at least in part on an IPD of the user, and an IPD compensator that adjusts the visual presentation based on an IPD compensation factor.
[0014] The viewing system may further include a pitch angle detector that detects pitch angle of a head of the user, wherein the IPD compensation factor is dependent on the pitch angle by the pitch angle detector.
[0015] The viewing system may further include a viewing calibration system that guides the user through a series of viewing exercises to determine one or more IPD compensation factors.
[0016] The viewing system may further include an IPD detector that is positionable to detect an IPD of a user and generate IPD data, a head movement detector device that generates head movement data based on movement of a head of the user, a correlator connected to the IPD detector and the head movement detection device to generate a correlation between the IPD data and the head movement data and a storing system connected to the correlator to store the correlation.
[0017] The viewing system may further include an apparatus frame securable to a head of the user, the IPD detector and head movement device being secured to the apparatus frame.
[0018] The viewing system may further include that the IPD detector is a camera with a field of capture oriented towards eyes of the user.
[0019] The viewing system may further include that the head movement detector includes one or more accelerometers, gyroscopes, inertial measurement units (IMU’s) or cameras.
[0020] The viewing system may further include that the head movement detector determines a least one rotation and position of the head of the user.
[0021] The viewing system may further include a mouth bit interface for the user to bite on to fixedly attach the apparatus frame to the head of the user.
[0022] The viewing system may further include that the user can accelerate their head while the IPD data is collected.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023] The invention is further described by way of example with reference to the accompanying drawings, wherein:
[0024] Figure l is a schematic drawing illustrating an augmented reality viewing system;
[0025] Figure 2 is a schematic drawing of a user, illustrating various head movements by the user and changes in an interpupillary distance (IPD) of the user;
[0026] Figure 3 is a view similar to Figure 2 with the user tilting their head in an upward direction;
[0027] Figures 4A and 4B are perspective views illustrating a user with an experimental apparatus that is used to detect IPD compensations based on head motions;
[0028] Figure 5 is a graph illustrating IPD compensating factors relative to head pitch;
[0029] Figure 6A is a flow chart illustrating IPD head rotation compensation;
[0030] Figure 6B is a flow chart illustrating IPD head rotation compensation;
[0031] Figure 6C is a flow chart illustrating IPD head rotation compensation;
[0032] Figure 7 is a partial top plan view and partial block diagram of an augmented reality system; and
[0033] Figure 8 is a top plan view of the augmented reality system illustrating IPD compensating features thereof.
Detailed Description
[0034] Referring to Figure 1, an augmented reality system is illustrated featuring a head-worn viewing component (2), a hand-held controller component (4), and an interconnected auxiliary computing or controller component (6) which may be configured to be worn as a belt pack or the like on the user. Each of these components may be operatively coupled (10, 12, 14, 16, 17, 18) to each other and to other connected resources (8) such as cloud computing or cloud storage resources via wired or wireless communication configurations, such as those specified by IEEE 802.11, Bluetooth (RTM), and other connectivity standards and configurations. As described, for example, in ET.S. Patent Application Serial Numbers 14/555,585, 14/690,401, 14/331,218, 15/481,255, and 62/518,539, each of which is incorporated by reference herein in its entirety, various aspects of such components are described, such as various embodiments of the two depicted optical elements (20) through which the user may see the world around them along with visual components which may be produced by the associated system components, for an augmented reality experience. In various embodiments, such as the many described in the aforementioned incorporated by reference patent applications, one or more of the components may feature devices or subcomponents, such as accelerometers, gyroscopes, potentiometers, integrated inertial measurement units (“IMU”), and cameras, which may be utilized to determine or estimate the position and/or orientation of an intercoupled user body part (such as the position or orientation of a user’s head when coupled to an instrumented head-worn viewing component (2)), as well as assist in determining velocities and/or accelerations thereof, linearly and/or angularly. In various embodiments, such as the many described in the aforementioned incorporated by reference patent applications, it may be valuable for the system to utilize as at least one input the inter-pupillary distance (“IPD”) of the individual user in presenting such user with visual information pertaining to the augmented or virtual reality experience. In various embodiments, it may be convenient to simply measure a user’s IPD before use of a pertinent system and provide this information to the system as a user input; in other embodiments, it may be that the system is configured to utilize inward-directed (i.e., toward the eyes of the user) devices such as cameras to automatically determine the user’s IPD information before and/or during runtime of various applications or presented information. As is discussed in further detail below, while utilizing various embodiments of augmented reality systems and associated testing apparatuses, we have determined that various users may benefit from a compensation or adjustment in the positioning of presented augmented reality information as such users rotate or re-orient their heads in various ways relative to the rest of their bodies and the environments around them. For example, in one embodiment it may be valuable to have a compensation factor that slightly varies the z-axis position (i.e., straight out from the plane of the user’s face) of presented augmented reality information with the pitch position of the user’s head. This may be related to at least some of these users experiencing an actual or functional change in IPD as they change the pitch of their head, yaw their head to the side, or even roll their head (i.e., such as about a z-axis extending perpendicularly from their nose). In one embodiment, a variation in the IPD information inputted into the pertinent calculations, which may be correlated with head orientation (such as in the form of an equation or lookup table correlating IPD adjustment factor or compensation with head orientation), may be utilized as a compensating variable to generate the presented augmented reality information to the user in such configurations.
[0035] Referring to Figure 2, a representation of a user’s body (30) with attached head (32) is shown, the user being positioned within a room comprising fixed walls (22, 24), floor (28), and ceiling (26), which together may be associated with a global coordinate system for such room featuring C,U,Z cartesian coordinates (40, 42, 44, respectively), for example. Another coordinate system may be associated with the head (32) of the user, such that the Z axis (38) is approximately straight out from the face, and the X (34) and Y (36) axes are orthogonal to the Z axis (38) as shown in Figure 2. The user’s head (32) is oriented such that the Z axis (38) is approximately parallel with the Z axis of the room global coordinate system (44), and the gaze vectors (52, 54) from the eyes of the user are focused on a target (46), which may be virtual or actual, at the position of the left wall (22), at a position that causes level eye gaze (52, 54) to be approximately parallel to the Z axis (38) of the user’s head, which, as noted above for this example, is approximately level with the floor, or approximately parallel with the Z axis (44) of the room coordinate system. From such a position, the user may pitch their head down toward the floor, or up toward the ceiling. This depicted position may be deemed a zero rotation position, for example, with pitch down toward the floor up to about -90 degrees, and up toward the ceiling by about +90 degrees, capable by the typical person. In the zero rotation position, the IPD (50) may be measured manually and/or automatically using aspects of the augmented reality system wearable component (2).
[0036] Referring to Figure 3, the same user (30, 32) is illustrated, with the user’s head rotated up (56) to a pitch of about +50 degrees relative to the plane of the floor (28; or the Z axis of the room coordinate system 44), and the gaze of the eyes (52, 54) of the augmented reality system wearable component (2) user are directed toward a second target (48). In such a rotated configuration, the IPD may be measured manually and/or automatically using aspects of the augmented reality system wearable component (2). In laboratory experiments using such a configuration on various subject users, we have found variation in the IPD (50) as the head pitch angle is varied. [0037] Using an experimental apparatus such as that depicted in Figures 4A and 4B, we have gathered data from the repositioning of the heads of various users as regards linear and/or rotational position (i.e., relative to the room or surrounding environment), linear and/or rotational velocity (i.e., relative to the room or surrounding environment), and linear and/or rotational acceleration (i.e., relative to the room or surrounding environment). The depicted apparatus comprises a high resolution camera (62) with a field of capture oriented toward the eyes (70) of the user such that the user’s IPD may be measured from video information captured by an intercoupled (64) computing system and may also comprise one or more angular or linear motion measurement devices, such as one or more accelerometers, gyroscopes, IMU’s, or cameras which may be operatively coupled to the apparatus frame (68) and configured to be utilized to determine rotation/position based upon captured imagery from surroundings (i.e., such as“head pose” determination based upon computer vision techniques). The apparatus frame (68), to which the camera device (62) is fixedly coupled, is removably coupled to the head of the user using a mouth bit interface (66) for the user to bite on such that the user can move and accelerate his head about relatively easily while data is acquired pertaining to his eyes and IPD. Referring to Figure 5, a chart (72) of sample data from a group of user subjects is illustrated, featuring a plot (76) of diopter error versus head pitch angle; also shown is a polynomial equation mathematically fit through this sample data (74), which may be utilized as an IPD compensating factor (with zero pitch being as shown in Figure 2; pitch in degrees; -90 being user looking approximately straight down at the floor; +90 being user looking approximately straight up at the ceiling). One can see that in the sample experimental data depicted in Figure 5, there is a general slight increase in diopter error as the users’ heads were pitched from -90, incrementally toward 0, and then up toward +90. The associated IPD compensating factor (74) developed for this sample experimental data, may be utilized as an input to the augmented reality system such that focus is maintained during pitch rotation of the head of a user from this sample, for example.
[0038] An apparatus such as that depicted in Figures 4A and 4B, or a virtual or augmented reality system with appropriate componentry, such as that illustrated in Figures 1 and 2, may be utilized to not only gain information between the relationship of measured IPD and head pitch angle position, but also linear and/or angular velocity in pitch relative to surroundings, and linear and/or angular acceleration in pitch relative to surroundings. Further, such relationships may be determined for other axes, such as an orthogonal yaw axis, or an orthogonal roll axis. We have experimentally seen variations in eye positioning associated with position, velocity, and acceleration changes about each of these axes.
[0039] Referring to Figure 6A, a configuration is illustrated without IPD-head-rotation compensation, wherein a user is wearing a calibrated (i.e., with initial input or determination of IPD) augmented reality system (80), for example. As the user gazes at a first target in space (82), the system is configured to generate a visual presentation or portion thereof pertaining to that user’s gaze at the first target, based at least in part upon that user’s IPD (84). The user may change gaze to a second target (86), and the system may be similarly configured to generate a visual presentation or portion thereof pertaining to that user’s gaze at the second target, based at least in part upon, again, that user’s IPD (88) (i.e., which has not been compensated for head position or rotation related variables).
[0040] Referring to Figure 6B, a compensated configuration is illustrated, wherein after initial calibration (80) and gaze at a first target (82), the system is configured to generate visual presentation or portion thereof pertaining to the user’s gaze at the first target, based at least in part upon an IPD compensated for head orientation (such as head pitch angle when viewing the first target, the pitch angle being determined by the system). Then if the user changes gaze to a second target (86), the system is configured to generate visual presentation or portion thereof pertaining to the user’s gaze at the second target, based at least in part upon an IPD compensated for head orientation (such as head pitch angle when viewing the second target, the pitch angle being determined by the system).
[0041] Referring to Figure 6C, the system itself may be utilized to develop one or more compensating relationships for the particular user. As shown in Figure 6C, a user may be wearing calibrated augmented reality system (for example, with IPD determined by system at level head pitch angle, such as that associated with gaze to infinity over substantially level horizon) (100). To determine any variation in user’s vision system in actual or functional IPD with various positions, angular or linear velocities, or angular or linear accelerations, a viewing calibration system may guide the user through a series of viewing exercises (i.e., wherein he positions, accelerates his head and wherein the system is configured to capture data pertaining to actual and/or functional IPD) (102). The system may be configured to determine IPD compensation configuration (such as a lookup table or one or more mathematical relationships) for the user that is variable with the various positions, angular or linear velocities, or angular or linear accelerations (104), completing the user’s IPD compensation configuration (106). Then when the user gazes at a first target in space (82), the system may be configured to generate visual presentation or portions thereof pertaining to the user’s gaze at the first target, based at least in part upon the user’s IPD compensation configuration for the position, velocity, and/or acceleration (angular and/or cartesian) of the user’s head for the gaze at the first target (108). Then when the user gazes to a second target (86), the system may be configured to generate visual presentation or portions thereof pertaining to the user’s gaze at the second target, based at least in part upon the user’s IPD compensation configuration for the position, velocity, and/or acceleration (angular and/or cartesian) of the user’s head for the gaze at the second target (110).
[0042] Figure 7 illustrates an augmented reality system 142 of the in more detail. The system 142 includes a stereoscopic analyzer 144 that is connected to the rendering engine 130 and forms part of the vision data and algorithms.
[0043] The system 142 further includes left and right projectors 166 A and 166B and left and right waveguides 170A and 170B. The left and right projectors 166A and 166B are connected to power supplies. Each projector 166 A and 166B has a respective input for image data to be provided to the respective projector 166A or 166B. The respective projector 166A or 166B, when powered, generates light in two-dimensional patterns and emanates the light therefrom.
The left and right waveguides 170A and 170B are positioned to receive light from the left and right projectors 166A and 166B, respectively. The left and right waveguides 170A and 170B are transparent waveguides.
[0044] In use, a user mounts the head mountable frame 140 to their head. Components of the head mountable frame 140 may, for example, include a strap (not shown) that wraps around the back of the head of the user. The left and right waveguides 170A and 170B are then located in front of left and right eyes 220A and 220B of the user.
[0045] The rendering engine 130 enters the image data that it receives into the stereoscopic analyzer 144. The image data is projected onto a plurality of virtual planes. The stereoscopic analyzer 144 analyzes the image data to determine left and right image data sets based on the image data for projection onto each depth plane. The left and right image data sets are data sets that represent two-dimensional images that are projected in three-dimensions to give the user a perception of a depth. [0046] The stereoscopic analyzer 144 enters the left and right image data sets into the left and right projectors 166 A and 166B. The left and right projectors 166 A and 166B then create left and right light patterns. The components of the system 142 are shown in plan view, although it should be understood that the left and right patterns are two-dimensional patterns when shown in front elevation view. Each light pattern includes a plurality of pixels. For purposes of illustration, light rays 224 A and 226 A from two of the pixels are shown leaving the left projector 166A and entering the left waveguide 170A. The light rays 224A and 226A reflect from sides of the left waveguide 170A. It is shown that the light rays 224A and 226 A propagate through internal reflection from left to right within the left waveguide 170A, although it should be understood that the light rays 224A and 226A also propagate in a direction into the paper using refractory and reflective systems.
[0047] The light rays 224A and 226A exit the left light waveguide 170A through a pupil 228 A and then enter a left eye 220 A through a pupil 230 A of the left eye 220 A. The light rays 224 A and 226A then fall on a retina 232A of the left eye 220A. In this manner, the left light pattern falls on the retina 232A of the left eye 220A. The user is given the perception that the pixels that are formed on the retina 232A are pixels 234A and 236A that the user perceives to be at some distance on a side of the left waveguide 170A opposing the left eye 220A. Depth perception is created by manipulating the focal length of the light.
[0048] In a similar manner, the stereoscopic analyzer 144 enters the right image data set into the right projector 166B. The right projector 166B transmits the right light pattern, which is represented by pixels in the form of light rays 224B and 226B. The light rays 224B and 226B reflect within the right waveguide 170B and exit through a pupil 228B. The light rays 224B and 226B then enter through a pupil 230B of the right eye 220B and fall on a retina 232B of a right eye 220B. The pixels of the light rays 224B and 226B are perceived as pixels 134B and 236B behind the right waveguide 170B.
[0049] The patterns that are created on the retinas 232A and 232B are individually perceived as left and right images. The left and right images differ slightly from one another due to the functioning of the stereoscopic analyzer 144. The left and right images are perceived in a mind of the user as a three-dimensional rendering.
[0050] As mentioned, the left and right waveguides 170A and 170B are transparent. Light from a real-life object such as the table 116 on a side of the left and right waveguides 170A and 170B opposing the eyes 220A and 220B can project through the left and right waveguides 170A and 170B and fall on the retinas 232 A and 232B.
[0051] Figure 8 shows further details of the device 142 as it relates to IPD compensation as hereinbefore described. The device further includes an IPD camera 302 that serves as an IPD detector, a world camera 304 and an IMU 306 that detect head motion, correlator 308, a storing system 310, an IPD compensation factor calculator 312, an IPD compensator 314 and a viewing calibration system 316. The correlator 308 is connected to the IPD camera 302, the world camera 304 and the IMU 306. The correlator 308 correlates head movement data from the world camera 304 and the IMU 306 with IPD data from the IPD camera 302. The storing system 310 is connected to the correlator 308 and stores the correlation that is generated by the correlator 308. The IPD compensation factor calculator 312 calculates an IPD compensation factor. The IPD compensator 314 is connected to the IPD compensation factor calculator 312 and the rendering engine 130 is connected to the IPD compensator 314. The IPD compensator 314 modifies the visualization created by the rendering engine 130 based on the IPD compensation factor calculator 312. [0052] The viewing calibration system 316 prompts the user through a series of vision tests to generate one or more IPD compensation factors such as the IPD compensation factor calculator 312.
[0053] While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the current invention, and that this invention is not restricted to the specific constructions and arrangements shown and described since modifications may occur to those ordinarily skilled in the art.

Claims

CLAIMS What is claimed:
1. A viewing system comprising:
an interpupillary distance (IPD) detector that is positionable to detect an IPD of a user and generate IPD data;
a head movement detector device that generates head movement data based on movement of a head of the user;
a correlator connected to the IPD detector and the head movement detection device to generate a correlation between the IPD data and the head movement data; and
a storing system connected to the correlator to store the correlation.
2. The viewing device of claim 1, further comprising:
an apparatus frame securable to a head of the user, the IPD detector and head movement device being secured to the apparatus frame.
3. The viewing device of claim 2, wherein the IPD detector is a camera with a field of capture oriented towards eyes of the user.
4 The viewing device of claim 2, wherein the head movement detector includes one or more accelerometers, gyroscopes, inertial measurement units (IMU’s) or cameras.
5. The viewing device of claim 2, wherein the head movement detector determines a least one of rotation and position of the head of the user.
6. The viewing device of claim 2, further comprising:
a mouth bit interface for the user to bite on to fixedly attach the apparatus frame to the head of the user.
7. The viewing device of claim 6, wherein the user can accelerate their head while the IPD data is collected.
8. The viewing device of claim 1, further comprising:
an IPD compensation factor calculator that calculates an IPD compensation factor based on the correlation.
9. The viewing device of claim 1, further comprising:
an augmented reality system that generates a visual presentation to a user based at least in part on an IPD of the user; and
an IPD compensator that adjusts the visual representation based on the IPT compensation factor.
10. A viewing system, comprising:
an augmented reality system that generates a visual presentation to a user based at least in part on an IPD of the user; and
an IPD compensator that adjusts the visual presentation based on an IPD compensation factor.
11. The viewing system of claim 10, further comprising:
a pitch angle detector that detects pitch angle of a head of the user, wherein the IPD compensation factor is dependent on the pitch angle by the pitch angle detector.
12. The viewing system of claim 10, further comprising:
a viewing calibration system that guides the user through a series of viewing exercises to determine one or more IPD compensation factors.
13. The viewing system of claim 12, further comprising:
an IPD detector that is positionable to detect an IPD of a user and generate IPD data; a head movement detector device that generates head movement data based on movement of a head of the user;
a correlator connected to the IPD detector and the head movement detection device to generate a correlation between the IPD data and the head movement data; and
a storing system connected to the correlator to store the correlation.
14. The viewing system of claim 13, further comprising:
an apparatus frame securable to a head of the user, the IPD detector and head movement device being secured to the apparatus frame.
15. The viewing system of claim 14, wherein the IPD detector is a camera with a field of capture oriented towards eyes of the user.
16. The viewing system of claim 14, wherein the head movement detector includes one or more accelerometers, gyroscopes, inertial measurement units (IMU’s) or cameras.
17. The viewing system of claim 14, wherein the head movement detector determines a least one rotation and position of the head of the user.
18. The viewing system of claim 14, further comprising:
a mouth bit interface for the user to bite on to fixedly attach the apparatus frame to the head of the user.
19. The viewing system of claim 18, wherein the user can accelerate their head while the IPD data is collected.
PCT/US2019/044953 2018-08-02 2019-08-02 A viewing system with interpupillary distance compensation based on head motion WO2020028834A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021505669A JP7401519B2 (en) 2018-08-02 2019-08-02 Visual recognition system with interpupillary distance compensation based on head motion
CN201980061450.2A CN112740665A (en) 2018-08-02 2019-08-02 Observation system for interpupillary distance compensation based on head movement
EP19843487.0A EP3831058A4 (en) 2018-08-02 2019-08-02 A viewing system with interpupillary distance compensation based on head motion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862714056P 2018-08-02 2018-08-02
US62/714,056 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020028834A1 true WO2020028834A1 (en) 2020-02-06

Family

ID=69228628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/044953 WO2020028834A1 (en) 2018-08-02 2019-08-02 A viewing system with interpupillary distance compensation based on head motion

Country Status (5)

Country Link
US (2) US11112862B2 (en)
EP (1) EP3831058A4 (en)
JP (1) JP7401519B2 (en)
CN (1) CN112740665A (en)
WO (1) WO2020028834A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10866425B1 (en) * 2019-12-16 2020-12-15 Microsoft Technology Licensing, Llc Image reprojection based on intra-pupil distance
USD998324S1 (en) 2020-02-05 2023-09-12 Magic Leap, Inc. Belt assembly with holders and devices
USD986245S1 (en) * 2020-02-05 2023-05-16 Magic Leap, Inc. Holster with retractable device
USD975716S1 (en) 2020-02-05 2023-01-17 Magic Leap, Inc. Holder for controller
CN114527864B (en) * 2020-11-19 2024-03-15 京东方科技集团股份有限公司 Augmented reality text display system, method, equipment and medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074295A (en) * 1989-08-03 1991-12-24 Jamie, Inc. Mouth-held holder
JP2012015774A (en) * 2010-06-30 2012-01-19 Toshiba Corp Stereoscopic image processing device and stereoscopic image imaging method
US20160033770A1 (en) 2013-03-26 2016-02-04 Seiko Epson Corporation Head-mounted display device, control method of head-mounted display device, and display system
US20170160518A1 (en) * 2015-12-08 2017-06-08 Oculus Vr, Llc Focus adjusting virtual reality headset
WO2018087408A1 (en) * 2016-11-10 2018-05-17 E-Health Technical Solutions, S.L. System for integrally measuring clinical parameters of visual function

Family Cites Families (449)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541736B1 (en) 2001-12-10 2003-04-01 Usun Technology Co., Ltd. Circuit board/printed circuit board having pre-reserved conductive heating circuits
US4344092A (en) 1980-10-21 1982-08-10 Circon Corporation Miniature video camera means for video system
US4652930A (en) 1984-11-19 1987-03-24 Rca Corporation Television camera structure
US4810080A (en) 1987-09-03 1989-03-07 American Optical Corporation Protective eyewear with removable nosepiece and corrective spectacle
US5142684A (en) 1989-06-23 1992-08-25 Hand Held Products, Inc. Power conservation in microprocessor controlled devices
US4997268A (en) 1989-07-24 1991-03-05 Dauvergne Hector A Corrective lens configuration
US5007727A (en) 1990-02-26 1991-04-16 Alan Kahaney Combination prescription lens and sunglasses assembly
US5396635A (en) 1990-06-01 1995-03-07 Vadem Corporation Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system
US5240220A (en) 1990-09-12 1993-08-31 Elbex Video Ltd. TV camera supporting device
DE69225826T2 (en) 1991-03-22 1998-10-15 Nikon Corp Optical apparatus for correcting the image shift
WO1993001743A1 (en) 1991-07-22 1993-02-04 Adair Edwin Lloyd Sterile video microscope holder for operating room
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
US5224198A (en) 1991-09-30 1993-06-29 Motorola, Inc. Waveguide virtual image display
US5497463A (en) 1992-09-25 1996-03-05 Bull Hn Information Systems Inc. Ally mechanism for interconnecting non-distributed computing environment (DCE) and DCE systems to operate in a network system
US5410763A (en) 1993-02-11 1995-05-02 Etablissments Bolle Eyeshield with detachable components
US5937202A (en) 1993-02-11 1999-08-10 3-D Computing, Inc. High-speed, parallel, processor architecture for front-end electronics, based on a single type of ASIC, and method use thereof
US5682255A (en) 1993-02-26 1997-10-28 Yeda Research & Development Co. Ltd. Holographic optical devices for the transmission of optical signals of a plurality of channels
US6023288A (en) 1993-03-31 2000-02-08 Cairns & Brother Inc. Combination head-protective helmet and thermal imaging apparatus
EP0632360A1 (en) 1993-06-29 1995-01-04 Xerox Corporation Reducing computer power consumption by dynamic voltage and frequency variation
US5455625A (en) 1993-09-23 1995-10-03 Rosco Inc. Video camera unit, protective enclosure and power circuit for same, particularly for use in vehicles
US5835061A (en) 1995-06-06 1998-11-10 Wayport, Inc. Method and apparatus for geographic-based communications service
US5826092A (en) 1995-09-15 1998-10-20 Gateway 2000, Inc. Method and apparatus for performance optimization in power-managed computer systems
US5864365A (en) 1996-01-26 1999-01-26 Kaman Sciences Corporation Environmentally controlled camera housing assembly
US6064749A (en) 1996-08-02 2000-05-16 Hirota; Gentaro Hybrid tracking for augmented reality using both camera motion detection and landmark tracking
US5854872A (en) 1996-10-08 1998-12-29 Clio Technologies, Inc. Divergent angle rotator system and method for collimating light beams
US8005254B2 (en) 1996-11-12 2011-08-23 Digimarc Corporation Background watermark processing
US6012811A (en) 1996-12-13 2000-01-11 Contour Optik, Inc. Eyeglass frames with magnets at bridges for attachment
JP3465528B2 (en) 1997-04-22 2003-11-10 三菱瓦斯化学株式会社 New resin for optical materials
US6538655B1 (en) 1997-08-29 2003-03-25 Kabushiki Kaisha Sega Enterprises Image processing system and image processing method
JPH11142783A (en) 1997-11-12 1999-05-28 Olympus Optical Co Ltd Image display device
US6385735B1 (en) 1997-12-15 2002-05-07 Intel Corporation Method and apparatus for limiting processor clock frequency
US6191809B1 (en) 1998-01-15 2001-02-20 Vista Medical Technologies, Inc. Method and apparatus for aligning stereo images
US6076927A (en) 1998-07-10 2000-06-20 Owens; Raymond L. Adjustable focal length eye glasses
JP2000099332A (en) 1998-09-25 2000-04-07 Hitachi Ltd Remote procedure call optimization method and program execution method using the optimization method
US6415388B1 (en) 1998-10-30 2002-07-02 Intel Corporation Method and apparatus for power throttling in a microprocessor using a closed loop feedback system
US6918667B1 (en) 1998-11-02 2005-07-19 Gary Martin Zelman Auxiliary eyewear attachment apparatus
US6487319B1 (en) 1998-11-18 2002-11-26 Sarnoff Corporation Apparatus and method for identifying the location of a coding unit
US7111290B1 (en) 1999-01-28 2006-09-19 Ati International Srl Profiling program execution to identify frequently-executed portions and to assist binary translation
US6556245B1 (en) 1999-03-08 2003-04-29 Larry Allan Holmberg Game hunting video camera
US7119819B1 (en) 1999-04-06 2006-10-10 Microsoft Corporation Method and apparatus for supporting two-dimensional windows in a three-dimensional environment
US6375369B1 (en) 1999-04-22 2002-04-23 Videolarm, Inc. Housing for a surveillance camera
AU2001233019A1 (en) 2000-01-28 2001-08-07 Intersense, Inc. Self-referenced tracking
JP4921634B2 (en) 2000-01-31 2012-04-25 グーグル インコーポレイテッド Display device
KR100487543B1 (en) 2000-09-01 2005-05-03 엘지전자 주식회사 Cpu scheduling method
JP4646374B2 (en) 2000-09-29 2011-03-09 オリンパス株式会社 Image observation optical system
TW522256B (en) 2000-12-15 2003-03-01 Samsung Electronics Co Ltd Wearable display system
US6715089B2 (en) 2001-01-22 2004-03-30 Ati International Srl Reducing power consumption by estimating engine load and reducing engine clock speed
US20020108064A1 (en) 2001-02-07 2002-08-08 Patrick Nunally System and method for optimizing power/performance in network-centric microprocessor-controlled devices
US6807352B2 (en) 2001-02-11 2004-10-19 Georgia Tech Research Corporation Optical waveguides with embedded air-gap cladding layer and methods of fabrication thereof
US6931596B2 (en) 2001-03-05 2005-08-16 Koninklijke Philips Electronics N.V. Automatic positioning of display depending upon the viewer's location
US20020140848A1 (en) 2001-03-30 2002-10-03 Pelco Controllable sealed chamber for surveillance camera
EP1249717A3 (en) 2001-04-10 2005-05-11 Matsushita Electric Industrial Co., Ltd. Antireflection coating and optical element using the same
US7137017B2 (en) 2001-04-27 2006-11-14 International Business Machines Corporation Method and apparatus for controlling processor operation speed
JP4682470B2 (en) 2001-07-16 2011-05-11 株式会社デンソー Scan type display device
US6622253B2 (en) 2001-08-02 2003-09-16 Scientific-Atlanta, Inc. Controlling processor clock rate based on thread priority
US6762845B2 (en) 2001-08-23 2004-07-13 Zygo Corporation Multiple-pass interferometry
CN1271447C (en) 2001-09-25 2006-08-23 剑桥平投影显示有限公司 Planar projector display
US6833955B2 (en) 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
AU2002361572A1 (en) 2001-10-19 2003-04-28 University Of North Carolina At Chape Hill Methods and systems for dynamic virtual convergence and head mountable display
JP3834615B2 (en) 2001-11-02 2006-10-18 独立行政法人産業技術総合研究所 Image display method and system
US7076674B2 (en) 2001-12-19 2006-07-11 Hewlett-Packard Development Company L.P. Portable computer having dual clock mode
JP2003329873A (en) 2001-12-27 2003-11-19 Fujikura Ltd Optical fiber holder with positioning mechanism, optical fiber adapter and optical fiber processing device
US6592220B1 (en) 2002-01-30 2003-07-15 Lak Cheong Eyeglass frame with removably mounted lenses
US7305020B2 (en) 2002-02-04 2007-12-04 Vizionware, Inc. Method and system of reducing electromagnetic interference emissions
US6999087B2 (en) 2002-03-12 2006-02-14 Sun Microsystems, Inc. Dynamically adjusting sample density in a graphics system
EP1351117A1 (en) 2002-04-03 2003-10-08 Hewlett-Packard Company Data processing system and method
AU2003223746A1 (en) 2002-04-25 2003-11-10 Arc International Apparatus and method for managing integrated circuit designs
US6849558B2 (en) 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
KR100382232B1 (en) 2002-05-31 2003-05-09 Palm Palm Tech Mobile terminal having enhanced power managing function and power managing method thereof
US7046515B1 (en) 2002-06-06 2006-05-16 Raytheon Company Method and apparatus for cooling a circuit component
US7155617B2 (en) 2002-08-01 2006-12-26 Texas Instruments Incorporated Methods and systems for performing dynamic power management via frequency and voltage scaling
US6714157B2 (en) 2002-08-02 2004-03-30 The Boeing Company Multiple time-interleaved radar operation using a single radar at different angles
KR100480786B1 (en) 2002-09-02 2005-04-07 삼성전자주식회사 Integrated type optical head with coupler
AU2003265891A1 (en) 2002-09-04 2004-03-29 Mentor Graphics (Holdings) Ltd. Polymorphic computational system and method in signals intelligence analysis
EP1573490A2 (en) 2002-12-04 2005-09-14 Koninklijke Philips Electronics N.V. Software-based control of microprocessor power dissipation
US7306337B2 (en) * 2003-03-06 2007-12-11 Rensselaer Polytechnic Institute Calibration-free gaze tracking under natural head movement
DE10311972A1 (en) 2003-03-18 2004-09-30 Carl Zeiss Head-mounted display (HMD) apparatus for use with eyeglasses, has optical projector that is fastened to rack, and under which eyeglasses are positioned when rack and eyeglasses are attached together
AU2003901272A0 (en) 2003-03-19 2003-04-03 Martin Hogan Pty Ltd Improvements in or relating to eyewear attachments
US7294360B2 (en) 2003-03-31 2007-11-13 Planar Systems, Inc. Conformal coatings for micro-optical elements, and method for making the same
US20040205757A1 (en) 2003-04-09 2004-10-14 Pering Trevor A. Performance scheduling using multiple constraints
EP1639394A2 (en) 2003-06-10 2006-03-29 Elop Electro-Optics Industries Ltd. Method and system for displaying an informative image against a background image
US20040268159A1 (en) 2003-06-30 2004-12-30 Microsoft Corporation Power profiling
US7134031B2 (en) 2003-08-04 2006-11-07 Arm Limited Performance control within a multi-processor system
US7434083B1 (en) 2004-01-06 2008-10-07 Apple Inc. Method and apparatus for the generation and control of clock signals
JP4699699B2 (en) 2004-01-15 2011-06-15 株式会社東芝 Beam light scanning apparatus and image forming apparatus
US7269590B2 (en) 2004-01-29 2007-09-11 Yahoo! Inc. Method and system for customizing views of information associated with a social network user
CN100410727C (en) 2004-03-29 2008-08-13 索尼株式会社 Optical device and virtual image display device
US7219245B1 (en) 2004-06-03 2007-05-15 Advanced Micro Devices, Inc. Adaptive CPU clock management
US20060019723A1 (en) 2004-06-29 2006-01-26 Pieter Vorenkamp Automatic control of power save operation in a portable communication device utilizing historical usage information
GB0416038D0 (en) 2004-07-16 2004-08-18 Portland Press Ltd Document display system
EP1769275A1 (en) 2004-07-22 2007-04-04 Pirelli & C. S.p.A. Integrated wavelength selective grating-based filter
US7542040B2 (en) 2004-08-11 2009-06-02 The United States Of America As Represented By The Secretary Of The Navy Simulated locomotion method and apparatus
US8109635B2 (en) 2004-08-12 2012-02-07 Ophthalmic Imaging Systems Integrated retinal imager and method
US9030532B2 (en) 2004-08-19 2015-05-12 Microsoft Technology Licensing, Llc Stereoscopic image display
US7029114B2 (en) 2004-09-03 2006-04-18 E'lite Optik U.S. L.P. Eyewear assembly with auxiliary frame and lens assembly
EP2990839B1 (en) 2004-09-16 2020-11-18 Nikon Corporation Optical system with mgf2 optical thin film
US20060090092A1 (en) 2004-10-25 2006-04-27 Verhulst Anton H Clock timing adjustment
US7536567B2 (en) 2004-12-10 2009-05-19 Hewlett-Packard Development Company, L.P. BIOS-based systems and methods of processor power management
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
US8619365B2 (en) 2004-12-29 2013-12-31 Corning Incorporated Anti-reflective coating for optical windows and elements
GB0502453D0 (en) 2005-02-05 2005-03-16 Cambridge Flat Projection Flat panel lens
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
US20060250322A1 (en) * 2005-05-09 2006-11-09 Optics 1, Inc. Dynamic vergence and focus control for head-mounted displays
US7948683B2 (en) 2006-05-14 2011-05-24 Holochip Corporation Fluidic lens with manually-adjustable focus
US7644148B2 (en) 2005-05-16 2010-01-05 Hewlett-Packard Development Company, L.P. Historical data based workload allocation
WO2006132614A1 (en) 2005-06-03 2006-12-14 Nokia Corporation General diffractive optics method for expanding and exit pupil
US7364306B2 (en) 2005-06-20 2008-04-29 Digital Display Innovations, Llc Field sequential light source modulation for a digital display system
JP4776285B2 (en) 2005-07-01 2011-09-21 ソニー株式会社 Illumination optical device and virtual image display device using the same
JP4660787B2 (en) 2005-08-25 2011-03-30 隆広 西岡 glasses
US7739524B2 (en) 2005-08-29 2010-06-15 The Invention Science Fund I, Inc Power consumption management
US20080043334A1 (en) 2006-08-18 2008-02-21 Mirage Innovations Ltd. Diffractive optical relay and method for manufacturing the same
US20070058248A1 (en) 2005-09-14 2007-03-15 Nguyen Minh T Sport view binocular-zoom lens focus system
JPWO2007037089A1 (en) 2005-09-27 2009-04-02 コニカミノルタホールディングス株式会社 Head-mounted image display device
US20100232016A1 (en) 2005-09-28 2010-09-16 Mirage Innovations Ltd. Stereoscopic Binocular System, Device and Method
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US9658473B2 (en) 2005-10-07 2017-05-23 Percept Technologies Inc Enhanced optical and perceptual digital eyewear
KR101193331B1 (en) 2005-10-14 2012-10-19 엘지전자 주식회사 Power Consumption Management System and Method in the Graphic Apparatus
EP1943556B1 (en) 2005-11-03 2009-02-11 Mirage Innovations Ltd. Binocular optical relay device
EP1949147B1 (en) 2005-11-18 2012-03-21 Nanocomp Oy Ltd. Method of producing a diffraction grating element
EP1952189B1 (en) 2005-11-21 2016-06-01 Microvision, Inc. Display with image-guiding substrate
US7917573B2 (en) 2005-11-30 2011-03-29 International Business Machines Corporation Measuring and reporting processor capacity and processor usage in a computer system with processors of different speed and/or architecture
JP2007199841A (en) 2006-01-24 2007-08-09 Seiko Epson Corp Controller of electronic apparatus, and bus control device
EP1983884B1 (en) 2006-01-26 2016-10-26 Nokia Technologies Oy Eye tracker device
JP2007219106A (en) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc Optical device for expanding diameter of luminous flux, video display device and head mount display
US7461535B2 (en) 2006-03-01 2008-12-09 Memsic, Inc. Multi-temperature programming for accelerometer
IL174170A (en) 2006-03-08 2015-02-26 Abraham Aharoni Device and method for binocular alignment
US7353134B2 (en) 2006-03-09 2008-04-01 Dean A. Cirielli Three-dimensional position and motion telemetry input
WO2007109054A1 (en) 2006-03-15 2007-09-27 Google Inc. Automatic display of resized images
JP2007273733A (en) 2006-03-31 2007-10-18 Tdk Corp Manufacturing method of solid state electrolytic capacitor
CN101460882B (en) 2006-06-02 2010-10-27 诺基亚公司 Color distribution in exit pupil expanders, method and electronic device thereof
US7692855B2 (en) 2006-06-28 2010-04-06 Essilor International Compagnie Generale D'optique Optical article having a temperature-resistant anti-reflection coating with optimized thickness ratio of low index and high index layers
US9015501B2 (en) 2006-07-13 2015-04-21 International Business Machines Corporation Structure for asymmetrical performance multi-processors
US7724980B1 (en) 2006-07-24 2010-05-25 Adobe Systems Incorporated System and method for selective sharpening of images
US8214660B2 (en) 2006-07-26 2012-07-03 International Business Machines Corporation Structure for an apparatus for monitoring and controlling heat generation in a multi-core processor
US7640449B2 (en) 2006-08-17 2009-12-29 Via Technologies, Inc. Systems and methods for dynamic clock frequencies for low power design
US9582060B2 (en) 2006-08-31 2017-02-28 Advanced Silicon Technologies Llc Battery-powered device with reduced power consumption based on an application profile data
US20080068557A1 (en) 2006-09-20 2008-03-20 Gilbert Menduni Lens holding frame
EP2080044B1 (en) 2006-10-31 2012-07-11 Modilis Holdings LLC Light outcoupling structure for a lighting device
US20080146942A1 (en) 2006-12-13 2008-06-19 Ep Medsystems, Inc. Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors
JP4847351B2 (en) 2007-01-11 2011-12-28 キヤノン株式会社 Diffractive optical element and diffraction grating using the same
US7418368B2 (en) 2007-01-18 2008-08-26 International Business Machines Corporation Method and system for testing processor cores
JP4348441B2 (en) 2007-01-22 2009-10-21 国立大学法人 大阪教育大学 Position detection apparatus, position detection method, data determination apparatus, data determination method, computer program, and storage medium
US8726681B2 (en) 2007-01-23 2014-05-20 Hewlett-Packard Development Company, L.P. Method and system of cooling components of a computer system
US20090017910A1 (en) 2007-06-22 2009-01-15 Broadcom Corporation Position and motion tracking of an object
JP5194530B2 (en) 2007-04-09 2013-05-08 凸版印刷株式会社 Image display device and image display method
WO2008148927A1 (en) 2007-06-04 2008-12-11 Nokia Corporation A diffractive beam expander and a virtual display based on a diffractive beam expander
US8060759B1 (en) 2007-06-29 2011-11-15 Emc Corporation System and method of managing and optimizing power consumption in a storage system
JP2009090689A (en) 2007-10-03 2009-04-30 Calsonic Kansei Corp Head-up display
EP2225592B1 (en) 2007-12-18 2015-04-22 Nokia Technologies OY Exit pupil expanders with wide field-of-view
DE102008005817A1 (en) 2008-01-24 2009-07-30 Carl Zeiss Ag Optical display device
EP2242419B1 (en) 2008-02-14 2016-01-13 Nokia Technologies Oy Device and method for determining gaze direction
JP2009244869A (en) 2008-03-11 2009-10-22 Panasonic Corp Display apparatus, display method, goggle-type head-mounted display, and vehicle
US8246408B2 (en) 2008-06-13 2012-08-21 Barco, Inc. Color calibration system for a video display
JP5181860B2 (en) 2008-06-17 2013-04-10 セイコーエプソン株式会社 Pulse width modulation signal generation apparatus, image display apparatus including the same, and pulse width modulation signal generation method
US8250389B2 (en) 2008-07-03 2012-08-21 International Business Machines Corporation Profiling an application for power consumption during execution on a plurality of compute nodes
US10885471B2 (en) 2008-07-18 2021-01-05 Disney Enterprises, Inc. System and method for providing location-based data on a wireless portable device
US7850306B2 (en) 2008-08-28 2010-12-14 Nokia Corporation Visual cognition aware display and visual data transmission architecture
US7885506B2 (en) 2008-09-26 2011-02-08 Nokia Corporation Device and a method for polarized illumination of a micro-display
WO2010045394A1 (en) 2008-10-14 2010-04-22 Oblong Industries, Inc. Multi-process interactive systems and methods
WO2010065786A1 (en) 2008-12-03 2010-06-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for determining the positioin of the tip of a medical catheter within the body of a patient
US20100153934A1 (en) 2008-12-12 2010-06-17 Peter Lachner Prefetch for systems with heterogeneous architectures
US8325088B2 (en) 2009-02-04 2012-12-04 Google Inc. Mobile device battery management
US8699141B2 (en) 2009-03-13 2014-04-15 Knowles Electronics, Llc Lens assembly apparatus and method
JP5121764B2 (en) 2009-03-24 2013-01-16 株式会社東芝 Solid-state imaging device
US9095436B2 (en) 2009-04-14 2015-08-04 The Invention Science Fund I, Llc Adjustable orthopedic implant and method for treating an orthopedic condition in a subject
US9383823B2 (en) 2009-05-29 2016-07-05 Microsoft Technology Licensing, Llc Combining gestures beyond skeletal
US20110022870A1 (en) 2009-07-21 2011-01-27 Microsoft Corporation Component power monitoring and workload optimization
US8758125B2 (en) 2009-07-24 2014-06-24 Wms Gaming, Inc. Controlling event-driven behavior of wagering game objects
JP2011033993A (en) 2009-08-05 2011-02-17 Sharp Corp Information presenting apparatus and method for presenting information
US8738949B2 (en) 2009-08-31 2014-05-27 Empire Technology Development Llc Power management for processor
JP5316391B2 (en) 2009-08-31 2013-10-16 ソニー株式会社 Image display device and head-mounted display
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US8305502B2 (en) 2009-11-11 2012-11-06 Eastman Kodak Company Phase-compensated thin-film beam combiner
US8605209B2 (en) 2009-11-24 2013-12-10 Gregory Towle Becker Hurricane damage recording camera system
US8909962B2 (en) 2009-12-16 2014-12-09 Qualcomm Incorporated System and method for controlling central processing unit power with guaranteed transient deadlines
US9244533B2 (en) 2009-12-17 2016-01-26 Microsoft Technology Licensing, Llc Camera navigation for presentations
US8751854B2 (en) 2009-12-21 2014-06-10 Empire Technology Development Llc Processor core clock rate selection
US8565554B2 (en) 2010-01-09 2013-10-22 Microsoft Corporation Resizing of digital images
KR101099137B1 (en) 2010-01-29 2011-12-27 주식회사 팬택 Method and Apparatus for Providing Augmented Reality Information in Mobile Communication System
US8549339B2 (en) 2010-02-26 2013-10-01 Empire Technology Development Llc Processor core communication in multi-core processor
US11275482B2 (en) 2010-02-28 2022-03-15 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
WO2011107831A1 (en) 2010-03-04 2011-09-09 Nokia Corporation Optical apparatus and method for expanding an exit pupil
US9547910B2 (en) 2010-03-04 2017-01-17 Honeywell International Inc. Method and apparatus for vision aided navigation using image registration
JP5499854B2 (en) 2010-04-08 2014-05-21 ソニー株式会社 Optical position adjustment method for head mounted display
US8118499B2 (en) 2010-05-19 2012-02-21 LIR Systems, Inc. Infrared camera assembly systems and methods
US20110291964A1 (en) 2010-06-01 2011-12-01 Kno, Inc. Apparatus and Method for Gesture Control of a Dual Panel Electronic Device
US8560876B2 (en) 2010-07-06 2013-10-15 Sap Ag Clock acceleration of CPU core based on scanned result of task for parallel execution controlling key word
US8601288B2 (en) 2010-08-31 2013-12-03 Sonics, Inc. Intelligent power controller
US8854594B2 (en) 2010-08-31 2014-10-07 Cast Group Of Companies Inc. System and method for tracking
KR101479262B1 (en) 2010-09-02 2015-01-12 주식회사 팬택 Method and apparatus for authorizing use of augmented reality information
JP5632693B2 (en) 2010-09-28 2014-11-26 任天堂株式会社 Information processing program, information processing apparatus, information processing method, and information processing system
US20120081392A1 (en) 2010-09-30 2012-04-05 Apple Inc. Electronic device operation adjustment based on face detection
US8688926B2 (en) 2010-10-10 2014-04-01 Liqid Inc. Systems and methods for optimizing data storage among a plurality of solid state memory subsystems
KR101260576B1 (en) 2010-10-13 2013-05-06 주식회사 팬택 User Equipment and Method for providing AR service
US20120113235A1 (en) * 2010-11-08 2012-05-10 Sony Corporation 3d glasses, systems, and methods for optimized viewing of 3d video content
WO2012062681A1 (en) 2010-11-08 2012-05-18 Seereal Technologies S.A. Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles
JP5854593B2 (en) 2010-11-17 2016-02-09 キヤノン株式会社 Multilayer diffractive optical element
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
US9213405B2 (en) 2010-12-16 2015-12-15 Microsoft Technology Licensing, Llc Comprehension and intent-based content for augmented reality displays
US20160187654A1 (en) 2011-02-28 2016-06-30 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US8949637B2 (en) 2011-03-24 2015-02-03 Intel Corporation Obtaining power profile information with low overhead
EP2691935A1 (en) 2011-03-29 2014-02-05 Qualcomm Incorporated System for the rendering of shared digital interfaces relative to each user's point of view
KR101210163B1 (en) 2011-04-05 2012-12-07 엘지이노텍 주식회사 Optical sheet and method of fabricating the same
US8856571B2 (en) 2011-04-05 2014-10-07 Apple Inc. Adjusting device performance over multiple time domains
US8856355B2 (en) 2011-05-09 2014-10-07 Samsung Electronics Co., Ltd. Systems and methods for facilitating communication between mobile devices and display devices
US20150077312A1 (en) 2011-05-13 2015-03-19 Google Inc. Near-to-eye display having adaptive optics
WO2012166135A1 (en) 2011-06-01 2012-12-06 Empire Technology Development,Llc Structured light projection for motion detection in augmented reality
US9087267B2 (en) 2011-06-10 2015-07-21 Image Vision Labs, Inc. Image scene recognition
US10606066B2 (en) 2011-06-21 2020-03-31 Gholam A. Peyman Fluidic light field camera
US20120326948A1 (en) 2011-06-22 2012-12-27 Microsoft Corporation Environmental-light filter for see-through head-mounted display device
CN103648394B (en) 2011-06-27 2016-11-16 皇家飞利浦有限公司 Use the real-time 3D angiography of surgical technique and tools curve and the registration of X-ray image
US9100587B2 (en) 2011-07-22 2015-08-04 Naturalpoint, Inc. Hosted camera remote control
US8548290B2 (en) 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US9342610B2 (en) 2011-08-25 2016-05-17 Microsoft Technology Licensing, Llc Portals: registered objects as virtualized, personalized displays
EP2751611B1 (en) 2011-08-29 2018-01-10 Vuzix Corporation Controllable waveguide for near-eye display applications
US9025252B2 (en) 2011-08-30 2015-05-05 Microsoft Technology Licensing, Llc Adjustment of a mixed reality display for inter-pupillary distance alignment
US9213163B2 (en) * 2011-08-30 2015-12-15 Microsoft Technology Licensing, Llc Aligning inter-pupillary distance in a near-eye display system
KR101407670B1 (en) 2011-09-15 2014-06-16 주식회사 팬택 Mobile terminal, server and method for forming communication channel using augmented reality
US8998414B2 (en) 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
US9835765B2 (en) 2011-09-27 2017-12-05 Canon Kabushiki Kaisha Optical element and method for manufacturing the same
US8847988B2 (en) 2011-09-30 2014-09-30 Microsoft Corporation Exercising applications for personal audio/visual system
US9125301B2 (en) 2011-10-18 2015-09-01 Integrated Microwave Corporation Integral heater assembly and method for carrier or host board of electronic package assembly
US8782454B2 (en) 2011-10-28 2014-07-15 Apple Inc. System and method for managing clock speed based on task urgency
US9678102B2 (en) 2011-11-04 2017-06-13 Google Inc. Calibrating intertial sensors using an image sensor
US8891918B2 (en) 2011-11-17 2014-11-18 At&T Intellectual Property I, L.P. Methods, systems, and products for image displays
US20130162940A1 (en) 2011-12-27 2013-06-27 Zoom Focus Eyeware, LLC Spectacles With Removable Optics
WO2013101273A1 (en) 2011-12-30 2013-07-04 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for detection and avoidance of collisions of robotically-controlled medical devices
US8608309B2 (en) 2011-12-30 2013-12-17 A New Vision Llc Eyeglass system
WO2013115829A2 (en) 2012-02-04 2013-08-08 Empire Technology Development Llc Core-level dynamic voltage and frequency scaling in a chip multiprocessor
JP5942456B2 (en) 2012-02-10 2016-06-29 ソニー株式会社 Image processing apparatus, image processing method, and program
GB2499635B (en) 2012-02-23 2014-05-14 Canon Kk Image processing for projection on a projection screen
US9704220B1 (en) 2012-02-29 2017-07-11 Google Inc. Systems, methods, and media for adjusting one or more images displayed to a viewer
US9740007B2 (en) 2012-03-22 2017-08-22 Sony Corporation Display device, image processing device and image processing method, and computer program
US10013511B2 (en) 2012-04-09 2018-07-03 Purdue Research Foundation System and method for energy usage accounting in software applications
US20130278633A1 (en) 2012-04-20 2013-10-24 Samsung Electronics Co., Ltd. Method and system for generating augmented reality scene
US10627623B2 (en) 2012-05-03 2020-04-21 Nokia Technologies Oy Image providing apparatus, method and computer program
US9495308B2 (en) 2012-05-22 2016-11-15 Xockets, Inc. Offloading of computation for rack level servers and corresponding methods and systems
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9113291B2 (en) 2012-06-18 2015-08-18 Qualcomm Incorporated Location detection within identifiable pre-defined geographic areas
US8848741B2 (en) 2012-06-21 2014-09-30 Breakingpoint Systems, Inc. High-speed CLD-based TCP segmentation offload
US9696547B2 (en) 2012-06-25 2017-07-04 Microsoft Technology Licensing, Llc Mixed reality system learned input and functions
US9767720B2 (en) 2012-06-25 2017-09-19 Microsoft Technology Licensing, Llc Object-centric mixed reality space
US9645394B2 (en) 2012-06-25 2017-05-09 Microsoft Technology Licensing, Llc Configured virtual environments
TW201403299A (en) 2012-07-04 2014-01-16 Acer Inc Central processor control method
US8605764B1 (en) 2012-07-09 2013-12-10 Microvision, Inc. Laser diode junction temperature compensation
US9031283B2 (en) 2012-07-12 2015-05-12 Qualcomm Incorporated Sensor-aided wide-area localization on mobile devices
JP6218833B2 (en) 2012-08-20 2017-10-25 キャメロン,ドナルド,ケヴィン Processing resource allocation
CN102829880B (en) 2012-08-23 2014-04-16 江苏物联网研究发展中心 High-performance MEMS (Micro Electro Mechanical System) thermopile infrared detector based on black silicon and preparation method thereof
EP2893388B1 (en) 2012-09-03 2016-08-03 SensoMotoric Instruments Gesellschaft für innovative Sensorik mbH Head mounted system and method to compute and render a stream of digital images using a head mounted system
WO2014041871A1 (en) 2012-09-12 2014-03-20 ソニー株式会社 Image display device, image display method, and recording medium
KR101923723B1 (en) 2012-09-17 2018-11-29 한국전자통신연구원 Metaverse client terminal and method for providing metaverse space for user interaction
US9177404B2 (en) 2012-10-31 2015-11-03 Qualcomm Incorporated Systems and methods of merging multiple maps for computer vision based tracking
US9576183B2 (en) 2012-11-02 2017-02-21 Qualcomm Incorporated Fast initialization for monocular visual SLAM
US9584382B2 (en) 2012-11-28 2017-02-28 At&T Intellectual Property I, L.P. Collecting and using quality of experience information
US20140168260A1 (en) 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
US8988574B2 (en) 2012-12-27 2015-03-24 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using bright line image
EP2939065A4 (en) 2012-12-31 2016-08-10 Esight Corp Apparatus and method for fitting head mounted vision augmentation systems
US10716469B2 (en) 2013-01-25 2020-07-21 Wesley W. O. Krueger Ocular-performance-based head impact measurement applied to rotationally-centered impact mitigation systems and methods
US9336629B2 (en) 2013-01-30 2016-05-10 F3 & Associates, Inc. Coordinate geometry augmented reality process
GB201301764D0 (en) 2013-01-31 2013-03-20 Adlens Ltd Actuation of fluid-filled lenses
WO2014124706A1 (en) 2013-02-15 2014-08-21 Adlens Limited Adjustable lens and article of eyewear
US8884663B2 (en) 2013-02-25 2014-11-11 Advanced Micro Devices, Inc. State machine for low-noise clocking of high frequency clock
US9600068B2 (en) * 2013-03-13 2017-03-21 Sony Interactive Entertainment Inc. Digital inter-pupillary distance adjustment
US9854014B2 (en) 2013-03-14 2017-12-26 Google Inc. Motion data sharing
CN105209952B (en) 2013-03-15 2018-08-24 依米有限公司 Head-mounted display with non-coreoplasty light path
US9779517B2 (en) 2013-03-15 2017-10-03 Upskill, Inc. Method and system for representing and interacting with augmented reality content
JP6337418B2 (en) 2013-03-26 2018-06-06 セイコーエプソン株式会社 Head-mounted display device and method for controlling head-mounted display device
US9079399B2 (en) 2013-05-16 2015-07-14 Océ-Technologies B.V. Method for operating a printing system
US9235395B2 (en) 2013-05-30 2016-01-12 National Instruments Corporation Graphical development and deployment of parallel floating-point math functionality on a system with heterogeneous hardware components
JP6232763B2 (en) 2013-06-12 2017-11-22 セイコーエプソン株式会社 Head-mounted display device and method for controlling head-mounted display device
US9256987B2 (en) 2013-06-24 2016-02-09 Microsoft Technology Licensing, Llc Tracking head movement when wearing mobile device
US9998863B2 (en) 2013-08-19 2018-06-12 Estimote Polska Sp. Z O. O. System and method for providing content using beacon systems
JP2016529559A (en) 2013-08-27 2016-09-23 フラメリ・インコーポレーテッド Removable spectacle lens and frame platform
JP6333965B2 (en) 2013-09-27 2018-05-30 インテル コーポレイション Technology to track wake clock usage
US9256072B2 (en) 2013-10-02 2016-02-09 Philip Scott Lyren Wearable electronic glasses that detect movement of a real object copies movement of a virtual object
US20150123966A1 (en) 2013-10-03 2015-05-07 Compedia - Software And Hardware Development Limited Interactive augmented virtual reality and perceptual computing platform
US20150097719A1 (en) 2013-10-03 2015-04-09 Sulon Technologies Inc. System and method for active reference positioning in an augmented reality environment
US9996797B1 (en) 2013-10-31 2018-06-12 Leap Motion, Inc. Interactions with virtual objects for machine control
KR102189115B1 (en) 2013-11-11 2020-12-09 삼성전자주식회사 System on-chip having a symmetric multi-processor, and method of determining a maximum operating clock frequency for the same
US9286725B2 (en) 2013-11-14 2016-03-15 Nintendo Co., Ltd. Visually convincing depiction of object interactions in augmented reality images
WO2015075767A1 (en) 2013-11-19 2015-05-28 日立マクセル株式会社 Projection-type video display device
US10234699B2 (en) 2013-11-26 2019-03-19 Sony Corporation Head-mounted display
KR102493498B1 (en) 2013-11-27 2023-01-27 매직 립, 인코포레이티드 Virtual and augmented reality systems and methods
WO2015100714A1 (en) 2014-01-02 2015-07-09 Empire Technology Development Llc Augmented reality (ar) system
US9524580B2 (en) 2014-01-06 2016-12-20 Oculus Vr, Llc Calibration of virtual reality systems
US10228562B2 (en) 2014-02-21 2019-03-12 Sony Interactive Entertainment Inc. Realtime lens aberration correction from eye tracking
US9383630B2 (en) * 2014-03-05 2016-07-05 Mygo, Llc Camera mouth mount
US9871741B2 (en) 2014-03-10 2018-01-16 Microsoft Technology Licensing, Llc Resource management based on device-specific or user-specific resource usage profiles
US9251598B2 (en) 2014-04-10 2016-02-02 GM Global Technology Operations LLC Vision-based multi-camera factory monitoring with dynamic integrity scoring
US20170123775A1 (en) 2014-03-26 2017-05-04 Empire Technology Development Llc Compilation of application into multiple instruction sets for a heterogeneous processor
JP6442149B2 (en) 2014-03-27 2018-12-19 オリンパス株式会社 Image display device
US20150301955A1 (en) 2014-04-21 2015-10-22 Qualcomm Incorporated Extending protection domains to co-processors
US10424103B2 (en) 2014-04-29 2019-09-24 Microsoft Technology Licensing, Llc Display device viewer gaze attraction
US9626802B2 (en) 2014-05-01 2017-04-18 Microsoft Technology Licensing, Llc Determining coordinate frames in a dynamic environment
AU2015297035B2 (en) 2014-05-09 2018-06-28 Google Llc Systems and methods for biomechanically-based eye signals for interacting with real and virtual objects
AU2015266586B2 (en) 2014-05-30 2020-07-23 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
EP2952850A1 (en) 2014-06-03 2015-12-09 Optotune AG Optical device, particularly for tuning the focal length of a lens of the device by means of optical feedback
WO2016002512A1 (en) 2014-07-01 2016-01-07 ソニー株式会社 Information processing device and method
RU2603238C2 (en) 2014-07-15 2016-11-27 Самсунг Электроникс Ко., Лтд. Light-guide structure, holographic optical device and imaging system
US9865089B2 (en) 2014-07-25 2018-01-09 Microsoft Technology Licensing, Llc Virtual reality environment with real world objects
US10225506B2 (en) 2014-08-01 2019-03-05 Sony Corporation Information processing apparatus and information processing method
EP3188482B1 (en) 2014-08-28 2019-09-04 Sony Corporation Image processing device and image processing system
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
US10176625B2 (en) 2014-09-25 2019-01-08 Faro Technologies, Inc. Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
US20160093269A1 (en) 2014-09-26 2016-03-31 Pixtronix, Inc. Laser-Pumped Phosphor Backlight and Methods
KR20240005987A (en) 2014-09-29 2024-01-12 매직 립, 인코포레이티드 Architectures and methods for outputting different wavelength light out of waveguides
US9612722B2 (en) 2014-10-31 2017-04-04 Microsoft Technology Licensing, Llc Facilitating interaction between users and their environments using sounds
US10371936B2 (en) 2014-11-10 2019-08-06 Leo D. Didomenico Wide angle, broad-band, polarization independent beam steering and concentration of wave energy utilizing electronically controlled soft matter
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd Compact head-mounted display system protected by a hyperfine structure
US20170243403A1 (en) 2014-11-11 2017-08-24 Bent Image Lab, Llc Real-time shared augmented reality experience
US10794728B2 (en) 2014-12-19 2020-10-06 Invensense, Inc. Device and method for sensor calibration
US10096162B2 (en) 2014-12-22 2018-10-09 Dimensions And Shapes, Llc Headset vision system for portable devices that provides an augmented reality display and/or a virtual reality display
US10154239B2 (en) 2014-12-30 2018-12-11 Onpoint Medical, Inc. Image-guided surgery with surface reconstruction and augmented reality visualization
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9696795B2 (en) 2015-02-13 2017-07-04 Leap Motion, Inc. Systems and methods of creating a realistic grab experience in virtual reality/augmented reality environments
US10180734B2 (en) 2015-03-05 2019-01-15 Magic Leap, Inc. Systems and methods for augmented reality
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
WO2016149536A1 (en) 2015-03-17 2016-09-22 Ocutrx Vision Technologies, Llc. Correction of vision defects using a visual display
US20160287337A1 (en) 2015-03-31 2016-10-06 Luke J. Aram Orthopaedic surgical system and method for patient-specific surgical procedure
EP3745167A1 (en) 2015-04-07 2020-12-02 Magic Leap, Inc. Diffraction grating and method of manufacture
US9779554B2 (en) 2015-04-10 2017-10-03 Sony Interactive Entertainment Inc. Filtering and parental control methods for restricting visual activity on a head mounted display
EP3578507B1 (en) 2015-04-20 2022-10-12 SZ DJI Technology Co., Ltd. Systems and methods for thermally regulating sensor operation
EP3292432B1 (en) 2015-04-23 2023-06-28 LEIA Inc. Dual light guide grating-based backlight and electronic display using same
US10909464B2 (en) 2015-04-29 2021-02-02 Microsoft Technology Licensing, Llc Semantic locations prediction
US9664569B2 (en) 2015-05-15 2017-05-30 Google Inc. Circuit board configurations facilitating operation of heat sensitive sensor components
KR20160139727A (en) 2015-05-28 2016-12-07 엘지전자 주식회사 Glass type terminal and method of controlling the same
GB2539009A (en) 2015-06-03 2016-12-07 Tobii Ab Gaze detection method and apparatus
WO2016205396A1 (en) 2015-06-15 2016-12-22 Black Eric J Methods and systems for communication with beamforming antennas
JP6780642B2 (en) 2015-06-15 2020-11-04 ソニー株式会社 Information processing equipment, information processing methods and programs
FR3037672B1 (en) 2015-06-16 2017-06-16 Parrot DRONE COMPRISING IMPROVED COMPENSATION MEANS THROUGH THE INERTIAL CENTER BASED ON TEMPERATURE
US9519084B1 (en) 2015-06-18 2016-12-13 Oculus Vr, Llc Securing a fresnel lens to a refractive optical element
CA2991644C (en) 2015-07-06 2022-03-01 Frank Jones Methods and devices for demountable head mounted displays
US11190681B1 (en) 2015-07-10 2021-11-30 Snap Inc. Systems and methods for DSP fast boot
US20170100664A1 (en) 2015-10-12 2017-04-13 Osterhout Group, Inc. External user interface for head worn computing
US20170038607A1 (en) 2015-08-04 2017-02-09 Rafael Camara Enhanced-reality electronic device for low-vision pathologies, and implant procedure
US9781246B2 (en) 2015-08-28 2017-10-03 Qualcomm Incorporated Augmenting reality using a small cell
WO2017039308A1 (en) 2015-08-31 2017-03-09 Samsung Electronics Co., Ltd. Virtual reality display apparatus and display method thereof
US9880611B2 (en) 2015-08-31 2018-01-30 Google Llc Energy saving mode for electronic devices
US9489027B1 (en) 2015-08-31 2016-11-08 Wave Resource Strategies, Inc. System and method for the accurate recordation of power consumption in a computing device utilizing power profiles
JP6615541B2 (en) 2015-09-02 2019-12-04 株式会社バンダイナムコアミューズメント Projection system
US20150378407A1 (en) 2015-09-04 2015-12-31 Mediatek Inc. Loading-Based Dynamic Voltage And Frequency Scaling
JP6445222B2 (en) 2015-09-11 2018-12-26 アマゾン・テクノロジーズ・インコーポレーテッド System, method, and computer-readable storage medium for customizable event-triggered calculations at edge positions
US10082865B1 (en) 2015-09-29 2018-09-25 Rockwell Collins, Inc. Dynamic distortion mapping in a worn display
GB2542853B (en) 2015-10-02 2021-12-15 Cambridge Consultants Processing apparatus and methods
US10067346B2 (en) 2015-10-23 2018-09-04 Microsoft Technology Licensing, Llc Holographic display
US9983709B2 (en) 2015-11-02 2018-05-29 Oculus Vr, Llc Eye tracking using structured light
CN113358045A (en) 2015-11-04 2021-09-07 奇跃公司 Light field display metrics
US9671615B1 (en) 2015-12-01 2017-06-06 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using wide-spectrum imager
US10445860B2 (en) 2015-12-08 2019-10-15 Facebook Technologies, Llc Autofocus virtual reality headset
US20170185261A1 (en) 2015-12-28 2017-06-29 Htc Corporation Virtual reality device, method for virtual reality
US10838116B2 (en) 2016-01-06 2020-11-17 University Of Utah Research Foundation Low-power large aperture adaptive lenses for smart eyeglasses
EP3190447B1 (en) 2016-01-06 2020-02-05 Ricoh Company, Ltd. Light guide and virtual image display device
US9978180B2 (en) 2016-01-25 2018-05-22 Microsoft Technology Licensing, Llc Frame projection for augmented reality environments
US9891436B2 (en) 2016-02-11 2018-02-13 Microsoft Technology Licensing, Llc Waveguide-based displays with anti-reflective and highly-reflective coating
JP6686504B2 (en) 2016-02-15 2020-04-22 セイコーエプソン株式会社 Head-mounted image display device
JP6686505B2 (en) 2016-02-15 2020-04-22 セイコーエプソン株式会社 Head-mounted image display device
WO2017141566A1 (en) 2016-02-18 2017-08-24 富士電機株式会社 Signal transmission device
US9880441B1 (en) 2016-09-08 2018-01-30 Osterhout Group, Inc. Electrochromic systems for head-worn computer systems
US20170256096A1 (en) 2016-03-07 2017-09-07 Google Inc. Intelligent object sizing and placement in a augmented / virtual reality environment
CN109310476B (en) 2016-03-12 2020-04-03 P·K·朗 Devices and methods for surgery
US10223605B2 (en) 2016-03-18 2019-03-05 Colorvision International, Inc. Interactive virtual aquarium simulation system and associated methods
CN108882892A (en) 2016-03-31 2018-11-23 Zoll医疗公司 The system and method for tracking patient motion
US11067797B2 (en) 2016-04-07 2021-07-20 Magic Leap, Inc. Systems and methods for augmented reality
EP3236211A1 (en) 2016-04-21 2017-10-25 Thomson Licensing Method and apparatus for estimating a pose of a rendering device
US10197804B2 (en) 2016-04-25 2019-02-05 Microsoft Technology Licensing, Llc Refractive coating for diffractive optical elements
US10261162B2 (en) 2016-04-26 2019-04-16 Magic Leap, Inc. Electromagnetic tracking with augmented reality systems
US20170312032A1 (en) 2016-04-27 2017-11-02 Arthrology Consulting, Llc Method for augmenting a surgical field with virtual guidance content
JP6961619B2 (en) 2016-05-06 2021-11-05 マジック リープ, インコーポレイテッドMagic Leap, Inc. Meta-surface with asymmetric lattice for redirecting light and manufacturing method
US10241346B2 (en) 2016-05-07 2019-03-26 Microsoft Technology Licensing, Llc Degrees of freedom for diffraction elements in wave expander
US10215986B2 (en) 2016-05-16 2019-02-26 Microsoft Technology Licensing, Llc Wedges for light transformation
US11228770B2 (en) 2016-05-16 2022-01-18 Qualcomm Incorporated Loop sample processing for high dynamic range and wide color gamut video coding
GB201609027D0 (en) 2016-05-23 2016-07-06 Bae Systems Plc Waveguide manufacturing method
US10078377B2 (en) 2016-06-09 2018-09-18 Microsoft Technology Licensing, Llc Six DOF mixed reality input by fusing inertial handheld controller with hand tracking
US10114440B2 (en) 2016-06-22 2018-10-30 Razer (Asia-Pacific) Pte. Ltd. Applying power management based on a target time
US10372184B2 (en) 2016-06-28 2019-08-06 Renesas Electronics America Inc. Method and apparatus for implementing power modes in microcontrollers using power profiles
CN109417608B (en) 2016-07-07 2021-02-02 日立乐金光科技株式会社 Image display device
TW201803289A (en) 2016-07-11 2018-01-16 原相科技股份有限公司 Wireless transceiver apparatus and method capable of controlling gain(s) of amplifier(s) by detecting power of interference signal in the air with considerations of power saving and smaller circuit area
CA3032812A1 (en) 2016-08-04 2018-02-08 Reification Inc. Methods for simultaneous localization and mapping (slam) and related apparatus and systems
JP7094266B2 (en) 2016-08-04 2022-07-01 ドルビー ラボラトリーズ ライセンシング コーポレイション Single-depth tracking-accommodation-binocular accommodation solution
US10676345B2 (en) 2016-08-15 2020-06-09 Y-Sensors Ltd. Temperature stabilized MEMS device
AU2017316667B2 (en) 2016-08-22 2022-01-27 Magic Leap, Inc. Multi-layer diffractive eyepiece
US10690936B2 (en) 2016-08-29 2020-06-23 Mentor Acquisition One, Llc Adjustable nose bridge assembly for headworn computer
US20180067779A1 (en) 2016-09-06 2018-03-08 Smartiply, Inc. AP-Based Intelligent Fog Agent
US20180082480A1 (en) 2016-09-16 2018-03-22 John R. White Augmented reality surgical technique guidance
KR102357876B1 (en) 2016-09-26 2022-01-28 매직 립, 인코포레이티드 Calibration of Magnetic and Optical Sensors in Virtual Reality or Augmented Reality Display Systems
US10134192B2 (en) 2016-10-17 2018-11-20 Microsoft Technology Licensing, Llc Generating and displaying a computer generated image on a future pose of a real world object
US10373297B2 (en) 2016-10-26 2019-08-06 Valve Corporation Using pupil location to correct optical lens distortion
US10735691B2 (en) 2016-11-08 2020-08-04 Rockwell Automation Technologies, Inc. Virtual reality and augmented reality for industrial automation
KR102573744B1 (en) 2016-11-23 2023-09-01 삼성디스플레이 주식회사 Display device and method of driving the same
US11612307B2 (en) 2016-11-24 2023-03-28 University Of Washington Light field capture and rendering for head-mounted displays
JPWO2018101394A1 (en) 2016-12-01 2019-10-24 ソニー株式会社 Information processing apparatus, information processing method, and program
CN108885533B (en) 2016-12-21 2021-05-07 杰创科科技有限公司 Combining virtual reality and augmented reality
CN110419018B (en) 2016-12-29 2023-08-04 奇跃公司 Automatic control of wearable display device based on external conditions
US10203252B2 (en) 2016-12-29 2019-02-12 Industrial Technology Research Institute Microelectromechanical apparatus having a measuring range selector
US10489975B2 (en) 2017-01-04 2019-11-26 Daqri, Llc Environmental mapping system
US10436594B2 (en) 2017-01-17 2019-10-08 Blind InSites, LLC Devices, systems, and methods for navigation and usage guidance in a navigable space using wireless communication
US9978118B1 (en) 2017-01-25 2018-05-22 Microsoft Technology Licensing, Llc No miss cache structure for real-time image transformations with data compression
US20180218545A1 (en) 2017-01-31 2018-08-02 Daqri, Llc Virtual content scaling with a hardware controller
US20180255285A1 (en) 2017-03-06 2018-09-06 Universal City Studios Llc Systems and methods for layered virtual features in an amusement park environment
EP3376279B1 (en) 2017-03-13 2022-08-31 Essilor International Optical device for a head-mounted display, and head-mounted device incorporating it for augmented reality
US10452123B2 (en) 2017-03-30 2019-10-22 Google Llc Predictive power saving and screen dimming for computing devices
US10241545B1 (en) 2017-06-01 2019-03-26 Facebook Technologies, Llc Dynamic distortion correction for optical compensation
US11132533B2 (en) 2017-06-07 2021-09-28 David Scott Dreessen Systems and methods for creating target motion, capturing motion, analyzing motion, and improving motion
US11236993B1 (en) 2017-06-08 2022-02-01 Facebook Technologies, Llc Depth sensing using a time of flight system including a scanning beam in combination with a single photon avalanche diode array
GB201709199D0 (en) 2017-06-09 2017-07-26 Delamont Dean Lindsay IR mixed reality and augmented reality gaming system
US20190196690A1 (en) 2017-06-23 2019-06-27 Zyetric Virtual Reality Limited First-person role playing interactive augmented reality
US10402448B2 (en) 2017-06-28 2019-09-03 Google Llc Image retrieval with deep local feature descriptors and attention-based keypoint descriptors
US10578870B2 (en) 2017-07-26 2020-03-03 Magic Leap, Inc. Exit pupil expander
US20190056591A1 (en) 2017-08-18 2019-02-21 Microsoft Technology Licensing, Llc Optical waveguide with multiple antireflective coatings
US9948612B1 (en) 2017-09-27 2018-04-17 Citrix Systems, Inc. Secure single sign on and conditional access for client applications
US10437065B2 (en) * 2017-10-03 2019-10-08 Microsoft Technology Licensing, Llc IPD correction and reprojection for accurate mixed reality object placement
US20190137788A1 (en) 2017-11-08 2019-05-09 Interstol Trading Co. Inc. Lens assembly including magnet assembly components for mounting onto an eye glass frame
US10317680B1 (en) 2017-11-09 2019-06-11 Facebook Technologies, Llc Optical aberration correction based on user eye position in head mounted displays
PT3482802T (en) 2017-11-13 2021-02-19 Vr Coaster Gmbh & Co Kg Device for experiencing a virtual reality simulation in an underwater world
US10599259B2 (en) 2017-11-20 2020-03-24 Google Llc Virtual reality / augmented reality handheld controller sensing
KR102411287B1 (en) 2017-11-22 2022-06-22 삼성전자 주식회사 Apparatus and method for controlling media output level
EP3717083A1 (en) 2017-12-01 2020-10-07 Rhodan Marine Systems of Florida, LLC Dynamic augmented reality headset system
US10916059B2 (en) 2017-12-06 2021-02-09 Universal City Studios Llc Interactive video game system having an augmented virtual representation
US10620430B2 (en) 2018-01-12 2020-04-14 Microsoft Technology Licensing, Llc Geometrically multiplexed RGB lasers in a scanning MEMS display system for HMDS
US10773169B2 (en) 2018-01-22 2020-09-15 Google Llc Providing multiplayer augmented reality experiences
WO2019148154A1 (en) 2018-01-29 2019-08-01 Lang Philipp K Augmented reality guidance for orthopedic and other surgical procedures
US11386572B2 (en) 2018-02-03 2022-07-12 The Johns Hopkins University Calibration system and method to align a 3D virtual scene and a 3D real world for a stereoscopic head-mounted display
US10422989B2 (en) 2018-02-06 2019-09-24 Microsoft Technology Licensing, Llc Optical systems including a single actuator and multiple fluid-filled optical lenses for near-eye-display devices
US10504288B2 (en) 2018-04-17 2019-12-10 Patrick Piemonte & Ryan Staake Systems and methods for shared creation of augmented reality
JP6779939B2 (en) 2018-04-19 2020-11-04 グリー株式会社 Game device, control method and control program
US10969486B2 (en) 2018-04-26 2021-04-06 SCRRD, Inc. Augmented reality platform and method for use of same
US10740966B2 (en) 2018-05-14 2020-08-11 Microsoft Technology Licensing, Llc Fake thickness on a two-dimensional object
CN112400157A (en) 2018-06-05 2021-02-23 奇跃公司 Homography transformation matrix based temperature calibration of viewing systems
WO2019245869A1 (en) 2018-06-19 2019-12-26 Tornier, Inc. Closed-loop tool control for orthopedic surgical procedures
WO2020010226A1 (en) 2018-07-03 2020-01-09 Magic Leap, Inc. Systems and methods for virtual and augmented reality
US10854004B2 (en) 2018-08-24 2020-12-01 Facebook, Inc. Multi-device mapping and collaboration in augmented-reality environments
US10902678B2 (en) 2018-09-06 2021-01-26 Curious Company, LLC Display of hidden information
CN110942518B (en) 2018-09-24 2024-03-29 苹果公司 Contextual Computer Generated Reality (CGR) digital assistant
US11017217B2 (en) 2018-10-09 2021-05-25 Midea Group Co., Ltd. System and method for controlling appliances using motion gestures
US10516853B1 (en) 2018-10-10 2019-12-24 Plutovr Aligning virtual representations to inputs and outputs
US10678323B2 (en) 2018-10-10 2020-06-09 Plutovr Reference frames for virtual environments
US10838488B2 (en) 2018-10-10 2020-11-17 Plutovr Evaluating alignment of inputs and outputs for virtual environments
US10776933B2 (en) 2018-12-06 2020-09-15 Microsoft Technology Licensing, Llc Enhanced techniques for tracking the movement of real-world objects for improved positioning of virtual objects
US10970547B2 (en) 2018-12-07 2021-04-06 Microsoft Technology Licensing, Llc Intelligent agents for managing data associated with three-dimensional objects
US11216150B2 (en) 2019-06-28 2022-01-04 Wen-Chieh Geoffrey Lee Pervasive 3D graphical user interface with vector field functionality
GB2600289A (en) 2019-07-11 2022-04-27 Elo Labs Inc Interactive personal training system
US11174153B2 (en) 2019-08-21 2021-11-16 Invensense, Inc. Package level thermal gradient sensing
US11209656B1 (en) 2020-10-05 2021-12-28 Facebook Technologies, Llc Methods of driving light sources in a near-eye display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074295A (en) * 1989-08-03 1991-12-24 Jamie, Inc. Mouth-held holder
JP2012015774A (en) * 2010-06-30 2012-01-19 Toshiba Corp Stereoscopic image processing device and stereoscopic image imaging method
US20160033770A1 (en) 2013-03-26 2016-02-04 Seiko Epson Corporation Head-mounted display device, control method of head-mounted display device, and display system
US20170160518A1 (en) * 2015-12-08 2017-06-08 Oculus Vr, Llc Focus adjusting virtual reality headset
WO2018087408A1 (en) * 2016-11-10 2018-05-17 E-Health Technical Solutions, S.L. System for integrally measuring clinical parameters of visual function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3831058A4

Also Published As

Publication number Publication date
CN112740665A (en) 2021-04-30
US11630507B2 (en) 2023-04-18
JP7401519B2 (en) 2023-12-19
EP3831058A1 (en) 2021-06-09
US11112862B2 (en) 2021-09-07
EP3831058A4 (en) 2022-04-20
US20200042081A1 (en) 2020-02-06
JP2021533465A (en) 2021-12-02
US20210341996A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
US11630507B2 (en) Viewing system with interpupillary distance compensation based on head motion
KR102448284B1 (en) head mounted display tracking system
JP6860488B2 (en) Mixed reality system
US9728010B2 (en) Virtual representations of real-world objects
US10269139B2 (en) Computer program, head-mounted display device, and calibration method
US20220269344A1 (en) Eye-tracking using images having different exposure times
US9910513B2 (en) Stabilizing motion of an interaction ray
US10599215B2 (en) Off-axis eye tracker
US20170123488A1 (en) Tracking of wearer's eyes relative to wearable device
KR20180115285A (en) Spherical specular tracking of cornea to create eye model
JP4892692B2 (en) Method and apparatus for measuring eyeball rotation point
US10789782B1 (en) Image plane adjustment in a near-eye display
CN103605208A (en) Content projection system and method
CN105872526A (en) Binocular AR (Augmented Reality) head-mounted display device and information display method thereof
US9946343B2 (en) Motion tracker with an array of distinct light sources
KR20220120649A (en) Artificial Reality System with Varifocal Display of Artificial Reality Content
US10528128B1 (en) Head-mounted display devices with transparent display panels for eye tracking
KR20190004806A (en) Face and eye tracking and facial animation using head-mounted display's face sensor
JP2021532464A (en) Display systems and methods for determining vertical alignment between the left and right displays and the user's eyes.
CN110554501B (en) Head mounted display and method for determining line of sight of user wearing the same
CN117957479A (en) Compact imaging optics with distortion compensation and image sharpness enhancement using spatially positioned freeform optics
WO2021237952A1 (en) Augmented reality display system and method
US10859832B1 (en) Mitigating light exposure to elements of a focus adjusting head mounted display
CN111587397B (en) Image generation device, spectacle lens selection system, image generation method, and program
US10338379B1 (en) Lenses with consistent distortion profile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019843487

Country of ref document: EP

Effective date: 20210302