WO2020027640A1 - Composition for inhibiting ctgf expression - Google Patents

Composition for inhibiting ctgf expression Download PDF

Info

Publication number
WO2020027640A1
WO2020027640A1 PCT/KR2019/095026 KR2019095026W WO2020027640A1 WO 2020027640 A1 WO2020027640 A1 WO 2020027640A1 KR 2019095026 W KR2019095026 W KR 2019095026W WO 2020027640 A1 WO2020027640 A1 WO 2020027640A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sequence
strand
sirna
silica particles
Prior art date
Application number
PCT/KR2019/095026
Other languages
French (fr)
Korean (ko)
Inventor
원철희
민달희
Original Assignee
주식회사 레모넥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레모넥스 filed Critical 주식회사 레모넥스
Priority to CN201980050234.8A priority Critical patent/CN112512532A/en
Priority to EP19843450.8A priority patent/EP3831392A4/en
Priority to JP2021505193A priority patent/JP7152072B2/en
Priority to AU2019314093A priority patent/AU2019314093B2/en
Priority claimed from KR1020190065618A external-priority patent/KR20200014684A/en
Publication of WO2020027640A1 publication Critical patent/WO2020027640A1/en
Priority to US17/162,045 priority patent/US20210230602A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a composition which inhibits CTGF expression with high efficiency and has excellent prophylactic or therapeutic effect of fibroproliferative disease.
  • Tissue remodeling is the reconstruction of existing tissue in response to physiological or pathological stress.
  • Tissue remodeling in pathophysiology is characterized by connective tissue growth factor (CTGF), myofiber differentiation and activation, deposition of extracellular matrix (ECM) and overexpression of fibrosis.
  • CTGF connective tissue growth factor
  • ECM extracellular matrix
  • CTGF has been considered a pivotal mediator in tissue remodeling.
  • CTGF is involved in a variety of signal transduction pathways, resulting in cell adhesion and migration, ECM remodeling and alteration of organ structure.
  • Tissue remodeling and fibrosis are associated with numerous fibrotic disorders such as pulmonary fibrosis, liver fibrosis, kidney fibrosis, diabetic retinopathy, and skin fibrosis (keloids and hypertrophic scars).
  • the wound healing process in the skin is very complex and consists of overlapping steps of inflammation, cell differentiation and proliferation, tissue remodeling (including collagen production).
  • Some cytokines and growth factors, especially TGF- ⁇ play an important role in the early and late stages of wound healing.
  • TGF- ⁇ mediates leukocyte migration, angiogenesis, fibroblast migration and ECM components (collagen and fibronectin) production through CTGF upregulation. Since overexpression of CTGF has been observed in hypertrophic scars and keloid patients, suppression of CTGF expression is an attractive strategy to modulate fibrosis mechanisms that can inhibit or reverse the fibrosis process.
  • siRNA is one of the promising candidates for CTGF inhibition.
  • RNA interference induced in siRNA is mediated by highly specific and efficient gene silencing machinery that sequencely recognize and cleave target mRNAs.
  • RNA interference induced in siRNA is mediated by highly specific and efficient gene silencing machinery that sequencely recognize and cleave target mRNAs.
  • several limitations such as 1) rapid degradation by nucleases in biological systems, 2) maintenance of effective siRNA doses, 3) difficulty in efficient delivery across biological barriers, and There is a barrier.
  • cationic polymers lipid nanoparticles (LNPs), viruses, and various nanomaterials have been developed for the delivery of siRNAs.
  • LNPs lipid nanoparticles
  • the clinical application of cationic polymers and LNPs should be prudent due to the toxicity and / or instability of the structures in vivo, and viral gene transfer poses mutagenesis in addition to low packaging capacity.
  • Chemical modifications of siRNA backbones can increase stability and cell uptake, but still suffer from disadvantages such as high cost, labor intensive, time consuming processing, and high amounts of siRNA administration for satisfactory efficacy in target cells.
  • An object of the present invention is to provide a composition having high efficiency of inhibiting CTGF expression and having an excellent prophylactic or therapeutic effect of fibroproliferative diseases.
  • a composition for inhibiting CTGF gene expression comprising: a nucleic acid molecule consisting of a sequence of SEQ ID NO: 1 and a sequence complementary to 10 nucleotides or more.
  • composition according to the above wherein the nucleic acid molecule consisting of a sequence of at least 16 nucleotides complementary to the sequence of SEQ ID NO: 1;
  • composition of 1 above wherein the nucleic acid molecule consisting of a sequence complementary to the entire sequence of SEQ ID NO: 1;
  • siRNA consisting of the sense RNA consisting of the sequence of SEQ ID NO: 1 and the antisense RNA consisting of the sequence of SEQ ID NO: 2, the strand consisting of the sequence of SEQ ID NO: 3 and dsRNA consisting of the strands complementary thereto
  • SEQ ID NO: 52 SiRNA consisting of a sense RNA consisting of a sequence of and an antisense RNA consisting of a sequence of SEQ ID NO: 53, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 54 and a complementary strand thereof, a sense RNA consisting of the sequence of SEQ ID NO: 55, and SEQ ID NO: 56 SiRNA consisting of an antisense RNA consisting of a sequence of DNA, a strand consisting of a sequence of SEQ ID NO: 57 and a dsRNA consisting of a complementary strand thereof, a siRNA consisting of a sense RNA consisting of a sequence of SEQ
  • composition of 5 above further comprising a sequence of UU or dTdT at the 3 'end of the sense RNA and antisense RNA sequence.
  • composition of 4 above comprising at least one PNA consisting of one sequence selected from the group consisting of SEQ ID NOs: 87-99.
  • a pharmaceutical composition for the prevention or treatment of fibroproliferative diseases comprising the composition of any one of 1 to 8.
  • the fibrotic disease is hypertrophic scar, keloid, fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, myelofibrosis, peritoneal fibrosis, scleroderma, diabetic retinopathy , Duchenne muscular dystrophy, radiation-induced fibrosis, myocardial fibrosis, diabetic kidney disease, chronic renal failure, chronic viral hepatitis, biliary fibrosis, fatty hepatitis, alcoholic fatty hepatitis, nonalcoholic steatohepatitis, proliferative vitreoretinopathy, musculoskeletal tumor, osteosarcoma , Rhabdomyosarcoma, glioblastoma, lung cancer, ovarian cancer, esophageal cancer, colon cancer, pancreatic cancer, kidney sclerosis, sarcoidosis,
  • the porous silica particles react with silica particles having pores less than 5 nm in diameter at 120 ° C. to 180 ° C. for 24 to 96 hours to expand the pores less than 5 nm in diameter; And calcining the pores of expanded silica particles at a temperature of 400 ° C. or higher for at least 3 hours.
  • the average diameter of the porous silica particles is 100 nm to 1000 nm, the BET surface area is 200m 2 / g to 700m 2 / g, the volume per g is 0.7ml to 2.2ml,
  • the porous silica particles, the ratio of the absorbance of the following formula 1 is t is 24 or more, CTGF gene expression inhibition composition:
  • a 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles in a cylindrical permeable membrane having pores having a diameter of 50 kDa,
  • the pH of the suspension is 7.4,
  • a t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
  • composition of 11 above, wherein the nucleic acid molecule is at least 10 nucleotides complementary to the sequence of SEQ ID NO: 1.
  • composition of 11 above, wherein the nucleic acid molecule is at least 16 nucleotides complementary to the sequence of SEQ ID NO: 1.
  • siRNA consisting of the sense RNA consisting of the sequence of SEQ ID NO: 1 and the antisense RNA consisting of the sequence of SEQ ID NO: 2, the strand consisting of the sequence of SEQ ID NO: 3 and dsRNA consisting of strands complementary thereto, SEQ ID NO: 52 SiRNA consisting of a sense RNA consisting of a sequence of and an antisense RNA consisting of a sequence of SEQ ID NO: 53, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 54 and a complementary strand thereof, a sense RNA consisting of the sequence of SEQ ID NO: 55, and SEQ ID NO: 56 SiRNA consisting of an antisense RNA consisting of a sequence of DNA, a strand consisting of a sequence of SEQ ID NO: 57 and a dsRNA consisting of a complementary strand thereof, a siRNA consisting of a sense RNA consisting of a sequence of a sequence of a sequence of
  • composition of 18 above further comprising a sequence of UU or dTdT at the 3 'end of the sense RNA and antisense RNA sequences.
  • composition of 17, wherein the composition comprises at least one PNA consisting of one sequence selected from the group consisting of SEQ ID NOs: 87 to 99.
  • a pharmaceutical composition for the prevention or treatment of fibroproliferative diseases comprising the composition of any one of 11 to 21 above.
  • fibrotic disease is hypertrophic scar, keloid, fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, myelofibrosis, peritoneal fibrosis, scleroderma, diabetic retinopathy , Duchenne muscular dystrophy, radiation-induced fibrosis, myocardial fibrosis, diabetic kidney disease, chronic renal failure, chronic viral hepatitis, biliary fibrosis, fatty hepatitis, alcoholic fatty hepatitis, nonalcoholic steatohepatitis, proliferative vitreoretinopathy, musculoskeletal tumor, osteosarcoma , Rhabdomyosarcoma, glioblastoma, lung cancer, ovarian cancer, esophageal cancer, colon cancer, pancreatic cancer, kidney sclerosis, s
  • composition of the present invention contains a nucleic acid molecule capable of effectively inhibiting the expression of CTGF and collagen, it is possible to prevent or treat a variety of fibrotic diseases due to overexpression of CTGF or collagen.
  • FIG. 1 schematically illustrates the mechanism of inhibition of hypertrophic scars and keloids due to overexpression of CTGF induced by pathological pathways and the effect of inhibiting effective CTGF expression of LEM-S401.
  • FIG. 2 shows A549 (FIG. 2) and HaCaT (FIG. 3) cells each treated for 6 hours with various doses of LEM-S401 (12.5, 25, 50, 100 nM) for 6 hours and CTGF expression was 12 ng.
  • TGF-ß of / mL, CTGF mRNA expression level was compared with the control (untreated, siCTGF only, DegradaBALL only, scrambled siRNA treatment) using RT-PCR ( * P ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.005).
  • FIG. 4 and 5 show that A549 (FIG. 4) and HaCaT (FIG. 5) cells were treated with lipoid nanoparticles (LiP nanoparticles (LNP)) carrying LEM-S401 and siCTGF, respectively, and the cells were 72 and 96 hours. And TGF-ß was treated 12 hours before harvesting ( * P ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.005).
  • LNP lipoid nanoparticles
  • FIG. 6 is a subcutaneous injection of LEM-S401 into mouse skin, and fluorescence images of the excised mouse skin were taken at different time points to measure skin retention time of siCTGF and DegradaBALL at the LEM-S401 injection site (1,3,5). 1) (left, Scale bar: 25mm), after the DAPI staining was taken fluorescence image of the treated skin section (right, Scale bar: 100 ⁇ m).
  • FIG. 7 shows fluorescence images of resected skin subcutaneously injected with FITC-conjugated siCTGF unsupported in DegradaBALL at different time points (left), and after fluorescence imaging of fluorescence images of skin sections treated in the same manner.
  • Scale bar 100 ⁇ m.
  • FIGS. 8 to 15 show the results of subcutaneous injection of LEM-S401 (1 nmol) around the mouse skin wound on day 0,4,8,12, Figures 8 to 10 mRNA expression of CTGF and collagen type 1,3 Levels were measured at day 16 using RT-PCR, FIG. 11 shows images of wounded mouse skin treated with skin irregularities and softness between LEM-S401 treated group and control (buffer, DegradaBALL only, siCTGF only).
  • 12 is a fluorescent image of skin sections treated with LEM-S401, free siCTGF, DegradaBALL only and buffer after tissue staining with antibodies that recognize CTGF and collagen types 1,3, respectively. Secondary antibodies were treated to skin sections (Scale bar: 100 ⁇ m), and FIGS. 13 to 15 quantitatively analyze immunohistochemical data based on the image of FIG. 12 ( * P ⁇ 0.05, ** P ⁇ 0.01 , *** P ⁇ 0.005).
  • Figure 16 shows the toxicity in A549 and HaCaT cells with increasing concentrations of DegradaBALL was measured by CCK-8 analysis.
  • FIG. 17 shows the results of treatment of A549 and HaCaT cells with 2 ng / mL of TGF-ß for 24 hours. Cells were obtained at different time points, and CTGF expression levels were analyzed by RT-PCR.
  • FIGS. 18 to 24 show the results of subcutaneous injection of LEM-S401 into the wound site 10, 14, 18 and 22 days after wound formation, and FIGS. 18 to 20 show mRNA expression levels of CTGF and collagen type 1,3 at the injection site. Measured by RT-PCR, FIG. 21 is a fluorescence image of CTGF and collagen types 1,3 of the obtained mouse skin was measured by immunohistochemistry (Scale bar: 100 ⁇ m), and FIGS. 22 to 24 are immune tissues. Chemical data were quantified ( * P ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.005).
  • Fig. 25 shows comparison results of detection of fluorescent images in the body when siRNA was injected subcutaneously with DDV (porous silica particles, DegradaBALL) and when mouse was injected subcutaneously with unsupported free-siRNA.
  • DDV porous silica particles, DegradaBALL
  • siRNA (# 1) consisting of a sense RNA consisting of a sequence of SEQ ID NO: 1 and an antisense RNA consisting of a sequence of SEQ ID NO: 2
  • SiRNA (# 2) consisting of a sense RNA consisting of a sequence of SEQ ID NO: 4 and an antisense RNA consisting of a sequence of SEQ ID NO: 5
  • SiRNA (# 3) consisting of sense RNA consisting of the sequence of SEQ ID NO: 7 and antisense RNA consisting of the sequence of SEQ ID NO: 8 confirmed the inhibitory ability of CTGF expression levels in A549 and HaCaT cells.
  • FIG. 26 shows TGF- 12 hours after siRNA treatment. ⁇ was treated, and FIG. 27 was treated with siRNA 24 hours after TGF-ß treatment.
  • 29 is a micrograph of porous silica particles according to one embodiment of the present invention.
  • FIG. 30 is a micrograph of the small pore particles in the manufacturing process of the porous silica particles according to an embodiment of the present invention.
  • Figure 31 is a micrograph of the small pore particles according to an embodiment of the present invention.
  • DDV Delivery Vehicle
  • the number in parenthesis means the diameter of the particle
  • the number of subscripts means the pore diameter.
  • DDV 200 10 refers to a particle of an embodiment having a particle diameter of 200 nm and a pore diameter of 10 nm.
  • Figure 33 is a micrograph to confirm the biodegradability of the porous silica particles according to an embodiment of the present invention.
  • 34 is a tube with a cylindrical permeable membrane according to one example.
  • 35 is a result of decreasing absorbance over time of porous silica particles according to an embodiment of the present invention.
  • 40 is a tube confirming siRNA or dsRNA release according to one example.
  • Figure 41 is the degree of release over time of the siRNA supported on the porous silica particles according to an embodiment of the present invention.
  • siRNA refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing. siRNA is provided as an efficient gene knockdown method or gene therapy method because it can inhibit the expression of the target gene.
  • the siRNA® molecule may have a double-stranded structure in which the sense strand (corresponding sequence corresponding to the mRNA sequence of the target gene) and the antisense strand (sequence complementary to the mRNA sequence of the target gene) are positioned opposite to each other.
  • siRNA® molecules may have a single chain structure with self-complementary sense and antisense strands.
  • siRNAs are not limited to the complete pairing of double-stranded RNA portions paired with RNA, but paired by mismatches (the corresponding bases are not complementary), bulges (there are no bases corresponding to one chain), and the like. May be included.
  • the siRNA® terminal structure can be either blunt or cohesive, as long as the expression of the target gene can be suppressed by RNAi (RNA interference) effects.
  • the cohesive end structure can be both a 3'-end protrusion structure and a 5'-end protrusion structure.
  • siRNA molecules may have a form in which a short nucleotide sequence (eg, about 5-15 nt) is inserted between self-complementary sense and antisense strands, in which case the siRNA molecules formed by expression of the nucleotide sequence are intramolecular hybridization.
  • a short nucleotide sequence eg, about 5-15 nt
  • the siRNA molecules formed by expression of the nucleotide sequence are intramolecular hybridization.
  • the hairpin structure is formed, and as a whole, the stem-and-loop structure is formed.
  • This stem-and-loop structure is processed in vitro or in vivo to produce active “siRNA” molecules that can mediate RNAi.
  • dsRNA is a precursor molecule of siRNA, meets the RISC complex containing the target cell's DICER enzyme (Ribonuclease III) and is cleaved into siRNA, in which RNAi occurs.
  • dsRNA has a sequence that is several nucleotides longer than siRNA, and the double stranded strand of the sense strand (corresponding to the target gene) and the antisense strand (sequence complementary to the mRNA sequence of the target gene) It may have a structure forming a.
  • PNA is a synthetic polymer that has a structure similar to DNA or RNA, but unlike DNA or RNA, and is designed to have no charge, and has a strong binding force, wherein the DNA and RNA are deoxyribose or ribose sugar backbones ( backbones, respectively, while the backbone of the PNA has a structure in which repeating N- (2-aminoethyl) -glycine ((N- (2-aminoethyl) -glycine) units are linked by peptide bonds.
  • methylene methylene
  • -C O-
  • Nucleic acid is meant to include any PNA, DNA or RNA, eg, chromosomes, mitochondria, viruses and / or bacterial nucleic acids present in tissue samples.
  • PNA protein-binding nucleic acid
  • DNA or RNA DNA or RNA
  • chromosomes chromosomes
  • mitochondria mitochondria
  • viruses and / or bacterial nucleic acids present in tissue samples.
  • Gene means any nucleic acid sequence or portion thereof that has a functional role in protein coding or transcription or in the regulation of other gene expression.
  • the gene may consist of any nucleic acid encoding a functional protein or only a portion of a nucleic acid encoding or expressing a protein.
  • Nucleic acid sequences can include gene abnormalities in exons, introns, initiation or termination regions, promoter sequences, other regulatory sequences, or unique sequences adjacent to genes.
  • gene expression generally refers to a cellular process in which a biologically active polypeptide is produced from a DNA sequence and exhibits biological activity in a cell.
  • gene expression includes not only transcriptional and translational processes, but also post-transcriptional and posttranslational processes that can affect the biological activity of a gene or gene product.
  • the processes include, but are not limited to, RNA synthesis, processing and transport, as well as post-translational modifications of the polypeptide synthesis, transport and polypeptide.
  • siRNA genes the term “gene expression” refers to the process by which precursor siRNAs are produced from a gene.
  • this process is referred to as transcription, although unlike transcription induced by RNA polymerase II for a protein coding gene, the transcription product of the siRNA gene is not translated to produce a protein. Nevertheless, generation of mature siRNA from siRNA genes is encompassed by the term "gene expression" as that term is used herein.
  • target gene refers to a gene that is targeted for regulation using the methods and compositions of the subject matter disclosed herein. Therefore, the target gene comprises a nucleic acid sequence whose expression level is down regulated by siRNA at the mRNA or polypeptide level.
  • target RNA or “target mRNA” refers to a transcript of a target gene to which siRNA binds to induce regulation of expression of the target gene.
  • transcription refers to a cellular process that involves the interaction of an RNA polymerase with a gene that drives expression as RNA of structural information present in the coding sequence of the gene.
  • down-regulation refers to the expression of specific genes in mRNA or the expression of proteins in activated cells by intracellular transcription or translation in activated cells compared to normal tissue cells. Means reduced.
  • Treatment means an approach to obtain beneficial or desirable clinical results.
  • beneficial or desirable clinical outcomes include, but are not limited to, alleviation of symptoms, reduction of disease range, stabilization of disease state (ie, not worsening), delay or slowing of disease progression, disease state Improvement or temporary mitigation and alleviation (partially or wholly), detectable or not detected.
  • Treatment may also mean increasing survival compared to expected survival when untreated. Treatment refers to both therapeutic treatment and prophylactic or preventive measures. Such treatments include not only the disorders to be prevented but also the treatments required for already occurring disorders.
  • Prevention means any action that inhibits or delays the development of a related disease. It will be apparent to those skilled in the art that the compositions herein can prevent the initial symptoms, or related diseases, if administered before they appear.
  • the present invention provides a composition for inhibiting CTGF gene expression comprising; a nucleic acid molecule consisting of a sequence of SEQ ID NO: 1 and a sequence complementary to 10 nucleotides or more.
  • nucleotides comprising at least 10 nucleotides (nt), at least 11 nucleotides, at least 12 nucleotides, at least 13 nucleotides, at least 14 nucleotides, at least 15 nucleotides, at least 16 nucleotides, Or at least 17 nucleotides or all 18 nucleotides.
  • the nucleic acid molecule may be one strand of siRNA, dsRNA, PNA or miRNA, in which case the siRNA, dsRNA, PNA or miRNA is expressed in the CTGF gene by RNAi (RNA interference). It may be to suppress the, and more specifically, in the mRNA sequence which is a transcript of the CTGF gene, it may be to complementarily bind to at least a portion of the region consisting of the sequence of SEQ ID NO: 1 to inhibit the expression of the CTGF gene.
  • RNAi RNA interference
  • the sequence conforms to the conditions to be considered in the design of the siRNA, dsRNA, PNA or miRNA at the level of those skilled in the art. It is obvious that it is designed in this case, in this case, it may be designed to avoid the degradation of RNAi efficiency caused by the hairpin shape (crosspin), cross-shaped (hairpin shape) so as not to have a palindrome sequence.
  • siRNA or dsRNA of the present invention may be designed not to include the sequence of SEQ ID NO: 100 (5'-AACUUGAACU-3 '), for example, PNA of the present invention, both ends of the CNA It may be designed to avoid having a complementary relationship with each and G, it can be designed to have a stable RNAi efficiency by maintaining the entire length of the nucleic acid molecule more than the appropriate length.
  • the total sequence length of the nucleic acid molecule is 10 to 30, 11 to 29, 12 to 28, 13 to 27, 14 to 26, 15 to 25, 16 to 24, 16 to 23, 16 to 22, 16 to 21 or 16 to It may be 20 nucleotides in length, but is not necessarily limited thereto, but preferably 16 to 16 in order to maintain the efficiency of RNAi by maintaining an appropriate length or more, but to maintain the efficiency in vivo by maintaining the appropriate length or less. It may be 20 nucleotides in length.
  • the nucleic acid molecule may be an antisense RNA (sequence of SEQ ID NO: 2) that forms a siRNA by complementarily binding with a sense RNA consisting of the sequence of SEQ ID NO: 1, a strand consisting of the sequence of SEQ ID NO: 3 It may be a strand complementary to the dsRNA to bind to, and the antisense RNA (sequence of SEQ ID NO: 53) that complementarily binds to the sense RNA consisting of the sequence of SEQ ID NO: 1 to form a siRNA, SEQ ID NO: 54 It may be a strand forming a dsRNA by binding complementarily to the strand consisting of a strand, and may be an antisense RNA (sequence of SEQ ID NO: 56) that complementarily binds to a sense RNA consisting of the sequence of SEQ ID NO: 55 to form an siRNA , Strand may form a dsRNA by complementarily binding to a ds
  • antisense RNA which complementarily binds to the sense RNA consisting of the sequence of SEQ ID NO: 67 to form an siRNA. It may be a strand consisting of dsRNA by binding complementarily to the strand consisting of a strand, and may be an antisense RNA (sequence of SEQ ID NO: 71) that complementarily binds to a sense RNA consisting of the sequence of SEQ ID NO: 70 to form an siRNA It may be a strand forming a dsRNA by binding complementary to the strand consisting of the sequence of SEQ ID NO: 72.
  • the nucleic acid molecule may be a PNA consisting of one sequence selected from the group consisting of SEQ ID NOs: 87 to 99.
  • Nucleic acid molecules of the present invention are animals including humans, for example monkeys, pigs, horses, cows, sheep, dogs, cats, mice (mice), rabbits (rabbits) and the like, preferably may be of human origin.
  • the nucleic acid molecule of the present invention has been modified by deletion, substitution or insertion of functional equivalents of the nucleic acid molecule constituting the same, for example, some nucleotide sequences of the nucleic acid molecule of the present invention. It is a concept that includes a variant (variants) that can function functionally the same as the nucleic acid molecule of the invention.
  • the nucleic acid molecule of the present invention when it forms a sense RNA or antisense RNA of siRNA, it may further include a sequence of UU or dTdT at the 3 'end of the sense RNA and antisense RNA sequence, which is a nucleic acid
  • the siRNA or dsRNA can be given to the siRNA or the dsRNA by increasing the structural stability of the siRNA or dsRNA by increasing the resistance to the enzyme, and increasing the RNAi efficiency of the siRNA or the dsRNA through the induction of a stable RISC.
  • nucleic acid molecule of the present invention forms a PNA
  • at least one peptide consisting of at least one sequence selected from the group consisting of SEQ ID NOs: 101 to 113; Or mPEG 5000 may be further bound, which may be for the purpose of increasing the solubility or penetration in the composition of the PNA, at the C-terminus at both ends (N-terminus or C-terminus). Bonding is more preferred in that it does not require a separate linker.
  • Nucleic acid molecules of the present invention may be isolated or prepared using standard molecular biology techniques, such as chemical synthesis or recombinant methods, or may be commercially available.
  • the composition of the present invention may contain not only the nucleic acid molecule of the present invention, but also other substances capable of increasing the expression rate of the nucleic acid molecule of the present invention in cells, for example, compounds, natural products, novel proteins, and the like. .
  • nucleic acid molecule of the present invention can be provided included in the vector for expression in the cell.
  • Nucleic acid molecules of the present invention can be introduced into cells using a variety of transformation techniques, such as complexes of DNA and DEAE-dextran, complexes of DNA and nuclear proteins, complexes of DNA and lipids, for this purpose nucleic acid molecules of the present invention Can be in a form contained within a carrier that allows for efficient introduction into a cell.
  • the carrier is preferably a vector, and both viral and non-viral vectors can be used.
  • a viral vector for example, lentiviruses, retroviruses, adenoviruses, adenoviruses, herpesviruses, and abipoxvirus vectors may be used.
  • lentiviral vector is a lentiviral vector, but is not limited thereto.
  • Lentiviruses are a type of retrovirus that infects dividing as well as dividing cells due to the nucleophilicity of a pre-integrated complex (virus "shell") that enables active introduction into the nucleopore or the complete nuclear membrane. There are features that can be made.
  • the vector containing the nucleic acid molecule of the present invention preferably further comprises a selection marker.
  • the "selection marker” is intended to facilitate selection of cells into which the nucleic acid molecule of the present invention has been introduced.
  • the selectable markers that can be used in the vector are not particularly limited as long as they are genes capable of easily detecting or measuring the introduction of the vector, but typically, drug resistance, nutritional requirements, resistance to cytotoxic agents, or surface proteins.
  • Markers that confer a selectable phenotype such as expression, for example GFP (green fluorescent protein), puromycin, neomycin (Neo), hygromycin (Hyg), histidinol dihydro Genase (histidinol dehydrogenase gene: hisD) and guanine phosphosribosyltransferase (Gpt), and the like, and preferably GFP (green fluorescent protein) and puromycin markers can be used.
  • GFP green fluorescent protein
  • puromycin puromycin
  • Neo neomycin
  • Hyg hygromycin
  • histidinol dihydro Genase histidinol dehydrogenase gene: hisD
  • Gpt guanine phosphosribosyltransferase
  • the present invention provides a pharmaceutical composition for the prevention or treatment of fibroproliferative diseases comprising the composition described above.
  • the pharmaceutical composition of the present invention has a prophylactic or therapeutic effect of fibrotic disease, which may be an effect achieved by inhibiting the expression of the CTGF gene of the nucleic acid molecule of the present invention.
  • fibrotic diseases which are diseases to be prevented or treated for the pharmaceutical composition of the present invention, include hypertrophic scars, keloids, fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, myelofibrosis, and post-peritoneal Fibrosis, scleroderma, diabetic retinopathy, Duken's muscular dystrophy, radiation-induced fibrosis, myocardial fibrosis, diabetic kidney disease, chronic renal failure, chronic viral hepatitis, biliary fibrosis, fatty hepatitis, alcoholic fatty hepatitis, nonalcoholic steatohepatitis, proliferation Vitreoretinopathy, Musculoskeletal Tumor, Osteosarcoma, Rhabdomyosarcoma, Glioblastoma, Lung Cancer, Ovarian Cancer, Esophageal Cancer, Colon Cancer, Pancre
  • the pharmaceutical composition of the present invention may further comprise a pharmaceutically acceptable carrier, and may be formulated with the carrier.
  • a pharmaceutically acceptable carrier refers to a carrier or diluent that does not stimulate the organism and does not inhibit the biological activity and properties of the administered compound.
  • Acceptable pharmaceutical carriers in compositions formulated in liquid solutions are sterile and biocompatible, which include saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary.
  • Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
  • composition of the present invention is applicable to any formulation containing the nucleic acid molecule of the present invention as an active ingredient, and can be prepared in oral or parenteral formulations.
  • Pharmaceutical formulations of the present invention may be oral, rectal, nasal, topical (including the cheek and sublingual), subcutaneous, vaginal or parenteral (intramuscular, subcutaneous). And forms suitable for administration by inhalation or insufflation.
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount. Effective dose levels depend on the type of disease, severity, activity of the drug, sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent medications, and other factors well known in the medical field. Can be determined.
  • the pharmaceutical compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can achieve the maximum effect with a minimum amount without side effects, which can be readily determined by one skilled in the art.
  • the dosage of the pharmaceutical composition of the present invention varies widely depending on the weight, age, sex, health condition, diet, time of administration, administration method, excretion rate and severity of the disease, and the appropriate dosage is, for example, Depending on the amount of drug accumulated in the patient's body and / or the specific efficacy of the nucleic acid molecules of the invention used. It can be calculated on the basis of EC50, which is generally determined to be effective in in vivo animal models and in vitro, for example from 0.01 ⁇ g to 1 g per kg of body weight, in unit periods of daily, weekly, monthly or yearly It may be administered once or several times per unit period, or may be continuously administered for a long time using an infusion pump. The number of repeated doses is determined in consideration of the time the drug stays in the body, the drug concentration in the body, and the like. Even after treatment according to the course of the disease treatment, the composition can be administered for relapse.
  • the pharmaceutical composition of the present invention may further contain a compound which maintains / increases the solubility and / or absorption of at least one active ingredient or the active ingredient having the same or similar function in the treatment of fibroproliferative diseases. It may also optionally further comprise chemotherapeutic agents, anti-inflammatory agents, antiviral agents and / or immunomodulators and the like.
  • compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • the formulations may be in the form of powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powders.
  • composition of the present invention may be carried on a carrier having a nucleic acid molecule that complementarily binds to at least a portion of a transcript of a CTGF gene, and is known in the art as capable of supporting a nucleic acid molecule in a kind of the carrier. If there is no particular limitation, for example, it may be at least one selected from the group consisting of liposomes, lipofectamine, dendrimers, micelles, porous silica particles, aminoclays and hydrogels, but preferably high nucleic acid molecule loading rate, sustained release It may be porous silica particles having advantages such as property, biodegradability and the like.
  • the present invention provides a composition for inhibiting CTGF gene expression, comprising; porous silica particles carrying nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene.
  • the porous silica particles are particles of silica (SiO 2 ) material, and have a particle size of nano size.
  • Porous silica nanoparticles of the present invention is a porous particle, having a nano-sized pores, can carry a nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene on the surface and / or inside the pores.
  • Porous silica particles of the present invention are biodegradable particles, which carry a nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene, and are complemented to at least a portion of the transcript of the CTGF gene while being biodegraded in the body when administered to the body.
  • the porous silica particles of the present invention may be slowly degraded in the body to allow sustained release of nucleic acid molecules that complementarily bind to at least a portion of the transcript of the supported CTGF gene.
  • t which is the ratio of the absorbance of the following formula 1 to 1/2, is 24 or more:
  • a 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles in a cylindrical permeable membrane having pores having a diameter of 50 kDa,
  • the pH of the suspension is 7.4,
  • a t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
  • Equation 1 means that the rate at which the porous silica particles are degraded in an environment similar to the body.
  • Absorbance A 0 , A t in Equation 1 may be measured by putting porous silica particles and a suspension in a cylindrical permeable membrane and putting the same suspension outside the permeable membrane, as illustrated in FIG. 34, for example.
  • the porous silica particles of the present invention are biodegradable, and can be slowly decomposed in suspension, 50 kDa in diameter corresponds to about 5 nm, and biodegradable porous silica particles can pass through a permeable membrane of 50 kDa in diameter, and a cylindrical permeable membrane is 60 rpm horizontal. Under stirring, the suspension can be mixed evenly and the degraded porous silica particles can come out of the permeable membrane.
  • the absorbance in Equation 1 may be measured, for example, under an environment in which the suspension outside the permeable membrane is replaced with a new suspension.
  • the suspension can be one that is constantly replaced, one that can be replaced every period, and the period can be periodic or irregular. For example, within the range of 1 hour to 1 week, 1 hour interval, 2 hours interval, 3 hours interval, 6 hours interval, 12 hours interval, 24 hours interval, 2 days interval, 3 days interval, 4 days interval, 7 It may be replaced at day intervals, but is not limited thereto.
  • the ratio of the absorbance to 1/2 means that the absorbance is half of the initial absorbance after t hours, which means that approximately half of the porous silica particles are decomposed.
  • the suspension may be a buffer solution, for example, at least one selected from the group consisting of phosphate buffered saline (PBS) and simulated body fluid (SBF), and more specifically, PBS.
  • PBS phosphate buffered saline
  • SBF simulated body fluid
  • T of the absorbance ratio of Equation 1 of the present invention is 1/2 or more, for example, t may be 24 to 120, for example, 24 to 96, 24 to 72, 30 within the above range To 70, 40 to 70, 50 to 65 and the like, but is not limited thereto.
  • t for example, the absorbance ratio of Equation 1 is 1/5 may be, for example, 70 to 140, for example, 80 to 140, 80 to 120, and 80 to 110 within the above range. , 70 to 140, 70 to 120, 70 to 110, and the like, but is not limited thereto.
  • t may be 130 to 220, for example, wherein the ratio of absorbance of Equation 1 is 1/20, for example, 130 to 200, 140 to 200, 140 to 180 within the above range. , 150 to 180, and the like, but is not limited thereto.
  • the porous silica particles of the present invention may have a measured absorbance of 0.01 or less, for example, 250 or more, for example, 300 or more, 350 or more, 400 or more, 500 or more, 1000 or more, and the upper limit thereof is 2000 days. May be, but is not limited thereto.
  • the ratio of the absorbance of Formula 1 and t have a high positive correlation.
  • the Pearson correlation coefficient may be 0.8 or more, for example, 0.9 or more and 0.95 or more. .
  • T in Equation 1 means how fast the porous silica particles decompose in an environment similar to the body, for example, the surface area, particle diameter, pore diameter, surface and / or inside the pores of the porous silica particles. It can be controlled by controlling the substituent, the degree of compactness of the surface, and the like.
  • the surface area of the particles can be increased to reduce t, or the surface area can be reduced to increase t.
  • the surface area can be adjusted by adjusting the diameter of the particles and the diameter of the pores.
  • substituents on the surface and / or within the pores it is possible to increase t by reducing the direct exposure of porous silica particles to the environment (such as solvents).
  • the porous silica particles carry nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene, and increase the affinity between the nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene and the porous silica particles.
  • Porous silica particles of the present invention may be, for example, spherical particles, but is not limited thereto.
  • the porous silica particles of the present invention may have an average diameter of, for example, 150 nm to 1000 nm, for example, within the above range, for example, 150 nm to 800 nm, 150 nm to 500 nm, 150 nm to 400 nm, 150 nm to 300 nm, and 150 nm to 200 nm. May be, but is not limited thereto.
  • the porous silica particles of the present invention may have an average pore diameter of, for example, 1 nm to 100 nm, for example, within the above range, for example, 5 nm to 100 nm, 7 nm to 100 nm, 7 nm to 50 nm, 10 nm to 50 nm, 10 nm to 30 nm. , 7 nm to 30 nm, but is not limited thereto.
  • a nucleic acid molecule having a large diameter as described above may carry a nucleic acid molecule that complementarily binds to at least a portion of a transcript of a large amount of CTGF gene, and complementarily binds to at least a portion of a transcript of a large CTGF gene. It can also be supported.
  • the porous silica particles of the present invention may have a BET surface area of, for example, 200 m 2 / g to 700 m 2 / g.
  • a BET surface area of, for example, 200 m 2 / g to 700 m 2 / g, 200 m 2 / g to 650 m 2 / g, 250 m 2 / g to 650 m 2 / g, 300 m 2 / g to 700 m 2 / g, 300 m 2 / g to 650m 2 / g, 300m 2 / g to 600m 2 / g, 300m 2 / g to 550m 2 / g, 300m 2 / g to 500m 2 / g, 300m 2 / g to 450m 2 / g, etc. It is not limited to this.
  • the porous silica nanoparticles of the present invention may have a volume per g, for example, 0.7 ml to 2.2 ml.
  • a volume per g for example, 0.7 ml to 2.2 ml.
  • within the above range may be 0.7ml to 2.0ml, 0.8ml to 2.2ml, 0,8ml to 2.0ml, 0.9ml to 2.0ml, 1.0ml to 2.0ml and the like, but is not limited thereto. If the volume per gram is too small, the rate of decomposition may be too high, and excessively large particles may be difficult to manufacture or may not have an intact shape.
  • the porous silica particles of the present invention may have hydrophilic substituents and / or hydrophobic substituents on the outer surface and / or inside the pores.
  • hydrophilic substituents may exist on both the surface and inside of the pores, or only hydrophobic substituents may exist, hydrophilic substituents may exist on the surface or inside of the pores, hydrophobic substituents may exist on the surface, hydrophilic substituents on the surface, and hydrophobic substituents inside the pores. It may be present and vice versa.
  • the release of nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene supported on the porous silica particles of the present invention is mainly performed by the decomposition of the nanoparticles.
  • the interaction of the porous silica particles with the nucleic acid molecule release environment that complementarily binds to at least a portion of the carcass is regulated so that the rate of degradation of the nanoparticles is controlled to complementally bind to at least a portion of the transcript of the CTGF gene.
  • the release rate may be regulated, and nucleic acid molecules complementarily binding to at least a portion of the transcript of the CTGF gene may be diffused and released from the nanoparticles, and at least a portion of the transcript of the CTGF gene is controlled by the control of the substituents.
  • the binding force of the nucleic acid molecules that complementarily bind to the nanoparticles is controlled to at least the transcript of the CTGF gene. Release of nucleic acid molecules that complementarily bind to some can be controlled.
  • hydrophobic substituents are present inside the pores to enhance the binding ability of the poorly soluble (hydrophobic) CTGF gene to at least a portion of the transcript of the transcript, and in view of ease of use and formulation.
  • the surface of the particles may also be treated such that a hydrophilic substituent is present.
  • Hydrophilic substituents are, for example, hydroxyl groups, carboxy groups, amino groups, carbonyl groups, sulfhydryl groups, phosphate groups, thiol groups, ammonium groups, ester groups, imide groups, thiimide groups, keto groups, ether groups, indene groups, sulfonyl groups, polyethylene Glycol groups and the like
  • the hydrophobic substituent is, for example, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C3 to C30 cycloalkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted Or an unsubstituted C2 to C30 heteroaryl group, a halogen group, a C1 to C30 ester group, a halogen-containing group, and the like.
  • the porous silica particles of the present invention may be one in which the outer surface and / or the inside of the pores are positively charged, negatively charged and / or uncharged.
  • both the surface and the inside of the pore may be positively charged, or may be negatively charged, only the surface or the inside of the pore may be positively charged, or may be negatively charged, the surface may be positively charged, and the interior of the pore may be negatively charged. The reverse is also possible, and vice versa.
  • the charging may be, for example, by the presence of a nonionic substituent, a cationic substituent or an anionic substituent.
  • the cationic substituent may be, for example, an amino group, another nitrogen-containing group, or the like as a basic group, and specifically, a heterocyclic aromatic compound group including a amino group, an aminoalkyl group, an alkylamino group, and a nitrogen atom, a cyan group, and a guanidine group. At least one functional group selected from the group consisting of, but is not limited thereto.
  • the anionic substituent may be, for example, a carboxy group (-COOH), a sulfonic acid group (-SO 3 H), a thiol group (-SH), etc., as an acidic group, but is not limited thereto.
  • the interaction of the porous silica particles with the nucleic acid molecule release environment that complementarily binds to at least a part of the transcript of the CTGF gene is regulated by controlling the substituent, thereby controlling the rate of degradation of the nanoparticles themselves.
  • the rate of release of nucleic acid molecules complementarily binding to at least a portion of the transcript may be controlled, and the nucleic acid molecules complementarily binding to at least a portion of the transcript of the CTGF gene may be diffused and released from the nanoparticles.
  • the binding force of the nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene is controlled to the nanoparticles, thereby controlling the release of the nucleic acid molecules that complementarily bind to the transcript of the CTGF gene.
  • the porous silica particles of the present invention support nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene in addition to the surface and / or the pores thereof, and complementarily to at least a portion of the transcript of the CTGF gene.
  • Substituents may be used to transfer the binding nucleic acid molecules to target cells, to carry a substance for other purposes, or to bind other additional substituents, and may further include antibodies, ligands, cell permeable peptides, or aptamers bound thereto. It may include.
  • Substituents, charges, binders and the like within the aforementioned surfaces and / or pores may be added, for example, by surface modification.
  • Surface modification can be carried out, for example, by reacting a compound having a substituent to be introduced with the particles, which may be, for example, an alkoxysilane having a C1 to C10 alkoxy group, but is not limited thereto.
  • the alkoxysilane has one or more alkoxy groups, and may have, for example, 1 to 3, and there may be a substituent to be introduced into a site where the alkoxy group is not bonded or a substituent substituted therewith.
  • the porous silica particles of the present invention may be manufactured through a small pore particle preparation and a pore expansion process, and may be manufactured through a calcination process, a surface modification process, and the like, as necessary. If both the calcination and the surface modification process has gone through may be surface modified after calcination.
  • the small pore particles may be, for example, particles having an average pore diameter of 1 nm to 5 nm.
  • the small pore particles can be obtained by adding a surfactant and a silica precursor in a solvent, stirring and homogenizing.
  • the solvent may be water and / or an organic solvent
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc.
  • ethers such as 1,4-dioxane (particularly cyclic ethers)
  • Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachlor
  • Ketones Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide,
  • the ratio may be, for example, water and the organic solvent in a volume ratio of 1: 0.7 to 1.5, for example, 1: 1: 0.8 to 1.3, but is not limited thereto.
  • the surfactant may be, for example, cetyltrimethylammonium bromide (CTAB), hexadecyltrimethylammonium bromide (TMABr), hexadecyltrimethylpyridinium chloride (TMPrCl), tetramethylammonium chloride (TMACl), and the like, and specifically, CTAB may be used.
  • CTAB cetyltrimethylammonium bromide
  • TMABr hexadecyltrimethylammonium bromide
  • TMPrCl hexadecyltrimethylpyridinium chloride
  • TMACl tetramethylammonium chloride
  • the surfactant may be added, for example, in an amount of 1 g to 10 g, for example, 1 g to 8 g, 2 g to 8 g, 3 g to 8 g, etc., per liter of solvent, but is not limited thereto.
  • the silica precursor may be added after stirring with the addition of a surfactant to the solvent.
  • the silica precursor may be, for example, tetramethyl orthosilicate (TMOS), but is not limited thereto.
  • the stirring may be performed, for example, for 10 minutes to 30 minutes, but is not limited thereto.
  • the silica precursor may be added, for example, 0.5 ml to 5 ml per liter of solvent, for example, 0.5 ml to 4 ml, 0.5 ml to 3 ml, 0.5 ml to 2 ml, 1 ml to 2 ml, etc. within the above range, but is not limited thereto. It doesn't happen.
  • sodium hydroxide may further be used as a catalyst, which may be added with stirring after adding the surfactant to the solvent and before adding the silica precursor.
  • the sodium hydroxide may be, for example, 0.5 ml to 8 ml per liter of solvent, for example, 0.5 ml to 5 ml, 0.5 ml to 4 ml, 1 ml to 4 ml, 1 ml to 3 ml, 2 ml to 3 ml, etc., based on 1 M aqueous sodium hydroxide solution. However, it is not limited thereto.
  • the solution can be reacted with stirring.
  • the stirring may be performed for example, for 2 hours to 15 hours, for example, within the above range, for example, 3 hours to 15 hours, 4 hours to 15 hours, 4 hours to 13 hours, 5 hours to 12 hours, 6 hours to 12 hours. , 6 hours to 10 hours, and the like, but is not limited thereto. If the stirring time (reaction time) is too short, nucleation may be insufficient.
  • the solution may be aged. Aging may be performed for example, from 8 hours to 24 hours, for example, within the range of 8 hours to 20 hours, 8 hours to 18 hours, 8 hours to 16 hours, 8 hours to 14 hours, 10 hours to 16 hours. , 10 hours to 14 hours, and the like, but is not limited thereto.
  • reaction product may be washed and dried to obtain porous silica particles, and if necessary, separation of unreacted material may be preceded before washing.
  • Separation of the unreacted material may be carried out by separating the supernatant, for example by centrifugation, centrifugation may be carried out, for example at 6,000 to 10,000 rpm, the time is for example 3 minutes to 60 minutes, For example, it may be performed within 3 minutes to 30 minutes, 3 minutes to 30 minutes, 5 minutes to 30 minutes, and the like, but is not limited thereto.
  • the washing may be performed with water and / or an organic solvent, and in particular, since a substance that can be dissolved in each solvent may be different, water and an organic solvent may be used once or several times, or once or even with water or an organic solvent alone. Can be washed several times.
  • the number of times may be, for example, two or more, ten or less, for example, three or more and ten or less, four or more and eight or less, four or more and six or less.
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc.
  • ethers such as 1,4-dioxane (particularly cyclic ethers)
  • Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichlor
  • Ketones Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide,
  • the washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, for example 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
  • the washing may be performed by filtering out particles with a filter without centrifugation.
  • the filter may have pores less than or equal to the diameter of the porous silica particles. Filtering the reaction liquid with such a filter leaves only particles on the filter, which can be washed by pouring water and / or an organic solvent on the filter.
  • water and an organic solvent may be used alternately once or several times, and may be washed once or several times even with water or an organic solvent alone.
  • the number of times may be, for example, two or more, ten or less, for example, three or more and ten or less, four or more and eight or less, four or more and six or less.
  • the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
  • the pores of the obtained porous silica particles are expanded, and the pore expansion may be performed using a pore swelling agent.
  • the pore swelling agent may be trimethylbenzene, triethylbenzene, tripropylbenzene, tributylbenzene, tripentylbenzene, trihexylbenzene, toluene, benzene, and the like, and specifically, trimethylbenzene may be used. It is not limited.
  • the pore swelling agent may use, for example, N, N-dimethylhexadecylamine (N, N-dimethylhexadecylamine, DMHA), but is not limited thereto.
  • the pore expansion may be carried out, for example, by mixing porous silica particles in a solvent with a pore swelling agent and heating to react.
  • the solvent may be, for example, water and / or an organic solvent
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; And the like
  • the porous silica particles are, for example, 10 g to 200 g per liter of solvent, for example, 10 g to 150 g, 10 g to 100 g, 30 g to 100 g, 40 g to 100 g, 50 g to 100 g, 50 g to 80 g, 60 g to 80 g, etc., within the above range. It may be added in a ratio of, but is not limited thereto.
  • the porous silica particles may be evenly dispersed in a solvent, for example, the porous silica particles may be added to the solvent and ultrasonically dispersed.
  • the second solvent may be added after the porous silica particles are dispersed in the first solvent.
  • the pore swelling agent is for example 10 to 200 parts by volume, 100 to 150 parts by volume, 10 to 100 parts by volume, 10 to 80 parts by volume, 30 to 80 parts by volume, 30 to 80 parts by volume based on 100 parts by volume of solvent. 70 parts by volume may be added, but is not limited thereto.
  • the reaction can be carried out, for example, at 120 ° C to 190 ° C.
  • 120 ° C to 190 ° C For example, within the range of 120 °C to 190 °C, 120 °C to 180 °C, 120 °C to 170 °C, 130 °C to 170 °C, 130 °C to 160 °C, 130 °C to 150 °C, 130 °C to 140 °C It may be performed, but is not limited thereto.
  • the reaction may be performed, for example, for 6 hours to 96 hours.
  • 6 hours to 96 hours within the range of 30 hours to 96 hours, 30 hours to 96 hours, 30 hours to 80 hours, 30 hours to 72 hours, 24 hours to 80 hours, 24 hours to 72 hours, 36 hours to 96 hours, 36 36 hours to 80 hours, 36 hours to 72 hours, 36 hours to 66 hours, 36 hours to 60 hours, 48 hours to 96 hours, 48 hours to 88 hours, 48 hours to 80 hours, 48 hours to 72 hours, 6 hours to 96 hours, 7 hours to 96 hours, 8 hours to 80 hours, 9 hours to 72 hours, 9 hours to 80 hours, 6 hours to 72 hours, 9 hours to 96 hours, 10 hours to 80 hours, 10 hours to 72 hours , 12 hours to 66 hours, 13 hours to 60 hours, 14 hours to 96 hours, 15 hours to 88 hours, 16 hours to 80 hours, 17 hours to 72 hours, and the like, but is not limited thereto.
  • the time and temperature can be adjusted within the ranges exemplified above so that the reaction can be carried out sufficiently without excess. For example, when the reaction temperature is lowered, the reaction time may be increased, or when the reaction temperature is lowered, the reaction time may be shortened. If the reaction is not sufficient, the expansion of the pores may not be sufficient, and if the reaction proceeds excessively, the particles may collapse due to the expansion of the pores.
  • the reaction can be carried out, for example, by gradually raising the temperature. Specifically, it may be carried out by gradually raising the temperature at a rate of 0.5 °C / min to 15 °C / min from the room temperature to the above temperature, for example, 1 °C / min to 15 °C / min, 3 °C / min within the above range To 15 ° C./minute, 3 ° C./minute to 12 ° C./minute, 3 ° C./minute to 10 ° C./minute, and the like, but are not limited thereto.
  • the reaction can be carried out under stirring. For example, it may be stirred at a speed of 100 rpm or more, and specifically, may be performed at a speed of 100 rpm to 1000 rpm, but is not limited thereto.
  • the reaction solution can be cooled slowly, for example, it can be cooled by gradually reducing the temperature. Specifically, it may be carried out by gradually decreasing the temperature at a rate of 0.5 °C / min to 20 °C / min from the temperature to room temperature, for example, 1 °C / min to 20 °C / min, 3 °C / min to within the above range 20 ° C./minute, 3 ° C./minute to 12 ° C./minute, 3 ° C./minute to 10 ° C./minute, and the like, but is not limited thereto.
  • reaction product After cooling, the reaction product may be washed and dried to obtain porous silica particles having expanded pores, and if necessary, separation of unreacted material may be preceded before washing.
  • Separation of the unreacted material may be carried out by separating the supernatant, for example by centrifugation, centrifugation may be carried out, for example at 6,000 to 10,000 rpm, the time is for example 3 minutes to 60 minutes, For example, it may be performed within 3 minutes to 30 minutes, 3 minutes to 30 minutes, 5 minutes to 30 minutes, and the like, but is not limited thereto.
  • the washing may be performed with water and / or an organic solvent, and in particular, since a substance that can be dissolved in each solvent may be different, water and an organic solvent may be used once or several times, or once or even with water or an organic solvent alone. Can be washed several times.
  • the number of times may be, for example, two or more times, ten times or less, for example, three times, four times, five times, six times, seven times, eight times, and the like.
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; And the like, and specifically, alcohol, more specifically ethanol can be used, but is not limited
  • the washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, for example 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
  • the washing may be performed by filtering out particles with a filter without centrifugation.
  • the filter may have pores less than or equal to the diameter of the porous silica particles. Filtering the reaction liquid with such a filter leaves only particles on the filter, which can be washed by pouring water and / or an organic solvent on the filter.
  • water and an organic solvent may be used alternately once or several times, and may be washed once or several times even with water or an organic solvent alone.
  • the number of times may be, for example, two or more, ten or less, for example, three or more and ten or less, four or more and eight or less, four or more and six or less.
  • the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
  • the obtained particles may be calcined, which is a process of heating the particles to remove silanol groups on the surface and inside thereof to lower the reactivity of the particles, to have a more compact structure, and to remove organic substances filling the pores.
  • it may be heated to a temperature of 400 °C or more.
  • the upper limit thereof is not particularly limited, and may be, for example, 1000 ° C, 900 ° C, 800 ° C, 700 ° C, or the like. Heating can be carried out for example for 3 hours or more.
  • the upper limit is not particularly limited and may be, for example, 24 hours, 12 hours, 10 hours, 8 hours, 6 hours, or the like. More specifically, it may be performed for 3 hours to 8 hours at 400 ° C to 700 ° C, specifically 4 hours to 5 hours at 500 ° C to 600 ° C, but is not limited thereto.
  • the porous silica particles obtained can then be surface modified, and the surface modification can be carried out on the surface and / or inside the pores.
  • the particle surface and the inside of the pore may be surface modified identically, or may be surface modified differently.
  • the surface modification can cause the particles to charge or to have hydrophilic and / or hydrophobic properties.
  • a heterocyclic aromatic compound group including an amino group, an aminoalkyl group, an alkylamino group, a nitrogen atom, a cyan group and a guanidine group
  • Surface modification of the porous silica particles may be performed by having at least one substituent selected from the group consisting of.
  • Surface modification can be carried out, for example, by reacting a compound having substituents such as hydrophilic, hydrophobic, cationic, anionic and the like to be introduced with the particles, and the compound can be, for example, an alkoxysilane having a C1 to C10 alkoxy group. However, it is not limited thereto.
  • the alkoxysilane has one or more alkoxy groups, and may have, for example, 1 to 3, and there may be a substituent to be introduced into a site where the alkoxy group is not bonded or a substituent substituted therewith.
  • the alkoxysilane reacts with the porous silicon particles, a covalent bond is formed between the silicon atom and the oxygen atom so that the alkoxysilane may be bonded to the surface and / or the inside of the pores of the porous silicon particle, and the alkoxysilane has a substituent to be introduced.
  • the corresponding substituents may be introduced into the surface of the porous silicon particles and / or within the pores.
  • the reaction may be carried out by reacting porous silica particles dispersed in a solvent with an alkoxysilane.
  • the solvent may be water and / or an organic solvent
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc.
  • ethers such as 1,4-dioxane (particularly cyclic ethers)
  • Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachlor
  • Ketones Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide,
  • the charge to the positive charge can be carried out by reacting with an alkoxysilane having a basic group such as a nitrogen-containing group such as an amino group, an aminoalkyl group, for example.
  • an alkoxysilane having a basic group such as a nitrogen-containing group such as an amino group, an aminoalkyl group, for example.
  • Charging to the negative charge may be carried out by reacting with an alkoxysilane having an acidic group such as, for example, a carboxyl group, a sulfonic acid group, a thiol group, and the like.
  • an alkoxysilane having an acidic group such as, for example, a carboxyl group, a sulfonic acid group, a thiol group, and the like.
  • 3-Mercaptopropyl) trimethoxysilane may be used, but is not limited thereto.
  • the charge to the non-charge (not positive or negative charge, non-charged state) can be carried out by reacting with an alkoxysilane having a common functional group having no charge, a combination of charging to the positive charge and negative charge appropriately By doing so, it is possible to charge with no charge through the offset of positive and negative charge, but is not limited thereto.
  • the hydrophilic property is a hydrophilic group such as hydroxy group, carboxy group, amino group, carbonyl group, sulfhydryl group, phosphate group, thiol group, ammonium group, ester group, imide group, thiimide group, keto group, ether group, indene group, sulfo It may be made to react with the alkoxysilane which has a silyl group, a polyethyleneglycol group, etc.
  • the hydrophobic nature may include hydrophobic substituents such as substituted or unsubstituted C1 to C30 alkyl groups, substituted or unsubstituted C3 to C30 cycloalkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted It can be made to react with the alkoxysilane which has a C2-C30 heteroaryl group, a halogen group, C1-C30 ester group, a halogen containing group, etc.
  • Trimethoxy (octadecyl) silane, Trimethoxy-n-octylsilane, Trimethoxy (propyl) silane, Isobutyl (trimethoxy) silane, Trimethoxy (7-octen-1-yl) silane, Trimethoxy (3,3,3-trifluoropropyl) Silane, Trimethoxy (2-phenylethyl) silane, Vinyltrimethoxysilane, Cyanomethyl, 3- (trimethoxysilyl) propyl] trithiocarbonate, (3-Bromopropyl) trimethoxysilane, etc. may be used, but is not limited thereto.
  • hydrophobic substituents are present in the pores to enhance the binding force with nucleic acid molecules or substances complementarily bound to at least a part of the transcript of the poorly soluble (hydrophobic) CTGF gene through the surface modification.
  • the surface of the particle may be treated such as to have a hydrophilic substituent, and a substituent may be present on the surface to bind a nucleic acid molecule or a substance complementarily to at least a portion of a transcript of another CTGF gene. It may be.
  • the surface modification may be carried out in combination.
  • two or more surface modifications may be performed on the outer surface or inside the pores.
  • a compound including a carboxyl group may be bonded to silica particles into which amino groups are introduced by amide bonds to change the positively charged particles to have different surface properties, but is not limited thereto.
  • the reaction of the porous silica particles with the alkoxysilane can be carried out, for example, under heating, and the heating is for example from 80 ° C. to 180 ° C., for example from 80 ° C. to 160 ° C., from 80 ° C. to 150 ° C. within the above range. , 100 ° C. to 160 ° C., 100 ° C. to 150 ° C., 110 ° C. to 150 ° C., etc., but is not limited thereto.
  • the reaction of the porous silica particles with the alkoxysilane is, for example, 4 hours to 20 hours, for example, 4 hours to 18 hours, 4 hours to 16 hours, 6 hours to 18 hours, 6 hours to 16 hours within the above range. , 8 hours to 18 hours, 8 hours to 16 hours, 8 hours to 14 hours, 10 hours to 14 hours, etc., but is not limited thereto.
  • the reaction temperature, time, and the amount of the compound used for surface modification may be selected according to the degree to be surface modified, and the reaction conditions vary depending on the degree of hydrophilicity, hydrophobicity, and charge of the nucleic acid molecules or materials of the present invention.
  • the degree of hydrophilicity, hydrophobicity, and charge of the porous silica particles By controlling the degree of hydrophilicity, hydrophobicity, and charge of the porous silica particles, the release rate of nucleic acid molecules or substances that complementarily bind to at least a portion of the transcript of the CTGF gene can be controlled. For example, if nucleic acid molecules or substances that complementarily bind to at least a portion of the transcript of the CTGF gene have a strong negative charge at neutral pH, the reaction temperature is increased to make the porous silica particles have a strong positive charge. Or increase the reaction time and increase the compound throughput, but are not limited thereto.
  • porous silica particles of the present invention may be produced through, for example, the preparation of small pores, pore expansion, surface modification, and internal pore modification.
  • the small pore particle production and pore expansion process may be based on the above-described process, and the washing and drying process may be performed after the small pore particle production and after the pore expansion process.
  • separation of the unreacted material may be preceded before washing, and separation of the unreacted material may be performed by separating the supernatant, for example, by centrifugation.
  • the centrifugation may be performed, for example, at 6,000 to 10,000 rpm, and the time may be, for example, 3 to 60 minutes, specifically, 3 to 30 minutes, 3 to 30 minutes, and 5 minutes within the above range. To 30 minutes, etc., but is not limited thereto.
  • the washing after the preparation of the particles of the small pores may be performed by a method / condition within the above-described range, but is not limited thereto.
  • the washing after the pore expansion may be performed under more relaxed conditions than the above example.
  • washing may be performed within three times, but is not limited thereto.
  • the surface modification and internal pore modification may be by the processes described above, respectively, the process may be performed in the order of surface modification and internal pore modification, and the washing process of the particles may be further performed between the two processes. Can be.
  • the reaction solution such as a surfactant used for particle production and pore expansion is filled in the pores so that the inside of the pores is not modified during surface modification. Only the surface can be modified. Then, washing the particles may remove the reaction solution in the pores.
  • Particle washing between the surface modification and the internal pore reforming process may be water and / or an organic solvent, and in particular, water and an organic solvent may be alternately used once or several times because different materials may be dissolved for each solvent.
  • Water or organic solvents alone may be washed once or several times. The number of times may be, for example, two or more, ten or less, specifically, three or more and ten or less, four or more and eight or less, four or more and six or less.
  • the washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, specifically 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
  • the washing may be performed by filtering out particles with a filter without centrifugation.
  • the filter may have pores less than or equal to the diameter of the porous silica particles. Filtering the reaction liquid with such a filter leaves only particles on the filter, which can be washed by pouring water and / or an organic solvent on the filter.
  • water and an organic solvent may be used alternately once or several times, and may be washed once or several times even with water or an organic solvent alone.
  • the number of times may be, for example, two or more, ten or less, specifically, three or more and ten or less, four or more and eight or less, four or more and six or less.
  • the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
  • Nucleic acid molecules complementarily bound to at least a portion of the transcript of the CTGF gene may be supported on the surface and / or within the pores of the porous silica particles, and the supported nucleic acid may be, for example, a porous silica particle in a solvent and a transcript of the CTGF gene. It may be performed by mixing a nucleic acid molecule that binds to at least a portion complementarily.
  • the solvent may be water and / or an organic solvent
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Etc. can be used.
  • PBS phosphate buffered saline solution
  • SBF Simulated Body Fluid
  • Borate-buffered saline Borate-buffered saline
  • Tris-buffered saline may be used as the solvent.
  • the ratio of the porous silica particles and the nucleic acid molecule of the present invention is not particularly limited, for example, the weight ratio is 1: 0.05 to 0.8, for example, within the above range 1: 0.05 to 0.7, 1: 0.05 to 0.6, 1: 0.1 to 0.8, 1: 0.1 to 0.6, 1: 0.2 to 0.8, 1: 0.2 to 0.6, and the like.
  • Nucleic acid molecules complementarily binding to at least a portion of the transcript of the CTGF gene supported on the porous silica particles may be gradually released over an extended time. Such slow release may be continuous or discontinuous, linear or nonlinear, due to the characteristics of the porous silica particles and / or their interaction with nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene. Can vary.
  • a nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene supported on the porous silica particles is released as the porous silica particles are biodegraded, and the porous silica particles according to the present invention are slowly degraded to transfer the supported CTGF gene.
  • Nucleic acid molecules that complementarily bind to at least a portion of the corpse can be released in a sustained manner. This may be controlled by, for example, adjusting the surface area, particle diameter, pore diameter, substituents on the surface and / or pores, degree of compactness of the porous silica particles, and the like, but are not limited thereto.
  • nucleic acid molecules complementarily bound to at least a portion of the transcript of the CTGF gene supported on the porous silica particles may be released while being separated from the porous silica particles and diffused, and thus, the transcripts of the porous silica particles and the CTGF gene may be released. It is influenced by the relationship with the nucleic acid molecule complementarily binding to at least a portion, the nucleic acid molecule release environment complementary to at least a portion of the transcript of the CTGF gene, thereby controlling at least the transcript of the CTGF gene
  • the release of nucleic acid molecules that complementarily bind to some can be regulated. For example, it can be controlled by enhancing or weakening the binding strength of the porous silica particles to nucleic acid molecules that complementarily bind to at least a part of the transcript of the CTGF gene of the porous silica particles.
  • the surface of the particle and / or the inside of the pore have a hydrophobic substituent so that the porous silica
  • the binding force between the particle and the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene may be increased, whereby the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene This can be released slowly.
  • This may be, for example, the surface-modified porous silica particles with an alkoxysilane having a hydrophobic substituent.
  • “poorly soluble” means to be insoluble (practically insoluble) or only slightly soluble (with respect to water), which means “Pharmaceutical Science” 18 th Edition ( USP, Remington, Mack Publishing Company).
  • the poorly water-soluble material may be, for example, water solubility of less than 10 g / L, specifically less than 5 g / L, more specifically less than 1 g / L at 1 atmosphere and 25 ° C., but is not limited thereto.
  • the surface of the particle and / or the inside of the pore have a hydrophilic substituent, so that the porous silica particles and the transcript of the CTGF gene
  • the binding force with a nucleic acid molecule or substance complementarily binding to at least a portion of the may be increased, whereby the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene may be released in a sustained manner.
  • This may be, for example, the surface of the porous silica particles modified with an alkoxysilane having a hydrophilic substituent.
  • the water-soluble substance may have a water solubility of 10 g / L or more at 1 atmosphere and 25 ° C., but is not limited thereto.
  • nucleic acid molecule or substance complementary to at least a portion of the transcript of a supported CTGF gene is charged, the surface of the particle and / or the inside of the pore are charged with opposite charges, thereby The binding force with the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript may be increased, whereby the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene is released slowly.
  • This may be, for example, the surface-modified porous silica particles with an alkoxysilane having an acidic group or a basic group.
  • the surface of the particle and / or the inside of the pore may be negatively charged at neutral pH.
  • the binding force between the porous silica particles and the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene is increased, and the nucleic acid molecule or substance complementarily binds to at least a portion of the transcript of the CTGF gene. This can be released slowly.
  • the porous silica particles may be surface-modified with an alkoxysilane having an acidic group such as a carboxyl group (-COOH) and a sulfonic acid group (-SO 3 H).
  • the surface of the particle and / or the inside of the pore may be positively charged, whereby Sustained release of nucleic acid molecules or substances that complementarily bind to at least a portion of the transcript of the CTGF gene by increasing the binding force between the silica particles and at least a portion of the transcript of the CTGF gene Can be.
  • the porous silica particles may be surface-modified with an alkoxysilane having a basic group such as an amino group or another nitrogen-containing group.
  • Nucleic acid molecules or substances that complementarily bind to at least a portion of the transcript of the CTGF gene may be released for a period of, for example, 7 days to 1 year or more, depending on the type of treatment required, the release environment, and the porous silica particles used. have.
  • the porous silica particles of the present invention are 100% biodegradable, the nucleic acid molecules or substances complementarily binding to at least a part of the transcript of the CTGF gene supported thereon may be 100% released.
  • the nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene has a complementarity with the sequence of SEQ ID NO: 10 nucleotides (nt), 11 nucleotides, 12 nucleotides, 13 It may be at least nucleotides, at least 14 nucleotides, at least 15 nucleotides, at least 16 nucleotides, at least 17 nucleotides, or at least 18 nucleotides in total, and the related detailed description is as described above.
  • the present invention provides a pharmaceutical composition for preventing or treating fibroproliferative diseases, including; a composition for inhibiting CTGF gene expression comprising porous silica particles carrying nucleic acid molecules complementarily bound to at least a portion of a transcript of the CTGF gene described above. To provide a composition.
  • nucleic acid molecule porous silica particles, suppression of CTGF gene expression, fibrotic disease, various formulations of the pharmaceutical composition and the like are as described above.
  • siRNA used in the present invention may be abbreviated as 'siCTGF', porous silica particles of the present invention as 'DegradaBALL or DDV', and DegradaBALL carrying siCTGF may be abbreviated as 'LEM-S401'.
  • DegradaBALL combined with DegradaBALL and TAMRA is Lemonex, Inc. (Cell counting kit-8) is provided by Dojindo molecular technologies, Inc. (Maryland, USA).
  • TGF-ß was purchased from Peprotech (New Jersey, USA), 10% Phosphate Buffered Saline (PBS), Dulbecco's Modified Eagle's Medium (DMEM), Fetal Bovine Serum (FBS), Roswell Park Memorial Laboratory 1640 (RPMI 1640) , Penicillin-streptomycin and 0.05% trypsin-EDTA were purchased from WelGene (South Korea).
  • nucleic acid molecules were synthesized by Lemonex (Seoul, Korea), and their sequences and nucleic acid molecule sequences used throughout the present specification are shown in Table 1 below. All PCR primers were purchased from Cosmogenetech (Seoul, Korea). Anti-mouse CTGF antibodies were purchased from Abcam (Cambridge, UK) and anti-mouse collagen 1, 3 antibodies were purchased from Invitrogen (Carlsbad, CA, USA). Trizol cell lysis solution was purchased from Molecular Probes Invitrogen (Carlsbad, CA, USA) and all PCR reagents were obtained from TaKaRa Bio Inc. Purchased from (Shiga, Japan). All chemicals were used as received.
  • Target sequence 1 5'-CTC ATT AGA CTG GAA CTT -3 '(Position in gene sequence: 1280)
  • Target sequence 2 5'-G GAA CTT GAA CTG ATT CA-3 '(Position in gene sequence: 1291)
  • A549 and HaCaT cells were seeded in 96-well culture plates with 100 ⁇ l of growth medium (50-70% confluency) at a density of 10,000 cells per well.
  • Cells were treated with the appropriate concentration of DegradaBALL in serum containing medium and incubated at 37 ° C. for 24 hours. After incubation, the cells were washed twice with 1 x PBS, and then 100 ⁇ l of serum-free medium containing 10 ⁇ l of CCK-8 was added, followed by further incubation for 1 hour.
  • the optical density of each well in the culture plate was measured at 450 nm wavelength. Mean and standard deviation of the deviation of triplicates were calculated and plotted.
  • A549 and HaCaT cells were treated with 500 ⁇ l of LEM-S401 (50 nM siCTGF) and siCTGF (50 nM) containing LNP in serum-free medium.
  • LEM-S401 50 nM siCTGF
  • siCTGF 50 nM
  • serum-free medium was replaced.
  • TGF-ß 2 ng / mL
  • RNAs extracted in vitro and in vivo were used for thermal cycling using the following reaction conditions.
  • cDNA synthesis 5 minutes at 65 ° C., 2 minutes at 42 ° C., 50 minutes at 42 ° C., 15 minutes at 70 ° C., 1 cycle of inactivation, amplification: 30 seconds at 95 ° C., 60 seconds at 55 ° C., 72 ° C. 30 seconds 30 cycles.
  • LEM-S401 33 mM
  • FITC-conjugated siCTGF and TAMRA-binding DegradaBALL were injected into the mouse skin at seven different sites.
  • fluorescence images of the excised mouse skin were taken using an FOBI in vivo imaging device (NeoScience Co., Ltd., Seoul, Korea).
  • the obtained skin sample was placed in 4% PFA solution.
  • the sample was inserted into paraffin and cut to 10 ⁇ m thickness. After dehydration, the sections were stained with DAPI. Samples were observed with a BX71 microscope equipped with a 20x objective (Olympus, Tokyo, Japan).
  • LEM-S401 can inhibit CTGF expression during tissue remodeling.
  • a hole was cut in the mouse skin, wounded and wrapped with a band using a biopsy punch (4 mm). After the wound was completely closed, 30 ⁇ l of LEM-S401 (33 mM) in 1 ⁇ PBS was injected subcutaneously into the wound site at 4 different sites every 4 days (10 days, 14 days, 18 days, 22 days), and mice were Sacrifice was made on day 26.
  • Mouse skin samples were incubated in 4% PFA solution at 4 ° C. for 24 hours. The sample was then inserted into paraffin and sections were made 10 ⁇ m thick. The sectioned samples were dehydrated and incubated twice for 10 minutes each in permeate solution (0.2% tween 20 in 1 ⁇ PBS). The samples were then incubated for 45 minutes in humidified atmospheric blocking solution (5% normal goat serum, 0.2% tween 20 in 1 ⁇ PBS). Samples were incubated for 3 hours at room temperature with a primary antibody solution containing 0.2% tween 20 with a 1: 100 dilution of 2% normal goat serum and antibody in PBS in a humidification chamber.
  • Samples were rinsed three times for 10 minutes each in permeate solution and incubated with a secondary antibody dilution solution containing 2% normal goat serum and 0.2% tween 20 in 1 ⁇ PBS for 2 hours at room temperature. Samples were washed with permeate solution and stained with DAPI. Samples were observed under a BX71 microscope equipped with a 20x objective (Olympus, Tokyo, Japan).
  • Porous Silica Particles DDV or DegradaBALL
  • reaction solution was then centrifuged at 8000 rpm for 10 minutes at 25 ° C. to remove the supernatant, centrifuged at 8000 rpm for 10 minutes at 25 ° C., and washed five times with alternating ethanol and distilled water.
  • the reaction was carried out starting at 25 ° C. and warming up at a rate of 10 ° C./min, then slowly cooling at a rate of 1-10 ° C./min in the autoclave.
  • the cooled reaction solution was centrifuged at 8000 rpm for 10 minutes at 25 ° C. to remove the supernatant, and centrifuged at 8000 rpm for 10 minutes at 25 ° C. and washed five times with ethanol and distilled water.
  • the porous silica particles prepared in 2) were put in a glass vial, heated at 550 ° C. for 5 hours, and cooled slowly to room temperature after completion of the reaction to prepare particles.
  • Porous silica particles were prepared in the same manner as in 9-1- (1), except that the reaction conditions at the time of pore expansion were changed to 140 ° C. and 72 hours.
  • Porous silica particles were prepared in the same manner as in Example 9-1- (1), except that a 5 times larger container was used and each material was used in a 5 times capacity.
  • Porous silica particles were prepared by the same method as 9-1- (1), except that 920 ml of distilled water and 850 ml of methanol were used to prepare the small pore particles.
  • Porous silica particles were prepared in the same manner as in 9-1- (1), except that 800 ml of distilled water, 1010 ml of methanol, and 10.6 g of CTAB were used to prepare the small pore particles.
  • Porous silica particles were prepared in the same manner as in 9-1- (1), except that 620 ml of distilled water, 1380 ml of methanol, and 7.88 g of CTAB were used to prepare the small pore particles.
  • Porous silica particles were prepared in the same manner as 9-1- (1), except that 2.5 mL of TMB was used for pore expansion.
  • Porous silica particles were prepared in the same manner as 9-1- (1), except that 4.5 mL of TMB was used for pore expansion.
  • Porous silica particles were prepared in the same manner as 9-1- (1), except that 11 mL of TMB was used for pore expansion.
  • Porous silica particles were prepared in the same manner as 9-1- (1), except that 12.5 mL of TMB was used for pore expansion.
  • Example 9-1- (1) -2 In the same manner as in Example 9-1- (1) -2), the small pore particles were reacted with TMB, cooled and centrifuged to remove the supernatant. Thereafter, centrifuged under the same conditions as in Example 9-1- (1) -2), washed three times with alternating ethanol and distilled water, and then dried under the same conditions as in Example 9-1- (1) -2). Powdery porous silica particles (pore diameter 10-15 nm, particle diameter 200 nm) were obtained.
  • N-Hydroxysuccinimide 200 mg was dispersed in 30 mL of PBS and allowed to react for 12 hours while stirring at room temperature. The product is then washed and dried.
  • reaction solution of the previous step remains inside the pore, so that the inside of the pore is not modified.
  • the cooled reaction solution was centrifuged at 8000 rpm for 10 minutes to remove the supernatant, centrifuged at 8000 rpm for 10 minutes at 25 ° C, and washed five times with alternating ethanol and distilled water.
  • Example 9-1- (4) The porous silica particles of Example 9-1- (4) were reacted with (3-Aminopropyl) triethoxysilane (APTES) to charge with a positive charge.
  • APTES (3-Aminopropyl) triethoxysilane
  • porous silica particles were dispersed in a 10 mL toluene in a 100 mL round bottom flask with a bath sonicator. Then 1 mL of APTES was added and stirred at 400 rpm and stirred at 130 ° C. for 12 hours.
  • Example 9-1- (1) The porous silica particles of Example 9-1- (1) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), except that 0.4 ml of APTES was added and the reaction time was 3 hours.
  • APTES (3-Aminopropyl) triethoxysilane
  • Example 9-1- (9) The porous silica particles of Example 9-1- (9) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), and the other method was the method of 9-2- (1) -1). Modified in the same manner as
  • Example 9-1- (10) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), and were modified in the same manner as in the method of 9-2- (1) -1). It was.
  • APTES (3-Aminopropyl) triethoxysilane
  • Example 9-1- (1) The porous silica particles of Example 9-1- (1) were reacted with Trimethoxy (propyl) silane to introduce propyl groups into the surface and the pores, and 0.35ml of Trimethoxy (propyl) silane was added instead of APTES, followed by 12 hours of reaction. Modification was carried out in the same manner as in Example 9-2- (1) except for the above.
  • Example 9-1- (1) The porous silica particles of Example 9-1- (1) were reacted with Trimethoxy-n-octylsilane to introduce propyl groups on the surface and inside of the pores, and 0.5 ml of Trimethoxy-n-octylsilane was added instead of APTES, and reacted for 12 hours. Modification was carried out in the same manner as in Example 9-2- (1) except for the above.
  • Example 9 except that DMSO (dimethyl sulfoxide) was used instead of toluene, 80 mg of succinic anhydride was added instead of APTES, stirred at room temperature for 24 hours, and DMSO was used instead of distilled water. The modification was carried out in the same manner as in the method of -2- (1) -1).
  • DMSO dimethyl sulfoxide
  • Example 9-2- (1) -1) It was modified in the same manner as in Example 9-2- (1) -1) except that 1.1 mL of MPTES was used instead of APTES.
  • Example 9-2- (3) -2 100 mg of the porous silica nanoparticles of Example 9-2- (3) -2) were dispersed in 1 mL of 1 M aqueous sulfuric acid solution and 20 mL of 30% hydrogen peroxide solution, and stirred at room temperature to induce an oxidation reaction. Oxidized to a group. After the same washing and drying in the same manner as in Example 9-2- (1) -1).
  • the inhibition rate of CTGF expression of the prepared nucleic acid molecules is shown in Tables 2 and 3 below.
  • a nucleic acid molecule comprising a strand having complementarity with at least 10 nucleotides complementarity with the sequence of SEQ ID NO: 1 (sense RNA consisting of the sequence of SEQ ID NO: 1 and antisense RNA consisting of the sequence of SEQ ID NO: 2)
  • a dsRNA consisting of a strand and its complementary strand a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 55 and an antisense RNA consisting of a sequence of SEQ ID NO: 56, a strand consisting of
  • nucleic acid molecule comprising a strand having complementarity of only 7 nucleotides (sense RNA consisting of the sequence of SEQ ID NO: 4 and antisense RNA consisting of the sequence of SEQ ID NO: 5; strand consisting of the sequence of SEQ ID NO: 6 and complementary thereto
  • sense RNA consisting of the sequence of SEQ ID NO: 4
  • antisense RNA consisting of the sequence of SEQ ID NO: 5
  • strand consisting of the sequence of SEQ ID NO: 6 and complementary thereto
  • the expression rate is significantly lower than about 60%, suggesting that the technical significance of the complementarity with the sequence of SEQ ID NO: 1 is 10 nucleotides or more.
  • siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 1 and an antisense RNA consisting of a sequence of SEQ ID NO: 2, including the strand having the highest expression inhibition and comprising a strand complementary to the sequence of SEQ ID NO: 1 and all 18 nucleotides;
  • siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 1 and an antisense RNA consisting of a sequence of SEQ ID NO: 2
  • the following experiment was performed by selecting a strand consisting of a strand consisting of the sequence of SEQ ID NO: 3 and a strand complementary thereto.
  • Sequence number (/ means pair between sense strand and antisense strand) Expression inhibition rate (%) Sequence number Expression inhibition rate (%) 1/2 or 3 93.7 37/38 or 39 74.6 4/5 or 6 62.4 40/41 or 42 71.8 7/8 or 9 67.2 43/44 or 45 63.5 10/11 or 12 72.6 46/47 or 48 74.2 13/14 or 15 74.1 49/50 or 51 71.6 16/17 or 18 61.3 52/53 or 54 90.3 19/20 or 21 74.7 55/56 or 57 90.1 22/23 or 24 72.3 58/59 or 60 91.9 25/26 or 27 67.8 61/62 or 63 92.2 28/29 or 30 63.5 64/65 or 66 91.5 31/32 or 33 71.6 67/68 or 69 92.8 34/35 or 36 72.9 70/71 or 72 91.6
  • PNA sequence number Expression inhibition rate (%) PNA sequence number Expression inhibition rate (%) 87 90.3 94 92.1 88 90.1 95 90.5 89 91.2 96 91.7 90 90.7 97 90.4 91 91.5 98 90.2 92 90.2 99 91.4 93 91.3
  • Porous Silica Particles DDV or DegradaBALL
  • FIG. 28 is a photograph of porous silica particles of 9-1- (1)
  • FIG. 29 is a photograph of porous silica particles of 9-1- (2), confirming that spherical porous silica particles having sufficiently expanded pores are formed evenly.
  • Fig. 30 is a photograph of small pore particles of 9-1- (1)
  • Fig. 31 is a comparative photograph of small pore particles of 9-1- (1) and 9-1- (3). You can see that is generated evenly.
  • Example 9-1- (1) The surface area and pore volume of the small pore particles of Example 9-1- (1) and the porous silica particles of Examples 9-1- (1), (7), (8) and (10) were calculated.
  • the surface area was calculated by Brunauer-Emmett-Teller (BET) method, and the pore size distribution was calculated by Barrett-Joyner-Halenda (BJH) method.
  • BET Brunauer-Emmett-Teller
  • BJH Barrett-Joyner-Halenda
  • Example 9-1- (1) 2.1 1337 0.69
  • Example 9-1- (7) 4.3 630 0.72
  • Example 9-1- (8) 6.9 521 0.79
  • Example 9-1- (1) 10.4 486 0.82
  • Example 9-1- (10) 23 395 0.97
  • porous silica particles are biodegraded and nearly decomposed after 360 hours.
  • a 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles into a cylindrical permeable membrane having pores having a diameter of 50 kDa,
  • a t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
  • porous silica particle powder was dissolved in 5 ml of SBF (pH 7.4). Thereafter, 5 ml of the porous silica particle solution was placed in a permeable membrane having pores having a diameter of 50 kDa shown in FIG. 34. 15 ml of SBF was added to the outer membrane, and the SBF of the outer membrane was replaced every 12 hours. Decomposition of the porous silica particles was performed at 37 ° C. with 60 rpm horizontal stirring.
  • porous silica particles of the example have a significantly larger t than the control.
  • t which has a ratio of absorbance 1/2 of the positively charged particles, was 24 or more.
  • the solvent was recovered at 0.5, 1, 2, 4, 8, 12, and 24 hours elapsed, and thereafter, at 24 hours, 0.5 ml of the solvent was recovered for fluorescence measurement. SBF was added.
  • the time of siRNA release by 50% is about 48 hours.
  • A549 (human lung cancer non-small cell) cells and HaCaT (human keratinocyte cells) cells were treated with DegradaBALL (LEM-S401) carrying siCTGF. Because both cell lines have functionally active CTGF transcription pathways, A549 and HaCaT cells are widely used as in vitro model cells in fibrosis studies.
  • A549 cells were treated with various concentrations of LEM-S401 (12.5, 25, 50 and 100 nM) and then incubated with 2 ng / mL TGF-ß to induce CTGF expression (FIG. 1).
  • LEM-S401 maintained a longer CTGF knockdown effect than LNP in A549 and HaCaT cells.
  • A549 and HaCaT cells were treated with siCTGF supported on LEM-S401 (50 nM) and LNP (50 nM), and then CTGF expression was induced by TGF-ß treatment.
  • Downregulation of CTGF in A549 cells lasted up to 96 hours after LEM-S401 treatment (CTGF expression level, 72 hours: 26.3%, 96 hours: 26.9%).
  • CTGF expression level, 72 hours: 46.4%, 96 hours: 58.6% was not high at both 72 and 96 hours.
  • LEM-S401 did not downregulate CTGF expression in vivo.
  • C57BL / 6 mice were injected with fluorescent label LEM-S401 consisting of FITC-conjugated siCTGF loaded on TAMRA-conjugated DegradaBALL and unsupported (free) FITC-conjugated
  • LEM-S401 consisting of FITC-conjugated siCTGF loaded on TAMRA-conjugated DegradaBALL and unsupported (free) FITC-conjugated
  • Fluorescence of TAMRA-DegradaBALL carrying FITC-siCTGF showed strong luminescence at the injection site on day 1.
  • the fluorescence decreased slowly with time, but the fluorescence was maintained at the injection site until 5 days after the injection (FIG. 6).
  • the tendency for fluorescence at the injection site to decrease with this time was in accordance with the tendency of the skin section slide (FIG. 6).
  • no fluorescence signal was observed in the excised skin or fragmented skin slides from mice injected with only unsupported free FITC-siCTGF, which was a small fragment that caused the free siCTGF to disperse rapidly in the body or to induce very rapid diffusion. Implying degradation (FIG. 7).
  • the data show that, compared to free siCTGF, LEM-S401 can maintain significantly higher concentration levels of siCTGF in the skin, at least 3 days after infusion.
  • LEM-S401 can induce CTGF gene knockdown and reduce collagen overproduction.
  • silicone splints were sutured around the wound for management and observation.
  • LEM-S401 was injected subcutaneously around the wound at 0,4,8,12 days. Mice were sacrificed on day 16, and expression levels of CTGF in the skin were analyzed by RT-PCR. The expression level of CTGF was significantly decreased in the LEM-S401 treated group, whereas no change was observed in the group treated with siCTGF or DegradaBALL alone.
  • collagen type 1,3 expression levels were also significantly downregulated in the LEM-S401 treated group (FIGS. 8-10).
  • Collagen types 1,3 known to be induced by CTGF are the major components of hypertrophic scars and keloids.
  • LEM-S401 was injected after the epidermis was recovered. Specifically, a biopsy punch was used to puncture the mouse skin (day 0), and after 10 days, 14, 18 and 22 days of epidermal recovery, LEM-S401 was injected into the wound site. Typically, in the mouse wound model, 10 days was sufficient to fully restore the epidermis after wound formation. After sacrifice on day 26, expression levels of CTGF and collagen type 1,3 were analyzed by RT-PCR.
  • CTGF and collagen in the LEM-S401 treated group were significantly lower than those in the control group (FIGS. 18 to 20).
  • Immunohistochemical analysis showed that CTGF and collagen type 1,3 protein expression levels were significantly reduced in the LEM-S401 treated group (FIGS. 21-24).

Abstract

The present invention relates to a composition for inhibiting CTGF expression, the composition enabling the inhibition of the expression level of CTGF by means of RNA interference (RNAi), and the present invention relates to a composition enabling the prevention or treatment, with excellent efficiency, of various fibroplastic diseases such as hypertrophic scars and keloids.

Description

CTGF 발현 억제용 조성물Composition for Inhibiting CTGF Expression
본 발명은 CTGF 발현을 높은 효율로 억제하여, 우수한 섬유증식성 질환의 예방 또는 치료 효과를 갖는 조성물에 관한 것이다.The present invention relates to a composition which inhibits CTGF expression with high efficiency and has excellent prophylactic or therapeutic effect of fibroproliferative disease.
조직 리모델링은 생리학적 또는 병리학적 스트레스에 반응하여 기존 조직을 재건하는 것이다. 병리생리학에서 조직 리모델링은 결합조직성장인자(Connective tissue growth factor, CTGF), 근섬유 분화 및 활성화, 세포 외 기질(ECM)의 침착 및 섬유화의 과발현으로 특징지어진다. 다양한 신호 분자 및 인자들 중에서, CTGF는 조직 리모델링에서 중추적인 매개체로 간주되어 왔다. CTGF는 다양한 신호 전달 경로에 관여하여, 세포 부착 및 이동, ECM 리모델링 및 장기구조의 변화를 일으킨다. 조직 리모델링 및 섬유화는 폐 섬유증, 간 섬유증, 신장 섬유증, 당뇨병성 망막증 및 피부 섬유증(켈로이드 및 비대흉터)과 같은 수많은 섬유성 장애와 관련이 있다.Tissue remodeling is the reconstruction of existing tissue in response to physiological or pathological stress. Tissue remodeling in pathophysiology is characterized by connective tissue growth factor (CTGF), myofiber differentiation and activation, deposition of extracellular matrix (ECM) and overexpression of fibrosis. Among various signal molecules and factors, CTGF has been considered a pivotal mediator in tissue remodeling. CTGF is involved in a variety of signal transduction pathways, resulting in cell adhesion and migration, ECM remodeling and alteration of organ structure. Tissue remodeling and fibrosis are associated with numerous fibrotic disorders such as pulmonary fibrosis, liver fibrosis, kidney fibrosis, diabetic retinopathy, and skin fibrosis (keloids and hypertrophic scars).
피부에서 상처 치유 과정은 매우 복잡하고, 염증, 세포 분화 및 증식, 조직 리모델링(콜라겐 생성 포함)의 중복된 단계로 구성된다. 몇몇 사이토카인과 성장인자, 특히 TGF-β는 창상 치유의 초기와 후기 단계에서 중요한 역할을 한다. TGF-β는 CTGF 상향 조절을 통해 백혈구 이동, 혈관 신생, 섬유 아세포 이동 및 ECM 성분(콜라겐 및 피브로넥틴) 생산을 매개한다. CTGF의 과발현은 비대흉터와 켈로이드 환자에서 관찰되었기 때문에, CTGF 발현의 억제는 섬유화 과정을 억제하거나 역전시킬 수 있는 섬유화 기전을 조절하는 매력적인 전략이다.The wound healing process in the skin is very complex and consists of overlapping steps of inflammation, cell differentiation and proliferation, tissue remodeling (including collagen production). Some cytokines and growth factors, especially TGF-β, play an important role in the early and late stages of wound healing. TGF-β mediates leukocyte migration, angiogenesis, fibroblast migration and ECM components (collagen and fibronectin) production through CTGF upregulation. Since overexpression of CTGF has been observed in hypertrophic scars and keloid patients, suppression of CTGF expression is an attractive strategy to modulate fibrosis mechanisms that can inhibit or reverse the fibrosis process.
많은 항체 또는 안티센스 올리고뉴클레오티드가 CTGF 발현을 억제하거나, 과도한 콜라겐 생성 및 섬유화를 감소시키는 작용을 조사했다. siRNA는 CTGF 억제를 위한 유망한 후보물질 중 하나이다. siRNA에 유도된 RNA 간섭은 표적 mRNA를 서열 상보적으로 인식하고 절단하는, 매우 특이하고 효율적인 유전자 사일런싱 기구에 의해 매개된다. 새로운 치료제로서의 높은 잠재력에도 불구하고, 1) 생물학적 시스템에서의 핵산 분해 효소에 의한 급속한 분해, 2) 효과적은 siRNA 투여량의 유지, 3) 생물학적 장벽을 가로지르는 효율적인 전달의 어려움과 같은 몇 가지 한계와 장벽이 존재한다. Many antibodies or antisense oligonucleotides have been investigated to inhibit CTGF expression or to reduce excessive collagen production and fibrosis. siRNA is one of the promising candidates for CTGF inhibition. RNA interference induced in siRNA is mediated by highly specific and efficient gene silencing machinery that sequencely recognize and cleave target mRNAs. Despite its high potential as a new therapeutic agent, several limitations such as 1) rapid degradation by nucleases in biological systems, 2) maintenance of effective siRNA doses, 3) difficulty in efficient delivery across biological barriers, and There is a barrier.
현재까지 siRNA의 전달을 위해 양이온성 고분자, 지질나노입자(LNP), 바이러스 및 다양한 나노물질이 개발되었다. 양이온성 고분자와 LNP의 임상적 적용은 생체 내 구조의 독성 및/또는 불안정성 때문에 신중해야하고, 바이러스성 유전자 전달은 낮은 포장능력 외 돌연변이 유발 문제가 있다. siRNA 백본의 화학적 변형은 안정성과 세포흡수를 증가시킬 수 있으나, 여전히 고비용, 노동 집약성, 시간 소모적인 공정 및 표적세포에서의 만족스러운 효능을 위한 높은 양의 siRNA 투여와 같은 단점을 여전히 갖고 있다. To date, cationic polymers, lipid nanoparticles (LNPs), viruses, and various nanomaterials have been developed for the delivery of siRNAs. The clinical application of cationic polymers and LNPs should be prudent due to the toxicity and / or instability of the structures in vivo, and viral gene transfer poses mutagenesis in addition to low packaging capacity. Chemical modifications of siRNA backbones can increase stability and cell uptake, but still suffer from disadvantages such as high cost, labor intensive, time consuming processing, and high amounts of siRNA administration for satisfactory efficacy in target cells.
본 발명은 CTGF 발현을 높은 효율로 억제하여, 우수한 섬유증식성 질환의 예방 또는 치료 효과를 갖는 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a composition having high efficiency of inhibiting CTGF expression and having an excellent prophylactic or therapeutic effect of fibroproliferative diseases.
1. 서열번호 1의 서열과 10 뉴클레오티드 이상 상보적인 서열로 이루어진 핵산분자;를 포함하는 CTGF 유전자 발현 억제용 조성물.1. A composition for inhibiting CTGF gene expression, comprising: a nucleic acid molecule consisting of a sequence of SEQ ID NO: 1 and a sequence complementary to 10 nucleotides or more.
2. 위 1에 있어서, 서열번호 1의 서열과 16 뉴클레오티드 이상 상보적인 서열로 이루어진 핵산분자;를 포함하는 조성물.2. The composition according to the above 1, wherein the nucleic acid molecule consisting of a sequence of at least 16 nucleotides complementary to the sequence of SEQ ID NO: 1;
3. 위 1에 있어서, 서열번호 1의 서열 전체와 상보적인 서열로 이루어진 핵산분자;를 포함하는 조성물.3. The composition of 1 above, wherein the nucleic acid molecule consisting of a sequence complementary to the entire sequence of SEQ ID NO: 1;
4. 위 1에 있어서, 상기 핵산분자는 siRNA, dsRNA, PNA 또는 miRNA의 일 가닥(strand)을 이루는 것인 조성물.4. The composition of 1 above, wherein the nucleic acid molecule forms a strand of siRNA, dsRNA, PNA or miRNA.
5. 위 4에 있어서, 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 2의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 3의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 52의 서열로 이루어진 센스 RNA 및 서열번호 53의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 54의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 55의 서열로 이루어진 센스 RNA 및 서열번호 56의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 57의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 58의 서열로 이루어진 센스 RNA 및 서열번호 59의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 60의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 61의 서열로 이루어진 센스 RNA 및 서열번호 62의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 63의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 64의 서열로 이루어진 센스 RNA 및 서열번호 65의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 66의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 67의 서열로 이루어진 센스 RNA 및 서열번호 68의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 69의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 70의 서열로 이루어진 센스 RNA 및 서열번호 71의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 72의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA;로 이루어진 군에서 선택된 적어도 하나의 siRNA 또는 dsRNA를 포함하는 조성물.5. In the above 4, the siRNA consisting of the sense RNA consisting of the sequence of SEQ ID NO: 1 and the antisense RNA consisting of the sequence of SEQ ID NO: 2, the strand consisting of the sequence of SEQ ID NO: 3 and dsRNA consisting of the strands complementary thereto, SEQ ID NO: 52 SiRNA consisting of a sense RNA consisting of a sequence of and an antisense RNA consisting of a sequence of SEQ ID NO: 53, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 54 and a complementary strand thereof, a sense RNA consisting of the sequence of SEQ ID NO: 55, and SEQ ID NO: 56 SiRNA consisting of an antisense RNA consisting of a sequence of DNA, a strand consisting of a sequence of SEQ ID NO: 57 and a dsRNA consisting of a complementary strand thereof, a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 58, and an antisense RNA consisting of a sequence of SEQ ID NO: 59, A strand consisting of the strand of SEQ ID NO: 60 and a strand complementary thereto, A siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 61 and an antisense RNA consisting of a sequence of SEQ ID NO: 62, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 63 and a complementary strand thereof, a sense RNA consisting of a sequence of SEQ ID NO: 64, and SiRNA consisting of antisense RNA consisting of the sequence of SEQ ID NO: 65, dsRNA consisting of the strand of SEQ ID NO: 66 and complementary strands thereof, sense RNA consisting of the sequence of SEQ ID NO: 67, and antisense RNA consisting of the sequence of SEQ ID NO: 68 An siRNA consisting of a siRNA consisting of a strand of SEQ ID NO: 69 and a dsRNA consisting of a strand complementary thereto, a sense RNA consisting of a sequence of SEQ ID NO: 70, and an antisense RNA consisting of a sequence of SEQ ID NO: 71, a sequence of SEQ ID NO: 72 Strand and dsRNA consisting of complementary strands; Standing selected at least one composition comprising an siRNA or dsRNA.
6. 위 5에 있어서, 상기 센스 RNA 및 안티센스 RNA 서열의 3' 말단에 UU 또는 dTdT의 서열을 추가로 포함하는 것인 조성물.6. The composition of 5 above, further comprising a sequence of UU or dTdT at the 3 'end of the sense RNA and antisense RNA sequence.
7. 위 4에 있어서, 서열번호 87 내지 99의 서열로 이루어진 군에서 선택된 하나의 서열로 이루어진 PNA를 적어도 하나 포함하는 조성물.7. The composition of 4 above, comprising at least one PNA consisting of one sequence selected from the group consisting of SEQ ID NOs: 87-99.
8. 위 7에 있어서, 상기 PNA의 적어도 하나의 말단에 서열번호 101 내지 113으로 이루어진 군에서 선택된 적어도 하나의 서열로 이루어진 펩티드; 또는 mPEG 5000이 더 결합된 것인 조성물.8. The peptide according to the above 7, wherein the peptide comprises at least one sequence selected from the group consisting of SEQ ID NOs: 101 to 113 at at least one end of the PNA; Or mPEG 5000 is further bound.
9. 위 1 내지 8 중 어느 한 항의 조성물을 포함하는 섬유증식성 질환의 예방 또는 치료용 약학적 조성물.9. A pharmaceutical composition for the prevention or treatment of fibroproliferative diseases comprising the composition of any one of 1 to 8.
10. 위 9에 있어서, 상기 섬유증식성 질환은 비대흉터, 켈로이드, 섬유증, 폐 섬유증, 특발성 폐 섬유화증, 간 섬유증, 신장 섬유증, 낭포성 섬유증, 골수섬유증, 복막후 섬유증, 피부경화증, 당뇨병성 망막증, 듀켄씨근이영양증, 방사-유도 섬유증, 심근 섬유증, 당뇨병성 신장질환, 만성 신부전증, 만성 바이러스성 간염, 담도섬유화, 지방간염, 알코올성 지방간염, 비알코올성 지방간염, 증식유리체망막병증, 근골격계 종양, 골육종, 횡문근육종, 교모세포종, 폐암, 난소암, 식도암, 대장암, 췌장암, 신장경화증, 사르코이드증, 녹내장, 황반변성, 망막하섬유화증, 맥락막혈관신생, 유리체망막병증, 증식유리체망막병증, 당뇨망막병증, 각막염, 익상편, 검열반, 피부경화증, 자궁근종, 전신경화증, 사구체 신염, 사람 면역 결핍 바이러스성 신질환, 급성 호흡곤란 증후군, 만성 폐쇄성 폐질환, 레이노병, 류마티스 관절염, 다발근염, 혈관협착증, 치주염 및 치주은으로 이루어진 군에서 선택된 적어도 하나인 조성물.10. In the above 9, the fibrotic disease is hypertrophic scar, keloid, fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, myelofibrosis, peritoneal fibrosis, scleroderma, diabetic retinopathy , Duchenne muscular dystrophy, radiation-induced fibrosis, myocardial fibrosis, diabetic kidney disease, chronic renal failure, chronic viral hepatitis, biliary fibrosis, fatty hepatitis, alcoholic fatty hepatitis, nonalcoholic steatohepatitis, proliferative vitreoretinopathy, musculoskeletal tumor, osteosarcoma , Rhabdomyosarcoma, glioblastoma, lung cancer, ovarian cancer, esophageal cancer, colon cancer, pancreatic cancer, kidney sclerosis, sarcoidosis, glaucoma, macular degeneration, subretinal fibrosis, choroidal neovascularization, vitreoretinopathy, proliferative vitreoretinopathy, diabetes Retinopathy, keratitis, pterygium, censorship, scleroderma, uterine fibroids, systemic sclerosis, glomerulonephritis, human immunodeficiency viral kidney disease, acute respiratory distress Syndrome, chronic obstructive pulmonary disease, Raynaud, rheumatoid arthritis, multiple myositis, vascular restenosis, periodontal disease, and at least one selected from the group consisting of chijueun composition.
11. CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하고,11. Porous silica particles carrying nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene;
상기 다공성 실리카 입자는 직경 5nm 미만의 기공을 갖는 실리카 입자를 120℃ 내지 180℃에서 24시간 내지 96시간 동안 팽창제와 반응시켜 상기 직경 5nm 미만의 기공을 팽창시키는 단계; 및 상기 기공이 팽창된 실리카 입자를 400℃ 이상의 온도에서 3시간 이상 하소하는 단계를 포함하여 제조되며,The porous silica particles react with silica particles having pores less than 5 nm in diameter at 120 ° C. to 180 ° C. for 24 to 96 hours to expand the pores less than 5 nm in diameter; And calcining the pores of expanded silica particles at a temperature of 400 ° C. or higher for at least 3 hours.
상기 다공성 실리카 입자의 평균 직경은 100 nm 내지 1000nm이고, 그 BET 표면적은 200m 2/g 내지 700m 2/g이고, 그 g당 부피는 0.7ml 내지 2.2ml이며,The average diameter of the porous silica particles is 100 nm to 1000 nm, the BET surface area is 200m 2 / g to 700m 2 / g, the volume per g is 0.7ml to 2.2ml,
상기 다공성 실리카 입자는 하기 수학식 1의 흡광도의 비가 1/2이 되는 t가 24 이상인 것인, CTGF 유전자 발현 억제용 조성물:The porous silica particles, the ratio of the absorbance of the following formula 1 is t is 24 or more, CTGF gene expression inhibition composition:
[수학식 1][Equation 1]
A t/A 0 A t / A 0
(식 중, A 0는 상기 다공성 실리카 입자 1mg/ml 현탁액 5ml를 직경 50kDa의 기공을 갖는 원통형 투과막에 넣고 측정된 다공성 실리카 입자의 흡광도이고,Wherein A 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles in a cylindrical permeable membrane having pores having a diameter of 50 kDa,
상기 투과막 외부에는 상기 투과막과 접하며, 상기 현탁액과 동일한 용매 15ml가 위치하고, 상기 투과막 내외부는 37℃에서 60rpm 수평 교반되며,Outside of the permeable membrane is in contact with the permeable membrane, 15ml of the same solvent as the suspension is located, the inside and outside of the permeable membrane is stirred 60 rpm at 37 ℃ horizontal,
상기 현탁액의 pH는 7.4이고,The pH of the suspension is 7.4,
A t는 상기 A 0의 측정시로부터 t시간 경과 후에 측정된 다공성 실리카 입자의 흡광도임).A t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
12. 위 11에 있어서, 상기 다공성 실리카 입자는 외부 표면 또는 기공 내부가 중성의 pH에서 양전하 또는 무전하를 띠는 것인 조성물.12. The composition of 11 above, wherein the porous silica particles are positively charged or uncharged at neutral pH at the outer surface or inside the pore.
13. 위 11에 있어서, 상기 다공성 실리카 입자는 친수성 또는 소수성 작용기를 갖는 것인 조성물.13. The composition of 11 above, wherein the porous silica particles have a hydrophilic or hydrophobic functional group.
14. 위 11에 있어서, 상기 핵산분자는 서열번호 1의 서열과 10 뉴클레오티드 이상 상보적인 것인 조성물.14. The composition of 11 above, wherein the nucleic acid molecule is at least 10 nucleotides complementary to the sequence of SEQ ID NO: 1.
15. 위 11에 있어서, 상기 핵산분자는 서열번호 1의 서열과 16 뉴클레오티드 이상 상보적인 것인 조성물.15. The composition of 11 above, wherein the nucleic acid molecule is at least 16 nucleotides complementary to the sequence of SEQ ID NO: 1.
16. 위 11에 있어서, 서열번호 1의 서열 전체와 상보적인 서열로 이루어진 핵산분자;를 포함하는 조성물.16. The composition of 11, wherein the nucleic acid molecule consisting of a sequence complementary to the entire sequence of SEQ ID NO: 1.
17. 위 11에 있어서, 상기 핵산분자는 siRNA, dsRNA, PNA 또는 miRNA의 일 가닥(strand)을 이루는 것인 조성물.17. The composition of 11 above, wherein the nucleic acid molecule forms one strand of siRNA, dsRNA, PNA or miRNA.
18. 위 17에 있어서, 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 2의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 3의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 52의 서열로 이루어진 센스 RNA 및 서열번호 53의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 54의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 55의 서열로 이루어진 센스 RNA 및 서열번호 56의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 57의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 58의 서열로 이루어진 센스 RNA 및 서열번호 59의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 60의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 61의 서열로 이루어진 센스 RNA 및 서열번호 62의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 63의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 64의 서열로 이루어진 센스 RNA 및 서열번호 65의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 66의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 67의 서열로 이루어진 센스 RNA 및 서열번호 68의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 69의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 70의 서열로 이루어진 센스 RNA 및 서열번호 71의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 72의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA;로 이루어진 군에서 선택된 적어도 하나의 siRNA 또는 dsRNA를 포함하는 조성물.18. The method according to the above 17, the siRNA consisting of the sense RNA consisting of the sequence of SEQ ID NO: 1 and the antisense RNA consisting of the sequence of SEQ ID NO: 2, the strand consisting of the sequence of SEQ ID NO: 3 and dsRNA consisting of strands complementary thereto, SEQ ID NO: 52 SiRNA consisting of a sense RNA consisting of a sequence of and an antisense RNA consisting of a sequence of SEQ ID NO: 53, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 54 and a complementary strand thereof, a sense RNA consisting of the sequence of SEQ ID NO: 55, and SEQ ID NO: 56 SiRNA consisting of an antisense RNA consisting of a sequence of DNA, a strand consisting of a sequence of SEQ ID NO: 57 and a dsRNA consisting of a complementary strand thereof, a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 58, and an antisense RNA consisting of a sequence of SEQ ID NO: 59, A strand consisting of the strand of SEQ ID NO: 60 and a strand complementary thereto , A siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 61 and an antisense RNA consisting of a sequence of SEQ ID NO: 62, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 63, and a complementary strand thereof, a sense RNA consisting of the sequence of SEQ ID NO: 64 And an siRNA consisting of an antisense RNA consisting of the sequence of SEQ ID NO: 65, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 66 and a strand complementary thereto, a sense RNA consisting of the sequence of SEQ ID NO: 67, and an antisense RNA consisting of the sequence of SEQ ID NO: 68 A siRNA consisting of a siRNA consisting of a strand of SEQ ID NO: 69 and a dsRNA consisting of a strand complementary thereto, a sense RNA consisting of a sequence of SEQ ID NO: 70, and an antisense RNA consisting of a sequence of SEQ ID NO: 71, a sequence of SEQ ID NO: 72 Consisting of dsRNA consisting of a strand consisting of and a strand complementary thereto; Composition comprising at least one siRNA or dsRNA selected from.
19. 위 18에 있어서, 상기 센스 RNA 및 안티센스 RNA 서열의 3' 말단에 UU 또는 dTdT의 서열을 추가로 포함하는 것인 조성물.19. The composition of 18 above, further comprising a sequence of UU or dTdT at the 3 'end of the sense RNA and antisense RNA sequences.
20. 위 17에 있어서, 서열번호 87 내지 99의 서열로 이루어진 군에서 선택된 하나의 서열로 이루어진 PNA를 적어도 하나 포함하는 조성물.20. The composition of 17, wherein the composition comprises at least one PNA consisting of one sequence selected from the group consisting of SEQ ID NOs: 87 to 99.
21. 위 20에 있어서, 상기 PNA의 적어도 하나의 말단에 서열번호 101 내지 113으로 이루어진 군에서 선택된 적어도 하나의 서열로 이루어진 펩티드; 또는 mPEG 5000이 더 결합된 것인 조성물.21. The peptide according to the above 20, at least one end of the PNA peptide consisting of at least one sequence selected from the group consisting of SEQ ID NO: 101 to 113; Or mPEG 5000 is further bound.
22. 위 11 내지 21 중 어느 한 항의 조성물을 포함하는 섬유증식성 질환의 예방 또는 치료용 약학적 조성물.22. A pharmaceutical composition for the prevention or treatment of fibroproliferative diseases comprising the composition of any one of 11 to 21 above.
23. 위 22에 있어서, 상기 섬유증식성 질환은 비대흉터, 켈로이드, 섬유증, 폐 섬유증, 특발성 폐 섬유화증, 간 섬유증, 신장 섬유증, 낭포성 섬유증, 골수섬유증, 복막후 섬유증, 피부경화증, 당뇨병성 망막증, 듀켄씨근이영양증, 방사-유도 섬유증, 심근 섬유증, 당뇨병성 신장질환, 만성 신부전증, 만성 바이러스성 간염, 담도섬유화, 지방간염, 알코올성 지방간염, 비알코올성 지방간염, 증식유리체망막병증, 근골격계 종양, 골육종, 횡문근육종, 교모세포종, 폐암, 난소암, 식도암, 대장암, 췌장암, 신장경화증, 사르코이드증, 녹내장, 황반변성, 망막하섬유화증, 맥락막혈관신생, 유리체망막병증, 증식유리체망막병증, 당뇨망막병증, 각막염, 익상편, 검열반, 피부경화증, 자궁근종, 전신경화증, 사구체 신염, 사람 면역 결핍 바이러스성 신질환, 급성 호흡곤란 증후군, 만성 폐쇄성 폐질환, 레이노병, 류마티스 관절염, 다발근염, 혈관협착증, 치주염 및 치주은으로 이루어진 군에서 선택된 적어도 하나인 조성물.23. The method according to the above 22, wherein the fibrotic disease is hypertrophic scar, keloid, fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, myelofibrosis, peritoneal fibrosis, scleroderma, diabetic retinopathy , Duchenne muscular dystrophy, radiation-induced fibrosis, myocardial fibrosis, diabetic kidney disease, chronic renal failure, chronic viral hepatitis, biliary fibrosis, fatty hepatitis, alcoholic fatty hepatitis, nonalcoholic steatohepatitis, proliferative vitreoretinopathy, musculoskeletal tumor, osteosarcoma , Rhabdomyosarcoma, glioblastoma, lung cancer, ovarian cancer, esophageal cancer, colon cancer, pancreatic cancer, kidney sclerosis, sarcoidosis, glaucoma, macular degeneration, subretinal fibrosis, choroidal neovascularization, vitreoretinopathy, proliferative vitreoretinopathy, diabetes Retinopathy, keratitis, pterygium, censorship, scleroderma, uterine fibroids, systemic sclerosis, glomerulonephritis, human immunodeficiency viral kidney disease, acute respiratory distress Syndrome, chronic obstructive pulmonary disease, Raynaud, rheumatoid arthritis, multiple myositis, vascular restenosis, periodontal disease, and at least one selected from the group consisting of chijueun composition.
본 발명의 조성물은 CTGF 및 콜라겐의 발현을 효과적으로 억제할 수 있는 핵산분자를 포함하고 있어, CTGF 또는 콜라겐의 과발현으로 인한 다양한 섬유증식성 질환의 예방 또는 치료가 가능하다.The composition of the present invention contains a nucleic acid molecule capable of effectively inhibiting the expression of CTGF and collagen, it is possible to prevent or treat a variety of fibrotic diseases due to overexpression of CTGF or collagen.
도 1은 병리학적 경로를 통해 유도된 CTGF의 과발현으로 인한 비대흉터 및 켈로이드의 세포 기전 및 LEM-S401의 효과적인 CTGF 발현 억제 원리를 모식적으로 나타낸 것이다.FIG. 1 schematically illustrates the mechanism of inhibition of hypertrophic scars and keloids due to overexpression of CTGF induced by pathological pathways and the effect of inhibiting effective CTGF expression of LEM-S401.
도 2,3은 A549(도 2) 및 HaCaT(도 3) 세포 각각을 6시간 동안 다양한 용량의 LEM-S401(12.5, 25, 50, 100 nM)로 6시간 동안 처리하고, CTGF 발현을 12 ng/mL의 TGF-ß에 의해 유도하였고, CTGF mRNA 발현 수준을 RT-PCR을 이용하여 대조군(미처리, siCTGF만 처리, DegradaBALL만 처리, scrambled siRNA 처리)과 비교한 것이다( *P <0.05, **P <0.01, ***P <0.005).2,3 shows A549 (FIG. 2) and HaCaT (FIG. 3) cells each treated for 6 hours with various doses of LEM-S401 (12.5, 25, 50, 100 nM) for 6 hours and CTGF expression was 12 ng. TGF-ß of / mL, CTGF mRNA expression level was compared with the control (untreated, siCTGF only, DegradaBALL only, scrambled siRNA treatment) using RT-PCR ( * P <0.05, ** P <0.01, *** P <0.005).
도 4,5는 A549(도 4) 및 HaCaT(도 5) 세포 각각을 LEM-S401 및 siCTGF를 담지한 지질나노입자(Lipid nanoparticle, LNP)로 처리하여 비교한 것으로, 세포를 72시간 및 96시간 동안 배양하였고, 수득 12시간 전에 TGF-ß를 처리하였다( *P <0.05, **P <0.01, ***P <0.005).4 and 5 show that A549 (FIG. 4) and HaCaT (FIG. 5) cells were treated with lipoid nanoparticles (LiP nanoparticles (LNP)) carrying LEM-S401 and siCTGF, respectively, and the cells were 72 and 96 hours. And TGF-ß was treated 12 hours before harvesting ( * P <0.05, ** P <0.01, *** P <0.005).
도 6은 LEM-S401를 마우스 피부에 피하주입하고, LEM-S401 주입 부위에서의 siCTGF 및 DegradaBALL의 피부 체류 시간을 측정하기 위해 절제된 마우스 피부의 형광이미지를 다른 시점에 촬영하였고(1,3,5일)(왼쪽, Scale bar: 25mm), DAPI 염색 후 같은 방식으로 처리된 피부 절편의 형광 이미지를 촬영한 것이다(오른쪽, Scale bar: 100μm).FIG. 6 is a subcutaneous injection of LEM-S401 into mouse skin, and fluorescence images of the excised mouse skin were taken at different time points to measure skin retention time of siCTGF and DegradaBALL at the LEM-S401 injection site (1,3,5). 1) (left, Scale bar: 25mm), after the DAPI staining was taken fluorescence image of the treated skin section (right, Scale bar: 100μm).
도 7은 DegradaBALL에 담지되지 않은 FITC-접합된 siCTGF를 피하 주입한 절제된 피부의 형광이미지를 다른 시점에서 촬영한 것이고(왼쪽), DAPI 염색 후, 같은 방식으로 처리된 피부 절편의 형광 이미지를 촬영한 것이다(Scale bar: 100μm).FIG. 7 shows fluorescence images of resected skin subcutaneously injected with FITC-conjugated siCTGF unsupported in DegradaBALL at different time points (left), and after fluorescence imaging of fluorescence images of skin sections treated in the same manner. Scale bar: 100 μm.
도 8 내지 15은 0,4,8,12일에 LEM-S401(1 nmol)를 마우스 피부 상처 주위에 피하주입한 결과를 나타낸 것으로, 도 8 내지 10은 CTGF 및 콜라겐 유형 1,3의 mRNA 발현 수준을 RT-PCR을 사용하여 16일째에 측정한 것이고, 도 11은 상처입은 마우스 피부의 이미지를 LEM-S401 처리군 및 대조군(완충액, DegradaBALL only, siCTGF only) 간 피부 불규칙 및 부드러움을 처리 10일째에 비교한 것이며, 도 12는 CTGF와 콜라겐 유형 1,3을 각각 인식하는 항체로 조직 염색 후, LEM-S401, 자유 siCTGF, DegradaBALL only 및 완충액으로 처리한 피부 절편의 형광이미지를 촬영한 것으로, 이어 2차 항체를 피부 절편에 처리한 것이고(Scale bar: 100 μm), 도 13 내지 15는 도 12의 이미지를 기반으로 면역조직화학 데이터를 정량분석한 것이다( *P <0.05, **P <0.01, ***P <0.005).Figures 8 to 15 show the results of subcutaneous injection of LEM-S401 (1 nmol) around the mouse skin wound on day 0,4,8,12, Figures 8 to 10 mRNA expression of CTGF and collagen type 1,3 Levels were measured at day 16 using RT-PCR, FIG. 11 shows images of wounded mouse skin treated with skin irregularities and softness between LEM-S401 treated group and control (buffer, DegradaBALL only, siCTGF only). 12 is a fluorescent image of skin sections treated with LEM-S401, free siCTGF, DegradaBALL only and buffer after tissue staining with antibodies that recognize CTGF and collagen types 1,3, respectively. Secondary antibodies were treated to skin sections (Scale bar: 100 μm), and FIGS. 13 to 15 quantitatively analyze immunohistochemical data based on the image of FIG. 12 ( * P <0.05, ** P <0.01 , *** P <0.005).
도 16은 DegradaBALL의 농도를 증가시킴에 따른 A549 및 HaCaT 세포에서의 독성을 CCK-8 분석으로 측정한 것이다.Figure 16 shows the toxicity in A549 and HaCaT cells with increasing concentrations of DegradaBALL was measured by CCK-8 analysis.
도 17은 A549 및 HaCaT 세포 각각을 2 ng/mL의 TGF-ß로 24시간 동안 처리한 결과로서, 세포들은 다른 시점에서 수득되었고, CTGF 발현 수준은 RT-PCR로 분석되었다.FIG. 17 shows the results of treatment of A549 and HaCaT cells with 2 ng / mL of TGF-ß for 24 hours. Cells were obtained at different time points, and CTGF expression levels were analyzed by RT-PCR.
도 18 내지 24는 LEM-S401를 상처 형성 후 10,14,18,22일에 상처 부위에 피하주입한 결과로서, 도 18 내지 20은 주입 부위의 CTGF 및 콜라겐 유형 1,3의 mRNA 발현 수준을 RT-PCR로 측정한 것이고, 도 21은 수득한 마우스 피부의 CTGF 및 콜라겐 유형 1,3의 형광 이미지를 면역조직화학법으로 측정한 것이며(Scale bar: 100 μm), 도 22 내지 24는 면역조직화학 데이터를 정량화한 것이다( *P <0.05, **P <0.01, ***P <0.005).18 to 24 show the results of subcutaneous injection of LEM-S401 into the wound site 10, 14, 18 and 22 days after wound formation, and FIGS. 18 to 20 show mRNA expression levels of CTGF and collagen type 1,3 at the injection site. Measured by RT-PCR, FIG. 21 is a fluorescence image of CTGF and collagen types 1,3 of the obtained mouse skin was measured by immunohistochemistry (Scale bar: 100 μm), and FIGS. 22 to 24 are immune tissues. Chemical data were quantified ( * P <0.05, ** P <0.01, *** P <0.005).
도 25는 siRNA를 DDV(다공성 실리카 입자, DegradaBALL)에 담지하여 마우스 피하주입한 경우와, 담지하지 않은 free-siRNA를 마우스 피하주입한 경우의 체내 형광 이미지 검출 비교 결과이다.Fig. 25 shows comparison results of detection of fluorescent images in the body when siRNA was injected subcutaneously with DDV (porous silica particles, DegradaBALL) and when mouse was injected subcutaneously with unsupported free-siRNA.
도 26,27은 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 2의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA(#1); 서열번호 4의 서열로 이루어진 센스 RNA 및 서열번호 5의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA(#2); 서열번호 7의 서열로 이루어진 센스 RNA 및 서열번호 8의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA(#3)의 A549 및 HaCaT 세포 내 CTGF 발현 수준 억제능을 확인한 것으로, 도 26은 siRNA 처리 12시간 후 TGF-β를 처리한 것이고, 도 27은 TGF-ß 처리 24시간 후 siRNA를 처리한 것이다.26,27 show siRNA (# 1) consisting of a sense RNA consisting of a sequence of SEQ ID NO: 1 and an antisense RNA consisting of a sequence of SEQ ID NO: 2; SiRNA (# 2) consisting of a sense RNA consisting of a sequence of SEQ ID NO: 4 and an antisense RNA consisting of a sequence of SEQ ID NO: 5; SiRNA (# 3) consisting of sense RNA consisting of the sequence of SEQ ID NO: 7 and antisense RNA consisting of the sequence of SEQ ID NO: 8 confirmed the inhibitory ability of CTGF expression levels in A549 and HaCaT cells. FIG. 26 shows TGF- 12 hours after siRNA treatment. β was treated, and FIG. 27 was treated with siRNA 24 hours after TGF-ß treatment.
도 28은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 현미경 사진이다.28 is a micrograph of porous silica particles according to one embodiment of the present invention.
도 29는 본 발명의 일 구현예에 따른 다공성 실리카 입자의 현미경 사진이다.29 is a micrograph of porous silica particles according to one embodiment of the present invention.
도 30은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 제조 공정 중의 소기공 입자의 현미경 사진이다.30 is a micrograph of the small pore particles in the manufacturing process of the porous silica particles according to an embodiment of the present invention.
도 31은 본 발명의 일 구현예에 따른 소기공 입자의 현미경 사진이다.Figure 31 is a micrograph of the small pore particles according to an embodiment of the present invention.
도 32는 본 발명의 일 구현예에 따른 다공성 실리카 입자의 기공 직경별 현미경 사진이다.32 is a micrograph of the pore diameter of the porous silica particles according to one embodiment of the present invention.
DDV(Degradable Delivery Vehicle)는 실시예의 입자로서 괄호안의 숫자는 입자의 직경, 아래첨자의 숫자는 기공 직경을 의미한다. 예를 들어, DDV(200) 10은 입자 직경은 200 nm, 기공 직경은 10 nm인 실시예의 입자를 의미한다.DDV (Degradable Delivery Vehicle) is the particle of the embodiment, the number in parenthesis means the diameter of the particle, the number of subscripts means the pore diameter. For example, DDV 200 10 refers to a particle of an embodiment having a particle diameter of 200 nm and a pore diameter of 10 nm.
도 33은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 생분해성을 확인할 수 있는 현미경 사진이다.Figure 33 is a micrograph to confirm the biodegradability of the porous silica particles according to an embodiment of the present invention.
도 34는 일 예시에 따른 원통형 투과막을 구비한 튜브이다.34 is a tube with a cylindrical permeable membrane according to one example.
도 35는 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 흡광도 감소 결과이다.35 is a result of decreasing absorbance over time of porous silica particles according to an embodiment of the present invention.
도 36은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 입경별 흡광도 감소 결과이다.36 is a result of decreasing the absorbance for each particle diameter over time of the porous silica particles according to an embodiment of the present invention.
도 37은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 기공 직경별 흡광도 감소 결과이다.37 is a result of decreasing absorbance for each pore diameter of porous silica particles according to an embodiment of the present invention over time.
도 38은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 환경의 pH별 흡광도 감소 결과이다.38 is a result of decreasing the absorbance for each pH of the environment over time of the porous silica particles according to an embodiment of the present invention.
도 39는 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 흡광도 감소 결과이다.39 is a result of the decrease in absorbance over time of the porous silica particles according to one embodiment of the present invention.
도 40은 일 예시에 따른 siRNA 또는 dsRNA 방출을 확인하는 튜브이다.40 is a tube confirming siRNA or dsRNA release according to one example.
도 41은 본 발명의 일 구현예에 따른 다공성 실리카 입자에 담지된 siRNA의 시간 경과에 따른 방출 정도이다.Figure 41 is the degree of release over time of the siRNA supported on the porous silica particles according to an embodiment of the present invention.
본 발명의 구체적 설명에 있어서 용어의 구체적 의미를 정의하고자 하나, 이는 당업계 통상의 기술자에 이해되는 의미로 받아들여질 것일 뿐, 하기에 정의된 특정 의미로 제한하고자 하는 의도는 아니다.In the detailed description of the present invention, one intends to define a specific meaning of a term, which is to be taken as a meaning understood by those skilled in the art, and is not intended to be limited to the specific meaning defined below.
"siRNA"는 RNA 방해 또는 유전자 사일런싱을 매개할 수 있는 핵산 분자를 의미한다. siRNA는 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 녹다운 방법으로서 또는 유전자치료 방법으로 제공된다. siRNA 분자는 센스 가닥(표적 유전자의 mRNA 서열에 상응하는(corresponding) 서열)과 안티센스 가닥(표적 유전자의 mRNA 서열에 상보적인 서열)이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있다. 또한, siRNA 분자는, 자기-상보성(self-complementary) 센스 및 안티센스 가닥을 가지는 단일쇄 구조를 가질 수 있다. siRNA는 RNA끼리 짝을 이루는 이중사슬 RNA 부분이 완전히 쌍을 이루는 것에 한정되지 않고 미스매치(대응하는 염기가 상보적이지 않음), 벌지(일방의 사슬에 대응하는 염기가 없음) 등에 의하여 쌍을 이루지 않는 부분이 포함될 수 있다. siRNA 말단 구조는 표적 유전자의 발현을 RNAi(RNA interference) 효과에 의하여 억제할 수 있는 것이면 평활(blunt) 말단 혹은 점착(cohesive) 말단 모두 가능하다. 점착 말단 구조는 3'-말단 돌출 구조와 5'-말단 돌출 구조 모두 가능하다. 또한, siRNA 분자는 자기-상보성 센스 및 안티센스 가닥 사이에 짧은 뉴클레오타이드 서열(예컨대, 약 5-15 nt)이 삽입된 형태를 가질 수 있으며, 이 경우 뉴클레오타이드 서열의 발현에 의해 형성된 siRNA 분자는 분자내 혼성화에 의하여 헤어핀 구조를 형성하게 되며, 전체적으로는 스템-앤드-루프 구조를 형성하게 된다. 이 스템-앤드-루프 구조는 인 비트로(in vitro) 또는 인 비보(in vivo)에서 프로세싱되어 RNAi를 매개할 수 있는 활성의 siRNA 분자를 생성한다."siRNA" refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing. siRNA is provided as an efficient gene knockdown method or gene therapy method because it can inhibit the expression of the target gene. The siRNA® molecule may have a double-stranded structure in which the sense strand (corresponding sequence corresponding to the mRNA sequence of the target gene) and the antisense strand (sequence complementary to the mRNA sequence of the target gene) are positioned opposite to each other. In addition, siRNA® molecules may have a single chain structure with self-complementary sense and antisense strands. siRNAs are not limited to the complete pairing of double-stranded RNA portions paired with RNA, but paired by mismatches (the corresponding bases are not complementary), bulges (there are no bases corresponding to one chain), and the like. May be included. The siRNA® terminal structure can be either blunt or cohesive, as long as the expression of the target gene can be suppressed by RNAi (RNA interference) effects. The cohesive end structure can be both a 3'-end protrusion structure and a 5'-end protrusion structure. In addition, siRNA molecules may have a form in which a short nucleotide sequence (eg, about 5-15 nt) is inserted between self-complementary sense and antisense strands, in which case the siRNA molecules formed by expression of the nucleotide sequence are intramolecular hybridization. As a result, the hairpin structure is formed, and as a whole, the stem-and-loop structure is formed. This stem-and-loop structure is processed in vitro or in vivo to produce active “siRNA” molecules that can mediate RNAi.
"dsRNA"는 siRNA의 전구체 분자로서, 표적세포의 DICER 효소(Ribonuclease III)를 포함하는 RISC 복합체와 만나 siRNA로 절단되고, 이 과정에서 RNAi가 발생한다. dsRNA는 siRNA 보다 수 뉴클레오티드 만큼 긴 서열을 갖고, 센스 가닥(표적 유전자의 mRNA 서열에 상응하는(corresponding) 서열)과 안티센스 가닥(표적 유전자의 mRNA 서열에 상보적인 서열)이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있다."dsRNA" is a precursor molecule of siRNA, meets the RISC complex containing the target cell's DICER enzyme (Ribonuclease III) and is cleaved into siRNA, in which RNAi occurs. dsRNA has a sequence that is several nucleotides longer than siRNA, and the double stranded strand of the sense strand (corresponding to the target gene) and the antisense strand (sequence complementary to the mRNA sequence of the target gene) It may have a structure forming a.
"PNA"는 DNA 또는 RNA와 유사한 구조를 가지나, DNA 또는 RNA와는 달리 전하를 띠지 않도록 설계되어 강한 결합력을 갖는 합성 폴리머로서, DNA와 RNA가 데옥시리보오스(deoxyribose) 또는 리보오스(ribose) 당 백본(backbone)을 각각 갖는 반면, PNA의 백본은 반복적인 N-(2-아미노에틸)-글리신((N-(2-aminoethyl)-glycine) 단위가 펩티드 결합으로 연결된 구조를 갖는다. 퓨린(purine)과 피리미딘(pyrimidine) 염기가 메틸렌(-CH 2-)과 카보닐 그룹(-C=O-)으로 백본에 연결되어 있는 구조이고, 펩티드와 유사하게 양 말단에 각각 N-말단과 C-말단을 갖는다."PNA" is a synthetic polymer that has a structure similar to DNA or RNA, but unlike DNA or RNA, and is designed to have no charge, and has a strong binding force, wherein the DNA and RNA are deoxyribose or ribose sugar backbones ( backbones, respectively, while the backbone of the PNA has a structure in which repeating N- (2-aminoethyl) -glycine ((N- (2-aminoethyl) -glycine) units are linked by peptide bonds. A pyrimidine base is linked to the backbone with methylene (-CH 2- ) and carbonyl groups (-C = O-), and similarly to peptides, the N-terminus and C-terminus Have
"핵산"은 임의의 PNA, DNA 또는 RNA, 예를 들어, 조직 샘플에 존재하는 염색체, 미토콘드리아, 바이러스 및/또는 세균 핵산을 포함하는 의미이다. 이중가닥 핵산 분자의 하나 또는 두개 모두의 가닥을 포함하고, 무손상 핵산 분자의 임의의 단편 또는 일부를 포함한다."Nucleic acid" is meant to include any PNA, DNA or RNA, eg, chromosomes, mitochondria, viruses and / or bacterial nucleic acids present in tissue samples. One or both strands of a double-stranded nucleic acid molecule and any fragment or portion of an intact nucleic acid molecule.
"유전자"는 단백질 코딩 또는 전사시에 또는 다른 유전자 발현의 조절시에 기능적 역할을 갖는 임의의 핵산 서열 또는 그의 일부를 의미한다. 유전자는 기능적 단백질을 코딩하는 모든 핵산 또는 단백질을 코딩 또는 발현하는 핵산의 일부만으로 이루어질 수 있다. 핵산 서열은 엑손, 인트론, 개시 또는 종료 영역, 프로모터 서열, 다른 조절 서열 또는 유전자에 인접한 특유한 서열 내에 유전자 이상을 포함할 수 있다."Gene" means any nucleic acid sequence or portion thereof that has a functional role in protein coding or transcription or in the regulation of other gene expression. The gene may consist of any nucleic acid encoding a functional protein or only a portion of a nucleic acid encoding or expressing a protein. Nucleic acid sequences can include gene abnormalities in exons, introns, initiation or termination regions, promoter sequences, other regulatory sequences, or unique sequences adjacent to genes.
"유전자 발현"이란 용어는 일반적으로 생물학적 활성이 있는 폴리펩티드가 DNA 서열로부터 생성되고 세포에서 생물학적 활성을 나타내는 세포 과정을 의미한다. 그런 의미로, 유전자 발현은 전사 및 해독 과정을 포함할 뿐만 아니라, 유전자 또는 유전자 산물의 생물학적 활성에 영향을 끼칠 수 있는 전사후 및 해독후 과정을 포함한다. 상기 과정들은 RNA 합성, 가공 및 수송뿐만 아니라, 폴립펩티드 합성, 수송 및 폴리펩티드의 해독후 변형을 포함하지만, 이들에 국한되는 것은 아니다. 단백질 산물을 암호화하지 않는 유전자, 예컨대, siRNA 유전자의 경우에, "유전자 발현"이란 용어는 전구체 siRNA가 유전자로부터 생성되는 과정을 의미한다. 통상, 상기 과정은, 단백질 암호 유전자에 대해 RNA 폴리머라제 II에 의해 유도되는 전사와는 달리, siRNA 유전자의 전사 산물이 해독되어 단백질을 생성하지 않지만, 전사로 언급된다. 그럼에도 불구하고, siRNA 유전자로부터 성숙 siRNA의 생성은 그 용어가 본원에 사용되는 대로 "유전자 발현"이란 용어에 의해 포함된다The term "gene expression" generally refers to a cellular process in which a biologically active polypeptide is produced from a DNA sequence and exhibits biological activity in a cell. In that sense, gene expression includes not only transcriptional and translational processes, but also post-transcriptional and posttranslational processes that can affect the biological activity of a gene or gene product. The processes include, but are not limited to, RNA synthesis, processing and transport, as well as post-translational modifications of the polypeptide synthesis, transport and polypeptide. In the case of genes that do not encode protein products, such as siRNA genes, the term "gene expression" refers to the process by which precursor siRNAs are produced from a gene. Typically, this process is referred to as transcription, although unlike transcription induced by RNA polymerase II for a protein coding gene, the transcription product of the siRNA gene is not translated to produce a protein. Nevertheless, generation of mature siRNA from siRNA genes is encompassed by the term "gene expression" as that term is used herein.
"표적 유전자 (target gene)"란 용어는 본원에 개시되는 주제의 방법 및 조성물을 사용하여 조절하기 위해 표적으로 삼는 유전자를 의미한다. 그러므로, 표적 유전자는 그 발현 레벨이 mRNA 또는 폴리펩티드 레벨로 siRNA에 의해 하향 조절되는 핵산 서열을 포함한다. 유사하게, "표적 RNA" 또는 "표적 mRNA"란 용어는 siRNA가 결합하여 표적 유전자의 발현의 조절을 유도할 표적 유전자의 전사체를 의미한다.The term "target gene" refers to a gene that is targeted for regulation using the methods and compositions of the subject matter disclosed herein. Therefore, the target gene comprises a nucleic acid sequence whose expression level is down regulated by siRNA at the mRNA or polypeptide level. Similarly, the term "target RNA" or "target mRNA" refers to a transcript of a target gene to which siRNA binds to induce regulation of expression of the target gene.
"전사 (transcription)"란 용어는 유전자의 암호 서열에 존재하는 구조 정보의 RNA로서 발현을 유도하는 유전자와 RNA 폴리머라제의 상호작용을 포함하는 세포 과정을 의미한다.The term "transcription" refers to a cellular process that involves the interaction of an RNA polymerase with a gene that drives expression as RNA of structural information present in the coding sequence of the gene.
"하향 조절(down-regulation)"이라는 표현은, 정상조직세포에 비하여, 활성화된 세포에서 세포 내 전사(gene transcription) 또는 번역(gene translation)에 의해서 특정 유전자의 mRNA로의 발현 또는 단백질로 발현량이 현저하게 감소된 것을 의미한다.The expression “down-regulation” refers to the expression of specific genes in mRNA or the expression of proteins in activated cells by intracellular transcription or translation in activated cells compared to normal tissue cells. Means reduced.
"치료"는 이롭거나 바람직한 임상적 결과를 수득하기 위한 접근을 의미한다. 본 발명의 목적을 위해서, 이롭거나 바람직한 임상적 결과는 비제한적으로, 증상의 완화, 질병 범위의 감소, 질병 상태의 안정화 (즉, 악화되지 않음), 질병 진행의 지연 또는 속도의 감소, 질병 상태의 개선 또는 일시적 완화 및 경감 (부분적이거나 전체적으로), 검출가능하거나 또는 검출되지 않거나의 여부를 포함한다. 또한, "치료"는 치료를 받지 않았을 때 예상되는 생존율과 비교하여 생존율을 늘이는 것을 의미할 수도 있다. 치료는 치료학적 치료 및 예방적 또는 예방조치 방법 모두를 가리킨다. 상기 치료들은 예방되는 장애뿐만 아니라 이미 발생한 장애에 있어서 요구되는 치료를 포함한다."Treatment" means an approach to obtain beneficial or desirable clinical results. For the purposes of the present invention, beneficial or desirable clinical outcomes include, but are not limited to, alleviation of symptoms, reduction of disease range, stabilization of disease state (ie, not worsening), delay or slowing of disease progression, disease state Improvement or temporary mitigation and alleviation (partially or wholly), detectable or not detected. "Treatment" may also mean increasing survival compared to expected survival when untreated. Treatment refers to both therapeutic treatment and prophylactic or preventive measures. Such treatments include not only the disorders to be prevented but also the treatments required for already occurring disorders.
"예방"은 관련 질환의 발병을 억제 또는 지연시키는 모든 행위를 의미한다. 본원의 조성물은 초기 증상, 또는 나타나기 전에 투여할 경우 관련 질환을 예방할 수 있다는 것은 당업자에게 자명할 것이다."Prevention" means any action that inhibits or delays the development of a related disease. It will be apparent to those skilled in the art that the compositions herein can prevent the initial symptoms, or related diseases, if administered before they appear.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 서열번호 1의 서열과 10 뉴클레오티드 이상 상보적인 서열로 이루어진 핵산분자;를 포함하는 CTGF 유전자 발현 억제용 조성물을 제공한다.The present invention provides a composition for inhibiting CTGF gene expression comprising; a nucleic acid molecule consisting of a sequence of SEQ ID NO: 1 and a sequence complementary to 10 nucleotides or more.
서열번호 1의 서열과의 상보성이, 연속적으로 또는 비연속적으로, 10 뉴클레오티드(nucleotide; nt) 이상, 11 뉴클레오티드 이상, 12 뉴클레오티드 이상, 13 뉴클레오티드 이상, 14 뉴클레오티드 이상, 15 뉴클레오티드 이상, 16 뉴클레오티드 이상, 17 뉴클레오티드 이상 또는 18 뉴클레오티드 전체일 수 있다.Complementarity with the sequence of SEQ ID NO: 1, consecutively or discontinuously, at least 10 nucleotides (nt), at least 11 nucleotides, at least 12 nucleotides, at least 13 nucleotides, at least 14 nucleotides, at least 15 nucleotides, at least 16 nucleotides, Or at least 17 nucleotides or all 18 nucleotides.
상기 핵산분자는 siRNA, dsRNA, PNA 또는 miRNA의 일 가닥(strand)을 이루는 것일 수 있는데, 이러한 경우, 상기 siRNA, dsRNA, PNA 또는 miRNA는 RNAi(RNA 간섭; RNA interference)에 의해 상기 CTGF 유전자의 발현을 억제하는 것일 수 있고, 보다 구체적으로, CTGF 유전자의 전사체인 mRNA 서열 중, 서열번호 1의 서열로 이루어진 부위의 적어도 일부에 상보적으로 결합하여 CTGF 유전자의 발현을 억제하는 것일 수 있다.The nucleic acid molecule may be one strand of siRNA, dsRNA, PNA or miRNA, in which case the siRNA, dsRNA, PNA or miRNA is expressed in the CTGF gene by RNAi (RNA interference). It may be to suppress the, and more specifically, in the mRNA sequence which is a transcript of the CTGF gene, it may be to complementarily bind to at least a portion of the region consisting of the sequence of SEQ ID NO: 1 to inhibit the expression of the CTGF gene.
상기 핵산분자가 siRNA, dsRNA, PNA 또는 miRNA의 일 가닥(strand)을 이루는 경우, 그 서열은 당업계 통상의 기술자의 수준에서 상기 siRNA, dsRNA, PNA 또는 miRNA의 설계에 있어 고려해야할 조건들에 부합하여 설계된 것임은 자명한 것인데, 이러한 경우, 회문구조(palindrome) 서열을 갖지 않도록 하여 머리핀 구조(hairpin shape), 십자형 구조(cross shape)로 인한 RNAi 효율 저하현상을 회피하도록 설계된 것일 수 있다. 구체적으로, 본 발명의 siRNA 또는 dsRNA의 예를 들자면, 서열번호 100(5'-AACUUGAACU-3')의 서열을 포함하지 않도록 설계된 것일 수 있고, 본 발명의 PNA의 예를 들자면, 양 말단이 C와 G를 각각 가져 상보적인 관계가 형성되는 것을 회피하도록 설계한 것일 수 있으며, 상기 핵산분자 전체 서열 길이를 적절한 길이 이상을 유지하여 RNAi의 효율을 안정적으로 가질 수 있도록 설계할 수 있다.When the nucleic acid molecule forms a strand of siRNA, dsRNA, PNA or miRNA, the sequence conforms to the conditions to be considered in the design of the siRNA, dsRNA, PNA or miRNA at the level of those skilled in the art. It is obvious that it is designed in this case, in this case, it may be designed to avoid the degradation of RNAi efficiency caused by the hairpin shape (crosspin), cross-shaped (hairpin shape) so as not to have a palindrome sequence. Specifically, for example, siRNA or dsRNA of the present invention may be designed not to include the sequence of SEQ ID NO: 100 (5'-AACUUGAACU-3 '), for example, PNA of the present invention, both ends of the CNA It may be designed to avoid having a complementary relationship with each and G, it can be designed to have a stable RNAi efficiency by maintaining the entire length of the nucleic acid molecule more than the appropriate length.
상기 핵산분자의 전체 서열 길이는 10 내지 30, 11 내지 29, 12 내지 28, 13 내지 27, 14 내지 26, 15 내지 25, 16 내지 24, 16 내지 23, 16 내지 22, 16 내지 21 또는 16 내지 20 뉴클레오티드 길이일 수 있으나, 반드시 이에 제한되지는 아니하고, 적절한 길이 이상을 유지하여 RNAi의 효율을 안정적으로 가질 수 있도록 하되, 적절한 길이 이하를 유지하여 생체 내 전달 효율성을 유지하기 위해 바람직하게는 16 내지 20 뉴클레오티드 길이일 수 있다.The total sequence length of the nucleic acid molecule is 10 to 30, 11 to 29, 12 to 28, 13 to 27, 14 to 26, 15 to 25, 16 to 24, 16 to 23, 16 to 22, 16 to 21 or 16 to It may be 20 nucleotides in length, but is not necessarily limited thereto, but preferably 16 to 16 in order to maintain the efficiency of RNAi by maintaining an appropriate length or more, but to maintain the efficiency in vivo by maintaining the appropriate length or less. It may be 20 nucleotides in length.
상기 핵산분자는, 구체적으로, 서열번호 1의 서열로 이루어진 센스 RNA와 상보적으로 결합하여 siRNA를 이루는 안티센스 RNA(서열번호 2의 서열)일 수 있고, 서열번호 3의 서열로 이루어진 가닥(strand)과 상보적으로 결합하여 dsRNA를 이루는 가닥일 수 있으며, 서열번호 1의 서열로 이루어진 센스 RNA와 상보적으로 결합하여 siRNA를 이루는 안티센스 RNA(서열번호 53의 서열)일 수 있고, 서열번호 54의 서열로 이루어진 가닥(strand)과 상보적으로 결합하여 dsRNA를 이루는 가닥일 수 있으며, 서열번호 55의 서열로 이루어진 센스 RNA와 상보적으로 결합하여 siRNA를 이루는 안티센스 RNA(서열번호 56의 서열)일 수 있고, 서열번호 57의 서열로 이루어진 가닥(strand)과 상보적으로 결합하여 dsRNA를 이루는 가닥일 수 있으며, 서열번호 58의 서열로 이루어진 센스 RNA와 상보적으로 결합하여 siRNA를 이루는 안티센스 RNA(서열번호 59의 서열)일 수 있고, 서열번호 60의 서열로 이루어진 가닥(strand)과 상보적으로 결합하여 dsRNA를 이루는 가닥일 수 있으며, 서열번호 61의 서열로 이루어진 센스 RNA와 상보적으로 결합하여 siRNA를 이루는 안티센스 RNA(서열번호 62의 서열)일 수 있고, 서열번호 63의 서열로 이루어진 가닥(strand)과 상보적으로 결합하여 dsRNA를 이루는 가닥일 수 있으며, 서열번호 64의 서열로 이루어진 센스 RNA와 상보적으로 결합하여 siRNA를 이루는 안티센스 RNA(서열번호 65의 서열)일 수 있고, 서열번호 66의 서열로 이루어진 가닥(strand)과 상보적으로 결합하여 dsRNA를 이루는 가닥일 수 있으며, 서열번호 67의 서열로 이루어진 센스 RNA와 상보적으로 결합하여 siRNA를 이루는 안티센스 RNA(서열번호 68의 서열)일 수 있고, 서열번호 69의 서열로 이루어진 가닥(strand)과 상보적으로 결합하여 dsRNA를 이루는 가닥일 수 있으며, 서열번호 70의 서열로 이루어진 센스 RNA와 상보적으로 결합하여 siRNA를 이루는 안티센스 RNA(서열번호 71의 서열)일 수 있고, 서열번호 72의 서열로 이루어진 가닥(strand)과 상보적으로 결합하여 dsRNA를 이루는 가닥일 수 있다.Specifically, the nucleic acid molecule may be an antisense RNA (sequence of SEQ ID NO: 2) that forms a siRNA by complementarily binding with a sense RNA consisting of the sequence of SEQ ID NO: 1, a strand consisting of the sequence of SEQ ID NO: 3 It may be a strand complementary to the dsRNA to bind to, and the antisense RNA (sequence of SEQ ID NO: 53) that complementarily binds to the sense RNA consisting of the sequence of SEQ ID NO: 1 to form a siRNA, SEQ ID NO: 54 It may be a strand forming a dsRNA by binding complementarily to the strand consisting of a strand, and may be an antisense RNA (sequence of SEQ ID NO: 56) that complementarily binds to a sense RNA consisting of the sequence of SEQ ID NO: 55 to form an siRNA , Strand may form a dsRNA by complementarily binding to a strand consisting of the sequence of SEQ ID NO: 57, and complementarily with a sense RNA consisting of the sequence of SEQ ID NO: 58 Antisense RNA (sequence of SEQ ID NO: 59) combined to form a siRNA, may be a strand complementary to the strand consisting of the sequence of SEQ ID NO: 60 to form a strand forming a dsRNA, sense consisting of the sequence of SEQ ID NO: 61 It may be an antisense RNA (sequence of SEQ ID NO: 62) that binds complementarily with RNA to form an siRNA, may be a strand that binds complementarily with a strand consisting of the sequence of SEQ ID NO: 63 to form a dsRNA, SEQ ID NO: It may be an antisense RNA (SEQ ID NO: 65) that complementarily binds to a sense RNA consisting of a sequence of 64 to form an siRNA, and a strand that binds complementarily to a strand consisting of the sequence of SEQ ID NO: 66 to form a dsRNA. And antisense RNA (sequence of SEQ ID NO: 68) which complementarily binds to the sense RNA consisting of the sequence of SEQ ID NO: 67 to form an siRNA. It may be a strand consisting of dsRNA by binding complementarily to the strand consisting of a strand, and may be an antisense RNA (sequence of SEQ ID NO: 71) that complementarily binds to a sense RNA consisting of the sequence of SEQ ID NO: 70 to form an siRNA It may be a strand forming a dsRNA by binding complementary to the strand consisting of the sequence of SEQ ID NO: 72.
상기 핵산분자는, 구체적으로, 서열번호 87 내지 99의 서열로 이루어진 군에서 선택된 하나의 서열로 이루어진 PNA일 수 있다.Specifically, the nucleic acid molecule may be a PNA consisting of one sequence selected from the group consisting of SEQ ID NOs: 87 to 99.
상기 언급된 서열의 구체적인 정보는 첨부된 서열목록 및 하기 표 1에 구체적으로 표기하였다.Specific information of the above-mentioned sequence is specifically indicated in the attached sequence list and Table 1 below.
본 발명의 핵산분자는 인간을 포함한 동물, 예를 들어 원숭이(monkeys), 돼지(pigs), 말(horses), 소(cows), 양(sheeps), 개(dogs), 고양이(cats), 생쥐(mice), 토끼(rabbits) 등으로부터 유래할 수 있으며, 바람직하게는 인간 유래의 것일 수 있다. Nucleic acid molecules of the present invention are animals including humans, for example monkeys, pigs, horses, cows, sheep, dogs, cats, mice (mice), rabbits (rabbits) and the like, preferably may be of human origin.
본 발명의 핵산분자는 이를 구성하는 핵산 분자의 작용성 등가물, 예를 들어, 본 발명의 핵산분자의 일부 염기서열이 결실(deletion), 치환(substitution) 또는 삽입(insertion)에 의해 변형되었지만, 본 발명의 핵산분자와 기능적으로 동일한 작용을 할 수 있는 변이체(variants)를 포함하는 개념이다.The nucleic acid molecule of the present invention has been modified by deletion, substitution or insertion of functional equivalents of the nucleic acid molecule constituting the same, for example, some nucleotide sequences of the nucleic acid molecule of the present invention. It is a concept that includes a variant (variants) that can function functionally the same as the nucleic acid molecule of the invention.
보다 구체적으로, 본 발명의 핵산분자가 siRNA의 센스 RNA 또는 안티센스 RNA를 이루는 경우, 상기 센스 RNA 및 안티센스 RNA 서열의 3' 말단에 UU 또는 dTdT의 서열을 추가로 포함하는 것일 수 있는데, 이는 핵산가수분해효소에의 저항성 증대를 통한 siRNA 또는 dsRNA의 구조적 안정성 증대, 안정한 RISC의 유도를 통한 siRNA 또는 dsRNA의 RNAi 효율성 증대 등의 장점을 siRNA 또는 dsRNA에 부여할 수 있다.More specifically, when the nucleic acid molecule of the present invention forms a sense RNA or antisense RNA of siRNA, it may further include a sequence of UU or dTdT at the 3 'end of the sense RNA and antisense RNA sequence, which is a nucleic acid The siRNA or dsRNA can be given to the siRNA or the dsRNA by increasing the structural stability of the siRNA or dsRNA by increasing the resistance to the enzyme, and increasing the RNAi efficiency of the siRNA or the dsRNA through the induction of a stable RISC.
보다 구체적으로, 본 발명의 핵산분자가 PNA를 이루는 경우, 적어도 하나의 말단에 서열번호 101 내지 113로 이루어진 군에서 선택된 적어도 하나의 서열로 이루어진 펩티드; 또는 mPEG 5000이 더 결합된 것일 수 있는데, 이는 PNA의 조성물 내 용해도(solubility) 또는 침투성(penetration)을 상승시키기 위한 목적일 수 있고, 양 말단(N-말단 또는 C-말단) 중 C-말단에 결합됨이 별도의 링커를 요하지 않는다는 점에서 보다 바람직하다.More specifically, when the nucleic acid molecule of the present invention forms a PNA, at least one peptide consisting of at least one sequence selected from the group consisting of SEQ ID NOs: 101 to 113; Or mPEG 5000 may be further bound, which may be for the purpose of increasing the solubility or penetration in the composition of the PNA, at the C-terminus at both ends (N-terminus or C-terminus). Bonding is more preferred in that it does not require a separate linker.
본 발명의 핵산분자는 표준 분자 생물학 기술, 예를 들어 화학적 합성 방법 또는 재조합 방법을 이용하여 분리 또는 제조하거나, 시판되는 것을 사용할 수 있다. 또한, 본 발명의 조성물은 본 발명의 핵산분자 자체뿐만 아니라, 세포 내에서 본 발명의 핵산분자의 발현율을 증가시킬 수 있는 기타의 물질, 예를 들어 화합물, 천연물, 신규 단백질 등을 포함할 수 있다.Nucleic acid molecules of the present invention may be isolated or prepared using standard molecular biology techniques, such as chemical synthesis or recombinant methods, or may be commercially available. In addition, the composition of the present invention may contain not only the nucleic acid molecule of the present invention, but also other substances capable of increasing the expression rate of the nucleic acid molecule of the present invention in cells, for example, compounds, natural products, novel proteins, and the like. .
한편, 본 발명의 핵산분자는 세포 내 발현을 위한 벡터에 포함되어 제공될 수 있다.On the other hand, the nucleic acid molecule of the present invention can be provided included in the vector for expression in the cell.
본 발명의 핵산분자는 DNA 및 DEAE-덱스트란의 복합체, DNA 및 핵 단백질의 복합체, DNA 및 지질의 복합체 등의 다양한 형질전환 기술을 이용하여 세포 내로 도입시킬 수 있는데, 이를 위해 본 발명의 핵산분자는 세포 내로의 효율적인 도입을 가능하게 하는 전달체 내에 포함된 형태일 수 있다. 상기 전달체는 바람직하게는 벡터이며, 바이러스 벡터 및 비바이러스 벡터 모두 사용 가능하다. 바이러스 벡터(viral vector)로서 예를 들면, 렌티바이러스(lentivirus), 레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 허피스바이러스(herpes virus) 및 아비폭스바이러스(avipox virus) 벡터 등을 사용할 수 있으며, 바람직하게는 렌티바이러스 벡터이지만, 이에 제한되는 것은 아니다. 렌티바이러스는 레트로바이러스의 일종으로 핵공(nucleopore)이나 완전한 핵막으로의 능동도입을 가능하게 하는 사전-통합 복합체(바이러스 "쉘(shell)")의 친핵성으로 인해 분열 세포뿐만 아니라 미분열 세포도 감염시킬 수 있는 특징이 있다.Nucleic acid molecules of the present invention can be introduced into cells using a variety of transformation techniques, such as complexes of DNA and DEAE-dextran, complexes of DNA and nuclear proteins, complexes of DNA and lipids, for this purpose nucleic acid molecules of the present invention Can be in a form contained within a carrier that allows for efficient introduction into a cell. The carrier is preferably a vector, and both viral and non-viral vectors can be used. As a viral vector, for example, lentiviruses, retroviruses, adenoviruses, adenoviruses, herpesviruses, and abipoxvirus vectors may be used. Preferably is a lentiviral vector, but is not limited thereto. Lentiviruses are a type of retrovirus that infects dividing as well as dividing cells due to the nucleophilicity of a pre-integrated complex (virus "shell") that enables active introduction into the nucleopore or the complete nuclear membrane. There are features that can be made.
또한, 본 발명의 핵산분자를 포함하는 벡터는 선별마커를 추가로 포함하는 것이 바람직하다. 상기 "선별마커(selection marker)"란 본 발명의 핵산분자가 도입된 세포의 선별을 용이하게 하기 위한 것이다. 상기 벡터에서 사용할 수 있는 선별마커로는 벡터의 도입 여부를 용이하게 검출 또는 측정할 수 있는 유전자라면, 특별히 한정되지 않으나, 대표적으로 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들, 예를 들어 GFP(녹색 형광 단백질), 퓨로마이신(puromycin), 네오마이신(Neomycin: Neo), 하이그로마이신(hygromycin: Hyg), 히스티디놀 디하이드로게나제(histidinol dehydrogenase gene: hisD) 및 구아닌 포스포리보실트랜스퍼라제(guanine phosphosribosyltransferase: Gpt) 등이 있으며, 바람직하게는 GFP(녹색 형광 단백질) 및 퓨로마이신 마커를 사용할 수 있다.In addition, the vector containing the nucleic acid molecule of the present invention preferably further comprises a selection marker. The "selection marker" is intended to facilitate selection of cells into which the nucleic acid molecule of the present invention has been introduced. The selectable markers that can be used in the vector are not particularly limited as long as they are genes capable of easily detecting or measuring the introduction of the vector, but typically, drug resistance, nutritional requirements, resistance to cytotoxic agents, or surface proteins. Markers that confer a selectable phenotype, such as expression, for example GFP (green fluorescent protein), puromycin, neomycin (Neo), hygromycin (Hyg), histidinol dihydro Genase (histidinol dehydrogenase gene: hisD) and guanine phosphosribosyltransferase (Gpt), and the like, and preferably GFP (green fluorescent protein) and puromycin markers can be used.
본 발명은 상술한 조성물을 포함하는 섬유증식성 질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for the prevention or treatment of fibroproliferative diseases comprising the composition described above.
본 발명의 약학적 조성물은 섬유증식성 질환의 예방 또는 치료 효과를 갖는 것으로서, 이는 본 발명의 핵산분자의 CTGF 유전자의 발현을 억제함으로써 달성되는 효과일 수 있다.The pharmaceutical composition of the present invention has a prophylactic or therapeutic effect of fibrotic disease, which may be an effect achieved by inhibiting the expression of the CTGF gene of the nucleic acid molecule of the present invention.
본 발명의 약학적 조성물의 예방 또는 치료 대상 질환인 섬유증식성 질환의 예로서, 비대흉터, 켈로이드, 섬유증, 폐 섬유증, 특발성 폐 섬유화증, 간 섬유증, 신장 섬유증, 낭포성 섬유증, 골수섬유증, 복막후 섬유증, 피부경화증, 당뇨병성 망막증, 듀켄씨근이영양증, 방사-유도 섬유증, 심근 섬유증, 당뇨병성 신장질환, 만성 신부전증, 만성 바이러스성 간염, 담도섬유화, 지방간염, 알코올성 지방간염, 비알코올성 지방간염, 증식유리체망막병증, 근골격계 종양, 골육종, 횡문근육종, 교모세포종, 폐암, 난소암, 식도암, 대장암, 췌장암, 신장경화증, 사르코이드증, 녹내장, 황반변성, 망막하섬유화증, 맥락막혈관신생, 유리체망막병증, 증식유리체망막병증, 당뇨망막병증, 각막염, 익상편, 검열반, 피부경화증, 자궁근종, 전신경화증, 사구체 신염, 사람 면역 결핍 바이러스성 신질환, 급성 호흡곤란 증후군, 만성 폐쇄성 폐질환, 레이노병, 류마티스 관절염, 다발근염, 혈관협착증, 치주염 및 치주은으로 이루어진 군에서 선택된 적어도 하나의 질환일 수 있으나, 반드시 이에 제한되지 아니하고, CTGF 또는 콜라겐 등의 과발현으로 인한 질환에 해당하는 것이라면 특별히 제한되지 아니한다.Examples of fibrotic diseases, which are diseases to be prevented or treated for the pharmaceutical composition of the present invention, include hypertrophic scars, keloids, fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, myelofibrosis, and post-peritoneal Fibrosis, scleroderma, diabetic retinopathy, Duken's muscular dystrophy, radiation-induced fibrosis, myocardial fibrosis, diabetic kidney disease, chronic renal failure, chronic viral hepatitis, biliary fibrosis, fatty hepatitis, alcoholic fatty hepatitis, nonalcoholic steatohepatitis, proliferation Vitreoretinopathy, Musculoskeletal Tumor, Osteosarcoma, Rhabdomyosarcoma, Glioblastoma, Lung Cancer, Ovarian Cancer, Esophageal Cancer, Colon Cancer, Pancreatic Cancer, Renal Sclerosis, Sarcoidosis, Glaucoma, Macular Degeneration, Subretinal Fibrosis, Choroidal Angiogenesis, Vitreoretinal Disease, proliferative vitreoretinopathy, diabetic retinopathy, keratitis, pterygium, censorship, scleroderma, uterine fibroids, systemic sclerosis, glomerulonephritis, human face Deficiency viral renal disease, acute respiratory distress syndrome, chronic obstructive pulmonary disease, Raynaud's disease, rheumatoid arthritis, polymyositis, vascular stenosis, periodontitis and periodontal gingiva may be at least one disease selected from, but not necessarily limited to, CTGF Or it is not particularly limited as long as it corresponds to a disease caused by overexpression such as collagen.
본 발명의 약학적 조성물은 약학적으로 허용가능한 담체를 추가로 포함할 수 있으며, 담체와 함께 제제화될 수 있다. 본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로오스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.The pharmaceutical composition of the present invention may further comprise a pharmaceutically acceptable carrier, and may be formulated with the carrier. As used herein, the term "pharmaceutically acceptable carrier" refers to a carrier or diluent that does not stimulate the organism and does not inhibit the biological activity and properties of the administered compound. Acceptable pharmaceutical carriers in compositions formulated in liquid solutions are sterile and biocompatible, which include saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary. Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
본 발명의 약학적 조성물은 본 발명의 핵산분자를 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조할 수 있다. 본 발명의 약학적 제형은 구강(oral), 직장(rectal), 비강(nasal), 국소(topical; 볼 및 혀 밑을 포함), 피하, 질(vaginal) 또는 비경구(parenteral; 근육내, 피하 및 정맥내를 포함) 투여에 적당한 것 또는 흡입(inhalation) 또는 주입(insufflation)에 의한 투여에 적당한 형태를 포함한다.The pharmaceutical composition of the present invention is applicable to any formulation containing the nucleic acid molecule of the present invention as an active ingredient, and can be prepared in oral or parenteral formulations. Pharmaceutical formulations of the present invention may be oral, rectal, nasal, topical (including the cheek and sublingual), subcutaneous, vaginal or parenteral (intramuscular, subcutaneous). And forms suitable for administration by inhalation or insufflation.
본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount. Effective dose levels depend on the type of disease, severity, activity of the drug, sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent medications, and other factors well known in the medical field. Can be determined. The pharmaceutical compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can achieve the maximum effect with a minimum amount without side effects, which can be readily determined by one skilled in the art.
본 발명의 약학적 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 매우 다양하며, 적정한 투여량은 예를 들면 환자의 체내에 축적된 약물의 양 및/또는 사용되는 본 발명의 핵산분자의 구체적 효능정도에 따라 달라질 수 있다. 일반적으로 인비보 동물모델 및 인비트로에서 효과적인 것으로 측정된 EC50을 기초로 계산될 수 있으며, 예를 들면 체중 1kg당 0.01 μg 내지 1 g 일 수 있으며, 일별, 주별, 월별 또는 연별의 단위 기간으로, 단위 기간 당 일회 내지 수회 나누어 투여될 수 있으며, 또는 인퓨전 펌프를 이용하여 장기간 연속적으로 투여될 수 있다. 반복투여 횟수는 약물이 체내 머무는 시간, 체내 약물 농도 등을 고려하여 결정된다. 질환 치료 경과에 따라 치료가 된 후라도, 재발을 위해 조성물이 투여될 수 있다.The dosage of the pharmaceutical composition of the present invention varies widely depending on the weight, age, sex, health condition, diet, time of administration, administration method, excretion rate and severity of the disease, and the appropriate dosage is, for example, Depending on the amount of drug accumulated in the patient's body and / or the specific efficacy of the nucleic acid molecules of the invention used. It can be calculated on the basis of EC50, which is generally determined to be effective in in vivo animal models and in vitro, for example from 0.01 μg to 1 g per kg of body weight, in unit periods of daily, weekly, monthly or yearly It may be administered once or several times per unit period, or may be continuously administered for a long time using an infusion pump. The number of repeated doses is determined in consideration of the time the drug stays in the body, the drug concentration in the body, and the like. Even after treatment according to the course of the disease treatment, the composition can be administered for relapse.
본 발명의 약학적 조성물은 섬유증식성 질환의 치료와 관련하여 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 또는 유효성분의 용해성 및/또는 흡수성을 유지/증가시키는 화합물을 추가로 함유할 수 있다. 또한 선택적으로, 화학치료제, 항염증제, 항바이러스제 및/또는 면역조절제 등을 추가로 포함할 수 있다.The pharmaceutical composition of the present invention may further contain a compound which maintains / increases the solubility and / or absorption of at least one active ingredient or the active ingredient having the same or similar function in the treatment of fibroproliferative diseases. It may also optionally further comprise chemotherapeutic agents, anti-inflammatory agents, antiviral agents and / or immunomodulators and the like.
또한, 본 발명의 약학적 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말의 형태일 수 있다.In addition, the pharmaceutical compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal. The formulations may be in the form of powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powders.
본 발명의 조성물은 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지체에 담지한 것일 수 있고, 담지체의 종류에 있어 핵산분자를 담지할 수 있는 것으로서 당업계에 공지된 것이라면 특별한 제한은 없으나, 예를 들면, 리포좀, 리포펙타민, 덴드리머, 마이셀, 다공성 실리카 입자, 아미노클레이 및 하이드로겔로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 바람직하게는 높은 핵산분자 담지율, 서방성, 생분해성 등의 장점을 갖는 다공성 실리카 입자일 수 있다.The composition of the present invention may be carried on a carrier having a nucleic acid molecule that complementarily binds to at least a portion of a transcript of a CTGF gene, and is known in the art as capable of supporting a nucleic acid molecule in a kind of the carrier. If there is no particular limitation, for example, it may be at least one selected from the group consisting of liposomes, lipofectamine, dendrimers, micelles, porous silica particles, aminoclays and hydrogels, but preferably high nucleic acid molecule loading rate, sustained release It may be porous silica particles having advantages such as property, biodegradability and the like.
본 발명은 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하는 CTGF 유전자 발현 억제용 조성물을 제공한다. 상기 다공성 실리카 입자는 실리카(SiO 2) 소재의 입자이며, 나노 사이즈의 입경을 갖는다.The present invention provides a composition for inhibiting CTGF gene expression, comprising; porous silica particles carrying nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene. The porous silica particles are particles of silica (SiO 2 ) material, and have a particle size of nano size.
본 발명의 다공성 실리카 나노입자는 다공성 입자로서, 나노사이즈의 기공을 갖고, 그 표면 및/또는 기공 내부에 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지할 수 있다.Porous silica nanoparticles of the present invention is a porous particle, having a nano-sized pores, can carry a nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene on the surface and / or inside the pores.
본 발명의 다공성 실리카 입자는 생분해성 입자로서, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지하여 체내에 투여되었을 때 체내에서 생분해되면서 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 방출할 수 있는데, 본 발명의 다공성 실리카 입자는 체내에서 서서히 분해되어 담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자가 서방적으로 방출되도록 할 수 있다. 예를 들면, 하기 수학식 1의 흡광도의 비가 1/2이 되는 t가 24 이상이다:Porous silica particles of the present invention are biodegradable particles, which carry a nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene, and are complemented to at least a portion of the transcript of the CTGF gene while being biodegraded in the body when administered to the body. The porous silica particles of the present invention may be slowly degraded in the body to allow sustained release of nucleic acid molecules that complementarily bind to at least a portion of the transcript of the supported CTGF gene. have. For example, t, which is the ratio of the absorbance of the following formula 1 to 1/2, is 24 or more:
[수학식 1][Equation 1]
A t/A 0 A t / A 0
(식 중, A 0는 상기 다공성 실리카 입자 1mg/ml 현탁액 5ml를 직경 50kDa의 기공을 갖는 원통형 투과막에 넣고 측정된 다공성 실리카 입자의 흡광도이고,Wherein A 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles in a cylindrical permeable membrane having pores having a diameter of 50 kDa,
상기 투과막 외부에는 상기 투과막과 접하며, 상기 현탁액과 동일한 용매 15ml가 위치하고, 상기 투과막 내외부는 37℃에서 60rpm 수평 교반되며,Outside of the permeable membrane is in contact with the permeable membrane, 15ml of the same solvent as the suspension is located, the inside and outside of the permeable membrane is stirred 60 rpm at 37 ℃ horizontal,
상기 현탁액의 pH는 7.4이고,The pH of the suspension is 7.4,
A t는 상기 A 0의 측정시로부터 t시간 경과 후에 측정된 다공성 실리카 입자의 흡광도임).A t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
상기 수학식 1은 다공성 실리카 입자가 체내와 유사한 환경에서 어느 정도의 속도로 분해되는지를 의미하는 것이다. Equation 1 means that the rate at which the porous silica particles are degraded in an environment similar to the body.
상기 수학식 1에서의 흡광도 A 0, A t는 예를 들면 도 34에 예시된 바와 같이, 원통형 투과막에 다공성 실리카 입자 및 현탁액을 넣고, 투과막 외부에도 동일한 현탁액을 넣고 측정된 것일 수 있다.Absorbance A 0 , A t in Equation 1 may be measured by putting porous silica particles and a suspension in a cylindrical permeable membrane and putting the same suspension outside the permeable membrane, as illustrated in FIG. 34, for example.
본 발명의 다공성 실리카 입자는 생분해성으로서, 현탁액 내에서 서서히 분해될 수 있고, 직경 50kDa는 약 5nm에 해당하는 것으로서 생분해된 다공성 실리카 입자는 직경 50kDa의 투과막을 통과할 수 있고, 원통형 투과막은 60rpm 수평 교반 하에 있으므로 현탁액이 고루 섞일 수 있으며 분해된 다공성 실리카 입자는 투과막 외부로 나올 수 있다.The porous silica particles of the present invention are biodegradable, and can be slowly decomposed in suspension, 50 kDa in diameter corresponds to about 5 nm, and biodegradable porous silica particles can pass through a permeable membrane of 50 kDa in diameter, and a cylindrical permeable membrane is 60 rpm horizontal. Under stirring, the suspension can be mixed evenly and the degraded porous silica particles can come out of the permeable membrane.
상기 수학식 1에서의 흡광도는 예를 들어 투과막 외부의 현탁액이 새로운 현탁액으로 교체되는 환경 하에 측정된 것일 수 있다. 현탁액은 지속적으로 교체되는 것일 수 있고, 일정 기간마다 교체되는 것일 수 있으며, 상기 일정 기간은 정기 또는 비정기적인 기간일 수 있다. 예를 들어 1시간 내지 1주일의 범위 내에서, 1시간 간격, 2시간 간격, 3시간 간격, 6시간 간격, 12시간 간격, 24시간 간격, 2일 간격, 3일 간격, 4일 간격, 7일 간격 등으로 교체될 수 있으나 이에 제한되는 것은 아니다The absorbance in Equation 1 may be measured, for example, under an environment in which the suspension outside the permeable membrane is replaced with a new suspension. The suspension can be one that is constantly replaced, one that can be replaced every period, and the period can be periodic or irregular. For example, within the range of 1 hour to 1 week, 1 hour interval, 2 hours interval, 3 hours interval, 6 hours interval, 12 hours interval, 24 hours interval, 2 days interval, 3 days interval, 4 days interval, 7 It may be replaced at day intervals, but is not limited thereto.
상기 흡광도의 비가 1/2가 된다는 것은 t시간 후에 흡광도가 초기 흡광도의 절반이 된다는 것인 바, 이는 다공성 실리카 입자의 대략 절반이 분해되었다는 의미이다.The ratio of the absorbance to 1/2 means that the absorbance is half of the initial absorbance after t hours, which means that approximately half of the porous silica particles are decomposed.
상기 현탁액은 완충용액일 수 있고, 구체적인 예를 들면, PBS(phosphate buffered saline) 및 SBF(simulated body fluid)로 이루어진 군에서 선택된 1종 이상일 수 있으며, 보다 구체적으로는 PBS일 수 있다.The suspension may be a buffer solution, for example, at least one selected from the group consisting of phosphate buffered saline (PBS) and simulated body fluid (SBF), and more specifically, PBS.
본 발명의 상기 수학식 1의 흡광도의 비가 1/2이 되는 t가 24 이상으로, 예를 들면 t는 24 내지 120일 수 있고, 예를 들어 상기 범위 내에서 24 내지 96, 24 내지 72, 30 내지 70, 40 내지 70, 50 내지 65 등일 수 있으나, 이에 제한되는 것은 아니다.T of the absorbance ratio of Equation 1 of the present invention is 1/2 or more, for example, t may be 24 to 120, for example, 24 to 96, 24 to 72, 30 within the above range To 70, 40 to 70, 50 to 65 and the like, but is not limited thereto.
본 발명의 다공성 실리카 입자는 상기 수학식 1의 흡광도의 비가 1/5가 되는 t가 예를 들면 70 내지 140일 수 있고, 예를 들어 상기 범위 내에서 80 내지 140, 80 내지 120, 80 내지 110, 70 내지 140, 70 내지 120, 70 내지 110 등일 수 있으나, 이에 제한되는 것은 아니다.In the porous silica particles of the present invention, t, for example, the absorbance ratio of Equation 1 is 1/5 may be, for example, 70 to 140, for example, 80 to 140, 80 to 120, and 80 to 110 within the above range. , 70 to 140, 70 to 120, 70 to 110, and the like, but is not limited thereto.
본 발명의 다공성 실리카 입자는 상기 수학식 1의 흡광도의 비가 1/20가 되는 t가 예를 들면 130 내지 220일 수 있고, 예를 들어 상기 범위 내에서 130 내지 200, 140 내지 200, 140 내지 180, 150 내지 180 등일 수 있으나, 이에 제한되는 것은 아니다.In the porous silica particles of the present invention, t may be 130 to 220, for example, wherein the ratio of absorbance of Equation 1 is 1/20, for example, 130 to 200, 140 to 200, 140 to 180 within the above range. , 150 to 180, and the like, but is not limited thereto.
본 발명의 다공성 실리카 입자는 측정되는 흡광도가 0.01 이하가 되는 t가 예를 들면 250 이상, 예를 들어, 300 이상, 350 이상, 400 이상, 500 이상, 1000 이상 등일 수 있으며, 그 상한은 2000일 수 있으나, 이에 제한되는 것은 아니다.The porous silica particles of the present invention may have a measured absorbance of 0.01 or less, for example, 250 or more, for example, 300 or more, 350 or more, 400 or more, 500 or more, 1000 or more, and the upper limit thereof is 2000 days. May be, but is not limited thereto.
본 발명의 다공성 실리카 입자에서 상기 수학식 1의 흡광도의 비와 t는 높은 양의 상관 관계를 갖는 것으로서, 예를 들면 피어슨 상관 계수가 0.8 이상일 수 있고, 예를 들어, 0.9 이상, 0.95 이상일 수 있다.In the porous silica particles of the present invention, the ratio of the absorbance of Formula 1 and t have a high positive correlation. For example, the Pearson correlation coefficient may be 0.8 or more, for example, 0.9 or more and 0.95 or more. .
상기 수학식 1의 t는 다공성 실리카 입자가 체내와 유사한 환경에서 어느 정도의 속도로 분해되는지를 의미하는 것으로서, 이는 예를 들면 다공성 실리카 입자의 표면적, 입경, 기공 직경, 표면 및/또는 기공 내부의 치환기, 표면의 치밀함 정도 등을 조절함으로써 조절될 수 있다.T in Equation 1 means how fast the porous silica particles decompose in an environment similar to the body, for example, the surface area, particle diameter, pore diameter, surface and / or inside the pores of the porous silica particles. It can be controlled by controlling the substituent, the degree of compactness of the surface, and the like.
예를 들면, 입자의 표면적을 증가시켜 t를 감소시키거나, 표면적을 감소시켜 t를 증가시킬 수 있다. 표면적은 입자의 직경, 기공의 직경을 조절함으로써 조절될 수 있다. 또한, 표면 및/또는 기공 내부에 치환기를 위치시켜 다공성 실리카 입자가 환경(용매 등)에 직접 노출되는 것을 줄여 t를 증가시킬 수 있다. 또한, 다공성 실리카 입자에 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지시키고 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자와 다공성 실리카 입자 간의 친화도를 증가시켜, 다공성 실리카 실리카 입자가 환경에 직접 노출되는 것을 줄여 t를 증가시킬 수 있다. 또한, 입자의 제조시에 표면을 보다 치밀하게 제조하여 t를 증가시킬 수도 있다. 상기에는 수학식 1의 t를 조절할 수 있는 다양한 예시를 서술하였으나, 이에 제한되는 것은 아니다.For example, the surface area of the particles can be increased to reduce t, or the surface area can be reduced to increase t. The surface area can be adjusted by adjusting the diameter of the particles and the diameter of the pores. In addition, by placing substituents on the surface and / or within the pores, it is possible to increase t by reducing the direct exposure of porous silica particles to the environment (such as solvents). In addition, the porous silica particles carry nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene, and increase the affinity between the nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene and the porous silica particles. In this way, it is possible to increase t by reducing the direct exposure of the porous silica silica particles to the environment. In addition, the surface may be made more densely at the time of preparation of the particles to increase t. In the above, various examples of adjusting t in Equation 1 have been described, but are not limited thereto.
본 발명의 다공성 실리카 입자는 예를 들면 구형 입자일 수 있으나, 이에 제한되는 것은 아니다.Porous silica particles of the present invention may be, for example, spherical particles, but is not limited thereto.
본 발명의 다공성 실리카 입자는 평균 직경이 예를 들면 150nm 내지 1000nm일 수 있고, 예를 들어 상기 범위 내에서 예를 들면 150nm 내지 800nm, 150nm 내지 500nm, 150nm 내지 400nm, 150nm 내지 300nm, 150nm 내지 200nm일 수 있으나, 이에 제한되는 것은 아니다.The porous silica particles of the present invention may have an average diameter of, for example, 150 nm to 1000 nm, for example, within the above range, for example, 150 nm to 800 nm, 150 nm to 500 nm, 150 nm to 400 nm, 150 nm to 300 nm, and 150 nm to 200 nm. May be, but is not limited thereto.
본 발명의 다공성 실리카 입자는 평균 기공 직경이 예를 들면 1nm 내지 100nm일 수 있고, 예를 들어 상기 범위 내에서 예를 들면 5nm 내지 100nm, 7nm 내지 100nm, 7nm 내지 50nm, 10nm 내지 50nm, 10nm 내지 30nm, 7nm 내지 30nm일 수 있으나, 이에 제한되는 것은 아니다. 상기와 같은 큰 직경을 가져 다량의 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지할 수 있고, 크기가 큰 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자의 담지도 가능하다.The porous silica particles of the present invention may have an average pore diameter of, for example, 1 nm to 100 nm, for example, within the above range, for example, 5 nm to 100 nm, 7 nm to 100 nm, 7 nm to 50 nm, 10 nm to 50 nm, 10 nm to 30 nm. , 7 nm to 30 nm, but is not limited thereto. A nucleic acid molecule having a large diameter as described above may carry a nucleic acid molecule that complementarily binds to at least a portion of a transcript of a large amount of CTGF gene, and complementarily binds to at least a portion of a transcript of a large CTGF gene. It can also be supported.
본 발명의 다공성 실리카 입자는 BET 표면적이 예를 들면 200m 2/g 내지 700m 2/g일 수 있다. 예를 들어 상기 범위 내에서 200m 2/g 내지 700m 2/g, 200m 2/g 내지 650m 2/g, 250m 2/g 내지 650m 2/g, 300m 2/g 내지 700m 2/g, 300m 2/g 내지 650m 2/g, 300m 2/g 내지 600m 2/g, 300m 2/g 내지 550m 2/g, 300m 2/g 내지 500m 2/g, 300m 2/g 내지 450m 2/g 등일 수 있으나, 이에 제한되는 것은 아니다.The porous silica particles of the present invention may have a BET surface area of, for example, 200 m 2 / g to 700 m 2 / g. For example, within the above range 200 m 2 / g to 700 m 2 / g, 200 m 2 / g to 650 m 2 / g, 250 m 2 / g to 650 m 2 / g, 300 m 2 / g to 700 m 2 / g, 300 m 2 / g to 650m 2 / g, 300m 2 / g to 600m 2 / g, 300m 2 / g to 550m 2 / g, 300m 2 / g to 500m 2 / g, 300m 2 / g to 450m 2 / g, etc. It is not limited to this.
본 발명의 다공성 실리카 나노입자는 g당 부피가 예를 들면 0.7ml 내지 2.2ml일 수 있다. 예를 들어 상기 범위 내에서 0.7ml 내지 2.0ml, 0.8ml 내지 2.2ml, 0,8 ml 내지 2.0ml, 0.9 ml 내지 2.0ml, 1.0 ml 내지 2.0ml 등일 수 있으나, 이에 제한되는 것은 아니다. g당 부피가 과도하게 작아지면 분해 속도가 너무 빨라질 수 있고, 과도하게 큰 입자는 제조가 어렵거나, 온전한 형상을 가질 수 없을 수 있다.The porous silica nanoparticles of the present invention may have a volume per g, for example, 0.7 ml to 2.2 ml. For example, within the above range may be 0.7ml to 2.0ml, 0.8ml to 2.2ml, 0,8ml to 2.0ml, 0.9ml to 2.0ml, 1.0ml to 2.0ml and the like, but is not limited thereto. If the volume per gram is too small, the rate of decomposition may be too high, and excessively large particles may be difficult to manufacture or may not have an intact shape.
본 발명의 다공성 실리카 입자는 외부 표면 및/또는 기공 내부에 친수성 치환기 및/또는 소수성 치환기가 존재할 수 있다. 예를 들면 표면 및 기공 내부 모두 친수성 치환기만 존재하거나, 소수성 치환기만 존재할 수도 있고, 표면 또는 기공 내부에만 친수성 치환기가 존재하거나, 소수성 치환기가 존재할 수도 있고, 표면에는 친수성 치환기, 기공 내부에는 소수성 치환기가 존재할 수도 있고, 그 반대의 경우도 가능하다.The porous silica particles of the present invention may have hydrophilic substituents and / or hydrophobic substituents on the outer surface and / or inside the pores. For example, only hydrophilic substituents may exist on both the surface and inside of the pores, or only hydrophobic substituents may exist, hydrophilic substituents may exist on the surface or inside of the pores, hydrophobic substituents may exist on the surface, hydrophilic substituents on the surface, and hydrophobic substituents inside the pores. It may be present and vice versa.
본 발명의 다공성 실리카 입자에 담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자의 방출은 주로 나노입자의 분해에 의해 수행되는 것인 바, 상기 치환기의 조절로 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 환경에 대한 다공성 실리카 입자의 상호 작용이 조절되어 나노입자 자체의 분해 속도가 조절되어 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 속도가 조절될 수 있고, 또한, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자는 나노입자로부터 확산되어 방출될 수도 있는데, 상기 치환기의 조절로 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자의 나노입자에 대한 결합력이 조절되어 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자의 방출이 조절될 수 있다.The release of nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene supported on the porous silica particles of the present invention is mainly performed by the decomposition of the nanoparticles. The interaction of the porous silica particles with the nucleic acid molecule release environment that complementarily binds to at least a portion of the carcass is regulated so that the rate of degradation of the nanoparticles is controlled to complementally bind to at least a portion of the transcript of the CTGF gene. The release rate may be regulated, and nucleic acid molecules complementarily binding to at least a portion of the transcript of the CTGF gene may be diffused and released from the nanoparticles, and at least a portion of the transcript of the CTGF gene is controlled by the control of the substituents. The binding force of the nucleic acid molecules that complementarily bind to the nanoparticles is controlled to at least the transcript of the CTGF gene. Release of nucleic acid molecules that complementarily bind to some can be controlled.
또한, 난용성(소수성) CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력 증진을 위해 기공 내부에는 소수성 치환기가 존재하고, 사용, 제형화의 용이성 등의 측면에서 입자의 표면은 친수성 치환기가 존재하도록 하는 등의 처리도 가능하다.In addition, hydrophobic substituents are present inside the pores to enhance the binding ability of the poorly soluble (hydrophobic) CTGF gene to at least a portion of the transcript of the transcript, and in view of ease of use and formulation. The surface of the particles may also be treated such that a hydrophilic substituent is present.
친수성 치환기는 예를 들면 히드록시기, 카르복시기, 아미노기, 카르보닐기, 설프히드릴기, 포스페이트기, 티올기, 암모늄기, 에스터기, 이미드기, 티오이미드기, 케토기, 에터기, 인덴기, 설포닐기, 폴리에틸렌글리콜기 등을 들 수 있고, 소수성 치환기는 예를 들면 치환 또는 비치환된 C1 내지 C30의 알킬기, 치환 또는 비치환된 C3 내지 C30의 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30의 아릴기, 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기, 할로겐기, C1 내지 C30의 에스테르기, 및 할로겐 함유기 등을 들 수 있다.Hydrophilic substituents are, for example, hydroxyl groups, carboxy groups, amino groups, carbonyl groups, sulfhydryl groups, phosphate groups, thiol groups, ammonium groups, ester groups, imide groups, thiimide groups, keto groups, ether groups, indene groups, sulfonyl groups, polyethylene Glycol groups and the like, and the hydrophobic substituent is, for example, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C3 to C30 cycloalkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted Or an unsubstituted C2 to C30 heteroaryl group, a halogen group, a C1 to C30 ester group, a halogen-containing group, and the like.
또한, 본 발명의 다공성 실리카 입자는 외부 표면 및/또는 기공 내부가 양전하, 음전하 및/또는 무전하로 대전된 것일 수 있다. 예를 들면 표면 및 기공 내부 모두 양전하로 대전되거나, 음전하로 대전될 수 있고, 표면 또는 기공 내부만 양전하로 대전되거나, 음전하로 대전될 수 있고, 표면은 양전하, 기공 내부는 음전하로 대전될 수 있고, 그 반대의 경우도 가능하며, 무전하의 경우도 마찬가지이다.In addition, the porous silica particles of the present invention may be one in which the outer surface and / or the inside of the pores are positively charged, negatively charged and / or uncharged. For example, both the surface and the inside of the pore may be positively charged, or may be negatively charged, only the surface or the inside of the pore may be positively charged, or may be negatively charged, the surface may be positively charged, and the interior of the pore may be negatively charged. The reverse is also possible, and vice versa.
상기 대전은 예를 들면 비이온성 치환기, 양이온성 치환기 또는 음이온성 치환기가 존재함으로써 된 것일 수 있다.The charging may be, for example, by the presence of a nonionic substituent, a cationic substituent or an anionic substituent.
상기 양이온성 치환기는 예를 들면 염기성기로서 아미노기, 그 외 질소함유기 등일 수 있고, 구체적으로는, 아미노기, 아미노알킬기, 알킬아미노기, 질소원자를 포함하는 헤테로고리 방향족화합물기, 시안기 및 구아니딘기로 이루어진 군에서 선택된 적어도 하나의 작용기일 수 있으나, 이에 제한되는 것은 아니다.The cationic substituent may be, for example, an amino group, another nitrogen-containing group, or the like as a basic group, and specifically, a heterocyclic aromatic compound group including a amino group, an aminoalkyl group, an alkylamino group, and a nitrogen atom, a cyan group, and a guanidine group. At least one functional group selected from the group consisting of, but is not limited thereto.
상기 음이온성 치환기는 예를 들면 산성기로서 카르복시기(-COOH), 술폰산기(-SO 3H), 티올기(-SH) 등일 수 있으나, 이에 제한되는 것은 아니다.The anionic substituent may be, for example, a carboxy group (-COOH), a sulfonic acid group (-SO 3 H), a thiol group (-SH), etc., as an acidic group, but is not limited thereto.
마찬가지로 상기 대전에 의해 상기 치환기의 조절로 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 환경에 대한 다공성 실리카 입자의 상호 작용이 조절되어 나노입자 자체의 분해 속도가 조절되어 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 속도가 조절될 수 있고, 또한, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자는 나노입자로부터 확산되어 방출될 수도 있는데, 상기 치환기의 조절로 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자의 나노입자에 대한 결합력이 조절되어 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 방출이 조절될 수 있다.Likewise, by controlling the substituents, the interaction of the porous silica particles with the nucleic acid molecule release environment that complementarily binds to at least a part of the transcript of the CTGF gene is regulated by controlling the substituent, thereby controlling the rate of degradation of the nanoparticles themselves. The rate of release of nucleic acid molecules complementarily binding to at least a portion of the transcript may be controlled, and the nucleic acid molecules complementarily binding to at least a portion of the transcript of the CTGF gene may be diffused and released from the nanoparticles. By controlling the substituents, the binding force of the nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene is controlled to the nanoparticles, thereby controlling the release of the nucleic acid molecules that complementarily bind to the transcript of the CTGF gene. Can be.
또한, 본 발명의 다공성 실리카 입자는 그 표면 및/또는 기공 내부에 상기 외에 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자의 담지, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자의 표적 세포로의 이동, 그외 기타 목적을 위한 물질의 담지 또는 그외 추가 치환기의 결합 등을 위한 치환기가 존재할 수 있으며, 이에 결합된 항체, 리간드, 세포투과성 펩타이드 또는 엡타머 등을 더 포함할 수 있다.In addition, the porous silica particles of the present invention support nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene in addition to the surface and / or the pores thereof, and complementarily to at least a portion of the transcript of the CTGF gene. Substituents may be used to transfer the binding nucleic acid molecules to target cells, to carry a substance for other purposes, or to bind other additional substituents, and may further include antibodies, ligands, cell permeable peptides, or aptamers bound thereto. It may include.
전술한 표면 및/또는 기공 내부의 치환기, 전하, 결합물질 등은 예를 들면 표면 개질에 의해 부가될 수 있다.Substituents, charges, binders and the like within the aforementioned surfaces and / or pores may be added, for example, by surface modification.
표면 개질은 예를 들면 도입하고자 하는 치환기를 갖는 화합물을 입자와 반응시켜 수행할 수 있고, 상기 화합물은 예를 들면 C1 내지 C10 알콕시기를 갖는 알콕시실란일 수 있으나, 이에 제한되는 것은 아니다. 상기 알콕시실란은 상기 알콕시기를 1개 이상 갖는 것으로서, 예를 들면 1 내지 3개 가질 수 있고, 알콕시기가 결합되지 않은 부위에 도입하고자 하는 치환기가 있거나 이로 치환된 치환기가 있을 수 있다.Surface modification can be carried out, for example, by reacting a compound having a substituent to be introduced with the particles, which may be, for example, an alkoxysilane having a C1 to C10 alkoxy group, but is not limited thereto. The alkoxysilane has one or more alkoxy groups, and may have, for example, 1 to 3, and there may be a substituent to be introduced into a site where the alkoxy group is not bonded or a substituent substituted therewith.
본 발명의 다공성 실리카 입자는 예를 들면 소기공의 입자 제조 및 기공 확장 공정을 거쳐 제조된 것일 수 있고, 필요에 따라 하소(calcination) 공정, 표면 개질 공정 등을 더 거쳐 제조된 것일 수 있다. 하소 및 표면 개질 공정을 모두 거친 경우는 하소 이후에 표면 개질 된 것일 수 있다.For example, the porous silica particles of the present invention may be manufactured through a small pore particle preparation and a pore expansion process, and may be manufactured through a calcination process, a surface modification process, and the like, as necessary. If both the calcination and the surface modification process has gone through may be surface modified after calcination.
상기 소기공의 입자는 예를 들면 평균 기공 직경이 1nm 내지 5nm인 입자일 수 있다.The small pore particles may be, for example, particles having an average pore diameter of 1 nm to 5 nm.
상기 소기공의 입자는 용매에 계면활성제와 실리카 전구물질을 넣고 교반 및 균질화시켜 얻어질 수 있다.The small pore particles can be obtained by adding a surfactant and a silica precursor in a solvent, stirring and homogenizing.
상기 용매는 물 및/또는 유기용매일 수 있고, 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, γ-부티로락톤, 1,3-디메틸-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 벤젠, 톨루엔, 크실렌, 테트라메틸벤젠 등의 탄소계 방향족류 ; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 그외 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N,N-디메틸아세트아미드(DMAc), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), 1,3-디메틸-2-이미다졸리디논, N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포아미드, 테트라메틸우레아, N-메틸카르로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄 등을 사용할 수 있고, 구체적으로는 알코올, 보다 구체적으로 메탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.The solvent may be water and / or an organic solvent, and the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc. Ketones; Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide, dimethylformamide (DMF), diethylformamide (DEF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone ( NMP), N-ethylpyrrolidone (NEP), 1,3-dimethyl-2-imidazolidinone, N, N-dimethylmethoxyacetamide, dimethyl sulfoxide, pyridine, dimethyl sulfone, hexamethylphosphoamide , Tetramethylurea, N-methylcarrolactam, tetrahydrofuran, m-dioxane, P-dioxane, 1,2-dimethoxyethane and the like can be used. Specifically, alcohol, more specifically methanol can be used. May be, but is not limited thereto.
상기 물과 유기 용매의 혼합 용매 사용시 그 비율은 예를 들면 물과 유기용매를 1: 0.7 내지 1.5의 부피비, 예를 들어, 1: 0.8 내지 1.3의 부피비로 사용할 수 있으나, 이에 제한되는 것은 아니다.When using a mixed solvent of the water and the organic solvent, the ratio may be, for example, water and the organic solvent in a volume ratio of 1: 0.7 to 1.5, for example, 1: 1: 0.8 to 1.3, but is not limited thereto.
상기 계면활성제는 예를 들면 CTAB(cetyltrimethylammonium bromide), TMABr(hexadecyltrimethylammonium bromide), TMPrCl(hexadecyltrimethylpyridinium chloride), TMACl(tetramethylammonium chloride) 등일 수 있고, 구체적으로는 CTAB를 사용할 수 있다.The surfactant may be, for example, cetyltrimethylammonium bromide (CTAB), hexadecyltrimethylammonium bromide (TMABr), hexadecyltrimethylpyridinium chloride (TMPrCl), tetramethylammonium chloride (TMACl), and the like, and specifically, CTAB may be used.
상기 계면활성제는 예를 들면 용매 1리터당 1g 내지 10g, 예를 들어 상기 범위 내에서 1g 내지 8g, 2g 내지 8g, 3g 내지 8g 등의 양으로 첨가될 수 있으나, 이에 제한되는 것은 아니다.The surfactant may be added, for example, in an amount of 1 g to 10 g, for example, 1 g to 8 g, 2 g to 8 g, 3 g to 8 g, etc., per liter of solvent, but is not limited thereto.
상기 실리카 전구 물질은 용매에 계면활성제를 첨가하여 교반한 후에 첨가될 수 있다. 실리카 전구물질은 예를 들면 TMOS(Tetramethyl orthosilicate)일 수 있으나, 이에 제한되는 것은 아니다.The silica precursor may be added after stirring with the addition of a surfactant to the solvent. The silica precursor may be, for example, tetramethyl orthosilicate (TMOS), but is not limited thereto.
상기 교반은 예를 들면 10분 내지 30분간 수행될 수 있으나, 이에 제한되는 것은 아니다.The stirring may be performed, for example, for 10 minutes to 30 minutes, but is not limited thereto.
상기 실리카 전구물질은 예를 들면 용매 1리터당 0.5ml 내지 5ml, 예를 들어 상기 범위 내에서 0.5ml 내지 4ml, 0.5ml 내지 3ml, 0.5ml 내지 2ml, 1ml 내지 2ml 등으로 첨가될 수 있으나, 이에 제한되는 것은 아니다.The silica precursor may be added, for example, 0.5 ml to 5 ml per liter of solvent, for example, 0.5 ml to 4 ml, 0.5 ml to 3 ml, 0.5 ml to 2 ml, 1 ml to 2 ml, etc. within the above range, but is not limited thereto. It doesn't happen.
필요에 따라 촉매로서 수산화나트륨을 더 사용할 수 있으며, 이는 용매에 계면활성제를 첨가한 후 실리카 전구물질의 첨가 전에 교반하면서 첨가될 수 있다.If necessary, sodium hydroxide may further be used as a catalyst, which may be added with stirring after adding the surfactant to the solvent and before adding the silica precursor.
상기 수산화나트륨은 예를 들면 1M 수산화나트륨 수용액 기준으로 용매 1리터당 0.5ml 내지 8ml, 예를 들어 상기 범위 내에서 0.5ml 내지 5ml, 0.5ml 내지 4ml, 1ml 내지 4ml, 1ml 내지 3ml 2ml 내지 3ml 등일 수 있으나, 이에 제한되는 것은 아니다.The sodium hydroxide may be, for example, 0.5 ml to 8 ml per liter of solvent, for example, 0.5 ml to 5 ml, 0.5 ml to 4 ml, 1 ml to 4 ml, 1 ml to 3 ml, 2 ml to 3 ml, etc., based on 1 M aqueous sodium hydroxide solution. However, it is not limited thereto.
상기 실리카 전구 물질의 첨가 후에 용액을 교반하며 반응시킬 수 있다. 교반은 예를 들면 2시간 내지 15시간 할 수 있고, 예를 들어 상기 범위 내에서 3시간 내지 15시간, 4시간 내지 15시간, 4시간 내지 13시간, 5시간 내지 12시간, 6 시간 내지 12시간, 6시간 내지 10시간 등일 수 있으나, 이에 제한되는 것은 아니다. 교반 시간(반응 시간)이 너무 짧은 경우에는 결정핵 생성(nucleation)이 부족할 수 있다.After addition of the silica precursor, the solution can be reacted with stirring. The stirring may be performed for example, for 2 hours to 15 hours, for example, within the above range, for example, 3 hours to 15 hours, 4 hours to 15 hours, 4 hours to 13 hours, 5 hours to 12 hours, 6 hours to 12 hours. , 6 hours to 10 hours, and the like, but is not limited thereto. If the stirring time (reaction time) is too short, nucleation may be insufficient.
상기 교반 이후에는 용액을 숙성(aging)시킬 수 있다. 숙성은 예를 들면 8시간 내지 24시간 할 수 있고, 예를 들어 상기 범위 내에서 8시간 내지 20시간, 8시간 내지 18시간, 8시간 내지 16시간, 8시간 내지 14시간, 10시간 내지 16시간, 10시간 내지 14시간 등일 수 있으나, 이에 제한되는 것은 아니다.After the agitation, the solution may be aged. Aging may be performed for example, from 8 hours to 24 hours, for example, within the range of 8 hours to 20 hours, 8 hours to 18 hours, 8 hours to 16 hours, 8 hours to 14 hours, 10 hours to 16 hours. , 10 hours to 14 hours, and the like, but is not limited thereto.
이후, 반응산물을 세척 및 건조시켜 다공성 실리카 입자를 얻을 수 있고, 필요에 따라 세척 전에 미반응 물질의 분리가 선행될 수 있다.Thereafter, the reaction product may be washed and dried to obtain porous silica particles, and if necessary, separation of unreacted material may be preceded before washing.
상기 미반응 물질의 분리는 예를 들면 원심분리로 상등액을 분리하여 수행될 수 있고, 원심분리는 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 예를 들어 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.Separation of the unreacted material may be carried out by separating the supernatant, for example by centrifugation, centrifugation may be carried out, for example at 6,000 to 10,000 rpm, the time is for example 3 minutes to 60 minutes, For example, it may be performed within 3 minutes to 30 minutes, 3 minutes to 30 minutes, 5 minutes to 30 minutes, and the like, but is not limited thereto.
상기 세척은 물 및/또는 유기용매로 할 수 있고, 구체적으로는 용매별로 녹일 수 있는 물질이 상이하므로 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 예를 들어, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.The washing may be performed with water and / or an organic solvent, and in particular, since a substance that can be dissolved in each solvent may be different, water and an organic solvent may be used once or several times, or once or even with water or an organic solvent alone. Can be washed several times. The number of times may be, for example, two or more, ten or less, for example, three or more and ten or less, four or more and eight or less, four or more and six or less.
상기 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, γ-부티로락톤, 1,3-디메틸-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 벤젠, 톨루엔, 크실렌, 테트라메틸벤젠 등의 탄소계 방향족류 ; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 그외 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N,N-디메틸아세트아미드(DMAc), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), 1,3-디메틸-2-이미다졸리디논, N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포아미드, 테트라메틸우레아, N-메틸카르로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄 등을 사용할 수 있고, 구체적으로는 알코올, 보다 구체적으로 에탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.The organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc. Ketones; Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide, dimethylformamide (DMF), diethylformamide (DEF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone ( NMP), N-ethylpyrrolidone (NEP), 1,3-dimethyl-2-imidazolidinone, N, N-dimethylmethoxyacetamide, dimethyl sulfoxide, pyridine, dimethyl sulfone, hexamethylphosphoamide , Tetramethylurea, N-methylcarrolactam, tetrahydrofuran, m-dioxane, P-dioxane, 1,2-dimethoxyethane and the like can be used. Specifically, alcohol, more specifically ethanol can be used. May be, but is not limited thereto.
상기 세척은 원심분리 하에 수행될 수 있으며, 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 예를 들어 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.The washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, for example 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
상기 세척은 원심분리를 하지 않고, 필터로 입자를 걸러내어 수행될 수도 있다. 필터는 다공성 실리카 입자의 직경 이하의 기공을 가지는 것일 수 있다. 반응액을 그러한 필터로 걸러내면 입자만이 필터 위에 남고, 그 필터 위에 물 및/또는 유기용매를 부어 세척할 수 있다.The washing may be performed by filtering out particles with a filter without centrifugation. The filter may have pores less than or equal to the diameter of the porous silica particles. Filtering the reaction liquid with such a filter leaves only particles on the filter, which can be washed by pouring water and / or an organic solvent on the filter.
상기 세척 시에 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 예를 들어, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.In the washing, water and an organic solvent may be used alternately once or several times, and may be washed once or several times even with water or an organic solvent alone. The number of times may be, for example, two or more, ten or less, for example, three or more and ten or less, four or more and eight or less, four or more and six or less.
상기 건조는 예를 들면 20℃ 내지 100℃로 수행될 수 있으나, 이에 제한되는 것은 아니고, 진공 상태에서 수행될 수도 있다.For example, the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
이후, 상기 얻어진 다공성 실리카 입자의 기공을 확장하고, 기공 확장은 기공 팽창제를 사용하여 수행될 수 있다.Thereafter, the pores of the obtained porous silica particles are expanded, and the pore expansion may be performed using a pore swelling agent.
상기 기공 팽창제는 예를 들면 트리메틸벤젠, 트리에틸벤젠, 트리프로필벤젠, 트리부틸벤젠, 트리펜틸벤젠, 트리헥실벤젠, 톨루엔, 벤젠 등을 사용할 수 있고, 구체적으로, 트리메틸벤젠을 사용할 수 있으나, 이에 제한되는 것은 아니다.For example, the pore swelling agent may be trimethylbenzene, triethylbenzene, tripropylbenzene, tributylbenzene, tripentylbenzene, trihexylbenzene, toluene, benzene, and the like, and specifically, trimethylbenzene may be used. It is not limited.
또한, 상기 기공 팽창제는 예를 들면 N,N-디메틸헥사데실아민(N,N-dimethylhexadecylamine,DMHA)를 사용할 수 있으나, 이에 제한되는 것은 아니다.In addition, the pore swelling agent may use, for example, N, N-dimethylhexadecylamine (N, N-dimethylhexadecylamine, DMHA), but is not limited thereto.
상기 기공 확장은 예를 들면 용매 중의 다공성 실리카 입자를 기공 팽창제와 혼합하고, 가열하여 반응시켜 수행될 수 있다.The pore expansion may be carried out, for example, by mixing porous silica particles in a solvent with a pore swelling agent and heating to react.
상기 용매는 예를 들면 물 및/또는 유기용매일 수 있고, 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, 시클로헥산온 등의 케톤류; 벤젠, 톨루엔, 크실렌 등의 탄소계 방향족류 ; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 등을 사용할 수 있고, 구체적으로는 알코올, 보다 구체적으로 에탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.The solvent may be, for example, water and / or an organic solvent, and the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; And the like, and specifically, alcohol, more specifically ethanol can be used, but is not limited thereto.
상기 다공성 실리카 입자는 예를 들면 용매 1리터당 10g 내지 200g, 예를 들어 상기 범위 내에서 10g 내지 150g, 10g 내지 100g, 30g 내지 100g, 40g 내지 100g, 50g 내지 100g, 50g 내지 80g, 60g 내지 80g 등의 비율로 첨가될 수 있으나, 이에 제한되는 것은 아니다.The porous silica particles are, for example, 10 g to 200 g per liter of solvent, for example, 10 g to 150 g, 10 g to 100 g, 30 g to 100 g, 40 g to 100 g, 50 g to 100 g, 50 g to 80 g, 60 g to 80 g, etc., within the above range. It may be added in a ratio of, but is not limited thereto.
상기 다공성 실리카 입자는 용매 중에 고르게 분산되어 있는 것일 수 있고, 예를 들면 용매에 다공성 실리카 입자를 첨가하고 초음파 분산시킨 것일 수 있다. 혼합용매를 사용하는 경우에는 제1 용매에 다공성 실리카 입자를 분산시킨 후에 제2 용매를 첨가한 것일 수 있다.The porous silica particles may be evenly dispersed in a solvent, for example, the porous silica particles may be added to the solvent and ultrasonically dispersed. In the case of using a mixed solvent, the second solvent may be added after the porous silica particles are dispersed in the first solvent.
상기 기공 팽창제는 예를 들면 용매 100부피부에 대하여 10 내지 200부피부, 상기 범위 내에서, 10 내지 150부피부, 10 내지 100부피부, 10 내지 80부피부, 30 내지 80부피부, 30 내지 70부피부 등의 비율로 첨가될 수 있으나, 이에 제한되는 것은 아니다.The pore swelling agent is for example 10 to 200 parts by volume, 100 to 150 parts by volume, 10 to 100 parts by volume, 10 to 80 parts by volume, 30 to 80 parts by volume, 30 to 80 parts by volume based on 100 parts by volume of solvent. 70 parts by volume may be added, but is not limited thereto.
상기 반응은 예를 들면 120℃ 내지 190℃로 수행될 수 있다. 예를 들어 상기 범위 내에서 120℃ 내지 190℃, 120℃ 내지 180℃, 120℃ 내지 170℃, 130℃ 내지 170℃, 130℃ 내지 160℃, 130℃ 내지 150℃, 130℃ 내지 140℃ 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.The reaction can be carried out, for example, at 120 ° C to 190 ° C. For example, within the range of 120 ℃ to 190 ℃, 120 ℃ to 180 ℃, 120 ℃ to 170 ℃, 130 ℃ to 170 ℃, 130 ℃ to 160 ℃, 130 ℃ to 150 ℃, 130 ℃ to 140 ℃ It may be performed, but is not limited thereto.
상기 반응은 예를 들면 6시간 내지 96시간 수행 수행될 수 있다. 예를 들어 상기 범위 내에서 30시간 내지 96시간, 30시간 내지 96시간, 30시간 내지 80시간, 30시간 내지 72시간, 24시간 내지 80시간, 24시간 내지 72시간, 36시간 내지 96시간, 36시간 내지 80시간, 36시간 내지 72시간, 36시간 내지 66시간, 36시간 내지 60시간, 48시간 내지 96시간, 48시간 내지 88시간, 48시간 내지 80시간, 48시간 내지 72시간, 6시간 내지 96시간, 7시간 내지 96시간, 8시간 내지 80시간, 9시간 내지 72시간, 9시간 내지 80시간, 6시간 내지 72시간, 9시간 내지 96시간, 10시간 내지 80시간, 10시간 내지 72시간, 12시간 내지 66시간, 13시간 내지 60시간, 14시간 내지 96시간, 15시간 내지 88시간, 16시간 내지 80시간, 17시간 내지 72시간 등일 수 있으나, 이에 제한되는 것은 아니다.The reaction may be performed, for example, for 6 hours to 96 hours. For example, within the range of 30 hours to 96 hours, 30 hours to 96 hours, 30 hours to 80 hours, 30 hours to 72 hours, 24 hours to 80 hours, 24 hours to 72 hours, 36 hours to 96 hours, 36 36 hours to 80 hours, 36 hours to 72 hours, 36 hours to 66 hours, 36 hours to 60 hours, 48 hours to 96 hours, 48 hours to 88 hours, 48 hours to 80 hours, 48 hours to 72 hours, 6 hours to 96 hours, 7 hours to 96 hours, 8 hours to 80 hours, 9 hours to 72 hours, 9 hours to 80 hours, 6 hours to 72 hours, 9 hours to 96 hours, 10 hours to 80 hours, 10 hours to 72 hours , 12 hours to 66 hours, 13 hours to 60 hours, 14 hours to 96 hours, 15 hours to 88 hours, 16 hours to 80 hours, 17 hours to 72 hours, and the like, but is not limited thereto.
상기 예시한 범위 내에서 시간 및 온도를 조절하여 반응이 과다하지 않으면서 충분히 수행될 수 있도록 할 수 있다. 예를 들면 반응 온도가 낮아지면 반응 시간을 늘리거나, 반응 온도가 낮아지면 반응 시간을 짧게하는 등에 의할 수 있다. 반응이 충분하지 않으면 기공의 확장이 충분하지 못할 수 있고, 반응이 과다하게 진행되면 기공의 과다 확장에 의해 입자가 붕괴될 수 있다.The time and temperature can be adjusted within the ranges exemplified above so that the reaction can be carried out sufficiently without excess. For example, when the reaction temperature is lowered, the reaction time may be increased, or when the reaction temperature is lowered, the reaction time may be shortened. If the reaction is not sufficient, the expansion of the pores may not be sufficient, and if the reaction proceeds excessively, the particles may collapse due to the expansion of the pores.
상기 반응은 예를 들면 단계적으로 승온시켜 수행될 수 있다. 구체적으로, 상온에서 상기 온도까지 0.5℃/분 내지 15℃/분의 속도로 단계적으로 승온시켜 수행될 수 있으며, 예를 들어 상기 범위 내에서 1℃/분 내지 15℃/분, 3℃/분 내지 15℃/분, 3℃/분 내지 12℃/분, 3℃/분 내지 10℃/분 등일 수 있으나, 이에 제한되는 것은 아니다.The reaction can be carried out, for example, by gradually raising the temperature. Specifically, it may be carried out by gradually raising the temperature at a rate of 0.5 ℃ / min to 15 ℃ / min from the room temperature to the above temperature, for example, 1 ℃ / min to 15 ℃ / min, 3 ℃ / min within the above range To 15 ° C./minute, 3 ° C./minute to 12 ° C./minute, 3 ° C./minute to 10 ° C./minute, and the like, but are not limited thereto.
상기 반응은 교반 하에 수행될 수 있다. 예를 들면 100rpm 이상의 속도로 교반될 수 있고, 구체적으로 100rpm 내지 1000rpm의 속도로 수행도리 수 있으나, 이에 제한되는 것은 아니다.The reaction can be carried out under stirring. For example, it may be stirred at a speed of 100 rpm or more, and specifically, may be performed at a speed of 100 rpm to 1000 rpm, but is not limited thereto.
상기 반응 이후에는 반응액을 서서히 냉각시킬 수 있으며, 예를 들면 단계적으로 감온하여 냉각시킬 수 있다. 구체적으로 상기 온도에서 상온까지 0.5℃/분 내지 20℃/분의 속도로 단계적으로 감온시켜 수행될 수 있으며, 예를 들어 상기 범위 내에서 1℃/분 내지 20℃/분, 3℃/분 내지 20℃/분, 3℃/분 내지 12℃/분, 3℃/분 내지 10℃/분 등일 수 있으나, 이에 제한되는 것은 아니다.After the reaction, the reaction solution can be cooled slowly, for example, it can be cooled by gradually reducing the temperature. Specifically, it may be carried out by gradually decreasing the temperature at a rate of 0.5 ℃ / min to 20 ℃ / min from the temperature to room temperature, for example, 1 ℃ / min to 20 ℃ / min, 3 ℃ / min to within the above range 20 ° C./minute, 3 ° C./minute to 12 ° C./minute, 3 ° C./minute to 10 ° C./minute, and the like, but is not limited thereto.
상기 냉각 이후에 반응 산물을 세척 및 건조시켜 기공이 확장된 다공성 실리카 입자를 얻을 수 있고, 필요에 따라 세척 전에 미반응 물질의 분리가 선행될 수 있다.After cooling, the reaction product may be washed and dried to obtain porous silica particles having expanded pores, and if necessary, separation of unreacted material may be preceded before washing.
상기 미반응 물질의 분리는 예를 들면 원심분리로 상등액을 분리하여 수행될 수 있고, 원심분리는 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 예를 들어 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.Separation of the unreacted material may be carried out by separating the supernatant, for example by centrifugation, centrifugation may be carried out, for example at 6,000 to 10,000 rpm, the time is for example 3 minutes to 60 minutes, For example, it may be performed within 3 minutes to 30 minutes, 3 minutes to 30 minutes, 5 minutes to 30 minutes, and the like, but is not limited thereto.
상기 세척은 물 및/또는 유기용매로 할 수 있고, 구체적으로는 용매별로 녹일 수 있는 물질이 상이하므로 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 예를 들어, 3회, 4회, 5회, 6회, 7회, 8회 등일 수 있다.The washing may be performed with water and / or an organic solvent, and in particular, since a substance that can be dissolved in each solvent may be different, water and an organic solvent may be used once or several times, or once or even with water or an organic solvent alone. Can be washed several times. The number of times may be, for example, two or more times, ten times or less, for example, three times, four times, five times, six times, seven times, eight times, and the like.
상기 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, 시클로헥산온 등의 케톤류; 벤젠, 톨루엔, 크실렌 등의 탄소계 방향족류; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 등을 사용할 수 있고, 구체적으로는 알코올, 보다 구체적으로 에탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.The organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; And the like, and specifically, alcohol, more specifically ethanol can be used, but is not limited thereto.
상기 세척은 원심분리 하에 수행될 수 있으며, 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 예를 들어 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.The washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, for example 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
상기 세척은 원심분리를 하지 않고, 필터로 입자를 걸러내어 수행될 수도 있다. 필터는 다공성 실리카 입자의 직경 이하의 기공을 가지는 것일 수 있다. 반응액을 그러한 필터로 걸러내면 입자만이 필터 위에 남고, 그 필터 위에 물 및/또는 유기용매를 부어 세척할 수 있다.The washing may be performed by filtering out particles with a filter without centrifugation. The filter may have pores less than or equal to the diameter of the porous silica particles. Filtering the reaction liquid with such a filter leaves only particles on the filter, which can be washed by pouring water and / or an organic solvent on the filter.
상기 세척 시에 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 예를 들어, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.In the washing, water and an organic solvent may be used alternately once or several times, and may be washed once or several times even with water or an organic solvent alone. The number of times may be, for example, two or more, ten or less, for example, three or more and ten or less, four or more and eight or less, four or more and six or less.
상기 건조는 예를 들면 20℃ 내지 100℃로 수행될 수 있으나, 이에 제한되는 것은 아니고, 진공 상태에서 수행될 수도 있다.For example, the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
이후, 얻어진 입자는 하소될 수 있는데, 하소는 입자를 가열하여 그 표면 및 내부의 실라놀기를 제거하여 입자의 반응성을 낮추고, 좀 더 치밀한 구조를 갖게 하고, 기공을 채우는 유기물들을 제거하는 공정으로, 예를 들면 400℃ 이상의 온도로 가열될 수 있다. 그 상한은 특별히 제한되지 않으며, 예를 들면 1000℃, 900℃, 800℃, 700℃ 등일 수 있다. 가열은 예를 들면 3시간 이상 수행될 수 있다. 그 상한은 특별히 한정되지 않으며, 예를 들면 24시간, 12시간, 10시간, 8시간, 6시간 등일 수 있다. 보다 구체적으로는 400℃ 내지 700℃에서 3시간 내지 8시간, 구체적으로 500℃ 내지 600℃에서 4시간 내지 5시간 수행될 수 있으나, 이에 제한되는 것은 아니다.Thereafter, the obtained particles may be calcined, which is a process of heating the particles to remove silanol groups on the surface and inside thereof to lower the reactivity of the particles, to have a more compact structure, and to remove organic substances filling the pores. For example, it may be heated to a temperature of 400 ℃ or more. The upper limit thereof is not particularly limited, and may be, for example, 1000 ° C, 900 ° C, 800 ° C, 700 ° C, or the like. Heating can be carried out for example for 3 hours or more. The upper limit is not particularly limited and may be, for example, 24 hours, 12 hours, 10 hours, 8 hours, 6 hours, or the like. More specifically, it may be performed for 3 hours to 8 hours at 400 ° C to 700 ° C, specifically 4 hours to 5 hours at 500 ° C to 600 ° C, but is not limited thereto.
기공을 채우는 유기물을 제거함으로써, 잔존 유기물에 의해 나타나는 세포 독성, 거품 발생 등의 문제를 방지할 수 있다.By removing the organic matter filling the pores, it is possible to prevent problems such as cytotoxicity and foaming caused by the remaining organic matter.
이후, 얻어진 다공성 실리카 입자는 표면개질 될 수 있고, 표면 개질은 표면 및/또는 기공 내부에 수행될 수 있다. 입자 표면과 기공 내부는 동일하게 표면개질될 수도 있고, 서로 다르게 표면개질될 수도 있다.The porous silica particles obtained can then be surface modified, and the surface modification can be carried out on the surface and / or inside the pores. The particle surface and the inside of the pore may be surface modified identically, or may be surface modified differently.
상기 표면 개질을 통해 입자가 대전되도록 하거나, 친수성 및/또는 소수성 성질을 갖도록 할 수 있다. The surface modification can cause the particles to charge or to have hydrophilic and / or hydrophobic properties.
보다 구체적으로, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자의 효과적인 담지를 위하여, 아미노기, 아미노알킬기, 알킬아미노기, 질소원자를 포함하는 헤테로고리 방향족화합물기, 시안기 및 구아니딘기로 이루어진 군에서 선택된 적어도 하나의 치환기를 갖도록 하여, 상기 다공성 실리카 입자의 표면개질을 수행할 수 있다.More specifically, in order to effectively support a nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene, a heterocyclic aromatic compound group including an amino group, an aminoalkyl group, an alkylamino group, a nitrogen atom, a cyan group and a guanidine group Surface modification of the porous silica particles may be performed by having at least one substituent selected from the group consisting of.
표면 개질은 예를 들면 도입하고자 하는 친수성, 소수성, 양이온성, 음이온성 등의 치환기를 갖는 화합물을 입자와 반응시켜 수행할 수 있고, 상기 화합물은 예를 들면 C1 내지 C10 알콕시기를 갖는 알콕시실란일 수 있으나, 이에 제한되는 것은 아니다.Surface modification can be carried out, for example, by reacting a compound having substituents such as hydrophilic, hydrophobic, cationic, anionic and the like to be introduced with the particles, and the compound can be, for example, an alkoxysilane having a C1 to C10 alkoxy group. However, it is not limited thereto.
상기 알콕시실란은 상기 알콕시기를 1개 이상 갖는 것으로서, 예를 들면 1 내지 3개 가질 수 있고, 알콕시기가 결합되지 않은 부위에 도입하고자 하는 치환기가 있거나 이로 치환된 치환기가 있을 수 있다. The alkoxysilane has one or more alkoxy groups, and may have, for example, 1 to 3, and there may be a substituent to be introduced into a site where the alkoxy group is not bonded or a substituent substituted therewith.
상기 알콕시실란을 다공성 실리콘 입자와 반응시키면 실리콘 원자와 산소 원자간 공유 결합이 형성되어 알콕시실란이 다공성 실리콘 입자의 표면 및/또는 기공 내부와 결합될 수 있고, 상기 알콕시실란은 도입하고자 하는 치환기를 가지고 있는 바, 해당 치환기가 다공성 실리콘 입자의 표면 및/또는 기공 내부에 도입될 수 있다.When the alkoxysilane reacts with the porous silicon particles, a covalent bond is formed between the silicon atom and the oxygen atom so that the alkoxysilane may be bonded to the surface and / or the inside of the pores of the porous silicon particle, and the alkoxysilane has a substituent to be introduced. As such, the corresponding substituents may be introduced into the surface of the porous silicon particles and / or within the pores.
상기 반응은 용매에 분산시킨 다공성 실리카 입자를 알콕시실란과 반응시켜 수행할 수 있다.The reaction may be carried out by reacting porous silica particles dispersed in a solvent with an alkoxysilane.
상기 용매는 물 및/또는 유기용매일 수 있고, 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, γ-부티로락톤, 1,3-디메틸-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 벤젠, 톨루엔, 크실렌, 테트라메틸벤젠 등의 탄소계 방향족류 ; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 그외 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N,N-디메틸아세트아미드(DMAc), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), 1,3-디메틸-2-이미다졸리디논, N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포아미드, 테트라메틸우레아, N-메틸카르로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄 등을 사용할 수 있고, 구체적으로는 톨루엔을 사용할 수 있으나, 이에 제한되는 것은 아니다.The solvent may be water and / or an organic solvent, and the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc. Ketones; Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide, dimethylformamide (DMF), diethylformamide (DEF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone ( NMP), N-ethylpyrrolidone (NEP), 1,3-dimethyl-2-imidazolidinone, N, N-dimethylmethoxyacetamide, dimethyl sulfoxide, pyridine, dimethyl sulfone, hexamethylphosphoamide , Tetramethylurea, N-methylcarrolactam, tetrahydrofuran, m-dioxane, P-dioxane, 1,2-dimethoxyethane and the like can be used. Specifically, toluene can be used, but is not limited thereto. It doesn't happen.
상기 양전하로의 대전은 예를 들면 아미노기, 아미노알킬기 등 질소함유기 등의 염기성기를 갖는 알콕시실란과 반응시켜 수행할 수 있다. 구체적으로는 N-[3-(Trimethoxysilyl)propyl]ethylenediamine, N1-(3-Trimethoxysilylpropyl)diethylenetriamine, (3-Aminopropyl)trimethoxysilane, N-[3-(Trimethoxysilyl)propyl]aniline, Trimethoxy[3-(methylamino)propyl]silane, 3-(2-Aminoethylamino)propyldimethoxymethylsilane 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.The charge to the positive charge can be carried out by reacting with an alkoxysilane having a basic group such as a nitrogen-containing group such as an amino group, an aminoalkyl group, for example. Specifically, N- [3- (Trimethoxysilyl) propyl] ethylenediamine, N1- (3-Trimethoxysilylpropyl) diethylenetriamine, (3-Aminopropyl) trimethoxysilane, N- [3- (Trimethoxysilyl) propyl] aniline, Trimethoxy [3- (methylamino) propyl] silane, 3- (2-Aminoethylamino) propyldimethoxymethylsilane, etc. may be used, but is not limited thereto.
상기 음전하로의 대전은 예를 들면 카르복시기, 술폰산기, 티올기 등의 산성기를 갖는 알콕시실란과 반응시켜 수행할 수 있다. 구체적으로는 (3-Mercaptopropyl) trimethoxysilane 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.Charging to the negative charge may be carried out by reacting with an alkoxysilane having an acidic group such as, for example, a carboxyl group, a sulfonic acid group, a thiol group, and the like. Specifically, (3-Mercaptopropyl) trimethoxysilane may be used, but is not limited thereto.
상기 무전하(양전하 또는 음전하가 아닌, 전하가 없는 상태)로의 대전은 전하를 갖지 않는 통상의 작용기를 갖는 알콕시실란과 반응시켜 수행할 수 있고, 상기 양전하로의 대전과 음전하로의 대전을 적절히 조합하여, 양전하와 음전하의 상쇄를 통한 무전하로 대전시킬 수 있으나, 이에 제한되는 것은 아니다.The charge to the non-charge (not positive or negative charge, non-charged state) can be carried out by reacting with an alkoxysilane having a common functional group having no charge, a combination of charging to the positive charge and negative charge appropriately By doing so, it is possible to charge with no charge through the offset of positive and negative charge, but is not limited thereto.
상기 친수성 성질은 친수성기, 예를 들면 히드록시기, 카르복시기, 아미노기, 카르보닐기, 설프히드릴기, 포스페이트기, 티올기, 암모늄기, 에스터기, 이미드기, 티오이미드기, 케토기, 에터기, 인덴기, 설포닐기, 폴리에틸렌글리콜기 등을 갖는 알콕시실란과 반응시켜 갖도록 할 수 있다. 구체적으로는, N-[3-(Trimethoxysilyl)propyl]ethylenediamine, N1-(3-Trimethoxysilylpropyl)diethylenetriamine, (3-Aminopropyl)trimethoxysilane, (3-Mercaptopropyl) trimethoxysilane, Trimethoxy[3-(methylamino)propyl]silane, 3-(2-Aminoethylamino)propyldimethoxymethylsilane 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.The hydrophilic property is a hydrophilic group such as hydroxy group, carboxy group, amino group, carbonyl group, sulfhydryl group, phosphate group, thiol group, ammonium group, ester group, imide group, thiimide group, keto group, ether group, indene group, sulfo It may be made to react with the alkoxysilane which has a silyl group, a polyethyleneglycol group, etc. Specifically, N- [3- (Trimethoxysilyl) propyl] ethylenediamine, N1- (3-Trimethoxysilylpropyl) diethylenetriamine, (3-Aminopropyl) trimethoxysilane, (3-Mercaptopropyl) trimethoxysilane, Trimethoxy [3- (methylamino) propyl] silane, 3- (2-Aminoethylamino) propyldimethoxymethylsilane may be used, but is not limited thereto.
상기 소수성 성질은 소수성 치환기, 예를 들면 치환 또는 비치환된 C1 내지 C30의 알킬기, 치환 또는 비치환된 C3 내지 C30의 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30의 아릴기, 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기, 할로겐기, C1 내지 C30의 에스테르기, 할로겐 함유기 등을 갖는 알콕시실란과 반응시켜 갖도록 할 수 있다. 구체적으로는, Trimethoxy(octadecyl)silane, Trimethoxy-n-octylsilane, Trimethoxy(propyl)silane, Isobutyl(trimethoxy)silane, Trimethoxy(7-octen-1-yl)silane, Trimethoxy(3,3,3-trifluoropropyl)silane, Trimethoxy(2-phenylethyl)silane, Vinyltrimethoxysilane, Cyanomethyl, 3-(trimethoxysilyl)propyl] trithiocarbonate, (3-Bromopropyl)trimethoxysilane 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.The hydrophobic nature may include hydrophobic substituents such as substituted or unsubstituted C1 to C30 alkyl groups, substituted or unsubstituted C3 to C30 cycloalkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted It can be made to react with the alkoxysilane which has a C2-C30 heteroaryl group, a halogen group, C1-C30 ester group, a halogen containing group, etc. Specifically, Trimethoxy (octadecyl) silane, Trimethoxy-n-octylsilane, Trimethoxy (propyl) silane, Isobutyl (trimethoxy) silane, Trimethoxy (7-octen-1-yl) silane, Trimethoxy (3,3,3-trifluoropropyl) Silane, Trimethoxy (2-phenylethyl) silane, Vinyltrimethoxysilane, Cyanomethyl, 3- (trimethoxysilyl) propyl] trithiocarbonate, (3-Bromopropyl) trimethoxysilane, etc. may be used, but is not limited thereto.
그 외에 상기 표면 개질을 통해 난용성(소수성) CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력 증진을 위해 기공 내부에는 소수성 치환기가 존재하고, 사용, 제형화의 용이성 등의 측면에서 입자의 표면은 친수성 치환기가 존재하도록 하는 등의 처리도 가능하고, 표면에 다른 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질을 결합시키기 위한 치환기가 존재할 수도 있다.In addition, hydrophobic substituents are present in the pores to enhance the binding force with nucleic acid molecules or substances complementarily bound to at least a part of the transcript of the poorly soluble (hydrophobic) CTGF gene through the surface modification. In terms of ease and the like, the surface of the particle may be treated such as to have a hydrophilic substituent, and a substituent may be present on the surface to bind a nucleic acid molecule or a substance complementarily to at least a portion of a transcript of another CTGF gene. It may be.
또한, 상기 표면 개질은 복합적으로 수행될 수도 있다. 예를 들어, 외부 표면 또는 기공 내부에 2회 이상의 표면 개질이 수행될 수도 있다. 구체적인 예를 들자면, 아미노기가 도입된 실리카 입자에 카르복실기를 포함하는 화합물을 아미드 결합으로 결합시켜 양전하로 대전된 입자를 다른 표면특성을 가지게 변화시킬 수 있으나, 이에 제한되는 것은 아니다.In addition, the surface modification may be carried out in combination. For example, two or more surface modifications may be performed on the outer surface or inside the pores. As a specific example, a compound including a carboxyl group may be bonded to silica particles into which amino groups are introduced by amide bonds to change the positively charged particles to have different surface properties, but is not limited thereto.
상기 다공성 실리카 입자의 알콕시실란과의 반응은 예를 들면 가열 하에 수행될 수 있고, 가열은 예를 들면 80℃ 내지 180℃, 예를 들어 상기 범위 내에서 80℃ 내지 160℃, 80℃ 내지 150℃, 100℃ 내지 160℃, 100℃ 내지 150℃, 110℃ 내지 150℃ 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.The reaction of the porous silica particles with the alkoxysilane can be carried out, for example, under heating, and the heating is for example from 80 ° C. to 180 ° C., for example from 80 ° C. to 160 ° C., from 80 ° C. to 150 ° C. within the above range. , 100 ° C. to 160 ° C., 100 ° C. to 150 ° C., 110 ° C. to 150 ° C., etc., but is not limited thereto.
상기 다공성 실리카 입자의 알콕시실란과의 반응은 예를 들면 4시간 내지 20시간, 예를 들어 상기 범위 내에서 4시간 내지 18시간, 4시간 내지 16시간, 6시간 내지 18시간, 6시간 내지 16시간, 8시간 내지 18시간, 8시간 내지 16시간, 8시간 내지 14시간, 10시간 내지 14시간 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.The reaction of the porous silica particles with the alkoxysilane is, for example, 4 hours to 20 hours, for example, 4 hours to 18 hours, 4 hours to 16 hours, 6 hours to 18 hours, 6 hours to 16 hours within the above range. , 8 hours to 18 hours, 8 hours to 16 hours, 8 hours to 14 hours, 10 hours to 14 hours, etc., but is not limited thereto.
상기 반응 온도, 시간, 그리고 표면개질에 사용되는 화합물의 양 등은 표면개질하고자 하는 정도에 따라 선택될 수 있는 것으로서, 본 발명의 핵산분자 또는 물질들의 친수성, 소수성, 전하 정도에 따라 반응 조건을 달리하여 다공성 실리카 입자의 친수성, 소수성, 전하 정도를 조절함으로써, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질들의 방출 속도를 조절할 수 있다. 예를 들면, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질들이 중성의 pH에서 강한 음전하를 띠는 경우에는 다공성 실리카 입자가 강한 양전하를 띠도록 하기 위해, 반응 온도를 높이거나 반응 시간을 길게 할 수 있으며, 화합물 처리량을 늘릴 수 있으나, 이에 제한되는 것은 아니다.The reaction temperature, time, and the amount of the compound used for surface modification may be selected according to the degree to be surface modified, and the reaction conditions vary depending on the degree of hydrophilicity, hydrophobicity, and charge of the nucleic acid molecules or materials of the present invention. By controlling the degree of hydrophilicity, hydrophobicity, and charge of the porous silica particles, the release rate of nucleic acid molecules or substances that complementarily bind to at least a portion of the transcript of the CTGF gene can be controlled. For example, if nucleic acid molecules or substances that complementarily bind to at least a portion of the transcript of the CTGF gene have a strong negative charge at neutral pH, the reaction temperature is increased to make the porous silica particles have a strong positive charge. Or increase the reaction time and increase the compound throughput, but are not limited thereto.
또한, 본 발명의 다공성 실리카 입자는 예를 들면 소기공의 입자 제조, 기공 확장, 표면 개질, 기공 내부 개질 공정을 거쳐 제조된 것일 수도 있다.In addition, the porous silica particles of the present invention may be produced through, for example, the preparation of small pores, pore expansion, surface modification, and internal pore modification.
상기 소기공의 입자 제조 및 기공 확장 공정은 전술한 바의 공정에 의할 수 있으며, 소기공의 입자 제조 이후, 그리고 기공 확장 공정 이후에 세척 및 건조 공정을 수행할 수 있다.The small pore particle production and pore expansion process may be based on the above-described process, and the washing and drying process may be performed after the small pore particle production and after the pore expansion process.
필요에 따라 세척 전에 미반응 물질의 분리가 선행될 수 있고, 미반응 물질의 분리는 예를 들면 원심분리로 상등액을 분리하여 수행될 수 있다.If necessary, separation of the unreacted material may be preceded before washing, and separation of the unreacted material may be performed by separating the supernatant, for example, by centrifugation.
상기 원심분리는 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 구체적으로, 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.The centrifugation may be performed, for example, at 6,000 to 10,000 rpm, and the time may be, for example, 3 to 60 minutes, specifically, 3 to 30 minutes, 3 to 30 minutes, and 5 minutes within the above range. To 30 minutes, etc., but is not limited thereto.
상기 소기공의 입자 제조 이후의 세척은 앞서 예시한 범위 내의 방법/조건으로 수행될 수 있으나, 이에 제한되는 것은 아니다.The washing after the preparation of the particles of the small pores may be performed by a method / condition within the above-described range, but is not limited thereto.
상기 기공 확장 이후의 세척은 앞서 예시보다는 보다 완화된 조건으로 수행할 수 있다. 예를 들면, 세척을 3회 이내 수행할 수 있으나, 이에 제한되는 것은 아니다.The washing after the pore expansion may be performed under more relaxed conditions than the above example. For example, washing may be performed within three times, but is not limited thereto.
상기 표면 개질과 기공 내부 개질은 각각 전술한 바의 공정에 의할 수 있으며, 표면 개질과 기공 내부 개질의 순서로 공정이 수행될 수 있고, 상기 두 공정 사이에 입자의 세척 공정이 추가로 수행될 수 있다.The surface modification and internal pore modification may be by the processes described above, respectively, the process may be performed in the order of surface modification and internal pore modification, and the washing process of the particles may be further performed between the two processes. Can be.
상기 소기공의 입자 제조 및 기공 확장 이후에 세척을 보다 완화된 조건으로 수행하는 경우 기공 내부에 입자 제조, 기공 확장에 사용된 계면활성제 등의 반응액이 채워져 있어 표면 개질시에 기공 내부는 개질되지 않고 표면만 개질될 수 있다. 그러고 나서 입자를 세척하면 기공 내부의 반응액이 제거될 수 있다.When the washing is performed in a more relaxed condition after the particle production and pore expansion of the small pores, the reaction solution such as a surfactant used for particle production and pore expansion is filled in the pores so that the inside of the pores is not modified during surface modification. Only the surface can be modified. Then, washing the particles may remove the reaction solution in the pores.
상기 표면 개질과 기공 내부 개질 공정 사이의 입자 세척은 물 및/또는 유기용매로 할 수 있고, 구체적으로는 용매별로 녹일 수 있는 물질이 상이하므로 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 구체적으로, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.Particle washing between the surface modification and the internal pore reforming process may be water and / or an organic solvent, and in particular, water and an organic solvent may be alternately used once or several times because different materials may be dissolved for each solvent. Water or organic solvents alone may be washed once or several times. The number of times may be, for example, two or more, ten or less, specifically, three or more and ten or less, four or more and eight or less, four or more and six or less.
상기 세척은 원심분리 하에 수행될 수 있으며, 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 구체적으로, 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.The washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, specifically 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
상기 세척은 원심분리를 하지 않고, 필터로 입자를 걸러내어 수행될 수도 있다. 필터는 다공성 실리카 입자의 직경 이하의 기공을 가지는 것일 수 있다. 반응액을 그러한 필터로 걸러내면 입자만이 필터 위에 남고, 그 필터 위에 물 및/또는 유기용매를 부어 세척할 수 있다.The washing may be performed by filtering out particles with a filter without centrifugation. The filter may have pores less than or equal to the diameter of the porous silica particles. Filtering the reaction liquid with such a filter leaves only particles on the filter, which can be washed by pouring water and / or an organic solvent on the filter.
상기 세척 시에 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 구체적으로, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.In the washing, water and an organic solvent may be used alternately once or several times, and may be washed once or several times even with water or an organic solvent alone. The number of times may be, for example, two or more, ten or less, specifically, three or more and ten or less, four or more and eight or less, four or more and six or less.
상기 건조는 예를 들면 20℃ 내지 100℃로 수행될 수 있으나, 이에 제한되는 것은 아니고, 진공 상태에서 수행될 수도 있다.For example, the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자는 다공성 실리카 입자의 표면 및/또는 기공 내부에 담지될 수 있고, 담지는 예를 들면 용매 중의 다공성 실리카 입자와 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 혼합하여 수행될 수 있다.Nucleic acid molecules complementarily bound to at least a portion of the transcript of the CTGF gene may be supported on the surface and / or within the pores of the porous silica particles, and the supported nucleic acid may be, for example, a porous silica particle in a solvent and a transcript of the CTGF gene. It may be performed by mixing a nucleic acid molecule that binds to at least a portion complementarily.
상기 용매는 물 및/또는 유기용매일 수 있으며, 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, 시클로헥산온 등의 케톤류; 벤젠, 톨루엔, 크실렌 등의 탄소계 방향족류; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 등을 사용할 수 있다.The solvent may be water and / or an organic solvent, and the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Etc. can be used.
또한, 상기 용매로 PBS(phosphate buffered saline solution), SBF(Simulated Body Fluid), Borate-buffered saline, Tris-buffered saline 등을 사용할 수도 있다. In addition, PBS (phosphate buffered saline solution), SBF (Simulated Body Fluid), Borate-buffered saline, Tris-buffered saline may be used as the solvent.
상기 다공성 실리카 입자와 본 발명의 핵산분자의 비율은 특별히 한정되지 않으며, 예를 들면 중량비가 1: 0.05 내지 0.8, 예를 들어 상기 범위 내에서 1: 0.05 내지 0.7, 1:0.05 내지 0.6, 1: 0.1 내지 0.8, 1: 0.1 내지 0.6, 1: 0.2 내지 0.8, 1: 0.2 내지 0.6 등일 수 있다.The ratio of the porous silica particles and the nucleic acid molecule of the present invention is not particularly limited, for example, the weight ratio is 1: 0.05 to 0.8, for example, within the above range 1: 0.05 to 0.7, 1: 0.05 to 0.6, 1: 0.1 to 0.8, 1: 0.1 to 0.6, 1: 0.2 to 0.8, 1: 0.2 to 0.6, and the like.
상기 다공성 실리카 입자에 담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자는 연장된 시간에 걸쳐 점진적으로 방출될 수 있다. 이와 같이 느린 방출은 연속성 또는 비연속성, 선형 또는 비선형일 수 있으며, 다공성 실리카 입자의 특징 및/또는 그와 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자와의 상호작용에 기인하여 달라질 수 있다.Nucleic acid molecules complementarily binding to at least a portion of the transcript of the CTGF gene supported on the porous silica particles may be gradually released over an extended time. Such slow release may be continuous or discontinuous, linear or nonlinear, due to the characteristics of the porous silica particles and / or their interaction with nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene. Can vary.
상기 다공성 실리카 입자에 담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자는 다공성 실리카 입자가 생분해되면서 방출되는데, 본 발명에 따른 다공성 실리카 입자는 서서히 분해되어 담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자가 서방적으로 방출되도록 할 수 있다. 이는 예를 들면 다공성 실리카 입자의 표면적, 입경, 기공 직경, 표면 및/또는 기공 내부의 치환기, 표면의 치밀함 정도 등을 조절함으로써 조절될 수 있으나, 이에 제한되는 것은 아니다.A nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene supported on the porous silica particles is released as the porous silica particles are biodegraded, and the porous silica particles according to the present invention are slowly degraded to transfer the supported CTGF gene. Nucleic acid molecules that complementarily bind to at least a portion of the corpse can be released in a sustained manner. This may be controlled by, for example, adjusting the surface area, particle diameter, pore diameter, substituents on the surface and / or pores, degree of compactness of the porous silica particles, and the like, but are not limited thereto.
또한, 상기 다공성 실리카 입자에 담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자는 다공성 실리카 입자로부터 이탈되어 확산되면서도 방출될 수 있고, 이는 다공성 실리카 입자와 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 환경과의 관계에 영향을 받는 것인 바, 이를 조절하여 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 방출을 조절할 수 있다. 예를 들면 표면개질에 의해 다공성 실리카 입자의 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자와의 결합력을 강화 또는 약화시킴으로써 조절할 수 있다.In addition, nucleic acid molecules complementarily bound to at least a portion of the transcript of the CTGF gene supported on the porous silica particles may be released while being separated from the porous silica particles and diffused, and thus, the transcripts of the porous silica particles and the CTGF gene may be released. It is influenced by the relationship with the nucleic acid molecule complementarily binding to at least a portion, the nucleic acid molecule release environment complementary to at least a portion of the transcript of the CTGF gene, thereby controlling at least the transcript of the CTGF gene The release of nucleic acid molecules that complementarily bind to some can be regulated. For example, it can be controlled by enhancing or weakening the binding strength of the porous silica particles to nucleic acid molecules that complementarily bind to at least a part of the transcript of the CTGF gene of the porous silica particles.
보다 구체적인 예를 들자면, 담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 난용성(소수성)인 경우에는 입자의 표면 및/또는 기공 내부가 소수성 치환기를 가져 다공성 실리카 입자와 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가된 것일 수 있고, 이에 의해 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 소수성 치환기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.More specifically, in the case where the nucleic acid molecule or substance complementary to at least a part of the transcript of the supported CTGF gene is poorly soluble (hydrophobic), the surface of the particle and / or the inside of the pore have a hydrophobic substituent so that the porous silica The binding force between the particle and the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene may be increased, whereby the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene This can be released slowly. This may be, for example, the surface-modified porous silica particles with an alkoxysilane having a hydrophobic substituent.
본 명세서에서 "난용성"은 (물에 대해) 불용성(insoluble), 실질적으로 불용성(practically insoluble) 또는 극히 약간의 가용성(only slightly soluble)인 것을 포함하는 의미로서 이는 "Pharmaceutical Science" 18 th Edition(U.S.P., Remington, Mack Publishing Company 발행)에 정의되어 있는 용어이다.As used herein, "poorly soluble" means to be insoluble (practically insoluble) or only slightly soluble (with respect to water), which means "Pharmaceutical Science" 18 th Edition ( USP, Remington, Mack Publishing Company).
상기 난용성 물질은 예를 들면 1기압, 25℃에서 수용해도가 10g/L 미만, 구체적으로 5g/L 미만, 보다 구체적으로 1g/L 미만일 수 있으나, 이에 제한되는 것은 아니다.The poorly water-soluble material may be, for example, water solubility of less than 10 g / L, specifically less than 5 g / L, more specifically less than 1 g / L at 1 atmosphere and 25 ° C., but is not limited thereto.
담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 수용성(친수성)인 경우에는 입자의 표면 및/또는 기공 내부가 친수성 치환기를 가져 다공성 실리카 입자와 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가된 것일 수 있고, 이에 의해 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 친수성 치환기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.When the nucleic acid molecule or substance complementarily binding to at least a part of the transcript of the supported CTGF gene is water-soluble (hydrophilic), the surface of the particle and / or the inside of the pore have a hydrophilic substituent, so that the porous silica particles and the transcript of the CTGF gene The binding force with a nucleic acid molecule or substance complementarily binding to at least a portion of the may be increased, whereby the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene may be released in a sustained manner. have. This may be, for example, the surface of the porous silica particles modified with an alkoxysilane having a hydrophilic substituent.
수용성 물질은 예를 들면 1기압, 25℃에서 수용해도가 10g/L 이상일 수 있으나, 이에 제한되는 것은 아니다.For example, the water-soluble substance may have a water solubility of 10 g / L or more at 1 atmosphere and 25 ° C., but is not limited thereto.
담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 전하를 띠는 경우에는 입자의 표면 및/또는 기공 내부가 그와 반대 전하로 대전되어 다공성 실리카 입자와 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가된 것일 수 있고, 이에 의해 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 산성기 또는 염기성기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.In the case where a nucleic acid molecule or substance complementary to at least a portion of the transcript of a supported CTGF gene is charged, the surface of the particle and / or the inside of the pore are charged with opposite charges, thereby The binding force with the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript may be increased, whereby the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene is released slowly. Can be. This may be, for example, the surface-modified porous silica particles with an alkoxysilane having an acidic group or a basic group.
구체적으로, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 중성의 pH에서 양전하를 띠는 것이라면 입자의 표면 및/또는 기공 내부가 중성의 pH에서 음전하로 대전되는 것일 수 있고, 이에 의해 다공성 실리카 입자와 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가되어 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 카르복시기(-COOH), 술폰산기(-SO 3H) 등의 산성기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.Specifically, if the nucleic acid molecule or substance complementary to at least a portion of the transcript of the CTGF gene is positively charged at neutral pH, the surface of the particle and / or the inside of the pore may be negatively charged at neutral pH. Wherein the binding force between the porous silica particles and the nucleic acid molecule or substance complementarily binding to at least a portion of the transcript of the CTGF gene is increased, and the nucleic acid molecule or substance complementarily binds to at least a portion of the transcript of the CTGF gene. This can be released slowly. For example, the porous silica particles may be surface-modified with an alkoxysilane having an acidic group such as a carboxyl group (-COOH) and a sulfonic acid group (-SO 3 H).
또한, CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 중성의 pH에서 음전하를 띠는 것이라면 입자의 표면 및/또는 기공 내부가 양전하로 대전되는 것일 수 있고, 이에 의해 다공성 실리카 입자와 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가되어 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 아미노기, 그 외 질소함유기 등의 염기성기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.In addition, if the nucleic acid molecule or substance complementary to at least a portion of the transcript of the CTGF gene is negatively charged at a neutral pH, the surface of the particle and / or the inside of the pore may be positively charged, whereby Sustained release of nucleic acid molecules or substances that complementarily bind to at least a portion of the transcript of the CTGF gene by increasing the binding force between the silica particles and at least a portion of the transcript of the CTGF gene Can be. For example, the porous silica particles may be surface-modified with an alkoxysilane having a basic group such as an amino group or another nitrogen-containing group.
CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질은 필요한 치료 유형, 방출 환경, 사용되는 다공성 실리카 입자에 의존하여 예를 들면 7일 내지 1년 또는 그 이상의 기간 동안 방출될 수 있다. Nucleic acid molecules or substances that complementarily bind to at least a portion of the transcript of the CTGF gene may be released for a period of, for example, 7 days to 1 year or more, depending on the type of treatment required, the release environment, and the porous silica particles used. have.
또한, 본 발명의 다공성 실리카 입자는 생분해성으로서 100% 분해될 수 있으므로, 이에 담지된 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질은 100% 방출될 수 있다.In addition, since the porous silica particles of the present invention are 100% biodegradable, the nucleic acid molecules or substances complementarily binding to at least a part of the transcript of the CTGF gene supported thereon may be 100% released.
상기 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자는 상술한 바대로, 서열번호 1의 서열과의 상보성이 10 뉴클레오티드(nucleotide; nt) 이상, 11 뉴클레오티드 이상, 12 뉴클레오티드 이상, 13 뉴클레오티드 이상, 14 뉴클레오티드 이상, 15 뉴클레오티드 이상, 16 뉴클레오티드 이상, 17 뉴클레오티드 이상 또는 18 뉴클레오티드 전체일 수 있고, 관련된 구체적인 설명은 상술한 바와 같다.As described above, the nucleic acid molecule that complementarily binds to at least a portion of the transcript of the CTGF gene has a complementarity with the sequence of SEQ ID NO: 10 nucleotides (nt), 11 nucleotides, 12 nucleotides, 13 It may be at least nucleotides, at least 14 nucleotides, at least 15 nucleotides, at least 16 nucleotides, at least 17 nucleotides, or at least 18 nucleotides in total, and the related detailed description is as described above.
본 발명은 상술한 CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하는 CTGF 유전자 발현 억제용 조성물;을 포함하는 섬유증식성 질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating fibroproliferative diseases, including; a composition for inhibiting CTGF gene expression comprising porous silica particles carrying nucleic acid molecules complementarily bound to at least a portion of a transcript of the CTGF gene described above. To provide a composition.
상기 핵산분자, 다공성 실리카 입자, CTGF 유전자 발현의 억제, 섬유증식성 질환, 약학적 조성물의 다양한 제형 등에 관한 구체적인 내용은 상술한 바와 같다.Details of the nucleic acid molecule, porous silica particles, suppression of CTGF gene expression, fibrotic disease, various formulations of the pharmaceutical composition and the like are as described above.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in detail with reference to Examples.
이하, 본 발명에서 사용된 siRNA는 'siCTGF'로, 본 발명의 다공성 실리카 입자는 'DegradaBALL 또는 DDV'로, siCTGF가 담지된 DegradaBALL은 'LEM-S401'로 각각 약칭될 수 있다.Hereinafter, siRNA used in the present invention may be abbreviated as 'siCTGF', porous silica particles of the present invention as 'DegradaBALL or DDV', and DegradaBALL carrying siCTGF may be abbreviated as 'LEM-S401'.
실험방법Experiment method
1. 실험재료1. Experimental Materials
DegradaBALL과 TAMRA가 결합된 DegradaBALL은 Lemonex, Inc. (서울 한국)에서 제공받았고, 세포 계수 키트-8(Cell counting kit-8)은 Dojindo molecular technologies, Inc. (Maryland, USA)에서 구입했다. TGF-ß는 Peprotech (New Jersey, USA)에서 구입했고, 10% 인산염 완충 생리 식염수 (PBS), 둘베코 변형 이글스 배지 (DMEM), 태아 소 혈청 (FBS), 로스웰 파크 기념 연구소 1640 (RPMI 1640), 페니실린-스트렙토 마이신 및 0.05% 트립신-EDTA는 WelGene (대한민국)에서 구입했다. 모든 핵산분자는 Lemonex(서울, 대한민국)에 의해 합성되었고, 이의 서열 및 본 명세서 전반에 있어 사용된 핵산분자 서열은 하기 표 1에 제시하였다. 모든 PCR 프라이머는 Cosmogenetech (서울, 한국)에서 구입했다. 항-마우스 CTGF 항체는 Abcam (Cambridge, UK)으로부터 구입하였고 항-마우스 콜라겐 1, 3 항체는 Invitrogen (Carlsbad, CA, USA)에서 구입하였다. Trizol 세포 용해 용액은 Molecular Probes Invitrogen (Carlsbad, CA, USA)에서 구입했고, 모든 PCR 시약은 TaKaRa Bio Inc. (Shiga, Japan)에서 구입했다. 모든 화학 물질은 수령한 대로 사용하였다. DegradaBALL combined with DegradaBALL and TAMRA is Lemonex, Inc. (Cell counting kit-8) is provided by Dojindo molecular technologies, Inc. (Maryland, USA). TGF-ß was purchased from Peprotech (New Jersey, USA), 10% Phosphate Buffered Saline (PBS), Dulbecco's Modified Eagle's Medium (DMEM), Fetal Bovine Serum (FBS), Roswell Park Memorial Laboratory 1640 (RPMI 1640) , Penicillin-streptomycin and 0.05% trypsin-EDTA were purchased from WelGene (South Korea). All nucleic acid molecules were synthesized by Lemonex (Seoul, Korea), and their sequences and nucleic acid molecule sequences used throughout the present specification are shown in Table 1 below. All PCR primers were purchased from Cosmogenetech (Seoul, Korea). Anti-mouse CTGF antibodies were purchased from Abcam (Cambridge, UK) and anti-mouse collagen 1, 3 antibodies were purchased from Invitrogen (Carlsbad, CA, USA). Trizol cell lysis solution was purchased from Molecular Probes Invitrogen (Carlsbad, CA, USA) and all PCR reagents were obtained from TaKaRa Bio Inc. Purchased from (Shiga, Japan). All chemicals were used as received.
Target sequence 1:5'-CTC ATT AGA CTG GAA CTT -3'(Position in gene sequence: 1280)Target sequence 1: 5'-CTC ATT AGA CTG GAA CTT -3 '(Position in gene sequence: 1280) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 15'- CUCAUUAGACUGGAACUU -3'siRNA Sense strand: SEQ ID NO: 15'- CUCAUUAGACUGGAACUU -3 '
siRNA Antisense strand: 서열번호 25'- AAGUUCCAGUCUAAUGAG -3'siRNA Antisense strand: SEQ ID NO: 25'- AAGUUCCAGUCUAAUGAG -3 '
dsRNA: 서열번호 35'- CUCAUUAGACUGGAACUU UU UCU AAA G-3'dsRNA: SEQ ID NO: 35'- CUCAUUAGACUGGAACUU UU UCU AAA G-3 '
antisense PNA: 서열번호 875'-TTA GAC TGG AAC TTG A-3'antisense PNA: SEQ ID NO: 875'-TTA GAC TGG AAC TTG A-3 '
antisense PNA 서열번호 885'-CAT TAG ACT GGA ACT T-3'antisense PNA SEQ ID NO: 885'-CAT TAG ACT GGA ACT T-3 '
Target sequence 2:5'-G GAA CTT GAA CTG ATT CA-3'(Position in gene sequence: 1291)Target sequence 2: 5'-G GAA CTT GAA CTG ATT CA-3 '(Position in gene sequence: 1291) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 45'-GGAACUUGAACUGAUUCA -3'siRNA Sense strand: SEQ ID NO: 45'-GGAACUUGAACUGAUUCA -3 '
siRNA Antisense strand: 서열번호 55'- UGAAUCAGUUCAAGUUCC -3'siRNA Antisense strand: SEQ ID NO: 55'- UGAAUCAGUUCAAGUUCC -3 '
dsRNA: 서열번호 65'- GGAACUUGAACUGAUUCA UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 65'- GGAACUUGAACUGAUUCA UU CCU UUC UAA AG-3 '
Target sequence 3:5'-CTG AGT GAC TCT ATA TAG CT-3'(Position in gene sequence: 2185)Target sequence 3: 5'-CTG AGT GAC TCT ATA TAG CT-3 '(Position in gene sequence: 2185) siRNA GC content: 40.0%siRNA GC content: 40.0%
siRNA Sense strand: 서열번호 75'- CUGAGUGACUCUAUAUAGCU -3'siRNA Sense strand: SEQ ID NO: 75'- CUGAGUGACUCUAUAUAGCU -3 '
siRNA Antisense strand: 서열번호 85'- AGCUAUAUAGAGUCACUCAG -3'siRNA Antisense strand: SEQ ID NO: 85'- AGCUAUAUAGAGUCACUCAG -3 '
dsRNA: 서열번호 95'- CUGAGUGACUCUAUAUAGCU UU UCU AAA G-3'dsRNA: SEQ ID NO: 95'- CUGAGUGACUCUAUAUAGCU UU UCU AAA G-3 '
Target sequence 4:5'-GCA TGA AGA CAT ACC GAG C-3'(Position in gene sequence: 1030)Target sequence 4: 5'-GCA TGA AGA CAT ACC GAG C-3 '(Position in gene sequence: 1030) siRNA GC content: 52.6%siRNA GC content: 52.6%
siRNA Sense strand: 서열번호 105'- GCAUGAAGACAUACCGAGC -3'siRNA Sense strand: SEQ ID NO: 105'- GCAUGAAGACAUACCGAGC -3 '
siRNA Antisense strand: 서열번호 115'- GCUCGGUAUGUCUUCAUGC -3'siRNA Antisense strand: SEQ ID NO: 115'- GCUCGGUAUGUCUUCAUGC -3 '
dsRNA: 서열번호 125'- GCAUGAAGACAUACCGAGC UU UCU AAA G-3'dsRNA: SEQ ID NO: 125'- GCAUGAAGACAUACCGAGC UU UCU AAA G-3 '
Target sequence 5:5'-ATG TTT GCA CCT TTC TAG-3'(Position in gene sequence: 2296)Target sequence 5: 5'-ATG TTT GCA CCT TTC TAG-3 '(Position in gene sequence: 2296) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 135'- AUGUUUGCACCUUUCUAG -3'siRNA Sense strand: SEQ ID NO: 135'- AUGUUUGCACCUUUCUAG -3 '
siRNA Antisense strand: 서열번호 145'- CUAGAAAGGUGCAAACAU -3'siRNA Antisense strand: SEQ ID NO: 145'- CUAGAAAGGUGCAAACAU -3 '
dsRNA: 서열번호 155'- AUGUUUGCACCUUUCUAG UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 155'- AUGUUUGCACCUUUCUAG UU CCU UUC UAA AG-3 '
Target sequence 6:5'-TG AGA GGA GAC AGC CAG T-3'(Position in gene sequence: 26)Target sequence 6: 5'-TG AGA GGA GAC AGC CAG T-3 '(Position in gene sequence: 26) siRNA GC content: 55.6%siRNA GC content: 55.6%
siRNA Sense strand: 서열번호 165'- UGAGAGGAGACAGCCAGU -3'siRNA Sense strand: SEQ ID NO: 165'- UGAGAGGAGACAGCCAGU -3 '
siRNA Antisense strand: 서열번호 175'- ACUGGCUGUCUCCUCUCA -3'siRNA Antisense strand: SEQ ID NO: 175'- ACUGGCUGUCUCCUCUCA -3 '
dsRNA: 서열번호 185'- UGAGAGGAGACAGCCAGU UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 185'- UGAGAGGAGACAGCCAGU UU CCU UUC UAA AG-3 '
Target sequence 7:5'-TTC GGT GGT ACG GTG TAC -3'(Position in gene sequence: 518)Target sequence 7: 5'-TTC GGT GGT ACG GTG TAC -3 '(Position in gene sequence: 518) siRNA GC content: 55.6%siRNA GC content: 55.6%
siRNA Sense strand: 서열번호 195'- UUCGGUGGUACGGUGUAC -3'siRNA Sense strand: SEQ ID NO: 195'- UUCGGUGGUACGGUGUAC-3 '
siRNA Antisense strand: 서열번호 205'- GUACACCGUACCACCGAA -3'siRNA Antisense strand: SEQ ID NO: 205'- GUACACCGUACCACCGAA -3 '
dsRNA: 서열번호 215'- UUCGGUGGUACGGUGUAC UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 215'- UUCGGUGGUACGGUGUAC UU CCU UUC UAA AG-3 '
Target sequence 8:5'-TCC TTC CAG AGC AGC TGC AA-3'(Position in gene sequence: 549)Target sequence 8: 5'-TCC TTC CAG AGC AGC TGC AA-3 '(Position in gene sequence: 549) siRNA GC content: 55.0%siRNA GC content: 55.0%
siRNA Sense strand: 서열번호 225'- UCCUUCCAGAGCAGCUGCAA -3'siRNA Sense strand: SEQ ID NO: 225'-UCCUUCCAGAGCAGCUGCAA -3 '
siRNA Antisense strand: 서열번호 235'- UUGCAGCUGCUCUGGAAGGA -3'siRNA Antisense strand: SEQ ID NO: 235'- UUGCAGCUGCUCUGGAAGGA -3 '
dsRNA: 서열번호 245'- UCCUUCCAGAGCAGCUGCAA UU UCU AAA G-3'dsRNA: SEQ ID NO: 245'-UCCUUCCAGAGCAGCUGCAA UU UCU AAA G-3 '
Target sequence 9:5'-TG TGT GAC GAG CCC AAG GA-3'(Position in gene sequence: 699)Target sequence 9: 5'-TG TGT GAC GAG CCC AAG GA-3 '(Position in gene sequence: 699) siRNA GC content: 57.9%siRNA GC content: 57.9%
siRNA Sense strand: 서열번호 255'- UGUGUGACGAGCCCAAGGA -3'siRNA Sense strand: SEQ ID NO: 255'- UGUGUGACGAGCCCAAGGA -3 '
siRNA Antisense strand: 서열번호 265'- UCCUUGGGCUCGUCACACA -3'siRNA Antisense strand: SEQ ID NO: 265'-UCCUUGGGCUCGUCACACA -3 '
dsRNA: 서열번호 275'- UGUGUGACGAGCCCAAGGA UU UCU AAA G-3'dsRNA: SEQ ID NO: 275'-UGUGUGACGAGCCCAAGGA UU UCU AAA G-3 '
Target sequence 10:5'-TGC CTG GTC CAG ACC ACA GA-3'(Position in gene sequence: 801)Target sequence 10: 5'-TGC CTG GTC CAG ACC ACA GA-3 '(Position in gene sequence: 801) siRNA GC content: 60.0%siRNA GC content: 60.0%
siRNA Sense strand: 서열번호 285'- UGCCUGGUCCAGACCACAGA -3'siRNA Sense strand: SEQ ID NO: 285'- UGCCUGGUCCAGACCACAGA-3 '
siRNA Antisense strand: 서열번호 295'- UCUGUGGUCUGGACCAGGCA -3'siRNA Antisense strand: SEQ ID NO: 295'-UCUGUGGUCUGGACCAGGCA -3 '
dsRNA: 서열번호 305'- UGCCUGGUCCAGACCACAGA UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 305'-UGCCUGGUCCAGACCACAGA UU CCU UUC UAA AG-3 '
Target sequence 11:5'-CAG GCT AGA GAA GCA GAG-3'(Position in gene sequence: 890)Target sequence 11: 5'-CAG GCT AGA GAA GCA GAG-3 '(Position in gene sequence: 890) siRNA GC content: 55.6%siRNA GC content: 55.6%
siRNA Sense strand: 서열번호 315'- CAGGCUAGAGAAGCAGAG -3'siRNA Sense strand: SEQ ID NO: 315'- CAGGCUAGAGAAGCAGAG -3 '
siRNA Antisense strand: 서열번호 325'- CUCUGCUUCUCUAGCCUG -3'siRNA Antisense strand: SEQ ID NO: 325'- CUCUGCUUCUCUAGCCUG -3 '
dsRNA: 서열번호 335'- CAGGCUAGAGAAGCAGAG UU UCU AAA G-3'dsRNA: SEQ ID NO: 335'- CAGGCUAGAGAAGCAGAG UU UCU AAA G-3 '
Target sequence 12:5'-TGT GCA TGG TCA GGC CTT-3'(Position in gene sequence: 913)Target sequence 12: 5'-TGT GCA TGG TCA GGC CTT-3 '(Position in gene sequence: 913) siRNA GC content: 55.6%siRNA GC content: 55.6%
siRNA Sense strand: 서열번호 345'- UGUGCAUGGUCAGGCCUU -3'siRNA Sense strand: SEQ ID NO: 345'- UGUGCAUGGUCAGGCCUU -3 '
siRNA Antisense strand: 서열번호 355'- AAGGCCUGACCAUGCACA -3'siRNA Antisense strand: SEQ ID NO: 355'- AAGGCCUGACCAUGCACA -3 '
dsRNA: 서열번호 365'- UGUGCAUGGUCAGGCCUU UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 365'- UGUGCAUGGUCAGGCCUU UU CCU UUC UAA AG-3 '
Target sequence 13:5'-TGA TTT CAG TAG CAC AAG-3'(Position in gene sequence: 1330)Target sequence 13: 5'-TGA TTT CAG TAG CAC AAG-3 '(Position in gene sequence: 1330) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 375'- UGAUUUCAGUAGCACAAG -3'siRNA Sense strand: SEQ ID NO: 375'- UGAUUUCAGUAGCACAAG -3 '
siRNA Antisense strand: 서열번호 385'- CUUGUGCUACUGAAAUCA -3'siRNA Antisense strand: SEQ ID NO: 385'- CUUGUGCUACUGAAAUCA -3 '
dsRNA: 서열번호 395'- UGAUUUCAGUAGCACAAG UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 395'- UGAUUUCAGUAGCACAAG UU CCU UUC UAA AG-3 '
Target sequence 14:5'-TAG CGT GCT CAC TGA CCT-3'(Position in gene sequence: 1623)Target sequence 14: 5'-TAG CGT GCT CAC TGA CCT-3 '(Position in gene sequence: 1623) siRNA GC content: 55.6%siRNA GC content: 55.6%
siRNA Sense strand: 서열번호 405'- UAGCGUGCUCACUGACCU -3'siRNA Sense strand: SEQ ID NO: 405'- UAGCGUGCUCACUGACCU -3 '
siRNA Antisense strand: 서열번호 415'- AGGUCAGUGAGCACGCUA -3'siRNA Antisense strand: SEQ ID NO: 415'- AGGUCAGUGAGCACGCUA -3 '
dsRNA: 서열번호 425'- UAGCGUGCUCACUGACCU UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 425'- UAGCGUGCUCACUGACCU UU CCU UUC UAA AG-3 '
Target sequence 15:5'-CTG ATT CGA ATG ACA CTG TT-3'(Position in gene sequence: 1742)Target sequence 15: 5'-CTG ATT CGA ATG ACA CTG TT-3 '(Position in gene sequence: 1742) siRNA GC content: 40.0%siRNA GC content: 40.0%
siRNA Sense strand: 서열번호 435'- CUGAUUCGAAUGACACUGUU -3'siRNA Sense strand: SEQ ID NO: 435'- CUGAUUCGAAUGACACUGUU -3 '
siRNA Antisense strand: 서열번호 445'- AACAGUGUCAUUCGAAUCAG -3'siRNA Antisense strand: SEQ ID NO: 445'- AACAGUGUCAUUCGAAUCAG -3 '
dsRNA: 서열번호 455'- CUGAUUCGAAUGACACUGUU UU CCU UUC UAA AG-3'dsRNA: SEQ ID NOs: 455'- CUGAUUCGAAUGACACUGUU UU CCU UUC UAA AG-3 '
Target sequence 16:5'-CAG ATT GTT TGC AAA GGG-3'(Position in gene sequence: 2081)Target sequence 16: 5'-CAG ATT GTT TGC AAA GGG-3 '(Position in gene sequence: 2081) siRNA GC content: 44.4%siRNA GC content: 44.4%
siRNA Sense strand: 서열번호 465'- CAGAUUGUUUGCAAAGGG -3'siRNA Sense strand: SEQ ID NO: 465'- CAGAUUGUUUGCAAAGGG -3 '
siRNA Antisense strand: 서열번호 475'- CCCUUUGCAAACAAUCUG -3'siRNA Antisense strand: SEQ ID NO: 475'- CCCUUUGCAAACAAUCUG -3 '
dsRNA: 서열번호 485'- CAGAUUGUUUGCAAAGGG UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 485'- CAGAUUGUUUGCAAAGGG UU CCU UUC UAA AG-3 '
Target sequence 17:5'-GCA TCA GTG TCC TTG GCA-3'(Position in gene sequence: 2102)Target sequence 17: 5'-GCA TCA GTG TCC TTG GCA-3 '(Position in gene sequence: 2102) siRNA GC content: 55.6%siRNA GC content: 55.6%
siRNA Sense strand: 서열번호 495'- GCAUCAGUGUCCUUGGCA -3'siRNA Sense strand: SEQ ID NO: 495'- GCAUCAGUGUCCUUGGCA -3 '
siRNA Antisense strand: 서열번호 505'- UGCCAAGGACACUGAUGC -3'siRNA Antisense strand: SEQ ID NO: 505'- UGCCAAGGACACUGAUGC -3 '
dsRNA: 서열번호 515'- GCAUCAGUGUCCUUGGCA UU CCU UUC UAA AG-3'dsRNA: SEQ ID NO: 515'- GCAUCAGUGUCCUUGGCA UU CCU UUC UAA AG-3 '
Target sequence 18:5'-GAC ATT AAC TCA TTA GAC -3'(Position in gene sequence: 1272)Target sequence 18: 5'-GAC ATT AAC TCA TTA GAC -3 '(Position in gene sequence: 1272) siRNA GC content: 33.3%siRNA GC content: 33.3%
siRNA Sense strand: 서열번호 525'-GACAUUAACUCAUUAGAC -3'siRNA Sense strand: SEQ ID NO: 525'-GACAUUAACUCAUUAGAC -3 '
siRNA Antisense strand: 서열번호 535'-GUCUAAUGAGUUAAUGUC -3'siRNA Antisense strand: SEQ ID NO: 535'-GUCUAAUGAGUUAAUGUC -3 '
dsRNA: 서열번호 545'-GACAUUAACUCAUUAGAC UU UCU AAA G-3'dsRNA: SEQ ID NO: 545'-GACAUUAACUCAUUAGAC UU UCU AAA G-3 '
Target sequence 19:5'-AAC TCA TTA GAC TGG AAC -3'(Position in gene sequence: 1278)Target sequence 19: 5'-AAC TCA TTA GAC TGG AAC -3 '(Position in gene sequence: 1278) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 555'- AACUCAUUAGACUGGAAC -3'siRNA Sense strand: SEQ ID NO: 555'- AACUCAUUAGACUGGAAC -3 '
siRNA Antisense strand: 서열번호 565'- GUUCCAGUCUAAUGA GUU -3'siRNA Antisense strand: SEQ ID NO: 565'- GUUCCAGUCUAAUGA GUU -3 '
dsRNA: 서열번호 575'- AACUCAUUAGACUGGAAC UU UCU AAA G-3'dsRNA: SEQ ID NO: 575'- AACUCAUUAGACUGGAAC UU UCU AAA G-3 '
antisense PNA 서열번호 895'-TCC AGT CTA ATG AGT T-3'antisense PNA SEQ ID NO: 895'-TCC AGT CTA ATG AGT T-3 '
antisense PNA 서열번호 905'-TTC CAG TCT AAT GAG T-3'antisense PNA SEQ ID NO: 905'-TTC CAG TCT AAT GAG T-3 '
Target sequence 20:5'-ACT CAT TAG ACT GGA ACT -3'(Position in gene sequence: 1279)Target sequence 20: 5'-ACT CAT TAG ACT GGA ACT -3 '(Position in gene sequence: 1279) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 585'- ACUCAUUAGACUGGAACU -3'siRNA Sense strand: SEQ ID NO: 585'- ACUCAUUAGACUGGAACU -3 '
siRNA Antisense strand: 서열번호 595'- AGUUCCAGUCUAAUGAGU -3'siRNA Antisense strand: SEQ ID NO: 595'- AGUUCCAGUCUAAUGAGU -3 '
dsRNA: 서열번호 605'- ACUCAUUAGACUGGAACU UU UCU AAA G-3'dsRNA: SEQ ID NO: 605'- ACUCAUUAGACUGGAACU UU UCU AAA G-3 '
antisense PNA 서열번호 915'-AGT TCC AGT CTA ATG A-3'antisense PNA SEQ ID NO: 915'-AGT TCC AGT CTA ATG A-3 '
Target sequence 21:5'- TTA GAC TGG AAC TTG AAC -3'(Position in gene sequence: 1284)Target sequence 21: 5'- TTA GAC TGG AAC TTG AAC -3 '(Position in gene sequence: 1284) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 615'- UUAGACUGGAACUUGAAC -3'siRNA Sense strand: SEQ ID NO: 615'- UUAGACUGGAACUUGAAC-3 '
siRNA Antisense strand: 서열번호 625'-GUUCAAGUUCCAGUCUAA -3'siRNA Antisense strand: SEQ ID NO: 625'-GUUCAAGUUCCAGUCUAA -3 '
dsRNA: 서열번호 635'- UUAGACUGGAACUUGAAC UU UCU AAA G-3'dsRNA: SEQ ID NO: 635'-UUAGACUGGAACUUGAAC UU UCU AAA G-3 '
antisense PNA 서열번호 925'-TCA AGT TCC AGT CTA A-3'antisense PNA SEQ ID NO: 925'-TCA AGT TCC AGT CTA A-3 '
antisense PNA 서열번호 935'-TTC AAG TTC CAG TCT A-3'antisense PNA SEQ ID NO: 935'-TTC AAG TTC CAG TCT A-3 '
Target sequence 22:5'- ATT AGA CTG GAA CTT GAA -3'(Position in gene sequence: 1283)Target sequence 22: 5'- ATT AGA CTG GAA CTT GAA -3 '(Position in gene sequence: 1283) siRNA GC content: 33.3%siRNA GC content: 33.3%
siRNA Sense strand: 서열번호 645'- AUUAGACUGGAACUUGAA -3'siRNA Sense strand: SEQ ID NO: 645'- AUUAGACUGGAACUUGAA -3 '
siRNA Antisense strand: 서열번호 655'-UUCAAGUUCCAGUCUAAU -3'siRNA Antisense strand: SEQ ID NO: 655'-UUCAAGUUCCAGUCUAAU -3 '
dsRNA: 서열번호 665'- AUUAGACUGGAACUUGAA UU UCU AAA G-3'dsRNA: SEQ ID NO: 665'- AUUAGACUGGAACUUGAA UU UCU AAA G-3 '
antisense PNA 서열번호 945'-CAA GTT CCA GTC TAA T-3'antisense PNA SEQ ID NO: 945'-CAA GTT CCA GTC TAA T-3 '
antisense PNA 서열번호 955'-TTC AAG TTC CAG TCT A-3'antisense PNA SEQ ID NO: 955'-TTC AAG TTC CAG TCT A-3 '
Target sequence 23:5'- CAT TAG ACT GGA ACT TGA -3'(Position in gene sequence: 1282)Target sequence 23: 5'- CAT TAG ACT GGA ACT TGA -3 '(Position in gene sequence: 1282) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 675'- CAUUAGACUGGAACUUGA -3'siRNA Sense strand: SEQ ID NO: 675'- CAUUAGACUGGAACUUGA -3 '
siRNA Antisense strand: 서열번호 685'-UCAAGUUCCAGUCUAAUG -3'siRNA Antisense strand: SEQ ID NO: 685'-UCAAGUUCCAGUCUAAUG-3 '
dsRNA: 서열번호 695'- CAUUAGACUGGAACUUGA UU UCU AAA G-3'dsRNA: SEQ ID NO: 695'- CAUUAGACUGGAACUUGA UU UCU AAA G-3 '
antisense PNA 서열번호 965'-CAA GTT CCA GTC TAA T-3'antisense PNA SEQ ID NO: 965'-CAA GTT CCA GTC TAA T-3 '
antisense PNA 서열번호 975'-TCA AGT TCC AGT CTA A-3'antisense PNA SEQ ID NO: 975'-TCA AGT TCC AGT CTA A-3 '
Target sequence 24:5'- TCA TTA GAC TGG AAC TTG -3'(Position in gene sequence: 1281)Target sequence 24: 5'- TCA TTA GAC TGG AAC TTG -3 '(Position in gene sequence: 1281) siRNA GC content: 38.9%siRNA GC content: 38.9%
siRNA Sense strand: 서열번호 705'- UCAUUAGACUGGAACUUG -3'siRNA Sense strand: SEQ ID NO: 705'- UCAUUAGACUGGAACUUG -3 '
siRNA Antisense strand: 서열번호 715'-CAAGUUCCAGUCUAAUGA -3'siRNA Antisense strand: SEQ ID NO: 715'-CAAGUUCCAGUCUAAUGA -3 '
dsRNA: 서열번호 725'- UCAUUAGACUGGAACUUG UU UCU AAA G-3'dsRNA: SEQ ID NOs: 725'- UCAUUAGACUGGAACUUG UU UCU AAA G-3 '
antisense PNA 서열번호 985'-AGT TCC AGT CTA ATG A-3'antisense PNA SEQ ID NO: 985'-AGT TCC AGT CTA ATG A-3 '
antisense PNA 서열번호 995'-CAA GTT CCA GTC TAA T-3'antisense PNA SEQ ID NO: 995'-CAA GTT CCA GTC TAA T-3 '
Mouse CTGF siRNAMouse CTGF siRNA siRNA Sense strand: 서열번호 735'- gcaccagugu gaagacaua -3'siRNA Sense strand: SEQ ID NO: 735'- gcaccagugu gaagacaua -3 '
siRNA Antisense strand: 서열번호 745'- uaugucuuca cacuggugc -3'siRNA Antisense strand: SEQ ID NO: 745'- uaugucuuca cacuggugc -3 '
Human ß-actin PrimerHuman ß-actin Primer Forward: 서열번호 755' gctcgtcgac aagggctc -3'Forward: SEQ ID NO: 755 'gctcgtcgac aagggctc -3'
Reverse: 서열번호 765'- caaacatgat ctgggtca -3' Reverse: SEQ ID NO: 765'- caaacatgat ctgggtca -3 '
Human CTGF PrimerHuman CTGF Primer Forward: 서열번호 775'- caagggcctc ttctgtgact -3'Forward: SEQ ID NO: 775'- caagggcctc ttctgtgact -3 '
Reverse: 서열번호 785'- ccgtcggtac atactccaca -3'Reverse: SEQ ID NO: 785'-ccgtcggtac atactccaca -3 '
Mouse ß-actin PrimerMouse ß-actin Primer Forward: 서열번호 795'- gcctcccttc ttgggtatgg aa -3'Forward: SEQ ID NO: 795'- gcctcccttc ttgggtatgg aa -3 '
Reverse: 서열번호 805'- cagctcagta acagtccgcc -3'Reverse: SEQ ID NO: 805'- cagctcagta acagtccgcc -3 '
Mouse CTGF PrimerMouse CTGF Primer Forward: 서열번호 815'- gggcctcttc tgcgatttc -3'Forward: SEQ ID NO: 815'- gggcctcttc tgcgatttc -3 '
Reverse: 서열번호 825'- atccaggcaa gtgcattggt a -3'Reverse: SEQ ID NO: 825'- atccaggcaa gtgcattggt a -3 '
Mouse Collagen 1 PrimerMouse Collagen 1 Primer Forward: 서열번호 835'- gagcggagag tactggatcg -3'Forward: SEQ ID NO: 835'- gagcggagag tactggatcg -3 '
Reverse: 서열번호 845'- gttcgggctg atgtaccagt -3'Reverse: SEQ ID NO: 845'- gttcgggctg atgtaccagt -3 '
Mouse Collagen 3 PrimerMouse Collagen 3 Primer Forward: 서열번호 855'- agctttgtgc aaagtggaac ctgg -3'Forward: SEQ ID NO: 855'- agctttgtgc aaagtggaac ctgg -3 '
Reverse: 서열번호 865'- caaggtggct gcatcccaat tcat -3'Reverse: SEQ ID NO: 865'- caaggtggct gcatcccaat tcat -3 '
2. 동물모델2. Animal Model
모든 동물 실험은 서울대학교의 IACUC(Institutional Animal Care and Use Committees)를 준수하여 수행하였고, C57BL/6 수컷 쥐(5주)는 ORIENT BIO(성남시, 한국)에서 구입하였다.All animal experiments were performed in compliance with the Institutional Animal Care and Use Committees (IACUC) of Seoul National University, and C57BL / 6 male rats (5 weeks) were purchased from ORIENT BIO (Seongnam, Korea).
3. 세포 생존 측정3. Cell survival measurement
A549 및 HaCaT 세포를 100 μl의 성장배지(50-70 % 컨플루언시)를 갖는 96-웰 배양 플레이트에 웰당 10,000 세포의 밀도로 접종하였다. 세포를 혈청 함유 배지에서 적절한 농도의 DegradaBALL로 처리하고, 37℃에서 24시간 동안 배양하였다. 배양 후, 세포를 1 x PBS로 2회 세정한 후, 10 μl의 CCK-8을 함유한 100 μl의 무혈청 배지를 첨가한 다음, 1시간 더 배양하였다. 배양 플레이트 내 각 웰의 광학 밀도를 450 nm 파장에서 측정하였다. 삼중항(deviation of triplicates)의 평균 및 표준편차가 계산되고 플롯되었다.A549 and HaCaT cells were seeded in 96-well culture plates with 100 μl of growth medium (50-70% confluency) at a density of 10,000 cells per well. Cells were treated with the appropriate concentration of DegradaBALL in serum containing medium and incubated at 37 ° C. for 24 hours. After incubation, the cells were washed twice with 1 x PBS, and then 100 μl of serum-free medium containing 10 μl of CCK-8 was added, followed by further incubation for 1 hour. The optical density of each well in the culture plate was measured at 450 nm wavelength. Mean and standard deviation of the deviation of triplicates were calculated and plotted.
4. 세포 기반 CTGF knockdown 분석4. Cell Based CTGF Knockdown Assay
In vitro에서 LEM-S401의 CTGF 유전자 사일런싱 효율을 입증하기 위해, 무혈청 배지의 LEM-S401(12.5, 25, 50 및 100 nM) 500 μl를, 웰 당 25,000 세포의 컨플루언시로 접종한 플레이트 내 A549 및 HaCaT 세포에 처리하였다. 37℃의 가습된 5% CO 2 배양기에서 6시간 동안 배양한 후, 무혈청 배양액을 제거하고 1 x PBS로 2회 세정한 후, 혈청 함유 세포 배지를 교체하였다. 다시 6시간 후, 혈청 함유 배양 배지를 제거하고, 1 x PBS로 세척하였다. 혈청을 함유한 배지에서 TGF-ß(2 ng/mL) 500 μl를 세포로 처리하였고, CTGF 유도를 위해 배양 12시간 후, Trizol을 사용하여 총 RNA를 추출하였다. To demonstrate the CTGF gene silencing efficiency of LEM-S401 in vitro , 500 μl of LEM-S401 (12.5, 25, 50, and 100 nM) in serum-free medium was inoculated with 25,000 cells of confluency per well. A549 and HaCaT cells in the plate were treated. After 6 hours of incubation in a humidified 5% CO 2 incubator at 37 ° C., the serum-free culture was removed and washed twice with 1 × PBS before the serum-containing cell medium was replaced. After 6 hours again, the serum containing culture medium was removed and washed with 1 x PBS. 500 μl of TGF-ß (2 ng / mL) was treated with cells in a medium containing serum, and after 12 hours of culture for CTGF induction, total RNA was extracted using Trizol.
LEM-S401에 의한 CTGF knockdown의 지속 기간을 측정하기 위해, A549 및 HaCaT 세포를 무혈청 배지에서 LNP를 함유한 LEM-S401 (50 nM siCTGF) 및 siCTGF (50 nM) 500 μl로 처리하였다. 가습된 5% CO 2 배양기에서, 37℃에서 6시간 동안 배양한 후, 무혈청 배양액을 제거하고, 1 x PBS로 2회 세척한 후, 혈청 함유 세포 배지를 교체하였다. 지시된 시간 동안 배양한 후, 세포를 혈청 함유 배양 배지에서 TGF-ß(2 ng/mL) 500 μl로 처리하고, CTGF 유도를 위해 세포를 24시간 더 배양하였다. 총 RNA는 Trizol을 사용하여 추출하였다.To determine the duration of CTGF knockdown by LEM-S401, A549 and HaCaT cells were treated with 500 μl of LEM-S401 (50 nM siCTGF) and siCTGF (50 nM) containing LNP in serum-free medium. In a humidified 5% CO 2 incubator, after 6 hours of incubation at 37 ° C., the serum-free culture was removed, washed twice with 1 × PBS, and the serum-containing cell medium was replaced. After incubation for the indicated times, cells were treated with 500 μl of TGF-ß (2 ng / mL) in serum-containing culture medium, and cells were further incubated for 24 hours for CTGF induction. Total RNA was extracted using Trizol.
5. RT-PCR5. RT-PCR
모든 in vitro 및 in vivo에서 추출한 RNA는 다음 반응 조건을 사용하여 열 순환 반응에 사용되었다. cDNA 합성: 65℃에서 5분, 42℃에서 2분, 42℃에서 50분, 70℃에서 15분 동안 불활성화 1사이클, 증폭 과정: 95℃에서 30 초, 55℃에서 60초, 72 ℃에서 30초 30사이클. All RNAs extracted in vitro and in vivo were used for thermal cycling using the following reaction conditions. cDNA synthesis: 5 minutes at 65 ° C., 2 minutes at 42 ° C., 50 minutes at 42 ° C., 15 minutes at 70 ° C., 1 cycle of inactivation, amplification: 30 seconds at 95 ° C., 60 seconds at 55 ° C., 72 ° C. 30 seconds 30 cycles.
6. siCTGF 및 다공성 실리카 입자의 6. of siCTGF and porous silica particles In vivoIn vivo 이미징 Imaging
LEM-S401 (33 mM)(FITC-접합 siCTGF 및 TAMRA-결합 DegradaBALL) 30 μl를 7개의 다른 부위에서 마우스 피부에 주사하였다. 희생시킨 후, FOBI 생체 내 이미징 기기(NeoScience Co., Ltd., Seoul, Korea)를 이용하여 절제된 마우스 피부의 형광 이미지를 촬영하였다. 수득한 피부 샘플을 4% PFA 용액에 넣었다. 샘플을 파라핀에 끼우고, 10 μm 두께로 절단하였다. 탈수과정 후, 절편된 샘플을 DAPI로 염색하였다. 샘플은 20x 대물렌즈(Olympus, Tokyo, Japan)가 장착된 BX71 현미경을 관찰되었다.30 μl of LEM-S401 (33 mM) (FITC-conjugated siCTGF and TAMRA-binding DegradaBALL) were injected into the mouse skin at seven different sites. After sacrifice, fluorescence images of the excised mouse skin were taken using an FOBI in vivo imaging device (NeoScience Co., Ltd., Seoul, Korea). The obtained skin sample was placed in 4% PFA solution. The sample was inserted into paraffin and cut to 10 μm thickness. After dehydration, the sections were stained with DAPI. Samples were observed with a BX71 microscope equipped with a 20x objective (Olympus, Tokyo, Japan).
7. 마우스 피부 상처 모델을 이용한 7. Using a Mouse Skin Wound Model In vivoIn vivo 실험 Experiment
마우스 피부에 생검 펀치(4 mm)를 이용하여 상처를 내도록 구멍을 뚫었다. 시간이 지남에 따라, 상처를 명확하게 관찰하기 위해 검은 실크 실을 사용하여 실리콘 부목(바깥 쪽 15 mm, 안쪽 8 mm)을 상처 주위에 봉합했다. 1 x PBS에서 LEM-S401(3 mM) 30 μL를 4일 마다(4일, 8일, 12일), 상처 주변의 4개의 상이한 부위에 피하 주입하였다. 상처는 Tegaderm과 붕대를 2일에 한번씩 바꾸면서 관리했고, 16일 후, 마우스를 희생시켰다.Mouse skin was punctured to injure using a biopsy punch (4 mm). Over time, silicone splints (outer 15 mm, inner 8 mm) were sutured around the wound using black silk thread to clearly observe the wound. 30 μL of LEM-S401 (3 mM) in 1 × PBS was injected subcutaneously every 4 days (4 days, 8 days, 12 days) at 4 different sites around the wound. The wounds were managed with changing Tegaderm and bandages every other day, and 16 days later, mice were sacrificed.
LEM-S401가 조직 리모델링 과정에서 CTGF 발현을 억제할 수 있음을 입증하기 위해, 마우스 피부에 구멍을 뚫어, 생검 펀치(4 mm)를 사용하여 상처를 내고 밴드를 감쌌다. 상처가 완전히 닫힌 후, 1 x PBS에서 LEM-S401(33 mM) 30 μl를 4일마다 4개의 다른 부위(10일, 14일, 18일, 22일)에 상처 부위에 피하 주입하였고, 마우스를 26일 째에 희생시켰다.To demonstrate that LEM-S401 can inhibit CTGF expression during tissue remodeling, a hole was cut in the mouse skin, wounded and wrapped with a band using a biopsy punch (4 mm). After the wound was completely closed, 30 μl of LEM-S401 (33 mM) in 1 × PBS was injected subcutaneously into the wound site at 4 different sites every 4 days (10 days, 14 days, 18 days, 22 days), and mice were Sacrifice was made on day 26.
8. 면역조직화학8. Immunohistochemistry
마우스 피부 샘플을 24시간 동안 4℃에서 4% PFA 용액에서 배양하였다. 그 다음, 샘플을 파라핀에 끼우고 10 μm 두께로 절편을 만들었다. 절편화된 샘플을 탈수시키고, 투과 용액(1 x PBS 중 0.2% tween 20)에서 각각 10분씩 2회 배양하였다. 그 다음, 샘플을 가습된 대기 하 블로킹 용액(5% 정상 염소 혈청, 1 x PBS 중 0.2% tween 20)에서 45분 동안 인큐베이션하였다. 샘플을 실온에서 3시간 동안, 가습 챔버에서 2% 정상 염소 혈청 및 PBS 중 항체의 1: 100 희석액을 갖는 0.2% tween 20을 함유하는 1차 항체 용액과 함께 인큐베이션시켰다. 샘플을 투과용액에서 각각 10분 동안 3회 헹구고, 실온에서 2시간 동안 1 x PBS에서, 2% 정상 염소 혈청 및 0.2% tween 20을 함유하는 2차 항체 희석 용액과 함께 배양하였다. 샘플을 투과 용액으로 세척하고, DAPI로 염색하였다. 샘플은 20x 대물렌즈(Olympus, Tokyo, Japan)가 장착된 BX71 현미경으로 관찰되었다.Mouse skin samples were incubated in 4% PFA solution at 4 ° C. for 24 hours. The sample was then inserted into paraffin and sections were made 10 μm thick. The sectioned samples were dehydrated and incubated twice for 10 minutes each in permeate solution (0.2% tween 20 in 1 × PBS). The samples were then incubated for 45 minutes in humidified atmospheric blocking solution (5% normal goat serum, 0.2% tween 20 in 1 × PBS). Samples were incubated for 3 hours at room temperature with a primary antibody solution containing 0.2% tween 20 with a 1: 100 dilution of 2% normal goat serum and antibody in PBS in a humidification chamber. Samples were rinsed three times for 10 minutes each in permeate solution and incubated with a secondary antibody dilution solution containing 2% normal goat serum and 0.2% tween 20 in 1 × PBS for 2 hours at room temperature. Samples were washed with permeate solution and stained with DAPI. Samples were observed under a BX71 microscope equipped with a 20x objective (Olympus, Tokyo, Japan).
9. 다공성 실리카 입자(DDV 또는 DegradaBALL)9. Porous Silica Particles (DDV or DegradaBALL)
9-1. 다공성 실리카 입자의 제조9-1. Preparation of Porous Silica Particles
(1) 다공성 실리카 입자의 제조(1) Preparation of Porous Silica Particles
1) 소기공 입자의 제조1) Preparation of Small Pore Particles
2 L 둥근바닥플라스크에 증류수 (DW) 960 mL 과 MeOH 810 mL을 넣었다. 상기 플라스크에 CTAB 7.88 g을 넣은 후 교반하면서 1M NaOH 4.52 mL를 빠르게 넣었다. 10분 동안 교반시켜 균일한 혼합액을 넣은 후 TMOS 2.6 mL를 넣었다. 6시간 동안 교반하여 균일하게 혼합한 후, 24시간 동안 숙성시켰다.Into a 2 L round bottom flask was placed 960 mL of distilled water (DW) and 810 mL of MeOH. 7.88 g of CTAB was added to the flask, followed by rapid addition of 4.52 mL of 1 M NaOH while stirring. After stirring for 10 minutes to add a homogeneous mixture, 2.6 mL of TMOS was added. After stirring for 6 hours to mix uniformly, it was aged for 24 hours.
이후 상기 반응액을 25℃에서 10분간 8000rpm에서 원심분리하여 상등액을 제거하고, 25℃에서 10분간 8000rpm에서 원심분리하며 에탄올 및 증류수로 번갈아가며 5회 세척하였다.The reaction solution was then centrifuged at 8000 rpm for 10 minutes at 25 ° C. to remove the supernatant, centrifuged at 8000 rpm for 10 minutes at 25 ° C., and washed five times with alternating ethanol and distilled water.
이후 70℃ 오븐에서 건조시켜 1.5g의 분말형의 소기공 다공성 실리카 입자(기공 평균 직경 2nm, 입경 200nm)를 얻었다.Thereafter, the resultant was dried in an oven at 70 ° C. to obtain 1.5 g of powdery microporous silica particles (pore average diameter of 2 nm and particle size of 200 nm).
2) 기공 확장2) pore expansion
1.5g의 소기공 다공성 실리카 입자 분말을 에탄올 10ml에 첨가하여 초음파 분산시키고, 물 10ml, TMB (trimethyl benzene) 10ml를 첨가하여 초음파 분산시켰다.1.5 g of small pore porous silica particle powder was added to 10 ml of ethanol for ultrasonic dispersion, and 10 ml of water and 10 ml of TMB (trimethyl benzene) were added for ultrasonic dispersion.
이후 상기 분산액을 오토클레이브에 넣고 160℃, 48시간 반응시켰다.Thereafter, the dispersion was placed in an autoclave and reacted at 160 ° C. for 48 hours.
반응은 25℃에서 시작하여 10℃/분의 속도로 승온시켜 수행하였고, 이후 오토클레이브 내에서 1~10℃/분의 속도로 서서히 냉각시켰다.The reaction was carried out starting at 25 ° C. and warming up at a rate of 10 ° C./min, then slowly cooling at a rate of 1-10 ° C./min in the autoclave.
냉각된 반응액을 25℃에서 10분간 8000rpm에서 원심분리하여 상등액을 제거하고, 25℃에서 10분간 8000rpm에서 원심분리하며 에탄올 및 증류수로 번갈아가며 5회 세척하였다.The cooled reaction solution was centrifuged at 8000 rpm for 10 minutes at 25 ° C. to remove the supernatant, and centrifuged at 8000 rpm for 10 minutes at 25 ° C. and washed five times with ethanol and distilled water.
이후 70℃ 오븐에서 건조시켜 분말형의 다공성 실리카 입자(기공 직경 10~15nm, 입경 200nm)를 얻었다.Then, dried in an oven at 70 ℃ to obtain a powdery porous silica particles (pore diameter 10 ~ 15nm, particle diameter 200nm).
3) 하소3) calcination
상기 2)에서 제조된 다공성 실리카 입자를 유리 vial에 담아 550℃에서 5시간 동안 가열하고, 반응 종료 후 상온으로 서서히 식혀 입자를 제조하였다.The porous silica particles prepared in 2) were put in a glass vial, heated at 550 ° C. for 5 hours, and cooled slowly to room temperature after completion of the reaction to prepare particles.
(2) 다공성 실리카 입자의 제조(2) Preparation of Porous Silica Particles
기공 확장시의 반응 조건을 140℃, 72시간으로 변경한 것을 제외하고는 상기 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared in the same manner as in 9-1- (1), except that the reaction conditions at the time of pore expansion were changed to 140 ° C. and 72 hours.
(3) 다공성 실리카 입자의 제조 (10L 스케일)(3) Preparation of Porous Silica Particles (10L Scale)
5배 큰 용기를 사용하고, 각 물질을 모두 5배 용량으로 사용한 것을 제외하고는 실시예 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared in the same manner as in Example 9-1- (1), except that a 5 times larger container was used and each material was used in a 5 times capacity.
(4) 다공성 실리카 입자의 제조 (입경 300nm)(4) Preparation of Porous Silica Particles (Particle Diameter 300nm)
소기공 입자의 제조시에 증류수 920ml, 메탄올 850ml를 사용한 것을 제외하고는 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared by the same method as 9-1- (1), except that 920 ml of distilled water and 850 ml of methanol were used to prepare the small pore particles.
(5) 다공성 실리카 입자의 제조 (입경 500nm)(5) Preparation of Porous Silica Particles (Particle Size 500nm)
소기공 입자의 제조시에 증류수 800ml, 메탄올 1010 ml, CTAB 10.6g을 사용한 것을 제외하고는 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared in the same manner as in 9-1- (1), except that 800 ml of distilled water, 1010 ml of methanol, and 10.6 g of CTAB were used to prepare the small pore particles.
(6) 다공성 실리카 입자의 제조 (입경 1000nm)(6) Preparation of Porous Silica Particles (Particle Diameter 1000nm)
소기공 입자의 제조시에 증류수 620ml, 메탄올 1380ml, CTAB 7.88g을 사용한 것을 제외하고는 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared in the same manner as in 9-1- (1), except that 620 ml of distilled water, 1380 ml of methanol, and 7.88 g of CTAB were used to prepare the small pore particles.
(7) 다공성 실리카 입자의 제조 (기공 직경 4nm)(7) Preparation of Porous Silica Particles (Pore Diameter 4nm)
기공 확장시에 TMB를 2.5mL를 사용한 것을 제외하고는 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared in the same manner as 9-1- (1), except that 2.5 mL of TMB was used for pore expansion.
(8) 다공성 실리카 입자의 제조 (기공 직경 7nm)(8) Preparation of Porous Silica Particles (Pore Diameter 7nm)
기공 확장시에 TMB를 4.5mL를 사용한 것을 제외하고는 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared in the same manner as 9-1- (1), except that 4.5 mL of TMB was used for pore expansion.
(9) 다공성 실리카 입자의 제조 (기공 직경 17nm)(9) Preparation of Porous Silica Particles (Pore Diameter 17nm)
기공 확장시에 TMB를 11mL를 사용한 것을 제외하고는 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared in the same manner as 9-1- (1), except that 11 mL of TMB was used for pore expansion.
(10) 다공성 실리카 입자의 제조 (기공 직경 23nm)(10) Preparation of Porous Silica Particles (Pore Diameter 23nm)
기공 확장시에 TMB를 12.5mL를 사용한 것을 제외하고는 9-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.Porous silica particles were prepared in the same manner as 9-1- (1), except that 12.5 mL of TMB was used for pore expansion.
(11) 다공성 실리카 입자의 제조 (이중개질)(11) Preparation of Porous Silica Particles (Dual Modification)
1) 소기공 입자의 제조1) Preparation of Small Pore Particles
실시예 9-1-(1)-1)과 동일한 방법으로 소기공 입자를 제조하였다.Small pore particles were prepared in the same manner as in Example 9-1- (1) -1).
2) 기공 확장2) pore expansion
실시예 9-1-(1)-2)와 동일한 방법으로 소기공 입자를 TMB와 반응시키고 냉각시키고 원심분리하여 상등액을 제거하였다. 이후 실시예 9-1-(1)-2)와 동일 조건으로 원심분리하며 에탄올 및 증류수로 번갈아가며 3회 세척하고, 이후 실시예 9-1-(1)-2)와 동일 조건으로 건조하여 분말형의 다공성 실리카 입자(기공 직경 10~15nm, 입경 200nm)를 얻었다.In the same manner as in Example 9-1- (1) -2), the small pore particles were reacted with TMB, cooled and centrifuged to remove the supernatant. Thereafter, centrifuged under the same conditions as in Example 9-1- (1) -2), washed three times with alternating ethanol and distilled water, and then dried under the same conditions as in Example 9-1- (1) -2). Powdery porous silica particles (pore diameter 10-15 nm, particle diameter 200 nm) were obtained.
3) 표면 개질3) surface modification
기공이 확장된 다공성 실리카 입자 0.8g 내지 1g을 50mL의 톨루엔에 분산시킨 후, (3-aminopropyl)triethoxysilane를 5mL 넣어주어 120℃로 환류한 채로 12시간 가열하였다. 해당 과정은 상기 서술된 세척과정 및 건조 과정을 거친 뒤 1mL의 트레에틸렌글리콜 (PEG3, 2-[2-(2-methoxyethoxy)ethoxy]acetic acid)와 100mg의 EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) 및 200mg의 N-Hydroxysuccinimide (NHS)를 30mL의 PBS에 분산시켜서 상온에서 교반한 채로 12시간 동안 반응을 보낸다. 이후 생성물은 상기의 세척 및 건조과정을 거친다.After dispersing 0.8 g to 1 g of porous silica particles having expanded pores in 50 mL of toluene, 5 mL of (3-aminopropyl) triethoxysilane was added thereto, followed by heating at reflux at 120 ° C for 12 hours. The procedure is followed by the washing and drying procedures described above, followed by 1 mL of threethylene glycol (PEG3, 2- [2- (2-methoxyethoxy) ethoxy] acetic acid) and 100 mg of EDC (1-Ethyl-3- (3). -dimethylaminopropyl) carbodiimide) and 200 mg of N-Hydroxysuccinimide (NHS) were dispersed in 30 mL of PBS and allowed to react for 12 hours while stirring at room temperature. The product is then washed and dried.
기공 내부에 이전 단계의 반응액이 남아 있어, 기공 내부는 개질 되지 않는다.The reaction solution of the previous step remains inside the pore, so that the inside of the pore is not modified.
4) 기공 내부 세척4) pore inside washing
표면개질된 입자 분말 800mg을 2M HCl/에탄올 40ml에 녹이고, 12시간 강하게 교반 하에 환류시켰다.800 mg of surface modified particle powder was dissolved in 40 ml of 2M HCl / ethanol and refluxed under vigorous stirring for 12 hours.
이후 냉각된 반응액을 10분간 8000rpm에서 원심분리하여 상등액을 제거하고, 25℃에서 10분간 8000rpm에서 원심분리하며 에탄올 및 증류수로 번갈아가며 5회 세척하였다.Thereafter, the cooled reaction solution was centrifuged at 8000 rpm for 10 minutes to remove the supernatant, centrifuged at 8000 rpm for 10 minutes at 25 ° C, and washed five times with alternating ethanol and distilled water.
이후 70℃ 오븐에서 건조시켜 분말형의 다공성 실리카 입자를 얻었다.After drying in an oven at 70 ℃ to obtain a powdery porous silica particles.
5) 기공 내부 개질5) Pore internal reforming
① 후술하는 실시예 9-2-(2)-1)의 방법과 동일한 방법으로 기공 내부에 프로필기를 도입하였다.(1) A propyl group was introduced into the pores in the same manner as in Example 9-2- (2) -1) described later.
② 후술하는 실시예 9-2-(2)-2)의 방법과 동일한 방법으로 기공 내부에 옥틸기를 도입하였다.(2) An octyl group was introduced into the pores in the same manner as in Example 9-2- (2) -2) described later.
9-2. 다공성 실리카 입자의 표면 개질9-2. Surface Modification of Porous Silica Particles
(1) 양전하로의 대전(1) Approach with positive charge
1) 입경 300nm의 입자1) 300nm particle size
실시예 9-1-(4)의 다공성 실리카 입자를 (3-Aminopropyl)triethoxysilane (APTES)와 반응시켜 양전하로 대전시켰다.The porous silica particles of Example 9-1- (4) were reacted with (3-Aminopropyl) triethoxysilane (APTES) to charge with a positive charge.
구체적으로, 100 mL 둥근바닥플라스크에 100 mg의 다공성 실리카 입자를 10 mL의 톨루엔에 bath sonicator로 분산시켰다. 이후 1 mL의 APTES를 첨가하고 400 rpm으로 교반하며 130℃에서 교반하며 12시간 동안 반응시켰다.Specifically, 100 mg of porous silica particles were dispersed in a 10 mL toluene in a 100 mL round bottom flask with a bath sonicator. Then 1 mL of APTES was added and stirred at 400 rpm and stirred at 130 ° C. for 12 hours.
반응 후에 상온까지 서서히 식히고, 10분간 8000rpm에서 원심분리하여 상등액을 제거하고, 25℃에서 10분간 8000rpm에서 원심분리하며 에탄올 및 증류수로 번갈아가며 5회 세척하였다.After the reaction was slowly cooled to room temperature, the supernatant was removed by centrifugation at 8000rpm for 10 minutes, centrifuged at 8000rpm for 10 minutes at 25 ℃ and washed five times alternately with ethanol and distilled water.
이후 70℃ 오븐에서 건조시켜 표면 및 기공 내부에 아미노기를 갖는 분말형의 다공성 실리카 입자를 얻었다.After drying in an oven at 70 ℃ to obtain a porous porous silica particles having an amino group on the surface and inside the pores.
2) 입경 200nm의 입자2) particle of 200nm particle size
① 실시예 9-1-(1)의 다공성 실리카 입자를 (3-Aminopropyl)triethoxysilane (APTES)와 반응시켜 양전하로 대전시켰으며, APTES를 0.4ml 첨가하고, 반응 시간을 3시간으로 한 것을 제외하고는 상기 9-2-(1)-1)의 방법과 동일하게 개질하였다.① The porous silica particles of Example 9-1- (1) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), except that 0.4 ml of APTES was added and the reaction time was 3 hours. Was modified in the same manner as in the method of 9-2- (1) -1).
② 실시예 9-1-(9)의 다공성 실리카 입자를 (3-Aminopropyl)triethoxysilane (APTES)와 반응시켜 양전하로 대전시켰으며, 그 외 방법은 상기 9-2-(1)-1)의 방법과 동일하게 개질하였다.② The porous silica particles of Example 9-1- (9) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), and the other method was the method of 9-2- (1) -1). Modified in the same manner as
③ 실시예 9-1-(10)의 다공성 실리카 입자를 (3-Aminopropyl)triethoxysilane (APTES)와 반응시켜 양전하로 대전시켰으며, 상기 9-2-(1)-1)의 방법과 동일하게 개질하였다.③ The porous silica particles of Example 9-1- (10) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), and were modified in the same manner as in the method of 9-2- (1) -1). It was.
(2) 소수성기의 도입(2) Introduction of hydrophobic groups
1) 프로필기1) Profile
상기 실시예 9-1-(1)의 다공성 실리카 입자를 Trimethoxy(propyl)silane와 반응시켜 표면 및 기공 내부에 프로필기를 도입하였으며, APTES 대신에 Trimethoxy(propyl)silane를 0.35ml 첨가하고, 12시간 반응시킨 것을 제외하고는 상기 실시예 9-2-(1)과 동일한 방법으로 개질을 수행하였다.The porous silica particles of Example 9-1- (1) were reacted with Trimethoxy (propyl) silane to introduce propyl groups into the surface and the pores, and 0.35ml of Trimethoxy (propyl) silane was added instead of APTES, followed by 12 hours of reaction. Modification was carried out in the same manner as in Example 9-2- (1) except for the above.
2) 옥틸기2) octyl group
상기 실시예 9-1-(1)의 다공성 실리카 입자를 Trimethoxy-n-octylsilane와 반응시켜 표면 및 기공 내부에 프로필기를 도입하였으며, APTES 대신에 Trimethoxy-n-octylsilane를 0.5ml 첨가하고, 12시간 반응시킨 것을 제외하고는 상기 실시예 9-2-(1)과 동일한 방법으로 개질을 수행하였다.The porous silica particles of Example 9-1- (1) were reacted with Trimethoxy-n-octylsilane to introduce propyl groups on the surface and inside of the pores, and 0.5 ml of Trimethoxy-n-octylsilane was added instead of APTES, and reacted for 12 hours. Modification was carried out in the same manner as in Example 9-2- (1) except for the above.
(3) 음전하로의 대전(3) Approach by negative charge
1) 카르복실기1) carboxyl group
상기 실시예 9-1-(1)의 다공성 실리카 입자를 succinic anhydride와 반응시켜 음전하로 대전시켰으며, The porous silica particles of Example 9-1- (1) were charged with negative charge by reacting with succinic anhydride,
톨루엔 대신에 DMSO(dimethyl sulfoxide)를 사용하고, APTES 대신에 80 mg의 succinic anhydride를 첨가하여 24시간 동안 상온에서 교반하며 반응시키고, 세척 시에 증류수 대신에 DMSO를 사용한 것을 제외하고는 상기 실시예 9-2-(1)-1)의 방법과 동일하게 개질하였다.Example 9 except that DMSO (dimethyl sulfoxide) was used instead of toluene, 80 mg of succinic anhydride was added instead of APTES, stirred at room temperature for 24 hours, and DMSO was used instead of distilled water. The modification was carried out in the same manner as in the method of -2- (1) -1).
2) 티올기2) thiol group
APTES 대신에 MPTES 1.1 mL를 사용한 것을 제외하고는 상기 실시예 9-2-(1)-1)의 방법과 동일하게 개질하였다.It was modified in the same manner as in Example 9-2- (1) -1) except that 1.1 mL of MPTES was used instead of APTES.
3) 술폰산기3) sulfonic acid group
상기 실시예 9-2-(3)-2)의 다공성 실리카 나노입자 100 mg를 1 M 황산수용액을 1 mL와 30% 과산화수소수 20 mL에 분산하여 상온에서 교반하여 산화반응을 유도하여 티올기를 술폰산기로 산화시켰다. 이후 상기 실시예 9-2-(1)-1)의 방법과 동일하게 세척 및 건조시켰다.100 mg of the porous silica nanoparticles of Example 9-2- (3) -2) were dispersed in 1 mL of 1 M aqueous sulfuric acid solution and 20 mL of 30% hydrogen peroxide solution, and stirred at room temperature to induce an oxidation reaction. Oxidized to a group. After the same washing and drying in the same manner as in Example 9-2- (1) -1).
9-3. 핵산분자의 담지9-3. Support of Nucleic Acid Molecules
실시예 9-2-(1)-2)-②의 다공성 실리카 입자 10 ㎍와 50 pmol의 핵산분자를 1xPBS 조건에서 섞은 후, 상온에서 30분간 두고 적재가 되도록 하였다.10 μg of porous silica particles of Example 9-2- (1) -2) -② and 50 pmol of nucleic acid molecules were mixed under 1 × PBS conditions, and then placed at room temperature for 30 minutes.
실험결과Experiment result
1. 본 발명 핵산분자의 CTGF 발현 억제 분석1. CTGF expression inhibition assay of nucleic acid molecule of the present invention
상기 실시예에 따라, 제조된 핵산분자(PNA, siRNA 또는 dsRNA; 상기 표 1 참조)의 CTGF의 발현 억제율을 하기 표 2, 3에 나타내었다. According to the above embodiment, the inhibition rate of CTGF expression of the prepared nucleic acid molecules (PNA, siRNA or dsRNA; see Table 1) is shown in Tables 2 and 3 below.
하기 표 1, 2를 참조하면, 서열번호 1의 서열과 상보성이 10 뉴클레오티드 이상 상보성을 갖는 가닥을 포함하는 핵산분자(서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 2의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 3의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 52의 서열로 이루어진 센스 RNA 및 서열번호 53의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 54의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 55의 서열로 이루어진 센스 RNA 및 서열번호 56의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 57의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 58의 서열로 이루어진 센스 RNA 및 서열번호 59의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 60의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 61의 서열로 이루어진 센스 RNA 및 서열번호 62의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 63의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 64의 서열로 이루어진 센스 RNA 및 서열번호 65의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 66의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 67의 서열로 이루어진 센스 RNA 및 서열번호 68의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 69의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 70의 서열로 이루어진 센스 RNA 및 서열번호 71의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 72의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 87 내지 99의 서열로 이루어진 군에서 선택된 하나의 서열로 이루어진 antisense PNA)의 경우, 90%를 상회하는 억제율을 보이는 반면, 이를 만족하지 못하는 타 핵산분자의 경우, 75% 미만의 낮은 억제율을 보임을 확인할 수 있다.Referring to Tables 1 and 2 below, a nucleic acid molecule comprising a strand having complementarity with at least 10 nucleotides complementarity with the sequence of SEQ ID NO: 1 (sense RNA consisting of the sequence of SEQ ID NO: 1 and antisense RNA consisting of the sequence of SEQ ID NO: 2) A siRNA consisting of a siRNA, a strand consisting of a sequence of SEQ ID NO: 3 and a dsRNA consisting of a strand complementary thereto, a sense RNA consisting of a sequence of SEQ ID NO: 52, and an antisense RNA consisting of a sequence of SEQ ID NO: 53, consisting of the sequence of SEQ ID NO: 54 A dsRNA consisting of a strand and its complementary strand, a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 55 and an antisense RNA consisting of a sequence of SEQ ID NO: 56, a strand consisting of a sequence of SEQ ID NO: 57, and a dsRNA consisting of a complementary strand thereof, Antisense consisting of a sense RNA consisting of the sequence of SEQ ID NO: 58 and a sequence of SEQ ID NO: 59 SiRNA consisting of an RNA, siRNA consisting of a strand consisting of a sequence of SEQ ID NO: 60 and a dsRNA consisting of a strand complementary thereto, a sense RNA consisting of a sequence of SEQ ID NO: 61, and an antisense RNA consisting of a sequence of SEQ ID NO: 62, a sequence of SEQ ID NO: 63 Consisting of a strand consisting of a strand consisting of dsRNA and complementary strands thereof, a sense RNA consisting of a sequence of SEQ ID NO: 64, and an antisense RNA consisting of a sequence of SEQ ID NO: 65, a strand consisting of the sequence of SEQ ID NO: 66, and a strand complementary thereto dsRNA, a sense RNA consisting of a sequence of SEQ ID NO: 67 and an siRNA consisting of an antisense RNA consisting of a sequence of SEQ ID NO: 68, a strand consisting of a sequence of SEQ ID NO: 69 and a dsRNA consisting of a strand complementary thereto, a sense consisting of the sequence of SEQ ID NO: 70 Consisting of RNA and antisense RNA consisting of the sequence of SEQ ID NO: 71 antisense PNA consisting of a siRNA, a strand consisting of a sequence of SEQ ID NO: 72 and a dsRNA consisting of a strand complementary thereto, and one sequence selected from the group consisting of SEQ ID NOs: 87 to 99), an inhibition rate of more than 90% On the other hand, other nucleic acid molecules that do not satisfy this, it can be seen that shows a low inhibition rate of less than 75%.
특히, 7 뉴클레오티드만의 상보성을 갖는 가닥을 포함하는 핵산분자(서열번호 4의 서열로 이루어진 센스 RNA 및 서열번호 5의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA; 서열번호 6의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA)의 경우, 60% 내외의 현저히 낮은 발현 억제율을 보이는 것으로 보아, 서열번호 1의 서열과의 상보성이 10 뉴클레오티드 이상임에 기술적 의의가 존재하는 것으로 판단된다.In particular, a nucleic acid molecule comprising a strand having complementarity of only 7 nucleotides (sense RNA consisting of the sequence of SEQ ID NO: 4 and antisense RNA consisting of the sequence of SEQ ID NO: 5; strand consisting of the sequence of SEQ ID NO: 6 and complementary thereto In the case of dsRNA consisting of strands, the expression rate is significantly lower than about 60%, suggesting that the technical significance of the complementarity with the sequence of SEQ ID NO: 1 is 10 nucleotides or more.
이들 중, 발현 억제율이 가장 높고, 서열번호 1의 서열과 18 뉴클레오티드 전체로 상보적인 가닥을 포함하는, 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 2의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA; 또는 서열번호 3의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA를 선택하여 다음 실험을 진행하였다.Among them, siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 1 and an antisense RNA consisting of a sequence of SEQ ID NO: 2, including the strand having the highest expression inhibition and comprising a strand complementary to the sequence of SEQ ID NO: 1 and all 18 nucleotides; Alternatively, the following experiment was performed by selecting a strand consisting of a strand consisting of the sequence of SEQ ID NO: 3 and a strand complementary thereto.
염기서열 번호(/는 sense strand와 antisense strand 간 pair를 의미)Sequence number (/ means pair between sense strand and antisense strand) 발현 억제율 (%)Expression inhibition rate (%) 염기서열 번호Sequence number 발현 억제율 (%)Expression inhibition rate (%)
1/2 또는 31/2 or 3 93.793.7 37/38 또는 3937/38 or 39 74.674.6
4/5 또는 64/5 or 6 62.462.4 40/41 또는 4240/41 or 42 71.871.8
7/8 또는 97/8 or 9 67.267.2 43/44 또는 4543/44 or 45 63.563.5
10/11 또는 1210/11 or 12 72.672.6 46/47 또는 4846/47 or 48 74.274.2
13/14 또는 1513/14 or 15 74.174.1 49/50 또는 5149/50 or 51 71.671.6
16/17 또는 1816/17 or 18 61.361.3 52/53 또는 5452/53 or 54 90.390.3
19/20 또는 2119/20 or 21 74.774.7 55/56 또는 5755/56 or 57 90.190.1
22/23 또는 2422/23 or 24 72.372.3 58/59 또는 6058/59 or 60 91.991.9
25/26 또는 2725/26 or 27 67.867.8 61/62 또는 6361/62 or 63 92.292.2
28/29 또는 3028/29 or 30 63.563.5 64/65 또는 6664/65 or 66 91.591.5
31/32 또는 3331/32 or 33 71.671.6 67/68 또는 6967/68 or 69 92.892.8
34/35 또는 3634/35 or 36 72.972.9 70/71 또는 7270/71 or 72 91.691.6
PNA 염기서열 번호PNA sequence number 발현 억제율 (%)Expression inhibition rate (%) PNA 염기서열 번호PNA sequence number 발현 억제율 (%)Expression inhibition rate (%)
8787 90.390.3 9494 92.192.1
8888 90.190.1 9595 90.590.5
8989 91.291.2 9696 91.791.7
9090 90.790.7 9797 90.490.4
9191 91.591.5 9898 90.290.2
9292 90.290.2 9999 91.491.4
9393 91.391.3
2.2. 다공성 실리카 입자(DDV 또는 DegradaBALL)Porous Silica Particles (DDV or DegradaBALL)
2-1. 입자의 형성 및 기공의 확장 확인2-1. Confirmation of Particle Formation and Pore Expansion
실험방법 실시예 9-1-(1) 내지 (3)의 입자의 소기공 입자, 제조된 다공성 실리카 입자를 현미경으로 관찰하여, 소기공 입자가 균일하게 생성되었는지, 기공이 충분히 확장되어 다공성 실리카 입자가 균일하게 형성되었는지를 확인하였다(도 28 내지 31).Experimental Method Small pore particles and prepared porous silica particles of the particles of Examples 9-1- (1) to (3) were observed under a microscope to determine whether the small pore particles were uniformly formed, or the pores were sufficiently expanded to allow the porous silica particles It was confirmed whether was formed uniformly (Figs. 28 to 31).
도 28은 9-1-(1)의 다공성 실리카 입자의 사진, 도 29는 9-1-(2)의 다공성 실리카 입자의 사진으로 기공이 충분히 확장된 구형의 다공성 실리카 입자가 고르게 생성된 것을 확인할 수 있고, FIG. 28 is a photograph of porous silica particles of 9-1- (1), and FIG. 29 is a photograph of porous silica particles of 9-1- (2), confirming that spherical porous silica particles having sufficiently expanded pores are formed evenly. Can,
도 30은 9-1-(1)의 소기공 입자의 사진이고, 도 31은 9-1-(1)과 9-1-(3)의 소기공 입자의 비교 사진으로, 구형의 소기공 입자가 고르게 생성된 것을 확인할 수 있다.Fig. 30 is a photograph of small pore particles of 9-1- (1), and Fig. 31 is a comparative photograph of small pore particles of 9-1- (1) and 9-1- (3). You can see that is generated evenly.
2-2. BET 표면적 및 기공의 부피 계산2-2. Calculation of BET Surface Area and Pore Volume
실험방법 실시예 9-1-(1)의 소기공 입자, 실시예 9-1-(1),(7),(8),(10)의 다공성 실리카 입자의 표면적과 기공 부피를 계산하였다. 표면적은 Brunauer-Emmett-Teller(BET) 방법에 의해 계산되었으며, 기공 크기의 분포는 Barrett-Joyner-Halenda(BJH) 방법에 의하여 계산되었다.Experimental Method The surface area and pore volume of the small pore particles of Example 9-1- (1) and the porous silica particles of Examples 9-1- (1), (7), (8) and (10) were calculated. The surface area was calculated by Brunauer-Emmett-Teller (BET) method, and the pore size distribution was calculated by Barrett-Joyner-Halenda (BJH) method.
상기 각 입자들의 현미경 사진은 도 32에 나타내었고, 계산 결과는 하기 표 4에 나타내었다.Micrographs of the particles are shown in FIG. 32, and the calculation results are shown in Table 4 below.
구분division 기공 직경(nm)Pore diameter (nm) BET 표면적(m 2/g)BET surface area (m 2 / g) 기공 부피(mL/g)Pore Volume (mL / g)
실시예 9-1-(1)의 소기공 입자Small Pore Particles of Example 9-1- (1) 2.12.1 13371337 0.690.69
실시예 9-1-(7)Example 9-1- (7) 4.34.3 630630 0.720.72
실시예 9-1-(8)Example 9-1- (8) 6.96.9 521521 0.790.79
실시예 9-1-(1)Example 9-1- (1) 10.410.4 486486 0.820.82
실시예 9-1-(10)Example 9-1- (10) 2323 395395 0.970.97
2-3. 생분해성 확인2-3. Check biodegradability
실험방법 실시예 9-1-(1)의 다공성 실리카 입자의 생분해성 확인을 위해 37℃, SBF(pH 7.4)에서의 생분해 정도를 0시간, 120시간, 360시간에 현미경으로 관찰하였고, 이는 도 33에 나타내었다.Experimental Method In order to confirm the biodegradability of the porous silica particles of Example 9-1- (1), the degree of biodegradation at 37 ° C. and SBF (pH 7.4) was observed under a microscope at 0 hours, 120 hours, and 360 hours. Shown in 33.
이를 참조하면 다공성 실리카 입자가 생분해되어 360시간 경과 후에는 거의 다 분해된 것을 확인할 수 있다.Referring to this, it can be seen that porous silica particles are biodegraded and nearly decomposed after 360 hours.
2-4. 흡광도비 측정2-4. Absorbance Ratio Measurement
시간별 하기 수학식 1에 따른 흡광도비를 측정하였다.The absorbance ratio according to Equation 1 according to time was measured.
[수학식 1][Equation 1]
A t/A 0 A t / A 0
(식 중, A 0는 상기 다공성 실리카 입자 1mg/ml 현탁액 5ml를 직경 50 kDa의 기공을 갖는 원통형 투과막에 넣고 측정된 다공성 실리카 입자의 흡광도이고,Wherein A 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles into a cylindrical permeable membrane having pores having a diameter of 50 kDa,
상기 투과막 외부에는 상기 투과막과 접하며, 상기 현탁액과 동일한 용매 15ml가 위치하고, 상기 투과막 내외부는 37℃에서 60rpm 수평 교반되며,Outside of the permeable membrane is in contact with the permeable membrane, 15ml of the same solvent as the suspension is located, the inside and outside of the permeable membrane is stirred 60 rpm at 37 ℃ horizontal,
A t는 상기 A 0의 측정시로부터 t시간 경과 후에 측정된 다공성 실리카 입자의 흡광도임).A t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
구체적으로, 다공성 실리카 입자 분말 5mg을 SBF (pH 7.4) 5ml에 녹였다. 이후 5ml의 다공성 실리카 입자 용액을 도 34에 도시된 직경 50 kDa의 기공을 갖는 투과막에 넣었다. 외부막에 15ml의 SBF를 첨가하고, 외부막의 SBF는 12시간마다 교체하였다. 다공성 실리카 입자의 분해는 37℃에서 60rpm 수평 교반하며 수행되었다.Specifically, 5 mg of porous silica particle powder was dissolved in 5 ml of SBF (pH 7.4). Thereafter, 5 ml of the porous silica particle solution was placed in a permeable membrane having pores having a diameter of 50 kDa shown in FIG. 34. 15 ml of SBF was added to the outer membrane, and the SBF of the outer membrane was replaced every 12 hours. Decomposition of the porous silica particles was performed at 37 ° C. with 60 rpm horizontal stirring.
이후 UV-vis spectroscopy에 의해 흡광도를 측정하였고, λ = 640 nm에서 분석되었다.The absorbance was then measured by UV-vis spectroscopy and analyzed at λ = 640 nm.
(1) 흡광도 비 측정(1) absorbance ratio measurement
실험방법 실시예 9-1-(1)의 다공성 실리카 입자의 흡광도비를 상기 방법에 따라 측정하였고, 그 결과는 도 35에 나타내었다.Experimental method The absorbance ratio of the porous silica particles of Example 9-1- (1) was measured according to the above method, and the results are shown in FIG. 35.
이를 참조하면 흡광도비가 1/2가 되는 t가 약 58시간으로 굉장히 천천히 분해되는 것을 확인할 수 있다.Referring to this, it can be seen that t, which has an absorbance ratio of 1/2, decomposes very slowly in about 58 hours.
(2) 입경별(2) by particle size
실험방법 실시예 9-1-(1),(5),(6)의 다공성 실리카 입자의 흡광도를 상기 수학식 1에 따라 측정하였고, 그 결과는 도 36에 나타내었다(현탁액과 용매로는 SBF를 사용).Experimental method The absorbance of the porous silica particles of Examples 9-1- (1), (5), and (6) was measured according to Equation 1, and the results are shown in FIG. 36 (SBF as a suspension and a solvent). Use).
이를 참조하면, 입경의 증가에 따라 t가 감소함을 알 수 있다.Referring to this, it can be seen that t decreases with increasing particle size.
(3) 기공 평균 직경별(3) by pore average diameter
실험방법 실시예 9-1-(1),(9)의 다공성 실리카 입자, 그리고 컨트롤로서 실험방법 실시예 9-1-(1)의 소기공 다공성 실리카 입자의 흡광도를 상기 수학식 1에 따라 측정하였고, 그 결과는 도 37에 나타내었다(현탁액과 용매로는 SBF를 사용).Experimental Method The absorbances of the porous silica particles of Examples 9-1- (1) and (9) and the microporous porous silica particles of Experimental Method Example 9-1- (1) as controls were measured according to Equation (1). The results are shown in FIG. 37 (SBF was used as the suspension and the solvent).
이를 참조하면, 실시예의 다공성 실리카 입자는 컨트롤에 비해 t가 상당히 큰 것을 확인할 수 있다.Referring to this, it can be seen that the porous silica particles of the example have a significantly larger t than the control.
(4) pH별(4) pH
실험방법 실시예 9-1-(4)의 다공성 실리카 입자의 pH별 흡광도를 측정하였다. 흡광도는 SBF에서, 그리고 pH 2, 5, 및 7.4의 Tris에서 측정하였고, 그 결과는 도 38에 나타내었다.Experimental Method The absorbance for each pH of the porous silica particles of Example 9-1- (4) was measured. Absorbance was measured in SBF and in Tris at pH 2, 5, and 7.4 and the results are shown in FIG. 38.
이를 참조하면, pH 별 t의 차이는 있으나, 모두 흡광도의 비가 1/2이 되는 t가 24 이상이었다.Referring to this, there is a difference in t for each pH, but the ratio t of the absorbance is 1/2 or more.
(5) 대전(5) Daejeon
실험방법 실시예 9-2-(1)-1)의 다공성 실리카 입자의 흡광도를 측정하였고, 그 결과는 도 39에 나타내었다(현탁액과 용매로는 Tris(pH 7.4)를 사용).Experimental method The absorbance of the porous silica particles of Example 9-2- (1) -1) was measured, and the results are shown in FIG. 39 (using Tris (pH 7.4) as the suspension and the solvent).
이를 참조하면, 양전하로 대전된 입자도 흡광도의 비가 1/2이 되는 t가 24 이상이었다.Referring to this, t, which has a ratio of absorbance 1/2 of the positively charged particles, was 24 or more.
2-5. 담지한 핵산분자의 방출2-5. Release of Supported Nucleic Acid Molecules
Cy5-siRNA를 로딩한 다공성 실리카 입자 10 ㎕를 SBF(pH 7.4, 37℃)에 재부유시키고, 기공 직경 20 kDa의 투과막(도 40의 튜브)에 넣었다.10 [mu] l of porous silica particles loaded with Cy5-siRNA were resuspended in SBF (pH 7.4, 37 [deg.] C.) and placed in a permeable membrane (tube in FIG. 40) with a pore diameter of 20 kDa.
이후, 투과 튜브를 1.5ml의 SBF에 담갔다.Thereafter, the permeation tube was soaked in 1.5 ml of SBF.
siRNA의 방출은 37℃에서 60rpm 수평 교반하며 수행되었다.Release of siRNA was carried out at 37 ° C. with 60 rpm horizontal stirring.
24시간 이전에는 0.5, 1, 2, 4, 8, 12, 24시간 경과한 시간에 방출 용매를 회수하고, 그 이후는 24시간 간격으로, 0.5ml의 방출 용매를 형광 측정을 위해 회수하고 등량의 SBF를 첨가하였다.Before 24 hours, the solvent was recovered at 0.5, 1, 2, 4, 8, 12, and 24 hours elapsed, and thereafter, at 24 hours, 0.5 ml of the solvent was recovered for fluorescence measurement. SBF was added.
Cy5-siRNA의 형광 강도는 670 nm 파장(λ ex = 647 nm)에서 측정하여 siRNA의 방출 정도를 측정하였고, 그 결과는 도 41에 나타내었다.Fluorescence intensity of Cy5-siRNA was measured at 670 nm wavelength (λ ex = 647 nm) to measure the degree of emission of siRNA, and the results are shown in FIG. 41.
이를 참조하면 siRNA가 50% 방출된 시간이 약 48시간인 것을 확인할 수 있다.Referring to this, it can be seen that the time of siRNA release by 50% is about 48 hours.
3. 3. in vitroin vitro 상 LEM-S401의 CTGF mRNA knockdown의 효과적 유도 확인 Confirmation of Effective Induction of CTGF mRNA Knockdown of Putative LEM-S401
LEM-S401의 타겟 유전자 knockdown 효율을 측정하기 위해, A549(인간 폐암 비소 세포) 세포와 HaCaT(인간 케라티노사이트 세포) 세포를 siCTGF를 담지한 DegradaBALL(LEM-S401)로 처리하였다. 두 세포주 모두 기능적으로 활성인 CTGF 전사 경로를 가지고 있기 때문에, A549 및 HaCaT 세포가 섬유증 연구에서 in vitro 모델 세포로 널리 사용된다. 먼저, A549 세포를 다양한 농도의 LEM-S401(12.5, 25, 50 및 100 nM)로 처리한 다음, CTGF 발현을 유도하기 위해 2 ng/mL의 TGF-ß와 함께 배양하였다(도 1). 이전의 연구에서 TGF-ß가 in vitro에서 CTGF 발현을 유도한다는 것을 보여준 바 있고, TGF-ß를 A549 및 HaCaT 세포에 처리함으로써 CTGF 발현 수준이 현저히 증가함을 확인하였다(도 17). 세포주들에 대한 LEM-S401의 처리는 농도 의존적으로 CTGF의 mRNA 발현 수준을 감소시켰다. 한편, 대조군(siCTGF only, scrambled siRNA 및 vehicle(DegradaBALL) only)은 A549 및 HaCaT 세포 모두에서 CTGF의 mRNA 수준에 유의한 차이를 나타내지 않았다(도 2, 3). 이 결과는, LEM-S401가 세포 내로 siCTGF를 효율적으로 transfection 시켰고, CTGF 유전자의 knockdown을 유도함을 나타내는 것이다.To measure target gene knockdown efficiency of LEM-S401, A549 (human lung cancer non-small cell) cells and HaCaT (human keratinocyte cells) cells were treated with DegradaBALL (LEM-S401) carrying siCTGF. Because both cell lines have functionally active CTGF transcription pathways, A549 and HaCaT cells are widely used as in vitro model cells in fibrosis studies. First, A549 cells were treated with various concentrations of LEM-S401 (12.5, 25, 50 and 100 nM) and then incubated with 2 ng / mL TGF-ß to induce CTGF expression (FIG. 1). Previous studies have shown that TGF-ß induces CTGF expression in vitro , and it was confirmed that CTGF expression was significantly increased by treating TGF-ß with A549 and HaCaT cells (FIG. 17). Treatment of LEM-S401 on cell lines reduced mRNA expression levels of CTGF in a concentration dependent manner. On the other hand, the control group (siCTGF only, scrambled siRNA and vehicle (DegradaBALL) only) did not show a significant difference in the mRNA level of CTGF in both A549 and HaCaT cells (Fig. 2, 3). These results indicate that LEM-S401 efficiently transfected siCTGF into cells and induced knockdown of CTGF gene.
4. 4. in vitroin vitro 상 LEM-S401의 서방적 siCTGF 방출 Sustained Release siCTGF Release of Phase LEM-S401
본 실험에서, LEM-S401는 A549 및 HaCaT 세포에서 LNP보다 CTGF knockdown 효과를 더 오래 유지했다. A549 및 HaCaT 세포를 LEM-S401(50 nM) 및 LNP(50 nM)에 담지된 siCTGF로 처리한 후, TGF-ß 처리에 의해 CTGF 발현을 유도했다. A549 세포에서 CTGF의 하향 조절은 LEM-S401 처리 후 96시간까지 지속되었다(CTGF 발현수준, 72시간: 26.3%, 96시간: 26.9%). 그러나, LNP에 담지된 siCTGF의 knockdown 효율은 72시간, 96시간 모두에서 높지 않았다(CTGF 발현수준, 72시간: 46.4%, 96시간: 58.6%). 또한, HaCaT 세포에서 LEM-S401의 knockdown 효율(CTGF 발현수준, 72시간: 34.3%, 96시간: 35.8%)은 LNP에 담지된 siCTGF(CTGF 발현수준, 72시간: 62.5%, 96시간: 78.8%) 대비 지속적이고, 월등했다(도 4, 5). 이를 종합하면, LEM-S401는 세포에서 LNP에 담지된 siCTGF 대비, 더 오랜 기간동안 타겟 mRNA 발현수준을 억제함을 알 수 있다.In this experiment, LEM-S401 maintained a longer CTGF knockdown effect than LNP in A549 and HaCaT cells. A549 and HaCaT cells were treated with siCTGF supported on LEM-S401 (50 nM) and LNP (50 nM), and then CTGF expression was induced by TGF-ß treatment. Downregulation of CTGF in A549 cells lasted up to 96 hours after LEM-S401 treatment (CTGF expression level, 72 hours: 26.3%, 96 hours: 26.9%). However, the knockdown efficiency of siCTGF loaded on LNP was not high at both 72 and 96 hours (CTGF expression level, 72 hours: 46.4%, 96 hours: 58.6%). In addition, knockdown efficiency (CTGF expression level, 72 hours: 34.3%, 96 hours: 35.8%) of LEM-S401 in HaCaT cells was determined by siCTGF (CTGF expression level, 72 hours: 62.5%, 96 hours: 78.8%) loaded on LNP. ) And consistently superior (Figures 4, 5). Taken together, it can be seen that LEM-S401 inhibits the target mRNA expression level for a longer time period compared to siCTGF loaded in LNP in cells.
5. 마우스 피부 상처 모델에서, LEM-S401의 CTGF 발현 및 비대흉터 형성 억제능 확인5. Inhibition of CTGF Expression and Hypertrophy Scar Formation of LEM-S401 in Mouse Skin Wound Model
다음으로, LEM-S401가 생체 내에서 CTGF 발현을 하향 조절할 수 있는지를 결정하기 위한 실험을 수행했다. 생체 내에서 유전자 knockdown 효능을 측정하기 전에, C57BL/6 마우스에 TAMRA-접합된 DegradaBALL에 담지된 FITC-접합된 siCTGF로 구성된 형광 라벨 LEM-S401를 주입하고, 담지되지 않은(자유) FITC-접합된 siCTGF만을 피하주입 경로를 통해 주입하여 LEM-S401와 자유 siCTGF의 주입 부위에서의 지속 시간을 비교하고자 하였다. 그리하여, 절제된 마우스 피부와 절편화된 피부의 형광 이미지 분석은 주입 후 1,3,5일째에 수행되었다. FITC-siCTGF를 담지한 TAMRA-DegradaBALL의 형광은 1일째에 주입 부위에서 강한 발광을 나타내었다. 그리고, 형광은 시간의 경과에 따라 천천히 감소하였으나, 주입 후 5일째까지 주입 부위에서의 형광은 유지되었다(도 6). 이러한 시간에 경과에 따라 주입부위에서의 형광이 감소하는 경향은 피부 절편 슬라이드의 경향에 따랐다(도 6). 반면, 담지되지 않은 자유 FITC-siCTGF 만을 주입한 쥐로부터 절제된 피부나 절편화된 피부 슬라이드에서의 형광 신호는 관찰되지 않았는데, 이는 자유 siCTGF가 체내에서 빠르게 분산되어 버리거나, 매우 빠른 확산을 유도하는 작은 조각으로 분해됨을 암시한다(도 7). 상기 데이터는 자유 siCTGF 대비, LEM-S401가 피부 내에서 현저히 높은 농도 수준의 siCTGF을, 적어도 주입 후 3일째까지 유지할 수 있음을 보여준다.Next, experiments were conducted to determine if LEM-S401 could downregulate CTGF expression in vivo. Prior to measuring gene knockdown efficacy in vivo, C57BL / 6 mice were injected with fluorescent label LEM-S401 consisting of FITC-conjugated siCTGF loaded on TAMRA-conjugated DegradaBALL and unsupported (free) FITC-conjugated We tried to compare the duration of the injection of LEM-S401 and free siCTGF by injecting only siCTGF through the subcutaneous injection route. Thus, fluorescence image analysis of resected mouse skin and sectioned skin was performed on days 1, 3 and 5 after injection. Fluorescence of TAMRA-DegradaBALL carrying FITC-siCTGF showed strong luminescence at the injection site on day 1. In addition, the fluorescence decreased slowly with time, but the fluorescence was maintained at the injection site until 5 days after the injection (FIG. 6). The tendency for fluorescence at the injection site to decrease with this time was in accordance with the tendency of the skin section slide (FIG. 6). On the other hand, no fluorescence signal was observed in the excised skin or fragmented skin slides from mice injected with only unsupported free FITC-siCTGF, which was a small fragment that caused the free siCTGF to disperse rapidly in the body or to induce very rapid diffusion. Implying degradation (FIG. 7). The data show that, compared to free siCTGF, LEM-S401 can maintain significantly higher concentration levels of siCTGF in the skin, at least 3 days after infusion.
다음으로, LEM-S401가 CTGF 유전자 knockdown을 유도할 수 있고, 콜라겐 과량 생산을 감소시킴을 쥐 피부 상처 모델에서 증명하였다. 쥐의 등 피부에 생검 펀치로 상처 구멍을 만든 후(0일), 관리와 관찰을 위해 실리콘 부목을 상처 주위에 봉합하였다. LEM-S401는 상처 주위에 0,4,8,12일 째 피하주입하였다. 쥐는 16일째에 희생되었고, 피부에서의 CTGF의 발현 수준은 RT-PCR로 분석되었다. CTGF의 발현수준은 LEM-S401 처리 그룹에서 현저히 감소한 반면, siCTGF 또는 DegradaBALL 만을 처리한 그룹에서는 미처리군 대비 변화가 관찰되지 않았다. 게다가, 콜라겐 유형 1,3 발현 수준 역시 LEM-S401 처리 그룹에서 현저히 하향조절되었다(도 8 내지 10). CTGF에 의해 유도되는 것으로 알려진 콜라겐 유형 1,3은 비대흉터 및 켈로이드의 주된 구성요소이다. 그리하여, LEM-S401에 의해 발현이 억제된 CTGF가 콜라겐 유형 1,3의 발현 수준에 영향을 미쳤음을 확신할 수 있다.Next, it was demonstrated in the rat skin wound model that LEM-S401 can induce CTGF gene knockdown and reduce collagen overproduction. After making a wound hole with a biopsy punch in the rat's back skin (day 0), silicone splints were sutured around the wound for management and observation. LEM-S401 was injected subcutaneously around the wound at 0,4,8,12 days. Mice were sacrificed on day 16, and expression levels of CTGF in the skin were analyzed by RT-PCR. The expression level of CTGF was significantly decreased in the LEM-S401 treated group, whereas no change was observed in the group treated with siCTGF or DegradaBALL alone. In addition, collagen type 1,3 expression levels were also significantly downregulated in the LEM-S401 treated group (FIGS. 8-10). Collagen types 1,3 known to be induced by CTGF are the major components of hypertrophic scars and keloids. Thus, it can be assured that CTGF inhibited expression by LEM-S401 influenced the expression level of collagen type 1,3.
상처 부위 결합조직의 과도성장에 의해 야기된, 고르지 않고, 울퉁불퉁하며, 불규칙적인 피부 표면은 비대흉터와 켈로이드의 주요 특징이다. 10일째 상처입은 피부 사진은 대조군에서 불규칙한 특징을 보였으나, LEM-S401 처리군에서의 피부사진은 규칙적이고 부드럽게 나타났다(도 11). 이것은 LEM-S401가 통제할 수 없는 불균일한 피부 형성을 억제하고, 이에 비대흉터 형성을 방지한다는 것을 증명하는 것이다. 면역조직화학 분석은 또한 대조군보다 LEM-S401 처리군에서 CTGF 및 콜라겐 유형 1,3의 발현이 유의적으로 낮음을 보여주었다(도 12 내지 15). 피부 상처의 회복과정에서, 조직 리모델링 과정은 표피가 회복된 후 진피에서 일어난다. 이 과정에서, 콜라겐 섬유의 발현이 증가하는데, 콜라겐 형성이 통제 불가능한 경우, 비대흉터나 켈로이드를 유발할 수 있다. 이에, 조직 리모델링 과정에서 LEM-S401가 CTGF와 콜라겐의 발현을 억제할 수 있는지 확인하기 위해, 표피가 회복된 후, LEM-S401를 주입하였다. 구체적으로, 생검 펀치를 사용하여 마우스 피부 구멍을 뚫었고(0일), 표피가 완전히 회복된 후, 10,14,18,22일에 LEM-S401를 상처 부위에 주입하였다. 통상적으로, 마우스 상처 모델에서, 상처 형성 후 표피를 완전히 회복시키는 데에 10일이면 충분했다. 26일째에 마우스를 희생시킨 후, CTGF 및 콜라겐 유형 1,3의 발현 수준을 RT-PCR로 분석하였다. LEM-S401 처리군의 CTGF와 콜라겐의 발현 수준은 대조군 대비 유의하게 낮았다(도 18 내지 20). 면역조직화학 분석은 CTGF와 콜라겐 유형 1,3 단백질 발현 수준이 LEM-S401 처리군에서 현저히 감소함을 보여주었다(도 21 내지 24).Uneven, bumpy, and irregular skin surfaces caused by overgrowth of wound connective tissue are major features of hypertrophic scars and keloids. Wounded skin pictures on day 10 showed irregular features in the control group, but skin pictures in the LEM-S401 treated group appeared regular and smooth (FIG. 11). This proves that LEM-S401 inhibits uncontrolled uneven skin formation and prevents hypertrophic scar formation. Immunohistochemical analysis also showed that the expression of CTGF and collagen types 1,3 were significantly lower in the LEM-S401 treated group than the control group (FIGS. 12-15). In the repair of skin wounds, tissue remodeling occurs in the dermis after the epidermis has recovered. In this process, the expression of collagen fibers increases, which can lead to hypertrophic scars or keloids if collagen formation is uncontrollable. Therefore, in order to confirm whether LEM-S401 can suppress the expression of CTGF and collagen during tissue remodeling, LEM-S401 was injected after the epidermis was recovered. Specifically, a biopsy punch was used to puncture the mouse skin (day 0), and after 10 days, 14, 18 and 22 days of epidermal recovery, LEM-S401 was injected into the wound site. Typically, in the mouse wound model, 10 days was sufficient to fully restore the epidermis after wound formation. After sacrifice on day 26, expression levels of CTGF and collagen type 1,3 were analyzed by RT-PCR. The expression levels of CTGF and collagen in the LEM-S401 treated group were significantly lower than those in the control group (FIGS. 18 to 20). Immunohistochemical analysis showed that CTGF and collagen type 1,3 protein expression levels were significantly reduced in the LEM-S401 treated group (FIGS. 21-24).

Claims (23)

  1. 서열번호 1의 서열과 10 뉴클레오티드 이상 상보적인 서열로 이루어진 핵산분자;를 포함하는 CTGF 유전자 발현 억제용 조성물.A composition for inhibiting CTGF gene expression comprising; a nucleic acid molecule consisting of a sequence of SEQ ID NO: 1 and a sequence complementary to 10 nucleotides or more.
  2. 청구항 1에 있어서, 서열번호 1의 서열과 16 뉴클레오티드 이상 상보적인 서열로 이루어진 핵산분자;를 포함하는 조성물.The method of claim 1, wherein the nucleic acid molecule consisting of a sequence of at least 16 nucleotides complementary to the sequence of SEQ ID NO: 1; composition comprising a.
  3. 청구항 1에 있어서, 서열번호 1의 서열 전체와 상보적인 서열로 이루어진 핵산분자;를 포함하는 조성물.The composition according to claim 1, wherein the nucleic acid molecule consisting of a sequence complementary to the entire sequence of SEQ ID NO: 1.
  4. 청구항 1에 있어서, 상기 핵산분자는 siRNA, dsRNA, PNA 또는 miRNA의 일 가닥(strand)을 이루는 것인 조성물.The composition of claim 1, wherein the nucleic acid molecule forms one strand of siRNA, dsRNA, PNA, or miRNA.
  5. 청구항 4에 있어서, 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 2의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 3의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 52의 서열로 이루어진 센스 RNA 및 서열번호 53의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 54의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 55의 서열로 이루어진 센스 RNA 및 서열번호 56의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 57의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 58의 서열로 이루어진 센스 RNA 및 서열번호 59의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 60의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 61의 서열로 이루어진 센스 RNA 및 서열번호 62의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 63의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 64의 서열로 이루어진 센스 RNA 및 서열번호 65의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 66의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 67의 서열로 이루어진 센스 RNA 및 서열번호 68의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 69의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 70의 서열로 이루어진 센스 RNA 및 서열번호 71의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 72의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA;로 이루어진 군에서 선택된 적어도 하나의 siRNA 또는 dsRNA를 포함하는 조성물.The method according to claim 4, siRNA consisting of the sense RNA consisting of the sequence of SEQ ID NO: 1 and antisense RNA consisting of the sequence of SEQ ID NO: 2, the strand consisting of the sequence of SEQ ID NO: 3 and dsRNA consisting of the strands complementary thereto, the sequence of SEQ ID NO: 52 A siRNA consisting of a sense RNA consisting of an antisense RNA consisting of a sequence of SEQ ID NO: 53 and a strand consisting of a sequence of SEQ ID NO: 54 and a dsRNA consisting of a strand complementary thereto, a sense RNA consisting of a sequence of SEQ ID NO: 55, and a sequence of SEQ ID NO: 56 SiRNA consisting of an antisense RNA consisting of, a strand consisting of a sequence of SEQ ID NO: 57 and a dsRNA consisting of a complementary strand thereof, a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 58 and an antisense RNA consisting of a sequence of SEQ ID NO: 59, SEQ ID NO: DsRN consisting of a strand consisting of a sequence of 60 and a strand complementary thereto A, siRNA consisting of a sense RNA consisting of the sequence of SEQ ID NO: 61 and antisense RNA consisting of the sequence of SEQ ID NO: 62, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 63 and a strand complementary thereto, a sense consisting of the sequence of SEQ ID NO: 64 SiRNA consisting of RNA and antisense RNA consisting of the sequence of SEQ ID NO: 65, dsRNA consisting of the strand of SEQ ID NO: 66 and complementary strands thereof, sense RNA consisting of the sequence of SEQ ID NO: 67, and antisense consisting of the sequence of SEQ ID NO: 68 SiRNA consisting of an RNA RNA, a strand consisting of a sequence of SEQ ID NO: 69 and a dsRNA consisting of a complementary strand thereof, a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 70 and an antisense RNA consisting of a sequence of SEQ ID NO: 71, a sequence of SEQ ID NO: 72 Consisting of a strand consisting of dsRNA and complementary strands; Composition comprising at least one siRNA or dsRNA selected from.
  6. 청구항 5에 있어서, 상기 센스 RNA 및 안티센스 RNA 서열의 3' 말단에 UU 또는 dTdT의 서열을 추가로 포함하는 것인 조성물.The composition of claim 5, further comprising a sequence of UU or dTdT at the 3 ′ end of the sense RNA and antisense RNA sequence.
  7. 청구항 4에 있어서, 서열번호 87 내지 99의 서열로 이루어진 군에서 선택된 하나의 서열로 이루어진 PNA를 적어도 하나 포함하는 조성물.The composition of claim 4, comprising at least one PNA consisting of one sequence selected from the group consisting of SEQ ID NOs: 87-99.
  8. 청구항 7에 있어서, 상기 PNA의 적어도 하나의 말단에 서열번호 101 내지 113으로 이루어진 군에서 선택된 적어도 하나의 서열로 이루어진 펩티드; 또는 mPEG 5000이 더 결합된 것인 조성물.The method of claim 7, wherein at least one end of the PNA peptide consisting of at least one sequence selected from the group consisting of SEQ ID NO: 101 to 113; Or mPEG 5000 is further bound.
  9. 청구항 1 내지 8 중 어느 한 항의 조성물을 포함하는 섬유증식성 질환의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating fibroproliferative disease, comprising the composition of any one of claims 1 to 8.
  10. 청구항 9에 있어서, 상기 섬유증식성 질환은 비대흉터, 켈로이드, 섬유증, 폐 섬유증, 특발성 폐 섬유화증, 간 섬유증, 신장 섬유증, 낭포성 섬유증, 골수섬유증, 복막후 섬유증, 피부경화증, 당뇨병성 망막증, 듀켄씨근이영양증, 방사-유도 섬유증, 심근 섬유증, 당뇨병성 신장질환, 만성 신부전증, 만성 바이러스성 간염, 담도섬유화, 지방간염, 알코올성 지방간염, 비알코올성 지방간염, 증식유리체망막병증, 근골격계 종양, 골육종, 횡문근육종, 교모세포종, 폐암, 난소암, 식도암, 대장암, 췌장암, 신장경화증, 사르코이드증, 녹내장, 황반변성, 망막하섬유화증, 맥락막혈관신생, 유리체망막병증, 증식유리체망막병증, 당뇨망막병증, 각막염, 익상편, 검열반, 피부경화증, 자궁근종, 전신경화증, 사구체 신염, 사람 면역 결핍 바이러스성 신질환, 급성 호흡곤란 증후군, 만성 폐쇄성 폐질환, 레이노병, 류마티스 관절염, 다발근염, 혈관협착증, 치주염 및 치주은으로 이루어진 군에서 선택된 적어도 하나인 조성물.The method of claim 9, wherein the fibrotic disease is hypertrophic scar, keloid, fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, myelofibrosis, peritoneal fibrosis, scleroderma, diabetic retinopathy, Duken Muscular dystrophy, radiation-induced fibrosis, myocardial fibrosis, diabetic kidney disease, chronic renal failure, chronic viral hepatitis, cholangiofibrosis, fatty liver, alcoholic fatty hepatitis, nonalcoholic steatohepatitis, proliferative vitreoretinopathy, musculoskeletal tumor, osteosarcoma, rhabdomyomus Sarcoma, Glioblastoma, Lung Cancer, Ovarian Cancer, Esophageal Cancer, Colon Cancer, Pancreatic Cancer, Kidney Sclerosis, Sarcoidosis, Glaucoma, Macular Degeneration, Subretinal Fibrosis, Choroidal Neovascularization, Vitreoretinopathy, Proliferative Vitreoretinopathy, Diabetic Retinopathy , Keratitis, pterygium, censorship, scleroderma, fibroids, systemic sclerosis, glomerulonephritis, human immunodeficiency viral kidney disease, acute respiratory distress The composition is at least one selected from the group consisting of Ran syndrome, chronic obstructive pulmonary disease, Raynaud's disease, rheumatoid arthritis, polymyositis, vascular stenosis, periodontitis and periodontal gingiva.
  11. CTGF 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하고,And porous silica particles carrying nucleic acid molecules that complementarily bind to at least a portion of the transcript of the CTGF gene.
    상기 다공성 실리카 입자는 직경 5nm 미만의 기공을 갖는 실리카 입자를 120℃ 내지 180℃에서 24시간 내지 96시간 동안 팽창제와 반응시켜 상기 직경 5nm 미만의 기공을 팽창시키는 단계; 및 상기 기공이 팽창된 실리카 입자를 400℃ 이상의 온도에서 3시간 이상 하소하는 단계를 포함하여 제조되며,The porous silica particles react with silica particles having pores less than 5 nm in diameter at 120 ° C. to 180 ° C. for 24 to 96 hours to expand the pores less than 5 nm in diameter; And calcining the pores of expanded silica particles at a temperature of 400 ° C. or higher for at least 3 hours.
    상기 다공성 실리카 입자의 평균 직경은 100 nm 내지 1000nm이고, 그 BET 표면적은 200m 2/g 내지 700m 2/g이고, 그 g당 부피는 0.7ml 내지 2.2ml이며,The average diameter of the porous silica particles is 100 nm to 1000 nm, the BET surface area is 200m 2 / g to 700m 2 / g, the volume per g is 0.7ml to 2.2ml,
    상기 다공성 실리카 입자는 하기 수학식 1의 흡광도의 비가 1/2이 되는 t가 24 이상인 것인, CTGF 유전자 발현 억제용 조성물:The porous silica particles, the ratio of the absorbance of the following formula 1 is t is 24 or more, CTGF gene expression inhibition composition:
    [수학식 1][Equation 1]
    A t/A 0 A t / A 0
    (식 중, A 0는 상기 다공성 실리카 입자 1mg/ml 현탁액 5ml를 직경 50kDa의 기공을 갖는 원통형 투과막에 넣고 측정된 다공성 실리카 입자의 흡광도이고,Wherein A 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles in a cylindrical permeable membrane having pores having a diameter of 50 kDa,
    상기 투과막 외부에는 상기 투과막과 접하며, 상기 현탁액과 동일한 용매 15ml가 위치하고, 상기 투과막 내외부는 37℃에서 60rpm 수평 교반되며,Outside of the permeable membrane is in contact with the permeable membrane, 15ml of the same solvent as the suspension is located, the inside and outside of the permeable membrane is stirred 60 rpm at 37 ℃ horizontal,
    상기 현탁액의 pH는 7.4이고,The pH of the suspension is 7.4,
    A t는 상기 A 0의 측정시로부터 t시간 경과 후에 측정된 다공성 실리카 입자의 흡광도임).A t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
  12. 청구항 11에 있어서, 상기 다공성 실리카 입자는 외부 표면 또는 기공 내부가 중성의 pH에서 양전하 또는 무전하를 띠는 것인 조성물.The composition of claim 11, wherein the porous silica particles are positively or uncharged at neutral pH at their outer surface or inside the pore.
  13. 청구항 11에 있어서, 상기 다공성 실리카 입자는 친수성 또는 소수성 작용기를 갖는 것인 조성물.The composition of claim 11, wherein the porous silica particles have hydrophilic or hydrophobic functional groups.
  14. 청구항 11에 있어서, 상기 핵산분자는 서열번호 1의 서열과 10 뉴클레오티드 이상 상보적인 것인 조성물.The composition of claim 11, wherein the nucleic acid molecule is at least 10 nucleotides complementary to the sequence of SEQ ID NO: 1.
  15. 청구항 11에 있어서, 상기 핵산분자는 서열번호 1의 서열과 16 뉴클레오티드 이상 상보적인 것인 조성물.The composition of claim 11, wherein the nucleic acid molecule is at least 16 nucleotides complementary to the sequence of SEQ ID NO: 1.
  16. 청구항 11에 있어서, 서열번호 1의 서열 전체와 상보적인 서열로 이루어진 핵산분자;를 포함하는 조성물.The composition of claim 11, wherein the nucleic acid molecule consists of a sequence complementary to the entire sequence of SEQ ID NO: 1.
  17. 청구항 11에 있어서, 상기 핵산분자는 siRNA, dsRNA, PNA 또는 miRNA의 일 가닥(strand)을 이루는 것인 조성물.The composition of claim 11, wherein the nucleic acid molecule forms one strand of siRNA, dsRNA, PNA or miRNA.
  18. 청구항 17에 있어서, 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 2의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 3의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 52의 서열로 이루어진 센스 RNA 및 서열번호 53의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 54의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 55의 서열로 이루어진 센스 RNA 및 서열번호 56의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 57의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 58의 서열로 이루어진 센스 RNA 및 서열번호 59의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 60의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 61의 서열로 이루어진 센스 RNA 및 서열번호 62의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 63의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 64의 서열로 이루어진 센스 RNA 및 서열번호 65의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 66의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 67의 서열로 이루어진 센스 RNA 및 서열번호 68의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 69의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 70의 서열로 이루어진 센스 RNA 및 서열번호 71의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 72의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA;로 이루어진 군에서 선택된 적어도 하나의 siRNA 또는 dsRNA를 포함하는 조성물.The method of claim 17, wherein the siRNA consisting of the sense RNA consisting of the sequence of SEQ ID NO: 1 and antisense RNA consisting of the sequence of SEQ ID NO: 2, the strand consisting of the sequence of SEQ ID NO: 3 and dsRNA consisting of the strands complementary thereto, the sequence of SEQ ID NO: 52 A siRNA consisting of a sense RNA consisting of an antisense RNA consisting of a sequence of SEQ ID NO: 53, a strand consisting of a sequence of SEQ ID NO: 54, and a dsRNA consisting of a strand complementary thereto, a sense RNA consisting of a sequence of SEQ ID NO: 55, and a sequence of SEQ ID NO: 56 SiRNA consisting of an antisense RNA consisting of, a strand consisting of a sequence of SEQ ID NO: 57 and a dsRNA consisting of a complementary strand thereof, a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 58 and an antisense RNA consisting of a sequence of SEQ ID NO: 59, SEQ ID NO: Strand consisting of the sequence of 60 and complementary thereto A siRNA consisting of NA, a sense RNA consisting of a sequence of SEQ ID NO: 61, and an antisense RNA consisting of a sequence of SEQ ID NO: 62, a dsRNA consisting of a strand consisting of the sequence of SEQ ID NO: 63, and a complementary strand thereof, a sense consisting of the sequence of SEQ ID NO: 64 SiRNA consisting of RNA and antisense RNA consisting of SEQ ID NO: 65, dsRNA consisting of strand of SEQ ID NO: 66 and complementary strands thereof, sense RNA consisting of SEQ ID NO: 67, and antisense consisting of SEQ ID NO: 68 SiRNA consisting of an RNA siRNA, a strand consisting of a sequence of SEQ ID NO: 69 and a dsRNA consisting of a strand complementary thereto, a sense RNA consisting of a sequence of SEQ ID NO: 70 and an antisense RNA consisting of an sequence of SEQ ID NO: 71, a sequence of SEQ ID NO: 72 Consisting of a strand consisting of a dsRNA and complementary strands; A composition comprising at least one siRNA or dsRNA selected from the group.
  19. 청구항 18에 있어서, 상기 센스 RNA 및 안티센스 RNA 서열의 3' 말단에 UU 또는 dTdT의 서열을 추가로 포함하는 것인 조성물.The composition of claim 18, further comprising a sequence of UU or dTdT at the 3 ′ end of the sense RNA and antisense RNA sequence.
  20. 청구항 17에 있어서, 서열번호 87 내지 99의 서열로 이루어진 군에서 선택된 하나의 서열로 이루어진 PNA를 적어도 하나 포함하는 조성물.The composition of claim 17, comprising at least one PNA consisting of one sequence selected from the group consisting of SEQ ID NOs: 87-99.
  21. 청구항 20에 있어서, 상기 PNA의 적어도 하나의 말단에 서열번호 101 내지 113으로 이루어진 군에서 선택된 적어도 하나의 서열로 이루어진 펩티드; 또는 mPEG 5000이 더 결합된 것인 조성물.The peptide of claim 20, further comprising: a peptide consisting of at least one sequence selected from the group consisting of SEQ ID NOs: 101 to 113 at at least one end of the PNA; Or mPEG 5000 is further bound.
  22. 청구항 11 내지 21 중 어느 한 항의 조성물을 포함하는 섬유증식성 질환의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for the prophylaxis or treatment of fibrotic disease, comprising the composition of any one of claims 11 to 21.
  23. 청구항 22에 있어서, 상기 섬유증식성 질환은 비대흉터, 켈로이드, 섬유증, 폐 섬유증, 특발성 폐 섬유화증, 간 섬유증, 신장 섬유증, 낭포성 섬유증, 골수섬유증, 복막후 섬유증, 피부경화증, 당뇨병성 망막증, 듀켄씨근이영양증, 방사-유도 섬유증, 심근 섬유증, 당뇨병성 신장질환, 만성 신부전증, 만성 바이러스성 간염, 담도섬유화, 지방간염, 알코올성 지방간염, 비알코올성 지방간염, 증식유리체망막병증, 근골격계 종양, 골육종, 횡문근육종, 교모세포종, 폐암, 난소암, 식도암, 대장암, 췌장암, 신장경화증, 사르코이드증, 녹내장, 황반변성, 망막하섬유화증, 맥락막혈관신생, 유리체망막병증, 증식유리체망막병증, 당뇨망막병증, 각막염, 익상편, 검열반, 피부경화증, 자궁근종, 전신경화증, 사구체 신염, 사람 면역 결핍 바이러스성 신질환, 급성 호흡곤란 증후군, 만성 폐쇄성 폐질환, 레이노병, 류마티스 관절염, 다발근염, 혈관협착증, 치주염 및 치주은으로 이루어진 군에서 선택된 적어도 하나인 조성물.The fibrotic disease according to claim 22, wherein the fibrotic disease is hypertrophic scar, keloid, fibrosis, pulmonary fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, myelofibrosis, peritoneal fibrosis, scleroderma, diabetic retinopathy, Duken Muscular dystrophy, radiation-induced fibrosis, myocardial fibrosis, diabetic kidney disease, chronic renal failure, chronic viral hepatitis, cholangiofibrosis, fatty liver, alcoholic fatty hepatitis, nonalcoholic steatohepatitis, proliferative vitreoretinopathy, musculoskeletal tumor, osteosarcoma, rhabdomyomus Sarcoma, Glioblastoma, Lung Cancer, Ovarian Cancer, Esophageal Cancer, Colon Cancer, Pancreatic Cancer, Kidney Sclerosis, Sarcoidosis, Glaucoma, Macular Degeneration, Subretinal Fibrosis, Choroidal Neovascularization, Vitreoretinopathy, Proliferative Vitreoretinopathy, Diabetic Retinopathy , Keratitis, pterygium, censorship, scleroderma, fibroids, systemic sclerosis, glomerulonephritis, human immunodeficiency viral kidney disease, acute respiration It is syndrome, chronic obstructive pulmonary disease, Raynaud, rheumatoid arthritis, multiple myositis, vascular restenosis, periodontal disease, and at least one selected from the group consisting of chijueun composition.
PCT/KR2019/095026 2018-07-31 2019-06-03 Composition for inhibiting ctgf expression WO2020027640A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980050234.8A CN112512532A (en) 2018-07-31 2019-06-03 Compositions for inhibiting CTGF expression
EP19843450.8A EP3831392A4 (en) 2018-07-31 2019-06-03 Composition for inhibiting ctgf expression
JP2021505193A JP7152072B2 (en) 2018-07-31 2019-06-03 Composition for suppressing CTGF expression
AU2019314093A AU2019314093B2 (en) 2018-07-31 2019-06-03 Composition for inhibiting CTGF expression
US17/162,045 US20210230602A1 (en) 2018-07-31 2021-01-29 Composition for inhibiting ctgf expression

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862712317P 2018-07-31 2018-07-31
US62/712,317 2018-07-31
KR1020190065618A KR20200014684A (en) 2018-07-31 2019-06-03 Composition for inhibiting CTGF expression
KR10-2019-0065618 2019-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/162,045 Continuation US20210230602A1 (en) 2018-07-31 2021-01-29 Composition for inhibiting ctgf expression

Publications (1)

Publication Number Publication Date
WO2020027640A1 true WO2020027640A1 (en) 2020-02-06

Family

ID=69232033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/095026 WO2020027640A1 (en) 2018-07-31 2019-06-03 Composition for inhibiting ctgf expression

Country Status (1)

Country Link
WO (1) WO2020027640A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130595A1 (en) * 2008-08-25 2010-05-27 Dean Nicholas M Antisense oligonucleotides directed against connective tissue growth factor and uses thereof
KR20130062917A (en) * 2010-03-24 2013-06-13 알엑스아이 파마슈티칼스 코포레이션 Rna interference in dermal and fibrotic indications
KR20140010285A (en) * 2012-07-16 2014-01-24 서울대학교산학협력단 Composition for drug delivery and drug delivery method using the same
KR20160011565A (en) * 2014-07-22 2016-02-01 주식회사 레모넥스 Composition for delivery of bioactive material or protein and uses thereof
WO2017178883A2 (en) * 2016-04-11 2017-10-19 Olix Pharmaceuticals, Inc. Treatment of idiopathic pulmonary fibrosis using rna complexes that target connective tissue growth factor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130595A1 (en) * 2008-08-25 2010-05-27 Dean Nicholas M Antisense oligonucleotides directed against connective tissue growth factor and uses thereof
KR20130062917A (en) * 2010-03-24 2013-06-13 알엑스아이 파마슈티칼스 코포레이션 Rna interference in dermal and fibrotic indications
KR20140010285A (en) * 2012-07-16 2014-01-24 서울대학교산학협력단 Composition for drug delivery and drug delivery method using the same
KR20160011565A (en) * 2014-07-22 2016-02-01 주식회사 레모넥스 Composition for delivery of bioactive material or protein and uses thereof
WO2017178883A2 (en) * 2016-04-11 2017-10-19 Olix Pharmaceuticals, Inc. Treatment of idiopathic pulmonary fibrosis using rna complexes that target connective tissue growth factor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
U.S.P.: "Pharmaceutical Science", REMINGTON, MACK PUBLISHING COMPANY

Similar Documents

Publication Publication Date Title
WO2010131916A2 (en) Sirna conjugate and preparation method thereof
WO2015002513A2 (en) Respiratory disease-related gene specific sirna, double-helical oligo rna structure containing sirna, compositon containing same for preventing or treating respiratory disease
WO2013089522A1 (en) Novel oligonucleotide conjugates and use thereof
WO2018030789A1 (en) Peptide nucleic acid complex having improved cell permeability and pharmaceutical composition comprising same
WO2015152693A2 (en) Novel double-stranded oligo rna and pharmaceutical composition comprising same for preventing or treating fibrosis or respiratory diseases
WO2015002511A1 (en) Improved nanoparticle type oligonucleotide structure having high efficiency and method for preparing same
WO2010090452A2 (en) Small interference rna complex with increased intracellular transmission capacity
WO2017188731A1 (en) Orally administered nanoparticles for gene delivery and pharmaceutical composition containing same
WO2019022586A9 (en) Pharmaceutical composition for preventing or treating liver cancer
WO2019156366A1 (en) Skin-permeating carrier containing nucleic acid complex and use thereof
WO2013103249A1 (en) High-efficiency nanoparticle-type double-helical oligo-rna structure and method for preparing same
WO2013109057A1 (en) Magnetic nanoparticle-samirna complex and method for preparing same
WO2015005669A1 (en) LIVER CANCER RELATED GENES-SPECIFIC siRNA, DOUBLE-STRANDED OLIGO RNA MOLECULES COMPRISING THE siRNA, AND COMPOSITION FOR PREVENTING OR TREATING CANCER COMPRISING THE SAME
WO2020027641A1 (en) Pharmaceutical composition for preventing or treating atopic diseases
WO2015002512A1 (en) Dengue virus-specific sirna, double helix oligo-rna structure comprising sirna, and composition for suppressing proliferation of dengue virus comprising rna structure
WO2020027640A1 (en) Composition for inhibiting ctgf expression
WO2019022521A2 (en) Composition for delivering physiologically active ingredients into blood vessel
WO2022005268A1 (en) Rna and nucleic acid carrier including same
WO2016068617A1 (en) Polyol-based osmotic polydixylitol polymer based gene transporter and use thereof
WO2018143787A1 (en) Physiologically active substance carrier
WO2019240503A1 (en) Composition for preventing or treating hepatitis b
WO2022131876A1 (en) Nucleic acid molecules with increased gene silencing activity and uses thereof
WO2022225353A1 (en) Multifunctional nucleic acid structure for target gene modulation and uses thereof
WO2022139528A1 (en) Lipid nanoparticles comprising mannose or uses thereof
WO2020027571A1 (en) Pharmaceutical composition for wound healing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019843450

Country of ref document: EP

Effective date: 20210301

ENP Entry into the national phase

Ref document number: 2019314093

Country of ref document: AU

Date of ref document: 20190603

Kind code of ref document: A