WO2020027512A1 - Method for syntax-based object tracking control for compressed image by ptz camera - Google Patents

Method for syntax-based object tracking control for compressed image by ptz camera Download PDF

Info

Publication number
WO2020027512A1
WO2020027512A1 PCT/KR2019/009373 KR2019009373W WO2020027512A1 WO 2020027512 A1 WO2020027512 A1 WO 2020027512A1 KR 2019009373 W KR2019009373 W KR 2019009373W WO 2020027512 A1 WO2020027512 A1 WO 2020027512A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving object
image
ptz camera
motion vector
compressed image
Prior art date
Application number
PCT/KR2019/009373
Other languages
French (fr)
Korean (ko)
Inventor
이현우
정승훈
이성진
Original Assignee
이노뎁 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이노뎁 주식회사 filed Critical 이노뎁 주식회사
Publication of WO2020027512A1 publication Critical patent/WO2020027512A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/58Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present invention generally relates to a technique for effectively tracking a moving object using a PTZ camera in a CCTV control system.
  • the present invention is a syntax (eg, motion vector, coding) obtained by parsing compressed image data rather than tracking and controlling an PTZ camera by identifying an object through complex image processing as in the prior art. It is related to a technology that can control the object tracking of a PTZ camera by extracting a region in which something meaningful movement exists in the image, that is, a moving object region and following the moving object region by using a small number of operations.
  • a syntax eg, motion vector, coding
  • Pan-Tilt-Zoom (PTZ) cameras are cameras whose supports can rotate up, down, left and right and adjust the zoom ratio of the lens.
  • the PTZ camera may move the surveillance area by a panning operation rotated 360 degrees in the horizontal direction and a tilting operation rotated at an angle in the vertical direction, and enlarge or take a photograph of the subject by changing the zoom ratio of the lens.
  • PTZ cameras have been used actively in the field of video control because they can be shot while changing targets or by tracking specific targets. Also, it can be used by combining general camera and PTZ camera. In this case, a general camera can be used to capture and observe a panoramic image over a relatively large area, while a PTZ camera performs object tracking and monitoring for a specific target. The object tracking operation of the PTZ camera can be controlled manually by the controller, but can also be controlled automatically.
  • Tracking control of a specific object on a PTZ camera requires analyzing the original image to identify the moving object and identifying the moving object in a series of image frames. This is because panning, tilting, and zooming the PTZ camera require knowing how the object is moving. Significant computation is required to identify moving objects and detect motion from compressed images such as H.264 AVC and H.265 HEVC generated by PTZ cameras or other CCTV cameras around them.
  • FIG. 1 is a block diagram illustrating a general configuration of a video decoding apparatus according to the H.264 AVC Technical Standard.
  • a video decoding apparatus according to H.264 AVC includes a parser 11, an entropy decoder 12, an inverse converter 13, a motion vector operator 14, a predictor 15, and a deblocking filter ( 16) is configured to include.
  • These hardware modules process compressed video sequentially to decompress and restore the original video data.
  • the parser 11 parses the motion vector and the coding type for the coding unit of the compressed image.
  • Such a coding unit is generally an image block such as a macroblock or a subblock.
  • FIG. 2 is a flowchart illustrating an object tracking control process of a PTZ camera in a conventional video analysis solution.
  • the compressed image is decoded according to H.264 AVC and H.265 HEVC, etc. (S10), and the frame images of the reproduced image are downscaled to a small image, for example, 320 ⁇ 240 (S20).
  • the reason for downscaling resizing is to reduce the processing burden in the subsequent process.
  • moving objects are extracted through image analysis and coordinates of the moving objects are calculated (S30).
  • by panning, tilting, and zooming the PTZ camera using the size and coordinates of the moving object the moving object is tracked and photographed (S40).
  • An object of the present invention is to provide a technique for effectively tracking a moving object using a PTZ camera in general CCTV control system.
  • a syntax eg, motion vector, coding type
  • an object tracking control method of a syntax-based PTZ camera for a compressed image includes a first step of obtaining a motion vector and a coding type for a coding unit by parsing a bitstream of the compressed image.
  • the object tracking control method of the PTZ camera calculating a global motion vector corresponding to the average value of the motion vector for each frame; And subtracting the global motion vector calculated for the frame with respect to the motion vector.
  • the global motion vector may be calculated by summing all the motion vectors acquired in the frame and dividing by the total number of image blocks belonging to the frame.
  • the object tracking control method of the PTZ camera includes a step of identifying a plurality of adjacent video blocks (hereinafter referred to as 'neighbor block') around the moving object area; B) comparing a motion vector value with a second preset threshold value for a plurality of neighboring blocks; C) additionally marking a neighboring block having a motion vector value exceeding a second threshold as a moving object region; D) additionally marking a neighboring block having a coding type of an intra picture among the plurality of neighboring blocks as a moving object region; The method may further include an e-step of performing interpolation on the plurality of moving object regions to additionally mark a predetermined number or less of unmarked image blocks surrounded by the moving object region as the moving object region.
  • the seventh step may be configured to perform panning and tilting control on the PTZ camera so that the tracked moving object region is located at a preset observation point in the compressed image.
  • the eighth step of the present invention may be configured to perform a zoom control on the PTZ camera so that the tracking target moving object region is a preset observation size in the compressed image.
  • the computer program according to the present invention is stored in the medium in order to execute the object tracking control method of the syntax-based PTZ camera for the compressed image as described above combined with hardware.
  • an object tracking control of a PTZ camera can be performed by identifying a moving object region from a CCTV compressed image without performing complicated processing such as decoding, downscale resizing, difference image acquisition, image analysis, and the like.
  • the object tracking control of the PTZ camera is possible even with a calculation amount of about 1/20 compared with the prior art, and thus, there is an advantage in that the number of PTZ camera accommodation channels of the CCTV control system can be greatly increased without large-scale investment.
  • FIG. 1 is a block diagram showing a general configuration of a video decoding apparatus.
  • Figure 2 is a flow chart showing the object tracking control process of the PTZ camera made in the prior art.
  • FIG. 3 is a flowchart illustrating an object tracking control process of a PTZ camera according to the present invention.
  • FIG. 4 is a flowchart illustrating an embodiment of a process of detecting effective motion from a compressed image in the present invention.
  • FIG. 5 is a diagram illustrating an example of a result of applying an effective motion region detection process according to the present invention to a CCTV compressed image.
  • FIG. 6 is a flowchart illustrating an example of a process of detecting a boundary region for a moving object region in the present invention.
  • FIG. 7 is a diagram illustrating an example of a result of applying a boundary area detection process according to the present invention to the CCTV image of FIG.
  • FIG. 8 is a diagram illustrating an example of a result of arranging a moving object region through interpolation with respect to the CCTV image of FIG. 7.
  • FIG. 9 is a flowchart illustrating an embodiment of a process of controlling an object to control a PTZ camera with respect to a moving object region to be tracked in the present invention.
  • FIG. 10 is a diagram for one example in which a unique ID is assigned to a moving object area in the present invention.
  • FIG. 11 illustrates an example in which size information is identified in a moving object area in the present invention.
  • FIG. 12 is a diagram illustrating an example in which location information is identified in a moving object area in the present invention.
  • FIG. 3 is a flowchart illustrating an object tracking control process of a PTZ camera according to the present invention.
  • the object tracking control process of the PTZ camera according to the present invention may be performed by an image analysis server which processes a compressed image generated by a PTZ camera in a system that processes a series of compressed images, for example, a CCTV control system.
  • syntax information obtained for each image block that is, a macro block and a sub block, by parsing a bitstream of the compressed image without decoding the compressed image, for example, a motion vector
  • the moving object area thus obtained does not accurately reflect the boundary of the moving object, but the processing speed is high and the reliability is higher than a certain level.
  • the moving object area can be tracked by panning, tilting, and zooming the PTZ camera based on the size and position of the moving object area (e.g., center coordinates). To perform the operation.
  • the moving object region can be extracted and the object tracking can be performed without decoding the compressed image.
  • the apparatus or software to which the present invention is applied should not perform the operation of decoding the compressed image, but the scope of the present invention is not limited.
  • Step S100 First, an effective motion that can be substantially recognized from the compressed image is detected from the compressed image based on the motion vector of the compressed image, and the image region in which the effective motion is detected is set as the moving object region.
  • data of a compressed image is parsed according to video compression standards such as H.264 AVC and H.265 HEVC to obtain a motion vector and a coding type for a coding unit.
  • video compression standards such as H.264 AVC and H.265 HEVC to obtain a motion vector and a coding type for a coding unit.
  • the size of the coding unit is generally about 64x64 to 4x4 pixels and may be set to be flexible.
  • the motion vectors are accumulated for a predetermined time period (for example, 500 msec) for each image block, and it is checked whether the motion vector accumulation value exceeds the first predetermined threshold (for example, 20). If such an image block is found, it is considered that effective motion has been found in the image block and marked as a moving object area. Accordingly, even if the motion vector is generated, if the cumulative value for a predetermined time does not exceed the first threshold, the image change is assumed to be insignificant and ignored.
  • a predetermined time period for example, 500 msec
  • Step S200 Detects how far the boundary region is to the moving object region detected in S100 based on the motion vector and the coding type. If a motion vector occurs above a second threshold (for example, 0) or a coding type is an intra picture by inspecting a plurality of adjacent image blocks centered on the image block marked as a moving object area, the corresponding image block is also moved. Mark as an object area. Through this process, the corresponding image block is substantially in the form of forming a lump with the moving object region detected in S100.
  • a second threshold for example, 0
  • a coding type is an intra picture by inspecting a plurality of adjacent image blocks centered on the image block marked as a moving object area, the corresponding image block is also moved. Mark as an object area.
  • an effective motion is found and there is a certain amount of motion in the vicinity of the moving object area, it is marked as a moving object area because it is likely to be a mass with the previous moving object area.
  • determination based on a motion vector is impossible. Accordingly, the intra picture located adjacent to the image block already detected as the moving object region is estimated as a mass together with the previously extracted moving object region.
  • Step S300 The interpolation is applied to the moving object areas detected at S100 and S200 to clean up the fragmentation of the moving object area.
  • the moving object area since it is determined whether the moving object area is the image block unit, even though it is actually a moving object (for example, a person), there is an image block that is not marked as the moving object area in the middle.
  • the phenomenon of dividing into may occur. Accordingly, if there are one or a few unmarked image blocks surrounded by a plurality of image blocks marked with the moving object region, they additionally mark the moving object region. By doing so, it is possible to make the mobile object region divided into several into one. The influence of such interpolation is clearly seen when comparing FIG. 7 and FIG.
  • Step S400 The moving object region is quickly extracted from each frame image constituting the compressed image based on the syntax (motion vector, coding type) of the coding unit through the above process.
  • steps S400 to S700 when a specific moving object region is identified as a target, object tracking control for the PTZ camera is performed using the extraction result of the moving object region.
  • a specific moving object region is identified as a tracking target among one or more moving object regions identified in the above process, which is referred to herein as a 'tracking target moving object region'.
  • the tracking object area may be implemented so that the control personnel can designate the control agent through a mouse operation or the like on the CCTV video control screen, or may be implemented so that the video control software discovers itself according to the identification condition set through the menu of the video control software. .
  • Step S500 Obtain location information and size information of the area to be tracked in the current frame image.
  • 11 and 12 illustrate examples in which size information and position information are identified for a moving object region.
  • the location information means a location in the image of the corresponding video block.
  • the location information may be set as the upper left coordinate as shown in FIG. 11 or may be set as the center coordinate as shown in FIG. 12.
  • CW clockwise direction
  • a preset observation size eg, 50% of the entire screen
  • a process of performing object tracking control of the PTZ camera based on the syntax of the compressed image will be described in detail with reference to FIGS. 4 to 12.
  • a process of identifying a moving object region by syntax from a compressed image will be described in detail with reference to FIGS. 4 to 8.
  • a process of using the identified moving object area for object tracking control for the PTZ camera will be described in detail with reference to FIGS. 9 to 12.
  • FIG. 4 is a flowchart illustrating an example of a process of detecting effective motion from a compressed image in the present invention
  • FIG. 5 is a diagram illustrating an example of a result of applying the effective motion region detection process according to the present invention to a CCTV compressed image.
  • the process of FIG. 4 corresponds to step S100 in FIG. 3.
  • Step S110 First, a coding unit of a compressed image is parsed to obtain a motion vector and a coding type.
  • a video decoding apparatus performs parsing (header parsing) and motion vector operations on a stream of compressed video according to a video compression standard such as H.264 AVC and H.265 HEVC. Through this process, the motion vector and coding type are parsed for the coding unit of the compressed image.
  • Step S120 Next, a global motion vector is subtracted for each motion vector.
  • the global motion vector means an average value of all motion vectors obtained from the corresponding frame.
  • a value obtained by summing the motion vectors acquired in the frame and dividing by the total number of image blocks belonging to the frame may be set as the global motion vector.
  • the captured image changes as a whole depending on the specific orientation.
  • the global motion vector is obtained with a significant value and reflects the directivity of the entire captured image.
  • the motion vector obtained by the PTZ operation is canceled and the motion vector remains with the direction removed from the whole image by the PTZ operation only for the image block with purely moving contents. . This allows the PTZ camera to extract and track moving objects while panning, tilting and zooming.
  • the global motion vector should not have any effect.
  • only a few image blocks are derived from the captured image, and most of the image blocks do not derive the motion vector.
  • the global motion vector is obtained with a very small value close to 0, subtracting the global motion vector for each motion vector does not have a significant effect.
  • Step S130 Acquire a motion vector cumulative value for a preset time (for example, 500 ms) for each of the plurality of image blocks constituting the compressed image.
  • This step is presented with the intention to detect if there are effective movements that are practically recognizable from the compressed image, such as driving cars, running people, and fighting crowds. Shaky leaves, ghosts that appear momentarily, and shadows that change slightly due to light reflections, though they are moving, are virtually meaningless objects and should not be detected.
  • a motion vector cumulative value is obtained by accumulating a motion vector in units of one or more image blocks for a predetermined time period (for example, 500 msec).
  • the image block is used as a concept including a macroblock and a subblock.
  • Steps S140 and S150 Comparing a motion vector cumulative value with respect to a plurality of video blocks with a preset first threshold value (eg, 20), and moving the image block having a motion vector cumulative value exceeding the first threshold value.
  • an image block having a predetermined motion vector accumulation value is found as described above, it is considered that something significant movement, that is, effective movement, is found in the image block and is marked as a moving object region.
  • a human run is to select and detect a movement that is worth the attention of the control personnel.
  • the cumulative value for a predetermined time is small enough not to exceed the first threshold, the change in the image is assumed to be small and insignificant and is neglected in the detection step.
  • FIG. 5 is an example illustrating a result of detecting an effective motion region from a CCTV compressed image through the process of FIG. 4.
  • an image block having a motion vector accumulation value equal to or greater than a first threshold is marked as a moving object area and displayed as a bold line area.
  • the sidewalk block, the road, and the shadowed part are not displayed as the moving object area, while the walking people or the driving car are displayed as the moving object area.
  • FIG. 6 is a flowchart illustrating an example of a process of detecting a boundary region of a moving object region in the present invention
  • FIG. 7 is a boundary region of FIG. 5 with respect to the CCTV image of FIG. Figure 1 shows an example of the results of further applying the detection process.
  • the process of FIG. 6 corresponds to step S200 in FIG. 3.
  • the moving object is not properly marked and only a portion of the moving object is marked. In other words, if you look at a person walking or driving a car, you will find that not all of the objects are marked, but only some blocks. In addition, it is also found that a plurality of moving object areas are marked for one moving object. This means that the criterion of the moving object region adopted in (S100) above was useful for filtering out the general region but was a very strict condition. Therefore, it is necessary to detect the boundary of the moving object by looking around the moving object area.
  • Step S210 First, a plurality of adjacent image blocks are identified based on the image blocks marked as moving object areas by the previous S100. In the present specification, these are referred to as 'neighborhood blocks'. These neighboring blocks are portions that are not marked as the moving object region by S100, and the process of FIG. 6 examines them further to determine whether any of these neighboring blocks may be included in the boundary of the moving object region.
  • Steps S220 and S230 compare a motion vector value with respect to a plurality of neighboring blocks with a second preset threshold (eg, 0), and mark the neighboring block having a motion vector value exceeding the second threshold as a moving object region. do. If the movement is located adjacent to the area of the moving object where effective motion that is practically meaningful is found and a certain amount of movement is found for itself, the image block is likely to be a block with the area of the adjacent moving object due to the characteristics of the photographed image. . Therefore, such neighboring blocks are also marked as moving object regions.
  • a second preset threshold eg, 0
  • Step S240 Also, the coding type is an intra picture among the plurality of neighboring blocks as a moving object region.
  • an intra picture since a motion vector does not exist, it is fundamentally impossible to determine whether a motion exists in a corresponding neighboring block based on the motion vector. In this case, it is safer for the intra picture located adjacent to the image block already detected as the moving object region to maintain the settings of the previously extracted moving object region.
  • FIG. 7 is a diagram visually illustrating a result of applying a boundary region detection process to a CCTV compressed image.
  • a plurality of image blocks marked as a moving object region through the above process are indicated by a bold line. Referring to FIG. 7, it was found that the moving object area was further extended to the vicinity of the moving object area indicated by the bold line area in FIG. 5, so that the moving object area was covered enough to be compared with the image taken by CCTV. can do.
  • FIG. 8 is a diagram illustrating an example of a result of arranging a moving object region through interpolation according to the present invention for a CCTV image image to which the boundary region detection process illustrated in FIG. 7 is applied.
  • Step S300 is a process of arranging the division of the moving object area by applying interpolation to the moving object areas detected in the previous steps S100 and S200.
  • an unmarked image block is found between the moving object regions indicated by the bold lines. If there is an unmarked image block in the middle, it can be regarded as if they are a plurality of individual moving objects. When the moving object region is fragmented in this way, the result of step S500 may be inaccurate, and the number of moving object regions may increase, thereby complicating the process of steps S500 to S700.
  • the present invention if there is one or a few unmarked image blocks surrounded by a plurality of image blocks marked as the moving object region, this is marked as the moving object region, which is called interpolation.
  • interpolation in contrast to FIG. 7, all of the non-marked image blocks existing between the moving object regions are marked as moving object regions.
  • the moving object region properly reflects the actual image situation through the boundary region detection process and the interpolation process.
  • FIG. 5 if the block is marked as a bold line region, a large number of very small objects are moved as if moving in the image screen, which is inconsistent with reality.
  • it is determined as a block marked with the bold line area in Fig. 8 will be treated as a few moving objects having a certain volume to reflect the actual scene similarly.
  • FIG. 9 is a flowchart illustrating an example of a process of tracking and tracking an object of a PTZ camera with respect to a moving object region to be tracked in the present invention, and corresponds to steps S500 to S700 in FIG. 3.
  • the present invention extracts a moving object region based on syntax information directly obtained from a compressed image.
  • the process of acquiring and analyzing the difference image with respect to the original image by decoding the compressed image of the prior art is unnecessary, and according to the inventor's test, the processing speed is improved up to 20 times.
  • this approach has the disadvantage of poor precision.
  • this feature is also reflected in the process of tracking an object based on the moving object area of the PTZ camera.
  • Step S410 First, a unique ID is managed for a moving object region extracted based on a syntax from a compressed image.
  • the moving object region is derived from each image frame constituting the compressed image. This is not a result of analyzing the image content and determining that it is an object, but a concept of a chunk of an image that seems to be moving in the image frame.
  • the moving object region set as the tracking target in the previous frame must be continuously identified in the next frame when the image frame is advanced. In other words, you need to go beyond the idea of a chunk of an image in that frame and treat it like an object. Therefore, by assigning and managing a unique ID for the moving object region derived from the compressed image, the moving object region can be treated like an object rather than a region, and the compressed image is passed over a series of frame images. You can track the movement of a specific object.
  • Unique ID management of the mobile object area is handled in the following three cases. If a unique ID is assigned in the previous frame and the current frame image identifies a moving object region that is assigned an ID (S411), the moving object region identified as an unassigned ID in the current frame image because it has never been identified in the previous frame. In the case of newly assigning a unique ID to the SID, a mobile object region in which a unique ID is allocated in the previous frame but disappeared from the current frame image is identified and revokes the allocated unique ID (S413).
  • the image block is a moving object region without checking the contents of the original image, it is not possible to confirm whether the chunks of the moving object region are actually the same in the image frames before and after. That is, since the contents of the moving object area are not known, such a change cannot be identified, for example, when the cat is replaced by a dog between the front and rear frames at the same point. However, considering that the time interval between frames is very short and that the observation object of the CCTV camera moves at a normal speed, the possibility of this happening can be excluded.
  • the present invention estimates that the ratio or number of image blocks overlapping between the chunks of the moving object region in the front and back frames is equal to or greater than a predetermined threshold. According to this approach, even if the contents of the image are not known, it is possible to determine whether the previously identified moving object region is moved or whether a new moving object region is newly discovered or the existing moving object region is lost. This judgment is lower in accuracy than the prior art, but can greatly increase the data processing speed, which is advantageous in practical applications.
  • step S411 when the moving object region to which the Unique ID has been assigned in the previous frame is identified in the current frame image, the previously allocated Unique ID is allocated to the corresponding moving object region.
  • the identification may be marked in the management database of the Unique ID.
  • step S412 if a new object is unidentified in the current frame image because it has not been identified in the previous frame, a unique ID is newly assigned to the mobile object region. This means that a new moving object is found in the image.
  • 11 and 12 illustrate examples in which unique IDs are allocated to three moving object areas in a CCTV photographing image.
  • step S413 when the moving object region in which the unique ID is assigned in the previous frame of the compressed image disappears from the current frame image, the moving object region is allocated in step S412 with respect to the previous frame for the moving object region. Revoke unique ID maintained in S411). In other words, the moving object that has been discovered and managed before has disappeared from the image.
  • Step S420 In step S400 of FIG. 3, a specific moving object region is set as the tracking target moving object region in the CCTV photographed image by, for example, a mouse operation of a controller.
  • the tracked moving object region may be set in the current frame or may be set in the previous frame.
  • a unique ID assigned to the tracked moving object region is identified in the current frame image, which is sometimes referred to as 'tracking unique ID'.
  • the unique ID is allocated and managed through the operation S410 for the moving object region identified in each frame image in the process of processing the frame image one by one in the compressed image.
  • the unique ID is managed by classifying the moving object area identified in the previous frame, the moving object area newly identified in the current frame, and the moving object area identified in the previous frame but disappearing from the current frame. Accordingly, the unique ID of the tracking target object region may be identified unless the tracking target object region disappears from the current frame.
  • Steps S430 to S450 Derived the position information and the size information of the moving object region to which the tracking target Unique ID value is allocated in the current frame image, which corresponds to step S500 of FIG. 3.
  • 11 and 12 illustrate examples in which size information and position information are identified for a moving object region.
  • the location information means a location in the image of the corresponding video block.
  • the location information may be set as the upper left coordinate as shown in FIG. 11 or may be set as the center coordinate as shown in FIG. 12.
  • As the size information, as shown in FIG. 11, a size of a rectangle that optimally surrounds a moving object area may be set.
  • panning and tilting control of the PTZ camera is performed using the location information of the tracking target moving object region
  • zoom control of the PTZ camera is performed using the size information of the tracking target moving object region. This process has been described above in steps S600 and S700 of FIG. 3.
  • the present invention may be embodied in the form of computer readable codes on a computer readable nonvolatile recording medium.
  • Such nonvolatile recording media include various types of storage devices, such as hard disks, SSDs, CD-ROMs, NAS, magnetic tapes, web disks, and cloud disks. Forms that are implemented and executed may also be implemented.
  • the present invention may be implemented in the form of a computer program stored in a medium in combination with hardware to execute a specific procedure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The present invention generally relates to a technique for effectively tracking a moving object by using a PTZ camera in a CCTV control system. More specifically, unlike the conventional technique for a compressed image in which an object is identified through a complicated image processing to enable tracking control of a PTZ camera, the present invention relates to a technique in which a syntax (e.g., a motion vector and a coding type) obtained by parsing compressed image data is used to extract an area in which significant motion exists in an image, that is, a moving object area, and then make the moving object area be followed, so as to enable controlling of object tracking of a PTZ camera with a small amount of calculation. According to the present invention, it is possible to control object tracking of a PTZ camera even with a calculation amount corresponding to about 1/20 of that of the conventional technique, so that it is advantageous that the number of PTZ camera reception channels of a CCTV control system can be significantly increased even without large investment.

Description

압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법Object Tracking Control Method of Syntax-based PTZ Camera for Compressed Images
본 발명은 일반적으로 CCTV 관제시스템에서 PTZ 카메라를 이용하여 이동객체를 효과적으로 추적하는 기술에 관한 것이다.The present invention generally relates to a technique for effectively tracking a moving object using a PTZ camera in a CCTV control system.
더욱 상세하게는, 본 발명은 압축영상에 대해 종래기술처럼 복잡한 이미지 프로세싱을 통해 객체를 식별하여 PTZ 카메라를 추적 제어하는 것이 아니라 압축영상 데이터를 파싱하여 얻어지는 신택스(syntax)(예: 모션벡터, 코딩유형)를 활용하여 영상 내의 무언가 유의미한 움직임이 존재하는 영역, 즉 이동객체 영역을 추출하고 그 이동객체 영역을 추종시킴으로써 적은 연산으로도 PTZ 카메라의 객체 추적을 제어할 수 있는 기술에 관한 것이다.More specifically, the present invention is a syntax (eg, motion vector, coding) obtained by parsing compressed image data rather than tracking and controlling an PTZ camera by identifying an object through complex image processing as in the prior art. It is related to a technology that can control the object tracking of a PTZ camera by extracting a region in which something meaningful movement exists in the image, that is, a moving object region and following the moving object region by using a small number of operations.
최근에는 범죄예방, 불법감시, 사후증거 확보 등을 위해 CCTV를 이용하는 영상관제 시스템을 구축하는 것이 일반적이다. 지역별로 다수의 CCTV 카메라를 설치해둔 상태에서 이들 CCTV 카메라가 생성하는 영상을 모니터에 표시하고 스토리지 장치에 저장해두는 것이다. 범죄나 사고가 발생하는 장면을 관제 요원이 발견하게 되면 그 즉시 적절하게 대처하는 한편, 필요에 따라서는 사후증거 확보를 위해 스토리지에 저장되어 있는 영상을 검색하는 것이다.Recently, it is common to establish a video control system using CCTV for crime prevention, illegal surveillance, and securing after evidence. With multiple CCTV cameras installed by region, images generated by these CCTV cameras are displayed on a monitor and stored in a storage device. When a control agent finds a scene where a crime or accident occurs, he or she immediately responds appropriately and, if necessary, retrieves the video stored in the storage to secure post evidence.
이러한 CCTV 관제시스템에서 관제 효과를 높이기 위해 PTZ 카메라를 채용하기도 한다. PTZ(Pan-Tilt-Zoom) 카메라는 지지부가 상하 좌우로 회전할 수 있고 렌즈의 줌 비율을 조절할 수 있는 카메라이다. PTZ 카메라는 수평 방향으로 360도 회전되는 패닝 동작과 수직 방향으로 일정 각도 회전되는 틸팅 동작에 의해 감시 영역을 이동할 수 있고 렌즈의 줌 비율을 가변하여 피사체를 확대 촬영하거나 또는 축소 촬영할 수 있다. PTZ cameras are often used to enhance the control effect in such CCTV control systems. Pan-Tilt-Zoom (PTZ) cameras are cameras whose supports can rotate up, down, left and right and adjust the zoom ratio of the lens. The PTZ camera may move the surveillance area by a panning operation rotated 360 degrees in the horizontal direction and a tilting operation rotated at an angle in the vertical direction, and enlarge or take a photograph of the subject by changing the zoom ratio of the lens.
이처럼 PTZ 카메라를 이용하면 타겟을 바꾸어가며 촬영하거나 반대로 특정 타겟을 추적하면서 촬영할 수 있기 때문에 영상관제 분야에서 적극적으로 활용되기 시작하였다. 또한, 일반 카메라와 PTZ 카메라를 조합하여 활용하기도 한다. 이 경우에는 일반 카메라를 이용하여 상대적으로 넓은 영역에 대해 파노라마 영상을 촬영하여 관찰할 수 있게 하면서 PTZ 카메라를 통해서는 특정 타겟에 대한 객체 추적 감시를 수행한다. 이러한 PTZ 카메라의 객체 추적 동작은 관제요원이 수동으로 제어하기도 하지만 자동으로 제어할 수도 있다.In this way, PTZ cameras have been used actively in the field of video control because they can be shot while changing targets or by tracking specific targets. Also, it can be used by combining general camera and PTZ camera. In this case, a general camera can be used to capture and observe a panoramic image over a relatively large area, while a PTZ camera performs object tracking and monitoring for a specific target. The object tracking operation of the PTZ camera can be controlled manually by the controller, but can also be controlled automatically.
그런데, PTZ 카메라의 객체 추적을 자동으로 제어하는 것은 상당한 수준의 연산 능력을 요구한다. 최근에는 CCTV용 카메라에 H.264 AVC 및 H.265 HEVC 등과 같은 고압축율의 복잡한 영상압축 기술이 채택되고 있기 때문이다. 카메라에서 주변을 촬영하여 압축영상을 제공하면, CCTV 관제시스템에서는 해당 기술규격에 따라 역으로 압축영상에 대한 디코딩을 수행하고 이렇게 얻어진 원래 촬영한 영상에 대해 영상처리 분석을 수행해야 한다. However, automatically controlling object tracking of PTZ cameras requires a considerable amount of computational power. Recently, high-compression complex video compression technologies such as H.264 AVC and H.265 HEVC have been adopted for CCTV cameras. When the camera provides a compressed image by capturing the surroundings, the CCTV control system must decode the compressed image in reverse according to the technical specifications and perform image processing analysis on the originally photographed image thus obtained.
PTZ 카메라에 대해 특정 객체에 대한 추적 제어를 수행하려면 원래 영상을 분석하여 이동객체를 식별하고, 일련의 영상 프레임에서 해당 이동객체를 식별해야 한다. PTZ 카메라에 대한 패닝, 틸팅, 줌 제어를 수행하려면 그 이동객체가 어떻게 움직이는지 알아야 하기 때문이다. PTZ 카메라 또는 그 주변의 다른 CCTV 카메라가 생성하는 H.264 AVC 및 H.265 HEVC 등의 압축영상으로부터 이동객체를 식별하고 움직임을 감지하려면 상당한 연산이 요구된다.Tracking control of a specific object on a PTZ camera requires analyzing the original image to identify the moving object and identifying the moving object in a series of image frames. This is because panning, tilting, and zooming the PTZ camera require knowing how the object is moving. Significant computation is required to identify moving objects and detect motion from compressed images such as H.264 AVC and H.265 HEVC generated by PTZ cameras or other CCTV cameras around them.
먼저, 도 1은 H.264 AVC 기술규격에 따른 동영상 디코딩 장치의 일반적인 구성을 나타내는 블록도이다. 도 1을 참조하면, H.264 AVC에 따른 동영상 디코딩 장치는 구문분석기(11), 엔트로피 디코더(12), 역 변환기(13), 모션벡터 연산기(14), 예측기(15), 디블로킹 필터(16)를 포함하여 구성된다. 이들 하드웨어 모듈이 압축영상을 순차적으로 처리함으로써 압축을 풀고 원래의 영상 데이터를 복원해낸다. 이때, 구문분석기(11)는 압축영상의 코딩 유닛에 대해 모션벡터 및 코딩유형을 파싱해낸다. 이러한 코딩 유닛(coding unit)은 일반적으로는 매크로블록이나 서브 블록과 같은 영상 블록이다.First, FIG. 1 is a block diagram illustrating a general configuration of a video decoding apparatus according to the H.264 AVC Technical Standard. Referring to FIG. 1, a video decoding apparatus according to H.264 AVC includes a parser 11, an entropy decoder 12, an inverse converter 13, a motion vector operator 14, a predictor 15, and a deblocking filter ( 16) is configured to include. These hardware modules process compressed video sequentially to decompress and restore the original video data. At this time, the parser 11 parses the motion vector and the coding type for the coding unit of the compressed image. Such a coding unit is generally an image block such as a macroblock or a subblock.
도 2는 기존의 영상분석 솔루션에서 이루어지는 PTZ 카메라의 객체 추적 제어 과정을 나타내는 순서도이다.2 is a flowchart illustrating an object tracking control process of a PTZ camera in a conventional video analysis solution.
도 2를 참조하면, 종래기술에서는 압축영상을 H.264 AVC 및 H.265 HEVC 등에 따라 디코딩하고(S10), 재생영상의 프레임 이미지들을 작은 이미지, 예컨대 320x240 정도로 다운스케일 리사이징을 한다(S20). 이때, 다운스케일 리사이징을 하는 이유는 이후 과정에서의 프로세싱 부담을 그나마 줄이기 위한 것이다. 그리고 나서, 리사이징된 프레임 이미지들에 대해 차영상(differentials)을 구한 후에 영상 분석을 통해 이동객체를 추출하고 이들 이동객체의 좌표를 산출한다(S30). 그리고 나서, 이동객체의 크기 및 좌표를 이용하여 PTZ 카메라에 대한 패닝, 틸팅, 줌 제어를 수행하여 이동객체를 추적하며 촬영한다(S40).Referring to FIG. 2, in the prior art, the compressed image is decoded according to H.264 AVC and H.265 HEVC, etc. (S10), and the frame images of the reproduced image are downscaled to a small image, for example, 320 × 240 (S20). At this time, the reason for downscaling resizing is to reduce the processing burden in the subsequent process. Then, after obtaining differential images of the resized frame images, moving objects are extracted through image analysis and coordinates of the moving objects are calculated (S30). Then, by panning, tilting, and zooming the PTZ camera using the size and coordinates of the moving object, the moving object is tracked and photographed (S40).
종래기술에서 이동객체를 추출하려면 압축영상 디코딩, 다운스케일 리사이징, 영상 분석을 수행한다. 이들은 복잡도가 매우 높은 프로세스이고, 그로 인해 종래의 영상관제 시스템에서는 한 대의 영상분석 서버가 동시 처리할 수 있는 용량이 상당히 제한되어 있다. 그에 따라, 현재 고성능의 영상분석 서버가 수용할 수 있는 PTZ 카메라의 영상채널은 통상 최대 16 채널에 불과하여 PTZ 카메라의 대수를 늘리는 것에 상당한 어려움이 있었다.In the prior art, to extract a moving object, compressed image decoding, downscale resizing, and image analysis are performed. These are very complicated processes, and therefore, in a conventional video control system, the capacity that a single video analysis server can process simultaneously is quite limited. Accordingly, the video channel of a PTZ camera that can be accommodated by a high performance video analysis server is usually only a maximum of 16 channels, which has a considerable difficulty in increasing the number of PTZ cameras.
본 발명의 목적은 일반적으로 CCTV 관제시스템에서 PTZ 카메라를 이용하여 이동객체를 효과적으로 추적하는 기술을 제공하는 것이다.An object of the present invention is to provide a technique for effectively tracking a moving object using a PTZ camera in general CCTV control system.
특히, 본 발명의 목적은 압축영상에 대해 종래기술처럼 복잡한 이미지 프로세싱을 통해 객체를 식별하여 PTZ 카메라를 추적 제어하는 것이 아니라 압축영상 데이터를 파싱하여 얻어지는 신택스(예: 모션벡터, 코딩유형)를 활용하여 영상 내의 무언가 유의미한 움직임이 존재하는 영역, 즉 이동객체 영역을 추출하고 그 이동객체 영역을 추종시킴으로써 적은 연산으로도 PTZ 카메라의 객체 추적을 제어할 수 있는 기술을 제공하는 것이다.In particular, it is an object of the present invention to utilize a syntax (eg, motion vector, coding type) obtained by parsing compressed image data rather than tracking a PTZ camera by identifying an object through a complex image processing for a compressed image as in the prior art. By extracting an area where there is something significant movement in the image, that is, a moving object area and following the moving object area, it is possible to provide a technique for controlling object tracking of a PTZ camera with a small number of operations.
상기의 목적을 달성하기 위하여 본 발명에 따른 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법은, 압축영상의 비트스트림을 파싱하여 코딩 유닛에 대한 모션벡터 및 코딩유형을 획득하는 제 1 단계; 압축영상을 구성하는 복수의 영상 블록 별로 미리 설정된 제 1 시간동안의 모션벡터 누적값을 획득하는 제 2 단계; 복수의 영상 블록에 대하여 모션벡터 누적값을 미리 설정된 제 1 임계치와 비교하는 제 3 단계; 제 1 임계치를 초과하는 모션벡터 누적값을 갖는 영상 블록을 이동객체 영역으로 마킹하는 제 4 단계; 그 마킹된 하나이상의 이동객체 영역 중에서 PTZ 카메라가 추적할 대상인 추적대상 이동객체 영역을 식별하는 제 5 단계; 현재 프레임 이미지에서 추적대상 이동객체 영역에 대한 위치 정보와 크기 정보를 획득하는 제 6 단계; 추적대상 이동객체 영역의 위치 정보에 기초하여 PTZ 카메라에 대해 패닝 및 틸팅 제어를 수행하는 제 7 단계; 추적대상 이동객체 영역의 크기 정보를 이용하여 PTZ 카메라에 대한 줌 제어를 수행하는 제 8 단계;를 포함하여 구성된다.In order to achieve the above object, an object tracking control method of a syntax-based PTZ camera for a compressed image according to the present invention includes a first step of obtaining a motion vector and a coding type for a coding unit by parsing a bitstream of the compressed image. ; A second step of obtaining a motion vector cumulative value for a first preset time for each of the plurality of image blocks constituting the compressed image; A third step of comparing a motion vector cumulative value with a first threshold value for a plurality of image blocks; A fourth step of marking an image block having a motion vector accumulation value exceeding a first threshold as a moving object region; A fifth step of identifying a tracked moving object area to be tracked by the PTZ camera among the at least one marked moving object area; A sixth step of acquiring position information and size information of the tracked moving object region from the current frame image; A seventh step of performing panning and tilting control on the PTZ camera based on the positional information of the area of the tracking target object; And an eighth step of performing zoom control on the PTZ camera using the size information of the area of the tracking target object.
이때 본 발명에 따른 PTZ 카메라의 객체 추적 제어 방법은, 각각의 프레임 별로 모션벡터의 평균값에 해당하는 글로벌 모션벡터를 산출하는 단계; 모션벡터에 대해 해당 프레임에 대해 산출된 글로벌 모션벡터를 차감 처리하는 단계;를 더 포함하여 구성될 수 있다. 이때, 글로벌 모션벡터는 해당 프레임에서 획득한 모든 모션벡터를 합산하고 해당 프레임에 속하는 영상 블록의 전체 갯수로 나눈 값으로 산출될 수 있다.At this time, the object tracking control method of the PTZ camera according to the present invention, calculating a global motion vector corresponding to the average value of the motion vector for each frame; And subtracting the global motion vector calculated for the frame with respect to the motion vector. In this case, the global motion vector may be calculated by summing all the motion vectors acquired in the frame and dividing by the total number of image blocks belonging to the frame.
또한, 본 발명에 따른 PTZ 카메라의 객체 추적 제어 방법은, 이동객체 영역을 중심으로 그 인접하는 복수의 영상 블록(이하, '이웃 블록'이라 함)을 식별하는 제 a 단계; 복수의 이웃 블록에 대해 모션벡터 값을 미리 설정된 제 2 임계치와 비교하는 제 b 단계; 제 2 임계치를 초과하는 모션벡터 값을 갖는 이웃 블록을 이동객체 영역으로 추가 마킹하는 제 c 단계; 복수의 이웃 블록 중에서 코딩유형이 인트라 픽쳐인 이웃 블록을 이동객체 영역으로 추가 마킹하는 제 d 단계; 복수의 이동객체 영역에 대하여 인터폴레이션을 수행하여 이동객체 영역으로 둘러싸인 미리 설정된 갯수 이하의 비마킹 영상 블록을 이동객체 영역으로 추가 마킹하는 제 e 단계;를 더 포함하여 구성될 수 있다.In addition, the object tracking control method of the PTZ camera according to the present invention includes a step of identifying a plurality of adjacent video blocks (hereinafter referred to as 'neighbor block') around the moving object area; B) comparing a motion vector value with a second preset threshold value for a plurality of neighboring blocks; C) additionally marking a neighboring block having a motion vector value exceeding a second threshold as a moving object region; D) additionally marking a neighboring block having a coding type of an intra picture among the plurality of neighboring blocks as a moving object region; The method may further include an e-step of performing interpolation on the plurality of moving object regions to additionally mark a predetermined number or less of unmarked image blocks surrounded by the moving object region as the moving object region.
또한, 본 발명에서 제 7 단계는 추적대상 이동객체 영역이 압축영상에서 미리 설정된 관찰지점에 위치하도록 PTZ 카메라에 대해 패닝 및 틸팅 제어를 수행하도록 구성될 수 있다. 또한, 본 발명에서 제 8 단계는 추적대상 이동객체 영역이 압축영상에서 미리 설정된 관찰크기가 되도록 PTZ 카메라에 대해 줌 제어를 수행하도록 구성될 수 있다.In the present invention, the seventh step may be configured to perform panning and tilting control on the PTZ camera so that the tracked moving object region is located at a preset observation point in the compressed image. In addition, the eighth step of the present invention may be configured to perform a zoom control on the PTZ camera so that the tracking target moving object region is a preset observation size in the compressed image.
한편, 본 발명에 따른 컴퓨터프로그램은 하드웨어와 결합되어 이상과 같은 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법을 실행시키기 위하여 매체에 저장된 것이다.On the other hand, the computer program according to the present invention is stored in the medium in order to execute the object tracking control method of the syntax-based PTZ camera for the compressed image as described above combined with hardware.
본 발명에 따르면 디코딩, 다운스케일 리사이징, 차영상 획득, 영상 분석 등과 같은 복잡한 프로세싱을 거치지 않고서도 CCTV 압축영상으로부터 이동객체 영역을 식별하여 PTZ 카메라의 객체 추적 제어를 수행할 수 있는 장점이 있다. 특히, 종래기술 대비 1/20 정도의 연산량으로도 PTZ 카메라의 객체 추적 제어가 가능해져서 대규모 비용투자 없이도 CCTV 관제시스템의 PTZ 카메라 수용 채널수를 대폭 증가시킬 수 있는 장점이 있다.According to the present invention, an object tracking control of a PTZ camera can be performed by identifying a moving object region from a CCTV compressed image without performing complicated processing such as decoding, downscale resizing, difference image acquisition, image analysis, and the like. In particular, the object tracking control of the PTZ camera is possible even with a calculation amount of about 1/20 compared with the prior art, and thus, there is an advantage in that the number of PTZ camera accommodation channels of the CCTV control system can be greatly increased without large-scale investment.
도 1은 동영상 디코딩 장치의 일반적인 구성을 나타내는 블록도.1 is a block diagram showing a general configuration of a video decoding apparatus.
도 2는 종래기술에서 이루어지는 PTZ 카메라의 객체 추적 제어 과정을 나타내는 순서도.Figure 2 is a flow chart showing the object tracking control process of the PTZ camera made in the prior art.
도 3은 본 발명에 따른 PTZ 카메라의 객체 추적 제어 프로세스를 나타내는 순서도.3 is a flowchart illustrating an object tracking control process of a PTZ camera according to the present invention.
도 4는 본 발명에서 압축영상으로부터 유효 움직임을 검출하는 과정의 구현 예를 나타내는 순서도.4 is a flowchart illustrating an embodiment of a process of detecting effective motion from a compressed image in the present invention.
도 5는 CCTV 압축영상에 대해 본 발명에 따른 유효 움직임 영역 검출 과정을 적용한 결과의 일 예를 나타내는 도면.5 is a diagram illustrating an example of a result of applying an effective motion region detection process according to the present invention to a CCTV compressed image.
도 6은 본 발명에서 이동객체 영역에 대한 바운더리 영역을 검출하는 과정의 구현 예를 나타내는 순서도. FIG. 6 is a flowchart illustrating an example of a process of detecting a boundary region for a moving object region in the present invention. FIG.
도 7은 도 5의 CCTV 영상 이미지에 대해 본 발명에 따른 바운더리 영역 검출 과정을 적용한 결과의 일 예를 나타내는 도면.7 is a diagram illustrating an example of a result of applying a boundary area detection process according to the present invention to the CCTV image of FIG.
도 8은 도 7의 CCTV 영상 이미지에 대해 인터폴레이션을 통해 이동객체 영역을 정리한 결과의 일 예를 나타내는 도면.8 is a diagram illustrating an example of a result of arranging a moving object region through interpolation with respect to the CCTV image of FIG. 7.
도 9는 본 발명에서 추적대상 이동객체 영역에 대하여 PTZ 카메라를 객체 추적 제어하는 과정의 구현 예를 나타내는 순서도.FIG. 9 is a flowchart illustrating an embodiment of a process of controlling an object to control a PTZ camera with respect to a moving object region to be tracked in the present invention.
도 10은 본 발명에서 이동객체 영역에 Unique ID가 할당된 일 예를 나타내는 도면.FIG. 10 is a diagram for one example in which a unique ID is assigned to a moving object area in the present invention; FIG.
도 11은 본 발명에서 이동객체 영역에 크기 정보가 식별된 일 예를 나타내는 도면.FIG. 11 illustrates an example in which size information is identified in a moving object area in the present invention. FIG.
도 12는 본 발명에서 이동객체 영역에 위치 정보가 식별된 일 예를 나타내는 도면.12 is a diagram illustrating an example in which location information is identified in a moving object area in the present invention.
이하에서는 도면을 참조하여 본 발명을 상세하게 설명한다.Hereinafter, with reference to the drawings will be described in detail the present invention.
도 3은 본 발명에 따른 PTZ 카메라의 객체 추적 제어 프로세스를 나타내는 순서도이다. 본 발명에 따른 PTZ 카메라의 객체 추적 제어 프로세스는 일련의 압축영상을 다루는 시스템, 예컨대 CCTV 관제시스템에서 PTZ 카메라가 생성하는 압축영상을 처리하는 영상분석 서버가 수행할 수 있다.3 is a flowchart illustrating an object tracking control process of a PTZ camera according to the present invention. The object tracking control process of the PTZ camera according to the present invention may be performed by an image analysis server which processes a compressed image generated by a PTZ camera in a system that processes a series of compressed images, for example, a CCTV control system.
본 발명에서는 압축영상을 디코딩할 필요없이 압축영상의 비트스트림을 파싱하여 각 영상 블록, 즉 매크로블록(Macro Block) 및 서브블록(Sub Block) 등에 대해 얻어지는 신택스 정보, 예컨대 모션벡터(Motion Vector)와 코딩유형(Coding Type) 정보를 통해 이동객체 영역을 빠르게 추출한다. 이렇게 얻어진 이동객체 영역은 이동객체의 경계선을 정밀하게 반영하지는 못하지만 처리속도가 빠르면서도 일정 이상의 신뢰도를 나타낸다. 그리고 나서, 예컨대 CCTV 관제요원이 특정 이동객체 영역을 지정하면 이동객체 영역의 크기와 위치(예: 중심좌표)에 기초하여 PTZ 카메라의 패닝, 틸팅, 줌 제어를 수행함으로써 해당 이동객체 영역을 추적 촬영하는 동작을 수행할 수 있다.According to the present invention, syntax information obtained for each image block, that is, a macro block and a sub block, by parsing a bitstream of the compressed image without decoding the compressed image, for example, a motion vector, Quickly extract moving object region through coding type information. The moving object area thus obtained does not accurately reflect the boundary of the moving object, but the processing speed is high and the reliability is higher than a certain level. Then, for example, if a CCTV controller designates a specific moving object area, the moving object area can be tracked by panning, tilting, and zooming the PTZ camera based on the size and position of the moving object area (e.g., center coordinates). To perform the operation.
한편, 본 발명에 따르면 압축영상을 디코딩하지 않고도 이동객체 영역을 추출해내고 객체 추적을 수행할 수 있다. 하지만, 본 발명이 적용된 장치 또는 소프트웨어라면 압축영상을 디코딩하는 동작을 수행하지 말아야 하는 것으로 본 발명의 범위가 한정되는 것은 아니다.Meanwhile, according to the present invention, the moving object region can be extracted and the object tracking can be performed without decoding the compressed image. However, the apparatus or software to which the present invention is applied should not perform the operation of decoding the compressed image, but the scope of the present invention is not limited.
이하, 도 3을 참조하여 본 발명에 따라 PTZ 카메라가 객체 추적을 수행하는 과정의 개념을 살펴본다.Hereinafter, a concept of a process of performing object tracking by a PTZ camera according to the present invention will be described with reference to FIG. 3.
단계 (S100) : 먼저, 압축영상의 모션벡터에 기초하여 압축영상으로부터 실질적으로 의미를 인정할만한 유효 움직임을 검출하며, 이처럼 유효 움직임이 검출된 영상 영역을 이동객체 영역으로 설정한다.Step S100: First, an effective motion that can be substantially recognized from the compressed image is detected from the compressed image based on the motion vector of the compressed image, and the image region in which the effective motion is detected is set as the moving object region.
이를 위해, H.264 AVC 및 H.265 HEVC 등의 동영상압축 표준에 따라서 압축영상의 데이터를 파싱하여 코딩 유닛(coding unit)에 대해 모션벡터와 코딩유형을 획득한다. 이때, 코딩 유닛의 사이즈는 일반적으로 64x64 픽셀 내지 4x4 픽셀 정도이며 플렉서블(flexible)하게 설정될 수 있다.To this end, data of a compressed image is parsed according to video compression standards such as H.264 AVC and H.265 HEVC to obtain a motion vector and a coding type for a coding unit. In this case, the size of the coding unit is generally about 64x64 to 4x4 pixels and may be set to be flexible.
각 영상 블록에 대해 미리 설정된 일정 시간(예: 500 msec) 동안 모션벡터를 누적시키고, 그에 따른 모션벡터 누적값이 미리 설정된 제 1 임계치(예: 20)을 초과하는지 검사한다. 만일 그러한 영상 블록이 발견되면 해당 영상 블록에서 유효 움직임이 발견된 것으로 보고 이동객체 영역으로 마킹한다. 그에 따라, 모션벡터가 발생하였더라도 일정 시간동안의 누적값이 제 1 임계치를 넘지 못하는 경우에는 영상 변화가 미미한 것으로 추정하고 무시한다.The motion vectors are accumulated for a predetermined time period (for example, 500 msec) for each image block, and it is checked whether the motion vector accumulation value exceeds the first predetermined threshold (for example, 20). If such an image block is found, it is considered that effective motion has been found in the image block and marked as a moving object area. Accordingly, even if the motion vector is generated, if the cumulative value for a predetermined time does not exceed the first threshold, the image change is assumed to be insignificant and ignored.
단계 (S200) : 앞의 (S100)에서 검출된 이동객체 영역에 대하여 모션벡터와 코딩유형에 기초하여 바운더리 영역이 대략적으로 어디까지인지 검출한다. 이동객체 영역으로 마킹된 영상 블록을 중심으로 인접한 복수의 영상 블록을 검사하여 모션벡터가 제 2 임계치(예: 0) 이상 발생하였거나 코딩유형이 인트라 픽쳐(Intra Picture)일 경우에는 해당 영상 블록도 이동객체 영역으로 마킹한다. 이러한 과정을 통해서는 실질적으로는 해당 영상 블록이 앞서 (S100)에서 검출된 이동객체 영역과 한 덩어리를 이루는 형태로 되는 결과가 된다.Step S200: Detects how far the boundary region is to the moving object region detected in S100 based on the motion vector and the coding type. If a motion vector occurs above a second threshold (for example, 0) or a coding type is an intra picture by inspecting a plurality of adjacent image blocks centered on the image block marked as a moving object area, the corresponding image block is also moved. Mark as an object area. Through this process, the corresponding image block is substantially in the form of forming a lump with the moving object region detected in S100.
유효 움직임이 발견되어 이동객체 영역의 근방에서 어느 정도의 움직임이 있는 영상 블록이라면 이는 앞의 이동객체 영역과 한 덩어리일 가능성이 높기 때문에 이동객체 영역이라고 마킹한다. 또한, 인트라 픽쳐의 경우에는모션벡터가 존재하지 않기 때문에 모션벡터에 기초한 판정이 불가능하다. 이에, 이동객체 영역으로 이미 검출된 영상 블록에 인접하여 위치하는 인트라 픽쳐는 일단 기 추출된 이동객체 영역과 함께 한 덩어리로 추정한다.If an effective motion is found and there is a certain amount of motion in the vicinity of the moving object area, it is marked as a moving object area because it is likely to be a mass with the previous moving object area. In addition, in the case of an intra picture, since a motion vector does not exist, determination based on a motion vector is impossible. Accordingly, the intra picture located adjacent to the image block already detected as the moving object region is estimated as a mass together with the previously extracted moving object region.
단계 (S300) : 앞의 (S100)과 (S200)에서 검출된 이동객체 영역에 인터폴레이션(interpolation)을 적용하여 이동객체 영역의 분할(fragmentation)을 정리한다. 앞의 과정에서는 영상 블록 단위로 이동객체 영역 여부를 판단하였기 때문에 실제로는 하나의 이동객체(예: 사람)임에도 불구하고 중간중간에 이동객체 영역으로 마킹되지 않은 영상 블록이 존재하여 여러 개의 이동객체 영역으로 분할되는 현상이 발생할 수 있다. 그에 따라, 이동객체 영역으로 마킹된 복수의 영상 블록으로 둘러싸여 하나 혹은 소수의 비마킹 영상 블록이 존재한다면 이들은 이동객체 영역으로 추가로 마킹한다. 이를 통해, 여러 개로 분할되어 있는 이동객체 영역을 하나로 뭉쳐지도록 만들 수 있는데, 이와 같은 인터폴레이션의 영향은 도 7과 도 8을 비교하면 명확하게 드러난다.Step S300: The interpolation is applied to the moving object areas detected at S100 and S200 to clean up the fragmentation of the moving object area. In the above process, since it is determined whether the moving object area is the image block unit, even though it is actually a moving object (for example, a person), there is an image block that is not marked as the moving object area in the middle. The phenomenon of dividing into may occur. Accordingly, if there are one or a few unmarked image blocks surrounded by a plurality of image blocks marked with the moving object region, they additionally mark the moving object region. By doing so, it is possible to make the mobile object region divided into several into one. The influence of such interpolation is clearly seen when comparing FIG. 7 and FIG.
단계 (S400) : 이상의 과정을 통하여 코딩 유닛의 신택스(모션벡터, 코딩유형)에 기초하여 압축영상을 구성하는 각 프레임 이미지로부터 이동객체 영역을 신속하게 추출하였다. 다음으로, 단계 (S400) 내지 단계 (S700)에서는 특정의 이동객체 영역이 타겟으로 식별되었을 때에 이러한 이동객체 영역의 추출 결과를 이용하여 PTZ 카메라에 대한 객체 추적 제어를 수행한다.Step S400: The moving object region is quickly extracted from each frame image constituting the compressed image based on the syntax (motion vector, coding type) of the coding unit through the above process. Next, in steps S400 to S700, when a specific moving object region is identified as a target, object tracking control for the PTZ camera is performed using the extraction result of the moving object region.
먼저, 이상의 과정에서 식별된 하나이상의 이동객체 영역 중에서 특정의 이동객체 영역을 추적 대상으로 식별하는데, 본 명세서에서는 이를 '추적대상 이동객체 영역'이라고 부른다. 추적대상 이동객체 영역은 관제요원이 CCTV 영상관제 화면 상에서 마우스 조작 등을 통해 지정하도록 구현될 수도 있고, 영상관제 소프트웨어의 메뉴를 통해 설정된 식별조건에 의해 영상관제 소프트웨어가 자체적으로 발견하도록 구현될 수도 있다.First, a specific moving object region is identified as a tracking target among one or more moving object regions identified in the above process, which is referred to herein as a 'tracking target moving object region'. The tracking object area may be implemented so that the control personnel can designate the control agent through a mouse operation or the like on the CCTV video control screen, or may be implemented so that the video control software discovers itself according to the identification condition set through the menu of the video control software. .
단계 (S500) : 현재 프레임 이미지에서 추적대상 이동객체 영역에 대한 위치 정보와 크기 정보를 획득한다. 도 11과 도 12는 이동객체 영역에 대해 크기 정보와 위치 정보가 식별된 예를 나타낸다. 위치정보는 해당 영상블록의 영상 내 위치를 의미하는데 도 11과 같이 좌상단 좌표로 설정할 수도 있고 도 12와 같이 중심 좌표로 설정할 수도 있다. 크기 정보로는 도 11과 같이 이동객체 영역을 최적으로 둘러싸는 사각형 사이즈로 설정할 수 있다.Step S500: Obtain location information and size information of the area to be tracked in the current frame image. 11 and 12 illustrate examples in which size information and position information are identified for a moving object region. The location information means a location in the image of the corresponding video block. The location information may be set as the upper left coordinate as shown in FIG. 11 or may be set as the center coordinate as shown in FIG. 12. As the size information, as shown in FIG. 11, a size of a rectangle that optimally surrounds a moving object area may be set.
단계 (S600) : 추적대상 이동객체 영역의 위치 정보를 이용하여 PTZ 카메라에 대해 패닝 및 틸팅 제어를 수행한다. 추적대상 이동객체 영역이 CCTV 촬영 영상에서 미리 설정된 관찰지점(예: 촬영 화면 중앙)에 위치하도록 PTZ 카메라에 대해 패닝 및 틸팅 제어를 수행한다. 예를 들어, 도 11에서 Unique ID = 001 이라고 표시된 이동객체 영역이 추적대상 이동객체 영역으로 설정된 경우에는 PTZ 카메라에 대해 반시계 방향(CCW)으로 30도 패닝 제어하고 상방으로 10도 틸팅 제어한다. 또한, 도 11에서 Unique ID = 003 이라고 표시된 이동객체 영역이 추적대상 이동객체 영역으로 설정된 경우라면 PTZ 카메라에 대해 시계 방향(CW)으로 7도 패닝 제어하고 하방으로 5도 틸팅 제어한다. Step S600: Panning and tilting control of the PTZ camera is performed by using the location information of the tracking target moving object region. Panning and tilting control is performed on the PTZ camera so that the moving object area to be tracked is located at a preset observation point (for example, the center of the recording screen) in the CCTV image. For example, when the moving object region indicated by Unique ID = 001 in FIG. 11 is set as the tracking target moving object region, 30 degrees panning control and 10 degrees tilting control upward for the PTZ camera are performed. In addition, when the moving object region indicated by Unique ID = 003 in FIG. 11 is set as the tracking target moving object region, the panning control is performed 7 degrees in the clockwise direction (CW) and the tilting control is 5 degrees downward.
단계 (S700) : 또한, 추적대상 이동객체 영역의 크기 정보를 이용하여 PTZ 카메라에 대한 줌 제어를 수행한다. 추적대상 이동객체 영역이 CCTV 촬영 영상에서 미리 설정된 관찰크기(예: 화면 전체의 50 % 크기)가 되도록 PTZ 카메라에 대해 줌 제어를 수행한다. 예를 들어, 도 11에서 Unique ID = 001 이라고 표시된 이동객체 영역이 추적대상 이동객체 영역으로 설정된 경우에는 PTZ 카메라에 대해 500 % 줌 제어를 수행한다. 또한, 도 11에서 Unique ID = 003 이라고 표시된 이동객체 영역이 추적대상 이동객체 영역으로 설정된 경우라면 PTZ 카메라에 대해 200 % 줌 제어를 수행한다.Step S700: In addition, zoom control of the PTZ camera is performed by using the size information of the tracked moving object region. Zoom control is performed on the PTZ camera so that the tracking object area becomes a preset observation size (eg, 50% of the entire screen) in the CCTV image. For example, when the moving object region indicated by Unique ID = 001 in FIG. 11 is set as the tracking target moving object region, 500% zoom control is performed on the PTZ camera. In addition, if the moving object region indicated by Unique ID = 003 in FIG. 11 is set as the tracking target moving object region, 200% zoom control is performed on the PTZ camera.
본 발명에서 압축영상의 신택스에 기초하여 PTZ 카메라의 객체 추적 제어를 수행하는 과정에 대해서는 도 4 내지 도 12를 참조하여 좀더 구체적으로 후술한다. 먼저, 압축영상으로부터 신택스에 의해 이동객체 영역을 식별하는 과정에 대해 도 4 내지 도 8을 참조하여 상세하게 기술한다. 또한, 이렇게 식별된 이동객체 영역을 PTZ 카메라에 대한 객체 추적 제어에 활용하는 과정에 대해 도 9 내지 도 12를 참조하여 상세하게 기술한다.In the present invention, a process of performing object tracking control of the PTZ camera based on the syntax of the compressed image will be described in detail with reference to FIGS. 4 to 12. First, a process of identifying a moving object region by syntax from a compressed image will be described in detail with reference to FIGS. 4 to 8. In addition, a process of using the identified moving object area for object tracking control for the PTZ camera will be described in detail with reference to FIGS. 9 to 12.
도 4는 본 발명에서 압축영상으로부터 유효 움직임을 검출하는 과정의 구현 예를 나타내는 순서도이고, 도 5는 CCTV 압축영상에 대해 본 발명에 따른 유효 움직임 영역 검출 과정이 적용된 결과의 일 예를 나타내는 도면이다. 도 4의 프로세스는 도 3에서 단계 (S100)에 대응한다.4 is a flowchart illustrating an example of a process of detecting effective motion from a compressed image in the present invention, and FIG. 5 is a diagram illustrating an example of a result of applying the effective motion region detection process according to the present invention to a CCTV compressed image. . The process of FIG. 4 corresponds to step S100 in FIG. 3.
단계 (S110) : 먼저, 압축영상의 코딩 유닛을 파싱하여 모션벡터 및 코딩유형을 획득한다. 도 1을 참조하면, 동영상 디코딩 장치는 압축영상의 스트림에 대해 H.264 AVC 및 H.265 HEVC 등과 같은 동영상압축 표준에 따라 구문분석(헤더 파싱) 및 모션벡터 연산을 수행한다. 이러한 과정을 통하여 압축영상의 코딩 유닛에 대하여 모션벡터와 코딩유형을 파싱해낸다.Step S110: First, a coding unit of a compressed image is parsed to obtain a motion vector and a coding type. Referring to FIG. 1, a video decoding apparatus performs parsing (header parsing) and motion vector operations on a stream of compressed video according to a video compression standard such as H.264 AVC and H.265 HEVC. Through this process, the motion vector and coding type are parsed for the coding unit of the compressed image.
단계 (S120) : 다음으로, 각각의 모션벡터에 대해 글로벌 모션벡터(global motion vector)를 차감 처리한다. 본 명세서에서 글로벌 모션벡터란 해당 프레임으로부터 획득된 전체 모션벡터의 평균값을 의미한다. 바람직하게는 해당 프레임에서 획득한 모션벡터를 합산하고 해당 프레임에 속하는 영상 블록의 전체 갯수로 나눈 값을 글로벌 모션벡터로 설정할 수 있다.Step S120: Next, a global motion vector is subtracted for each motion vector. In this specification, the global motion vector means an average value of all motion vectors obtained from the corresponding frame. Preferably, a value obtained by summing the motion vectors acquired in the frame and dividing by the total number of image blocks belonging to the frame may be set as the global motion vector.
PTZ 카메라가 패닝, 틸팅, 줌의 하나 이상을 변경하고 있는 도중에서는 촬영 영상이 전체적으로 특정 방향성에 따라 변경된다. 이 경우에는 대부분의 영상 블록에 대해 모션벡터가 도출되므로 글로벌 모션벡터는 유의미한 값으로 얻어지고 촬영 영상 전체의 방향성을 반영한다. 각각의 모션벡터에 대해 글로벌 모션벡터를 차감해주면 PTZ 동작으로 인하여 얻어진 모션벡터는 상쇄되고 순수하게 무언가 움직이는 내용이 있는 영상블록에 대해서만 PTZ 동작에 의한 영상 전체의 방향성이 제거된 상태로 모션 벡터가 남는다. 이를 통해 PTZ 카메라가 패닝, 틸팅, 줌 동작 중인 동안에도 이동객체를 추출 및 추적할 수 있다.While the PTZ camera is changing one or more of panning, tilting, and zooming, the captured image changes as a whole depending on the specific orientation. In this case, since the motion vector is derived for most image blocks, the global motion vector is obtained with a significant value and reflects the directivity of the entire captured image. By subtracting the global motion vector for each motion vector, the motion vector obtained by the PTZ operation is canceled and the motion vector remains with the direction removed from the whole image by the PTZ operation only for the image block with purely moving contents. . This allows the PTZ camera to extract and track moving objects while panning, tilting and zooming.
한편, PTZ 카메라가 패닝, 틸팅, 줌의 어느 것도 하지 않고 가만히 있는 동안에는 글로벌 모션벡터가 별다른 영향을 미치지 않아야 한다. 이 동안에는 촬영 영상에서 일부 소수의 영상 블록에서만 모션벡터가 도출될 뿐, 대부분의 영상 블록에서는 모션벡터가 도출되지 않는다. 이 경우에는 글로벌 모션벡터는 0 에 가까운 아주 작은 값으로 얻어지므로 각각의 모션벡터에 대해 글로벌 모션벡터를 차감하더라도 유의미한 영향은 미치지 못한다.On the other hand, while the PTZ camera is still without panning, tilting, or zooming, the global motion vector should not have any effect. During this time, only a few image blocks are derived from the captured image, and most of the image blocks do not derive the motion vector. In this case, since the global motion vector is obtained with a very small value close to 0, subtracting the global motion vector for each motion vector does not have a significant effect.
단계 (S130) : 압축영상을 구성하는 복수의 영상 블록 별로 미리 설정된 시간(예: 500 ms) 동안의 모션벡터 누적값을 획득한다. Step S130: Acquire a motion vector cumulative value for a preset time (for example, 500 ms) for each of the plurality of image blocks constituting the compressed image.
이 단계는 압축영상으로부터 실질적으로 의미를 인정할만한 유효 움직임, 예컨대 주행중인 자동차, 달려가는 사람, 서로 싸우는 군중들이 있다면 이를 검출하려는 의도를 가지고 제시되었다. 흔들리는 나뭇잎, 잠시 나타나는 고스트, 빛의 반사에 의해 약간씩 변하는 그림자 등은 비록 움직임은 있지만 실질적으로는 무의미한 객체이므로 검출되지 않도록 한다.This step is presented with the intention to detect if there are effective movements that are practically recognizable from the compressed image, such as driving cars, running people, and fighting crowds. Shaky leaves, ghosts that appear momentarily, and shadows that change slightly due to light reflections, though they are moving, are virtually meaningless objects and should not be detected.
이를 위해, 미리 설정된 일정 시간(예: 500 msec) 동안 하나이상의 영상 블록 단위로 모션벡터를 누적시켜 모션벡터 누적값을 획득한다. 이때, 영상 블록은 매크로블록과 서브블록을 포함하는 개념으로 사용된 것이다.To this end, a motion vector cumulative value is obtained by accumulating a motion vector in units of one or more image blocks for a predetermined time period (for example, 500 msec). In this case, the image block is used as a concept including a macroblock and a subblock.
단계 (S140, S150) : 복수의 영상 블록에 대하여 모션벡터 누적값을 미리 설정된 제 1 임계치(예: 20)와 비교하며, 제 1 임계치를 초과하는 모션벡터 누적값을 갖는 영상 블록을 이동객체 영역으로 마킹한다.Steps S140 and S150: Comparing a motion vector cumulative value with respect to a plurality of video blocks with a preset first threshold value (eg, 20), and moving the image block having a motion vector cumulative value exceeding the first threshold value. Mark with
만일 이처럼 일정 이상의 모션벡터 누적값을 갖는 영상 블록이 발견되면 해당 영상 블록에서 무언가 유의미한 움직임, 즉 유효 움직임이 발견된 것으로 보고 이동객체 영역으로 마킹한다. 예컨대 영상관제 시스템에서 사람이 뛰어가는 정도로 관제 요원이 관심을 가질만한 가치가 있을 정도의 움직임을 선별하여 검출하려는 것이다. 반대로, 모션벡터가 발생하였더라도 일정 시간동안의 누적값이 제 1 임계치를 넘지 못할 정도로 작을 경우에는 영상에서의 변화가 그다지 크지않고 미미한 것으로 추정하고 검출 단계에서 무시한다.If an image block having a predetermined motion vector accumulation value is found as described above, it is considered that something significant movement, that is, effective movement, is found in the image block and is marked as a moving object region. For example, in a video surveillance system, a human run is to select and detect a movement that is worth the attention of the control personnel. On the contrary, even if a motion vector is generated, if the cumulative value for a predetermined time is small enough not to exceed the first threshold, the change in the image is assumed to be small and insignificant and is neglected in the detection step.
도 5는 도 4의 과정을 통해 CCTV 압축영상으로부터 유효 움직임 영역을 검출한 결과를 시각적으로 나타낸 일 예이다. 도 5에서는 제 1 임계치 이상의 모션벡터 누적값을 갖는 영상 블록이 이동객체 영역으로 마킹되어 볼드 라인의 영역으로 표시되었다. 도 5를 살펴보면 보도블럭이나 도로, 그리고 그림자가 있는 부분 등은 이동객체 영역으로 표시되지 않은 반면, 걷고있는 사람들이나 주행중인 자동차 등이 이동객체 영역으로 표시되었다.FIG. 5 is an example illustrating a result of detecting an effective motion region from a CCTV compressed image through the process of FIG. 4. In FIG. 5, an image block having a motion vector accumulation value equal to or greater than a first threshold is marked as a moving object area and displayed as a bold line area. Referring to FIG. 5, the sidewalk block, the road, and the shadowed part are not displayed as the moving object area, while the walking people or the driving car are displayed as the moving object area.
도 6은 본 발명에서 이동객체 영역에 대한 바운더리 영역을 검출하는 과정의 구현 예를 나타내는 순서도이고, 도 7은 유효 움직임 영역 검출 과정을 수행한 도 5의 CCTV 영상 이미지에 대해 도 6에 따른 바운더리 영역 검출 과정을 더 적용된 결과의 일 예를 나타내는 도면이다. 도 6의 프로세스는 도 3에서 단계 (S200)에 대응한다.FIG. 6 is a flowchart illustrating an example of a process of detecting a boundary region of a moving object region in the present invention, and FIG. 7 is a boundary region of FIG. 5 with respect to the CCTV image of FIG. Figure 1 shows an example of the results of further applying the detection process. The process of FIG. 6 corresponds to step S200 in FIG. 3.
앞서의 도 5를 살펴보면 이동객체가 제대로 마킹되지 않았으며 일부에 대해서만 마킹이 이루어진 것을 발견할 수 있다. 즉, 걷고있는 사람이나 주행중인 자동차를 살펴보면 객체의 전부가 마킹된 것이 아니라 일부 블록만 마킹되었다는 것을 발견할 수 있다. 또한, 하나의 이동객체에 대해 복수의 이동객체 영역이 마킹된 것도 많이 발견된다. 이는 앞의 (S100)에서 채택한 이동객체 영역의 판단 기준이 일반 영역을 필터링 아웃하는 데에는 유용하지만 상당히 엄격한 조건이었음을 의미한다. 따라서, 이동객체 영역을 중심으로 그 주변을 살펴봄으로써 이동객체의 바운더리를 검출하는 과정이 필요하다.Referring to FIG. 5, it can be found that the moving object is not properly marked and only a portion of the moving object is marked. In other words, if you look at a person walking or driving a car, you will find that not all of the objects are marked, but only some blocks. In addition, it is also found that a plurality of moving object areas are marked for one moving object. This means that the criterion of the moving object region adopted in (S100) above was useful for filtering out the general region but was a very strict condition. Therefore, it is necessary to detect the boundary of the moving object by looking around the moving object area.
단계 (S210) : 먼저, 앞의 (S100)에 의해 이동객체 영역으로 마킹된 영상 블록을 중심으로 하여 인접하는 복수의 영상 블록을 식별한다. 이들은 본 명세서에서는 편이상 '이웃 블록'이라고 부른다. 이들 이웃 블록은 (S100)에 의해서는 이동객체 영역으로 마킹되지 않은 부분인데, 도 6의 프로세스에서는 이들에 대해 좀더 살펴봄으로써 이들 이웃 블록 중에서 이동객체 영역의 바운더리에 포함될만한 것이 있는지 확인하려는 것이다.Step S210: First, a plurality of adjacent image blocks are identified based on the image blocks marked as moving object areas by the previous S100. In the present specification, these are referred to as 'neighborhood blocks'. These neighboring blocks are portions that are not marked as the moving object region by S100, and the process of FIG. 6 examines them further to determine whether any of these neighboring blocks may be included in the boundary of the moving object region.
단계 (S220, S230) : 복수의 이웃 블록에 대하여 모션벡터 값을 미리 설정된 제 2 임계치(예: 0)와 비교하고, 제 2 임계치를 초과하는 모션벡터 값을 갖는 이웃 블록을 이동객체 영역으로 마킹한다. 실질적으로 의미를 부여할만한 유효 움직임이 인정된 이동객체 영역에 인접하여 위치하고 그 자신에 대해서도 어느 정도의 움직임이 발견되고 있다면 그 영상 블록은 촬영 영상의 특성상 그 인접한 이동객체 영역과 한 덩어리일 가능성이 높다. 따라서, 이러한 이웃 블록도 이동객체 영역이라고 마킹한다. Steps S220 and S230: compare a motion vector value with respect to a plurality of neighboring blocks with a second preset threshold (eg, 0), and mark the neighboring block having a motion vector value exceeding the second threshold as a moving object region. do. If the movement is located adjacent to the area of the moving object where effective motion that is practically meaningful is found and a certain amount of movement is found for itself, the image block is likely to be a block with the area of the adjacent moving object due to the characteristics of the photographed image. . Therefore, such neighboring blocks are also marked as moving object regions.
단계 (S240) : 또한, 복수의 이웃 블록 중에서 코딩유형이 인트라 픽쳐인 것을 이동객체 영역으로 마킹한다. 인트라 픽쳐의 경우에는 모션벡터가 존재하지 않기 때문에 해당 이웃 블록에 움직임이 존재하는지 여부를 모션벡터에 기초하여 판단하는 것이 원천적으로 불가능하다. 이 경우에 이동객체 영역으로 이미 검출된 영상 블록에 인접 위치하는 인트라 픽쳐는 일단 기 추출된 이동객체 영역의 설정을 그대로 유지해주는 편이 안전하다.Step S240: Also, the coding type is an intra picture among the plurality of neighboring blocks as a moving object region. In the case of an intra picture, since a motion vector does not exist, it is fundamentally impossible to determine whether a motion exists in a corresponding neighboring block based on the motion vector. In this case, it is safer for the intra picture located adjacent to the image block already detected as the moving object region to maintain the settings of the previously extracted moving object region.
도 7은 CCTV 압축영상에 바운더리 영역 검출 과정까지 적용된 결과를 시각적으로 나타낸 도면인데, 이상의 과정을 통해 이동객체 영역으로 마킹된 다수의 영상 블록을 볼드 라인(bold line)으로 표시하였다. 도 7을 살펴보면, 앞서 도 5에서 볼드 라인 영역으로 표시되었던 이동객체 영역의 근방으로 이동객체 영역은 좀더 확장되었으며 이를 통해 CCTV로 촬영된 영상과 비교할 때 이동객체를 전부 커버할 정도가 되었다는 사실을 발견할 수 있다.FIG. 7 is a diagram visually illustrating a result of applying a boundary region detection process to a CCTV compressed image. A plurality of image blocks marked as a moving object region through the above process are indicated by a bold line. Referring to FIG. 7, it was found that the moving object area was further extended to the vicinity of the moving object area indicated by the bold line area in FIG. 5, so that the moving object area was covered enough to be compared with the image taken by CCTV. can do.
도 8은 도 7에 나타낸 바운더리 영역 검출 과정을 적용한 CCTV 영상 이미지에 대해 본 발명에 따라 인터폴레이션을 통해 이동객체 영역을 정리한 결과의 일 예를 나타내는 도면이다.FIG. 8 is a diagram illustrating an example of a result of arranging a moving object region through interpolation according to the present invention for a CCTV image image to which the boundary region detection process illustrated in FIG. 7 is applied.
단계 (S300)은 앞의 (S100)과 (S200)에서 검출된 이동객체 영역에 인터폴레이션을 적용하여 이동객체 영역의 분할을 정리하는 과정이다. 도 7을 살펴보면 볼드 라인으로 표시된 이동객체 영역 사이사이에 비마킹 영상 블록이 발견된다. 이렇게 중간중간에 비마킹 영상 블록이 존재하게 되면 이들이 다수의 개별적인 이동객체인 것처럼 간주될 수 있다. 이렇게 이동객체 영역이 파편화되면 단계 (S500)의 결과가 부정확해질 수 있고 이동객체 영역의 갯수가 많아져서 단계 (S500) 내지 단계 (S700)의 프로세스가 복잡해지는 문제도 있다.Step S300 is a process of arranging the division of the moving object area by applying interpolation to the moving object areas detected in the previous steps S100 and S200. Referring to FIG. 7, an unmarked image block is found between the moving object regions indicated by the bold lines. If there is an unmarked image block in the middle, it can be regarded as if they are a plurality of individual moving objects. When the moving object region is fragmented in this way, the result of step S500 may be inaccurate, and the number of moving object regions may increase, thereby complicating the process of steps S500 to S700.
그에 따라, 본 발명에서는 이동객체 영역으로 마킹된 복수의 영상 블록으로 둘러싸여 하나 혹은 소수의 비마킹 영상 블록이 존재한다면 이는 이동객체 영역으로 마킹하는데, 이를 인터폴레이션이라고 부른다. 도 7과 대비하여 도 8을 살펴보면, 이동객체 영역 사이사이에 존재하던 비마킹 영상 블록이 모두 이동객체 영역이라고 마킹되었다. 이를 통해, 관제 요원이 참고하기에 좀더 직관적이고 정확한 이동객체 검출 결과를 도출할 수 있게 되었다.Accordingly, in the present invention, if there is one or a few unmarked image blocks surrounded by a plurality of image blocks marked as the moving object region, this is marked as the moving object region, which is called interpolation. Referring to FIG. 8, in contrast to FIG. 7, all of the non-marked image blocks existing between the moving object regions are marked as moving object regions. As a result, it is possible to derive a more intuitive and accurate moving object detection result for the control personnel to refer to.
도 5와 도 8을 비교하면 바운더리 영역 검출 과정과 인터폴레이션 과정을 거치면서 이동객체 영역이 실제 영상의 상황을 제대로 반영하게 되어간다는 사실을 발견할 수 있다. 도 5에서 볼드 라인 영역으로 마킹된 덩어리로 판단한다면 영상 화면 속에 아주 작은 물체들이 다수 움직이는 것처럼 다루어질 것인데, 이는 실제와는 부합하지 않는다. 반면, 도 8에서 볼드 라인 영역으로 마킹된 덩어리로 판단한다면 어느 정도의 부피를 갖는 몇 개의 이동객체가 존재하는 것으로 다루어질 것이어서 실제 장면을 유사하게 반영한다.Comparing FIG. 5 and FIG. 8, it can be found that the moving object region properly reflects the actual image situation through the boundary region detection process and the interpolation process. In FIG. 5, if the block is marked as a bold line region, a large number of very small objects are moved as if moving in the image screen, which is inconsistent with reality. On the other hand, if it is determined as a block marked with the bold line area in Fig. 8 will be treated as a few moving objects having a certain volume to reflect the actual scene similarly.
도 9는 본 발명에서 추적대상 이동객체 영역에 대하여 PTZ 카메라를 객체 추적 제어하는 과정의 구현 예를 나타내는 순서도로서, 도 3에서 단계 (S500) 내지 단계 (S700)에 대응한다.FIG. 9 is a flowchart illustrating an example of a process of tracking and tracking an object of a PTZ camera with respect to a moving object region to be tracked in the present invention, and corresponds to steps S500 to S700 in FIG. 3.
전술한 바와 같이 본 발명은 압축영상에서 바로 얻을 수 있는 신택스 정보에 기초하여 이동객체 영역을 추출한다. 종래기술의 압축영상을 디코딩하여 원본 영상에 대해 차영상을 획득하여 분석하는 과정이 불필요하게 되었으며, 이를 통해 발명자의 테스트에 따르면 최대 20배의 처리속도 개선을 이루었다. 그러나, 이러한 접근방식은 정밀도가 떨어진다는 약점이 있다. 이동객체를 추출하는 것이 아니라 이동객체가 포함된 것으로 추정되는 영상 블록의 덩어리를 추출한다는 점에서 개념상 차이가 있다. 본 발명에서 이동객체 영역에 기초하여 PTZ 카메라를 객체 추적 제어하는 과정에도 이러한 특징을 반영하였다.As described above, the present invention extracts a moving object region based on syntax information directly obtained from a compressed image. The process of acquiring and analyzing the difference image with respect to the original image by decoding the compressed image of the prior art is unnecessary, and according to the inventor's test, the processing speed is improved up to 20 times. However, this approach has the disadvantage of poor precision. There is a difference in concept in that it extracts the chunk of the image block that is assumed to contain the moving object, rather than extracting the moving object. In the present invention, this feature is also reflected in the process of tracking an object based on the moving object area of the PTZ camera.
이하에서, 본 발명에서 채택하는 PTZ 카메라의 객체 추적 제어 과정의 일 실시예를 구체적으로 기술한다.Hereinafter, an embodiment of an object tracking control process of a PTZ camera adopted in the present invention will be described in detail.
단계 (S410) : 먼저, 압축영상에서 신택스 기반으로 추출한 이동객체 영역에 대하여 Unique ID를 관리한다. 압축영상을 구성하는 각 영상 프레임에서 이동객체 영역이 도출되는데, 이는 영상 내용을 분석하여 객체(object)라고 판단한 것이 아니라 해당 영상 프레임 내에서 무언가 움직임이 있는 것처럼 보이는 이미지의 덩어리라는 개념이다. Step S410: First, a unique ID is managed for a moving object region extracted based on a syntax from a compressed image. The moving object region is derived from each image frame constituting the compressed image. This is not a result of analyzing the image content and determining that it is an object, but a concept of a chunk of an image that seems to be moving in the image frame.
그런데, 본 발명에서는 특정의 객체를 추종하면서 PTZ 카메라를 패닝, 틸팅, 줌 제어를 해야 하기 때문에 영상 프레임이 진행될 때에 이전 프레임에서 추적 대상으로 설정된 이동객체 영역을 다음 프레임에서 지속적으로 식별해야 한다. 즉, 단순히 해당 프레임에서의 이미지 덩어리의 개념을 넘어서 마치 객체(object)처럼 다루어야 하는 것이다. 이에, 압축영상에서 도출되는 이동객체 영역에 대하여 Unique ID를 할당 및 관리함으로써 이동객체 영역을 단순히 영역(region)이 아니라 객체(object)처럼 다룰 수 있게 되고, 압축영상에서 일련의 프레임 이미지를 넘어가면서 특정 객체의 움직임을 추적할 수 있다.However, in the present invention, since the PTZ camera needs to be panned, tilted, and zoomed while following a specific object, the moving object region set as the tracking target in the previous frame must be continuously identified in the next frame when the image frame is advanced. In other words, you need to go beyond the idea of a chunk of an image in that frame and treat it like an object. Therefore, by assigning and managing a unique ID for the moving object region derived from the compressed image, the moving object region can be treated like an object rather than a region, and the compressed image is passed over a series of frame images. You can track the movement of a specific object.
이동객체 영역의 Unique ID 관리는 아래의 3가지 경우로 다루어진다. 이전의 프레임에서 Unique ID가 할당되었기에 현재 프레임 이미지에서는 ID 할당 상태인 이동객체 영역을 식별하는 경우(S411), 이전의 프레임에서 식별된 적이 없기에 현재 프레임 이미지에서 ID 미할당 상태로 식별되는 이동객체 영역에 대해 Unique ID 신규 할당하는 경우(S412), 이전의 프레임에서 Unique ID가 할당되었으나 현재 프레임 이미지에서 사라진 이동객체 영역이 식별되어 그 할당하였던 Unique ID를 리보크(revoke)하는 경우(S413)이다.Unique ID management of the mobile object area is handled in the following three cases. If a unique ID is assigned in the previous frame and the current frame image identifies a moving object region that is assigned an ID (S411), the moving object region identified as an unassigned ID in the current frame image because it has never been identified in the previous frame. In the case of newly assigning a unique ID to the SID, a mobile object region in which a unique ID is allocated in the previous frame but disappeared from the current frame image is identified and revokes the allocated unique ID (S413).
그런데, 압축영상을 구성하는 일련의 프레임 이미지에서 이전 프레임에서 이동객체 영역이라고 마킹되어진 영상 블록의 덩어리가 앞뒤 프레임 간에 동일 객체에 관한 것인지 아닌지를 판단할 수 있어야 한다. 그래야, 현재 프레임에서 다루고 있는 이동객체 영역에 대해 이전에 Unique ID가 할당되어 있었는지 여부를 판단할 수 있기 때문이다.However, in a series of frame images constituting the compressed image, it should be possible to determine whether the chunk of the image block marked as the moving object region in the previous frame is related to the same object between front and rear frames. This is because it is possible to determine whether the Unique ID has been previously assigned to the moving object area handled in the current frame.
본 발명에서는 원본 영상의 내용을 해석하지 않고 영상 블록이 이동객체 영역인지 여부만 체크하였기 때문에 앞뒤의 영상 프레임에서 이동객체 영역의 덩어리가 실제로 동일한지 아닌지 확인할 수 없다. 즉, 이동객체 영역의 내용을 파악하지 않기 때문에 예컨대 동일 지점에서 앞뒤 프레임 간에 고양이가 개로 치환되었을 때에 그러한 변화를 식별하지 못한다. 하지만, 프레임 간의 시간간격이 매우 짧다는 점과 CCTV 카메라의 관찰 대상은 통상의 속도로 움직인다는 점을 감안하면 이러한 일이 벌어질 가능성은 배제 가능하다.In the present invention, since only the image block is a moving object region without checking the contents of the original image, it is not possible to confirm whether the chunks of the moving object region are actually the same in the image frames before and after. That is, since the contents of the moving object area are not known, such a change cannot be identified, for example, when the cat is replaced by a dog between the front and rear frames at the same point. However, considering that the time interval between frames is very short and that the observation object of the CCTV camera moves at a normal speed, the possibility of this happening can be excluded.
이에, 본 발명에서는 앞뒤 프레임에서 이동객체 영역의 덩어리 간에 중첩되는 영상 블록의 비율 혹은 갯수가 일정 임계치 이상인 것들을 동일한 이동객체 영역이라고 추정한다. 이러한 접근방식에 의하면 영상 내용을 모르더라도 기존에 식별했던 이동객체 영역이 움직인 것인지 아니면 새로운 이동객체 영역이 신규로 발견된 것인지 아니면 기존의 이동객체 영역이 사라진 것인지 판단할 수 있다. 이러한 판단은 정확도는 종래기술에 비해 낮지만 데이터 처리 속도를 획기적으로 높일 수 있어 실제 적용에서 유리하다.Accordingly, the present invention estimates that the ratio or number of image blocks overlapping between the chunks of the moving object region in the front and back frames is equal to or greater than a predetermined threshold. According to this approach, even if the contents of the image are not known, it is possible to determine whether the previously identified moving object region is moved or whether a new moving object region is newly discovered or the existing moving object region is lost. This judgment is lower in accuracy than the prior art, but can greatly increase the data processing speed, which is advantageous in practical applications.
단계 (S411)에서, 이전의 프레임에서 Unique ID가 할당되었던 이동객체 영역을 현재 프레임 이미지에서 식별한 경우에는 기 할당된 Unique ID를 해당 이동객체 영역에 할당 유지한다. 구현 예에 따라서 Unique ID의 관리 데이터베이스에 그 식별 사실을 마킹 처리할 수 있다.In step S411, when the moving object region to which the Unique ID has been assigned in the previous frame is identified in the current frame image, the previously allocated Unique ID is allocated to the corresponding moving object region. According to the implementation example, the identification may be marked in the management database of the Unique ID.
단계 (S412)에서, 이전의 프레임에서 식별된 적이 없기에 현재 프레임 이미지에서 ID 미할당 상태인 이동객체 영역을 새롭게 발견한 경우에는 해당 이동객체 영역에 대해 Unique ID를 신규 할당해준다. 이는 영상에서 새로운 이동객체가 발견된 상황을 의미한다. 도 11과 도 12는 CCTV 촬영 영상에 세 개의 이동객체 영역에 Unique ID가 할당되어 있는 예를 나타낸다.In step S412, if a new object is unidentified in the current frame image because it has not been identified in the previous frame, a unique ID is newly assigned to the mobile object region. This means that a new moving object is found in the image. 11 and 12 illustrate examples in which unique IDs are allocated to three moving object areas in a CCTV photographing image.
단계 (S413)에서, 압축영상의 이전의 프레임에서 Unique ID가 할당되었던 이동객체 영역이 현재 프레임 이미지에서 사라진 경우에 해당 이동객체 영역에 대해 이전의 프레임과 관련하여 단계 (S412)에서 할당하였고 단계 (S411)에서 유지 관리해주었던 Unique ID를 리보크 처리한다. 즉, 이전에 발견하여 관리해왔던 이동객체가 영상에서 사라진 것이다.In step S413, when the moving object region in which the unique ID is assigned in the previous frame of the compressed image disappears from the current frame image, the moving object region is allocated in step S412 with respect to the previous frame for the moving object region. Revoke unique ID maintained in S411). In other words, the moving object that has been discovered and managed before has disappeared from the image.
단계 (S420) : 앞서 도 3의 단계 (S400)에서 예컨대 관제요원의 마우스 조작에 의하여 CCTV 촬영영상에서 특정의 이동객체 영역이 추적대상 이동객체 영역으로 설정되었다. 추적대상 이동객체 영역은 현재 프레임에서 설정될 수도 있고 이전 프레임에서 이미 설정되었을 수도 있다.Step S420: In step S400 of FIG. 3, a specific moving object region is set as the tracking target moving object region in the CCTV photographed image by, for example, a mouse operation of a controller. The tracked moving object region may be set in the current frame or may be set in the previous frame.
이에, 단계 (S420)에서는 현재 프레임 이미지에서 그 추적대상 이동객체 영역에 할당된 Unique ID를 식별하는데, 이를 편이상 '추적대상 Unique ID'라고 부른다. 압축영상에서 프레임 이미지가 하나씩 진행되는 과정에서 각각의 프레임 이미지에서 식별되는 이동객체 영역에 대해 단계 (S410)을 통해 Unique ID가 할당 및 관리된다. 이전 프레임에서 식별되었던 이동객체 영역, 현재 프레임에서 새롭게 식별된 이동객체 영역, 이전 프레임에서 식별되었으나 현재 프레임에서 사라진 이동객체 영역을 구분하여 Unique ID를 관리한다. 따라서, 추적대상 이동객체 영역이 현재 프레임에서 사라져버린 것이 아니라면 추적대상 이동객체 영역의 Unique ID를 식별할 수 있다.Accordingly, in step S420, a unique ID assigned to the tracked moving object region is identified in the current frame image, which is sometimes referred to as 'tracking unique ID'. The unique ID is allocated and managed through the operation S410 for the moving object region identified in each frame image in the process of processing the frame image one by one in the compressed image. The unique ID is managed by classifying the moving object area identified in the previous frame, the moving object area newly identified in the current frame, and the moving object area identified in the previous frame but disappearing from the current frame. Accordingly, the unique ID of the tracking target object region may be identified unless the tracking target object region disappears from the current frame.
단계 (S430 ~ S450) : 현재 프레임 이미지에서 그 추적대상 Unique ID 값이 할당된 이동객체 영역의 위치 정보와 크기 정보를 도출하는데, 이는 도 3의 단계 (S500)에 대응한다. 도 11과 도 12는 이동객체 영역에 대해 크기 정보와 위치 정보가 식별된 예를 나타낸다. 위치정보는 해당 영상블록의 영상 내 위치를 의미하는데 도 11과 같이 좌상단 좌표로 설정할 수도 있고 도 12와 같이 중심 좌표로 설정할 수도 있다. 크기 정보로는 도 11과 같이 이동객체 영역을 최적으로 둘러싸는 사각형 사이즈로 설정할 수 있다.Steps S430 to S450: Derived the position information and the size information of the moving object region to which the tracking target Unique ID value is allocated in the current frame image, which corresponds to step S500 of FIG. 3. 11 and 12 illustrate examples in which size information and position information are identified for a moving object region. The location information means a location in the image of the corresponding video block. The location information may be set as the upper left coordinate as shown in FIG. 11 or may be set as the center coordinate as shown in FIG. 12. As the size information, as shown in FIG. 11, a size of a rectangle that optimally surrounds a moving object area may be set.
다음으로, 추적대상 이동객체 영역의 위치 정보를 이용하여 PTZ 카메라에 대해 패닝 및 틸팅 제어를 수행하고, 추적대상 이동객체 영역의 크기 정보를 이용하여 PTZ 카메라에 대한 줌 제어를 수행한다. 이 과정에 대해서는 도 3의 단계 (S600) 및 단계 (S700)에서 전술한 바 있다.Next, panning and tilting control of the PTZ camera is performed using the location information of the tracking target moving object region, and zoom control of the PTZ camera is performed using the size information of the tracking target moving object region. This process has been described above in steps S600 and S700 of FIG. 3.
한편, 본 발명은 컴퓨터가 읽을 수 있는 비휘발성 기록매체에 컴퓨터가 읽을 수 있는 코드의 형태로 구현되는 것이 가능하다. 이러한 비휘발성 기록매체로는 다양한 형태의 스토리지 장치가 존재하는데 예컨대 하드디스크, SSD, CD-ROM, NAS, 자기테이프, 웹디스크, 클라우드 디스크 등이 있고 네트워크로 연결된 다수의 스토리지 장치에 코드가 분산 저장되고 실행되는 형태도 구현될 수 있다. 또한, 본 발명은 하드웨어와 결합되어 특정의 절차를 실행시키기 위하여 매체에 저장된 컴퓨터프로그램의 형태로 구현될 수도 있다.Meanwhile, the present invention may be embodied in the form of computer readable codes on a computer readable nonvolatile recording medium. Such nonvolatile recording media include various types of storage devices, such as hard disks, SSDs, CD-ROMs, NAS, magnetic tapes, web disks, and cloud disks. Forms that are implemented and executed may also be implemented. In addition, the present invention may be implemented in the form of a computer program stored in a medium in combination with hardware to execute a specific procedure.

Claims (9)

  1. 압축영상의 비트스트림을 파싱하여 코딩 유닛에 대한 모션벡터 및 코딩유형을 획득하는 제 1 단계;Parsing the bitstream of the compressed image to obtain a motion vector and a coding type for the coding unit;
    압축영상을 구성하는 복수의 영상 블록 별로 미리 설정된 제 1 시간동안의 모션벡터 누적값을 획득하는 제 2 단계;A second step of obtaining a motion vector cumulative value for a first preset time for each of the plurality of image blocks constituting the compressed image;
    상기 복수의 영상 블록에 대하여 상기 모션벡터 누적값을 미리 설정된 제 1 임계치와 비교하는 제 3 단계;A third step of comparing the motion vector cumulative value with a first threshold value for the plurality of image blocks;
    상기 제 1 임계치를 초과하는 모션벡터 누적값을 갖는 영상 블록을 이동객체 영역으로 마킹하는 제 4 단계;A fourth step of marking an image block having a motion vector accumulation value exceeding the first threshold as a moving object region;
    상기 마킹된 하나이상의 이동객체 영역 중에서 PTZ 카메라가 추적할 대상인 추적대상 이동객체 영역을 식별하는 제 5 단계;A fifth step of identifying a tracking target object region to be tracked by a PTZ camera among the at least one marked moving object region;
    현재 프레임 이미지에서 상기 추적대상 이동객체 영역에 대한 위치 정보와 크기 정보를 획득하는 제 6 단계;A sixth step of acquiring position information and size information of the tracked moving object region from a current frame image;
    상기 추적대상 이동객체 영역의 위치 정보에 기초하여 상기 PTZ 카메라에 대해 패닝 및 틸팅 제어를 수행하는 제 7 단계;A seventh step of performing panning and tilting control with respect to the PTZ camera based on the position information of the area to be tracked;
    상기 추적대상 이동객체 영역의 크기 정보를 이용하여 상기 PTZ 카메라에 대한 줌 제어를 수행하는 제 8 단계;An eighth step of performing zoom control on the PTZ camera by using the size information of the area to be tracked;
    를 포함하여 구성되는 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법.Object tracking control method of the syntax-based PTZ camera for the compressed image comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1 단계와 상기 제 2 단계 사이에 수행되는,Performed between the first step and the second step,
    각각의 프레임 별로 모션벡터의 평균값에 해당하는 글로벌 모션벡터를 산출하는 단계;Calculating a global motion vector corresponding to an average value of the motion vectors for each frame;
    상기 모션벡터에 대해 해당 프레임에 대해 산출된 상기 글로벌 모션벡터를 차감 처리하는 단계;Subtracting the global motion vector calculated for the frame with respect to the motion vector;
    를 더 포함하여 구성되는 것을 특징으로 하는 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법.Object tracking control method of the syntax-based PTZ camera for the compressed image further comprises a.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 글로벌 모션벡터는 해당 프레임에서 획득한 모든 모션벡터를 합산하고 해당 프레임에 속하는 영상 블록의 전체 갯수로 나눈 값으로 산출되는 것을 특징으로 하는 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법.And the global motion vector is calculated by summing all motion vectors acquired in the frame and dividing by the total number of image blocks belonging to the frame.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제 7 단계는 상기 추적대상 이동객체 영역이 압축영상에서 미리 설정된 관찰지점에 위치하도록 상기 PTZ 카메라에 대해 패닝 및 틸팅 제어를 수행하도록 구성된 것을 특징으로 하는 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법.The seventh step may be configured to perform panning and tilting control on the PTZ camera so that the tracking target moving object region is located at a preset observation point in the compressed image. Tracking control method.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 제 8 단계는 상기 추적대상 이동객체 영역이 압축영상에서 미리 설정된 관찰크기가 되도록 상기 PTZ 카메라에 대해 줌 제어를 수행하도록 구성된 것을 특징으로 하는 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법.The eighth step may be configured to perform zoom control on the PTZ camera such that the area of the tracking target moving object is set to a preset observation size in the compressed image. .
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 제 4 단계와 상기 제 5 단계 사이에 수행되는,Performed between the fourth and fifth steps,
    상기 이동객체 영역을 중심으로 그 인접하는 복수의 영상 블록(이하, '이웃 블록'이라 함)을 식별하는 제 a 단계;A step of identifying a plurality of adjacent image blocks (hereinafter, referred to as 'neighbor block') around the moving object area;
    상기 복수의 이웃 블록에 대하여 상기 제 1 단계에서 획득된 모션벡터 값을 미리 설정된 제 2 임계치와 비교하는 제 b 단계;B) comparing a motion vector value obtained in the first step with respect to the plurality of neighboring blocks with a second preset threshold value;
    상기 복수의 이웃 블록 중에서 상기 제 b 단계의 비교 결과 상기 제 2 임계치를 초과하는 모션벡터 값을 갖는 이웃 블록을 이동객체 영역으로 추가 마킹하는 제 c 단계;C) additionally marking, as a moving object region, a neighboring block having a motion vector value exceeding the second threshold value as a result of the comparison in the b of the plurality of neighboring blocks;
    를 더 포함하여 구성되는 것을 특징으로 하는 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법.Object tracking control method of the syntax-based PTZ camera for the compressed image further comprises a.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 제 c 단계 이후에 수행되는,Carried out after the step c,
    상기 복수의 이웃 블록 중에서 코딩유형이 인트라 픽쳐인 이웃 블록을 이동객체 영역으로 추가 마킹하는 제 d 단계;D) additionally marking a neighboring block having a coding type of an intra picture among the plurality of neighboring blocks as a moving object region;
    를 더 포함하여 구성되는 것을 특징으로 하는 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법.Object tracking control method of the syntax-based PTZ camera for the compressed image further comprises a.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 제 d 단계 이후에 수행되는,Carried out after the d step,
    상기 복수의 이동객체 영역에 대하여 인터폴레이션을 수행하여 이동객체 영역으로 둘러싸인 미리 설정된 갯수 이하의 비마킹 영상 블록을 이동객체 영역으로 추가 마킹하는 제 e 단계;Performing an interpolation operation on the plurality of moving object regions to additionally mark up to a predetermined number of non-marked image blocks surrounded by the moving object region as a moving object region;
    를 더 포함하여 구성되는 것을 특징으로 하는 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법.Object tracking control method of the syntax-based PTZ camera for the compressed image further comprises a.
  9. 하드웨어와 결합되어 청구항 1 내지 8 중 어느 하나의 항에 따른 압축영상에 대한 신택스 기반의 PTZ 카메라의 객체 추적 제어 방법을 실행시키기 위하여 매체에 저장된 컴퓨터프로그램.A computer program stored in a medium in combination with hardware for executing an object tracking control method of a syntax based PTZ camera for a compressed image according to any one of claims 1 to 8.
PCT/KR2019/009373 2018-07-30 2019-07-29 Method for syntax-based object tracking control for compressed image by ptz camera WO2020027512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0088402 2018-07-30
KR1020180088402A KR102080456B1 (en) 2018-07-30 2018-07-30 method of controlling object tracking of PTZ camera by use of syntax data in compressed video

Publications (1)

Publication Number Publication Date
WO2020027512A1 true WO2020027512A1 (en) 2020-02-06

Family

ID=69232271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009373 WO2020027512A1 (en) 2018-07-30 2019-07-29 Method for syntax-based object tracking control for compressed image by ptz camera

Country Status (2)

Country Link
KR (1) KR102080456B1 (en)
WO (1) WO2020027512A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163254A (en) * 2021-04-06 2021-07-23 广州津虹网络传媒有限公司 Live image processing method and device and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102462837B1 (en) * 2022-07-14 2022-11-04 주식회사 에이스엘이디 ARTIFICIAL INTELLIGENCE IMAGE PHOTOGRAPHING SYSTEM FOR AUTOMATIC TRACKING AND RECOGNITION OF DISTANCE AND long distance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252467A (en) * 1996-03-18 1997-09-22 Toshiba Corp Mobile object detector
JP2002262296A (en) * 2001-02-28 2002-09-13 Mitsubishi Electric Corp Mobile object detector, and image supervisory system
US6553150B1 (en) * 2000-04-25 2003-04-22 Hewlett-Packard Development Co., Lp Image sequence compression featuring independently coded regions
KR20090093817A (en) * 2008-02-29 2009-09-02 가시오게산키 가부시키가이샤 Imaging apparatus provided with panning mode for taking panned image
KR20170102424A (en) * 2016-03-01 2017-09-11 엑시스 에이비 A method and device for controlling a camera capable of pan and tilt control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252467A (en) * 1996-03-18 1997-09-22 Toshiba Corp Mobile object detector
US6553150B1 (en) * 2000-04-25 2003-04-22 Hewlett-Packard Development Co., Lp Image sequence compression featuring independently coded regions
JP2002262296A (en) * 2001-02-28 2002-09-13 Mitsubishi Electric Corp Mobile object detector, and image supervisory system
KR20090093817A (en) * 2008-02-29 2009-09-02 가시오게산키 가부시키가이샤 Imaging apparatus provided with panning mode for taking panned image
KR20170102424A (en) * 2016-03-01 2017-09-11 엑시스 에이비 A method and device for controlling a camera capable of pan and tilt control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163254A (en) * 2021-04-06 2021-07-23 广州津虹网络传媒有限公司 Live image processing method and device and electronic equipment

Also Published As

Publication number Publication date
KR20200013335A (en) 2020-02-07
KR102080456B1 (en) 2020-02-24

Similar Documents

Publication Publication Date Title
WO2020027513A1 (en) Syntax-based image analysis system for compressed image, and interworking processing method
KR100432870B1 (en) Intruding object monitoring method and intruding object monitoring system
WO2019124635A1 (en) Syntax-based method for sensing object intrusion in compressed video
WO2020027607A1 (en) Object detection device and control method
WO2018135906A1 (en) Camera and image processing method of camera
WO2017034177A1 (en) Enforcement system for curbing illegal parking and stopping by using images from different cameras, and control system including same
KR102187376B1 (en) syntax-based method of providing selective video surveillance by use of deep-learning image analysis
WO2020027512A1 (en) Method for syntax-based object tracking control for compressed image by ptz camera
WO2016064107A1 (en) Pan/tilt/zoom camera based video playing method and apparatus
KR101861245B1 (en) Movement detection system and method for multi sensor cctv panorama video
WO2019039661A1 (en) Method for syntax-based extraction of moving object region of compressed video
JPH09252467A (en) Mobile object detector
WO2020027511A1 (en) Method for generating syntax-based heat-map for compressed image
WO2020171388A2 (en) Method of identifying abnormal motion object in compressed image using motion vector trajectory and pattern
WO2019124636A1 (en) Syntax-based method for sensing wrong-way driving on road in compressed video
KR102015082B1 (en) syntax-based method of providing object tracking in compressed video
KR100656345B1 (en) Method and apparatus for tracking moving object by using two-cameras
JP2001094968A (en) Video processor
EP3413268B1 (en) Counter-flow detection in compressed video
WO2019124632A1 (en) Syntax-based method for sensing loitering object in compressed video
WO2019124633A1 (en) Syntax-based method for sensing wall-climbing object in compressed video
JP3758511B2 (en) Object detection apparatus and object detection program
KR20140134505A (en) Method for tracking image object
KR102178952B1 (en) method of providing object classification for compressed video by use of syntax-based MRPN-CNN
KR20180105483A (en) Video surveillance network system and video surveillance method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844742

Country of ref document: EP

Kind code of ref document: A1