WO2020027356A1 - Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and method for producing same - Google Patents

Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and method for producing same Download PDF

Info

Publication number
WO2020027356A1
WO2020027356A1 PCT/KR2018/008832 KR2018008832W WO2020027356A1 WO 2020027356 A1 WO2020027356 A1 WO 2020027356A1 KR 2018008832 W KR2018008832 W KR 2018008832W WO 2020027356 A1 WO2020027356 A1 WO 2020027356A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
activated carbon
air cleaner
wet nonwoven
weight
Prior art date
Application number
PCT/KR2018/008832
Other languages
French (fr)
Korean (ko)
Inventor
주광진
이재민
이영섭
박혜준
Original Assignee
주식회사 성창오토텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 성창오토텍 filed Critical 주식회사 성창오토텍
Priority to PCT/KR2018/008832 priority Critical patent/WO2020027356A1/en
Publication of WO2020027356A1 publication Critical patent/WO2020027356A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics

Definitions

  • the present invention relates to a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner and a method for manufacturing the same, and more particularly, to select a powder activated carbon having a specific range of meso structure and a synthetic fiber having specific properties and to minimize the use of a carbon binder.
  • the hydrocarbon trap of the gasoline engine air cleaner is used to produce and use the hydrocarbon trap, thereby preventing the release of powdered activated carbon during the vapor adsorption and desorption process such as hydrocarbon gas.
  • a wet nonwoven fabric for hydrocarbon traps is used to produce and use the hydrocarbon trap, thereby preventing the release of powdered activated carbon during the vapor adsorption and desorption process such as hydrocarbon gas.
  • the fuel stored in the fuel tank of the vehicle passes through various fuel supply devices, is mixed with air from the outside, injected into the cylinder of the engine, and the engine operates while repeating the intake, compression, explosion, and exhaust stroke. And the car is powered accordingly.
  • the air outside the vehicle flows into the air cleaner and moves to the intake manifold through the air intake hose connected to the air cleaner to be supplied to the engine.
  • the air cleaner is installed inside the air cleaner to filter the dust and foreign matter contained in the outside air to filter the dust and foreign matter contained in the outside air to supply the air required for the combustion operation of the engine.
  • the air cleaner has an inlet formed to be coupled to an end of the air intake hose, and a diffuser is connected to the inside of the air cleaner.
  • hydrocarbon gas in the harmful gas discharged when the vehicle is running or stopped is emitted into the atmosphere and chemically reacts with ozone in the air to cause photochemical smog, and it is an air intake system (air duct, air cleaner, air).
  • Inhalation hoses and throttle bodies are required to have a device that can adsorb them as a serious harmful gas that leaks into the air, causes problems with copper, plants and humans and causes air pollution.
  • the air cleaner filter mounted on the air cleaner serves to filter foreign matter such as dust contained in the air supplied into the vehicle.
  • the conventional air cleaner having only the conventional air cleaner filter as described above has a problem in that it is difficult to collect the hydrocarbon gas contained in the boil-off gas generated from the remaining fuel such as an engine, so that the hydrocarbon gas is discharged to the atmosphere. .
  • Korean Patent Registration No. 10-749608 discloses a first filter layer mounted on an air cleaner cover coupled to an upper part of an air cleaner body equipped with an air cleaner filter, but having a form of a porous foam.
  • the second filter layer is tightly bonded to the upper portion of the first filter layer but formed in a porous foam form in which activated carbon is adsorbed, so that the hydrocarbon gas is desorbed, the second filter layer is tightly bonded to the upper portion of the second filter layer, but is formed in the porous foam form.
  • a filter assembly having a wire mesh positioned to receive the third and fourth filter layers and the first to fourth filter layers therein, the wire mesh being tightly coupled to the first to fourth filter layers.
  • the outer filter of the fourth filter layer and the wire mesh is fixed to be in close contact with each other by thermal or ultrasonic pressing. It is proposed for hydrocarbon traps.
  • Korean Patent Publication No. 10-2017-0025376 is composed of powdered activated carbon, pulp, and the basic raw materials and additives of dispersing agent, water repellent, humectant, sizing agent, carbon fixing agent, wet nonwoven fabric having a certain thickness through compression process. There is proposed a technique for producing a.
  • the adsorbent sheet having granular activated carbon-containing sheet which is a technique used for the purpose of purifying air, unlike an air cleaner, the adsorbent sheet having granular activated carbon-containing sheet, wherein the granular activated carbon-containing sheet has an average particle diameter of 100 to Provided are an adsorptive sheet comprising 600 ⁇ m granular activated carbon, support fibers for contacting and fixing the granular activated carbon, and adhesive fibers mainly contributing to shape retention.
  • this technique proposes an air purifying filter that has good air permeability and excellent dust removal performance for a long time, and is a simple filter structure for the purpose of air purification and dust elimination, and thus it is a hydrocarbon for an air cleaner that requires repeated adsorption and desorption of vapor. Because it is a completely different function from traps, it is not applicable to hydrocarbon trap products.
  • Patent Document 001 Korea Patent Registration No. 10-749608
  • Patent Document 002 Korean Patent Publication No. 10-2017-0025376
  • Patent Document 003 Japanese Patent Laid-Open No. 2000-024426
  • the present invention newly configured the characteristics of the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner by improving the physical properties and excellent durability, while evaporated gas generated from the fuel of the engine combustion chamber or fuel storage tank
  • An object of the present invention is to remarkably improve the adsorption and desorption performance of oil vapors, such as hydrocarbons contained therein.
  • an object of the present invention is to selectively use activated carbon of a specific physical property and synthetic fibers of a specific physical property and to form a wet nonwoven fabric by mixing a minimum amount of a carbon binder, thereby preventing the release of activated carbon and providing the vapor of the vapor installed in the air cleaner of the gasoline engine.
  • a wet nonwoven fabric for hydrocarbon traps with improved adsorption and desorption performance.
  • Another object of the present invention is to significantly improve the gas adsorption and desorption capacity of gasoline, to capture the hydrocarbons in the boil-off gas discharged when the vehicle is running or stopped to prevent the outflow of hydrocarbons, the main culprit of air pollution,
  • the present invention provides a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner with a new configuration that allows passengers in the vehicle to minimize damage caused by hydrocarbon gas.
  • another object of the present invention is for a hydrocarbon trap of a gasoline engine air cleaner of a new configuration for producing a wet nonwoven fabric by mixing activated carbon of a specific physical property, synthetic fibers of a specific physical property, and pulp and carbon binder in a specific ratio and pressing them under heat. It is to provide a method for producing a wet nonwoven fabric.
  • the present invention is installed in a gasoline engine air cleaner, the engine captures the hydrocarbons in the boil-off gas generated from the fuel of the combustion chamber or fuel storage tank of the engine when the vehicle is stopped or running the engine In the wet nonwoven fabric for hydrocarbon traps to be recovered to the side to be reburned,
  • the powdered activated carbon has an average particle size of 20 ⁇ m ⁇ 150 ⁇ m
  • meso structure has a range of 45 ⁇ 90%
  • the synthetic fiber has a diameter It provides a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner, characterized in that it comprises less than 30 ⁇ m and melting point 110 °C ⁇ 270 °C.
  • the synthetic fibers for example, ultra-fine fibers, ultra-fine fibers, divided yarn or island-in-the-sea yarn;
  • one or more synthetic fibers selected from Sheath / Core or Side by Side type composite melting point fibers selected from PP / PE, PET / PE, PET / PP, or PET / NYLON may be used.
  • the basic raw material may be composed of 45 to 80% by weight of the powdered activated carbon, 3 to 13% by weight of pulp, 10 to 30% by weight of synthetic fiber, 3 to 12% by weight of carbon binder. .
  • the base material may additionally include one or more additives selected from dispersants, water repellents, carbon fixing agents, dehydration accelerators.
  • the additive is added to the dispersing agent in the content of 0.05 to 2.0% by weight, the water repellent in the content of 0.2 to 1.0% by weight, the carbon fixing agent is 0.05 ⁇
  • the dehydration accelerator may include any one or more in an amount of 0.05 to 1.0% by weight.
  • the wet nonwoven fabric has a weight of 300 to 800 g / m 2 and a thickness of 2.2 to 3.6 mm before the heat compression process (S150), and 300 to 800 g / through the heat compression process (S150). It is preferable to carry out compression molding at a weight of 2 m 2 and a thickness of 0.6 to 1.8 mm.
  • the method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to the present invention is built in a gasoline engine air cleaner, the evaporation gas generated from the fuel of the engine combustion chamber or fuel storage tank when the vehicle is stopped or running.
  • the manufacturing method of the wet nonwoven fabric for hydrocarbon traps of a gasoline engine air cleaner which collect
  • a basic raw material including powdered activated carbon, pulp, synthetic fibers and carbon binder, wherein the powdered activated carbon uses activated carbon having an average particle size in the range of 20 ⁇ m to 150 ⁇ m and a meso structure in the range of 45 to 90%.
  • It provides a method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner comprising a.
  • the present invention includes a hydrocarbon trap of a gasoline engine air cleaner manufactured using the wet nonwoven fabric prepared as described above.
  • the wet nonwoven fabric according to the present invention when used to be mounted on the wall or deviewer of the air cleaner housing of the gasoline engine, the durability of the product is excellent and the adsorption and desorption performance of the vapor is remarkably improved.
  • the wet nonwoven fabric according to the present invention manufactures a wet nonwoven fabric using powdered activated carbon, pulp, synthetic fibers of a specific physical property, and a carbon binder as a basic raw material, thereby preventing separation of the powdered activated carbon and minimizing carbon binder. Since the binder does not block the meso structure of the activated carbon, there is an effect that can significantly improve the performance of Butane Working Capacity (BWC). This effect is achieved by the synergistic effect of selectively using the powdered activated carbon as a specific physical property in the present invention, and selectively using a synthetic fiber of a specific physical property, which is previously unpredictable.
  • BWC Butane Working Capacity
  • the wet nonwoven fabric according to the present invention significantly improves the gas adsorption and desorption capacity of gasoline, and captures hydrocarbons in the boil-off gas discharged when the vehicle is running or stopped, thereby preventing the outflow of hydrocarbons, which is the main cause of air pollution.
  • the wet nonwoven fabric according to the present invention can be further improved when the dispersant, water repellent, carbon fixing agent, dehydration accelerator is used as an additive, the production of a wet nonwoven fabric and a hydrocarbon trap using the same superior quality compared to the conventional It has a useful effect.
  • the wet nonwoven fabric according to the present invention is produced by compressing it to a volume of about 1/2 after being manufactured in a basic structure, thereby minimizing the volume and mounted on the housing wall or deviewer to lower the pressure loss than the conventional bent type.
  • it saves fuel economy and is very advantageous when applied to hydrocarbon traps, and is formed of wet non-woven fabric of constant thickness, it is applied to hydrocarbon traps and used in the engine air cleaner housing when installed in the engine air cleaner housing. There is an effect that is maximized.
  • FIG. 1 is a block diagram showing a manufacturing process of a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to the present invention.
  • Figure 2a is a photograph showing the distribution state by pore size of the activated carbon structure according to the present invention.
  • Figure 2b is a partially enlarged photograph of the pore structure of the activated carbon according to the present invention.
  • Figure 2c is a graph showing the pore volume change rate according to the distribution of meso structure and micro structure pores of activated carbon according to the present invention.
  • FIG. 3 is a diagram illustrating a cross-sectional structure of a preferred fiber to be applied as a synthetic fiber according to the present invention, conceptually illustrating various shapes of a composite melting point fiber of Sheath / Core or Side by Side type.
  • FIG. 1 is a block diagram showing a manufacturing process of a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to the present invention.
  • Step by step is a method for producing a wet nonwoven fabric that captures hydrocarbons in the boil-off gas generated from the fuel of the tank or recovers the collected hydrocarbons to the engine.
  • Figure 2a is a photograph showing the meso structure distribution state of the activated carbon structure according to the present invention
  • Figure 2b is a partially enlarged picture of the pore structure of the activated carbon according to the present invention
  • Figure 2c is a meso structure of the activated carbon according to the present invention It is a graph showing the pore volume change rate according to the distribution of pore size.
  • the more the distribution of the meso (Meso) structure as an activated carbon component according to a preferred embodiment of the present invention is advantageous because it can be used repeatedly in the adsorption-desorption-desorption-desorption iteration process.
  • FIG. 3 is a view conceptually illustrating various shapes of a composite melting point fiber of Sheath / core or Side by Side type suitable for application to a synthetic fiber according to the present invention.
  • the activated carbon between the fibers is isolated and attached to the powdered activated carbon and the activated carbon is separated from the activated carbon. It was confirmed that activated carbon is combined with synthetic fibers to lower the carbon binder content.
  • the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner manufactured by the method for producing a hydrocarbon trap for the hydrocarbon trap of the gasoline engine air cleaner according to the present invention is built in the air cleaner, but by ultrasonic welding on the housing of the air cleaner It can be fixed.
  • the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner may include a basic raw material composed of powdered activated carbon, pulp, synthetic fibers and a carbon binder.
  • it may further include one or more additives selected from dispersants, water repellents, carbon fixatives, dehydration accelerators.
  • the basic raw material contains 45 to 80% by weight of powdered activated carbon, 3 to 13% by weight of pulp, 10 to 30% by weight of synthetic fibers, and 3 to 12% by weight of carbon binder. Used as a%.
  • the additive additionally added to the base material is preferably 0.05 to 0.2% by weight of dispersant, 0.2 to 1.0% by weight of water repellent, 0.05 to 1.0% by weight of carbon fixing agent, 0.05 to 1.0 weight of dehydrating agent with respect to the total wet nonwoven fabric composition. It may consist of a composition of%.
  • the powdered activated carbon is preferably used having an average particle size of 20 ⁇ m ⁇ 150 ⁇ m range. If the particle size is too small, the adsorption efficiency is low and dust is severe in the manufacturing process, which is not preferable. In addition, if the particle size is too large, the overall adsorption effect may be lowered, and activated carbon powder may be released when used in a manufacturing process or as a trap.
  • the activated carbon particle size is smaller than 20 ⁇ m, the activated carbon in the wire suction process for removing water from the wet nonwoven suspension is largely drawn out with the water.
  • the suction pressure becomes too high. As a result, a wet nonwoven fabric may not be manufactured.
  • activated carbon having an average particle size larger than 150 ⁇ m When activated carbon having an average particle size larger than 150 ⁇ m is used for the HC TRAP, when activated carbon particles are mixed in the engine when vibration occurs after being installed in the engine air cleaner, it may adversely affect the engine.
  • a small amount of activated carbon requires a low butane adsorption capacity, an increased filtration area, and a small space in the engine air cleaner housing, thus requiring a large amount of activated carbon. It is poor in adhesion and difficult to work with a flat or circular engine air cleaner housing structure.
  • the pulp is used, and the pulp facilitates the transport in the media moisture state due to the strong hydrogen bond, and serves to attach a lot of fine powdered activated carbon to the flat pulp structure. Therefore, if the amount of the pulp used is too small, the activated carbon adhesion efficiency is low. If the excess pulp is too excessive, the activated carbon adheres well, but a lot of vacuum pressure is generated in the water discharge process and the water cannot be discharged, thereby inhibiting the overall adsorption and desorption effect. There is concern.
  • pulp may be generally NBK (CANFOR Pulp and Paper Company), but is not necessarily limited thereto.
  • the powder activated carbon as described above is used in the particle size range 20 ⁇ m ⁇ 150 ⁇ m, preferably, the specific surface area is preferably 1,000 ⁇ 3,000 m 2 / g per 1g. Even more preferred is preferably 2.000 to 3,000 m 2 / g per gram. If the specific surface area is too small, there is a problem that it is difficult to manufacture a wet nonwoven fabric because an excessive amount of activated carbon should be used and it should be included up to two times more.
  • the specific surface area is greater than 3,000 m2 / g per 1g, the apparent density increases and the volume of activated carbon increases to make the wet nonwoven fabric so that the mixing ratio of the ultrafine fibers or the content of the synthetic fibers must be excessively increased to 30% or more. It is not preferable because the temperature and pressure must be further increased in the heat compression process of the nonwoven fabric.
  • Microfiber is a thread having a thickness of less than 1 denier (5 ⁇ m). In general, microfiber is a very soft and soft touch. It is a fine fiber of up to 0.001 denier depending on the spun fiber. It can be made of fibers and is usually used as artificial suede that requires softness, or as a cloth for cleaning lenses such as glasses.
  • the term 'melting point microfibers' refers to fibers made of microfiber yarns, microfiber yarns, decomposed yarns and island-in-the-sea yarns having a melting point of 110-270 ° C and a diameter of 30 ⁇ m or less. If it is a synthetic fiber satisfying such melting point and thickness, it can be used without particular limitation.
  • the powdered activated carbon used in the present invention should have a specific surface area as described above, in the present invention, the pore structure of the powdered activated carbon is preferably specified.
  • the meso structure in the pore structure of the activated carbon is 45 to 90%. Range, more preferably 60-90%. If the meso structure of the powdered activated carbon is less than this range, the adsorption amount of the vapor is drastically lowered. If the amount of the activated carbon is too low, the production of activated carbon is difficult to manufacture the activated carbon, which is uneconomical but does not increase the adsorption amount any more. There is a risk of remaining without desorption.
  • the meso structure means that the pore size of activated carbon is in the range of 2 nm to 50 nm, and the adsorption-desorption-adsorption-desorption repetition of oil vapor is remarkable due to the use of powdered activated carbon having such a meso structure in a specific range. It can be improved.
  • FIG. 2A the distribution of meso structure in the pore structure of activated carbon is illustrated in FIG. 2A, where the micro structure or meso structure is considered in consideration of the fact that the activated carbon repeats adsorption-desorption-adsorption-desorption.
  • the distribution of mesostructures is more important in the present invention.
  • this graph is a specific surface area measurement (BET) method of the micro (Meso) pore structure for the activated carbon
  • BET specific surface area measurement
  • the dotted line means the micro pore structure
  • the solid line means the meso pore structure. Therefore, it was confirmed that activated carbon in which the meso structure of the solid line shown vertically is distributed at 45-90% belonging to the range corresponding to the hydrocarbon trap (HC TRAP) has an excellent adsorption and desorption effect.
  • the content of this meso structure of the powdered activated carbon is not absolutely proportional to the specific surface area. Even if the specific surface area is small, the content of the meso structure may be high depending on the formation rate of the macro structure of the pores larger than the meso structure or the micro structure smaller than the meso structure. May be included.
  • the meso structure content and macro or micro structure content of the powdered activated carbon may be changed in various ways depending on the raw material of the activated carbon and the manufacturing process and manufacturing conditions of the activated carbon.
  • powdered activated carbon containing 45-90% of the total amount of such meso structure in the powdered activated carbon used as the basic raw material should be used, and the overall composition of the basic raw materials such as pulp and carbon binder and the use of specific synthetic fibers, which are other mixed components, As a result, a synergistic effect on the adsorption and desorption effect of oil vapor can be expected.
  • the method is ineffective because it is uneconomical for the purpose of the present invention.
  • the present invention uses a powder activated carbon in the range of 20 ⁇ m ⁇ 150 ⁇ m average particle size as described above, the specific surface area is provided in the specific surface area range of 1,000 ⁇ 3,000m2 / g per 1g and at the same time 45 ⁇ 90% of the structure of activated carbon
  • a wet nonwoven fabric comprising a meso structure in the range, when used in a hydrocarbon trap, the hydrocarbons contained in the boil-off gas generated from the fuel in the combustion chamber or fuel storage tank of the engine when the engine is stopped when the vehicle is stopped Regardless of the size, it can be more efficiently collected and easily detached with respect to the overall size.
  • the boil-off gas generated in the engine stop state is generated from fuel remaining around the fuel injector after the engine stops, or fuel such as the combustion chamber and fuel storage tank of the engine, and the gas includes hydrocarbon gas. It is necessary to collect such hydrocarbon gas.
  • the wet nonwoven fabric for hydrocarbon traps manufactured using a powder activated carbon containing 45-90% of the meso structure having a particle size in the range of 20 ⁇ m to 150 ⁇ m is used, Regardless of the size of, the overall size can be collected more efficiently.
  • the distribution of the average particle size and meso structure of the powdered activated carbon is a very important factor for the vapor absorption performance of the whole wet nonwoven fabric and the quality of the hydrocarbon trap.
  • there is an important meaning because it is also a condition for expecting the synergistic effect on the overall quality and the adsorption and desorption effect of the vapor together with the selective properties of the synthetic fibers described later.
  • synthetic fibers having a diameter of 30 ⁇ m or less, more preferably 10 ⁇ m or less and a melting point of 110 ° C. to 270 ° C. are preferably used. If the diameter is too large or the melting point is not limited to the above range, when the wet nonwoven fabric is manufactured and applied to a hydrocarbon trap, activated carbon particles are released or heat-compressed so that the compression of the activated carbon particles is not performed and the activated carbon particles are released. It is difficult to expect subsumption effects such as prevention, so the desired quality cannot be expected.
  • such synthetic fibers include at least one selected from, for example, ultrafine fibers, ultrafine fibers, split yarns, islands-in-the-sea yarns or melting points of 110 ° C. to 270 ° C. and between sheath / core or side-by-side ( Side by Side) composite melting point fibers of one or more of PP / PE, PET / PE, PET / PP, PET / NYLON can be used.
  • PP is polypropylene
  • PE is polyethylene
  • PET is polyethylene terephthalate, respectively.
  • FIG. 3 shows various types of composite melting point fibers of Sheath / Core or Side by Side type.
  • the fiber diameter is 10 ⁇ m
  • the cross-sectional structure of the composite melting point fiber is conceptually displayed.
  • the synthetic fibers usable in the present invention are not limited thereto, and composite melting point fibers composed of other similar forms or other similar components may be used.
  • the synthetic fiber can be used as long as the diameter and melting point, which are the above conditions, fall within the above ranges.
  • the reason for using such synthetic fibers in the present invention is to prevent the separation of powdered activated carbon used together and to minimize the use of a carbon binder, so that the carbon binder does not block the Meso structure of the activated carbon to improve the performance of the BWC.
  • the selective feature of the synthetic fiber according to the present invention has an important meaning, and thus the adsorption and desorption effect is remarkably increased. It can be increased, and because it exhibits a stable activated carbon inclusion effect, a synergistic effect with powdered activated carbon can be expected.
  • the specific synthetic fibers can be used in a composition of 10 to 30% by weight, if the amount is too small, there is a problem that can not be enough to apply activated carbon, if too large
  • the activated carbon content per unit volume is so small that it is difficult to expect an improvement in the adsorption and desorption effect.
  • a water repellent having good dispersibility in the melting point microfibers is used to improve the dispersibility of the melting point microfibers and to prevent water inflow of the powdered activated carbon. It is preferable to use a water repellent, in which the water repellent used does not block the pore structure of activated carbon, it is preferable to use a water repellent that minimizes the inhibition of water absorption.
  • a carbon binder is used, which is used to prevent the powdered activated carbon from adhering to the synthetic fiber to be fixed and detached.
  • the carbon binder may be acrylic resin, polyvinylacetate, or the like.
  • PVA Polyvinyl alcohol
  • CMC starch
  • phenol resin Phenol resin
  • EVA vinyl acetate
  • PE polyethylene
  • the carbon binder when used too little, the release of activated carbon particles may occur, and when used too much, the pores of the activated carbon may be blocked and the adsorption efficiency may be greatly reduced.
  • the present invention is preferably to minimize the content of such a carbon binder, the reason is that it is prepared in a composition that can minimize the amount of the carbon binder by using the powdered activated carbon and synthetic fibers selected as having a specific physical property as described above Is now possible.
  • modified starch modified starch
  • Dispersants may be used.
  • water repellents such as a silane type, a siloxane type, and a silicon type
  • a carbon fixing agent and a dehydration accelerator may be used as an additional component in order to suppress the activated carbon loss rate and enhance the adsorption and desorption effect
  • an amine polymer such as 1,2-ethanediamine, etc. Can be preferably used.
  • Such carbon fixatives may be used at 0.05-1.0% by weight relative to the total wet nonwoven composition. If the amount is too small, there is no addition effect, and even if excessively used, the adsorption and desorption effect may be inhibited.
  • an amide system such as polyacrylamide may be used, and the content thereof may be used at 0.05-1.0 wt%. In this case, too little amount can be expected to promote dehydration, and too much amount may inhibit the adsorption and desorption effect.
  • the method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner is a dry nonwoven fabric made of synthetic fibers in close contact with the sheet-type or roll-type synthesis through the heat compression process (S150) It may be to be molded into a nonwoven fabric.
  • the dry nonwoven fabric is in close contact with any one surface of the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner as described above, the sheet type or roll type through the heat compression process (S150) It may be molded into a synthetic non-woven fabric, in this case it can be configured to be built in the air cleaner, it is possible to be more stably fusion fixed by ultrasonic welding on the housing of the air cleaner.
  • the meso structure as described above is a specific range Preference is given to using powdered activated carbon of certain physical properties.
  • the powder activated carbon uses powder activated carbon in the range of 20 to 150 ⁇ m, and the mesh in the suspension process (S110).
  • a carbon fixing agent in order to reduce the powdered activated carbon loss rate with the powdered activated carbon to escape with the water.
  • the additives additionally used in the present invention may contribute to partially further improving the physical properties of the wet nonwoven fabric.
  • the heat compression process (S150) is a raw material mixed with the additives listed above when activated carbon, pulp, synthetic fibers, carbon binders or additional components are used after the fabric is dried Since these components are not completely combined, it is necessary to prevent the raw materials used to manufacture the wet nonwoven fabric from being desorbed in the process of being installed and used in the gasoline engine air cleaner. For this purpose, it is preferable to perform a heat compression process. However, if the thickness of the fabric is thick after heat compression, it is preferable to minimize the thickness by performing a heat compression process because the pressure loss of the flow path is increased to increase fuel consumption.
  • both the paper and the mechanical method are pressed using a multi-stage press.
  • the hot pressing process is performed at a temperature of 150 ° C. to 260 ° C. and 30N / It is preferable to crimp under high pressure conditions of cm ⁇ 2> -300N / cm ⁇ 2>.
  • the wet nonwoven fabric for hydrocarbon traps of a gasoline engine air cleaner manufactured by the manufacturing method as described above captures hydrocarbons in the boil-off gas generated from fuel of the combustion chamber or fuel storage tank of the engine when the vehicle stops or runs.
  • a hydrocarbon trap attached to the engine air cleaner such as a car for oil adsorption and desorption in a conventional manner.
  • the present invention therefore comprises a hydrocarbon trap for a gasoline engine air cleaner comprising a wet nonwoven fabric for a hydrocarbon trap according to the present invention as described above.
  • the activated carbon performance test of activated carbon of powder activated carbon (Experimental Example 1), the suspension process (S110) to the drying process (S140) for the air cleaner applying the wet nonwoven fabric prepared in Examples and Comparative Examples, the wet nonwoven fabric for hydrocarbon trap Butane working capacity efficiency (BWC) of the wet nonwoven fabric for hydrocarbon traps in which the manufacturing process was completed from the test (Experimental Example 2) and the suspension process (S110) to the heat compression process (S150).
  • BWC performance test Example 3
  • ultrasonic fusion (Experimental Example 4), etc., which have been examined will be described step by step.
  • butane gas collection weight (g) per 1g of activated carbon the better the collection performance.
  • the sum of the adsorption efficiency and the desorption efficiency is close to 99% since it is mounted on the gasoline engine air cleaner and is adsorbed when the vehicle is stopped, and desorbed during operation and used semi-permanently until the end of the vehicle.
  • butane gas is trapped inside the activated carbon, so it is not completely desorbed. But for semi-permanent use, butane gas is completely desorbed and adsorbed again. Trap) has its limits.
  • the adsorption and desorption efficiency is ideally 100% because the adsorption is carried out when the engine is stopped and butane is sucked back into the engine due to the inflow of engine air during operation.
  • activated carbon having a 100% meso structure in activated carbon production and structure is impossible.
  • the meso structure of the powdered activated carbon is more than 90%, the effect is not so much improved, but rather it is economically difficult to manufacture and the manufacturing cost is high, so it is preferable to use activated carbon having a meso structure of 90% or less. It was confirmed.
  • Powder activated carbon prepared in Preparation Example 2 90 ⁇ m particle size 340g / m2, pulp 15g / m2, 110 °C melting point microfine fiber (10 ⁇ m) 80g / m2, water repellent 1.3g / m2, carbon binder (Ashland Hercopuls TM 125) 45g / M2, non-woven fabric support 20g / m2 using the same basic raw materials and additives, after the suspension process (S110) to make it into a suspension was formed into a web type through a web formation process (S120), the state of the web type After the water discharge step (S130) in and dried through a drying step (S140), where Example 1-4 each contains a base material, using some of the additives, carbon fixing agent or dehydration accelerator, used here SY Chem (SY CHEM Co., Ltd.
  • Example 1 Example 2
  • Example 3 Example 4 Carbon Fixer 0.6% + Dehydration Accelerator 0.5% Carbon fixer 0% + Dehydration accelerator 0% Carbon fixer 0.8% Dehydration accelerator 0.5% Dehydration time (sec) 4.5 6.8 5.40 5.2 Fabric weight (g / m2) 500.4 510.4 506.2 520.1 Loss weight (g / m2) 14.96 68.68 45.9 29.92 Activated Carbon Loss Rate (%) 4.4 20.2 13.5 8.8
  • a wet nonwoven fabric was fabricated by varying the meso structure content of activated carbon and by varying the content of the activated carbon and the fabric thickness.
  • Example 2 The same activated carbon as in Example 2 is used, and as the synthetic fibers, those having a diameter of 30 ⁇ m or less or a melting point of 110 ° C. are used as the melting point microfine fibers. Fibers of different physical properties) were used, but each of the wet nonwoven fabrics was prepared under the conditions shown in Table 4 below.
  • the basic raw materials of powdered activated carbon, pulp, synthetic fiber, and carbon binder are used, and if necessary, a dispersant, a water repellent, a carbon fixing agent, and dehydration are additionally used.
  • the hydrocarbon contained in the trap is collected on one side of the wet nonwoven fabric for the hydrocarbon trap, and the hydrocarbon trapped on the wet nonwoven fabric for the hydrocarbon trap is recovered to the engine by the negative pressure when the engine is stopped while the engine is running while the vehicle is running, and replayed in the engine. Can be consumed.
  • the vehicle is composed of powdered activated carbon, pulp, synthetic fiber, basic raw materials and additives of dispersing agent, water repellent, carbon fixing agent, and dehydration accelerator of carbon binder, and formed into a wet nonwoven fabric having a certain thickness through the compression process, so that the vehicle can be driven or stopped.

Abstract

The present invention relates to a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner and a method for producing same and, more specifically, to a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner and a method for producing same, in which powdered activated carbon having specific physical properties, pulp, a synthetic fiber of specific properties, and a carbon binder are prepared as basic raw materials, the materials are made into a web-type nonwoven fabric, the web-type nonwoven fabric is formed into a wet nonwoven fabric of a predetermined thickness through compression, and the wet nonwoven fabric is produced as a hydrocarbon trap, and when the hydrocarbon trap is installed in a gasoline engine air cleaner and used, the wet nonwoven fabric may adsorb oil mist such as hydrocarbons contained in evaporated gas generated from a combustion chamber of an engine or fuel of a fuel storage tank, and then desorb same when the engine is running, thereby preventing external leakage of hydrocarbons, which is the main cause of air pollution, and minimizing damage caused by hydrocarbon gas to a passenger in a vehicle.

Description

가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포와 그 제조방법Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and its manufacturing method
본 발명은 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포와 그 제조방법에 관한 것으로서, 더욱 상세하게는 특정 범위의 메조구조를 가지는 분말 활성탄과 특정 물성을 가지는 합성섬유를 선택하고 카본결합제의 사용을 최소화하여 습식 부직포를 구성함으로써, 이를 이용하여 가솔린 엔진 에어클리너의 탄화수소 트랩을 제조하여 사용하는 경우 탄화수소 가스 등 유증기 흡탈착 과정에서 분말 활성탄의 이탈을 방지하는 등 물성이 우수하면서 흡탈착 능력이 현저하게 향상된 탄화수소 트랩용 습식 부직포에 관한 것이다.The present invention relates to a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner and a method for manufacturing the same, and more particularly, to select a powder activated carbon having a specific range of meso structure and a synthetic fiber having specific properties and to minimize the use of a carbon binder. By forming a wet nonwoven fabric, the hydrocarbon trap of the gasoline engine air cleaner is used to produce and use the hydrocarbon trap, thereby preventing the release of powdered activated carbon during the vapor adsorption and desorption process such as hydrocarbon gas. A wet nonwoven fabric for hydrocarbon traps.
일반적으로 자동차는 연료와 공기가 각각 혼합 연소하면서 동력을 발생하게 된다.In general, automobiles generate power by mixing and combusting fuel and air, respectively.
다시 말하면, 자동차의 연료탱크에 저장되어 있는 연료가 각종 연료 공급장치를 통과하고, 외부로부터 유입된 공기와 혼합되어 엔진의 실린더로 분사됨과 동시에 엔진이 흡입, 압축, 폭발, 배기행정을 반복하면서 작동하게 되고 이에 따라 자동차가 동력을 얻게 되는 것이다.In other words, the fuel stored in the fuel tank of the vehicle passes through various fuel supply devices, is mixed with air from the outside, injected into the cylinder of the engine, and the engine operates while repeating the intake, compression, explosion, and exhaust stroke. And the car is powered accordingly.
상기와 같이 엔진을 운전하는 데는 일정량의 공기를 필요로 하며, 상기한 공기의 공급은 차량의 외부로부터 유입된다.As described above, a certain amount of air is required to operate the engine, and the air supply is introduced from the outside of the vehicle.
즉, 차량 외부의 공기가 에어클리너 측으로 유입되며 상기 에어클리너에 연결된 에어 인테이크 호스를 통해 흡기 매니폴드로 이동하여 엔진으로 공급되는 것이다.That is, the air outside the vehicle flows into the air cleaner and moves to the intake manifold through the air intake hose connected to the air cleaner to be supplied to the engine.
이때, 상기 에어클리너 내부에는 외부 공기 중에 포함된 먼지 및 이물질을 여과하는 에어클리너 필터가 설치되어 상기 외부 공기 중에 포함된 먼지 및 이물질 등을 여과하여 엔진의 연소 작동에 필요한 공기를 공급하게 된다.At this time, the air cleaner is installed inside the air cleaner to filter the dust and foreign matter contained in the outside air to filter the dust and foreign matter contained in the outside air to supply the air required for the combustion operation of the engine.
이러한 에어클리너에는 상기 에어 인테이크 호스의 단부와 결합 가능하도록 유입구가 형성되며, 상기 에어클리너의 내부에 디퓨저가 연결 설치된다.The air cleaner has an inlet formed to be coupled to an end of the air intake hose, and a diffuser is connected to the inside of the air cleaner.
한편, 차량의 주행 또는 정지 시에 배출되는 유해가스 중 탄화수소 가스는 대기 중으로 방출되어 대기 중의 오존과 화학반응 함으로서 광화학 스모그를 유발하는 대기 오염 물질 중에 하나로서 공기 흡기 시스템(에어덕트, 에어클리너, 공기 흡기 호스, 트로틀 바디)근처로 유출되어 동, 식물 및 인간에게 유해한 문제를 일으키며 대기오염 문제를 일으키는 심각한 유해가스로서 이를 흡착할 수 있는 장치를 필요로 했다.On the other hand, hydrocarbon gas in the harmful gas discharged when the vehicle is running or stopped is emitted into the atmosphere and chemically reacts with ozone in the air to cause photochemical smog, and it is an air intake system (air duct, air cleaner, air). Inhalation hoses and throttle bodies) are required to have a device that can adsorb them as a serious harmful gas that leaks into the air, causes problems with copper, plants and humans and causes air pollution.
다시 말하면, 상기와 같은 공기 흡기 시스템으로서, 에어클리너(AIR CLEANER)에 장착되는 에어클리너 필터는 차량의 내부로 공급되는 공기 중에 포함된 먼지 등의 이물질을 여과하는 역할을 한다.In other words, as the air intake system as described above, the air cleaner filter mounted on the air cleaner serves to filter foreign matter such as dust contained in the air supplied into the vehicle.
그러나 종래의 에어클리너에는 탄화수소 가스를 포집할 수 있는 별도의 필터가 존재하지 않으므로, 통상의 에어클리너 필터만으로는 엔진 등에서 발생하는 증발가스 중에 포함된 탄화수소 가스를 포집할 수 없는 문제가 있었다.However, since there is no separate filter capable of collecting hydrocarbon gas in the conventional air cleaner, there is a problem in that the conventional air cleaner filter alone cannot collect the hydrocarbon gas contained in the boil-off gas generated in the engine.
다시 말하면, 상기와 같은 통상의 에어클리너 필터만 내설된 종래의 에어클리너로는 엔진 등의 잔여 연료로부터 발생하는 증발가스 중에 포함된 탄화수소 가스를 포집하기 어려워 대기 중으로 탄화수소 가스가 그대로 배출되는 문제가 있었다.In other words, the conventional air cleaner having only the conventional air cleaner filter as described above has a problem in that it is difficult to collect the hydrocarbon gas contained in the boil-off gas generated from the remaining fuel such as an engine, so that the hydrocarbon gas is discharged to the atmosphere. .
아울러, 최근 미국 등의 선진국에서는 자동차 배기가스 배출에 관한 법률이 강화되면서 배기가스 규제치에 만족하는 차량을 공급해야 할 필요성이 커지고 있는 실정이다.In addition, recently, in developed countries such as the United States, as the law on automobile exhaust gas is strengthened, the necessity of supplying a vehicle that satisfies the emission regulations is increasing.
특히, 엔진의 시동 정지 시 잔여연료로부터 증발하여 엔진이나 흡기계에 머물러 있다가 흡기계를 통해 대기 중으로 방출되는 연료 증발 가스인 탄화수소(HC; hydrocarbon) 가스에 대한 규제가 강화되면서 탄화수소 가스 포집 장치를 장착한 차량의 의무 판매 대수가 점차 증가하고 있는 추세이다.In particular, when the engine is stopped, the restriction on hydrocarbon gas, which is fuel evaporation gas that is evaporated from residual fuel and stays in the engine or intake, is released to the atmosphere through the intake. The number of mandatory sales of installed vehicles is gradually increasing.
따라서 선진국으로의 차량 수출을 위해 흡기계에 효율이 좋은 탄화수소 가스 포집 장치를 장착해야 할 필요가 있다.Therefore, in order to export vehicles to developed countries, it is necessary to equip the intake system with an efficient hydrocarbon gas collection device.
기존의 에어클리너용 탄화수소 트랩의 제조 기술로서, 한국특허등록 제10-749608호에서는 에어클리너 필터가 장착된 에어클리너 본체의 상부에 결합된 에어클리너 커버에 장착되되 다공성 폼의 형태를 갖는 제1필터층, 상기 제1필터층의 상부에 밀착 결합하되 활성탄이 흡착된 다공성 폼 형태로 제1필터층보다 두껍게 형성되어 탄화수소 가스가 탈착되는 제2필터층, 상기 제2필터층의 상부에 밀착 결합하되 다공성 폼 형태로 형성되는 제3 및 제4 필터층, 및 상기 제1 내지 제4 필터층을 내부에 수용하도록 위치하되 제1 내지 제4 필터층에 밀착 결합되는 와이어매쉬가 구비된 필터조립체를 포함하여 구성되며, 상기 제1 내지 제 4 필터층과 와이어매쉬의 외측 가장자리는 열 또는 초음파 압착에 의해 상호 밀착되도록 고정되는 것을 특징으로 하는 에어클리너의 탄화수소 트랩에 대하여 제안하고 있다.As a conventional technology for manufacturing a hydrocarbon trap for an air cleaner, Korean Patent Registration No. 10-749608 discloses a first filter layer mounted on an air cleaner cover coupled to an upper part of an air cleaner body equipped with an air cleaner filter, but having a form of a porous foam. The second filter layer is tightly bonded to the upper portion of the first filter layer but formed in a porous foam form in which activated carbon is adsorbed, so that the hydrocarbon gas is desorbed, the second filter layer is tightly bonded to the upper portion of the second filter layer, but is formed in the porous foam form. And a filter assembly having a wire mesh positioned to receive the third and fourth filter layers and the first to fourth filter layers therein, the wire mesh being tightly coupled to the first to fourth filter layers. The outer filter of the fourth filter layer and the wire mesh is fixed to be in close contact with each other by thermal or ultrasonic pressing. It is proposed for hydrocarbon traps.
그러나 이러한 탄화수소 트랩의 경우 어느 정도 유증기 흡탈착 효과를 기대할 수는 있지만 그 제조공정이 너무 복잡하고, 구조도 복잡할 뿐만 아니라 그 성능도 그다지 좋지 못한 문제가 있었다.However, in the case of such a hydrocarbon trap, the vapor adsorption and desorption effect can be expected to some extent, but the manufacturing process is too complicated, the structure is complicated, and the performance was not very good.
또한, 한국특허공개 제10-2017-0025376호에서는 분말 활성탄, 펄프, 합성섬유의 기본 원료 및 분산제, 발수제, 습광제, 사이징제, 카본고착제의 첨가제로 조성되어 압축 공정을 통해 일정 두께의 습식 부직포를 제조하는 기술이 제안되어 있다.In addition, Korean Patent Publication No. 10-2017-0025376 is composed of powdered activated carbon, pulp, and the basic raw materials and additives of dispersing agent, water repellent, humectant, sizing agent, carbon fixing agent, wet nonwoven fabric having a certain thickness through compression process. There is proposed a technique for producing a.
이러한 기술은 기존의 탄화수소 트랩용 부직포에 비해 상당히 개선된 기술로 평가될 수 있으나, 카본고착제 등을 사용하여도 여전히 활성탄의 이탈이 발생하여 품질 불량의 문제가 있고, 활성탄의 제한적인 흡착 능력과 합성섬유와의 상용성이 고려되지 않아서 유증기의 흡탈착 성능의 한계와 활성탄 이탈로 인한 불량 문제를 해결하는 것이 새로운 해결과제가 되었다.This technique can be evaluated as a significantly improved technology compared to the conventional nonwoven fabric for hydrocarbon traps, but the use of carbon fixing agent, such as the release of activated carbon still occurs, there is a problem of poor quality, limited adsorption capacity and synthesis of activated carbon Since the compatibility with the fiber was not considered, solving the limitations of the adsorption and desorption performance of the vapor and the defect caused by the release of activated carbon became a new challenge.
이와 유사한 기술로서, 에어클리너에 장착되는 것과는 달리 공기의 정화 목적으로 사용되는 기술인 일본특허공개 제2000-024426호에서는 입상 활성탄 함유 시트를 가지는 흡착성 시트로서, 상기 입상 활성탄 함유 시트는 평균 입자 지름 100~600μm의 입상 활성탄과 그 입상 활성탄에 접촉해 고정하는 지지 섬유와 주로 형상 유지에 기여하는 접착성 섬유를 포함한 흡착성 시트를 제공하고 있다.Similarly, in Japanese Patent Application Laid-Open No. 2000-024426, which is a technique used for the purpose of purifying air, unlike an air cleaner, the adsorbent sheet having granular activated carbon-containing sheet, wherein the granular activated carbon-containing sheet has an average particle diameter of 100 to Provided are an adsorptive sheet comprising 600 µm granular activated carbon, support fibers for contacting and fixing the granular activated carbon, and adhesive fibers mainly contributing to shape retention.
그러나 이러한 기술은 통기성이 양호하고 우수한 제진 성능이 장기간에 걸쳐 유지되는 공기정화용 필터를 제안한 것으로서, 공기 정화 및 제진이 목적인 단순한 필터 구성에 관한 기술이므로 유증기의 흡착과 탈착이 반복 이루어져야 하는 에어클리너용 탄화수소 트랩과는 전혀 다른 기능이기 때문에 탄화수소 트랩의 제품에는 적용할 수 없는 기술이다.However, this technique proposes an air purifying filter that has good air permeability and excellent dust removal performance for a long time, and is a simple filter structure for the purpose of air purification and dust elimination, and thus it is a hydrocarbon for an air cleaner that requires repeated adsorption and desorption of vapor. Because it is a completely different function from traps, it is not applicable to hydrocarbon trap products.
이와 같이 종래의 에어클리너에 장착되는 에어클리너의 탄화수소 트랩용 필터체의 경우 그 성능개선이나 불량률 개선에 대한 지속적인 연구 및 개발이 요구되는 실정이다.As described above, in the case of a filter trap for a hydrocarbon trap of an air cleaner that is mounted in a conventional air cleaner, continuous research and development for improving performance or improving a defective rate is required.
{선행기술문헌}{Prior art document}
{특허문헌}{Patent Literature}
(특허문헌 001) 한국특허등록 제10-749608호 (Patent Document 001) Korea Patent Registration No. 10-749608
(특허문헌 002) 한국특허공개 제10-2017-0025376호(Patent Document 002) Korean Patent Publication No. 10-2017-0025376
(특허문헌 003) 일본특허공개 제2000-024426호(Patent Document 003) Japanese Patent Laid-Open No. 2000-024426
상기와 같은 문제점을 해결하기 위하여, 본 발명은 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 특성을 새롭게 구성하여 물성이 개선되고 내구성이 우수하면서도 엔진의 연소실이나 연료 저장탱크의 연료로부터 발생하는 증발가스에 내포된 탄화수소 등의 유증기에 대한 흡탈착 성능을 현저하게 개선하는 것을 해결과제로 한다.In order to solve the above problems, the present invention newly configured the characteristics of the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner by improving the physical properties and excellent durability, while evaporated gas generated from the fuel of the engine combustion chamber or fuel storage tank An object of the present invention is to remarkably improve the adsorption and desorption performance of oil vapors, such as hydrocarbons contained therein.
따라서 본 발명의 목적은 특정 물성의 활성탄과 특정 물성의 합성섬유를 선택적으로 사용하고 카본결합제를 최소량으로 혼합하여 습식 부직포를 구성함으로서, 활성탄의 이탈을 방지하고 가솔린 엔진의 에어클리너에 장착되는 유증기의 흡탈착 성능이 개선된 탄화수소 트랩용 습식 부직포를 제공하는데 있다.Therefore, an object of the present invention is to selectively use activated carbon of a specific physical property and synthetic fibers of a specific physical property and to form a wet nonwoven fabric by mixing a minimum amount of a carbon binder, thereby preventing the release of activated carbon and providing the vapor of the vapor installed in the air cleaner of the gasoline engine. To provide a wet nonwoven fabric for hydrocarbon traps with improved adsorption and desorption performance.
또한, 본 발명의 다른 목적은 가솔린의 유증기 흡착 및 탈착 능력을 현저하게 개선하여, 차량의 주행 또는 정지 시에 배출되는 증발가스 중 탄화수소를 포집하여 대기오염의 주범인 탄화수소의 외부 유출을 방지하고, 차량에 탑승한 탑승객이 탄화수소가스에 의한 피해를 최소화할 수 있도록 하는 새로운 구성으로 이루어진 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포를 제공하는데 있다.In addition, another object of the present invention is to significantly improve the gas adsorption and desorption capacity of gasoline, to capture the hydrocarbons in the boil-off gas discharged when the vehicle is running or stopped to prevent the outflow of hydrocarbons, the main culprit of air pollution, The present invention provides a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner with a new configuration that allows passengers in the vehicle to minimize damage caused by hydrocarbon gas.
또한, 본 발명의 또 다른 목적은 특정 물성의 활성탄과 특정 물성의 합성섬유, 그리고 펄프와 카본결합제를 특정 비율로 혼합하고 가열 압착하여 습식 부직포를 제조하는 새로운 구성의 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법을 제공하는데 있다.In addition, another object of the present invention is for a hydrocarbon trap of a gasoline engine air cleaner of a new configuration for producing a wet nonwoven fabric by mixing activated carbon of a specific physical property, synthetic fibers of a specific physical property, and pulp and carbon binder in a specific ratio and pressing them under heat. It is to provide a method for producing a wet nonwoven fabric.
상기와 같은 과제 해결을 위하여, 본 발명은 가솔린 엔진 에어클리너에 내설되어, 차량의 정지 또는 주행 시에 엔진의 연소실이나 연료 저장탱크의 연료로부터 발생하는 증발가스 중 탄화수소를 포집하거나 포집된 탄화수소를 엔진 측으로 회수되도록 하여 재연소되도록 하는 탄화수소 트랩용 습식 부직포에 있어서,In order to solve the above problems, the present invention is installed in a gasoline engine air cleaner, the engine captures the hydrocarbons in the boil-off gas generated from the fuel of the combustion chamber or fuel storage tank of the engine when the vehicle is stopped or running the engine In the wet nonwoven fabric for hydrocarbon traps to be recovered to the side to be reburned,
분말 활성탄, 펄프, 합성섬유 및 카본결합제를 포함하는 기본 원료를 함유하되, 상기 분말 활성탄은 평균입도가 20㎛ ~ 150㎛ 범위이고, 메조구조가 45~90% 범위를 가지며, 상기 합성섬유는 직경 30㎛ 이하이고 융점이 110℃~270℃인 것을 포함하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포를 제공한다.It contains a basic raw material including powdered activated carbon, pulp, synthetic fibers and carbon binder, the powdered activated carbon has an average particle size of 20㎛ ~ 150㎛, meso structure has a range of 45 ~ 90%, the synthetic fiber has a diameter It provides a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner, characterized in that it comprises less than 30㎛ and melting point 110 ℃ ~ 270 ℃.
본 발명의 바람직한 구현예에 따르면, 상기 합성섬유로서는 예컨대, 초극세 섬유, 극세섬유, 분할사 또는 해도사; 또는 PP/PE, PET/PE, PET/PP 또는 PET/NYLON 중에서 선택된 Sheath/Core 또는 Side by Side 형의 복합 융점섬유 중에서 선택된 하나이상의 합성섬유를 사용할 수 있다.According to a preferred embodiment of the present invention, the synthetic fibers, for example, ultra-fine fibers, ultra-fine fibers, divided yarn or island-in-the-sea yarn; Alternatively, one or more synthetic fibers selected from Sheath / Core or Side by Side type composite melting point fibers selected from PP / PE, PET / PE, PET / PP, or PET / NYLON may be used.
본 발명의 바람직한 구현예에 따르면, 상기 기본원료는 상기 분말 활성탄 45~80중량%, 펄프 3~13중량%, 합성섬유 10~30중량%, 카본결합제 3~12중량%의 조성으로 이루어질 수 있다. According to a preferred embodiment of the present invention, the basic raw material may be composed of 45 to 80% by weight of the powdered activated carbon, 3 to 13% by weight of pulp, 10 to 30% by weight of synthetic fiber, 3 to 12% by weight of carbon binder. .
본 발명의 바람직한 구현예에 따르면, 상기 기본원료에는 추가적으로 분산제, 발수제, 카본정착제, 탈수촉진제 중에서 선택되는 하나 이상의 첨가제를 포함할 수 있다.According to a preferred embodiment of the present invention, the base material may additionally include one or more additives selected from dispersants, water repellents, carbon fixing agents, dehydration accelerators.
또한, 본 발명의 바람직한 구현예에 따르면, 추가적으로 첨가되는 상기 첨가제는 전체 부직포 구성에 대하여 분산제는 0.05~2.0중량%의 함량으로, 발수제는 0.2~1.0중량%의 함량으로, 카본정착제는 0.05~1.0중량%의 함량으로, 탈수촉진제는 0.05~1.0중량%의 함량으로 어느 하나 이상을 포함할 수 있다.In addition, according to a preferred embodiment of the present invention, the additive is added to the dispersing agent in the content of 0.05 to 2.0% by weight, the water repellent in the content of 0.2 to 1.0% by weight, the carbon fixing agent is 0.05 ~ In an amount of 1.0% by weight, the dehydration accelerator may include any one or more in an amount of 0.05 to 1.0% by weight.
본 발명의 바람직한 구현예에 따르면, 상기 습식 부직포는 가열압축 공정(S150) 이전에 300 ~ 800g/㎡의 중량, 2.2 ~ 3.6mm의 두께인 것을, 가열압축 공정(S150)을 통해 300 ~ 800g/㎡의 중량, 0.6 ~ 1.8mm의 두께로 압착 성형한 것이 바람직하다.According to a preferred embodiment of the present invention, the wet nonwoven fabric has a weight of 300 to 800 g / m 2 and a thickness of 2.2 to 3.6 mm before the heat compression process (S150), and 300 to 800 g / through the heat compression process (S150). It is preferable to carry out compression molding at a weight of 2 m 2 and a thickness of 0.6 to 1.8 mm.
또한, 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법은 가솔린 엔진 에어클리너에 내설되어, 차량의 정지 또는 주행 시에 엔진의 연소실이나 연료 저장탱크의 연료로부터 발생하는 증발가스 중 탄화수소를 포집하거나 포집된 탄화수소를 엔진 측으로 회수되도록 하여 재연소되도록 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법에 있어서, In addition, the method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to the present invention is built in a gasoline engine air cleaner, the evaporation gas generated from the fuel of the engine combustion chamber or fuel storage tank when the vehicle is stopped or running. In the manufacturing method of the wet nonwoven fabric for hydrocarbon traps of a gasoline engine air cleaner which collect | recovers a hydrocarbon or makes it collect | recovers and collects the collected hydrocarbon to an engine side,
분말 활성탄, 펄프, 합성섬유 및 카본결합제를 포함하는 기본 원료를 준비하되, 상기 분말 활성탄은 평균입도가 20㎛ ~ 150㎛ 범위이고, 메조구조가 45~90% 범위를 가지는 활성탄을 사용하며, 상기 합성섬유로서는 직경 30㎛ 이하이고 융점이 110℃~270℃인 합성섬유를 사용하여 기본원료를 준비하는 단계;Prepare a basic raw material including powdered activated carbon, pulp, synthetic fibers and carbon binder, wherein the powdered activated carbon uses activated carbon having an average particle size in the range of 20 µm to 150 µm and a meso structure in the range of 45 to 90%. Preparing a basic raw material using synthetic fibers having a diameter of 30 μm or less and a melting point of 110 ° C. to 270 ° C. as synthetic fibers;
상기 기본원료를 현탁액으로 만드는 서스펜션 공정(S110)을 거치는 단계;Undergoing a suspension process (S110) of making the basic material into a suspension;
서스펜션 공정(S110)을 거친 기본원료를 웹 포메이션 공정(S120)을 통해 웹 타입으로 형성하는 단계;Forming a base material that has undergone the suspension process (S110) into a web type through a web formation process (S120);
상기 웹 타입의 상태에서 수분배출공정(S130)을 거치는 단계;Going through the water discharge step (S130) in the state of the web type;
상기 수분 배출 후에 건조공정(S140)을 통해 건조시키는 단계; 및Drying through the drying process (S140) after the water is discharged; And
상기 건조공정(S140)을 거친 후 가열압축 성형시키는 가열압축 공정(S150)을 거쳐 시트 타입이나 롤 타입의 원단으로 성형하는 단계After the drying step (S140) and the heat compression molding step through the heat compression step (S150) to form a sheet type or roll type of fabric
를 포함하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법을 제공한다.It provides a method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner comprising a.
또한, 본 발명은 상기와 같이 제조된 습식 부직포를 이용하여 제조된 가솔린 엔진 에어클리너의 탄화수소 트랩을 포함한다.In addition, the present invention includes a hydrocarbon trap of a gasoline engine air cleaner manufactured using the wet nonwoven fabric prepared as described above.
본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포와 이를 적용한 탄화수소 트랩에 대한 효과를 설명하면 다음과 같다.The non-woven fabric for the hydrocarbon trap of the gasoline engine air cleaner according to the present invention and the effects on the hydrocarbon trap using the same will be described.
첫째, 본 발명에 따른 습식 부직포는 가솔린 엔진의 에어클리너 하우징 벽면 또는 디뷰져에 장착하여 사용하는 경우 제품의 내구성이 우수하고 유증기의 흡탈착 성능이 현저하게 개선되는 효과가 있다.First, when the wet nonwoven fabric according to the present invention is used to be mounted on the wall or deviewer of the air cleaner housing of the gasoline engine, the durability of the product is excellent and the adsorption and desorption performance of the vapor is remarkably improved.
둘째, 본 발명에 따른 습식 부직포는 특정 물성의 분말 활성탄, 펄프, 특정 물성의 합성섬유, 카본결합제를 기본 원료로 사용하여 습식 부직포를 제조함으로써, 분말 활성탄의 이탈을 방지하고 카본결합제를 최소화하여 카본결합제가 활성탄의 메조(Meso)구조를 막지 않아 BWC(Butane Working Capacity)의 성능을 크게 향상시킬 수 있는 효과가 있다. 이러한 효과는 본 발명에서 분말 활성탄을 특정 물성의 것으로 선택적으로 사용하고, 또한 특정 물성의 합성섬유를 선택적으로 사용함에 따른 상승효과로 달성된 것으로서 기존에는 예측할 수 없는 효과이다.Second, the wet nonwoven fabric according to the present invention manufactures a wet nonwoven fabric using powdered activated carbon, pulp, synthetic fibers of a specific physical property, and a carbon binder as a basic raw material, thereby preventing separation of the powdered activated carbon and minimizing carbon binder. Since the binder does not block the meso structure of the activated carbon, there is an effect that can significantly improve the performance of Butane Working Capacity (BWC). This effect is achieved by the synergistic effect of selectively using the powdered activated carbon as a specific physical property in the present invention, and selectively using a synthetic fiber of a specific physical property, which is previously unpredictable.
셋째, 본 발명에 따른 습식 부직포는 가솔린의 유증기 흡착 및 탈착 능력을 현저하게 개선하여, 차량의 주행 또는 정지 시에 배출되는 증발가스 중 탄화수소를 포집하여 대기오염의 주범인 탄화수소의 외부 유출을 방지하고, 차량에 탑승한 탑승객이 탄화수소 가스에 의한 피해를 최소화할 수 있는 효과가 있다.Third, the wet nonwoven fabric according to the present invention significantly improves the gas adsorption and desorption capacity of gasoline, and captures hydrocarbons in the boil-off gas discharged when the vehicle is running or stopped, thereby preventing the outflow of hydrocarbons, which is the main cause of air pollution. In addition, there is an effect that the passengers in the vehicle can minimize the damage caused by the hydrocarbon gas.
넷째, 본 발명에 따른 습식 부직포는 추가적으로 분산제, 발수제, 카본정착제, 탈수 촉진제를 첨가제로 사용하는 경우 그 기능이 더욱 향상될 수 있어서, 기존에 비해 품질이 우수한 습식 부직포와 이를 이용하는 탄화수소 트랩의 제조에 유용한 효과가 있다.Fourth, the wet nonwoven fabric according to the present invention can be further improved when the dispersant, water repellent, carbon fixing agent, dehydration accelerator is used as an additive, the production of a wet nonwoven fabric and a hydrocarbon trap using the same superior quality compared to the conventional It has a useful effect.
다섯째, 본 발명에 따른 습식 부직포는 기본 구조로 제조한 후에 이를 약 1/2의 부피로 압축하여 제조함으로서, 부피를 최소화하여 기존의 절곡형에 비하여 하우징 벽면 또는 디뷰져에 장착하여 압력 손실을 낮게 하여 연비를 절약하고 탄화수소 트랩에 적용시 매우 유리하고 일정두께의 습식 부직포 원단으로 형성하기 때문에, 이를 탄화수소 트랩에 적용하여 엔진 에어클리너 하우징에 내설하여 사용하는 경우 최소 부피로도 유증기의 흡착 및 탈착량이 최대화되는 효과가 있다.Fifth, the wet nonwoven fabric according to the present invention is produced by compressing it to a volume of about 1/2 after being manufactured in a basic structure, thereby minimizing the volume and mounted on the housing wall or deviewer to lower the pressure loss than the conventional bent type. As it saves fuel economy and is very advantageous when applied to hydrocarbon traps, and is formed of wet non-woven fabric of constant thickness, it is applied to hydrocarbon traps and used in the engine air cleaner housing when installed in the engine air cleaner housing. There is an effect that is maximized.
도 1은 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조공정을 나타낸 블록도이다.1 is a block diagram showing a manufacturing process of a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to the present invention.
도 2a는 본 발명에 따른 활성탄 구조의 기공크기별 분포상태를 예시하여 나타낸 사진이고,Figure 2a is a photograph showing the distribution state by pore size of the activated carbon structure according to the present invention,
도 2b는 본 발명에 따른 활성탄의 기공 구조에 대한 부분 확대 사진이며,Figure 2b is a partially enlarged photograph of the pore structure of the activated carbon according to the present invention,
도 2c는 본 발명에 따른 활성탄의 메조구조와 마이크로구조 기공의 분포에 따른 기공부피 증감율을 나타낸 그래프이다.Figure 2c is a graph showing the pore volume change rate according to the distribution of meso structure and micro structure pores of activated carbon according to the present invention.
도 3은 본 발명에 따른 합성섬유로 적용하기에 바람직한 섬유의 단면 구조를 예시한 것으로서, Sheath/Core 또는 Side by Side 형의 복합 융점섬유의 다양한 형상들을 개념적으로 예시한 도면이다.3 is a diagram illustrating a cross-sectional structure of a preferred fiber to be applied as a synthetic fiber according to the present invention, conceptually illustrating various shapes of a composite melting point fiber of Sheath / Core or Side by Side type.
이하, 첨부된 도면을 참조하여 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법 및 그에 의해 제조된 탄화수소 트랩용 습식 부직포에 관하여 하나의 구현예로서 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to a method of manufacturing a wet nonwoven fabric for hydrocarbon traps and a hydrocarbon nonwoven fabric for hydrocarbon traps produced by the gasoline engine air cleaner according to the present invention in detail as an embodiment.
도 1은 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조공정을 나타낸 블록도이다.1 is a block diagram showing a manufacturing process of a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to the present invention.
도 1을 참조하면, 본 발명의 바람직한 실시예에 따른 가솔린 엔진에어클리너의 탄화수소 트랩용 부직포의 제조방법을 예시하고 있는바, 여기서는 에어클리너에 내설되어, 차량의 정지 또는 주행 시에 엔진의 연료 저장탱크의 연료로부터 발생하는 증발가스 중 탄화수소를 포집하거나 포집된 탄화수소를 엔진 측으로 회수되어 재연소되도록 하는 습식 부직포에 대한 제조방법을 단계별로 제시하고 있다.Referring to FIG. 1, there is illustrated a method of manufacturing a non-woven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to a preferred embodiment of the present invention, which is built in an air cleaner to store fuel of an engine when the vehicle is stopped or running. Step by step is a method for producing a wet nonwoven fabric that captures hydrocarbons in the boil-off gas generated from the fuel of the tank or recovers the collected hydrocarbons to the engine.
도 2a는 본 발명에 따른 활성탄 구조의 메조구조 분포상태를 예시하여 나타낸 사진이고, 도 2b는 본 발명에 따른 활성탄의 기공 구조에 대한 부분 확대 사진이며, 도 2c는 본 발명에 따른 활성탄의 메조구조 기공의 크기의 분포에 따른 기공부피 증감율을 나타낸 그래프이다.Figure 2a is a photograph showing the meso structure distribution state of the activated carbon structure according to the present invention, Figure 2b is a partially enlarged picture of the pore structure of the activated carbon according to the present invention, Figure 2c is a meso structure of the activated carbon according to the present invention It is a graph showing the pore volume change rate according to the distribution of pore size.
도 2a 내지 도 2c를 참조하면, 본 발명의 바람직한 실시예에 따른 활성탄 성분으로 메조(Meso) 구조의 분포가 많을수록 반복 사용이 유리하므로 흡착-탈착-흡착-탈착 반복과정에서 반영구적으로 사용할 수 있다.Referring to Figure 2a to 2c, the more the distribution of the meso (Meso) structure as an activated carbon component according to a preferred embodiment of the present invention is advantageous because it can be used repeatedly in the adsorption-desorption-desorption-desorption iteration process.
도 3은 본 발명에 따른 합성섬유로 적용하기에 바람직한 Sheath/core 또는 Side by Side 형의 복합 융점섬유의 다양한 형상들을 개념적으로 예시한 도면이다.3 is a view conceptually illustrating various shapes of a composite melting point fiber of Sheath / core or Side by Side type suitable for application to a synthetic fiber according to the present invention.
도 3을 참조하면, 본 발명에 따른 합성섬유로서 직경 30㎛이하의 합성섬유와 복합 융점섬유를 사용하면 섬유와 섬유간의 활성탄을 고립시키면서 융점 섬유에 분말활성탄에 부착 및 결합되어 활성탄 이탈 방지와 특정 합성섬유에 활성탄이 결합되어 카본결합제 함량을 낮출 수 있는 것으로 확인되었다.Referring to FIG. 3, when synthetic fibers and composite melting point fibers having a diameter of 30 μm or less are used as the synthetic fibers according to the present invention, the activated carbon between the fibers is isolated and attached to the powdered activated carbon and the activated carbon is separated from the activated carbon. It was confirmed that activated carbon is combined with synthetic fibers to lower the carbon binder content.
또한, 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법에 의해 제조된 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포는 에어클리너에 내설되되, 에어클리너의 하우징 상에 초음파 융착에 의해 고정 설치될 수 있는 것이다.In addition, the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner manufactured by the method for producing a hydrocarbon trap for the hydrocarbon trap of the gasoline engine air cleaner according to the present invention is built in the air cleaner, but by ultrasonic welding on the housing of the air cleaner It can be fixed.
여기서, 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포는 분말 활성탄, 펄프, 합성섬유 및 카본결합제로 구성되는 기본 원료를 포함할 수 있다. 또한, 여기에 추가적으로 분산제, 발수제, 카본정착제, 탈수 촉진제 중에서 선택된 하나이상의 첨가제를 포함할 수 있다.Here, the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner according to the present invention may include a basic raw material composed of powdered activated carbon, pulp, synthetic fibers and a carbon binder. In addition, it may further include one or more additives selected from dispersants, water repellents, carbon fixatives, dehydration accelerators.
한편, 습식 부직포를 제조하기 위해서는 상기와 같은 기본 원료와 필요시 첨가제를 혼합하여 현탁액으로 만드는 서스펜션 공정(S110)을 거친 후, 웹 포메이션 공정(S120)을 통해 웹 타입으로 형성되며, 웹 타입의 상태에서 수분배출공정(S130)을 거친 후에 건조공정(S140)을 통해 건조시키고, 상기 건조공정(S140)을 거친 후 가열압축 성형시키는 가열압축 공정(S150)을 거쳐 시트 타입이나 롤 타입의 원단으로 성형되는 과정으로 이루어질 수 있다.On the other hand, in order to manufacture a wet nonwoven fabric through a suspension process (S110) of mixing the basic raw materials and additives as necessary to make a suspension, and then formed in a web type through a web formation process (S120), the state of the web type After passing through the water discharge step (S130) to dry through the drying step (S140), and after the drying step (S140) through a heat compression process (S150) to heat compression molding to form a sheet type or roll type fabric This can be done.
본 발명의 바람직한 구현예에 따르면, 가장 바람직한 조성으로는 상기 기본원료는 분말 활성탄 45~80중량%, 펄프 3~13중량%, 합성섬유 10~30중량%를 함유하고 카본결합제가 3~12중량%로 사용되는 경우이다.According to a preferred embodiment of the present invention, in the most preferred composition, the basic raw material contains 45 to 80% by weight of powdered activated carbon, 3 to 13% by weight of pulp, 10 to 30% by weight of synthetic fibers, and 3 to 12% by weight of carbon binder. Used as a%.
또한, 상기 기본원료에 추가적으로 첨가되는 상기 첨가제는 바람직하게는 전체 습식 부직포 조성에 대하여 분산제 0.05~0.2중량%, 발수제 0.2~1.0중량%, 카본정착제 0.05~1.0중량%, 탈수촉진제 0.05~1.0중량%의 조성으로 이루어질 수 있다.In addition, the additive additionally added to the base material is preferably 0.05 to 0.2% by weight of dispersant, 0.2 to 1.0% by weight of water repellent, 0.05 to 1.0% by weight of carbon fixing agent, 0.05 to 1.0 weight of dehydrating agent with respect to the total wet nonwoven fabric composition. It may consist of a composition of%.
본 발명의 바람직한 구현예에 따르면, 상기 분말 활성탄은 평균입도 20㎛ ~ 150㎛ 범위인 것을 사용하는 것이 바람직하다. 만일, 그 입도가 너무 작으면 흡착 효율이 적고 제조과정에서 분진이 심하여 바람직하지 않다. 또한, 그 입도가 너무 크게 되면 전체적인 흡착 효과가 저하될 수 있고, 제작과정이나 트랩으로 적용하여 사용시 활성탄 분말이 이탈될 가능성도 있다.According to a preferred embodiment of the present invention, the powdered activated carbon is preferably used having an average particle size of 20㎛ ~ 150㎛ range. If the particle size is too small, the adsorption efficiency is low and dust is severe in the manufacturing process, which is not preferable. In addition, if the particle size is too large, the overall adsorption effect may be lowered, and activated carbon powder may be released when used in a manufacturing process or as a trap.
또한, 활성탄 입도가 20㎛보다 작으면 습식 부직포 현탁액에서 물을 제거하기 위한 와이어 석션 공정에서의 활성탄이 물과 함께 다량 빠져나가게 되며, 20㎛ 입도를 갖는 크기의 활성탄이 너무 많으면 석션 압력이 너무 높아지게 되므로 습식 부직포를 제조할 수 없는 경우가 발생할 수 있다.In addition, when the activated carbon particle size is smaller than 20 μm, the activated carbon in the wire suction process for removing water from the wet nonwoven suspension is largely drawn out with the water. When there are too many activated carbons having a size of 20 μm, the suction pressure becomes too high. As a result, a wet nonwoven fabric may not be manufactured.
그리고 150㎛보다 큰 평균입도의 활성탄이 하이드로 카본 트랩(HC TRAP)에 사용되면, 엔진 에어클리너 내에 장착 후에 진동 발생시 활성탄 입자가 엔진 속에 혼입될 경우에는 엔진에 악영향을 미칠 수 있는 것이다.When activated carbon having an average particle size larger than 150 μm is used for the HC TRAP, when activated carbon particles are mixed in the engine when vibration occurs after being installed in the engine air cleaner, it may adversely affect the engine.
다시 말하면, 활성탄 중량이 적으면 부탄 흡착 용량이 낮으며, 여과면적이 증대되고 엔진 에어클리너 하우징의 공간이 적기 때문에 많은 양의 활성탄을 필요하며 너무 높을 경우 활성탄이 많아 엔진 에어클리너의 하우징에 대한 초음파 접착성이 떨어지고, 평판 또는 원형 형태의 엔진 에어클리너 하우징 구조로의 작업이 어려운 것이다.In other words, a small amount of activated carbon requires a low butane adsorption capacity, an increased filtration area, and a small space in the engine air cleaner housing, thus requiring a large amount of activated carbon. It is poor in adhesion and difficult to work with a flat or circular engine air cleaner housing structure.
본 발명에서는 펄프를 사용하는데, 펄프는 강한 수소 결합 때문에 여재 수분상태에서의 이송을 원활하게 하며, 평탄 형태의 펄프 구조로 미세 분말 활성탄을 많이 부착되게 하는 역할을 하는 것이다. 그러므로 만일, 그 펄프의 사용량이 너무 적으면 활성탄 부착 효율이 적고, 너무 과다하면 활성탄은 잘 부착되나 수분 배출공정에서의 진공 압력이 많이 발생되고 수분을 배출하지 못해서 이로 인해 오히려 전체적인 흡탈착 효과를 저해할 염려가 있다.In the present invention, the pulp is used, and the pulp facilitates the transport in the media moisture state due to the strong hydrogen bond, and serves to attach a lot of fine powdered activated carbon to the flat pulp structure. Therefore, if the amount of the pulp used is too small, the activated carbon adhesion efficiency is low. If the excess pulp is too excessive, the activated carbon adheres well, but a lot of vacuum pressure is generated in the water discharge process and the water cannot be discharged, thereby inhibiting the overall adsorption and desorption effect. There is concern.
본 발명의 바람직한 구현예에 따르면, 펄프로서는 일반적으로 NBK(CANFOR Pulp and Paper 회사)를 사용할 수 있는데, 반드시 이에 한정되는 것은 아니다. According to a preferred embodiment of the present invention, pulp may be generally NBK (CANFOR Pulp and Paper Company), but is not necessarily limited thereto.
또한, 본 발명의 바람직한 구현예에 따르면, 상기와 같은 분말 활성탄은 입도 20㎛ ~ 150㎛ 범위를 사용하되, 좋기로는 비표면적이 1g 당 1,000 ~ 3,000㎡/g인 것이 바람직하다. 더욱 더 바람직한 것은 1g 당 2.000 ~ 3,000㎡/g 것이 바람직하다. 비표면적이 너무 적으면 활성탄 함량을 과량 사용해야 하고, 최대 2배까지 더 포함되어야 하기 때문에 습식 부직포를 제조하기가 어려운 문제가 있다. 또한, 비표면적이 1g 당 3,000㎡/g 보다 크면 겉보기 밀도가 증가하고 활성탄 부피가 커 습식 부직포를 제조하는 데 두께 높아져 융점 극세섬유의 혼합 비율이나 합성섬유의 함량을 30% 이상으로 지나치게 높여야 하고 습식 부직포의 가열 압축공정에서 온도 및 압력을 추가적으로 더 높여야 하므로 바람직하지 않다. In addition, according to a preferred embodiment of the present invention, the powder activated carbon as described above is used in the particle size range 20㎛ ~ 150㎛, preferably, the specific surface area is preferably 1,000 ~ 3,000 m 2 / g per 1g. Even more preferred is preferably 2.000 to 3,000 m 2 / g per gram. If the specific surface area is too small, there is a problem that it is difficult to manufacture a wet nonwoven fabric because an excessive amount of activated carbon should be used and it should be included up to two times more. In addition, if the specific surface area is greater than 3,000 m2 / g per 1g, the apparent density increases and the volume of activated carbon increases to make the wet nonwoven fabric so that the mixing ratio of the ultrafine fibers or the content of the synthetic fibers must be excessively increased to 30% or more. It is not preferable because the temperature and pressure must be further increased in the heat compression process of the nonwoven fabric.
극세사는 보통 1데니어(5㎛)이하의 굵기를 갖는 실을 말하는데, 일반적으로 극세섬유란 매우 보들보들하고 부드러운 터치를 구사하게 개발된 섬유로서, 방사한 섬유를 분할하는 것에 따라 최고 0.001데니어의 가는 섬유로 제조될 수 있고, 보통은 부드러움을 요구하는 인공 스웨이드나, 안경 등의 렌즈를 닦는 천 등으로 사용된다.Microfiber is a thread having a thickness of less than 1 denier (5㎛). In general, microfiber is a very soft and soft touch. It is a fine fiber of up to 0.001 denier depending on the spun fiber. It can be made of fibers and is usually used as artificial suede that requires softness, or as a cloth for cleaning lenses such as glasses.
본 발명에서 ‘융점 극세섬유’라 함은 융점 110-270℃이고 직경이 30㎛ 이하인 극세사, 초극세사, 분해사, 해도사 등으로 제조된 섬유를 통칭한다. 이러한 융점과 굵기를 만족하는 합성섬유이면 특별히 제한하지 않고 사용될 수 있다.In the present invention, the term 'melting point microfibers' refers to fibers made of microfiber yarns, microfiber yarns, decomposed yarns and island-in-the-sea yarns having a melting point of 110-270 ° C and a diameter of 30 μm or less. If it is a synthetic fiber satisfying such melting point and thickness, it can be used without particular limitation.
본 발명에서 사용되는 분말 활성탄은 상기와 같은 비표면적을 가져야 함에도 불구하고, 본 발명은 상기 분말 활성탄의 기공구조가 특정된 것이 바람직한 바, 본 발명에서는 활성탄의 기공구조에서 메조구조가 45~90% 범위, 더욱 바람직하게는 60-90%로 함유된 것을 사용하는 것을 특징으로 한다. 만일, 분말 활성탄의 메조구조가 이보다 적은 범위이면 유증기의 흡착량이 급격하게 저하되고, 너무 많으면 활성탄의 제조에도 어려움이 있어서 비경제적이기도 하지만 흡착량을 더 이상 증가시키지 않으면서 오히려 유증기의 흡착 후에 유증기가 탈착되지 아니하고 잔류할 염려가 있다.Although the powdered activated carbon used in the present invention should have a specific surface area as described above, in the present invention, the pore structure of the powdered activated carbon is preferably specified. In the present invention, the meso structure in the pore structure of the activated carbon is 45 to 90%. Range, more preferably 60-90%. If the meso structure of the powdered activated carbon is less than this range, the adsorption amount of the vapor is drastically lowered. If the amount of the activated carbon is too low, the production of activated carbon is difficult to manufacture the activated carbon, which is uneconomical but does not increase the adsorption amount any more. There is a risk of remaining without desorption.
여기서 메조구조라 함은 활성탄의 기공크기가 2㎚~50㎚범위인 것으로서, 본 발명에서 이러한 메조구조를 특정 범위로 가지는 분말 활성탄을 사용함으로 인해 유증기의 흡착-탈착-흡착-탈착 반복의 특징을 현저하게 개선할 수 있는 것이다.Here, the meso structure means that the pore size of activated carbon is in the range of 2 nm to 50 nm, and the adsorption-desorption-adsorption-desorption repetition of oil vapor is remarkable due to the use of powdered activated carbon having such a meso structure in a specific range. It can be improved.
이에 관해서는 도 2a에서 활성탄의 기공구조 중에서 메조구조의 분포를 예시하여 보여주고 있는데, 여기서 활성탄에 의해 유증기가 흡착-탈착-흡착-탈착을 반복하는 특성을 이용하는 점을 고려할 때 마이크로구조나 메조구조보다 메조구조의 분포가 본 발명에서 중요한 의미가 있는 것이다.In this regard, the distribution of meso structure in the pore structure of activated carbon is illustrated in FIG. 2A, where the micro structure or meso structure is considered in consideration of the fact that the activated carbon repeats adsorption-desorption-adsorption-desorption. The distribution of mesostructures is more important in the present invention.
특히, 도 2c에서 보면, 활성탄 중에 메조구조의 분포가 중요한 의미가 있음을 확인할 수 있는 바, 이 그래프는 비표면적 측정법(BET) 방법으로 활성탄에 대한 마이크로(Micro), 메조(Meso) 기공 구조의 실험 결과를 나타낸 것이다. 도 2c의 그래프 중에서 점선은 마이크로 기공구조를 의미하고, 실선은 메조 기공구조를 의미한다. 그러므로 여기서 세로로 표시한 실선의 메조구조가 하이드로 카본 트랩(HC TRAP)에 해당하는 범위에 속하는 45-90%로 분포하는 활성탄이 우수한 흡탈착 효과가 있는 것으로 확인되었다.In particular, as shown in Figure 2c, it can be seen that the distribution of meso structure in the activated carbon has a significant meaning, this graph is a specific surface area measurement (BET) method of the micro (Meso) pore structure for the activated carbon The experimental results are shown. In the graph of FIG. 2C, the dotted line means the micro pore structure, and the solid line means the meso pore structure. Therefore, it was confirmed that activated carbon in which the meso structure of the solid line shown vertically is distributed at 45-90% belonging to the range corresponding to the hydrocarbon trap (HC TRAP) has an excellent adsorption and desorption effect.
본 발명에 따르면 분말 활성탄이 가지는 이러한 메조구조의 함량은 비표면적에 절대적으로 비례하는 것은 아니다. 비표면적이 적다고 하더라도 메조구조보다 큰 기공의 매크로(Macro)구조나 메조구조보다 작은 마이크로(Micro)구조의 형성 비율에 따라서 메조구조의 함량이 높을 수 있고, 반대로 비표면적이 커도 메조구조가 적게 포함될 수도 있다. 이러한 분말 활성탄의 메조구조 함량과 매크로 또는 마이크로 구조의 함량은 활성탄의 원료와 활성탄의 제조공정과 제조조건 등에 따라 그 분포가 매우 다양하게 변화될 수 있다. According to the present invention, the content of this meso structure of the powdered activated carbon is not absolutely proportional to the specific surface area. Even if the specific surface area is small, the content of the meso structure may be high depending on the formation rate of the macro structure of the pores larger than the meso structure or the micro structure smaller than the meso structure. May be included. The meso structure content and macro or micro structure content of the powdered activated carbon may be changed in various ways depending on the raw material of the activated carbon and the manufacturing process and manufacturing conditions of the activated carbon.
그러므로 본 발명에서는 기본 원료로 사용되는 분말 활성탄 중에서 이러한 메조구조의 합량이 45-90%로 함유된 분말 활성탄을 사용하여야 다른 혼합 성분인 특정 합성섬유의 사용과 펄프 및 카본 결합제 등 기본원료의 전체적인 구성에 의해 유증기의 흡탈착 효과에 대한 상승효과를 기대할 수 있다.Therefore, in the present invention, powdered activated carbon containing 45-90% of the total amount of such meso structure in the powdered activated carbon used as the basic raw material should be used, and the overall composition of the basic raw materials such as pulp and carbon binder and the use of specific synthetic fibers, which are other mixed components, As a result, a synergistic effect on the adsorption and desorption effect of oil vapor can be expected.
또한, 활성탄 비표면적과 메조구조가 높을수록 부탄의 흡탈착 성능이 우수한 것이며, 비표면적이 좁고 메조구조가 발달된 경우에는 활성탄 중량이 더 많이 소요되므로 메조구조가 90%보다 많이 함유되는 활성탄의 제조방법은 본 발명의 목적 달성을 위해서는 비경제적이므로 유효성이 없는 것이다.In addition, the higher the activated carbon specific surface area and meso structure, the better the adsorption and desorption performance of butane, and when the specific surface area is narrow and the meso structure is developed, the activated carbon requires more weight than 90%, thus producing activated carbon containing more than 90% of the meso structure. The method is ineffective because it is uneconomical for the purpose of the present invention.
따라서 본 발명은 상기와 같이 분말 활성탄이 평균입도 20㎛ ~ 150㎛ 범위인 것을 사용하고, 비표면적이 1g 당 1,000 ~ 3,000㎡/g의 비표면적 범위로 제공됨과 동시에 활성탄의 구조가 45~90% 범위의 메조 구조인 것을 포함하는 습식 부직포를 구성함으로써, 이를 탄화수소 트랩에 사용하는 경우 차량의 정지시 엔진이 정지된 상태에서 엔진의 연소실이나 연료 저장탱크의 연료로부터 발생하는 증발가스에 내포된 탄화수소가 크기와 상관없이 전체적인 크기에 대하여 보다 효율적으로 포집되고 또 용이하게 탈착될 수 있는 것이다.Therefore, the present invention uses a powder activated carbon in the range of 20㎛ ~ 150㎛ average particle size as described above, the specific surface area is provided in the specific surface area range of 1,000 ~ 3,000㎡ / g per 1g and at the same time 45 ~ 90% of the structure of activated carbon By constructing a wet nonwoven fabric comprising a meso structure in the range, when used in a hydrocarbon trap, the hydrocarbons contained in the boil-off gas generated from the fuel in the combustion chamber or fuel storage tank of the engine when the engine is stopped when the vehicle is stopped Regardless of the size, it can be more efficiently collected and easily detached with respect to the overall size.
이와 같이, 엔진의 시동 정지 상태에서 발생하는 증발가스는 엔진의 시동 정지 후 연료 인젝터 주위에 남은 연료나 엔진의 연소실 및 연료 저장탱크 등의 연료로부터 생성되며, 이 증발가스에는 탄화수소 가스가 포함되는 것으로 이러한 탄화수소 가스를 포집하는 것이 필요한데, 본 발명에 따르면 상기 메조구조가 45-90% 함유된 분말 활성탄으로서 입도 20㎛ ~ 150㎛ 범위를 가진 것을 사용하여 제조된 탄화수소 트랩용 습식 부직포를 사용하게 되면 탄화수소의 크기와 상관없이 전체적인 크기에 대하여 보다 효율적으로 포집될 수 있는 것이다.As such, the boil-off gas generated in the engine stop state is generated from fuel remaining around the fuel injector after the engine stops, or fuel such as the combustion chamber and fuel storage tank of the engine, and the gas includes hydrocarbon gas. It is necessary to collect such hydrocarbon gas. According to the present invention, when the wet nonwoven fabric for hydrocarbon traps manufactured using a powder activated carbon containing 45-90% of the meso structure having a particle size in the range of 20 μm to 150 μm is used, Regardless of the size of, the overall size can be collected more efficiently.
본 발명에 따르면, 이러한 분말 활성탄의 평균 입도와 메조구조의 분포 특성은 전체적인 습식 부직포의 유증기 흡착 성능과 탄화수소 트랩의 품질에 매우 중요한 인자가 된다. 특히, 후술하는 합성섬유의 선택적 특성과 함께 전체적인 품질과 유증기의 흡탈착 효과에 대한 상승효과를 기대하기 위한 조건이기도 하므로 중요한 의미가 있다.According to the present invention, the distribution of the average particle size and meso structure of the powdered activated carbon is a very important factor for the vapor absorption performance of the whole wet nonwoven fabric and the quality of the hydrocarbon trap. In particular, there is an important meaning because it is also a condition for expecting the synergistic effect on the overall quality and the adsorption and desorption effect of the vapor together with the selective properties of the synthetic fibers described later.
본 발명의 바람직한 구현예에 따르면, 상기 합성섬유로서는 직경 30㎛ 이하, 더욱 바람직하게는 10㎛ 이하이고, 융점이 110℃~270℃인 합성섬유가 바람직하게 사용된다. 만일, 그 직경이 너무 굵거나 융점이 상기 범위에 한정되지 않는 경우 습식 부직포를 제조하여 탄화수소 트랩에 적용하는 경우 활성탄 입자 이탈이 발생하거나 가열 압착하여 부직포 제조시 압착이 잘 이루어지지 않고 활성탄 입자의 이탈 방지 등 포섭효과를 기대하기 어려워서 원하는 품질을 기대할 수 없다.According to a preferred embodiment of the present invention, as the synthetic fibers, synthetic fibers having a diameter of 30 μm or less, more preferably 10 μm or less and a melting point of 110 ° C. to 270 ° C. are preferably used. If the diameter is too large or the melting point is not limited to the above range, when the wet nonwoven fabric is manufactured and applied to a hydrocarbon trap, activated carbon particles are released or heat-compressed so that the compression of the activated carbon particles is not performed and the activated carbon particles are released. It is difficult to expect subsumption effects such as prevention, so the desired quality cannot be expected.
본 발명의 바람직한 구현예에 따르면, 이러한 합성섬유로서는 예컨대 초극세 섬유, 극세섬유, 분할사, 해도사 중에서 선택된 하나이상 또는 융점이 110℃~270℃이고 시스코어(Sheath/Core) 또는 사이드바이사이(Side by Side)형의 복합 융점섬유인 PP/PE, PET/PE, PET/PP, PET/NYLON 중에서 하나 이상이 사용될 수 있다.According to a preferred embodiment of the present invention, such synthetic fibers include at least one selected from, for example, ultrafine fibers, ultrafine fibers, split yarns, islands-in-the-sea yarns or melting points of 110 ° C. to 270 ° C. and between sheath / core or side-by-side ( Side by Side) composite melting point fibers of one or more of PP / PE, PET / PE, PET / PP, PET / NYLON can be used.
여기서 PP는 폴리프로필렌, PE는 폴리에틸렌, PET는 폴리에틸렌테레프탈레이트를 각각 의미하는 것이다.PP is polypropylene, PE is polyethylene, PET is polyethylene terephthalate, respectively.
이와 관련하여 도 3에서는 여러 형태의 Sheath/Core 또는 Side by Side 형의 복합 융점섬유를 보여주고 있는데, 여기서는 섬유 직경이 10㎛ 인 경우를 예시하고 있는 것으로서, 복합 융점섬유의 단면구조를 개념적으로 표시하여 예시한 것이며, 본 발명에서 사용 가능한 합성섬유는 이에 한정되는 것이 아니라 이와 유사한 다른 형태나 다른 유사한 성분으로 이루어진 복합 융점섬유도 사용이 가능하다. In this regard, FIG. 3 shows various types of composite melting point fibers of Sheath / Core or Side by Side type. Here, a case in which the fiber diameter is 10 μm is illustrated, and the cross-sectional structure of the composite melting point fiber is conceptually displayed. The synthetic fibers usable in the present invention are not limited thereto, and composite melting point fibers composed of other similar forms or other similar components may be used.
또한, 본 발명에 의하면, 그 외에도 합성섬유로서 상기 조건인 직경과 융점이 상기 범위에 속하는 것이면 사용 가능하다. In addition, according to the present invention, the synthetic fiber can be used as long as the diameter and melting point, which are the above conditions, fall within the above ranges.
본 발명에서 이러한 합성섬유를 사용하는 이유는 함께 사용되는 분말 활성탄의 이탈을 방지하고 카본결합제의 사용을 최소화할 수 있으므로 카본결합제가 활성탄의 Meso 구조를 막지 않아 BWC의 성능 향상 시키도록 하기 위한 것이다. 또한, 본 발명에서 사용되는 분말 활성탄이 부착 내지 포섭된 상태로 부직포 내에 안정적으로 존재하도록 하기 위해서는 이러한 본 발명에 따른 합성섬유의 선택적 특징이 중요한 의미를 가지는 것이며, 이를 통해 흡착 및 탈착 효과를 현저하게 증가시킬 수가 있고, 안정적인 활성탄 포섭 효과를 발휘하기 때문에 분말 활성탄과의 상승효과를 기대할 수 있는 것이다.The reason for using such synthetic fibers in the present invention is to prevent the separation of powdered activated carbon used together and to minimize the use of a carbon binder, so that the carbon binder does not block the Meso structure of the activated carbon to improve the performance of the BWC. In addition, in order for the powdered activated carbon used in the present invention to stably exist in the nonwoven fabric in an attached or enclosed state, the selective feature of the synthetic fiber according to the present invention has an important meaning, and thus the adsorption and desorption effect is remarkably increased. It can be increased, and because it exhibits a stable activated carbon inclusion effect, a synergistic effect with powdered activated carbon can be expected.
이와 같이, 본 발명에서는 바람직하게도 상기와 같은 특정의 합성섬유를 사용함으로 인해 활성탄 이탈 방지, 가열 압축공정의 두께 조절과 엔진 에어클리너의 초음파 융착을 원활하게 하는 놀라운 효과를 발휘할 수 있게 된다.Thus, in the present invention, by using the specific synthetic fibers as described above, it is possible to achieve the surprising effect of preventing the release of activated carbon, controlling the thickness of the heat compression process, and smoothing the ultrasonic welding of the engine air cleaner.
본 발명의 바람직한 구현예에 따르면, 상기 특정의 합성섬유는 10~30중량%의 조성으로 사용할 수 있으며, 만일 그 사용량이 너무 적으면 활성탄을 충분하게 적용할 수 없는 문제가 있고, 너무 과량이면 역시 그만큼 단위 용적당 활성탄 함량이 적어서 흡탈착 효과의 개선을 기대하기 어렵다. According to a preferred embodiment of the present invention, the specific synthetic fibers can be used in a composition of 10 to 30% by weight, if the amount is too small, there is a problem that can not be enough to apply activated carbon, if too large The activated carbon content per unit volume is so small that it is difficult to expect an improvement in the adsorption and desorption effect.
본 발명의 바람직한 구현예에 따르면, 상기 합성섬유 중에서 융점 극세섬유를 사용하는 경우에는 융점 극세 섬유의 분산성 향상과 분말활성탄의 수분 유입 방지를 위해를 위해 융점 극세섬유에 분산성이 양호한 발수제를 사용하는 것이 바람직한 바, 이때 사용되는 발수제는 활성탄의 기공 구조를 막지 않고 수분 흡수 억제를 최소화하는 발수제를 사용하는 것이 좋다.According to a preferred embodiment of the present invention, in the case of using the melting point microfibers in the synthetic fibers, a water repellent having good dispersibility in the melting point microfibers is used to improve the dispersibility of the melting point microfibers and to prevent water inflow of the powdered activated carbon. It is preferable to use a water repellent, in which the water repellent used does not block the pore structure of activated carbon, it is preferable to use a water repellent that minimizes the inhibition of water absorption.
또한, 본 발명에서는 카본결합제가 사용되는데, 이는 상기 합성섬유에 분말 활성탄이 부착되어 고착되고 이탈되지 않도록 하기 위하여 사용하는 바, 예컨대 카본결합제로는 아크릴수지(Acryl resin), 폴리비닐아세테이트(PVAC resin), 폴리비닐알코올(PVA, Polyvinyl alchol) 수지 또는 파우더, 전분(CMC), 페놀수지(Phenol resin), 비닐아세테이트(EVA) 수지 또는 파우더, 폴리에틸렌(PE) 파우더 중에서 선택된 하나 이상이 사용될 수 있다.In addition, in the present invention, a carbon binder is used, which is used to prevent the powdered activated carbon from adhering to the synthetic fiber to be fixed and detached. For example, the carbon binder may be acrylic resin, polyvinylacetate, or the like. ), Polyvinyl alcohol (PVA, Polyvinyl alchol) resin or powder, starch (CMC), phenol resin (Phenol resin), vinyl acetate (EVA) resin or powder, polyethylene (PE) powder may be used.
본 발명에서 카본결합제가 너무 적게 사용되면 활성탄 입자의 이탈이 발생할 수 있고, 너무 과량 사용되면 활성탄의 기공이 막혀서 흡착 효율이 크게 저하될 수 있다.In the present invention, when the carbon binder is used too little, the release of activated carbon particles may occur, and when used too much, the pores of the activated carbon may be blocked and the adsorption efficiency may be greatly reduced.
본 발명은 바람직하게도 이러한 카본결합제의 함량을 최소화할 수 있는데, 그 이유는 상기와 같이 분말 활성탄과 합성섬유를 특정의 물성을 가지는 것으로 선택하여 사용함으로서 카본결합제의 사용량을 최소화할 수 있는 조성으로 제조가 가능하게 된 것이다.The present invention is preferably to minimize the content of such a carbon binder, the reason is that it is prepared in a composition that can minimize the amount of the carbon binder by using the powdered activated carbon and synthetic fibers selected as having a specific physical property as described above Is now possible.
본 발명의 바람직한 구현예에 따르면, 상기 기본원료에 추가적으로 첨가제로서 전체 습식 부직포 조성에 대하여 분산제 0.05~0.2중량%로 사용할 수 있는데, 분산제로서는 예컨대 변성 전분(modified starch)이 사용될 수 있으며, 그 외에도 통상의 분산제가 사용될 수 있다. 또한 첨가제로서 사용되는 발수제로는 예컨대, 실란계, 실록산계, 실리코네이트계 등 통상의 발수제를 0.2~1.0중량%로 사용할 수 있다.According to a preferred embodiment of the present invention, in addition to the basic raw material as an additive can be used as a dispersant 0.05 ~ 0.2% by weight relative to the total wet nonwoven composition, for example, modified starch (modified starch) can be used as a dispersant, Dispersants may be used. Moreover, as a water repellent used as an additive, normal water repellents, such as a silane type, a siloxane type, and a silicon type | system | group, can be used in 0.2 to 1.0 weight%.
또한, 본 발명의 바람직한 구현예에 따르면, 추가성분으로 활성탄 손실율 억제와 흡탈착 효과를 증진시키기 위하여 카본 정착제와 탈수 촉진제 사용할 수 있는데, 카본정착제로서는 1,2-에탄디아민 등과 같은 아민계 폴리머가 바람직하게 사용될 수 있다. 이러한 카본 정착제는 전체 습식 부직포 조성에 대하여 0.05-1.0중량%로 사용될 수 있다. 만일 그 사용량이 너무 적으면 첨가 효과가 없으며, 너무 과량 사용하여도 흡탈착 효과를 저해할 수 있다. In addition, according to a preferred embodiment of the present invention, a carbon fixing agent and a dehydration accelerator may be used as an additional component in order to suppress the activated carbon loss rate and enhance the adsorption and desorption effect, and as the carbon fixing agent, an amine polymer such as 1,2-ethanediamine, etc. Can be preferably used. Such carbon fixatives may be used at 0.05-1.0% by weight relative to the total wet nonwoven composition. If the amount is too small, there is no addition effect, and even if excessively used, the adsorption and desorption effect may be inhibited.
또한, 첨가제로 사용될 수 있는 탈수촉진제로서는 예컨대, 폴리아크릴아마이드와 같은 아마이드계가 사용될 수 있고, 그 함량은 0.05-1.0중량%로 사용될 수 있다. 이 경우 역시 너무 소량 사용되면 탈수 촉진 효과를 기대할 수 없고, 너무 과량 사용하면 오히려 흡탈착 효과를 저해할 우려가 있다.In addition, as a dehydration accelerator that can be used as an additive, an amide system such as polyacrylamide may be used, and the content thereof may be used at 0.05-1.0 wt%. In this case, too little amount can be expected to promote dehydration, and too much amount may inhibit the adsorption and desorption effect.
본 발명의 바람직한 구현예에 따르면, 전술한 바와 같은 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법은 압연 롤러를 통한 상기 가열압축 공정(S150)을 거쳐 시트 타입이나 롤 타입의 원단으로 성형하되, 상기 가열압축 공정(S150) 직전에 300 ~ 800g/㎡의 중량, 2.2 ~ 3.6mm의 두께이었던 것을, 상기 가열 압축공정(S150)을 통해 300 ~ 800g/㎡의 중량, 0.6 ~ 1.8mm의 두께로 압착 성형되도록 하는 것이 바람직하다. 이것은 중량 변화가 없으므로 가열 압착을 통해 약 1/2의 부피 감소가 되도록 압착하는 것을 의미한다. 만일, 그 압착을 지나치게 많이 하는 경우 오히려 흡착 탈착 효과가 감소할 수 있는 문제가 있다. According to a preferred embodiment of the present invention, the method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to the present invention as described above through the heat compression process (S150) through a rolling roller of the sheet type or roll type Molded into a fabric, but the weight of 300 ~ 800g / ㎡, 2.2 ~ 3.6mm thickness immediately before the heat compression process (S150), the weight of 300 ~ 800g / ㎡ through the heat compression process (S150), 0.6 ~ It is desirable to be press molded to a thickness of 1.8 mm. This means that there is no change in weight and the compression is such that there is a volume reduction of about 1/2 through heat compression. If there is too much pressing, there is a problem that the adsorption and desorption effect can be reduced.
한편, 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법은 어느 일면에 합성섬유로 제조된 건식 부직포 원단이 밀착되어 상기 가열압축공정(S150)을 통하여 시트 타입이나 롤 타입의 합성 부직포 원단으로 성형되도록 할 수도 있는 것이다.On the other hand, the method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to the present invention is a dry nonwoven fabric made of synthetic fibers in close contact with the sheet-type or roll-type synthesis through the heat compression process (S150) It may be to be molded into a nonwoven fabric.
본 발명의 바람직한 구현예에 따르면, 전술한 바와 같은 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 어느 일면에 건식 부직포 원단이 밀착된 상태에서, 상기 가열 압축공정(S150)을 통하여 시트 타입이나 롤 타입의 합성 부직포 원단으로 성형될 수도 있으며, 이러한 경우에는 에어클리너에 내설되게 구성할 수 있고, 에어클리너의 하우징 상에 초음파 융착에 의해 더욱 안정적으로 융착 고정이 될 수 있게 된다.According to a preferred embodiment of the present invention, the dry nonwoven fabric is in close contact with any one surface of the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner as described above, the sheet type or roll type through the heat compression process (S150) It may be molded into a synthetic non-woven fabric, in this case it can be configured to be built in the air cleaner, it is possible to be more stably fusion fixed by ultrasonic welding on the housing of the air cleaner.
본 발명의 바람직한 구현예에 따르면, 서스펜션 공정(S110)에서 건조공정(S140)까지 완료된 탄화수소 트랩용 습식 부직포 원단의 활성탄 손실율과 부탄용량효율(BWC)을 고려하면, 상기와 같은 메조구조가 특정 범위로 함유된 특정 물성의 분말 활성탄을 사용하는 것이 바람직하다.According to a preferred embodiment of the present invention, considering the activated carbon loss rate and butane capacity efficiency (BWC) of the wet nonwoven fabric for hydrocarbon traps completed from the suspension process (S110) to the drying process (S140), the meso structure as described above is a specific range Preference is given to using powdered activated carbon of certain physical properties.
또한, 가솔린 엔진 에어클리너의 경우 200㎛ 입자가 엔진 속으로 유입될 때에는 엔진이 손상될 수 있으므로 분말 활성탄은 20~150㎛ 범위의 분말활성탄을 사용하는 것이며, 서스펜션공정(S110)에서의 메쉬(mesh) 망을 통해 물을 석션하는 공정에서 분말 활성탄이 물과 함께 빠져나와 분말 활성탄 손실율을 줄이기 위해서는 추가적으로 카본정착제를 사용하는 것이 바람직하게 고려될 수 있다. 이와 같이 본 발명에서 추가적으로 사용되는 첨가제는 습식 부직포의 물성을 부분적으로 더욱 개선시키는데 기여할 수 있다.In addition, in the case of the gasoline engine air cleaner, since the engine may be damaged when 200 μm particles are introduced into the engine, the powder activated carbon uses powder activated carbon in the range of 20 to 150 μm, and the mesh in the suspension process (S110). In the process of suctioning water through the net, it is preferable to additionally use a carbon fixing agent in order to reduce the powdered activated carbon loss rate with the powdered activated carbon to escape with the water. As such, the additives additionally used in the present invention may contribute to partially further improving the physical properties of the wet nonwoven fabric.
또한, 본 발명의 바람직한 구현예에 따르면, 가열 압축공정(S150)은 활성탄, 펄프, 합성섬유, 카본결합제 또는 추가성분이 사용되는 경우 상기 열거한 첨가제 등이 혼합된 원료들은 원단이 건조된 이후에 이들 성분이 완전히 결합되지 않기 때문에 가솔린 엔진 에어클리너에 장착되어 사용되는 과정에서 습식 부직포 제조에 사용된 원료가 탈착되는 경우를 방지할 필요가 있다. 이를 위하여 바람직하게도 가열 압착공정을 시행하는 것이 좋다. 그러나 가열 압착 후 원단의 두께가 두꺼우면 유로의 압력손실 높여 연비 소비를 상승시키기 때문에 가열 압축 공정을 실시하여 두께를 최소화하는 것이 바람직하다.In addition, according to a preferred embodiment of the present invention, the heat compression process (S150) is a raw material mixed with the additives listed above when activated carbon, pulp, synthetic fibers, carbon binders or additional components are used after the fabric is dried Since these components are not completely combined, it is necessary to prevent the raw materials used to manufacture the wet nonwoven fabric from being desorbed in the process of being installed and used in the gasoline engine air cleaner. For this purpose, it is preferable to perform a heat compression process. However, if the thickness of the fabric is thick after heat compression, it is preferable to minimize the thickness by performing a heat compression process because the pressure loss of the flow path is increased to increase fuel consumption.
본 발명에 따른 하나의 예로서, 본 발명의 기본원료를 사용하여 서스펜션과 웹 형성과정을 거쳐서 원단으로 구성함에 있어서, 한지 방식에 의한 것이면 탈수 시간과는 관련이 적으며, 기계식 방식의 연속라인에서는 석션의 한계가 있기 때문에 석션 용량을 키우면 원단으로 제조가 가능한 것이다. 또한, 다른 바람직한 예로서 현실적으로 2겹을 각각 제조하여 결합하는 것이 현실적으로 바람직한 경우가 있다.As an example according to the present invention, in the fabric of the raw material through the suspension and the web forming process using the basic raw material of the present invention, if it is by the Hanji method is less related to the dehydration time, in the mechanical continuous line Because of the limitation of suction, you can manufacture with fabric by increasing suction capacity. In addition, as another preferred example, there are cases where it is practically preferable to manufacture and combine the two plies in reality.
또한, 한지방식이나 기계식 방식이나 모두 두께는 다단프레스를 통하여 압착하는 것이 바람직하다.In addition, it is preferable that both the paper and the mechanical method are pressed using a multi-stage press.
이러한 경우, 본 발명의 바람직한 구현예에 따르면 가열 압착공정에서 보통 최초의 두께에서 최소 1/2은 줄여야하고 기본적인 것은 석션 공정을 하여도 두께 줄이는 데 한계가 있어 본 발명에 따른 특정 조건의 합성섬유를 사용하는 것이 바람직한 결과를 얻을 수 있다. 예컨대 융점 극세섬유 등이나 상기 예시한 본 발명에서 선택적으로 사용하는 합성섬유들이 바람직하게 사용될 수 있으며, 원단 제작과정에서 활성탄의 이탈을 방지하기 위해서 가열 압착공정은 150℃~260℃의 고온과 30N/㎠ ~300N/㎠ 고압 조건에서 압착하는 것이 바람직하다.In this case, according to a preferred embodiment of the present invention in the heat compression process usually at least 1/2 of the initial thickness should be reduced and the basic is limited to reduce the thickness even with the suction process is a synthetic fiber in a specific condition according to the present invention Use may yield desirable results. For example, melting point microfibers or the like and synthetic fibers selectively used in the present invention exemplified above may be preferably used. In order to prevent the release of activated carbon during the fabrication process, the hot pressing process is performed at a temperature of 150 ° C. to 260 ° C. and 30N / It is preferable to crimp under high pressure conditions of cm <2> -300N / cm <2>.
이와 같이, 전술한 바와 같은 제조방법에 의해 제조되는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포는 차량의 정지 또는 주행 시에 엔진의 연소실이나 연료 저장탱크의 연료로부터 발생하는 증발가스 중 탄화수소를 포집하거나 포집된 탄화수소를 엔진 측으로 회수되도록 하여 재연소되도록 하는 것으로, 이를 자동차 등과 같은 엔진 에어클리너에 유증기 흡탈착용으로 부착되는 탄화수소 트랩에 통상의 방법으로 적용될 수 있다.As such, the wet nonwoven fabric for hydrocarbon traps of a gasoline engine air cleaner manufactured by the manufacturing method as described above captures hydrocarbons in the boil-off gas generated from fuel of the combustion chamber or fuel storage tank of the engine when the vehicle stops or runs. By recovering the collected hydrocarbon to the engine side to be re-burned, it can be applied to a hydrocarbon trap attached to the engine air cleaner such as a car for oil adsorption and desorption in a conventional manner.
그러므로 본 발명은 상기와 같은 본 발명에 따른 탄화수소 트랩용 습식 부직포를 포함하는 가솔린 엔진 에어클리너용 탄화수소 트랩을 포함한다.The present invention therefore comprises a hydrocarbon trap for a gasoline engine air cleaner comprising a wet nonwoven fabric for a hydrocarbon trap according to the present invention as described above.
이하 본 발명을 실시예에 의거 상세하게 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by Examples.
여기서는 실시예와 비교예로 제작된 습식 부직포 원단을 적용하는 에어클리너에 대해 분말 활성탄의 활성탄 성능시험(실험예 1), 서스펜션 공정(S110)에서 건조공정(S140)까지 완료된 탄화수소 트랩용 습식 부직포 원단의 활성탄 손실율을 검토한 시험(실험예 2) 및 서스펜션 공정(S110)에서 가열 압축공정(S150)까지 최종적으로 제조공정이 완료된 탄화수소 트랩용 습식 부직포 원단의 부탄용량효율(BWC; butane working capacity efficiency)을 검토한 BWC 성능시험(실험예 3), 초음파 융착(실험예 4) 등을 단계별로 설명하기로 한다.Here, the activated carbon performance test of activated carbon of powder activated carbon (Experimental Example 1), the suspension process (S110) to the drying process (S140) for the air cleaner applying the wet nonwoven fabric prepared in Examples and Comparative Examples, the wet nonwoven fabric for hydrocarbon trap Butane working capacity efficiency (BWC) of the wet nonwoven fabric for hydrocarbon traps in which the manufacturing process was completed from the test (Experimental Example 2) and the suspension process (S110) to the heat compression process (S150). The BWC performance test (Experimental Example 3), ultrasonic fusion (Experimental Example 4), etc., which have been examined will be described step by step.
제조예 1-6, 제조비교예 1-4Preparation Example 1-6, Preparation Example 1-4
하기 표 1과 같은 구성으로 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포를 제작하는데 사용하는 분말 활성탄을 제작 준비하였다.To prepare a powder activated carbon used to produce a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner in the configuration as shown in Table 1.
실험예 1 : 분말 활성탄의 활성탄 성능시험Experimental Example 1: Activated carbon performance test of powdered activated carbon
상기 제조예 및 제조비교예에서 제조된 분말 활성탄에 대하여 흡탈착 성능시험을 하기 위하여, 시험전 3시간 110℃에서 베이킹(baking), 시험용 표준 지그 사용, 활성탄 500㎖ 충진 상온상압(25℃±2℃, 1atm), 50±5% RH, N2 가스 250cc/min와 부탄가스(Butane Gas) 250cc/min으로 로딩(Loading)후 포화시까지 측정하고 최저질량(mass)까지 25.5L/min으로 퍼징(Purging)하였으며, 그 결과 값은 하기 표 1에서 보는 바와 같다.In order to perform adsorption and desorption performance test on the powdered activated carbon prepared in Preparation Examples and Comparative Examples, baking at 110 ° C. for 3 hours before testing, using a standard jig for testing, and 500 ml of activated carbon at room temperature (25 ° C. ± 2 ° C.) ℃, 1atm), 50 ± 5% RH, 250cc / min of N 2 gas and 250cc / min of Butane Gas, measured until saturation after loading and purging to 25.5L / min to the minimum mass Purging, and the results are shown in Table 1 below.
구분division 메조구조(%)Meso Structure (%) 비표면적(㎡/g)Specific surface area (㎡ / g) BWC mass /Carbon massBWC mass / Carbon mass BWC 흡/탈착efficiency(%)BWC adsorption / desorption efficiency (%)
제조예 1Preparation Example 1 88.188.1 2,5002,500 0.230.23 95.8195.81
제조예 2Preparation Example 2 80.080.0 2,3932,393 0.220.22 93.7993.79
제조예 3Preparation Example 3 75.375.3 2,1002,100 0.190.19 89.0089.00
제조예 4Preparation Example 4 54.054.0 1,8001,800 0.180.18 84.8084.80
제조예 5Preparation Example 5 45.345.3 1,5001,500 0.170.17 83.1083.10
제조예 6Preparation Example 6 80.080.0 1,8001,800 0.190.19 85.1285.12
제조비교예 1Comparative Example 1 92.192.1 2,5002,500 0.230.23 93.9093.90
제조비교예 2Comparative Example 2 30.230.2 1,5001,500 0.090.09 45.2145.21
제조비교예 3Comparative Example 3 25.525.5 1,1001,100 0.050.05 36.6036.60
제조비교예 4Comparative Example 4 50.550.5 800 800 0.110.11 57.3657.36
상기와 같은 분말 활성탄의 활성탄 성능시험(실험예 1)을 참조하면, 활성탄 비표면적과 메조구조 함량이 높을수록 부탄(Butane) 가스의 흡착성능이 높으며, 메조구조의 함량이 낮을수록 부탄(Butane) 가스의 흡착 성능이 저하됨을 알 수 있었다. 또한, 습식 부직포 구성에서 흡탈착 성능을 고려한다면 분말 활성탄의 비표면적이 클수록 유리하지만 비표면적 보다는 메조구조의 함량이 흡탈착 성능을 크게 지배하는 것으로 확인되었다. Referring to the activated carbon performance test (Experimental Example 1) of the powdered activated carbon as described above, the higher the specific carbon surface area and the meso structure content, the higher the adsorption performance of butane gas, and the lower the content of the meso structure, butane. It was found that the adsorption performance of the gas was reduced. In addition, when considering the adsorption and desorption performance in the wet nonwoven fabric composition, it was found that the larger the specific surface area of the powdered activated carbon, the larger the meso structure than the specific surface area dominates the adsorption and desorption performance.
즉, 활성탄 1g당 부탄(Butane) 가스 포집 중량(g)이 높을수록 포집 성능이 우수한 것이다.That is, the higher the butane gas collection weight (g) per 1g of activated carbon, the better the collection performance.
참고적으로, 가솔린 엔진 에어클리너에 장착되어 차량 정지시에 흡착하고 운전시에 탈착해서 반영구적으로 차량의 폐차시까지 사용됨으로써 흡착 효율과 탈착 효율의 합이 99%에 가까운 것이 이상적이다.For reference, it is ideal that the sum of the adsorption efficiency and the desorption efficiency is close to 99% since it is mounted on the gasoline engine air cleaner and is adsorbed when the vehicle is stopped, and desorbed during operation and used semi-permanently until the end of the vehicle.
그리고 흡, 탈착 성능이 낮으면 활성탄 내부에서 부탄(Butane) 가스를 포집하고 있어 완전히 탈착되지 않아 반영구적으로 사용하기 위해서는 완전히 부탄(Butane) 가스가 탈착되고 다시 흡착하는 것이 반복되는 탄화수소 트랩(HC, Hydrocabon Trap)에는 한계가 있는 것이다.If the adsorption and desorption performance is low, butane (Butane) gas is trapped inside the activated carbon, so it is not completely desorbed. But for semi-permanent use, butane gas is completely desorbed and adsorbed again. Trap) has its limits.
더욱이, 메조구조 및 비표면적이 높을수록 부탄흡착 용량이 높아지며, 또한 흡, 탈착 성능이 동시에 높아진다. 다만, 메조구조가 90% 보다 많은 경우 실질적으로 더 이상의 흡탈착 성능 향상을 기대하기 어려운 것으로 확인되었다. 상기 실험결과에서는 오히려 분말 활성탄에서 90%보다 많은 메조구조를 함유하는 활성탄의 제조에 다른 비경제적인 문제를 고려한다면 불리한 결과를 초래할 수 있다.Moreover, the higher the meso structure and the specific surface area, the higher the butane adsorption capacity and the higher the adsorption and desorption performance. However, when the meso structure is more than 90%, it was confirmed that it is difficult to expect substantially more adsorption and desorption performance. In the above experimental results, rather than considering other uneconomical problems in the production of activated carbon containing more than 90% mesostructure in the powdered activated carbon may lead to disadvantageous results.
또한, 자동차 엔진에어클리너 내에 부착하는 하이드로카본트랩(HC Trap) 자동차부품으로서 반영구적으로 사용해야 하기 때문에 흡착과 탈착을 지속적으로 하게 된다.In addition, since it needs to be used semi-permanently as a hydrocarbon trap (HC Trap) car parts attached to the air cleaner of an automobile, adsorption and desorption are continuously performed.
즉, 엔진이 정지하였을 때는 흡착을 하고 운전시에는 엔진 공기 유입으로 다시 엔진 속으로 부탄이 다시 빨려 들어가기 때문에 흡, 탈착 효율이 100%인 것이 가장 이상적이다. 하지만 활성탄 제조 및 구조상 100% 메조 구조를 가지고 있는 활성탄은 불가능한 실정이다.In other words, the adsorption and desorption efficiency is ideally 100% because the adsorption is carried out when the engine is stopped and butane is sucked back into the engine due to the inflow of engine air during operation. However, activated carbon having a 100% meso structure in activated carbon production and structure is impossible.
특히, 여기서는 분말 활성탄에서 메조구조가 90%가 넘는 경우는 그 효과가 그다지 향상되지는 아니하고 오히려 제조가 매우 어렵고 제조비용만 비싸지기 때문에 비경제적이 되므로 메조구조가 90% 이하인 활성탄을 사용하는 것이 바람직한 것으로 확인되었다.In particular, when the meso structure of the powdered activated carbon is more than 90%, the effect is not so much improved, but rather it is economically difficult to manufacture and the manufacturing cost is high, so it is preferable to use activated carbon having a meso structure of 90% or less. It was confirmed.
실시예 1-4Example 1-4
상기 제조예 2에서 제조된 분말 활성탄 90㎛입도 340g/㎡, 펄프 15g/㎡, 110℃ 융점 극세섬유 (10㎛) 80g/㎡, 발수제 1.3g/㎡, 카본결합제(Ashland사 HercopulsTM125) 45g/㎡, 부직포 지지체 20g/㎡으로 상기와 같은 기본 원료와 첨가제를 사용하되, 이를 현탁액으로 만드는 서스펜션 공정(S110)을 거친 후 웹 포메이션 공정(S120)을 통해 웹 타입으로 형성하였으며, 웹 타입의 상태에서 수분배출공정(S130)을 거친 후에 건조공정(S140)을 통해 건조하였고, 여기서 실시예 1-4는 각기 기본원료를 포함하며, 일부 첨가제 중 카본정착제 또는 탈수촉진제를 사용하되, 여기서 사용된 카본정착제는 에스와이켐(SY CHEM사 SB-50N)를 사용하고, 탈수촉진제로는 에스와이켐(SY CHEM사 C-100)를 사용하였다. 이러한 방법으로 하기 표 2와 같은 구성으로 에어클리너로서 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포를 제작하였다.Powder activated carbon prepared in Preparation Example 2 90㎛ particle size 340g / ㎡, pulp 15g / ㎡, 110 ℃ melting point microfine fiber (10㎛) 80g / ㎡, water repellent 1.3g / ㎡, carbon binder (Ashland Hercopuls TM 125) 45g / M², non-woven fabric support 20g / ㎡ using the same basic raw materials and additives, after the suspension process (S110) to make it into a suspension was formed into a web type through a web formation process (S120), the state of the web type After the water discharge step (S130) in and dried through a drying step (S140), where Example 1-4 each contains a base material, using some of the additives, carbon fixing agent or dehydration accelerator, used here SY Chem (SY CHEM Co., Ltd. SB-50N) was used as the carbon fixing agent, and SY Chem (SY CHEM Co., Ltd. C-100) was used as the dehydration accelerator. In this manner, a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner was manufactured as an air cleaner in the configuration shown in Table 2 below.
실험예 2 : 상기 서스펜션 공정(S110)에서 건조공정(S140)까지 완료된 탄화수소 트랩용 습식 부직포 원단의 활성탄 손실율 시험Experimental Example 2: Activated carbon loss rate test of the wet nonwoven fabric for hydrocarbon trap completed from the suspension process (S110) to the drying process (S140)
상기 실시예 1-4에서 제작된 원단에 대하여 투입전 중량과 투입입후의 중량 편차의 방법으로 활성탄 손실량을 측정하여 다음 표 2에 나타내었다.Activated carbon loss was measured by the method of weight difference before and after the input of the fabric produced in Example 1-4, and the results are shown in Table 2 below.
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4
카본 정착제 0.6% + 탈수촉진제 0.5%Carbon Fixer 0.6% + Dehydration Accelerator 0.5% 카본 정착제 0% +탈수촉진제 0%Carbon fixer 0% + Dehydration accelerator 0% 카본 정착제0.8%Carbon fixer 0.8% 탈수 촉진제0.5%Dehydration accelerator 0.5%
탈수 시간(sec)Dehydration time (sec) 4.54.5 6.86.8 5.405.40 5.25.2
원단 중량(g/㎡)Fabric weight (g / ㎡) 500.4500.4 510.4510.4 506.2506.2 520.1520.1
손실 중량(g/㎡)Loss weight (g / ㎡) 14.9614.96 68.6868.68 45.945.9 29.9229.92
활성탄 손실율(%)Activated Carbon Loss Rate (%) 4.44.4 20.220.2 13.513.5 8.88.8
실시예 5-8, 비교예 1-2Example 5-8, Comparative Example 1-2
상기 실시예 2와 같은 방법에 의해 제조된 방법으로 원단을 제조한 후에, 제조된 원단을 150℃~230℃ 조건에서 30N/㎠ ~ 160N/㎠으로 가열 압축 성형시키는 가열 압축공정(S150)을 거쳐 원단으로 성형되는 과정을 거쳐서 습식 부직포 원단을 제조하되 하기 표 3과 같은 구성으로 에어클리너로서 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포를 제작하였다. After manufacturing the fabric by the method prepared in the same manner as in Example 2, through the heat compression process (S150) to heat compression molding the prepared fabric to 30N / ㎠ ~ 160N / ㎠ at 150 ℃ ~ 230 ℃ conditions The wet nonwoven fabric was manufactured through a process of molding into a fabric, but the wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner was manufactured as the air cleaner as shown in Table 3 below.
비교예로는 활성탄의 메조구조 함량을 달리한 경우와 활성탄의 함량 및 원단 두께를 달리하는 방법으로 습식 부직포를 제작하였다.As a comparative example, a wet nonwoven fabric was fabricated by varying the meso structure content of activated carbon and by varying the content of the activated carbon and the fabric thickness.
실험예 3 : 상기 서스펜션 공정(S110)에서 가열 압축공정(S150)까지 최종적으로 제조공정이 완료된 탄화수소 트랩용 습식 부직포 원단의 부탄용량효율(BWC; butane working capacity efficiency)을 검토한 BWC 성능시험Experimental Example 3: BWC performance test examining the butane working capacity efficiency (BWC) of the wet nonwoven fabric for hydrocarbon traps, in which the manufacturing process was completed from the suspension process (S110) to the heat compression process (S150).
상기 실시예 5-8, 비교예 1-2에 의해 제조된 원단에 대하여, BWC(Butane Working Capacity) 성능 시험은, 시험전 강제순환 오븐에서 110±5℃에서 3시간 동안 시험용 표준 지그 사용, 원단 0.031㎡, 안정화 28.5±0.5 l/min으로 건조 청정 공기를 흡인하여, 질량변화일이 0.1g/10min 미만일 때 종료, 로딩(loading)은 부탄 흡합기(부탄50%+질소50%) 시료를 176 ml/min으로 흡인하여, 질량 변화율이 0.01g/10min 미만일 때 종료/중량측정, 탈착(purging)은 42 l/min으로 건조 청정 공기를 흡인하여, 질량변화율이 0.01g/10min미만일 때 종류 및 중량 측정하고 3회 반복하여 평균값으로 하였으며, 그 결과 값은 표 3에서 보는 바와 같다.For the fabrics prepared in Examples 5-8 and Comparative Examples 1-2, the BWC (Butane Working Capacity) performance test, using a standard jig for 3 hours at 110 ± 5 ℃ in a forced circulation oven before the test, the fabric Aspirate dry clean air at 0.031m2, stabilize 28.5 ± 0.5 l / min, and finish when the mass change date is less than 0.1g / 10min, and loading is completed. Aspirate at ml / min, finish / weigh when mass change rate is less than 0.01g / 10min, and purging suck dry dry air at 42l / min, type and weight when mass change rate is less than 0.01g / 10min Measured and repeated three times as an average value, the results are shown in Table 3.
구분division 실시예 5Example 5 비교예 1Comparative Example 1 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 비교예 2Comparative Example 2
원단 중량(g/㎡)Fabric weight (g / ㎡) 500500 500500 550550 550550 550550 330330
원단 두께(mm)Fabric thickness (mm) 1.41.4 1.41.4 1.61.6 1.61.6 2.62.6 0.70.7
활성탄 중량(g/㎡)Activated Carbon Weight (g / ㎡) 340(68%)340 (68%) 340(68%)340 (68%) 340(61.8%)340 (61.8%) 300(54.5%)300 (54.5%) 300(54.5%)300 (54.5%) 214.5(65%)214.5 (65%)
비표면적(㎡/g)Specific surface area (㎡ / g) 2,3902,390 1,5011,501 2,3892,389 2,3952,395 2,3932,393 2,3962,396
메조 구조(%)Meso Structure (%) 8080 3030 8080 8080 8080 8080
시험 여과면적(m2)Test filtration area (m 2 ) 0.0310.031
BWC(g)BWC (g) 3.453.45 1.521.52 3.333.33 3.013.01 3.043.04 1.781.78
위의 실험결과를 분석해 보면, 앞서 제조예로 제시한 상기 실험예 1의 실험결과를 함께 고려할 때 분말 활성탄의 메조구조가 특정 범위로 함유되는 것을 선택하여 소정 범위로 사용하는 경우 BWC 성능시험 결과 현저하게 우수한 특성을 나타내는 것으로 확인되었다.Analyzing the above experimental results, when considering the experimental results of Experimental Example 1 presented above as a preparation example, BWC performance test results remarkably when the selected meso structure of the powdered activated carbon is used in a predetermined range It was confirmed to exhibit excellent properties.
또한, 가열 압축공정(S150)은 활성탄, 펄프, 합성섬유, 카본결합제 및 첨가제가 건조된 이후에 완전히 결합되지 않기 때문에 통상의 가솔린 엔진 유입 유량 2.8㎥/min이 사용 가능하도록 하고, 아울러 가솔린 엔진 에어클리너에 장착되어 원료가 탈착되지 않도록 하는 것이며, 두께가 두꺼우면 유로의 압력손실 높여 연비 소비를 상승시키기 때문에 가열 압축공정을 실시하여 두께를 최소화하는 것이 바람직한 것으로 확인되었다.In addition, since the heat compression process (S150) is not completely bonded after the activated carbon, pulp, synthetic fibers, carbon binders and additives are dried, a normal gasoline engine inflow flow rate of 2.8m 3 / min can be used, and the gasoline engine air It is confirmed that it is desirable to minimize the thickness by performing a heat compression process because it is mounted on the cleaner to prevent the raw material from being detached, and if the thickness is thick, the pressure loss of the flow path is increased to increase fuel consumption.
실시예 9, 비교예 3-6Example 9, Comparative Example 3-6
상기 실시예 2와 같은 활성탄을 사용하고 또한, 합성섬유로서 직경이 30㎛ 이하이거나 융점 110℃ 인 것을 융점 극세섬유로 사용하고, 비교예로서는 이와 다른 합성섬유(또는 직경이 30㎛보다 크거나 융점이나 물성이 다른 섬유)를 사용하되, 하기 표 4의 조건으로 각각 습식 부직포 원단을 제조하였다.The same activated carbon as in Example 2 is used, and as the synthetic fibers, those having a diameter of 30 μm or less or a melting point of 110 ° C. are used as the melting point microfine fibers. Fibers of different physical properties) were used, but each of the wet nonwoven fabrics was prepared under the conditions shown in Table 4 below.
실험예 4 ; 초음파 융착시험Experimental Example 4; Ultrasonic welding test
상기 실시예 9와 비교예 3-6의 습식 부직포에 대한 초음파 융착시험을 통해 엔진에어클리너 하우징과 HC TRAP 원단의 이탈력 부착 시험으로 HC TRAP 원단이 반영구적으로 사용 가능한지 평가하기 위하여 물성을 확인하였다. 시험은 자동차 규격 ESIR 이탈력 시험 방법으로 시행하였으며, 원단 중량과 원단 두께를 변화하여 가면서 초음파 융착 강도를 측정하였다. 그 결과는 다음 표 4와 같다.Physical properties were confirmed to evaluate whether the HC TRAP fabric can be used semi-permanently by the detachment force adhesion test of the engine air cleaner housing and the HC TRAP fabric through the ultrasonic fusion test of the wet nonwoven fabric of Example 9 and Comparative Examples 3-6. The test was carried out by the automotive standard ESIR detachment test method, and the ultrasonic welding strength was measured as the fabric weight and fabric thickness were changed. The results are shown in Table 4 below.
구분division 실시예 9Example 9 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6
합성섬유Synthetic fiber 융점 110℃극세섬유 10㎛80g/m2 Melting Point 110 ℃ Ultrafine Fiber 10㎛80g / m 2 융점 90℃극세섬유 10㎛45g/m2 Melting Point 90 ℃ Ultrafine Fiber 10㎛45g / m 2 융점 280℃ 극세 섬유10㎛80g/m2 Melting Point 280 ℃ Ultrafine Fiber 10㎛80g / m 2 일반 섬유35㎛80g/m2 Normal fiber 35㎛80g / m 2 무기섬유 30㎛80g/m2 Inorganic Fiber 30㎛80g / m 2
원단중량(g/㎡)Fabric weight (g / ㎡) 500500 465465 500500 500500 500500
원단두께(mm)Fabric thickness (mm) 1.41.4 1.31.3 1.81.8 2.42.4 2.82.8
활성탄 중량(g/㎡)Activated Carbon Weight (g / ㎡) 340(68%)340 (68%)
초음파융착강도(kgf/Φ35mm)Ultrasonic Welding Strength (kgf / Φ35mm) 8.08.0 5.25.2 4.34.3 2.02.0 0.50.5
상기 실험에서, 합성섬유로서 해당 범위의 융점 극세섬유를 사용한 경우(실시예 9)가 그렇지 않은 경우(비교예 3-6)에 비해 월등하게 우수한 융착 특성을 나타내는 것으로 확인되었다. 이러한 결과는 습식 부직포에서 분말 활성탄의 이탈을 방지하는 효과가 우수하고, 이로 인해 제품 신뢰도가 우수하여 탄화수소 트랩에 적용하는 경우 유증기 흡탈착 효과도 개선된 상태가 장기간 유지됨을 입증하는 것이다.In the above experiments, it was confirmed that the melting point ultrafine fiber of the corresponding range (Example 9) as the synthetic fiber exhibited significantly superior fusion characteristics than the other case (Comparative Example 3-6). These results demonstrate that the effect of preventing the release of powdered activated carbon in the wet nonwoven fabric is excellent, and thus, the reliability of the product is excellent, so that the application of the hydrocarbon trap to the vapor trap is also improved for a long time.
상기와 같이, 본 발명에 따른 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포에 의하면, 분말 활성탄, 펄프, 합성섬유, 카본결합제의 기본 원료를 사용하고, 필요시 추가적으로 분산제, 발수제, 카본정착제, 탈수 촉진제의 첨가제로 조성되어 압축 공정을 통해 일정두께의 습식 부직포 원단으로 제조함으로써 가솔린 엔진 에어클리너에 내설되어 차량의 정지시 엔진이 정지된 상태에서 엔진의 연소실이나 연료 저장탱크의 연료로부터 발생하는 증발가스에 내포된 탄화수소가 탄화수소 트랩용 습식 부직포 일면 상에 포집됨과 동시에, 차량의 주행시 엔진의 시동 상태에서 엔진 정지시 탄화수소 트랩용 습식 부직포 상에 포집된 탄화수소가 부압에 의해 엔진 측으로 회수되어 엔진 내에서 재연소되도록 할 수 있다.As described above, according to the wet nonwoven fabric for hydrocarbon trap of the gasoline engine air cleaner according to the present invention, the basic raw materials of powdered activated carbon, pulp, synthetic fiber, and carbon binder are used, and if necessary, a dispersant, a water repellent, a carbon fixing agent, and dehydration are additionally used. Evaporated gas generated from the fuel in the combustion chamber of the engine or fuel storage tank while the engine is stopped when the vehicle is stopped. The hydrocarbon contained in the trap is collected on one side of the wet nonwoven fabric for the hydrocarbon trap, and the hydrocarbon trapped on the wet nonwoven fabric for the hydrocarbon trap is recovered to the engine by the negative pressure when the engine is stopped while the engine is running while the vehicle is running, and replayed in the engine. Can be consumed.
아울러, 분말 활성탄, 펄프, 합성섬유, 카본결합제의 기본 원료 및 분산제, 발수제, 카본정착제, 탈수 촉진제의 첨가제로 조성되어 압축 공정을 통해 일정두께의 습식 부직포 원단으로 형성됨으로써 차량의 주행 또는 정지 시에 배출되는 증발가스 중 탄화수소를 포집하여 대기오염의 주범인 탄화수소의 외부 유출을 방지하고, 차량에 탑승한 탑승객이 탄화수소 가스에 의한 피해를 최소화할 수 있게 된다.In addition, it is composed of powdered activated carbon, pulp, synthetic fiber, basic raw materials and additives of dispersing agent, water repellent, carbon fixing agent, and dehydration accelerator of carbon binder, and formed into a wet nonwoven fabric having a certain thickness through the compression process, so that the vehicle can be driven or stopped. By trapping hydrocarbons in the boil-off gas discharged to the outside to prevent the outflow of hydrocarbons, the main cause of air pollution, the passengers in the vehicle can minimize the damage caused by the hydrocarbon gas.
이상에서 본 발명의 구체적인 실시예를 상세히 설명하였으나, 본 발명은 이에 한정되는 것은 아니며, 본 발명은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형의 실시가 가능하며, 이러한 변형은 본 발명의 범위에 포함된다.Although specific embodiments of the present invention have been described in detail above, the present invention is not limited thereto, and the present invention can be variously modified by those skilled in the art to which the present invention pertains. Is included in the scope of the present invention.

Claims (10)

  1. 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포는 가솔린 엔진 에어클리너에 내설되어, 차량의 정지 또는 주행 시에 엔진의 연소실이나 연료 저장탱크의 연료로부터 발생하는 증발가스 중 탄화수소를 포집하거나 포집된 탄화수소를 엔진 측으로 회수되도록 하여 재연소되도록 하는 탄화수소 트랩용 습식 부직포에 있어서,The wet nonwoven fabric for the hydrocarbon trap of the gasoline engine air cleaner is installed in the gasoline engine air cleaner, and the hydrocarbons in the boil-off gas generated from the fuel in the combustion chamber of the engine or the fuel storage tank when the vehicle is stopped or the engine is collected or the collected hydrocarbons are collected. In the wet nonwoven fabric for hydrocarbon traps to be recovered to the side to be reburned,
    분말 활성탄, 펄프, 합성섬유, 카본결합제를 포함하는 기본 원료를 함유하되, 상기 분말 활성탄은 평균입도가 20㎛ ~ 150㎛ 범위이고, 메조구조가 45~90% 범위로 함유된 것이며, 상기 합성섬유는 직경 30㎛ 이하이고 융점이 110℃~270℃인 것을 포함하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포.Powdered activated carbon, pulp, synthetic fibers, containing a basic raw material including a carbon binder, the powdered activated carbon is an average particle size of 20㎛ ~ 150㎛ range, the meso structure is contained in the range of 45 ~ 90%, the synthetic fiber The wet nonwoven fabric for a hydrocarbon trap of the gasoline engine air cleaner characterized by including a diameter of 30 micrometers or less and melting | fusing point of 110 degreeC-270 degreeC.
  2. 청구항 1에 있어서, 상기 합성섬유는 초극세 섬유, 극세섬유, 분할사 또는 해도사; 또는 PP/PE, PET/PE, PET/PP 또는 PET/NYLON 중에서 선택된 Sheath/Core 또는 Side by Side 형의 복합 융점섬유 중에서 선택된 하나 이상의 합성섬유로 이루어진 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포.The method of claim 1, wherein the synthetic fibers are ultra-fine fibers, ultra-fine fibers, split yarn or island-in-the-sea yarn; Or a hydrocarbon trap of a gasoline engine air cleaner comprising one or more synthetic fibers selected from Sheath / Core or Side by Side type composite melting point fibers selected from PP / PE, PET / PE, PET / PP or PET / NYLON. Wet Nonwovens.
  3. 청구항 1에 있어서, 상기 기본원료는 상기 분말 활성탄 45~80중량%, 상기 펄프 3~13중량%, 합성섬유 10~30중량%, 상기 카본결합제 3~12중량%를 포함하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포.The gasoline according to claim 1, wherein the basic raw material comprises 45 to 80% by weight of the powdered activated carbon, 3 to 13% by weight of the pulp, 10 to 30% by weight of synthetic fibers, and 3 to 12% by weight of the carbon binder. Wet nonwoven fabric for hydrocarbon traps in engine air cleaners.
  4. 청구항 3에 있어서, 기본원료 외에 추가적으로 전체 부직포 구성에 대하여 분산제는 0.05~2.0중량%의 함량으로, 발수제는 0.2~1.0중량%의 함량으로, 카본정착제는 0.05~1.0중량%의 함량으로, 탈수촉진제는 0.05~1.0중량%의 함량으로 어느 하나 이상을 포함하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포.The method according to claim 3, in addition to the base material, the dispersant is contained in the content of 0.05 to 2.0% by weight, the water repellent is in the amount of 0.2 to 1.0% by weight, the carbon fixing agent is in the content of 0.05 to 1.0% by weight, and dewatering The accelerator is a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner, characterized in that it comprises any one or more in an amount of 0.05 to 1.0% by weight.
  5. 청구항 1에 있어서, 상기 분말 활성탄은 비표면적이 1g 당 1,000 ~ 3,000㎡/g인 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포.The wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner according to claim 1, wherein the powdered activated carbon has a specific surface area of 1,000 to 3,000 m 2 / g.
  6. 가솔린 엔진 에어클리너에 내설되어, 차량의 정지 또는 주행 시에 엔진의 연소실이나 연료 저장탱크의 연료로부터 발생하는 증발가스 중 탄화수소를 포집하거나 포집된 탄화수소를 엔진 측으로 회수되도록 하여 재연소되도록 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법에 있어서, Gasoline engine air installed in the gasoline engine air cleaner, which collects hydrocarbons in the boil-off gas generated from the combustion chamber of the engine or fuel in the fuel storage tank or recovers the collected hydrocarbons to the engine side when the vehicle is stopped or running. In the method for producing a wet nonwoven fabric for a hydrocarbon trap of a cleaner,
    분말 활성탄, 펄프, 합성섬유, 카본결합제를 포함하는 기본원료를 준비하되, 상기 분말 활성탄은 평균입도가 20㎛ ~ 150㎛ 범위이고, 메조구조가 45~90% 범위를 가지는 활성탄을 사용하고, 상기 합성섬유로서는 직경 30㎛ 이하이고 융점이 110℃~270℃인 합성섬유를 사용하여 기본원료를 준비하는 단계;Prepare a basic raw material including powdered activated carbon, pulp, synthetic fibers, and carbon binders, wherein the powdered activated carbon uses activated carbon having an average particle size in the range of 20 μm to 150 μm and a meso structure in the range of 45 to 90%. Preparing a basic raw material using synthetic fibers having a diameter of 30 μm or less and melting points of 110 ° C. to 270 ° C. as synthetic fibers;
    상기 기본 원료를 현탁액으로 만드는 서스펜션 공정을 거치는 단계;Undergoing a suspension process of making the basic raw material into a suspension;
    서스펜션 공정을 거친 기본원료를 웹 포메이션 공정을 통해 웹 타입으로 형성하는 단계;Forming a base material that has undergone the suspension process into a web type through a web formation process;
    상기 웹 타입의 상태에서 수분배출공정을 거치는 단계;Undergoing a water discharge process in the web type state;
    상기 수분 배출 후에 건조공정을 통해 건조시키는 단계; 및Drying through the drying process after the water is discharged; And
    상기 건조공정을 거친 후 가열 압축 성형시키는 가열 압축공정을 거쳐 시트 타입이나 롤 타입의 원단으로 성형하는 단계After the drying process, the step of forming a sheet or roll-type fabric through a heat compression process to heat compression molding
    를 포함하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법.Method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner comprising a.
  7. 청구항 6에 있어서, 상기 합성섬유는 초극세 섬유, 극세섬유, 분할사 또는 해도사; 또는 PP/PE, PET/PE, PET/PP 또는 PET/NYLON 중에서 선택된 Sheath/Core 또는 Side by Side 형의 복합 융점섬유 중에서 선택된 하나 이상의 합성섬유를 사용하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법.The method according to claim 6, wherein the synthetic fibers are ultra-fine fibers, ultra-fine fibers, split yarn or island-in-the-sea yarn; Or a hydrocarbon trap of a gasoline engine air cleaner comprising at least one synthetic fiber selected from a composite melting point fiber of Sheath / Core or Side by Side type selected from PP / PE, PET / PE, PET / PP or PET / NYLON. Method of producing a wet nonwoven fabric.
  8. 청구항 6에 있어서, 상기 기본원료는 상기 분말 활성탄 45~80중량%, 상기 펄프 3~13중량%, 합성섬유 10~30중량%, 상기 카본결합제 3~12중량%를 포함하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법.The gasoline according to claim 6, wherein the basic raw material comprises 45 to 80% by weight of the powdered activated carbon, 3 to 13% by weight of the pulp, 10 to 30% by weight of synthetic fibers, and 3 to 12% by weight of the carbon binder. Method for producing a wet nonwoven fabric for a hydrocarbon trap of an engine air cleaner.
  9. 청구항 7에 있어서, 기본원료 외에 추가적으로 전체 부직포 구성에 대하여 분산제는 0.05~2.0중량%의 함량으로, 발수제는 0.2~1.0중량%의 함량으로, 카본정착제는 0.05~1.0중량%의 함량으로, 탈수촉진제는 0.05~1.0중량%의 함량으로 어느 하나 이상을 포함하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법.The method according to claim 7, wherein in addition to the basic raw material, the dispersant is contained in an amount of 0.05 to 2.0% by weight, the water repellent is in an amount of 0.2 to 1.0% by weight, and the carbon fixing agent is in an amount of 0.05 to 1.0% by weight, based on the total nonwoven fabric. The accelerator is a method for producing a wet nonwoven fabric for a hydrocarbon trap of a gasoline engine air cleaner, characterized in that it comprises any one or more in an amount of 0.05 to 1.0% by weight.
  10. 청구항 6에 있어서, 가열 압축공정은 300 ~ 800g/㎡의 중량, 2.2 ~ 3.6mm의 두께에 대하여 가열 압축공정을 통해 300 ~ 800g/㎡의 중량, 0.6 ~ 1.8mm의 두께로 압착 성형하는 것을 특징으로 하는 가솔린 엔진 에어클리너의 탄화수소 트랩용 습식 부직포의 제조방법.The method of claim 6, wherein the heat compression process is compression-molded to a weight of 300 ~ 800g / ㎡, weight of 0.6 ~ 1.8mm through a heat compression process for a weight of 300 ~ 800g / ㎡, thickness of 2.2 ~ 3.6mm The manufacturing method of the wet nonwoven fabric for hydrocarbon traps of the gasoline engine air cleaner which consists of these.
PCT/KR2018/008832 2018-08-03 2018-08-03 Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and method for producing same WO2020027356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/008832 WO2020027356A1 (en) 2018-08-03 2018-08-03 Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/008832 WO2020027356A1 (en) 2018-08-03 2018-08-03 Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and method for producing same

Publications (1)

Publication Number Publication Date
WO2020027356A1 true WO2020027356A1 (en) 2020-02-06

Family

ID=69231933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008832 WO2020027356A1 (en) 2018-08-03 2018-08-03 Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and method for producing same

Country Status (1)

Country Link
WO (1) WO2020027356A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113750954A (en) * 2020-06-05 2021-12-07 广州华创化工材料科技开发有限公司 Hydrocarbon adsorption material applied to engine air inlet assembly and air inlet pipeline and preparation method and application thereof
CN113750954B (en) * 2020-06-05 2024-04-26 广州华创化工材料科技开发有限公司 Hydrocarbon adsorption material applied to engine air inlet assembly and air inlet pipeline and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126840A (en) * 1994-10-31 1996-05-21 Unitika Ltd Composite sheet containing powdery active carbon and its production
JP2000024426A (en) * 1998-05-08 2000-01-25 Toyobo Co Ltd Adsorption sheet, its production and air purifying filter
KR20090092848A (en) * 2007-02-13 2009-09-01 이에스 화이바비젼즈 가부시키가이샤 Fiber for wetlaid non-woven fabric
KR101667186B1 (en) * 2016-07-20 2016-11-09 주식회사 세명하이트 Nonwoven Fabric Absorption Filter And Its Manufacturing Method
KR20170025376A (en) * 2015-08-28 2017-03-08 주식회사 성창오토텍 Wet-laid non-woven fabric for hydrocarbon trap of air cleaner and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126840A (en) * 1994-10-31 1996-05-21 Unitika Ltd Composite sheet containing powdery active carbon and its production
JP2000024426A (en) * 1998-05-08 2000-01-25 Toyobo Co Ltd Adsorption sheet, its production and air purifying filter
KR20090092848A (en) * 2007-02-13 2009-09-01 이에스 화이바비젼즈 가부시키가이샤 Fiber for wetlaid non-woven fabric
KR20170025376A (en) * 2015-08-28 2017-03-08 주식회사 성창오토텍 Wet-laid non-woven fabric for hydrocarbon trap of air cleaner and manufacturing method therefor
KR101667186B1 (en) * 2016-07-20 2016-11-09 주식회사 세명하이트 Nonwoven Fabric Absorption Filter And Its Manufacturing Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113750954A (en) * 2020-06-05 2021-12-07 广州华创化工材料科技开发有限公司 Hydrocarbon adsorption material applied to engine air inlet assembly and air inlet pipeline and preparation method and application thereof
CN113750954B (en) * 2020-06-05 2024-04-26 广州华创化工材料科技开发有限公司 Hydrocarbon adsorption material applied to engine air inlet assembly and air inlet pipeline and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US8721756B2 (en) Filter construction for use with air in-take for gas turbine and methods
CA2168126C (en) Method of charging electret filter media
CA2363740C (en) Process for manufacture of triboelectrically charged nonwovens
EP1556216B1 (en) Hydroentangled filter media with improved static decay and method
KR100895232B1 (en) Laminated sheet, method of producing the sheet, exhaust gas processing device, and method of producing the device
US8021455B2 (en) Filter element and method
US8168273B2 (en) Holding material for catalytic converter
US6818037B2 (en) Filter element
US20070140929A1 (en) Pollution control device and mat for mounting a pollution control element
EP0722357B1 (en) High efficiency filter fabric for hot gas filtration
WO2020027356A1 (en) Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and method for producing same
KR20170025376A (en) Wet-laid non-woven fabric for hydrocarbon trap of air cleaner and manufacturing method therefor
KR102207862B1 (en) A wet-laid non-woven fabric for hydrocarbon trap of air cleaner and its manufacturing method
GB2242142A (en) Filter
JP5413101B2 (en) Air cleaning filter
KR200408567Y1 (en) Air Cleaner Filter for vehicle
JP2012122922A (en) Foreign object collecting filter for automatic air pollution measuring apparatus
US10399026B2 (en) Long-life air filter for automobiles and method of manufacturing the long-life air filter
JP3242208B2 (en) Filter media for air cleaner
KR20180135757A (en) Manufacturing method of wet-laid non-woven fabric for hydrocarbon trap of air cleaner and wet-laid non-woven fabric for hydrocarbon trap obtained thereby
KR100438331B1 (en) A manufacturing method and a material of filtering inflow air for engine
CN202223985U (en) High-temperature anti-oxidation composite filtering material made of polysulfonamide fibers
JP3573861B2 (en) Filter material for air cleaner and method for producing the same
KR101058173B1 (en) Bag filter media of nonwoven fabric using sea-island and/or segmented polyphenylene sulfide microfiber and method for preparing the same
CN111188226A (en) Wet nonwoven fabric for hydrocarbon trap of gasoline engine air cleaner and method of making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928536

Country of ref document: EP

Kind code of ref document: A1