WO2020027184A1 - Light detecting device, and laser device - Google Patents

Light detecting device, and laser device Download PDF

Info

Publication number
WO2020027184A1
WO2020027184A1 PCT/JP2019/029971 JP2019029971W WO2020027184A1 WO 2020027184 A1 WO2020027184 A1 WO 2020027184A1 JP 2019029971 W JP2019029971 W JP 2019029971W WO 2020027184 A1 WO2020027184 A1 WO 2020027184A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodetector
light
intensity
optical fiber
mode stripper
Prior art date
Application number
PCT/JP2019/029971
Other languages
French (fr)
Japanese (ja)
Inventor
真一 阪本
航 清山
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020027184A1 publication Critical patent/WO2020027184A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the present invention relates to a light detection device and a laser device including the light detection device.
  • Fiber laser devices are used in various fields, such as laser processing and medical fields, because of their excellent light-collecting properties, high power density, and the ability to provide light with a small beam spot.
  • it is required to detect the intensity of light propagating through an optical fiber.
  • light emitted from a fiber laser device is reflected by a processing body, reenters from a light emission port, and propagates in an optical fiber in a reverse direction. If the intensity of light propagating in the opposite direction in the optical fiber is high, the light source may be damaged, so the fiber laser device may be provided with an interlock mechanism that stops the operation of the device when the light is strong. There is. In this case, it is required to detect the intensity of light propagating in the optical fiber in the opposite direction.
  • Patent Document 1 After removing clad light propagating in the clad, a part of the light propagating in the core is leaked to the clad, and the light leaked from the core to the clad further reduces the light leaked from the clad.
  • the intensity of light propagating through the optical fiber is detected. By detecting such light, the intensity of light propagating in a predetermined direction through the optical fiber can be monitored.
  • the clad light is removed as described above.
  • the above reflected light tends to enter each of the core and the clad of the optical fiber and propagate through the core and the clad.
  • the amount of light propagating through the clad tends to be larger than the amount of light propagating through the core due to the difference in cross-sectional area between the core and the clad. For this reason, there is a demand to monitor the intensity of light propagating in a predetermined direction through the clad.
  • an object of the present invention is to provide a photodetector capable of detecting the intensity of light propagating in a predetermined direction through a clad, and a laser device including the photodetector.
  • a photodetector comprises a first clad mode stripper and a second clad mode stripper provided on an optical fiber at predetermined intervals, the first clad mode stripper and the second clad mode stripper.
  • a second photodetector for detecting the intensity of light leaking from the fiber.
  • the first cladding mode stripper When the first cladding mode stripper is provided on one side of the optical fiber and the second cladding mode stripper is provided on the other side of the optical fiber at a predetermined interval, the light propagating through the cladding of the optical fiber from one side to the other side. Is absorbed by the first cladding mode stripper, and the light propagating through the cladding of the optical fiber from the other side to the one side is absorbed by the second cladding mode stripper. Therefore, between the first cladding mode stripper and the second cladding mode stripper of the optical fiber, light propagation in the cladding is suppressed. However, in this section, light can propagate through the core from one side to the other and from the other side to the one side.
  • the first photodetector arranged in this section detects the intensity of light that leaks from the optical fiber as a part of the light propagating through the core of the optical fiber. Also, on the side opposite to the first cladding mode stripper side with respect to the second cladding mode stripper, that is, at the position where the second photodetector is provided, light can propagate the cladding from the other side to one side, and The core may propagate from one side to the other and from the other side to the one side. For this reason, the second photodetector detects the intensity of light in which a part of the light leaks from the optical fiber.
  • the difference between the intensity of the light detected by the first photodetector and the intensity of the light detected by the second photodetector is the difference between the light leaking from the optical fiber and the light propagating from the other side to the one side through the clad.
  • the intensity of light propagating through the optical fiber has a correlation with the intensity of light leaking from the optical fiber. Therefore, the intensity of light propagating from the other side to the one side through the clad can be detected using the intensity of light detected by the first photodetector and the intensity of light detected by the second photodetector.
  • the intensity of light propagating in a predetermined direction through the clad can be detected.
  • the photodetector further includes a subtractor for calculating a difference between the intensity of light detected by the first photodetector and the intensity of light detected by the second photodetector.
  • the difference between the intensity of the light detected by the first photodetector and the intensity of the light detected by the second photodetector is due to the fact that the light propagating from the other side to the one side of the cladding from the optical fiber. It becomes the intensity of the leaked light. Therefore, the intensity of the leaked light can be calculated by the subtracter, and the intensity of the light propagating from the other side to the one side through the clad can be obtained.
  • the photodetector includes a signal output from the first photodetector, the signal indicating the intensity of light detected by the first photodetector, and the second photodetector output from the second photodetector. It is preferable to further include an adjusting unit that adjusts the level of at least one of the signals indicating the intensity of the light to be detected.
  • a photodetector is composed of a photodiode (PD) or the like. If there is an error in attaching the photodetector to the optical fiber, an error occurs in the intensity of light detected by the photodetector. Therefore, as described above, the adjustment unit adjusts at least one of a signal indicating the intensity of light detected by the first photodetector and a signal indicating the intensity of light detected by the second photodetector. This makes it possible to adjust the balance between the intensity of light detected by the first photodetector and the intensity of light detected by the second photodetector.
  • PD photodiode
  • At least one of the first photodetector and the second photodetector is thermally separated from the first cladding mode stripper and the second cladding mode stripper.
  • a laser device includes the optical fiber, the light detection device according to any one of the above, and at least one light source that emits light propagating through the optical fiber. It is.
  • Such a laser device can perform an operation corresponding to the intensity of light by detecting the intensity of light propagating in a predetermined direction through the cladding of the optical fiber.
  • the second photodetector is disposed closer to the emission end of the optical fiber than the first photodetector.
  • the interlock mechanism or the like can be operated when the intensity of light propagating through the clad is equal to or higher than a predetermined intensity.
  • the reflected light also propagates through the core of the optical fiber. Therefore, by detecting the intensity of light propagating through the clad, the intensity of light propagating in the core in the opposite direction can also be estimated.
  • the interlock mechanism or the like may be operated when the intensity of the light propagating in the reverse direction through the core in this way is equal to or higher than a predetermined intensity.
  • the laser device further includes a control unit connected to the first photodetector and the second photodetector, wherein the control unit outputs the first photodetector output from the first photodetector.
  • the operation of the light source may be controlled based on a signal indicating the light intensity detected by the second light detector and a signal indicating the light intensity detected by the second light detector output from the second light detector.
  • the control unit When controlling the operation of the light source based on the above, the control unit, the intensity of light propagating through the cladding of the optical fiber from the second photodetector side toward the first photodetector side is a predetermined value In the case described above, the operation of the light source may be stopped.
  • control unit may determine a signal indicating the intensity of the light detected by the first photodetector output from the first photodetector and an intensity of the light detected by the second photodetector output from the second photodetector.
  • control unit determines that the intensity of light propagating through the clad of the optical fiber from the second photodetector side toward the first photodetector side is predetermined. When the value is not less than the value, the intensity of light emitted from the light source may be reduced.
  • the intensity of the laser light emitted from the laser device can be effectively reduced.
  • a photodetector capable of detecting the intensity of light propagating in a predetermined direction through a clad, and a laser device including the photodetector.
  • FIG. 2 is a diagram schematically illustrating the photodetector illustrated in FIG. 1.
  • FIG. 1 is a diagram schematically showing a configuration of a laser device according to an embodiment of the present invention.
  • the laser device 1 of the present embodiment mainly includes a light detection device 2, a light source 5, and a control unit CP.
  • the light source 5 includes an excitation light source 50, an optical combiner 53, an amplification optical fiber 55, an optical fiber 54 connected to one side of the amplification optical fiber 55, a first FBG 57 provided on the optical fiber 54, and the other of the amplification optical fiber 55.
  • An optical fiber 56 connected to the optical fiber 56 and a second FBG 58 provided on the optical fiber 56 are provided as main components.
  • a resonator is constituted by the amplification optical fiber 55, the first FBG 57, and the second FBG 58.
  • the pump light source 50 is composed of a plurality of laser diodes 51.
  • the laser diode 51 is, for example, a Fabry-Perot semiconductor laser made of a GaAs-based semiconductor and emits pump light having a center wavelength of 915 nm. I do.
  • each laser diode 51 of the excitation light source 50 is connected to the optical fiber 52, and the excitation light emitted from the laser diode 51 propagates through the optical fiber 52.
  • the amplification optical fiber 55 includes, as main components, a core, an inner clad surrounding the outer peripheral surface of the core without any gap, an outer clad covering the outer peripheral surface of the inner clad, and a coating layer covering the outer clad. It has a double clad structure.
  • the refractive index of the inner cladding is lower than the refractive index of the core, and the refractive index of the outer cladding is lower than the refractive index of the inner cladding.
  • Examples of a material constituting the core of the amplification optical fiber 55 include an element such as germanium (Ge) for increasing the refractive index, and ytterbium (Yb) excited by the excitation light emitted from the excitation light source 50.
  • Quartz to which an active element is added can be given.
  • a material constituting the inner cladding of the amplification optical fiber 55 for example, pure quartz to which no dopant is added can be given.
  • an element such as fluorine (F) that lowers the refractive index may be added to the material of the inner cladding.
  • the outer cladding is made of resin or quartz, and the resin is, for example, an ultraviolet curable resin, and the quartz is, for example, a dopant such as fluorine (F) that lowers the refractive index so that the refractive index is lower than that of the inner cladding. Is added.
  • the material constituting the coating layer of the amplification optical fiber 55 include an ultraviolet curable resin and a thermosetting resin. When the outer clad is a resin, an ultraviolet curable resin different from the resin constituting the outer clad is used. And thermosetting resins.
  • the optical fiber 54 connected to one side of the amplification optical fiber 55 includes a core to which an active element is not added, an inner cladding surrounding the outer peripheral surface of the core without any gap, and an outer cladding covering the outer peripheral surface of the inner cladding. A clad and a coating layer for covering the outer clad are mainly provided.
  • the core of the optical fiber 54 has substantially the same configuration as the core of the amplification optical fiber 55 except that no active element is added.
  • the core of the optical fiber 54 is connected to the core of the amplification optical fiber 55, and the inner cladding of the optical fiber 54 is connected to the inner cladding of the amplification optical fiber 55. Further, a first FBG 57 as a first mirror is provided in the core of the optical fiber 54.
  • the first FBG 57 is provided on one side of the amplification optical fiber 55.
  • a portion where the refractive index is periodically increased along the longitudinal direction of the optical fiber 54 is repeated, and by adjusting this period, the active element of the amplification optical fiber 55 in the excited state is adjusted.
  • the reflectance of the first FBG 57 is higher than the reflectance of a second FBG 58 described later, and it is preferable that 90% or more of the light emitted by the active element is reflected at a desired wavelength, more preferably 99% or more. preferable.
  • the wavelength of the light reflected by the first FBG 57 is, for example, 1090 nm when the active element is ytterbium as described above.
  • the optical fiber 56 connected to the other side of the amplification optical fiber 55 includes a core to which the active element is not added, a clad surrounding the outer peripheral surface of the core without any gap, and a coating layer covering the outer peripheral surface of the clad. Is provided as a main configuration.
  • the core of the optical fiber 56 has substantially the same configuration as the core of the amplification optical fiber 55 except that no active element is added.
  • the core is connected to the core of the amplification optical fiber 55, and the cladding of the optical fiber 56 is connected to the inner cladding of the amplification optical fiber 55.
  • a second FBG 58 as a second mirror is provided in the core of the optical fiber 56.
  • the second FBG 58 is provided on the other side of the amplification optical fiber 55.
  • a portion having a high refractive index is repeated at a constant period along the longitudinal direction of the optical fiber 56, and at least a part of the light reflected by the first FBG 57 has a lower wavelength than the first FBG 57. It is configured to reflect at a reflectance.
  • the second FBG 58 preferably reflects at least some wavelengths of the light reflected by the first FBG 57 at a reflectance of 5% to 50%, more preferably at a reflectance of 5% to 10%. .
  • each optical fiber 52 and the inner cladding of the optical fiber 54 are connected. Therefore, the optical fiber 52 through which the pumping light emitted from each laser diode 51 propagates and the inner cladding of the amplification optical fiber 55 are optically coupled via the inner cladding of the optical fiber 54.
  • FIG. 2 is a view schematically showing a part of the photodetector 2 shown in FIG.
  • a photodetector 2 of the present embodiment includes an optical fiber 10, a first cladding mode stripper 21, a second cladding mode stripper 22, a first photodetector 31, and a second photodetector. 32, a first level adjustment unit 33, a second level adjustment unit 34, and a subtractor 40 as main components.
  • the optical fiber 10 has a core 11, a cladding 12 surrounding the core 11, and a coating layer 13 surrounding the cladding 12, and is connected to an end of the optical fiber 56 opposite to the amplification optical fiber 55 side.
  • the core 11 has the same configuration as the core of the optical fiber 56, and the clad 12 is made of a material having a lower refractive index than the core 11.
  • the coating layer 13 is made of a material having a lower refractive index than the cladding 12. As a material constituting the coating layer 13, for example, an ultraviolet curable resin can be used.
  • the optical fiber 56 may be extended and the optical fiber 10 may be a part of the optical fiber 56.
  • the first cladding mode stripper 21 is provided outside the cladding 12 of the optical fiber 10.
  • the first cladding mode stripper 21 is not particularly limited as long as it is configured to emit cladding mode light propagating in the cladding 12 to the outside of the optical fiber 10.
  • the first cladding mode stripper 21 of the present embodiment is configured by intermittently providing a plurality of high refractive index portions 13h made of a resin having a higher refractive index than the cladding 12 outside the cladding 12.
  • the second cladding mode stripper 22 is provided outside the cladding 12 of the optical fiber 10 at a predetermined interval from the first cladding mode stripper 21.
  • the second cladding mode stripper 22 is not particularly limited as long as it is configured to emit cladding mode light propagating in the cladding 12 to the outside of the optical fiber 10.
  • the second cladding mode stripper 22 has the same configuration as the first cladding mode stripper 21.
  • the first photodetector 31 is disposed on the side of the optical fiber 10 between the first cladding mode stripper 21 and the second cladding mode stripper 22. That is, the first photodetector 31 is separated from the first cladding mode stripper 21 and the second cladding mode stripper 22, and is shifted from the position facing the first cladding mode stripper 21 in the forward direction, and , From the position facing the second cladding mode stripper 22 in the opposite direction.
  • the first photodetector 31 is disposed at such a position, detects the intensity of light leaking from the optical fiber 10, and outputs a signal corresponding to the detected intensity of light.
  • the light detected by the first photodetector 31 includes light leaking from the optical fiber 10 due to Rayleigh scattering of light propagating through the optical fiber 10.
  • the first photodetector 31 is composed of, for example, a photodiode and outputs a voltage corresponding to the intensity of incident light. In this case, the voltage becomes a signal indicating the intensity of the detected light.
  • the first photodetector 31 has, for example, a photodiode and an A / D converter, the first photodetector 31 outputs a digital signal indicating the intensity of the detected light.
  • the second photodetector 32 is disposed on the side of the optical fiber 10 on the side opposite to the first cladding mode stripper 21 side with respect to the second cladding mode stripper 22. That is, the second photodetector 32 is separated from the second cladding mode stripper 22 and is arranged at a position shifted from the position facing the second cladding mode stripper 22 in the forward direction. The second photodetector 32 is disposed at such a position and detects the intensity of light leaking from the optical fiber 10.
  • the light detected by the second photodetector 32 includes light leaking from the optical fiber 10 due to Rayleigh scattering of the light propagating through the optical fiber 10, similarly to the light detected by the first photodetector 31.
  • the second photodetector 32 is formed of, for example, a photodiode, and outputs a voltage corresponding to the intensity of incident light, as in the case of the first photodetector 31. In this case, the voltage becomes a signal indicating the intensity of the detected light.
  • the second photodetector 32 has, for example, a photodiode and an A / D converter, as in the case of the first photodetector 31, the second photodetector 32 detects the detected light. A digital signal indicating the intensity of the signal is output.
  • the first photodetector 31 and the second photodetector 32 are arranged at a predetermined distance from the optical fiber 10.
  • the first photodetector 31 and the second photodetector 32 and the optical fiber 10 are thermally separated. Since the first clad mode stripper 21 and the second clad mode stripper 22 are provided outside the clad of the optical fiber 10, the first optical detector 31, the second optical detector 32, and the optical fiber 10 are thermally connected.
  • the first photodetector 31 and the second photodetector 32 are thermally separated from the first clad mode stripper 21 and the second clad mode stripper 22.
  • a light-transmitting and heat-insulating member may be disposed between the first optical detector 31 and the second optical detector 32 and the optical fiber 10. Examples of such a member include air, quartz, and a light-transmitting resin. Even in the configuration in which the heat-insulating member is disposed as described above, the first photodetector 31 and the second photodetector 32 are thermally separated from the first clad mode stripper 21 and the second clad mode stripper 22. Is done.
  • a first heat sink that thermally contacts the first cladding mode stripper 21 and radiates heat generated by the first cladding mode stripper 21 to the outside
  • a second heater that thermally contacts the second cladding mode stripper 22
  • a second heat radiating plate for radiating heat generated by the second cladding mode stripper 22 to the outside. Even if the first heat radiating plate and the second heat radiating plate are separated from each other, the first light
  • the detector 31 and the second photodetector 32 can be thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22.
  • the heat generated by each clad mode stripper is efficiently applied to the heat sink. It is more preferable because it can conduct.
  • the configuration in which the first photodetector 31 and the second photodetector 32 are thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22 is not limited to the above.
  • the first level adjuster 33 outputs a signal of a level having a predetermined relationship with the level of the input signal. Specifically, it outputs a signal of a predetermined multiple of the level of the input signal, or outputs a signal of a level obtained by adding a predetermined level to the level of the input signal.
  • a signal indicating the intensity of light detected by the first photodetector 31 is input to the first level adjustment unit 33. Therefore, when the signal from the first photodetector 31 is a voltage, the first level adjuster 33 outputs, for example, a voltage obtained by applying a predetermined bias to the input voltage.
  • the first level adjuster 33 may be, for example, a predetermined multiple of the intensity of the light detected by the first photodetector 31 indicated by the input digital signal. And outputs a signal indicating the intensity.
  • the second level adjuster 34 outputs a signal having a predetermined relationship with the level of the input signal, similarly to the first level adjuster 33.
  • a signal indicating the intensity of light detected by the second photodetector 32 is input to the second level adjustment unit 34. Therefore, when the signal from the second photodetector 32 is a voltage, the second level adjustment unit 34 outputs, for example, a voltage obtained by applying a predetermined bias to the input voltage.
  • the second level adjuster 34 may be, for example, a predetermined multiple of the intensity of the light detected by the second photodetector 32 indicated by the input digital signal. And outputs a signal indicating the intensity.
  • the first level adjusting unit 33 and the second level adjusting unit 34 are adjusted such that the first level adjusting unit 33 and the second level adjusting unit 34 output signals of the same level. That is, the first clad mode stripper 21 provided with the first photodetector 31 and the second clad mode stripper 22 provided between the first clad mode stripper 22 and the second clad mode stripper 22 provided with the second photodetector 32 are referred to as first and second clad mode strippers.
  • the first level adjusting unit 33 and the second level adjusting unit 34 When light of the same intensity propagates through the optical fiber 10 on the side opposite to the cladding mode stripper 21 side, the first level adjusting unit 33 and the second level adjusting unit 34 output signals of the same level. The first level adjuster 33 and the second level adjuster 34 are adjusted. To adjust the first level adjustment unit 33 and the second level adjustment unit 34 in this manner, the following may be performed. That is, light propagates from one side to the other side in the core 11 of the optical fiber 10. At this time, light is prevented from propagating to the cladding 12. Part of the light propagating in the core 11 leaks from the optical fiber 10 through the clad 12 due to Rayleigh scattering.
  • the intensity of the light leaking from the optical fiber 10 varies between the first clad mode stripper 21 where the first photodetector 31 is provided and the second clad mode stripper 22 where the second photodetector 32 is provided.
  • the first clad mode stripper 21 side and the opposite side with respect to the clad mode stripper 22 have substantially the same strength. Therefore, at this time, the first level adjusting unit 33 and the second level adjusting unit 33 are configured so that the level of the signal output from the first level adjusting unit 33 and the level of the signal output from the second level adjusting unit 34 are the same.
  • the level adjuster 34 is adjusted.
  • the first level adjusting unit 33 and the second level adjusting unit 34 are adjusted so as to output signals of the same level as described above.
  • the subtractor 40 calculates the difference between the intensity of light detected by the first photodetector 31 and the intensity of light detected by the second photodetector 32.
  • the level of the signal indicating the intensity of the light detected by the first photodetector 31 is adjusted by the first level adjustment unit 33, and the level of the signal indicating the intensity of the light detected by the second photodetector 32 is adjusted. Is adjusted by the second level adjusting unit 34. Therefore, in the present embodiment, the subtractor 40 includes a signal indicating the intensity of light detected by the first photodetector 31 whose level has been adjusted, and the second photodetector whose level has been adjusted.
  • the signal indicating the intensity of the light detected by the second photodetector 32 is input to the subtracter 40. Find the difference from the strength.
  • the subtractor 40 determines the first photodetector from the voltage difference.
  • a signal indicating the difference between the intensity of the light detected by 31 and the intensity of the light detected by the second photodetector 32 is output.
  • the subtractor 40 calculates the first photodetector 31 by calculation.
  • the signal indicating this difference is a digital signal from the viewpoint that the control unit CP easily receives the signal as described later.
  • the signals from the first photodetector 31 and the second photodetector 32 are voltages, if necessary, the signal between the first photodetector 31 and the subtractor 40 and the second photodetector
  • An A / D converter may be provided between 32 and the subtractor 40.
  • the signal output from the subtracter 40 is input to the control unit CP shown in FIG.
  • the control unit CP controls the light source 5. Specifically, the control unit CP controls the excitation light source 50 of the light source 5 to control on / off of each laser diode 51 and the intensity of light emitted from each laser diode 51.
  • the pumping light when the pumping light is emitted from each of the laser diodes 51 of the pumping light source 50, the pumping light enters the inner cladding of the amplification optical fiber 55 via the inner cladding of the optical fiber 54.
  • the pumping light incident on the inner cladding of the amplification optical fiber 55 mainly propagates through the inner cladding of the amplification optical fiber 55, and the active element added to the core when passing through the core of the amplification optical fiber 55.
  • the active element in the excited state emits spontaneous emission light of a specific wavelength.
  • the spontaneous emission light at this time is, for example, light having a certain wavelength band including a wavelength of 1090 nm when the active element is ytterbium.
  • the spontaneous emission light propagates through the core of the amplification optical fiber 55, and light of a part of the wavelength is reflected by the first FBG 57, and of the reflected light, light of the wavelength reflected by the second FBG 58 is reflected by the second FBG 58. Then, it reciprocates in the resonator.
  • the light reflected by the first FBG 57 and the second FBG 58 propagates through the core of the amplification optical fiber 55, stimulated emission occurs and the light is amplified.
  • the gain and the loss in the resonator become equal, the laser is emitted. Oscillation occurs.
  • Some of the light that resonates between the first FBG 57 and the second FBG 58 transmits through the second FBG 58 and propagates in the optical fiber 10 in the forward direction.
  • the light emitted from the light source 5 and propagating in the optical fiber 10 in the forward direction mainly propagates through the core 11, but leaks at a connection portion of the optical fiber and a part of the light propagates in the clad 12 in the forward direction. There are cases. However, light propagating from the light source 5 side through the clad 12 in the forward direction is absorbed by the first clad mode stripper 21. For this reason, on the side opposite to the light source 5 side with respect to the first clad mode stripper 21, the propagation of light in the clad 12 in the forward direction is suppressed. On the other hand, light propagating in the core 11 in the forward direction is emitted from the optical fiber 10. Light emitted from the optical fiber 10 is applied to a processing target or the like.
  • a part of the light irradiated to the processing object or the like is reflected on the surface of the processing object or the like, and a part of the reflected light may return to the optical fiber 10.
  • the light reflected back to the optical fiber 10 in this manner tends to propagate in the opposite direction through the core 11 and the clad 12 of the optical fiber 10.
  • light propagating in the opposite direction through the cladding 12 is absorbed by the second cladding mode stripper 22. Therefore, on the light source 5 side of the second clad mode stripper 22, light is prevented from propagating in the reverse direction through the clad 12.
  • the light propagating in the core 11 in the opposite direction propagates toward the light source 5 through the position where each clad mode stripper is provided.
  • the intensity of light propagating in the core 11 in the forward direction is Pfcore
  • the intensity of light propagating in the cladding 12 in the forward direction is Pfclad
  • the intensity of light propagating in the core 11 in the reverse direction is Prcore
  • the cladding 12 Is assumed to be Prclad.
  • the first photodetector 31 detects the intensity of light leaking from the optical fiber 10 between the first cladding mode stripper 21 and the second cladding mode stripper 22, as described above.
  • the light leaking from the optical fiber 10 includes the light leaking due to Rayleigh scattering, so that the intensity of the light leaking from the optical fiber 10 and the intensity of the light propagating through the optical fiber 10 are correlated. Therefore, the first photodetector 31 detects the intensity of light correlated with the intensity P1 of light propagating through the optical fiber 10 between the first cladding mode stripper 21 and the second cladding mode stripper 22.
  • the second photodetector 32 detects the intensity of light leaking from the optical fiber 10 on the side opposite to the first cladding mode stripper 21 with respect to the second cladding mode stripper 22. Accordingly, the second photodetector 32 detects the intensity of light correlated with the intensity P2 of the light propagating through the optical fiber 10 on the side opposite to the first cladding mode stripper 21 with reference to the second cladding mode stripper 22. .
  • the signals output from the first photodetector 31 and the second photodetector 32 have their levels adjusted by the first level adjuster 33 and the second level adjuster 34 respectively, and are input to the subtractor 40.
  • the subtracter 40 as described above, the difference between the light intensity detected by the first light detector 31 and the light intensity detected by the second light detector 32 is obtained.
  • the first photodetector 31 detects the intensity of light correlated with the intensity P1
  • the second photodetector 32 detects the intensity of light correlated with the intensity P2. Therefore, the subtractor 40 obtains a value correlated with the difference between the intensity P1 and the intensity P2. That is, the subtractor 40 obtains an intensity correlated with the intensity Prclad of the light propagating in the opposite direction through the clad 12 of the optical fiber 10. Therefore, the intensity Prclad of light propagating in the opposite direction through the clad 12 can be obtained.
  • the subtractor 40 outputs a signal indicating an intensity correlated with the light intensity Prclad, or a signal indicating the intensity Prclad.
  • the signal output from the subtractor 40 is input to the control unit CP.
  • the control unit CP can perform predetermined control on the light source 5 based on the intensity correlated with the light intensity Prclad determined as described above, or on the basis of the intensity Prclad. For example, when the intensity Prclad of light propagating in the reverse direction through the clad 12 is equal to or more than a predetermined value, the control unit CP controls the pump light source 50 to stop the operation of each laser diode 51, and An interlock operation for stopping the laser light emitted from 1 can be performed.
  • control unit CP controls the pumping light source 50 to reduce the intensity of light emitted from each laser diode 51 when the intensity Prclad of light propagating in the reverse direction through the clad 12 is equal to or more than a predetermined value.
  • control for reducing the intensity of the laser light emitted from the laser device 1 can be performed.
  • the photodetecting device 2 of the present embodiment includes the first clad mode stripper 21 and the second clad mode stripper 22 provided on the optical fiber 10 at a predetermined interval, and the first clad mode stripper 21. Between the second cladding mode stripper 22, the first photodetector 31 for detecting the intensity of light leaking from the optical fiber 10, and opposite to the first cladding mode stripper 21 side with respect to the second cladding mode stripper 22. And a second light detector 32 for detecting the intensity of light leaking from the optical fiber 10 on the side.
  • the second photodetector detects a part of the light propagating in the opposite direction through the cladding 12 and the core on the side opposite to the first cladding mode stripper with respect to the second cladding mode stripper. A part of the propagating light detects the intensity of light leaking from the optical fiber.
  • the intensity of the light detected by the first photodetector 31 and the intensity of the light detected by the second photodetector 32 are correlated with the intensity Prclad and the intensity Prclad. Strength to be obtained.
  • the light detection device 2 detects the intensity of light propagating in the opposite direction through the clad 12 of the optical fiber 10, and performs an interlock operation or the like according to the intensity of the light. A predetermined operation can be performed.
  • the light detection device 2 of the present embodiment includes the subtractor 40 that calculates the difference between the light intensity detected by the first light detector 31 and the light intensity detected by the second light detector 32, The intensity of light propagating in the opposite direction in the cladding can be easily calculated.
  • the light detection device 2 of the present embodiment includes a first level adjustment unit 33 that adjusts the level of a signal that is output from the first light detector 31 and that indicates the intensity of light detected by the first light detector 31, and A second level adjuster is provided which adjusts the level of a signal output from the second photodetector and indicating the intensity of light detected by the second photodetector. If there is an error in the attachment of the photodetector such as the photodiode to the optical fiber 10, an error in the intensity of the light detected by the photodetector occurs.
  • the first level adjustment unit 33 adjusts the level of the signal indicating the intensity of the light detected by the first photodetector 31, and the second level adjustment unit 34 adjusts the level of the second photodetector 32.
  • the level of the signal indicating the intensity of light detected by the first photodetector 31 the balance between the intensity of light detected by the first photodetector 31 and the intensity of light detected by the second photodetector 32 can be adjusted.
  • the first photodetector 31 and the second photodetector 32 are thermally separated from the first clad mode stripper 21 and the second clad mode stripper 22.
  • a general photodetector such as a photodiode tends to cause an error in the intensity of light to be detected due to the influence of heat. Therefore, as in this embodiment, the first clad mode stripper 21 and the second clad mode stripper 22, which tend to generate heat, are thermally separated from the first photodetector 31 and the second photodetector 32.
  • the first photodetector 31 and the second photodetector 32 can more accurately detect the light intensity as compared with the case where the clad mode stripper and the photodetector are not thermally separated.
  • the photodetector 2 includes the subtractor 40, and the subtractor 40 determines the intensity Prclad of the light propagating in the reverse direction through the clad 12.
  • the subtractor 40 is not essential.
  • a signal including the intensity of light detected by the first photodetector 31 and a signal including the intensity of light detected by the second photodetector 32 may be individually output from the photodetector 2.
  • the control unit CP may control the above embodiment using the respective signals.
  • the light detection device 2 of the above embodiment includes a first level adjustment unit 33 and a second level adjustment unit 34.
  • the first level adjustment unit 33 and the second level adjustment unit 34 are not essential. In this case, when light of the same intensity leaks from the optical fiber 10 between the portion of the optical fiber 10 where the first photodetector 31 is provided and the portion of the optical fiber 10 where the second photodetector 32 is provided, It is preferable that the first photodetector 31 and the second photodetector 32 output signals of the same level.
  • a signal indicating the intensity of light detected by the first photodetector 31 output from the first photodetector 31 and a second photodetector output from the second photodetector 32 are An adjustment unit for adjusting one level of a signal indicating the intensity of light to be detected may be provided.
  • the first photodetector 31 and the second photodetector 32 are thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22.
  • the first photodetector 31 and the second photodetector 32 do not need to be thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22, and the first photodetector 31 and the second One of the photodetectors 32 may be thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22.
  • the first photodetector 31 and the second photodetector 32 are connected to the first cladding mode stripper as in the above embodiment. It is preferable to be thermally separated from the mode stripper 21 and the second cladding mode stripper 22.
  • the first clad mode stripper 21 is provided on the light source 5 side of the optical fiber 10 with respect to the first photodetector 31, and the emission end side opposite to the light source 5 side of the optical fiber 10.
  • a second cladding mode stripper 22 was provided on the light source 5 side of the optical fiber 10
  • the first cladding mode stripper 21 is provided on the emission end side opposite to the light source 5 side of the optical fiber 10, and the second light detection
  • the device 32 may be provided on the side opposite to the first cladding mode stripper 21 side with respect to the second cladding mode stripper 22. In this case, the intensity of light propagating in the clad 12 in the forward direction can be detected.
  • the subtractor 40 and the control unit CP are separate blocks. However, the subtractor 40 and the control unit CP may be integrated.
  • the light source 5 is a resonator type fiber laser device
  • the light source 5 may be another fiber laser device or a solid-state laser device.
  • the light source 5 may be a MO-PA (Master Oscillator Power Amplifier) type fiber laser device.
  • the number of the light sources 5 is not particularly limited, and it is sufficient that at least one light source 5 is provided.
  • a photodetector capable of detecting the intensity of light propagating in a predetermined direction through a clad, and a laser device including the photodetector are provided, and a fiber laser device or an optical fiber It is expected to be used in fields such as communication.

Abstract

A light detecting device (2) is provided with: a first cladding mode stripper (21) and a second cladding mode stripper (22) provided in an optical fiber, with a prescribed spacing therebetween; a first light detector (31) for detecting the intensity of light leaking from the optical fiber (10) between the first cladding mode stripper (21) and the second cladding mode stripper (22); and a second light detector (32) for detecting the intensity of light leaking from the optical fiber (10) on the opposite side to the first cladding mode stripper (21) side of the second cladding mode stripper (22).

Description

光検出装置及びレーザ装置Photodetector and laser device
 本発明は、光検出装置及び当該光検出装置を備えるレーザ装置に関する。 The present invention relates to a light detection device and a laser device including the light detection device.
 ファイバレーザ装置は、集光性に優れ、パワー密度が高く、小さなビームスポットとなる光が得られることから、レーザ加工分野、医療分野等の様々な分野において用いられている。このような高効率なレーザ装置によって良好な加工品質を実現するためには、光ファイバを伝搬する光の強度を検出することが求められる。また、ファイバレーザ装置から出射する光が、加工体で反射されて、光の出射口から再び入射して、光ファイバを逆方向に伝搬することが知られている。この光ファイバを逆方向に伝搬する光の強度が強いと、光源等が損傷する場合があるため、ファイバレーザ装置には、当該光が強い場合に装置の動作を止めるインターロック機構が備えられる場合がある。この場合、光ファイバを逆方向に伝搬する光の強度を検出することが求められる。 Fiber laser devices are used in various fields, such as laser processing and medical fields, because of their excellent light-collecting properties, high power density, and the ability to provide light with a small beam spot. In order to realize good processing quality with such a highly efficient laser device, it is required to detect the intensity of light propagating through an optical fiber. It is also known that light emitted from a fiber laser device is reflected by a processing body, reenters from a light emission port, and propagates in an optical fiber in a reverse direction. If the intensity of light propagating in the opposite direction in the optical fiber is high, the light source may be damaged, so the fiber laser device may be provided with an interlock mechanism that stops the operation of the device when the light is strong. There is. In this case, it is required to detect the intensity of light propagating in the optical fiber in the opposite direction.
 例えば、下記特許文献1には、クラッドを伝搬するクラッド光を除去した後に、コアを伝搬する光の一部をクラッドに漏洩させて、コアからクラッドに漏洩した光がさらにクラッドから漏洩する光を検出して、光ファイバを伝搬する光の強度を検知している。このような光の検出により、光ファイバを所定の方向に伝搬する光の強度をモニタすることができる。 For example, in Patent Document 1 below, after removing clad light propagating in the clad, a part of the light propagating in the core is leaked to the clad, and the light leaked from the core to the clad further reduces the light leaked from the clad. By detecting, the intensity of light propagating through the optical fiber is detected. By detecting such light, the intensity of light propagating in a predetermined direction through the optical fiber can be monitored.
特開2017-21099号公報JP-A-2017-21099
 上記特許文献1に記載のファイバレーザ装置では、上記のようにクラッド光を除去している。しかし、例えば、上記の反射光は、光ファイバのコアとクラッドのそれぞれに入射してコア及びクラッドを伝搬する傾向がある。このように反射光がコアとクラッドとを光が伝搬する場合、コアとクラッドとの断面積の差からクラッドを伝搬する光の量はコアを伝搬する光の量よりも多くなる傾向がある。このため、クラッドを所定の方向に伝搬する光の強度をモニタしたいという要請がある。 で は In the fiber laser device described in Patent Document 1, the clad light is removed as described above. However, for example, the above reflected light tends to enter each of the core and the clad of the optical fiber and propagate through the core and the clad. As described above, when the reflected light propagates between the core and the clad, the amount of light propagating through the clad tends to be larger than the amount of light propagating through the core due to the difference in cross-sectional area between the core and the clad. For this reason, there is a demand to monitor the intensity of light propagating in a predetermined direction through the clad.
 そこで、本発明は、クラッドを所定の方向に伝搬する光の強度を検出し得る光検出装置、及び当該光検出装置を備えるレーザ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a photodetector capable of detecting the intensity of light propagating in a predetermined direction through a clad, and a laser device including the photodetector.
 上記課題を解決するため、本発明の光検出装置は、所定の間隔をあけて光ファイバに設けられる第1クラッドモードストリッパ及び第2クラッドモードストリッパと、前記第1クラッドモードストリッパと前記第2クラッドモードストリッパとの間において、前記光ファイバから漏洩する光の強度を検出する第1光検出器と、前記第2クラッドモードストリッパを基準とした前記第1クラッドモードストリッパ側と反対側において、前記光ファイバから漏洩する光の強度を検出する第2光検出器と、を備えることを特徴とするものである。 In order to solve the above problems, a photodetector according to the present invention comprises a first clad mode stripper and a second clad mode stripper provided on an optical fiber at predetermined intervals, the first clad mode stripper and the second clad mode stripper. A first photodetector for detecting the intensity of light leaking from the optical fiber between the first stripper and a mode stripper; and a light detector on a side opposite to the first clad mode stripper with respect to the second clad mode stripper. A second photodetector for detecting the intensity of light leaking from the fiber.
 所定の間隔をあけて第1クラッドモードストリッパが光ファイバの一方側に設けられ第2クラッドモードストリッパが光ファイバの他方側に設けられる場合、光ファイバのクラッドを一方側から他方側に伝搬する光は、第1クラッドモードストリッパで吸収され、光ファイバのクラッドを他方側から一方側に伝搬する光は、第2クラッドモードストリッパで吸収される。このため、光ファイバの第1クラッドモードストリッパと第2クラッドモードストリッパとの間においては、クラッドにおける光の伝搬が抑制される。しかし、この区間において、光は、コアを一方側から他方側、及び、他方側から一方側に伝搬し得る。つまり、この区間に配置される第1光検出器は、光ファイバのコアを伝搬する光の一部が当該光ファイバから漏洩する光の強度を検出する。また、第2クラッドモードストリッパを基準とした第1クラッドモードストリッパ側と反対側、すなわち第2光検出器が設けられる位置では、光は、クラッドを他方側から一方側に伝搬し得、さらに、コアを一方側から他方側、及び、他方側から一方側に伝搬し得る。このため、第2光検出器は、これらの光の一部が当該光ファイバから漏洩する光の強度を検出する。つまり、第1光検出器が検出する光の強度と、第2光検出器が検出する光の強度との差は、クラッドを他方側から一方側に伝搬する光の光ファイバからの漏洩光の強度となる。光ファイバを伝搬する光の強度と光ファイバから漏洩する光の強度とは相関性を有する。このため、第1光検出器が検出する光の強度と第2光検出器が検出する光の強度とを用いて、クラッドを他方側から一方側に伝搬する光の強度を検出し得る。こうして、本発明の光検出装置によれば、クラッドを所定の方向に伝搬する光の強度を検出し得る。 When the first cladding mode stripper is provided on one side of the optical fiber and the second cladding mode stripper is provided on the other side of the optical fiber at a predetermined interval, the light propagating through the cladding of the optical fiber from one side to the other side. Is absorbed by the first cladding mode stripper, and the light propagating through the cladding of the optical fiber from the other side to the one side is absorbed by the second cladding mode stripper. Therefore, between the first cladding mode stripper and the second cladding mode stripper of the optical fiber, light propagation in the cladding is suppressed. However, in this section, light can propagate through the core from one side to the other and from the other side to the one side. In other words, the first photodetector arranged in this section detects the intensity of light that leaks from the optical fiber as a part of the light propagating through the core of the optical fiber. Also, on the side opposite to the first cladding mode stripper side with respect to the second cladding mode stripper, that is, at the position where the second photodetector is provided, light can propagate the cladding from the other side to one side, and The core may propagate from one side to the other and from the other side to the one side. For this reason, the second photodetector detects the intensity of light in which a part of the light leaks from the optical fiber. That is, the difference between the intensity of the light detected by the first photodetector and the intensity of the light detected by the second photodetector is the difference between the light leaking from the optical fiber and the light propagating from the other side to the one side through the clad. Strength. The intensity of light propagating through the optical fiber has a correlation with the intensity of light leaking from the optical fiber. Therefore, the intensity of light propagating from the other side to the one side through the clad can be detected using the intensity of light detected by the first photodetector and the intensity of light detected by the second photodetector. Thus, according to the photodetector of the present invention, the intensity of light propagating in a predetermined direction through the clad can be detected.
 また、上記光検出装置は、前記第1光検出器が検出する光の強度と、前記第2光検出器が検出する光の強度との差を求める減算器を更に備えることが好ましい。 Preferably, the photodetector further includes a subtractor for calculating a difference between the intensity of light detected by the first photodetector and the intensity of light detected by the second photodetector.
 上記のように、第1光検出器が検出する光の強度と、第2光検出器が検出する光の強度との差は、クラッドを他方側から一方側に伝搬する光の光ファイバからの漏洩光の強度となる。従って、上記減算器により、当該漏洩光の強度を算出し得、クラッドを他方側から一方側に伝搬する光の強度を求め得る。 As described above, the difference between the intensity of the light detected by the first photodetector and the intensity of the light detected by the second photodetector is due to the fact that the light propagating from the other side to the one side of the cladding from the optical fiber. It becomes the intensity of the leaked light. Therefore, the intensity of the leaked light can be calculated by the subtracter, and the intensity of the light propagating from the other side to the one side through the clad can be obtained.
 また、上記光検出装置は、前記第1光検出器から出力する前記第1光検出器が検出する光の強度を示す信号、及び、前記第2光検出器から出力する前記第2光検出器が検出する光の強度を示す信号の少なくとも一方のレベルを調整する調整部を更に備えることが好ましい。 Further, the photodetector includes a signal output from the first photodetector, the signal indicating the intensity of light detected by the first photodetector, and the second photodetector output from the second photodetector. It is preferable to further include an adjusting unit that adjusts the level of at least one of the signals indicating the intensity of the light to be detected.
 一般に光検出器はフォトダイオード(PD)等から構成され、光ファイバに対する光検出器の取り付けに誤差がある場合、光検出器が検出する光の強度の誤差が生じる。そこで、上記のように、調整部が、第1光検出器が検出する光の強度を示す信号、及び、第2光検出器が検出する光の強度を示す信号の少なくとも一方のレベルを調整することで、第1光検出器が検出する光の強度と第2光検出器が検出する光の強度とのバランスを調整し得る。 Generally, a photodetector is composed of a photodiode (PD) or the like. If there is an error in attaching the photodetector to the optical fiber, an error occurs in the intensity of light detected by the photodetector. Therefore, as described above, the adjustment unit adjusts at least one of a signal indicating the intensity of light detected by the first photodetector and a signal indicating the intensity of light detected by the second photodetector. This makes it possible to adjust the balance between the intensity of light detected by the first photodetector and the intensity of light detected by the second photodetector.
 また、前記第1光検出器及び前記第2光検出器の少なくとも一方は、前記第1クラッドモードストリッパ及び前記第2クラッドモードストリッパと熱的に離間されることが好ましい。 Preferably, at least one of the first photodetector and the second photodetector is thermally separated from the first cladding mode stripper and the second cladding mode stripper.
 フォトダイオード等の一般的な光検出器は、熱の影響により検出する光の強度に誤差が生じる傾向にある。そこで、発熱する傾向にあるクラッドモードストリッパと光検出器とが熱的に離間されることで、クラッドモードストリッパと光検出器とが熱的に離間されない場合と比べて、光検出器はより正確に光の強度を検出し得る。 一般 General photodetectors such as photodiodes tend to have errors in the intensity of light detected due to the influence of heat. Therefore, the photodetector is more accurate than the case where the clad mode stripper and the photodetector are not thermally separated by thermally separating the cladding mode stripper and the photodetector that tend to generate heat. The intensity of light can be detected.
 また、本発明のレーザ装置は、前記光ファイバと、上記のいずれかに記載の光検出装置と、前記光ファイバを伝搬する光を出射する少なくとも一つの光源と、を備えることを特徴とするものである。 Further, a laser device according to the present invention includes the optical fiber, the light detection device according to any one of the above, and at least one light source that emits light propagating through the optical fiber. It is.
 このようなレーザ装置は、光ファイバのクラッドを所定の方向に伝搬する光の強度を検出することで、当該光の強度に応じた動作を行うことができる。 Such a laser device can perform an operation corresponding to the intensity of light by detecting the intensity of light propagating in a predetermined direction through the cladding of the optical fiber.
 また、このレーザ装置において、前記第2光検出器は、前記第1光検出器よりも前記光ファイバの出射端側に配置されることが好ましい。 In the laser device, it is preferable that the second photodetector is disposed closer to the emission end of the optical fiber than the first photodetector.
 この場合、レーザ装置から出射して被加工体で反射して、光ファイバを逆方向に伝搬する光のうち、クラッドを伝搬する光の強度を検出し得る。従って、クラッドを伝搬する光の強度が所定の強度以上である場合等にインターロック機構等を動作させ得る。なお、通常、反射光は光ファイバのコアも伝搬する。従って、クラッドを伝搬する光の強度を検出することで、コアを逆方向に伝搬する光の強度も推定し得る。このように推定されたコアを逆方向に伝搬する光の強度が所定の強度以上である場合等にインターロック機構等を動作させても良い。 In this case, of the light emitted from the laser device, reflected by the workpiece, and propagated in the optical fiber in the opposite direction, the intensity of the light propagated through the clad can be detected. Therefore, the interlock mechanism or the like can be operated when the intensity of light propagating through the clad is equal to or higher than a predetermined intensity. Normally, the reflected light also propagates through the core of the optical fiber. Therefore, by detecting the intensity of light propagating through the clad, the intensity of light propagating in the core in the opposite direction can also be estimated. The interlock mechanism or the like may be operated when the intensity of the light propagating in the reverse direction through the core in this way is equal to or higher than a predetermined intensity.
 また、このレーザ装置は、前記第1光検出器及び前記第2光検出器に接続される制御部をさらに備え、前記制御部は、前記第1光検出器から出力する前記第1光検出器が検出する光の強度を示す信号と、前記第2光検出器から出力する前記第2光検出器が検出する光の強度を示す信号とに基づいて前記光源の動作を制御してもよい。 Further, the laser device further includes a control unit connected to the first photodetector and the second photodetector, wherein the control unit outputs the first photodetector output from the first photodetector. The operation of the light source may be controlled based on a signal indicating the light intensity detected by the second light detector and a signal indicating the light intensity detected by the second light detector output from the second light detector.
 制御部が、第1光検出器から出力する第1光検出器が検出する光の強度を示す信号と、第2光検出器から出力する第2光検出器が検出する光の強度を示す信号とに基づいて光源の動作を制御する場合、前記制御部は、前記第2光検出器側から前記第1光検出器側に向かって前記光ファイバのクラッドを伝搬する光の強度が所定の値以上である場合に、前記光源の動作を停止させてもよい。 A signal output from the first photodetector and indicating the intensity of light detected by the first photodetector, and a signal output from the second photodetector and indicating the intensity of light detected by the second photodetector. When controlling the operation of the light source based on the above, the control unit, the intensity of light propagating through the cladding of the optical fiber from the second photodetector side toward the first photodetector side is a predetermined value In the case described above, the operation of the light source may be stopped.
 このようにすることで、レーザ装置から出射されるレーザ光を止めるインターロック動作が効果的に行われ得る。 In this way, the interlock operation for stopping the laser beam emitted from the laser device can be effectively performed.
 また、制御部が、第1光検出器から出力する第1光検出器が検出する光の強度を示す信号と、第2光検出器から出力する第2光検出器が検出する光の強度を示す信号とに基づいて光源の動作を制御する場合、前記制御部は、前記第2光検出器側から前記第1光検出器側に向かって前記光ファイバのクラッドを伝搬する光の強度が所定の値以上である場合に、前記光源から出射する光の強度を下げてもよい。 Further, the control unit may determine a signal indicating the intensity of the light detected by the first photodetector output from the first photodetector and an intensity of the light detected by the second photodetector output from the second photodetector. When controlling the operation of the light source on the basis of the signal indicated by the control signal, the control unit determines that the intensity of light propagating through the clad of the optical fiber from the second photodetector side toward the first photodetector side is predetermined. When the value is not less than the value, the intensity of light emitted from the light source may be reduced.
 このようにすることで、レーザ装置から出射されるレーザ光の強度が効果的に下がり得る。 に す る By doing so, the intensity of the laser light emitted from the laser device can be effectively reduced.
 以上のように、本発明によれば、クラッドを所定の方向に伝搬する光の強度を検出し得る光検出装置、及び当該光検出装置を備えるレーザ装置が提供される。 As described above, according to the present invention, there is provided a photodetector capable of detecting the intensity of light propagating in a predetermined direction through a clad, and a laser device including the photodetector.
本発明の実施形態に係るレーザ装置の構成を概略的に示す図である。It is a figure showing roughly composition of a laser device concerning an embodiment of the present invention. 図1に示す光検出装置を概略的に示す図である。FIG. 2 is a diagram schematically illustrating the photodetector illustrated in FIG. 1.
 以下、本発明に係る光検出装置及びレーザ装置の好適な実施形態について図面を参照しながら詳細に説明する。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。従って、本発明は、その趣旨を逸脱することなく、以下の実施形態から変更、改良することができる。なお、理解の容易のため、それぞれの図に記載のスケールと、以下の説明に記載のスケールとが異なる場合がある。 Hereinafter, preferred embodiments of the photodetector and the laser device according to the present invention will be described in detail with reference to the drawings. The embodiments illustrated below are for the purpose of facilitating the understanding of the present invention, and are not intended to limit the present invention. Therefore, the present invention can be modified and improved from the following embodiments without departing from the gist thereof. Note that, for easy understanding, the scale described in each drawing may be different from the scale described in the following description.
 図1は、本発明の実施形態に係るレーザ装置の構成を概略的に示す図である。図1に示すように、本実施形態のレーザ装置1は、光検出装置2、光源5、及び制御部CPを主な構成として備える。 FIG. 1 is a diagram schematically showing a configuration of a laser device according to an embodiment of the present invention. As shown in FIG. 1, the laser device 1 of the present embodiment mainly includes a light detection device 2, a light source 5, and a control unit CP.
 光源5は、励起光源50、光コンバイナ53、増幅用光ファイバ55、増幅用光ファイバ55の一方側に接続される光ファイバ54、光ファイバ54に設けられる第1FBG57、増幅用光ファイバ55の他方側に接続される光ファイバ56、及び光ファイバ56に設けられる第2FBG58を主な構成として備える。また、増幅用光ファイバ55と第1FBG57と第2FBG58とで共振器を構成している。 The light source 5 includes an excitation light source 50, an optical combiner 53, an amplification optical fiber 55, an optical fiber 54 connected to one side of the amplification optical fiber 55, a first FBG 57 provided on the optical fiber 54, and the other of the amplification optical fiber 55. An optical fiber 56 connected to the optical fiber 56 and a second FBG 58 provided on the optical fiber 56 are provided as main components. Further, a resonator is constituted by the amplification optical fiber 55, the first FBG 57, and the second FBG 58.
 励起光源50は、複数のレーザダイオード51から構成され、レーザダイオード51は、本実施形態においては、例えば、GaAs系半導体を材料としたファブリペロー型半導体レーザであり中心波長が915nmの励起光を出射する。また、励起光源50のそれぞれのレーザダイオード51は光ファイバ52に接続されており、レーザダイオード51から出射する励起光は光ファイバ52を伝搬する。 The pump light source 50 is composed of a plurality of laser diodes 51. In the present embodiment, the laser diode 51 is, for example, a Fabry-Perot semiconductor laser made of a GaAs-based semiconductor and emits pump light having a center wavelength of 915 nm. I do. Further, each laser diode 51 of the excitation light source 50 is connected to the optical fiber 52, and the excitation light emitted from the laser diode 51 propagates through the optical fiber 52.
 増幅用光ファイバ55は、コアと、コアの外周面を隙間なく囲む内側クラッドと、内側クラッドの外周面を被覆する外側クラッドと、外側クラッドを被覆する被覆層とを主な構成として備え、いわゆるダブルクラッド構造とされている。内側クラッドの屈折率はコアの屈折率よりも低く、外側クラッドの屈折率は内側クラッドの屈折率よりも低くされている。増幅用光ファイバ55のコアを構成する材料としては、例えば、屈折率を上昇させるゲルマニウム(Ge)等の元素、及び、励起光源50から出射される励起光により励起されるイッテルビウム(Yb)等の活性元素が添加された石英が挙げられる。増幅用光ファイバ55の内側クラッドを構成する材料としては、例えば、ドーパントが添加されていない純粋石英を挙げることができる。なお、内側クラッドの材料には、屈折率を低下させるフッ素(F)等の元素が添加されてもよい。外側クラッドは、樹脂または石英から成り、樹脂としては例えば紫外線硬化性樹脂が挙げられ、石英としては例えば内側クラッドよりもさらに屈折率が低くなるように屈折率を低下させるフッ素(F)等のドーパントが添加された石英が挙げられる。増幅用光ファイバ55の被覆層を構成する材料としては、例えば、紫外線硬化性樹脂や熱硬化性樹脂が挙げられ、外側クラッドが樹脂の場合、外側クラッドを構成する樹脂とは異なる紫外線硬化性樹脂や熱硬化性樹脂とされる。 The amplification optical fiber 55 includes, as main components, a core, an inner clad surrounding the outer peripheral surface of the core without any gap, an outer clad covering the outer peripheral surface of the inner clad, and a coating layer covering the outer clad. It has a double clad structure. The refractive index of the inner cladding is lower than the refractive index of the core, and the refractive index of the outer cladding is lower than the refractive index of the inner cladding. Examples of a material constituting the core of the amplification optical fiber 55 include an element such as germanium (Ge) for increasing the refractive index, and ytterbium (Yb) excited by the excitation light emitted from the excitation light source 50. Quartz to which an active element is added can be given. As a material constituting the inner cladding of the amplification optical fiber 55, for example, pure quartz to which no dopant is added can be given. Note that an element such as fluorine (F) that lowers the refractive index may be added to the material of the inner cladding. The outer cladding is made of resin or quartz, and the resin is, for example, an ultraviolet curable resin, and the quartz is, for example, a dopant such as fluorine (F) that lowers the refractive index so that the refractive index is lower than that of the inner cladding. Is added. Examples of the material constituting the coating layer of the amplification optical fiber 55 include an ultraviolet curable resin and a thermosetting resin. When the outer clad is a resin, an ultraviolet curable resin different from the resin constituting the outer clad is used. And thermosetting resins.
 増幅用光ファイバ55の一方側に接続される光ファイバ54は、活性元素が添加されていないコアと、このコアの外周面を隙間なく囲む内側クラッドと、この内側クラッドの外周面を被覆する外側クラッドと、外側クラッドを被覆する被覆層とを主な構成として備える。光ファイバ54のコアは、活性元素が添加されていないことを除いて増幅用光ファイバ55のコアと略同様の構成とされる。光ファイバ54のコアは増幅用光ファイバ55のコアと接続され、光ファイバ54の内側クラッドは増幅用光ファイバ55の内側クラッドと接続されている。また、光ファイバ54のコアには、第1ミラーとしての第1FBG57が設けられている。こうして第1FBG57は、増幅用光ファイバ55の一方側に設けられている。第1FBG57は、光ファイバ54の長手方向に沿って周期的に屈折率が高くなる部分が繰り返されており、この周期が調整されることにより、励起状態とされた増幅用光ファイバ55の活性元素が放出する光うち少なくとも一部の波長の光を反射するように構成されている。第1FBG57の反射率は、後述の第2FBG58の反射率よりも高く、活性元素が放出する光うち所望の波長の光を90%以上で反射することが好ましく、99%以上で反射することがより好ましい。また第1FBG57が反射する光の波長は、上述のように活性元素がイッテルビウムである場合、例えば1090nmとされる。 The optical fiber 54 connected to one side of the amplification optical fiber 55 includes a core to which an active element is not added, an inner cladding surrounding the outer peripheral surface of the core without any gap, and an outer cladding covering the outer peripheral surface of the inner cladding. A clad and a coating layer for covering the outer clad are mainly provided. The core of the optical fiber 54 has substantially the same configuration as the core of the amplification optical fiber 55 except that no active element is added. The core of the optical fiber 54 is connected to the core of the amplification optical fiber 55, and the inner cladding of the optical fiber 54 is connected to the inner cladding of the amplification optical fiber 55. Further, a first FBG 57 as a first mirror is provided in the core of the optical fiber 54. Thus, the first FBG 57 is provided on one side of the amplification optical fiber 55. In the first FBG 57, a portion where the refractive index is periodically increased along the longitudinal direction of the optical fiber 54 is repeated, and by adjusting this period, the active element of the amplification optical fiber 55 in the excited state is adjusted. Are configured to reflect at least some wavelengths of the light emitted by the. The reflectance of the first FBG 57 is higher than the reflectance of a second FBG 58 described later, and it is preferable that 90% or more of the light emitted by the active element is reflected at a desired wavelength, more preferably 99% or more. preferable. The wavelength of the light reflected by the first FBG 57 is, for example, 1090 nm when the active element is ytterbium as described above.
 増幅用光ファイバ55の他方側に接続される光ファイバ56は、活性元素が添加されていないコアと、このコアの外周面を隙間なく囲むクラッドと、このクラッドの外周面を被覆する被覆層とを主な構成として備える。光ファイバ56のコアは、活性元素が添加されていないことを除いて増幅用光ファイバ55のコアと略同様の構成とされる。また、当該コアは増幅用光ファイバ55のコアと接続され、光ファイバ56のクラッドは増幅用光ファイバ55の内側クラッドと接続されている。また、光ファイバ56のコアには、第2ミラーとしての第2FBG58が設けられている。こうして第2FBG58は、増幅用光ファイバ55の他方側に設けられている。第2FBG58は、光ファイバ56の長手方向に沿って一定の周期で屈折率が高くなる部分が繰り返されており、第1FBG57が反射する光のうち少なくとも一部の波長の光を第1FBG57よりも低い反射率で反射するように構成される。第2FBG58は、第1FBG57が反射する光のうち少なくとも一部の波長の光を5%~50%の反射率で反射することが好ましく、5%~10%の反射率で反射することがより好ましい。 The optical fiber 56 connected to the other side of the amplification optical fiber 55 includes a core to which the active element is not added, a clad surrounding the outer peripheral surface of the core without any gap, and a coating layer covering the outer peripheral surface of the clad. Is provided as a main configuration. The core of the optical fiber 56 has substantially the same configuration as the core of the amplification optical fiber 55 except that no active element is added. The core is connected to the core of the amplification optical fiber 55, and the cladding of the optical fiber 56 is connected to the inner cladding of the amplification optical fiber 55. In the core of the optical fiber 56, a second FBG 58 as a second mirror is provided. Thus, the second FBG 58 is provided on the other side of the amplification optical fiber 55. In the second FBG 58, a portion having a high refractive index is repeated at a constant period along the longitudinal direction of the optical fiber 56, and at least a part of the light reflected by the first FBG 57 has a lower wavelength than the first FBG 57. It is configured to reflect at a reflectance. The second FBG 58 preferably reflects at least some wavelengths of the light reflected by the first FBG 57 at a reflectance of 5% to 50%, more preferably at a reflectance of 5% to 10%. .
 光コンバイナ53では、それぞれの光ファイバ52のコアと光ファイバ54の内側クラッドとが接続されている。従って、それぞれのレーザダイオード51から出射する励起光が伝搬する光ファイバ52と増幅用光ファイバ55の内側クラッドとは、光ファイバ54の内側クラッドを介して光学的に結合されている。 In the optical combiner 53, the core of each optical fiber 52 and the inner cladding of the optical fiber 54 are connected. Therefore, the optical fiber 52 through which the pumping light emitted from each laser diode 51 propagates and the inner cladding of the amplification optical fiber 55 are optically coupled via the inner cladding of the optical fiber 54.
 図2は、図1に示す光検出装置2の一部を概略的に示す図である。図1及び図2に示すように、本実施形態の光検出装置2は、光ファイバ10、第1クラッドモードストリッパ21、第2クラッドモードストリッパ22、第1光検出器31、第2光検出器32、第1レベル調整部33、第2レベル調整部34、及び減算器40を主な構成として備える。 FIG. 2 is a view schematically showing a part of the photodetector 2 shown in FIG. As shown in FIGS. 1 and 2, a photodetector 2 of the present embodiment includes an optical fiber 10, a first cladding mode stripper 21, a second cladding mode stripper 22, a first photodetector 31, and a second photodetector. 32, a first level adjustment unit 33, a second level adjustment unit 34, and a subtractor 40 as main components.
 光ファイバ10は、コア11、コア11を囲うクラッド12、クラッド12を囲う被覆層13を有し、光ファイバ56の増幅用光ファイバ55側と反対側の端部に接続されている。コア11は、光ファイバ56のコアと同様の構成とされ、クラッド12はコア11より屈折率が低い材料からなる。被覆層13はクラッド12より屈折率が低い材料からなる。被覆層13を構成する材料としては、例えば、紫外線硬化性樹脂が挙げられる。なお、光ファイバ56が延長されて、光ファイバ10は光ファイバ56の一部とされても良い。 The optical fiber 10 has a core 11, a cladding 12 surrounding the core 11, and a coating layer 13 surrounding the cladding 12, and is connected to an end of the optical fiber 56 opposite to the amplification optical fiber 55 side. The core 11 has the same configuration as the core of the optical fiber 56, and the clad 12 is made of a material having a lower refractive index than the core 11. The coating layer 13 is made of a material having a lower refractive index than the cladding 12. As a material constituting the coating layer 13, for example, an ultraviolet curable resin can be used. The optical fiber 56 may be extended and the optical fiber 10 may be a part of the optical fiber 56.
 第1クラッドモードストリッパ21は、光ファイバ10のクラッド12の外側に設けられている。第1クラッドモードストリッパ21は、クラッド12を伝搬するクラッドモード光を光ファイバ10の外側に放出できるように構成されるものであれば特に限定されない。本実施形態の第1クラッドモードストリッパ21は、クラッド12よりも屈折率が高い樹脂からなる高屈折率部13hがクラッド12の外側に断続的に複数設けられることによって構成される。 The first cladding mode stripper 21 is provided outside the cladding 12 of the optical fiber 10. The first cladding mode stripper 21 is not particularly limited as long as it is configured to emit cladding mode light propagating in the cladding 12 to the outside of the optical fiber 10. The first cladding mode stripper 21 of the present embodiment is configured by intermittently providing a plurality of high refractive index portions 13h made of a resin having a higher refractive index than the cladding 12 outside the cladding 12.
 第2クラッドモードストリッパ22は、光ファイバ10のクラッド12の外側において、第1クラッドモードストリッパ21と所定の間隔をあけて設けられている。第2クラッドモードストリッパ22は、クラッド12を伝搬するクラッドモード光を光ファイバ10の外側に放出できるように構成されるものであれば特に限定されない。本実施形態では、第2クラッドモードストリッパ22は、第1クラッドモードストリッパ21と同様の構成とされる。 The second cladding mode stripper 22 is provided outside the cladding 12 of the optical fiber 10 at a predetermined interval from the first cladding mode stripper 21. The second cladding mode stripper 22 is not particularly limited as long as it is configured to emit cladding mode light propagating in the cladding 12 to the outside of the optical fiber 10. In the present embodiment, the second cladding mode stripper 22 has the same configuration as the first cladding mode stripper 21.
 第1光検出器31は、第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間における光ファイバ10の側方に配置される。すなわち、第1光検出器31は、第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22から離間しており、第1クラッドモードストリッパ21と対向する位置から上記順方向側にずれた位置、かつ、第2クラッドモードストリッパ22と対向する位置から上記逆方向側にずれた位置に配置される。第1光検出器31は、このような位置に配置されて光ファイバ10から漏洩する光の強度を検出し、この検出した光の強度に対応する信号を出力する。第1光検出器31が検出する光は、光ファイバ10を伝搬する光がレイリー散乱して光ファイバ10から漏洩する光を含む。第1光検出器31は、例えば、フォトダイオードから構成され、入射した光の強度に対応する電圧を出力する。この場合、当該電圧が検出した光の強度を示す信号となる。また、第1光検出器31が、例えば、フォトダイオードとA/D変換部とを有する場合には、第1光検出器31は、検出した光の強度を示すデジタル信号を出力する。 {Circle around (1)} The first photodetector 31 is disposed on the side of the optical fiber 10 between the first cladding mode stripper 21 and the second cladding mode stripper 22. That is, the first photodetector 31 is separated from the first cladding mode stripper 21 and the second cladding mode stripper 22, and is shifted from the position facing the first cladding mode stripper 21 in the forward direction, and , From the position facing the second cladding mode stripper 22 in the opposite direction. The first photodetector 31 is disposed at such a position, detects the intensity of light leaking from the optical fiber 10, and outputs a signal corresponding to the detected intensity of light. The light detected by the first photodetector 31 includes light leaking from the optical fiber 10 due to Rayleigh scattering of light propagating through the optical fiber 10. The first photodetector 31 is composed of, for example, a photodiode and outputs a voltage corresponding to the intensity of incident light. In this case, the voltage becomes a signal indicating the intensity of the detected light. When the first photodetector 31 has, for example, a photodiode and an A / D converter, the first photodetector 31 outputs a digital signal indicating the intensity of the detected light.
 第2光検出器32は、第2クラッドモードストリッパ22を基準とした第1クラッドモードストリッパ21側と反対側における光ファイバ10の側方に配置される。すなわち、第2光検出器32は、第2クラッドモードストリッパ22から離間しており、第2クラッドモードストリッパ22と対向する位置から上記順方向側にずれた位置に配置される。第2光検出器32は、このような位置に配置されて光ファイバ10から漏洩する光の強度を検出する。第2光検出器32が検出する光は、第1光検出器31が検出する光と同様に、光ファイバ10を伝搬する光がレイリー散乱して光ファイバ10から漏洩する光を含む。第2光検出器32は、第1光検出器31の例示と同様に、例えば、フォトダイオードから構成され、入射した光の強度に対応する電圧を出力する。この場合、当該電圧が検出した光の強度を示す信号となる。また、第2光検出器32が、第1光検出器31の例示と同様に、例えば、フォトダイオードとA/D変換部とを有する場合には、第2光検出器32は、検出した光の強度を示すデジタル信号を出力する。 The second photodetector 32 is disposed on the side of the optical fiber 10 on the side opposite to the first cladding mode stripper 21 side with respect to the second cladding mode stripper 22. That is, the second photodetector 32 is separated from the second cladding mode stripper 22 and is arranged at a position shifted from the position facing the second cladding mode stripper 22 in the forward direction. The second photodetector 32 is disposed at such a position and detects the intensity of light leaking from the optical fiber 10. The light detected by the second photodetector 32 includes light leaking from the optical fiber 10 due to Rayleigh scattering of the light propagating through the optical fiber 10, similarly to the light detected by the first photodetector 31. The second photodetector 32 is formed of, for example, a photodiode, and outputs a voltage corresponding to the intensity of incident light, as in the case of the first photodetector 31. In this case, the voltage becomes a signal indicating the intensity of the detected light. In the case where the second photodetector 32 has, for example, a photodiode and an A / D converter, as in the case of the first photodetector 31, the second photodetector 32 detects the detected light. A digital signal indicating the intensity of the signal is output.
 なお、本実施形態では、第1光検出器31及び第2光検出器32は、光ファイバ10に対して所定の間隔をあけて配置される。このように第1光検出器31及び第2光検出器32と光ファイバ10との間に空間が形成されることで、第1光検出器31及び第2光検出器32と光ファイバ10とは熱的に離間される。光ファイバ10のクラッドの外側には、第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22が設けられるため、第1光検出器31及び第2光検出器32と光ファイバ10とが熱的に離間されることで、第1光検出器31及び第2光検出器32と第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22とが熱的に離間される。なお、第1光検出器31及び第2光検出器32と光ファイバ10との間に光透過性かつ遮熱性の部材が配置されても良い。このような部材としては、例えば、空気、石英、及び光透過性樹脂等を挙げることができる。このように遮熱性の部材が配置される構成であっても、第1光検出器31及び第2光検出器32と第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22とが熱的に離間される。また、例えば、第1クラッドモードストリッパ21に熱的に接触し、第1クラッドモードストリッパ21で生じた熱を外部に放熱する第1放熱板と、第2クラッドモードストリッパ22に熱的に接触しており、第2クラッドモードストリッパ22で生じた熱を外部に放熱する第2放熱板とを備え、第1放熱板と第2放熱板とが離間している構成であっても、第1光検出器31及び第2光検出器32と第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22とが熱的に離間し得る。この場合、第1放熱板と第1クラッドモードストリッパ21とが接し、第2放熱板と第2クラッドモードストリッパ22とが接することが、それぞれのクラッドモードストリッパで生じる熱が放熱板に効率的に伝導し得るためより好ましい。このように第1光検出器31及び第2光検出器32と第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22とを熱的に離間する構成は、上記の限りではない。 In the present embodiment, the first photodetector 31 and the second photodetector 32 are arranged at a predetermined distance from the optical fiber 10. By forming a space between the first photodetector 31 and the second photodetector 32 and the optical fiber 10 in this manner, the first photodetector 31 and the second photodetector 32 and the optical fiber 10 Are thermally separated. Since the first clad mode stripper 21 and the second clad mode stripper 22 are provided outside the clad of the optical fiber 10, the first optical detector 31, the second optical detector 32, and the optical fiber 10 are thermally connected. By being separated, the first photodetector 31 and the second photodetector 32 are thermally separated from the first clad mode stripper 21 and the second clad mode stripper 22. Note that a light-transmitting and heat-insulating member may be disposed between the first optical detector 31 and the second optical detector 32 and the optical fiber 10. Examples of such a member include air, quartz, and a light-transmitting resin. Even in the configuration in which the heat-insulating member is disposed as described above, the first photodetector 31 and the second photodetector 32 are thermally separated from the first clad mode stripper 21 and the second clad mode stripper 22. Is done. Further, for example, a first heat sink that thermally contacts the first cladding mode stripper 21 and radiates heat generated by the first cladding mode stripper 21 to the outside, and a second heater that thermally contacts the second cladding mode stripper 22. And a second heat radiating plate for radiating heat generated by the second cladding mode stripper 22 to the outside. Even if the first heat radiating plate and the second heat radiating plate are separated from each other, the first light The detector 31 and the second photodetector 32 can be thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22. In this case, when the first heat sink and the first clad mode stripper 21 are in contact with each other, and the second heat sink and the second clad mode stripper 22 are in contact with each other, the heat generated by each clad mode stripper is efficiently applied to the heat sink. It is more preferable because it can conduct. The configuration in which the first photodetector 31 and the second photodetector 32 are thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22 is not limited to the above.
 第1レベル調整部33は、入力した信号のレベルに対して所定の関係にあるレベルの信号を出力する。具体的には、入力した信号のレベルの所定倍のレベルの信号を出力したり、入力した信号のレベルに所定のレベルを加算したレベルの信号を出力したりする。第1レベル調整部33には、第1光検出器31が検出した光の強度を示す信号が入力する。従って、第1光検出器31からの信号が電圧である場合には、第1レベル調整部33は、入力する電圧に対して、例えば、所定のバイアスをかけた電圧を出力する。また、第1光検出器31からの信号がデジタル信号で場合には、第1レベル調整部33は、例えば、入力するデジタル信号が示す第1光検出器31が検出した光の強度に対する所定倍数の強度を示す信号を出力する。 The first level adjuster 33 outputs a signal of a level having a predetermined relationship with the level of the input signal. Specifically, it outputs a signal of a predetermined multiple of the level of the input signal, or outputs a signal of a level obtained by adding a predetermined level to the level of the input signal. A signal indicating the intensity of light detected by the first photodetector 31 is input to the first level adjustment unit 33. Therefore, when the signal from the first photodetector 31 is a voltage, the first level adjuster 33 outputs, for example, a voltage obtained by applying a predetermined bias to the input voltage. When the signal from the first photodetector 31 is a digital signal, the first level adjuster 33 may be, for example, a predetermined multiple of the intensity of the light detected by the first photodetector 31 indicated by the input digital signal. And outputs a signal indicating the intensity.
 第2レベル調整部34は、上記第1レベル調整部33と同様に、入力した信号のレベルに対して所定の関係にあるレベルの信号を出力する。第2レベル調整部34には、第2光検出器32が検出した光の強度を示す信号が入力する。従って、第2光検出器32からの信号が電圧である場合には、第2レベル調整部34は、入力する電圧に対して、例えば、所定のバイアスをかけた電圧を出力する。また、第2光検出器32からの信号がデジタル信号で場合には、第2レベル調整部34は、例えば、入力するデジタル信号が示す第2光検出器32が検出した光の強度に対する所定倍数の強度を示す信号を出力する。 The second level adjuster 34 outputs a signal having a predetermined relationship with the level of the input signal, similarly to the first level adjuster 33. A signal indicating the intensity of light detected by the second photodetector 32 is input to the second level adjustment unit 34. Therefore, when the signal from the second photodetector 32 is a voltage, the second level adjustment unit 34 outputs, for example, a voltage obtained by applying a predetermined bias to the input voltage. When the signal from the second photodetector 32 is a digital signal, the second level adjuster 34 may be, for example, a predetermined multiple of the intensity of the light detected by the second photodetector 32 indicated by the input digital signal. And outputs a signal indicating the intensity.
 本実施形態では、第1光検出器31が設けられる光ファイバ10の部位と、第2光検出器32が設けられる光ファイバ10の部位とで、光ファイバ10から同じ強度の光が漏洩する場合に、第1レベル調整部33と第2レベル調整部34とが同じレベルの信号を出力するように、第1レベル調整部33及び第2レベル調整部34は調整される。つまり、第1光検出器31が設けられる第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間と、第2光検出器32が設けられる第2クラッドモードストリッパ22を基準とした第1クラッドモードストリッパ21側と反対側とで、光ファイバ10を同じ強度の光が伝搬する場合に、第1レベル調整部33と第2レベル調整部34とが同じレベルの信号を出力するように、第1レベル調整部33及び第2レベル調整部34は調整される。このように第1レベル調整部33と第2レベル調整部34を調整するには、次のように行えば良い。つまり、光ファイバ10のコア11に一方側から他方側に光を伝搬させる。このときクラッド12には光が伝搬しないようにする。コア11を伝搬する光の一部は、レイリー散乱により、クラッド12を介して光ファイバ10から漏洩する。この光ファイバ10から漏洩する光の強度は、第1光検出器31が設けられる第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間と、第2光検出器32が設けられる第2クラッドモードストリッパ22を基準とした第1クラッドモードストリッパ21側と反対側とで、概ね同じ強度である。従って、このときに第1レベル調整部33から出力する信号のレベルと第2レベル調整部34から出力する信号のレベルとが同じレベルの信号となるように、第1レベル調整部33及び第2レベル調整部34を調整する。こうして、第1レベル調整部33と第2レベル調整部34とは、上記のように同じレベルの信号を出力するように調整される。 In the present embodiment, a case where light of the same intensity leaks from the optical fiber 10 between the portion of the optical fiber 10 where the first photodetector 31 is provided and the portion of the optical fiber 10 where the second photodetector 32 is provided Then, the first level adjusting unit 33 and the second level adjusting unit 34 are adjusted such that the first level adjusting unit 33 and the second level adjusting unit 34 output signals of the same level. That is, the first clad mode stripper 21 provided with the first photodetector 31 and the second clad mode stripper 22 provided between the first clad mode stripper 22 and the second clad mode stripper 22 provided with the second photodetector 32 are referred to as first and second clad mode strippers. When light of the same intensity propagates through the optical fiber 10 on the side opposite to the cladding mode stripper 21 side, the first level adjusting unit 33 and the second level adjusting unit 34 output signals of the same level. The first level adjuster 33 and the second level adjuster 34 are adjusted. To adjust the first level adjustment unit 33 and the second level adjustment unit 34 in this manner, the following may be performed. That is, light propagates from one side to the other side in the core 11 of the optical fiber 10. At this time, light is prevented from propagating to the cladding 12. Part of the light propagating in the core 11 leaks from the optical fiber 10 through the clad 12 due to Rayleigh scattering. The intensity of the light leaking from the optical fiber 10 varies between the first clad mode stripper 21 where the first photodetector 31 is provided and the second clad mode stripper 22 where the second photodetector 32 is provided. The first clad mode stripper 21 side and the opposite side with respect to the clad mode stripper 22 have substantially the same strength. Therefore, at this time, the first level adjusting unit 33 and the second level adjusting unit 33 are configured so that the level of the signal output from the first level adjusting unit 33 and the level of the signal output from the second level adjusting unit 34 are the same. The level adjuster 34 is adjusted. Thus, the first level adjusting unit 33 and the second level adjusting unit 34 are adjusted so as to output signals of the same level as described above.
 減算器40は、第1光検出器31が検出する光の強度と、第2光検出器32が検出する光の強度との差を求める。本実施形態では、第1光検出器31が検出する光の強度を示す信号のレベルは第1レベル調整部33で調整され、第2光検出器32が検出する光の強度を示す信号のレベルは第2レベル調整部34で調整される。従って、本実施形態では、減算器40には、レベルが調整された状態の第1光検出器31が検出する光の強度を示す信号、及び、レベルが調整された状態の第2光検出器32が検出する光の強度を示す信号が入力し、減算器40は、レベルが調整された状態の第1光検出器31が検出する光の強度と第2光検出器32が検出する光の強度との差を求める。減算器40に入力する第1光検出器31及び第2光検出器32が検出する光の強度を示す信号が電圧である場合には、減算器40は、電圧の差から第1光検出器31が検出する光の強度と第2光検出器32が検出する光の強度との差を示す信号を出力する。減算器40に入力する第1光検出器31及び第2光検出器32が検出する光の強度を示す信号がデジタル信号である場合には、減算器40は、演算により第1光検出器31が検出する光の強度と第2光検出器32が検出する光の強度との差を示す信号を出力する。この差を示す信号は、デジタル信号であることが、後述のように制御部CPが当該信号を受け付け易い観点から好ましい。 The subtractor 40 calculates the difference between the intensity of light detected by the first photodetector 31 and the intensity of light detected by the second photodetector 32. In the present embodiment, the level of the signal indicating the intensity of the light detected by the first photodetector 31 is adjusted by the first level adjustment unit 33, and the level of the signal indicating the intensity of the light detected by the second photodetector 32 is adjusted. Is adjusted by the second level adjusting unit 34. Therefore, in the present embodiment, the subtractor 40 includes a signal indicating the intensity of light detected by the first photodetector 31 whose level has been adjusted, and the second photodetector whose level has been adjusted. The signal indicating the intensity of the light detected by the second photodetector 32 is input to the subtracter 40. Find the difference from the strength. When the signal indicating the light intensity detected by the first photodetector 31 and the second photodetector 32 input to the subtractor 40 is a voltage, the subtractor 40 determines the first photodetector from the voltage difference. A signal indicating the difference between the intensity of the light detected by 31 and the intensity of the light detected by the second photodetector 32 is output. When the signal indicating the intensity of the light detected by the first photodetector 31 and the second photodetector 32 input to the subtractor 40 is a digital signal, the subtractor 40 calculates the first photodetector 31 by calculation. And outputs a signal indicating a difference between the light intensity detected by the second light detector 32 and the light intensity detected by the second photodetector 32. It is preferable that the signal indicating this difference is a digital signal from the viewpoint that the control unit CP easily receives the signal as described later.
 なお、第1光検出器31及び第2光検出器32からの信号が電圧である場合、必要に応じて、第1光検出器31と減算器40との間、及び、第2光検出器32と減算器40との間にA/D変換器が設けられても良い。 When the signals from the first photodetector 31 and the second photodetector 32 are voltages, if necessary, the signal between the first photodetector 31 and the subtractor 40 and the second photodetector An A / D converter may be provided between 32 and the subtractor 40.
 減算器40から出力する信号は、図1に示す制御部CPに入力する。制御部CPは、光源5を制御する。具体的には、制御部CPは、光源5の励起光源50を制御して、それぞれのレーザダイオード51のオン・オフや、それぞれのレーザダイオード51から出射する光の強度を制御する。 The signal output from the subtracter 40 is input to the control unit CP shown in FIG. The control unit CP controls the light source 5. Specifically, the control unit CP controls the excitation light source 50 of the light source 5 to control on / off of each laser diode 51 and the intensity of light emitted from each laser diode 51.
 次に、本実施形態のレーザ装置1及び光検出装置2の動作および作用について説明する。 Next, the operation and action of the laser device 1 and the light detection device 2 of the present embodiment will be described.
 まず、励起光源50のそれぞれのレーザダイオード51から励起光が出射されると、この励起光が光ファイバ54の内側クラッドを介して、増幅用光ファイバ55の内側クラッドに入射する。増幅用光ファイバ55の内側クラッドに入射した励起光は主に増幅用光ファイバ55の内側クラッドを伝搬して、増幅用光ファイバ55のコアを通過する際に当該コアに添加されている活性元素を励起する。励起状態とされた活性元素は、特定の波長の自然放出光を放出する。このときの自然放出光は、例えば活性元素がイッテルビウムである場合、1090nmの波長を含み一定の波長帯域を有する光である。この自然放出光は、増幅用光ファイバ55のコアを伝搬して、一部の波長の光が第1FBG57により反射され、反射された光のうち第2FBG58が反射する波長の光が第2FBG58で反射されて、共振器内を往復する。そして、第1FBG57及び第2FBG58で反射される光が増幅用光ファイバ55のコアを伝搬するときに、誘導放出が生じてこの光が増幅され、共振器内における利得と損失が等しくなったところでレーザ発振状態となる。そして、第1FBG57と第2FBG58との間を共振する光のうち一部の光が第2FBG58を透過し、光ファイバ10を順方向に伝搬する。 First, when the pumping light is emitted from each of the laser diodes 51 of the pumping light source 50, the pumping light enters the inner cladding of the amplification optical fiber 55 via the inner cladding of the optical fiber 54. The pumping light incident on the inner cladding of the amplification optical fiber 55 mainly propagates through the inner cladding of the amplification optical fiber 55, and the active element added to the core when passing through the core of the amplification optical fiber 55. To excite. The active element in the excited state emits spontaneous emission light of a specific wavelength. The spontaneous emission light at this time is, for example, light having a certain wavelength band including a wavelength of 1090 nm when the active element is ytterbium. The spontaneous emission light propagates through the core of the amplification optical fiber 55, and light of a part of the wavelength is reflected by the first FBG 57, and of the reflected light, light of the wavelength reflected by the second FBG 58 is reflected by the second FBG 58. Then, it reciprocates in the resonator. When the light reflected by the first FBG 57 and the second FBG 58 propagates through the core of the amplification optical fiber 55, stimulated emission occurs and the light is amplified. When the gain and the loss in the resonator become equal, the laser is emitted. Oscillation occurs. Some of the light that resonates between the first FBG 57 and the second FBG 58 transmits through the second FBG 58 and propagates in the optical fiber 10 in the forward direction.
 光源5から出射されて光ファイバ10を順方向に伝搬する光は、主にコア11を伝搬するが、光ファイバの接続部等で漏洩して一部の光がクラッド12を順方向に伝搬する場合がある。しかし、光源5側からクラッド12を順方向に伝搬する光は、第1クラッドモードストリッパ21に吸収される。このため、第1クラッドモードストリッパ21よりも光源5側と反対側では、クラッド12を順方向に光が伝搬することが抑制される。一方、コア11を順方向に伝搬する光は、光ファイバ10から出射する。光ファイバ10から出射する光は加工対象物等に照射される。 The light emitted from the light source 5 and propagating in the optical fiber 10 in the forward direction mainly propagates through the core 11, but leaks at a connection portion of the optical fiber and a part of the light propagates in the clad 12 in the forward direction. There are cases. However, light propagating from the light source 5 side through the clad 12 in the forward direction is absorbed by the first clad mode stripper 21. For this reason, on the side opposite to the light source 5 side with respect to the first clad mode stripper 21, the propagation of light in the clad 12 in the forward direction is suppressed. On the other hand, light propagating in the core 11 in the forward direction is emitted from the optical fiber 10. Light emitted from the optical fiber 10 is applied to a processing target or the like.
 ところで、加工対象物等に照射される光の一部は加工対象物等の表面で反射され、さらにその反射光の一部が光ファイバ10に戻ることがある。このようにして反射されて光ファイバ10に戻る光は、光ファイバ10のコア11及びクラッド12を逆方向に伝搬する傾向にある。しかし、クラッド12を逆方向に伝搬する光は、第2クラッドモードストリッパ22に吸収される。このため、第2クラッドモードストリッパ22よりも光源5側では、クラッド12を逆方向に光が伝搬することが抑制される。一方、コア11を逆方向に伝搬する光は、それぞれのクラッドモードストリッパが設けられる位置を通過して光源5に向かって伝搬する。 By the way, a part of the light irradiated to the processing object or the like is reflected on the surface of the processing object or the like, and a part of the reflected light may return to the optical fiber 10. The light reflected back to the optical fiber 10 in this manner tends to propagate in the opposite direction through the core 11 and the clad 12 of the optical fiber 10. However, light propagating in the opposite direction through the cladding 12 is absorbed by the second cladding mode stripper 22. Therefore, on the light source 5 side of the second clad mode stripper 22, light is prevented from propagating in the reverse direction through the clad 12. On the other hand, the light propagating in the core 11 in the opposite direction propagates toward the light source 5 through the position where each clad mode stripper is provided.
 ここで、コア11を順方向に伝搬する光の強度をPfcoreとし、クラッド12を順方向に伝搬する光の強度をPfcladとし、コア11を逆方向に伝搬する光の強度をPrcoreとし、クラッド12を逆方向に伝搬する光の強度をPrcladとする。 Here, the intensity of light propagating in the core 11 in the forward direction is Pfcore, the intensity of light propagating in the cladding 12 in the forward direction is Pfclad, the intensity of light propagating in the core 11 in the reverse direction is Prcore, and the cladding 12 Is assumed to be Prclad.
 上記のように、第1クラッドモードストリッパ21よりも光源5側と反対側では、クラッド12を順方向に光が伝搬することが抑制され、第2クラッドモードストリッパ22よりも光源5側では、クラッド12を逆方向に光が伝搬することが抑制される。従って、第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間では、クラッド12を光が伝搬することが抑制される。一方、第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間において、コア11を順方向及び逆方向に光が伝搬する。このため、第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間における光ファイバ10を伝搬する光の強度P1は、以下の式(1)で示される。
P1=Pfcore +Prcore  ・・・(1)
As described above, on the side opposite to the light source 5 side with respect to the first cladding mode stripper 21, light is prevented from propagating in the cladding 12 in the forward direction. 12 is prevented from propagating in the opposite direction. Therefore, between the first cladding mode stripper 21 and the second cladding mode stripper 22, light is prevented from propagating through the cladding 12. On the other hand, between the first cladding mode stripper 21 and the second cladding mode stripper 22, light propagates through the core 11 in the forward and reverse directions. Therefore, the intensity P1 of light propagating through the optical fiber 10 between the first cladding mode stripper 21 and the second cladding mode stripper 22 is represented by the following equation (1).
P1 = Pfcore + Prcore (1)
 第1光検出器31は、上記のように、第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間において光ファイバ10から漏洩する光の強度を検出する。上記のように光ファイバ10から漏洩する光はレイリー散乱により漏洩する光を含むため、光ファイバ10から漏洩する光の強度と光ファイバ10を伝搬する光の強度とは相関する。従って、第1光検出器31は、第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間において光ファイバ10を伝搬する光の強度P1に相関する光の強度を検出する。 The first photodetector 31 detects the intensity of light leaking from the optical fiber 10 between the first cladding mode stripper 21 and the second cladding mode stripper 22, as described above. As described above, the light leaking from the optical fiber 10 includes the light leaking due to Rayleigh scattering, so that the intensity of the light leaking from the optical fiber 10 and the intensity of the light propagating through the optical fiber 10 are correlated. Therefore, the first photodetector 31 detects the intensity of light correlated with the intensity P1 of light propagating through the optical fiber 10 between the first cladding mode stripper 21 and the second cladding mode stripper 22.
 また、第2クラッドモードストリッパ22よりも光源5側と反対側では、クラッド12を逆方向に光が伝搬し得、コア11を順方向及び逆方向に光が伝搬する。このため、第2クラッドモードストリッパ22よりも光源5側と反対側における光ファイバ10を伝搬する光の強度P2は、以下の式(2)で示される。
P2=Pfcore +Prcore + Prclad  ・・・(2)
On the side opposite to the light source 5 side with respect to the second cladding mode stripper 22, light can propagate in the cladding 12 in the reverse direction, and light propagates in the core 11 in the forward direction and the reverse direction. Therefore, the intensity P2 of light propagating through the optical fiber 10 on the side opposite to the light source 5 side with respect to the second cladding mode stripper 22 is expressed by the following equation (2).
P2 = Pfcore + Prcore + Prclad (2)
 第2光検出器32は、第2クラッドモードストリッパ22を基準とした第1クラッドモードストリッパ21側と反対側において光ファイバ10から漏洩する光の強度を検出する。従って、第2光検出器32は、第2クラッドモードストリッパ22を基準とした第1クラッドモードストリッパ21側と反対側において光ファイバ10を伝搬する光の強度P2に相関する光の強度を検出する。 The second photodetector 32 detects the intensity of light leaking from the optical fiber 10 on the side opposite to the first cladding mode stripper 21 with respect to the second cladding mode stripper 22. Accordingly, the second photodetector 32 detects the intensity of light correlated with the intensity P2 of the light propagating through the optical fiber 10 on the side opposite to the first cladding mode stripper 21 with reference to the second cladding mode stripper 22. .
 第1光検出器31及び第2光検出器32から出力する信号は、第1レベル調整部33及び第2レベル調整部34でそれぞれレベルが調整されて、減算器40に入力する。 信号 The signals output from the first photodetector 31 and the second photodetector 32 have their levels adjusted by the first level adjuster 33 and the second level adjuster 34 respectively, and are input to the subtractor 40.
 減算器40では、上記のように、第1光検出器31が検出する光の強度と第2光検出器32が検出する光の強度との差が求められる。また、上記のように、第1光検出器31は、強度P1に相関する光の強度を検出し、第2光検出器32は、強度P2に相関する光の強度を検出する。このため、減算器40では、強度P1と強度P2との差に相関する値が求められる。つまり、減算器40では、光ファイバ10のクラッド12を逆方向に伝搬する光の強度Prcladに相関する強度が求められる。従って、クラッド12を逆方向に伝搬する光の強度Prcladを求めることができる。減算器40は、光の強度Prcladに相関する強度を示す信号、或いは、強度Prcladを示す信号を出力する。 In the subtracter 40, as described above, the difference between the light intensity detected by the first light detector 31 and the light intensity detected by the second light detector 32 is obtained. As described above, the first photodetector 31 detects the intensity of light correlated with the intensity P1, and the second photodetector 32 detects the intensity of light correlated with the intensity P2. Therefore, the subtractor 40 obtains a value correlated with the difference between the intensity P1 and the intensity P2. That is, the subtractor 40 obtains an intensity correlated with the intensity Prclad of the light propagating in the opposite direction through the clad 12 of the optical fiber 10. Therefore, the intensity Prclad of light propagating in the opposite direction through the clad 12 can be obtained. The subtractor 40 outputs a signal indicating an intensity correlated with the light intensity Prclad, or a signal indicating the intensity Prclad.
 減算器40から出力する信号は、制御部CPに入力する。制御部CPは、上記のように求められた光の強度Prcladに相関する強度、或いは、強度Prcladに基づいて、光源5に対して所定の制御を行うことができる。例えば、制御部CPは、クラッド12を逆方向に伝搬する光の強度Prcladが所定の値以上である場合に、励起光源50を制御して、それぞれのレーザダイオード51の動作を停止させ、レーザ装置1から出射されるレーザ光を止めるインターロック動作を行わせることができる。或いは、制御部CPは、クラッド12を逆方向に伝搬する光の強度Prcladが所定の値以上である場合に、励起光源50を制御して、それぞれのレーザダイオード51から出射する光の強度を下げて、レーザ装置1から出射されるレーザ光の強度を下げる制御を行うことができる。 信号 The signal output from the subtractor 40 is input to the control unit CP. The control unit CP can perform predetermined control on the light source 5 based on the intensity correlated with the light intensity Prclad determined as described above, or on the basis of the intensity Prclad. For example, when the intensity Prclad of light propagating in the reverse direction through the clad 12 is equal to or more than a predetermined value, the control unit CP controls the pump light source 50 to stop the operation of each laser diode 51, and An interlock operation for stopping the laser light emitted from 1 can be performed. Alternatively, the control unit CP controls the pumping light source 50 to reduce the intensity of light emitted from each laser diode 51 when the intensity Prclad of light propagating in the reverse direction through the clad 12 is equal to or more than a predetermined value. Thus, control for reducing the intensity of the laser light emitted from the laser device 1 can be performed.
 以上説明したように、本実施形態の光検出装置2は、所定の間隔をあけて光ファイバ10に設けられる第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22と、第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間において、光ファイバ10から漏洩する光の強度を検出する第1光検出器31と、第2クラッドモードストリッパ22を基準とした第1クラッドモードストリッパ21側と反対側において、光ファイバ10から漏洩する光の強度を検出する第2光検出器32と、を備える。 As described above, the photodetecting device 2 of the present embodiment includes the first clad mode stripper 21 and the second clad mode stripper 22 provided on the optical fiber 10 at a predetermined interval, and the first clad mode stripper 21. Between the second cladding mode stripper 22, the first photodetector 31 for detecting the intensity of light leaking from the optical fiber 10, and opposite to the first cladding mode stripper 21 side with respect to the second cladding mode stripper 22. And a second light detector 32 for detecting the intensity of light leaking from the optical fiber 10 on the side.
 上記のように、第1光検出器は、光ファイバ10の第1クラッドモードストリッパ21と第2クラッドモードストリッパ22との間において、光ファイバのコアを伝搬する光の一部が光ファイバから漏洩する光の強度を検出し、第2光検出器は、第2クラッドモードストリッパを基準とした第1クラッドモードストリッパ側と反対側において、クラッド12を逆方向に伝搬する光の一部とコアを伝搬する光の一部が光ファイバから漏洩する光の強度を検出する。このため、第1光検出器31が検出する光の強度と第2光検出器32が検出する光の強度とを用いて、クラッド12を逆方向に伝搬する光の強度Prcladや強度Prcladに相関する強度を求め得る。 As described above, between the first cladding mode stripper 21 and the second cladding mode stripper 22 of the optical fiber 10, a part of light propagating through the core of the optical fiber leaks from the optical fiber. The second photodetector detects a part of the light propagating in the opposite direction through the cladding 12 and the core on the side opposite to the first cladding mode stripper with respect to the second cladding mode stripper. A part of the propagating light detects the intensity of light leaking from the optical fiber. For this reason, using the intensity of the light detected by the first photodetector 31 and the intensity of the light detected by the second photodetector 32, the intensity of the light propagating in the opposite direction to the clad 12 is correlated with the intensity Prclad and the intensity Prclad. Strength to be obtained.
 また、本実施形態のレーザ装置1は、光検出装置2が光ファイバ10のクラッド12を逆方向に伝搬する光の強度を検出することで、当該光の強度に応じて、インターロック動作等の所定の動作を行うことができる。 In the laser device 1 of the present embodiment, the light detection device 2 detects the intensity of light propagating in the opposite direction through the clad 12 of the optical fiber 10, and performs an interlock operation or the like according to the intensity of the light. A predetermined operation can be performed.
 また、本実施形態の光検出装置2は、第1光検出器31が検出する光の強度と、第2光検出器32が検出する光の強度との差を求める減算器40を備えるため、クラッドを逆方向に伝搬する光の強度を容易に算出し得る。 In addition, since the light detection device 2 of the present embodiment includes the subtractor 40 that calculates the difference between the light intensity detected by the first light detector 31 and the light intensity detected by the second light detector 32, The intensity of light propagating in the opposite direction in the cladding can be easily calculated.
 また、本実施形態の光検出装置2は、第1光検出器31から出力する第1光検出器31が検出する光の強度を示す信号のレベルを調整する第1レベル調整部33、及び、第2光検出器32から出力する第2光検出器32が検出する光の強度を示す信号のレベルを調整する第2レベル調整部34を備える。フォトダイオード等の光検出器は、光ファイバ10に対する取り付けに誤差がある場合、光検出器が検出する光の強度の誤差が生じる。そこで、本実施形態のように、第1レベル調整部33が第1光検出器31の検出する光の強度を示す信号のレベルを調整し、第2レベル調整部34が第2光検出器32の検出する光の強度を示す信号のレベルを調整することで、第1光検出器31が検出する光の強度と第2光検出器32が検出する光の強度とのバランスを調整し得る。 Further, the light detection device 2 of the present embodiment includes a first level adjustment unit 33 that adjusts the level of a signal that is output from the first light detector 31 and that indicates the intensity of light detected by the first light detector 31, and A second level adjuster is provided which adjusts the level of a signal output from the second photodetector and indicating the intensity of light detected by the second photodetector. If there is an error in the attachment of the photodetector such as the photodiode to the optical fiber 10, an error in the intensity of the light detected by the photodetector occurs. Therefore, as in the present embodiment, the first level adjustment unit 33 adjusts the level of the signal indicating the intensity of the light detected by the first photodetector 31, and the second level adjustment unit 34 adjusts the level of the second photodetector 32. By adjusting the level of the signal indicating the intensity of light detected by the first photodetector 31, the balance between the intensity of light detected by the first photodetector 31 and the intensity of light detected by the second photodetector 32 can be adjusted.
 また、本実施形態では、第1光検出器31及び第2光検出器32は、第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22と熱的に離間されている。フォトダイオード等の一般的な光検出器は、熱の影響により検出する光の強度に誤差が生じる傾向にある。そこで、本実施形態のように、発熱する傾向にある第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22と第1光検出器31及び第2光検出器32とが熱的に離間されることで、クラッドモードストリッパと光検出器とが熱的に離間されない場合と比べて、第1光検出器31及び第2光検出器32はより正確に光の強度を検出し得る。 In the present embodiment, the first photodetector 31 and the second photodetector 32 are thermally separated from the first clad mode stripper 21 and the second clad mode stripper 22. A general photodetector such as a photodiode tends to cause an error in the intensity of light to be detected due to the influence of heat. Therefore, as in this embodiment, the first clad mode stripper 21 and the second clad mode stripper 22, which tend to generate heat, are thermally separated from the first photodetector 31 and the second photodetector 32. Thus, the first photodetector 31 and the second photodetector 32 can more accurately detect the light intensity as compared with the case where the clad mode stripper and the photodetector are not thermally separated.
 以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments.
 例えば、上記実施形態では、光検出装置2が減算器40を備え、減算器40によりクラッド12を逆方向に伝搬する光の強度Prcladを求めた。しかし、減算器40は必須では無い。例えは、第1光検出器31が検出する光の強度を含む信号と、第2光検出器32が検出する光の強度を含む信号とが、光検出装置2から個別に出力されても良い。この場合、制御部CPは、それぞれの信号を用いて、上記実施形態の制御をしても良い。 For example, in the above-described embodiment, the photodetector 2 includes the subtractor 40, and the subtractor 40 determines the intensity Prclad of the light propagating in the reverse direction through the clad 12. However, the subtractor 40 is not essential. For example, a signal including the intensity of light detected by the first photodetector 31 and a signal including the intensity of light detected by the second photodetector 32 may be individually output from the photodetector 2. . In this case, the control unit CP may control the above embodiment using the respective signals.
 また、上記実施形態の光検出装置2は、第1レベル調整部33及び第2レベル調整部34を備える。しかし、第1レベル調整部33及び第2レベル調整部34は必須では無い。この場合、第1光検出器31が設けられる光ファイバ10の部位と、第2光検出器32が設けられる光ファイバ10の部位とで、光ファイバ10から同じ強度の光が漏洩する場合に、第1光検出器31と第2光検出器32とが、同じレベルの信号を出力することが好ましい。また、上記実施形態と異なり、第1光検出器31から出力する第1光検出器31が検出する光の強度を示す信号、及び、第2光検出器32から出力する第2光検出器が検出する光の強度を示す信号の一方のレベルを調整する調整部を備えても良い。 The light detection device 2 of the above embodiment includes a first level adjustment unit 33 and a second level adjustment unit 34. However, the first level adjustment unit 33 and the second level adjustment unit 34 are not essential. In this case, when light of the same intensity leaks from the optical fiber 10 between the portion of the optical fiber 10 where the first photodetector 31 is provided and the portion of the optical fiber 10 where the second photodetector 32 is provided, It is preferable that the first photodetector 31 and the second photodetector 32 output signals of the same level. Also, different from the above embodiment, a signal indicating the intensity of light detected by the first photodetector 31 output from the first photodetector 31 and a second photodetector output from the second photodetector 32 are An adjustment unit for adjusting one level of a signal indicating the intensity of light to be detected may be provided.
 また、上記実施形態では、第1光検出器31及び第2光検出器32は、第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22と熱的に離間された。しかし、第1光検出器31及び第2光検出器32は、第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22と熱的に離間されなくても良く、第1光検出器31及び第2光検出器32の一方が、第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22と熱的に離間されても良い。ただし、第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22から発生する熱の影響を抑えるため、上記実施形態のように、第1光検出器31及び第2光検出器32が、第1クラッドモードストリッパ21及び第2クラッドモードストリッパ22と熱的に離間されることが好ましい。 In the embodiment, the first photodetector 31 and the second photodetector 32 are thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22. However, the first photodetector 31 and the second photodetector 32 do not need to be thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22, and the first photodetector 31 and the second One of the photodetectors 32 may be thermally separated from the first cladding mode stripper 21 and the second cladding mode stripper 22. However, in order to suppress the influence of heat generated from the first cladding mode stripper 21 and the second cladding mode stripper 22, the first photodetector 31 and the second photodetector 32 are connected to the first cladding mode stripper as in the above embodiment. It is preferable to be thermally separated from the mode stripper 21 and the second cladding mode stripper 22.
 また、上記実施形態では、第1光検出器31を基準として、光ファイバ10の光源5側に第1クラッドモードストリッパ21が設けられ、光ファイバ10の光源5側と反対側である出射端側に第2クラッドモードストリッパ22が設けられ、光ファイバ10のクラッド12を逆方向に伝搬する光の強度が検出された。しかし、光ファイバ10の光源5側に第2クラッドモードストリッパ22が設けられ、光ファイバ10の光源5側と反対側である出射端側に第1クラッドモードストリッパ21が設けられ、第2光検出器32が第2クラッドモードストリッパ22を基準とした第1クラッドモードストリッパ21側と反対側に設けられても良い。この場合、クラッド12を順方向に伝搬する光の強度を検出し得る。 In the above-described embodiment, the first clad mode stripper 21 is provided on the light source 5 side of the optical fiber 10 with respect to the first photodetector 31, and the emission end side opposite to the light source 5 side of the optical fiber 10. Was provided with a second cladding mode stripper 22, and the intensity of light propagating in the cladding 12 of the optical fiber 10 in the reverse direction was detected. However, the second cladding mode stripper 22 is provided on the light source 5 side of the optical fiber 10, and the first cladding mode stripper 21 is provided on the emission end side opposite to the light source 5 side of the optical fiber 10, and the second light detection The device 32 may be provided on the side opposite to the first cladding mode stripper 21 side with respect to the second cladding mode stripper 22. In this case, the intensity of light propagating in the clad 12 in the forward direction can be detected.
 また、上記実施形態では、減算器40と制御部CPとが別々のブロックとされた。しかし、減算器40と制御部CPとは一体であっても良い。 In the above embodiment, the subtractor 40 and the control unit CP are separate blocks. However, the subtractor 40 and the control unit CP may be integrated.
 また、上記実施形態では光源5が共振器型のファイバレーザ装置である例を挙げて説明したが、光源5は、他のファイバレーザ装置や固体レーザ装置であってもよい。光源5がファイバレーザ装置とされる場合、MO-PA(Master Oscillator Power Amplifier)型のファイバレーザ装置であってもよい。また、光源5の数は特に限定されず、少なくとも1つ備えられていればよい。 Further, in the above embodiment, the example in which the light source 5 is a resonator type fiber laser device has been described, but the light source 5 may be another fiber laser device or a solid-state laser device. When the light source 5 is a fiber laser device, it may be a MO-PA (Master Oscillator Power Amplifier) type fiber laser device. The number of the light sources 5 is not particularly limited, and it is sufficient that at least one light source 5 is provided.
 以上説明したように、本発明によれば、クラッドを所定の方向に伝搬する光の強度を検出し得る光検出装置、及び当該光検出装置を備えるレーザ装置が提供され、ファイバレーザ装置や光ファイバ通信等の分野で利用することが期待される。 As described above, according to the present invention, a photodetector capable of detecting the intensity of light propagating in a predetermined direction through a clad, and a laser device including the photodetector are provided, and a fiber laser device or an optical fiber It is expected to be used in fields such as communication.
1・・・レーザ装置
2・・・光検出装置
5・・・光源
10・・・光ファイバ
11・・・コア
12・・・クラッド
21・・・第1クラッドモードストリッパ
22・・・第2クラッドモードストリッパ
31・・・第1光検出器
32・・・第2光検出器
33・・・第1レベル調整部
34・・・第2レベル調整部
40・・・減算器
CP・・・制御部

 
DESCRIPTION OF SYMBOLS 1 ... Laser apparatus 2 ... Photodetection apparatus 5 ... Light source 10 ... Optical fiber 11 ... Core 12 ... Cladding 21 ... 1st cladding mode stripper 22 ... 2nd cladding Mode stripper 31 First photodetector 32 Second photodetector 33 First level adjuster 34 Second level adjuster 40 Subtractor CP Control unit

Claims (9)

  1.  所定の間隔をあけて光ファイバに設けられる第1クラッドモードストリッパ及び第2クラッドモードストリッパと、
     前記第1クラッドモードストリッパと前記第2クラッドモードストリッパとの間において、前記光ファイバから漏洩する光の強度を検出する第1光検出器と、
     前記第2クラッドモードストリッパを基準とした前記第1クラッドモードストリッパ側と反対側において、前記光ファイバから漏洩する光の強度を検出する第2光検出器と、
    を備える
    ことを特徴とする光検出装置。
    A first cladding mode stripper and a second cladding mode stripper provided on the optical fiber at predetermined intervals;
    A first photodetector that detects the intensity of light leaking from the optical fiber between the first cladding mode stripper and the second cladding mode stripper;
    On the side opposite to the first cladding mode stripper side with respect to the second cladding mode stripper, a second photodetector for detecting the intensity of light leaking from the optical fiber,
    A light detection device comprising:
  2.  前記第1光検出器が検出する光の強度と、前記第2光検出器が検出する光の強度との差を求める減算器を更に備える
    ことを特徴とする請求項1に記載の光検出装置。
    The light detection device according to claim 1, further comprising a subtractor that calculates a difference between an intensity of light detected by the first photodetector and an intensity of light detected by the second photodetector. .
  3.  前記第1光検出器から出力する前記第1光検出器が検出する光の強度を示す信号、及び、前記第2光検出器から出力する前記第2光検出器が検出する光の強度を示す信号の少なくとも一方のレベルを調整する調整部を更に備える
    ことを特徴とする請求項1または2に記載の光検出装置。
    A signal indicating the intensity of light detected by the first photodetector output from the first photodetector, and indicating the intensity of light detected by the second photodetector output from the second photodetector. The photodetector according to claim 1, further comprising an adjusting unit that adjusts at least one level of the signal.
  4.  前記第1光検出器及び前記第2光検出器の少なくとも一方は、前記第1クラッドモードストリッパ及び前記第2クラッドモードストリッパと熱的に離間される
    ことを特徴とする請求項1から3のいずれか1項に記載の光検出装置。
    4. The method according to claim 1, wherein at least one of the first photodetector and the second photodetector is thermally separated from the first cladding mode stripper and the second cladding mode stripper. The photodetector according to claim 1.
  5.  前記光ファイバと、
     請求項1から4のいずれか1項に記載の光検出装置と、
     前記光ファイバを伝搬する光を出射する少なくとも一つの光源と、
    を備える
    ことを特徴とするレーザ装置。
    The optical fiber;
    A light detection device according to any one of claims 1 to 4,
    At least one light source for emitting light propagating through the optical fiber,
    A laser device comprising:
  6.  前記第2光検出器は、前記第1光検出器よりも前記光ファイバの出射端側に配置される
    ことを特徴とする請求項5に記載のレーザ装置。
    The laser device according to claim 5, wherein the second photodetector is disposed closer to an emission end of the optical fiber than the first photodetector.
  7.  前記第1光検出器及び前記第2光検出器に接続される制御部をさらに備え、
     前記制御部は、前記第1光検出器から出力する前記第1光検出器が検出する光の強度を示す信号と、前記第2光検出器から出力する前記第2光検出器が検出する光の強度を示す信号とに基づいて前記光源の動作を制御する
    ことを特徴とする請求項5又は6に記載のレーザ装置。
    A control unit connected to the first photodetector and the second photodetector,
    The control unit includes a signal output from the first photodetector and indicating the intensity of light detected by the first photodetector, and a light output from the second photodetector and detected by the second photodetector. 7. The laser device according to claim 5, wherein the operation of the light source is controlled based on a signal indicating the intensity of the laser beam.
  8.  前記制御部は、前記第2光検出器側から前記第1光検出器側に向かって前記光ファイバのクラッドを伝搬する光の強度が所定の値以上である場合に、前記光源の動作を停止させる
    ことを特徴とする請求項7に記載のレーザ装置。
    The controller stops the operation of the light source when the intensity of light propagating through the cladding of the optical fiber from the second photodetector side to the first photodetector side is equal to or more than a predetermined value. The laser device according to claim 7, wherein the laser device is operated.
  9.  前記制御部は、前記第2光検出器側から前記第1光検出器側に向かって前記光ファイバのクラッドを伝搬する光の強度が所定の値以上である場合に、前記光源から出射する光の強度を下げる
    ことを特徴とする請求項7に記載のレーザ装置。
    The controller outputs light emitted from the light source when the intensity of light propagating through the clad of the optical fiber from the second photodetector side toward the first photodetector side is equal to or greater than a predetermined value. The laser device according to claim 7, wherein the intensity of the laser beam is reduced.
PCT/JP2019/029971 2018-07-31 2019-07-31 Light detecting device, and laser device WO2020027184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144403A JP6644839B2 (en) 2018-07-31 2018-07-31 Laser device
JP2018-144403 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020027184A1 true WO2020027184A1 (en) 2020-02-06

Family

ID=69230677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029971 WO2020027184A1 (en) 2018-07-31 2019-07-31 Light detecting device, and laser device

Country Status (2)

Country Link
JP (1) JP6644839B2 (en)
WO (1) WO2020027184A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313513A1 (en) * 2013-04-23 2014-10-23 Kai-Hsiu Liao Power monitor for optical fiber using background scattering
JP2016510135A (en) * 2013-02-28 2016-04-04 アイピージー フォトニクス コーポレーション Low mode high power fiber coupler
JP2016161867A (en) * 2015-03-04 2016-09-05 株式会社フジクラ Optical power monitor device and fiber laser device
JP2017208370A (en) * 2016-05-16 2017-11-24 株式会社フジクラ Optical power monitoring device, laser device, and laser system
US20180059343A1 (en) * 2014-08-01 2018-03-01 Nlight Photonics Corporation Back-reflection protection and monitoring in fiber and fiber-delivered lasers
WO2018124038A1 (en) * 2016-12-27 2018-07-05 株式会社フジクラ Detection apparatus, fiber laser, fiber laser system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510135A (en) * 2013-02-28 2016-04-04 アイピージー フォトニクス コーポレーション Low mode high power fiber coupler
US20140313513A1 (en) * 2013-04-23 2014-10-23 Kai-Hsiu Liao Power monitor for optical fiber using background scattering
US20180059343A1 (en) * 2014-08-01 2018-03-01 Nlight Photonics Corporation Back-reflection protection and monitoring in fiber and fiber-delivered lasers
JP2016161867A (en) * 2015-03-04 2016-09-05 株式会社フジクラ Optical power monitor device and fiber laser device
JP2017208370A (en) * 2016-05-16 2017-11-24 株式会社フジクラ Optical power monitoring device, laser device, and laser system
WO2018124038A1 (en) * 2016-12-27 2018-07-05 株式会社フジクラ Detection apparatus, fiber laser, fiber laser system

Also Published As

Publication number Publication date
JP2020020652A (en) 2020-02-06
JP6644839B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
US9985407B2 (en) Fiber laser apparatus and method of detecting failure of fiber laser apparatus
US20160254637A1 (en) Fiber laser device
CN111183341B (en) Photodetector and laser device
US8422890B2 (en) Fiber output stabilizer
US11940321B2 (en) Photodetection device and laser device
JP6980482B2 (en) Photodetector and laser device
JP6644839B2 (en) Laser device
JP3718212B2 (en) Semiconductor light emitting device
JP2019070599A (en) Light detection device and laser equipment
US11444436B2 (en) Semiconductor optical amplifier, semiconductor optical amplification device, optical output device, and distance measuring device
JP2015149369A (en) fiber laser device
KR20190067631A (en) Semiconductor laser diode light source package
JP7304789B2 (en) LASER DEVICE AND LIGHT SOURCE CONTROL METHOD OF LASER DEVICE
WO2019189317A1 (en) Photodetector device and laser system
JP6276969B2 (en) Stokes light detection method for optical fiber for amplification, and fiber laser device using the same
JP2018174206A (en) Laser device
JP2014216497A (en) Optical circuit device
CN110088997B (en) Semiconductor laser module
JP5921587B2 (en) Wavelength conversion element, wavelength conversion device and control device
JP2010212282A (en) Optical amplification device, and optical amplification method
JP2015138866A (en) fiber laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843598

Country of ref document: EP

Kind code of ref document: A1