WO2020026961A1 - Battery system, electric vehicle provided with battery system, and power storage device - Google Patents

Battery system, electric vehicle provided with battery system, and power storage device Download PDF

Info

Publication number
WO2020026961A1
WO2020026961A1 PCT/JP2019/029336 JP2019029336W WO2020026961A1 WO 2020026961 A1 WO2020026961 A1 WO 2020026961A1 JP 2019029336 W JP2019029336 W JP 2019029336W WO 2020026961 A1 WO2020026961 A1 WO 2020026961A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery system
binding material
stack
binding
Prior art date
Application number
PCT/JP2019/029336
Other languages
French (fr)
Japanese (ja)
Inventor
忍 寺内
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2020026961A1 publication Critical patent/WO2020026961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery system in which a plurality of rectangular battery cells are stacked to form a battery stack, and the battery stack is pressed and fixed in a pressurized state, an electric vehicle including the battery system, and a power storage device.
  • An important object of the present invention is to provide a technique capable of holding a battery cell by applying a high pressure while reducing the weight of parts while reducing the cost of parts.
  • a battery system includes a battery stack formed by stacking a plurality of rectangular battery cells, and binding the battery stack in a stacking direction of the battery cells, and fixing each battery cell in a pressurized state.
  • the binding material is a flexible loop-shaped string material.
  • an electric vehicle including a battery system including the components of the above-described embodiments is a vehicle including the battery system, a running motor supplied with power from the battery system, and the battery system and the motor.
  • the vehicle includes a main body and wheels driven by the motor to drive the vehicle main body.
  • a power storage device including a battery system including the components of the above aspects includes the battery system, and a power supply controller that controls charging and discharging of the battery system, wherein the power supply controller is configured to control the rectangular shape by external power.
  • the battery cell can be charged and the battery cell is controlled to be charged.
  • a battery stack formed by stacking a plurality of rectangular battery cells is bound in the battery cell stacking direction with a binding material that is a flexible loop-shaped string, and each battery is stacked. Since the cell is fixed in a pressurized state, the weight can be reduced while reducing the cost of parts, and the battery cell can be fixed in a pressurized state with a strong pressure.
  • FIG. 1 is a schematic perspective view of a battery system according to Embodiment 1 of the present invention. It is a schematic perspective view of the battery system concerning Embodiment 2 of the present invention.
  • FIG. 9 is a schematic perspective view of a battery system according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic perspective view of a battery system according to Embodiment 4 of the present invention.
  • FIG. 11 is a schematic perspective view of a battery system according to Embodiment 5 of the present invention.
  • FIG. 14 is a schematic perspective view of a battery system according to Embodiment 6 of the present invention.
  • FIG. 2 is an exploded perspective view illustrating a manufacturing process of the battery system illustrated in FIG. 1.
  • FIG. 1 is a schematic perspective view of a battery system according to Embodiment 1 of the present invention. It is a schematic perspective view of the battery system concerning Embodiment 2 of the present invention.
  • FIG. 9 is a schematic perspective view of a battery system according to
  • FIG. 5 is an exploded perspective view illustrating a manufacturing process of the battery system illustrated in FIG. 4. It is a sectional perspective view showing an example of a binding material. It is a schematic perspective view of the battery system concerning Embodiment 7 of the present invention.
  • FIG. 5 is a horizontal sectional view showing a connection structure between an end plate and a binding material of the battery system shown in FIG. 4.
  • FIG. 5 is a vertical sectional view showing a connection structure between an end plate and a binding material of the battery system shown in FIG. 4.
  • It is a perspective view of a band holder.
  • FIG. 5 is an exploded perspective view illustrating a manufacturing process of the battery system illustrated in FIG. 4. It is a sectional perspective view showing an example of a binding material. It is a schematic perspective view of the battery system concerning Embodiment 7 of the present invention.
  • FIG. 5 is a horizontal sectional view showing
  • FIG. 6 is a horizontal sectional view showing a connection structure between an end plate and a binding material of the battery system shown in FIG. 5.
  • FIG. 2 is a block diagram showing an example in which a battery system is mounted on a hybrid car that runs on an engine and a motor.
  • FIG. 3 is a block diagram illustrating an example in which a battery system is mounted on an electric vehicle running only by a motor.
  • FIG. 3 is a block diagram illustrating an example in which a battery system is used for a power storage device.
  • a battery system includes a battery stack formed by stacking a plurality of rectangular battery cells, and binding the battery stack in the stacking direction of the battery cells, and setting each battery cell to a pressurized state. And a fixed binding material, and the binding material is a flexible loop-shaped string material.
  • the above battery system is characterized in that it can be reduced in weight while reducing the cost of parts, and that the battery cells can be fixed in a pressurized state with strong pressure. That is, the above battery system binds the battery stack with a binding material without using a conventional binding bar using high-tensile steel or a thick metal plate, and furthermore, this binding material is made flexible. This is because the string material is formed into a loop. Unlike a conventional bind bar, a flexible loop-shaped string material does not have a connecting portion to be connected to an end plate, and a tensile force acts on the string material by disposing a battery stack inside a loop. In this state, the battery cell can be fixed in a pressurized state.
  • the flexible and continuous loop-shaped string material having no connecting portion has a feature that the battery cell is fixed in a pressurized state by a strong tensile stress acting in the longitudinal direction without a local decrease in strength due to the connecting portion. is there. Further, the cord material is lighter and has a higher tensile stress than high-tensile steel or a metal plate, and has a feature that the battery cell can be fixed by applying a high pressure to the battery cell.
  • the present invention is not limited to a battery system and an electric vehicle and a power storage device including the battery system, but may have the following configurations.
  • the end plates are arranged at both ends in the stacking direction of the battery stack, the end plates are arranged inside the binding material, and the binding material is used to press the battery stack through the end plates. It may be fixed. According to this configuration, both end surfaces of the battery stack are uniformly pressed by the end plate, and the battery cells can be held in a flat shape and pressed.
  • the battery system may have a structure in which protruding portions are provided on outer surfaces of end plates disposed on both ends of the battery stack, and a binding material is disposed on both sides of the protruding portions. According to this configuration, the protruding portion of the end plate is pressed to put the battery laminate in a pressurized state, and the battery laminate having the end plates disposed at both ends inside the loop-shaped binding material is arranged. Thus, the battery stack can be fixed in a pressurized state.
  • the binding material is preferably a string material having at least a surface as an insulating material. According to this configuration, it is possible to prevent the battery cell from being short-circuited by the binding material and to fix the battery cell in a pressurized state.
  • the binding material may be a string material of a fiber-reinforced belt formed by embedding high-tensile fibers in a molded material made of a plastic or rubber-like elastic material.
  • the battery cell can be pressed and fixed with a strong pressure while the binding material is further reduced in weight.
  • the fiber-reinforced belt is reinforced with high-tensile fibers, so that the tensile strength is extremely increased and the weight can be reduced.
  • the ability to increase the tensile strength of the light fiber reinforced belt is significantly reduced by the synergistic effect of the unique structure of binding the battery stack with a seamless continuous loop-like string material, and the battery cell is significantly reduced in weight. Realizes the feature that it can be fixed by pressing with strong pressure.
  • the binding material may be a string material of a fiber reinforced belt in which a plurality of core wires obtained by twisting high-tensile fibers are buried in the longitudinal direction. According to this configuration, it is possible to provide a fiber reinforced belt in which the tensile strength of the binding material is stronger in the vertical direction than in the horizontal direction.
  • the fiber reinforced belt is preferably a fiber reinforced belt in which a core wire is embedded in an endless loop shape in the vertical direction.
  • the fiber reinforced belt has a structure in which the high-tensile fibers are stretched in a loop shape and buried in the longitudinal direction, thereby realizing a feature that the binding material is further reduced in weight and the battery cells can be pressed and fixed with strong pressure.
  • the binding material may be a string material obtained by bundling core wires obtained by twisting a plurality of high-tensile fibers.
  • the binding material is a string made of a core wire in which high-tensile fibers are twisted, and this string is wound around the battery stack in the direction in which the battery cells are pressed, so that the battery cells are pressed. It may be fixed. According to this configuration, it is possible to press and fix the battery cell with strong pressure while reducing the weight of the binding material.
  • a binding material may be arranged on the upper and lower surfaces of the battery stack to bind the battery stack. Still further, in the battery system, a binding material may be arranged on both side surfaces of the battery stack to bind the battery stack.
  • a battery stack 2 in which a plurality of rectangular battery cells 1 are stacked is bound by a binding material 3 of a string material 30.
  • the binding material 3 is an endless cord material 30.
  • the battery stack 2 is disposed inside the loop in an endless manner, and the battery cells 1 are fixed to the pressurized state by the binding material 3.
  • the battery stack 2 is disposed inside the endless binding material 3, and the battery cells 1 are fixed in a pressurized state.
  • the plate-like end plates 4 are arranged on both end surfaces of the battery stack 2, and both the end plates 4 and the battery stack 2 are formed in a loop-like and endless manner. It is arranged inside the binding material 3.
  • the battery systems 400, 500, and 600 in which the end plates 4 are arranged on both end surfaces of the battery stack 2 can fix the battery cells 1 in a pressurized state via the end plates 4.
  • the battery systems 100 and 400 in FIGS. 1 and 4 dispose the binding material 3 on the upper and lower surfaces of the battery stack 2, and the battery systems 200 and 500 in FIGS. 3 and 6, the battery systems 300 and 600 shown in FIGS. 3 and 6 have the binding material 3 disposed on the upper and lower surfaces and both side surfaces of the battery stack 2, and bind the battery stack 2 with the binding material 3. ing.
  • a plurality of rows, in the figure, two binding materials 3 are arranged in parallel, and the battery stack 2 is fixed in a pressurized state.
  • the battery system that binds the battery stack 2 with the plurality of rows of the binding materials 3 binds the battery cells 1 with the multiple rows of the binding materials 3 so that the end plate 4 and the battery cells 1 are prevented from being deformed while having a strong pressure.
  • the battery systems 100, 200, and 300 in which the binding material 3 directly binds the battery stack 2 without disposing end plates on both end surfaces of the battery stack 2 By increasing the number of the binding members 3, the battery stack 2 can be bound by the multiple rows of the binding members 3 and the battery cells 1 can be fixed in a pressurized state while preventing deformation of the battery cells 1.
  • the battery cell 1 is a rectangular battery having a width larger than the thickness, in other words, a rectangular battery thinner than the width, and is stacked in the thickness direction to form a battery stack 2.
  • the battery cell 1 is a non-aqueous electrolyte battery having a battery case as a metal case.
  • Battery cell 1, which is a non-aqueous electrolyte battery is a lithium ion secondary battery.
  • the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.
  • the illustrated battery cell 1 is a rectangular battery in which the main surfaces on both sides having a large width are quadrangular, and the battery cells 1 are stacked so that the main surfaces face each other to form a battery stack 2.
  • the battery cell 1 is a metal battery case having a rectangular outer shape, in which an electrode body (not shown) is housed and filled with an electrolytic solution.
  • the battery case made of a metal case can be manufactured from aluminum or an aluminum alloy.
  • the battery case includes an outer can that is formed by pressing a metal plate into a tubular shape that closes the bottom, and a sealing plate that hermetically closes an opening of the outer can.
  • the sealing plate is a flat metal plate whose outer shape is the shape of the opening of the outer can. This sealing plate is fixed to the outer peripheral edge of the outer can by laser welding, and hermetically closes the opening of the outer can.
  • the positive and negative electrode terminals 13 are fixed to both ends of the sealing plate fixed to the outer can.
  • the battery cell 1 is provided with a gas outlet 12 at the center of the sealing plate or at the bottom of the outer can.
  • the gas discharge port 12 is provided with a discharge valve 11 that opens at a predetermined internal pressure.
  • the plurality of battery cells 1 stacked on each other are connected in series and / or parallel to each other by connecting the positive and negative electrode terminals 13.
  • the positive and negative electrode terminals 13 of the adjacent battery cells 1 are connected in series and / or parallel to each other via a bus bar (not shown).
  • the output can be increased by increasing the output voltage by connecting the adjacent battery cells 1 in series with each other, and the charging / discharging current can be increased by connecting the adjacent battery cells in parallel.
  • the battery stack 2 has a plurality of battery cells 1 insulated and stacked via a separator (not shown).
  • the separator is formed by molding with an insulating material such as plastic.
  • the outer can can be made of metal such as aluminum.
  • the battery stack 2 does not necessarily need to have a separator between the battery cells 1.
  • the battery cell outer can is formed of an insulating material, or the outer periphery of the battery cell outer can is coated with an insulating sheet or an insulating paint or the like, and the adjacent battery cells are insulated from each other, thereby forming a separator. Is unnecessary.
  • the battery systems 100, 200, and 300 shown in FIGS. 1 to 3 are obtained by pressing a battery stack 2 formed by stacking a plurality of battery cells 1 from both ends with a press (not shown).
  • the battery cell 1 is held in a state of being pressed in the stacking direction, and in this state, the loop-shaped binding material 3 is attached along the outer periphery of the battery stack 2, and the battery stack 2 is arranged inside the binding material 3.
  • FIG. 7 shows a manufacturing process of the battery system 100 shown in FIG. 1, in which the binding material 3 is attached to the battery stack 2 from both sides, and the binding material 3 is arranged on the upper and lower surfaces of the battery stack 2. Is shown.
  • each battery cell 1 is fixed in a pressurized state by the binding material 3.
  • the battery stack 2 is pressurized from both ends by presses, and the loop-shaped binding material 3 is attached from above and below the battery stack 2, and the battery binding material 3 is attached to the battery stack 2.
  • the battery system 300 shown in FIG. 3 in a state where the battery stack 2 is pressed from both ends by a press, the binding materials 3 are attached from both sides of the battery stack 2, and then the binding materials 3 are attached from above and below. Then, the binding material 3 is disposed on the upper and lower surfaces and both side surfaces of the battery stack 2.
  • the binding material in a state where the battery stack is pressed from both ends with a press machine, the binding material is attached from above and below the battery stack, and then the binding material is attached from both sides, and the binding material is attached to both sides of the battery stack. It can also be arranged on the surface and the upper and lower surfaces.
  • the binding materials 3 arranged on both side surfaces of the battery stack 2 and the binding materials 3 arranged on the upper and lower surfaces are stacked so as to intersect at both end surfaces of the battery stack 2. In addition, they are tightly bound.
  • End plate 4 The end plate 4 is inserted inside the binding material 3 and presses the battery stack 2 from both end faces to press the battery cells 1 in the stacking direction.
  • the outer shape of the end plate 4 is substantially equal to or slightly larger than the outer shape of the battery cell 1, and is a square plate shape that is not deformed by disposing the battery stack 2 at a fixed position in a pressurized state.
  • the end plate 4 is inside the binding material 3 and closely adheres to the surface of the battery cell 1 in a surface contact state, and fixes the battery cell 1 in a pressurized state with a uniform pressure.
  • the end plate 4 shown in FIGS. 4 to 6 is provided with protrusions 4A and 4B on the outer surface opposite to the surface facing the battery stack 2, and a binding material is provided on both sides of the protrusions 4A and 4B. 3 are arranged.
  • the end plate 4 can mount the loop-shaped binding material 3 on both sides of the protrusions 4A and 4B while pressing the protrusions 4A and 4B to make the battery stack 2 pressurized.
  • the end plate 4 shown in FIG. 4 is provided with protrusions 4A extending vertically at the left and right intermediate portions of the outer surface, and the binding material 3 is disposed on both left and right sides of the protrusion 4A. By arranging the binding material 3 along both side edges of the protruding portion 4A, the end plate 4 is positioned at a fixed position while positioning the binding material 3 disposed on both sides of the battery stack 2 and the end plate 4. it can.
  • the end plate 4 shown in FIGS. 5 and 6 is provided with a protruding portion 4B having a square shape when viewed from the front, in the center portion of the outer surface except for the outer peripheral portion.
  • the end plate 4 is arranged with the loop-shaped binding material 3 positioned on both upper and lower sides of the protruding portion 4B, or as shown in FIG. Can be arranged while positioning the loop-shaped binding material 3.
  • the binding materials 3 arranged along the upper, lower, left, and right edges of the protruding portion 4B are stacked in an intersecting state on the outer surface of the end plate 4 and tightly bound. .
  • the end plates 4 are arranged at both ends of the battery stack 2, and the protrusions 4A and 4B of the end plates 4 at both ends are pressed.
  • the battery cells 1 are held in a state of being pressed in the stacking direction by pressing with a machine (not shown), and in this state, along the upper and lower surfaces of the battery stack 2 and the end plate 4 or along both side surfaces.
  • the looped binding material 3 is mounted, and the battery stack 2 and the end plate 4 are arranged inside the binding material 3.
  • the pressurized state of the press is released after the battery stack 2 and the end plate 4 are set inside the loop-shaped binding material 3. In this state, in the battery stack 2 set inside the loop-shaped binding material 3, each battery cell 1 is fixed in a pressurized state by the binding material 3.
  • the binding material 3 is an endless loop-shaped cord material 30.
  • a string material 30 whose surface or the whole is an insulating material is suitable. Since the short-circuit current does not flow due to contact with the conductive portion of the battery cell 1, the string 30 made of the insulating material is less restricted in the binding position, and is arranged at an optimal position for the binding, and the battery cell 1 is pressed.
  • a conductive string material such as carbon fiber can be used as the binding material.
  • the conductive string material is provided with an insulating layer between the battery stack and the battery stack to insulate the battery cells and bind the battery stack.
  • the binding material 3 of the insulating material is formed by forming a plurality of core wires 33 in which high-tensile fibers are twisted into a molding material 32 such as a rubber-like elastic body or a flexible plastic. It is the cord material 30 of the embedded fiber reinforced belt 31.
  • a string made of a wire obtained by twisting high-tensile fibers, or a string obtained by binding a plurality of wires obtained by twisting high-tensile fibers can be used as the binding material of the insulating material.
  • the fiber-reinforced belt 31 can increase the tensile strength by increasing the core wires 33 of the high-tensile fibers to be buried, and can increase the number of high-tensile fibers to be twisted by increasing the number of high-tensile fibers to be twisted.
  • the number of wires to be bundled can be increased to further increase the tensile strength.
  • an aromatic polyamide fiber registered as a trademark as “aramid fiber” is suitable. Since the aramid fiber (registered trademark) has a tensile breaking strength several times higher than that of a steel rod, a fiber reinforced belt 31 reinforced with an aramid fiber (registered trademark) or a cord made of a wire material in which high-tensile fibers are twisted are used. The tensile strength can be extremely increased while reducing the weight.
  • aramid fiber (registered trademark) is suitable for high-tensile fiber, but instead of aramid fiber (registered trademark), polyimide fiber, PBO fiber, ultra-high molecular weight polyethylene fiber, polyarylite fiber, fluorine fiber, PPS fiber And other organic fibers can be used.
  • inorganic fibers such as carbon fiber, silicon carbide fiber, alumina fiber, glass fiber, and metal fiber can be used as the high tension fiber and the aggregate fiber. Since thin inorganic fibers are flexible, they are embedded in a molding material as a twisted core wire to form a fiber reinforced belt, and a wire obtained by twisting fine inorganic fibers is used as a string material, and this wire material is further bundled. Can be used as a cord.
  • a rubber-like elastic material such as hydrogenated nitrile rubber (HNBR) used for an engine timing belt is suitable. Excellent plastics can also be used.
  • HNBR hydrogenated nitrile rubber
  • the fiber reinforced belt 31 is manufactured by insert-molding a plurality of core wires 33 in which high-tensile fibers are twisted into a molding material 32.
  • the plurality of core wires 33 are embedded in the molding material 32 in an endless loop shape and in a posture extending in the longitudinal direction in a posture parallel to each other.
  • a plurality of seamless core wires 33 are embedded, and the tensile strength is significantly enhanced.
  • the fiber reinforced belt 31 in which the plurality of core wires 33 in which the aramid fiber (registered trademark) is twisted in the hydrogenated nitrile rubber (HNBR) is buried in the parallel posture is comparable to the high tensile steel. To achieve a high tensile breaking strength.
  • the fiber reinforced belt 31 can embed a plurality of core wires 33 in which high-tensile fibers are twisted to increase the tensile strength, but embeds a large number of high-tensile fibers in a parallel posture without twisting the high-tensile fibers and tensions the fibers. Strength can also be increased.
  • This fiber reinforced belt is manufactured by winding one long high tension fiber in a loop shape and embedding the high tension fiber in a parallel posture in a molding material.
  • This fiber reinforced belt can be manufactured by connecting both ends of a high-tensile fiber or burying it in a molding material without connecting.
  • a fiber reinforced belt in which high-tensile fibers are wound in a loop shape and embedded in a molding material, the tensile force acting on the high-tensile fibers decreases in proportion to the number of times of winding in a loop shape.
  • a fiber reinforced belt wound 1000 times and embedded has a tensile force acting on the high strength fiber reduced to 1/1000 as compared with a belt embedded with one high strength fiber.
  • the fiber reinforced belt realizes a high tensile strength without being displaced by being embedded in a molding material and without necessarily being connected.
  • the fiber reinforced belt 31 embeds the high-tensile fibers in a posture extending in the longitudinal direction, so that the tensile strength can be particularly increased.
  • the fiber-reinforced belt is a state in which the high-tensile fibers of a predetermined length are gathered three-dimensionally without directionality. Can be embedded in the molding material.
  • the fiber reinforced belt embeds high-tensile fibers buried in the molding material so as to extend in the vertical direction rather than the horizontal direction without burying it in any direction, and has a stronger tensile strength in the vertical direction than in the horizontal direction. can do.
  • a tying material consisting of a tying material composed of a wire material obtained by twisting high-tensile fibers, or a tying material consisting of a plurality of tying materials obtained by twisting high-tensile fibers. Since the material realizes excellent tensile breaking strength by the high-tensile fiber, the battery is wound around the surface of the battery stack 2 in the direction in which the battery cell 1 is pressed as shown in FIG. Thus, the battery cell 1 can be fixed in a pressurized state.
  • the string material 30X can be fixed by pressing the battery cell 1 with a strong pressure by increasing the number of times of winding around the battery stack 2.
  • the battery system 700 that winds one string 30X around the battery stack 2 can increase the pressing force of the battery cell 1 in proportion to the number of turns of the string 30X.
  • the pressing force of the battery cell 1 can be increased without increasing the tensile force acting on one string material 30X. It is necessary to connect the ends of the string material 30X wound around the battery stack 2, but there is a feature that the pressing force of the battery cell 1 can be increased without increasing the connection strength.
  • Both ends of the string material 30X wound around the battery stack 2 can be connected via a connecting member 36 such as a sleeve as shown in FIG. 10, or can be connected with an adhesive.
  • FIGS. 11 and 12 show a structure in which the binding material 3 is arranged at a fixed position on the end plate 4.
  • FIGS. 11 and 12 are a horizontal sectional view and a vertical sectional view showing a connection structure between the end plate 4 and the binding material 3 of the battery system 400 shown in FIG.
  • the pair of end plates 4 have the loop-shaped binding members 3 on both sides of the outer side surface and on both sides of the projection 4A provided at the center.
  • the battery system 400 shown in FIGS. 4, 8, 11, and 12 is configured such that two rows of binding materials 3 arranged on the outer surface of the end plate 4 are connected to the end plate 4 via a band holder 5 and fixing bolts 6. 4 is located at a fixed position.
  • the band holder 5 is arranged at a fixed position of the end plate 4 while positioning the binding material 3 which is the fiber reinforced belt 31.
  • the band holder 5 shown in FIGS. 4 and 11 is disposed on the outer surface of the end plate 4 on both sides of the protruding portion 4A, and is disposed so as to extend vertically along the outer surface of the end plate 4.
  • the fiber reinforced belt 31 is disposed inside the fiber reinforced belt 31 so that the fiber reinforced belt 31 is disposed at a fixed position on the end plate 4.
  • the band holder 5 shown in FIGS. 8 and 13 is provided with a pair of side walls 52 extending along both sides of the belt-shaped fiber reinforced belt 31 on both sides of the bottom plate 51.
  • a positioning groove 53 for guiding the binding material 3 is provided.
  • the height of the side wall 52 is substantially equal to the thickness of the fiber reinforced belt 31, and the fiber reinforced belt 31 guided by the positioning groove 53 is prevented from coming off the band holder 5.
  • the band holder 5 is provided with curved surfaces 54 at both ends of the bottom plate 51 forming the bottom surface of the positioning groove 53 in order to suppress the sharp bending of the fiber reinforced belt 31 curved at the corner of the end plate 4.
  • the band holder 5 shown in FIG. 12 has a total length substantially equal to the vertical width of the end plate 4, and is provided at both ends of the bottom plate 51 arranged in the vertical direction so as to bend the fiber reinforced belt 31 with a predetermined radius of curvature.
  • a surface 54 is provided.
  • the band holder 5 can be formed of, for example, a plastic having a strength enough to withstand the pressing by the binding material 3.
  • the band holder 5 is configured to press the end plates 4 stacked on both ends of the battery stack 2 with a press (not shown) so that the battery stack 2 and the end plates 4 are pressed. It is arranged at a fixed position of the end plate 4 while being arranged inside the binding material 3 attached along the outer periphery. Further, the battery system 400 shown in FIGS. 11 and 12 adjusts the pressurized state of the battery stack 2 by the binding material 3 between the band holder 5 and the end plate 4 arranged on the outer surface of the end plate 4. Spacer 7 is inserted. The spacer 7 is a metal plate, and is inserted between the outer surface of the end plate 4 and the band holder 5 to adjust the tension of the binding material 3 that presses the battery stack 2.
  • the band holder 5 arranged at a fixed position of the end plate 4 is fixed to the end plate 4 via fixing bolts 6 penetrating therethrough. Therefore, the band holder 5 and the fiber reinforced belt 31 are provided with through holes 55 and 35 through which the fixing bolt 6 passes, and the end plate 4 is provided with a screw hole 4 a for screwing the fixing bolt 6.
  • the spacer 7 also has a through hole 7a.
  • the fiber reinforced belt 31 having the through-holes 35 can cut a high-tensile fiber embedded in a molding material by embedding a metal tube or a plastic tube having a predetermined inner diameter in the molding material. No through hole can be provided.
  • the structure in which the binding material 3 and the band holder 5 are directly fixed to the end plate 4 with the fixing bolts 6 penetrating the same is surely and firmly fixed to the fixed position of the end plate 4. There are features that can be done.
  • the end plate 4 can arrange the binding material 3 at a fixed position by the structure shown in FIG.
  • the binding material 3, which is the fiber reinforced belt 31 is disposed on the outer surface of the end plate 4 via the band holder 5 and the spacer 7, and the fiber reinforced belt 31 is fixed. It is not directly fixed to the end plate 4 by the bolt 6.
  • the end plate 4 has fixed blocks 41 for preventing the band holder 5 from moving outside the band holders 5 arranged on both sides of the protrusion 4A.
  • the fixing block 41 is fixed to the end plate 4 by screwing a fixing bolt 6 penetrating the fixing block 41 into a screw hole 4b provided in the end plate 4, thereby fixing the band holder 5 in a fixed position.
  • the fiber reinforced belt 31 fitted into the positioning groove 53 of the band holder 5 does not come off the end plate 4 and has a certain degree of freedom with respect to the longitudinal direction of the string material 30. Placed in a fixed position
  • the battery system is provided inside the bundling material 3 attached along the outer periphery of the battery stack 2 and the end plate 4, and in particular, at the corners of the battery cells 1 and the end plate 4, for example, the upper and lower end faces.
  • the buffer member may be arranged at a position facing a boundary portion between the lamination surface and a corner portion between the left and right side surfaces and the lamination surface.
  • the battery system 500 shown in FIG. 5 is folded inside the fiber reinforced belt 31 at the corners on both side edges of the end plate 4 so as to have an L-shaped cross section.
  • a bent or curved buffer member 8 is interposed.
  • a buffer member may be interposed between the corner of the battery cell 1 and the fiber reinforced belt 31.
  • a predetermined number of battery cells 1 are stacked in the thickness direction of the battery cells 1 with a separator (not shown) interposed therebetween to form a battery stack 2.
  • the plurality of battery cells 1 stacked on each other are arranged and stacked on the same plane with the sealing plate facing upward.
  • the battery stack 2 is pressed from both ends by a press (not shown) to press the battery stack 2 at a predetermined pressure, and to compress the battery cell 1 and pressurize. Hold in state.
  • the loop-shaped binding material 3 is attached along the outer peripheral surface of the battery stack 2, and the pressed battery stack 2 is attached to the loop-shaped binding material 3. Place inside.
  • a spacer 7 may be arranged between the battery cells 1 arranged at both ends of the battery stack 2 and the binding material 3 to adjust the pressurized state of the battery cells 1.
  • a predetermined number of battery cells 1 are stacked in the thickness direction of the battery cells 1 with a separator (not shown) interposed therebetween to form a battery stack 2.
  • the plurality of battery cells 1 stacked on each other are arranged and stacked on the same plane with the sealing plate facing upward.
  • the end plates 4 are arranged at both ends of the battery stack 2, and the protrusions 4 ⁇ / b> A, 4 ⁇ / b> B of the pair of end plates 4 are pressed from both sides by a press (not shown).
  • the laminate 2 is pressurized at a predetermined pressure, and the battery cells 1 are compressed and held in a pressurized state.
  • the loop-shaped binding material 3 is attached along the outer peripheral surfaces of the battery stack 2 and the end plate 4, and the battery stack in a pressed state 2 and the end plate 4 are arranged inside the loop-shaped binding material 3.
  • the band holder 5 can be arranged inside the binding material 3 to arrange the binding material at a fixed position on the end plate.
  • a spacer 7 can be arranged between the outer surface of the end plate 4 and the binding material 3 to adjust the pressurized state of the battery cell 1.
  • Electric vehicles equipped with a battery system include electric vehicles such as hybrid vehicles and plug-in hybrid vehicles that run on both an engine and a motor, or electric vehicles that run on only a motor, and are used as a power source for these electric vehicles. Is done.
  • FIG. 16 shows an example in which a battery system is mounted on a hybrid vehicle that runs on both an engine and a motor.
  • the vehicle HV equipped with the battery system shown in this figure includes a vehicle main body 90, an engine 96 for driving the vehicle main body 90 and a driving motor 93, a battery system 100 for supplying power to the motor 93, and a battery system 100.
  • the vehicle includes a generator 94 for charging a battery, and wheels 97 driven by a motor 93 and an engine 96 to drive the vehicle body 90.
  • the battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV runs on both the motor 93 and the engine 96 while charging and discharging the battery of the battery system 100.
  • the motor 93 is driven in a region where the engine efficiency is poor, for example, during acceleration or low-speed running, to run the vehicle.
  • the motor 93 is driven by being supplied with electric power from the battery system 100.
  • the generator 94 is driven by the engine 96 or by regenerative braking when a brake is applied to the vehicle to charge the battery of the battery system 100.
  • FIG. 17 shows an example in which a battery system is mounted on an electric vehicle running only by a motor.
  • the vehicle EV equipped with the battery system shown in this figure includes a vehicle body 90, a running motor 93 for running the vehicle body 90, a battery system 100 for supplying electric power to the motor 93, and a battery of the battery system 100. And a wheel 97 driven by a motor 93 to drive the vehicle body 90.
  • the motor 93 is driven by being supplied with electric power from the battery system 100.
  • the generator 94 is driven by energy at the time of regenerative braking the vehicle EV, and charges the battery of the battery system 100.
  • the present invention does not limit the use of the battery system to a battery system mounted on an electric vehicle, and can be used as a battery system for a power storage device that stores natural energy such as solar power and wind power, and It can be used for all applications that store large power, such as a battery system for a power storage device that stores power.
  • a power supply for homes and factories a power supply system that charges with sunlight or midnight power and discharges when necessary, a power supply for street lights that charges daytime sunlight and discharges at night, It can also be used as a backup power supply for driving traffic lights.
  • FIG. 18 shows such an example.
  • a large number of battery systems described above are connected in series or in parallel, and a large-capacity, high-output An example in which the power storage device 80 is constructed will be described.
  • the power storage device 80 illustrated in FIG. 18 configures a power supply unit 82 by connecting a plurality of battery systems 100 in a unit shape. In each battery system 100, a plurality of battery cells are connected in series and / or in parallel. Each battery system 100 is controlled by a power controller 84.
  • the power storage device 80 drives the load LD after charging the power supply unit 82 with the charging power supply CP. Therefore, power storage device 80 has a charge mode and a discharge mode.
  • the load LD and the charging power supply CP are connected to the power storage device 80 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power storage device 80.
  • the power supply controller 84 turns on the charging switch CS and turns off the discharging switch DS to permit charging of the power storage device 80 from the charging power supply CP. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity equal to or more than a predetermined value is charged, the power supply controller 84 turns off the charge switch CS and turns on the discharge switch DS to discharge. The mode is switched to the mode, and discharge from the power storage device 80 to the load LD is permitted. If necessary, the charge switch CS is turned on and the discharge switch DS is turned on, so that the power supply of the load LD and the charging of the power storage device 80 can be performed simultaneously.
  • the load LD driven by the power storage device 80 is connected to the power storage device 80 via the discharge switch DS.
  • power supply controller 84 switches discharge switch DS to ON, connects to load LD, and drives load LD with power from power storage device 80.
  • a switching element such as an FET can be used as the discharge switch DS.
  • ON / OFF of the discharge switch DS is controlled by the power controller 84 of the power storage device 80.
  • the power controller 84 includes a communication interface for communicating with an external device. In the example of FIG. 18, the connection to the host device HT is made according to an existing communication protocol such as UART or RS-232C. If necessary, a user interface for a user to operate the power supply system can be provided.
  • Each battery system 100 has a signal terminal and a power terminal.
  • the signal terminals include an input / output terminal DI, an abnormal output terminal DA, and a connection terminal DO.
  • the input / output terminal DI is a terminal for inputting / outputting a signal from another battery system 100 or the power controller 84
  • the connection terminal DO is a terminal for inputting / outputting a signal to / from the other battery system 100.
  • the abnormality output terminal DA is a terminal for outputting an abnormality of the battery system 100 to the outside.
  • the power supply terminal is a terminal for connecting the battery systems 100 in series and in parallel.
  • the power supply units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel with each other.
  • a battery system according to the present invention, an electric vehicle including the same, and an electric storage device are preferably used as a battery system for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, and the like that can switch between an EV traveling mode and an HEV traveling mode.
  • Power storage devices and traffic lights combined with solar cells such as backup power supplies that can be mounted on computer server racks, backup power supplies for wireless base stations such as mobile phones, home and factory power storage power supplies, and street light power supplies. It can also be used as appropriate for applications such as backup power sources.
  • Penetration Hole 80: power storage device, 82: power supply unit, 84: power supply controller, 85: parallel connection switch, 90: vehicle body, 93: motor, 94: generator, 95: DC / AC inverter, 96: engine, 9 ... Wheel, EV... vehicle, HV... vehicle, LD... load, CP... charging power supply, DS... discharge switch, CS... charge switch, OL... output line, HT... host equipment, DI... input / output terminal, DA... abnormal Output terminal, DO ... connection terminal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

In order to reduce weight while reducing component cost and to hold cells while compressing the cells with a high pressure, this battery system is provided with: a cell laminate (2) obtained by laminating a plurality of rectangular cells (1); and binding materials (3) for binding the cell laminate (2) in the direction in which the cells (1) are laminated, and fixing each of the cells (1) in a compressed state. The binding materials (3) are flexible, looped-shaped string materials (30).

Description

バッテリシステムとバッテリシステムを備える電動車両及び蓄電装置Battery system, electric vehicle including battery system, and power storage device
 本発明は、複数の角形の電池セルを積層して電池積層体とし、この電池積層体を加圧状態に押圧して固定しているバッテリシステムとバッテリシステムを備える電動車両及び蓄電装置に関する。 The present invention relates to a battery system in which a plurality of rectangular battery cells are stacked to form a battery stack, and the battery stack is pressed and fixed in a pressurized state, an electric vehicle including the battery system, and a power storage device.
 多数の角形電池を積層して電池積層体とし、この電池積層体の両端面に一対のエンドプレートを配置し、エンドプレートをバインドバーで連結して、積層している角形電池を加圧状態に固定するバッテリシステムは開発されている。(特許文献1参照) A large number of prismatic batteries are stacked to form a battery stack, a pair of end plates are arranged on both end surfaces of the battery stack, and the end plates are connected with bind bars, and the stacked square batteries are pressed. Fixed battery systems have been developed. (See Patent Document 1)
 このバッテリシステムは、電池セルを相当の圧力で加圧して固定する必要がある。電池セルの加圧力が弱いと振動などで角形電池が相対的に移動して種々の弊害の原因となる。また、充放電して角形電池が膨れるのを防止するためにも、相当な押圧力で角形電池を加圧して固定する必要がある。この構造のバッテリシステムは、各角形電池を加圧状態で固定するために、電池積層体の両端面にエンドプレートを配置して、一対のエンドプレートをプレス機で加圧し、この状態で一対のエンドプレートにバインドバーを連結している。バインドバーで連結されたエンドプレートは、一定の間隔に保持されて、各角形電池を所定の圧力で加圧状態に固定する。 バ ッ テ リ In this battery system, it is necessary to pressurize and fix the battery cells with a considerable pressure. If the pressing force of the battery cell is weak, the rectangular battery relatively moves due to vibration or the like, causing various adverse effects. Further, in order to prevent the rectangular battery from swelling due to charge and discharge, it is necessary to press and fix the rectangular battery with a considerable pressing force. In the battery system having this structure, in order to fix each prismatic battery in a pressurized state, end plates are arranged on both end surfaces of the battery stack, and a pair of end plates are pressed by a press machine. The bind bar is connected to the end plate. The end plates connected by the bind bars are held at regular intervals to fix each prismatic battery in a pressurized state at a predetermined pressure.
特開2011-60623号公報JP 2011-60623 A
 以上のバッテリシステムは、電池セルを相当な圧力で加圧して固定するので、バインドバーには相当に強い引張力が作用する。たとえば、電動車両を走行させるモータに電力を供給するバッテリシステムにあっては、バインドバーに数トンもの引張力が作用する。強い引張力に耐えるために、バインドバーには高張力鋼や厚い金属板が使用されるので、バインドバーの部品コストが高く、さらに重くなる弊害があった。 In the battery system described above, since the battery cells are pressed and fixed with a considerable pressure, a considerably strong tensile force acts on the bind bar. For example, in a battery system that supplies electric power to a motor that drives an electric vehicle, a tensile force of several tons acts on a bind bar. Since high-strength steel or a thick metal plate is used for the binding bar in order to withstand a strong tensile force, the cost of parts of the binding bar is high and there is a problem that the binding bar becomes heavy.
 本発明は、以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、部品コストを低コスト化しながら軽量化して、電池セルを強い圧力で加圧して保持できる技術を提供することにある。 The present invention has been developed to solve the above-mentioned drawbacks. An important object of the present invention is to provide a technique capable of holding a battery cell by applying a high pressure while reducing the weight of parts while reducing the cost of parts.
 本発明のある態様のバッテリシステムは、複数の角形の電池セルを積層してなる電池積層体と、電池積層体を電池セルの積層方向に結束して、各々の電池セルを加圧状態に固定している結束材とを備え、結束材は可撓性のあるループ状の紐材である。 A battery system according to an aspect of the present invention includes a battery stack formed by stacking a plurality of rectangular battery cells, and binding the battery stack in a stacking direction of the battery cells, and fixing each battery cell in a pressurized state. And the binding material is a flexible loop-shaped string material.
 さらに、以上の態様の構成要素を備えたバッテリシステムを備える電動車両は、前記バッテリシステムと、該バッテリシステムから電力供給される走行用のモータと、該バッテリシステム及び前記モータを搭載してなる車両本体と、該モータで駆動されて前記車両本体を走行させる車輪とを備えている。 Furthermore, an electric vehicle including a battery system including the components of the above-described embodiments is a vehicle including the battery system, a running motor supplied with power from the battery system, and the battery system and the motor. The vehicle includes a main body and wheels driven by the motor to drive the vehicle main body.
 さらに、以上の態様の構成要素を備えたバッテリシステムを備える蓄電装置は、前記バッテリシステムと、該バッテリシステムへの充放電を制御する電源コントローラを備え、前記電源コントローラが外部からの電力による前記角形電池セルへの充電を可能とすると共に、該電池セルに対し充電を行うよう制御している。 Further, a power storage device including a battery system including the components of the above aspects includes the battery system, and a power supply controller that controls charging and discharging of the battery system, wherein the power supply controller is configured to control the rectangular shape by external power. The battery cell can be charged and the battery cell is controlled to be charged.
 上記構成によれば、複数の角形の電池セルを積層してなる電池積層体を、可撓性のあるループ状の紐材である結束材で電池セルの積層方向に結束して、各々の電池セルを加圧状態に固定するので、部品コストを低減しながら軽量化でき、さらに電池セルを強い圧力で加圧状態に固定できる。 According to the above configuration, a battery stack formed by stacking a plurality of rectangular battery cells is bound in the battery cell stacking direction with a binding material that is a flexible loop-shaped string, and each battery is stacked. Since the cell is fixed in a pressurized state, the weight can be reduced while reducing the cost of parts, and the battery cell can be fixed in a pressurized state with a strong pressure.
本発明の実施形態1に係るバッテリシステムの概略斜視図である。1 is a schematic perspective view of a battery system according to Embodiment 1 of the present invention. 本発明の実施形態2に係るバッテリシステムの概略斜視図である。It is a schematic perspective view of the battery system concerning Embodiment 2 of the present invention. 本発明の実施形態3に係るバッテリシステムの概略斜視図である。FIG. 9 is a schematic perspective view of a battery system according to Embodiment 3 of the present invention. 本発明の実施形態4に係るバッテリシステムの概略斜視図である。FIG. 10 is a schematic perspective view of a battery system according to Embodiment 4 of the present invention. 本発明の実施形態5に係るバッテリシステムの概略斜視図である。FIG. 11 is a schematic perspective view of a battery system according to Embodiment 5 of the present invention. 本発明の実施形態6に係るバッテリシステムの概略斜視図である。FIG. 14 is a schematic perspective view of a battery system according to Embodiment 6 of the present invention. 図1に示すバッテリシステムの製造工程を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating a manufacturing process of the battery system illustrated in FIG. 1. 図4に示すバッテリシステムの製造工程を示す分解斜視図である。FIG. 5 is an exploded perspective view illustrating a manufacturing process of the battery system illustrated in FIG. 4. 結束材の一例を示す断面斜視図である。It is a sectional perspective view showing an example of a binding material. 本発明の実施形態7に係るバッテリシステムの概略斜視図である。It is a schematic perspective view of the battery system concerning Embodiment 7 of the present invention. 図4に示すバッテリシステムのエンドプレートと結束材の連結構造を示す水平断面図である。FIG. 5 is a horizontal sectional view showing a connection structure between an end plate and a binding material of the battery system shown in FIG. 4. 図4に示すバッテリシステムのエンドプレートと結束材の連結構造を示す垂直断面図である。FIG. 5 is a vertical sectional view showing a connection structure between an end plate and a binding material of the battery system shown in FIG. 4. バンドホルダーの斜視図である。It is a perspective view of a band holder. エンドプレートと結束材の連結構造の他の一例を示す水平断面図である。It is a horizontal sectional view which shows another example of the connection structure of an end plate and a binding material. 図5に示すバッテリシステムのエンドプレートと結束材の連結構造を示す水平断面図である。FIG. 6 is a horizontal sectional view showing a connection structure between an end plate and a binding material of the battery system shown in FIG. 5. エンジンとモータで走行するハイブリッドカーにバッテリシステムを搭載する例を示すブロック図である。FIG. 2 is a block diagram showing an example in which a battery system is mounted on a hybrid car that runs on an engine and a motor. モータのみで走行する電気自動車にバッテリシステムを搭載する例を示すブロック図である。FIG. 3 is a block diagram illustrating an example in which a battery system is mounted on an electric vehicle running only by a motor. 蓄電装置にバッテリシステムを使用する例を示すブロック図である。FIG. 3 is a block diagram illustrating an example in which a battery system is used for a power storage device.
 本発明のある態様に係るバッテリシステムは、複数の角形の電池セルを積層してなる電池積層体と、電池積層体を電池セルの積層方向に結束して、各々の電池セルを加圧状態に固定している結束材とを備え、結束材は可撓性のあるループ状の紐材である。 A battery system according to an embodiment of the present invention includes a battery stack formed by stacking a plurality of rectangular battery cells, and binding the battery stack in the stacking direction of the battery cells, and setting each battery cell to a pressurized state. And a fixed binding material, and the binding material is a flexible loop-shaped string material.
 以上のバッテリシステムは、部品コストを低減しながら軽量化でき、さらに電池セルを強い圧力で加圧状態に固定できる特徴がある。それは、以上のバッテリシステムが、高張力鋼や厚い金属板を使用していた従来のバインドバーを使用することなく、電池積層体を結束材で結束し、さらにこの結束材を可撓性のあるループ状に紐材とするからである。可撓性のあるループ状の紐材は、従来のバインドバーのようにエンドプレートに連結する連結部がなく、ループの内側に電池積層体を配置することで、紐材に引張力が作用する状態で電池セルを加圧状態に固定できる。連結部のない可撓性があって連続するループ状の紐材は、連結部による局部的な強度低下がなく、長手方向に作用する強い引張応力で電池セルを加圧状態に固定できる特徴がある。さらに、紐材は高張力鋼や金属板に比較して軽くて引張応力が強く、電池セルを強い圧力で加圧して固定できる特徴がある。 バ ッ テ リ The above battery system is characterized in that it can be reduced in weight while reducing the cost of parts, and that the battery cells can be fixed in a pressurized state with strong pressure. That is, the above battery system binds the battery stack with a binding material without using a conventional binding bar using high-tensile steel or a thick metal plate, and furthermore, this binding material is made flexible. This is because the string material is formed into a loop. Unlike a conventional bind bar, a flexible loop-shaped string material does not have a connecting portion to be connected to an end plate, and a tensile force acts on the string material by disposing a battery stack inside a loop. In this state, the battery cell can be fixed in a pressurized state. The flexible and continuous loop-shaped string material having no connecting portion has a feature that the battery cell is fixed in a pressurized state by a strong tensile stress acting in the longitudinal direction without a local decrease in strength due to the connecting portion. is there. Further, the cord material is lighter and has a higher tensile stress than high-tensile steel or a metal plate, and has a feature that the battery cell can be fixed by applying a high pressure to the battery cell.
 本発明は、バッテリシステムとバッテリシステムを備える電動車両及び蓄電装置を以下に限定するものではないが、以下の構成とすることができる。
 バッテリシステムは、電池積層体の積層方向の両端部にエンドプレートを配置して、エンドプレートを結束材の内側に配置し、結束材でもって、エンドプレートを介して電池積層体を加圧状態に固定してもよい。この構成によると、エンドプレートで電池積層体の両端面を均一に加圧して、電池セルを平面状に保持して加圧できる。
The present invention is not limited to a battery system and an electric vehicle and a power storage device including the battery system, but may have the following configurations.
In the battery system, the end plates are arranged at both ends in the stacking direction of the battery stack, the end plates are arranged inside the binding material, and the binding material is used to press the battery stack through the end plates. It may be fixed. According to this configuration, both end surfaces of the battery stack are uniformly pressed by the end plate, and the battery cells can be held in a flat shape and pressed.
 また、バッテリシステムは、電池積層体の両端に配置するエンドプレートの外側面に突出部を設け、この突出部の両側に結束材を配置する構造としてもよい。この構成によると、エンドプレートの突出部を押圧して電池積層体を加圧状態として、ループ状の結束材の内側に両端にエンドプレートを配置している電池積層体を配置して、結束材で電池積層体を加圧状態に固定できる。 バ ッ テ リ Also, the battery system may have a structure in which protruding portions are provided on outer surfaces of end plates disposed on both ends of the battery stack, and a binding material is disposed on both sides of the protruding portions. According to this configuration, the protruding portion of the end plate is pressed to put the battery laminate in a pressurized state, and the battery laminate having the end plates disposed at both ends inside the loop-shaped binding material is arranged. Thus, the battery stack can be fixed in a pressurized state.
 結束材は、好ましくは、少なくとも表面を絶縁材としてなる紐材とする。この構成によると、結束材による電池セルの短絡を防止して、電池セルを加圧状態に固定できる。 The binding material is preferably a string material having at least a surface as an insulating material. According to this configuration, it is possible to prevent the battery cell from being short-circuited by the binding material and to fix the battery cell in a pressurized state.
 また、結束材は、プラスチック又はゴム状弾性体からなる成形材に高張力繊維を埋設してなる繊維強化ベルトの紐材としてもよい。この構成によると、結束材をさらに軽量化しながら、電池セルを強い圧力で加圧して固定できる。それは、繊維強化ベルトが高張力繊維で補強されて極めて引張強度を強くして軽量化できるからである。軽い繊維強化ベルトの引張強度を強くできることは、繋ぎ目のない連続するループ状の紐材で電池積層体を結束する独特の構造との相乗効果により、バッテリシステムを著しく軽量化して、電池セルを強い圧力で加圧して固定できる特長を実現する。 The binding material may be a string material of a fiber-reinforced belt formed by embedding high-tensile fibers in a molded material made of a plastic or rubber-like elastic material. According to this configuration, the battery cell can be pressed and fixed with a strong pressure while the binding material is further reduced in weight. This is because the fiber-reinforced belt is reinforced with high-tensile fibers, so that the tensile strength is extremely increased and the weight can be reduced. The ability to increase the tensile strength of the light fiber reinforced belt is significantly reduced by the synergistic effect of the unique structure of binding the battery stack with a seamless continuous loop-like string material, and the battery cell is significantly reduced in weight. Realizes the feature that it can be fixed by pressing with strong pressure.
 さらに、結束材は、高張力繊維を撚り合わせた複数の芯線を長手方向に埋設してなる繊維強化ベルトの紐材としてもよい。この構成によると、結束材の引張強度を、横方向よりも縦方向に強い繊維強化ベルトとすることができる。 Furthermore, the binding material may be a string material of a fiber reinforced belt in which a plurality of core wires obtained by twisting high-tensile fibers are buried in the longitudinal direction. According to this configuration, it is possible to provide a fiber reinforced belt in which the tensile strength of the binding material is stronger in the vertical direction than in the horizontal direction.
 さらに、繊維強化ベルトは、好ましくは、芯線をエンドレスなループ状として縦方向に埋設してなる繊維強化ベルトとする。この繊維強化ベルトは、高張力繊維をループ状に伸びて縦方向に埋設する構造とすることで、結束材をより軽量化して電池セルを強い圧力で加圧して固定できる特長を実現できる。 Furthermore, the fiber reinforced belt is preferably a fiber reinforced belt in which a core wire is embedded in an endless loop shape in the vertical direction. The fiber reinforced belt has a structure in which the high-tensile fibers are stretched in a loop shape and buried in the longitudinal direction, thereby realizing a feature that the binding material is further reduced in weight and the battery cells can be pressed and fixed with strong pressure.
 さらに、結束材は、複数の高張力繊維を撚り合わせた芯線を束ねてなる紐材としてもよい。 Furthermore, the binding material may be a string material obtained by bundling core wires obtained by twisting a plurality of high-tensile fibers.
 さらに、バッテリシステムは、結束材を、高張力繊維を撚り合わせた芯線からなる紐材とし、この紐材を電池積層体に、電池セルを加圧する方向に巻き付けて、電池セルを加圧状態に固定してもよい。この構成によると、結束材をより軽量化しながら、電池セルを強い圧力で加圧して固定できる。 Furthermore, in the battery system, the binding material is a string made of a core wire in which high-tensile fibers are twisted, and this string is wound around the battery stack in the direction in which the battery cells are pressed, so that the battery cells are pressed. It may be fixed. According to this configuration, it is possible to press and fix the battery cell with strong pressure while reducing the weight of the binding material.
 さらに、バッテリシステムは、電池積層体の上下面に結束材を配置して、電池積層体を結束してもよい。さらにまた、バッテリシステムは、電池積層体の両側面に結束材を配置して、電池積層体を結束してもよい。 Furthermore, in the battery system, a binding material may be arranged on the upper and lower surfaces of the battery stack to bind the battery stack. Still further, in the battery system, a binding material may be arranged on both side surfaces of the battery stack to bind the battery stack.
 以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
 さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
Hereinafter, the present invention will be described in detail with reference to the drawings. In the following description, terms indicating specific directions and positions (for example, “above”, “below”, and other terms including those terms) will be used as necessary. This is for the purpose of facilitating the understanding of the invention with reference to the drawings, and the technical scope of the present invention is not limited by the meaning of those terms. In addition, the same reference numeral in a plurality of drawings indicates the same or equivalent part or member.
Further, the embodiments described below show specific examples of the technical concept of the present invention, and do not limit the present invention to the following. In addition, dimensions, materials, shapes, relative arrangements, and the like of the components described below are not intended to limit the scope of the present invention thereto, unless otherwise specified, and are exemplified. Intended. Further, what is described in one embodiment or example can be applied to other embodiments or examples. In addition, the size, positional relationship, and the like of the members illustrated in the drawings are exaggerated in some cases in order to make the description clear.
 図1~図6に示すバッテリシステムは、複数の角形の電池セル1を積層している電池積層体2を紐材30の結束材3で結束している。結束材3はエンドレスの紐材30で、エンドレスでループ状の内側に電池積層体2を配置して、結束材3で電池セル1を加圧状態に固定している。図1~図3のバッテリシステム100、200、300は、電池積層体2をエンドレスな結束材3の内側に配置して、電池セル1を加圧状態に固定している。図4~図6のバッテリシステム400、500、600は、電池積層体2の両端面に板状のエンドプレート4を配置して、エンドプレート4と電池積層体2の両方をループ状でエンドレスな結束材3の内側に配置している。電池積層体2の両端面にエンドプレート4を配置するバッテリシステム400、500、600は、エンドプレート4を介して電池セル1を加圧状態に固定できる。 In the battery system shown in FIGS. 1 to 6, a battery stack 2 in which a plurality of rectangular battery cells 1 are stacked is bound by a binding material 3 of a string material 30. The binding material 3 is an endless cord material 30. The battery stack 2 is disposed inside the loop in an endless manner, and the battery cells 1 are fixed to the pressurized state by the binding material 3. In the battery systems 100, 200, and 300 shown in FIGS. 1 to 3, the battery stack 2 is disposed inside the endless binding material 3, and the battery cells 1 are fixed in a pressurized state. In the battery systems 400, 500, and 600 shown in FIGS. 4 to 6, the plate-like end plates 4 are arranged on both end surfaces of the battery stack 2, and both the end plates 4 and the battery stack 2 are formed in a loop-like and endless manner. It is arranged inside the binding material 3. The battery systems 400, 500, and 600 in which the end plates 4 are arranged on both end surfaces of the battery stack 2 can fix the battery cells 1 in a pressurized state via the end plates 4.
 図1と図4のバッテリシステム100、400は、結束材3を電池積層体2の上下面に配置し、図2と図5のバッテリシステム200、500は、結束材3を電池積層体2の両側面に配置し、図3と図6のバッテリシステム300、600は、結束材3を電池積層体2の上下面と両側面とに配置して、電池積層体2を結束材3で結束している。以上のバッテリシステムは、複数列の、図においては2本の結束材3を平行に並べて、電池積層体2を加圧状態に固定している。複数列の結束材3で電池積層体2を結束するバッテリシステムは、多数列の結束材3で電池セル1を結束することで、エンドプレート4や電池セル1の変形を防止しながら、強い圧力で加圧して固定できる特長がある。とくに、図1~図3に示すように、電池積層体2の両端面にエンドプレートを配置することなく、結束材3が直接に電池積層体2を結束するバッテリシステム100、200、300は、結束材3の本数を多くして、多数列の結束材3で電池積層体2を結束して電池セル1の変形を防止しながら、加圧状態に固定できる。 The battery systems 100 and 400 in FIGS. 1 and 4 dispose the binding material 3 on the upper and lower surfaces of the battery stack 2, and the battery systems 200 and 500 in FIGS. 3 and 6, the battery systems 300 and 600 shown in FIGS. 3 and 6 have the binding material 3 disposed on the upper and lower surfaces and both side surfaces of the battery stack 2, and bind the battery stack 2 with the binding material 3. ing. In the above battery system, a plurality of rows, in the figure, two binding materials 3 are arranged in parallel, and the battery stack 2 is fixed in a pressurized state. The battery system that binds the battery stack 2 with the plurality of rows of the binding materials 3 binds the battery cells 1 with the multiple rows of the binding materials 3 so that the end plate 4 and the battery cells 1 are prevented from being deformed while having a strong pressure. There is a feature that can be fixed by pressing. In particular, as shown in FIGS. 1 to 3, the battery systems 100, 200, and 300 in which the binding material 3 directly binds the battery stack 2 without disposing end plates on both end surfaces of the battery stack 2 By increasing the number of the binding members 3, the battery stack 2 can be bound by the multiple rows of the binding members 3 and the battery cells 1 can be fixed in a pressurized state while preventing deformation of the battery cells 1.
(電池セル1)
 電池セル1は、図1~図6に示すように、厚さに比べて幅が広い、言い換えると幅よりも薄い角形の電池で、厚さ方向に積層されて電池積層体2としている。電池セル1は、電池ケースを金属ケースとする非水系電解液電池である。非水系電解液電池である電池セル1は、リチウムイオン二次電池である。ただし、電池セルは、ニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。図の電池セル1は、幅の広い両側の主面を四角形とする角形電池で、主面を対向するように積層して電池積層体2としている。
(Battery cell 1)
As shown in FIGS. 1 to 6, the battery cell 1 is a rectangular battery having a width larger than the thickness, in other words, a rectangular battery thinner than the width, and is stacked in the thickness direction to form a battery stack 2. The battery cell 1 is a non-aqueous electrolyte battery having a battery case as a metal case. Battery cell 1, which is a non-aqueous electrolyte battery, is a lithium ion secondary battery. However, the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. The illustrated battery cell 1 is a rectangular battery in which the main surfaces on both sides having a large width are quadrangular, and the battery cells 1 are stacked so that the main surfaces face each other to form a battery stack 2.
 電池セル1は、外形を角形とする金属製の電池ケースに、電極体(図示せず)を収納して電解液を充填している。金属ケースからなる電池ケースは、アルミニウムやアルミニウム合金で製造することができる。電池ケースは、底を閉塞する筒状に金属板をプレス加工している外装缶と、この外装缶の開口部を気密に閉塞している封口板とを備えている。封口板は平面状の金属板で、その外形を外装缶の開口部の形状としている。この封口板はレーザー溶接して外装缶の外周縁に固定されて外装缶の開口部を気密に閉塞している。外装缶に固定される封口板は、その両端部に正負の電極端子13を固定している。さらに電池セル1は、封口板の中央部、又は外装缶の底面にガス排出口12を設けている。ガス排出口12には、所定の内圧で開弁する排出弁11を設けている。 (4) The battery cell 1 is a metal battery case having a rectangular outer shape, in which an electrode body (not shown) is housed and filled with an electrolytic solution. The battery case made of a metal case can be manufactured from aluminum or an aluminum alloy. The battery case includes an outer can that is formed by pressing a metal plate into a tubular shape that closes the bottom, and a sealing plate that hermetically closes an opening of the outer can. The sealing plate is a flat metal plate whose outer shape is the shape of the opening of the outer can. This sealing plate is fixed to the outer peripheral edge of the outer can by laser welding, and hermetically closes the opening of the outer can. The positive and negative electrode terminals 13 are fixed to both ends of the sealing plate fixed to the outer can. Further, the battery cell 1 is provided with a gas outlet 12 at the center of the sealing plate or at the bottom of the outer can. The gas discharge port 12 is provided with a discharge valve 11 that opens at a predetermined internal pressure.
 互いに積層される複数の電池セル1は、正負の電極端子13を接続して互いに直列及び/又は並列に接続される。バッテリシステムは、隣接する電池セル1の正負の電極端子13を、バスバー(図示せず)を介して互いに直列及び/又は並列に接続する。バッテリシステムは、隣接する電池セル1を互いに直列に接続して、出力電圧を高くして出力を大きくでき、隣接する電池セルを並列に接続して、充放電の電流を大きくできる。 複数 The plurality of battery cells 1 stacked on each other are connected in series and / or parallel to each other by connecting the positive and negative electrode terminals 13. In the battery system, the positive and negative electrode terminals 13 of the adjacent battery cells 1 are connected in series and / or parallel to each other via a bus bar (not shown). In the battery system, the output can be increased by increasing the output voltage by connecting the adjacent battery cells 1 in series with each other, and the charging / discharging current can be increased by connecting the adjacent battery cells in parallel.
(電池積層体2)
 電池積層体2は、セパレータ(図示せず)を介して複数本の電池セル1を絶縁して積層している。セパレータはプラスチック等の絶縁材で成形して製作される。セパレータで絶縁して積層される電池セル1は、外装缶をアルミニウムなどの金属製にできる。ただ、電池積層体2は、必ずしも電池セル1の間にセパレータを介在させる必要はない。例えば、電池セルの外装缶を絶縁材で成形し、あるいは電池セルの外装缶の外周を絶縁シートや絶縁塗料等で被覆する等の方法で、互いに隣接する電池セル同士を絶縁することによって、セパレータを不要とできるからである。
(Battery laminate 2)
The battery stack 2 has a plurality of battery cells 1 insulated and stacked via a separator (not shown). The separator is formed by molding with an insulating material such as plastic. In the battery cell 1 that is laminated while being insulated by the separator, the outer can can be made of metal such as aluminum. However, the battery stack 2 does not necessarily need to have a separator between the battery cells 1. For example, the battery cell outer can is formed of an insulating material, or the outer periphery of the battery cell outer can is coated with an insulating sheet or an insulating paint or the like, and the adjacent battery cells are insulated from each other, thereby forming a separator. Is unnecessary.
 図1~図3のバッテリシステム100、200、300は、図7に示すように、複数の電池セル1を積層してなる電池積層体2をプレス機(図示せず)で両端から加圧して、電池セル1を積層方向に加圧する状態に保持し、この状態で電池積層体2の外周に沿ってループ状の結束材3を装着して、結束材3の内側に電池積層体2を配置する。図7は、図1に示すバッテリシステム100の製造工程であって、電池積層体2に対して両側から結束材3を装着して、結束材3を電池積層体2の上下面に配置する状態を示している。バッテリシステム100は、ループ状の結束材3の内側に電池積層体2がセットされた後、プレス機の加圧状態が解除される。この状態でループ状の結束材3の内側にセットされた電池積層体2は、結束材3により各々の電池セル1が加圧状態に固定される。 As shown in FIG. 7, the battery systems 100, 200, and 300 shown in FIGS. 1 to 3 are obtained by pressing a battery stack 2 formed by stacking a plurality of battery cells 1 from both ends with a press (not shown). The battery cell 1 is held in a state of being pressed in the stacking direction, and in this state, the loop-shaped binding material 3 is attached along the outer periphery of the battery stack 2, and the battery stack 2 is arranged inside the binding material 3. I do. FIG. 7 shows a manufacturing process of the battery system 100 shown in FIG. 1, in which the binding material 3 is attached to the battery stack 2 from both sides, and the binding material 3 is arranged on the upper and lower surfaces of the battery stack 2. Is shown. In the battery system 100, after the battery stack 2 is set inside the loop-shaped binding material 3, the pressurized state of the press is released. In this state, in the battery stack 2 set inside the loop-shaped binding material 3, each battery cell 1 is fixed in a pressurized state by the binding material 3.
 図2に示すバッテリシステム200は、電池積層体2をプレス機で両端から加圧する状態で、電池積層体2の上下からループ状の結束材3を装着して、結束材3を電池積層体2の両側面に配置する。また、図3に示すバッテリシステム300は、電池積層体2をプレス機で両端から加圧する状態で、電池積層体2の両側から結束材3を装着した後、上下から結束材3を装着して、結束材3を電池積層体2の上下面と両側面とに配置する。ただ、バッテリシステムは、電池積層体をプレス機で両端から加圧する状態で、電池積層体の上下から結束材を装着した後、両側から結束材を装着して、結束材を電池積層体の両側面と上下面とに配置することもできる。図3のバッテリシステム300は、電池積層体2の両側面に配置される結束材3と上下面に配置される結束材3とが、電池積層体2の両端面において交差する状態で積層されてさらに強固に結束される。 In the battery system 200 shown in FIG. 2, the battery stack 2 is pressurized from both ends by presses, and the loop-shaped binding material 3 is attached from above and below the battery stack 2, and the battery binding material 3 is attached to the battery stack 2. On both sides. Further, in the battery system 300 shown in FIG. 3, in a state where the battery stack 2 is pressed from both ends by a press, the binding materials 3 are attached from both sides of the battery stack 2, and then the binding materials 3 are attached from above and below. Then, the binding material 3 is disposed on the upper and lower surfaces and both side surfaces of the battery stack 2. However, in the battery system, in a state where the battery stack is pressed from both ends with a press machine, the binding material is attached from above and below the battery stack, and then the binding material is attached from both sides, and the binding material is attached to both sides of the battery stack. It can also be arranged on the surface and the upper and lower surfaces. In the battery system 300 of FIG. 3, the binding materials 3 arranged on both side surfaces of the battery stack 2 and the binding materials 3 arranged on the upper and lower surfaces are stacked so as to intersect at both end surfaces of the battery stack 2. In addition, they are tightly bound.
(エンドプレート4)
 エンドプレート4は、結束材3の内側に挿入されて、電池積層体2を両端面から加圧して、電池セル1を積層方向に加圧する。エンドプレート4の外形は、電池セル1の外形にほぼ等しく、あるいはこれよりもわずかに大きく、電池積層体2を加圧状態で定位置に配置して変形しない四角形の板状である。このエンドプレート4は、結束材3の内側にあって、電池セル1の表面に面接触状態に密着し、電池セル1を均一な圧力で加圧状態に固定する。
(End plate 4)
The end plate 4 is inserted inside the binding material 3 and presses the battery stack 2 from both end faces to press the battery cells 1 in the stacking direction. The outer shape of the end plate 4 is substantially equal to or slightly larger than the outer shape of the battery cell 1, and is a square plate shape that is not deformed by disposing the battery stack 2 at a fixed position in a pressurized state. The end plate 4 is inside the binding material 3 and closely adheres to the surface of the battery cell 1 in a surface contact state, and fixes the battery cell 1 in a pressurized state with a uniform pressure.
 さらに、図4~図6に示すエンドプレート4は、電池積層体2と対向する面と反対側の外側面に突出部4A、4Bを設けており、この突出部4A、4Bの両側に結束材3を配置する構造としている。このエンドプレート4は、突出部4A、4Bを押圧して電池積層体2を加圧状態としながら、突出部4A、4Bの両側にループ状の結束材3を装着できる。図4に示すエンドプレート4は、外側面の左右の中間部に上下に伸びる突出部4Aを設けており、この突出部4Aの左右の両側に結束材3を配置している。このエンドプレート4は、突出部4Aの両側縁に沿って結束材3を配置することで、電池積層体2及びエンドプレート4の両側部に配置される結束材3を位置決めしながら定位置に配置できる。 Further, the end plate 4 shown in FIGS. 4 to 6 is provided with protrusions 4A and 4B on the outer surface opposite to the surface facing the battery stack 2, and a binding material is provided on both sides of the protrusions 4A and 4B. 3 are arranged. The end plate 4 can mount the loop-shaped binding material 3 on both sides of the protrusions 4A and 4B while pressing the protrusions 4A and 4B to make the battery stack 2 pressurized. The end plate 4 shown in FIG. 4 is provided with protrusions 4A extending vertically at the left and right intermediate portions of the outer surface, and the binding material 3 is disposed on both left and right sides of the protrusion 4A. By arranging the binding material 3 along both side edges of the protruding portion 4A, the end plate 4 is positioned at a fixed position while positioning the binding material 3 disposed on both sides of the battery stack 2 and the end plate 4. it can.
 また、図5及び図6に示すエンドプレート4は、外側面の外周部を除く中央部に、正面視を四角形状とする突出部4Bを設けている。このエンドプレート4は、図5に示すように、突出部4Bの上下の両側にループ状の結束材3を位置決めしながら配置し、あるいは、図6に示すように、突出部4Bの上下と左右にループ状の結束材3を位置決めしながら配置できる。とくに、図6に示すように、突出部4Bの上下左右の端縁に沿って配置される結束材3は、エンドプレート4の外側面上において、交差する状態で積層されて強固に結束される。 エ ン ド In addition, the end plate 4 shown in FIGS. 5 and 6 is provided with a protruding portion 4B having a square shape when viewed from the front, in the center portion of the outer surface except for the outer peripheral portion. As shown in FIG. 5, the end plate 4 is arranged with the loop-shaped binding material 3 positioned on both upper and lower sides of the protruding portion 4B, or as shown in FIG. Can be arranged while positioning the loop-shaped binding material 3. In particular, as shown in FIG. 6, the binding materials 3 arranged along the upper, lower, left, and right edges of the protruding portion 4B are stacked in an intersecting state on the outer surface of the end plate 4 and tightly bound. .
 図4~図6のバッテリシステム400、500、600は、図8に示すように、電池積層体2の両端部にエンドプレート4を配置し、両端のエンドプレート4の突出部4A、4Bをプレス機(図示せず)で加圧して、電池セル1を積層方向に加圧する状態に保持し、この状態で電池積層体2とエンドプレート4の上下面に沿って、あるいは、両側面に沿ってループ状の結束材3を装着して、結束材3の内側に電池積層体2とエンドプレート4とを配置する。バッテリシステム400、500、600は、ループ状の結束材3の内側に電池積層体2とエンドプレート4がセットされた後、プレス機の加圧状態が解除される。この状態でループ状の結束材3の内側にセットされた電池積層体2は、結束材3により各々の電池セル1が加圧状態に固定される。 In the battery systems 400, 500, and 600 shown in FIGS. 4 to 6, as shown in FIG. 8, the end plates 4 are arranged at both ends of the battery stack 2, and the protrusions 4A and 4B of the end plates 4 at both ends are pressed. The battery cells 1 are held in a state of being pressed in the stacking direction by pressing with a machine (not shown), and in this state, along the upper and lower surfaces of the battery stack 2 and the end plate 4 or along both side surfaces. The looped binding material 3 is mounted, and the battery stack 2 and the end plate 4 are arranged inside the binding material 3. In the battery systems 400, 500, and 600, the pressurized state of the press is released after the battery stack 2 and the end plate 4 are set inside the loop-shaped binding material 3. In this state, in the battery stack 2 set inside the loop-shaped binding material 3, each battery cell 1 is fixed in a pressurized state by the binding material 3.
(結束材3)
 結束材3は、図7と図8に示すように、エンドレスでループ状の紐材30である。この結束材3は、表面又は全体を絶縁材とする紐材30が適している。絶縁材の紐材30は、電池セル1の導電部に接触して短絡電流が流れないので、結束位置の制約が少なく、結束に最適な位置に配置して、電池セル1を加圧状態に固定できる特長がある。ただし、結束材には、カーボン繊維のように導電性の紐材も使用できる。導電性の紐材は、電池積層体との間に絶縁層を設けて電池セルから絶縁して電池積層体を結束する。
(Bundling material 3)
As shown in FIGS. 7 and 8, the binding material 3 is an endless loop-shaped cord material 30. As the binding material 3, a string material 30 whose surface or the whole is an insulating material is suitable. Since the short-circuit current does not flow due to contact with the conductive portion of the battery cell 1, the string 30 made of the insulating material is less restricted in the binding position, and is arranged at an optimal position for the binding, and the battery cell 1 is pressed. There is a feature that can be fixed. However, a conductive string material such as carbon fiber can be used as the binding material. The conductive string material is provided with an insulating layer between the battery stack and the battery stack to insulate the battery cells and bind the battery stack.
 絶縁材の結束材3は、図9の一部拡大断面図に示すように、高張力繊維を撚り合わせた複数の芯線33をゴム状弾性体や可撓性のあるプラスチック等の成形材32に埋設している繊維強化ベルト31の紐材30である。ただし、絶縁材の結束材には、高張力繊維を撚り合わせた線材からなる紐材、あるいは、高張力繊維を撚り合わせた複数の線材を束ねた紐材も使用できる。繊維強化ベルト31は、埋設する高張力繊維の芯線33を多くして引張強度を強くでき、高張力繊維を撚り合わせた線材の紐材は、撚り合わせる高張力繊維の本数を多くして引張強度を強くでき、さらに高張力繊維を撚り合わせた複数の線材を束ねた紐材は、束ねる線材の本数を多くして、より引張強度を強くできる。 As shown in a partially enlarged cross-sectional view of FIG. 9, the binding material 3 of the insulating material is formed by forming a plurality of core wires 33 in which high-tensile fibers are twisted into a molding material 32 such as a rubber-like elastic body or a flexible plastic. It is the cord material 30 of the embedded fiber reinforced belt 31. However, as the binding material of the insulating material, a string made of a wire obtained by twisting high-tensile fibers, or a string obtained by binding a plurality of wires obtained by twisting high-tensile fibers can be used. The fiber-reinforced belt 31 can increase the tensile strength by increasing the core wires 33 of the high-tensile fibers to be buried, and can increase the number of high-tensile fibers to be twisted by increasing the number of high-tensile fibers to be twisted. In the case of a string material in which a plurality of wire materials in which high-tensile fibers are twisted are bundled, the number of wires to be bundled can be increased to further increase the tensile strength.
 紐材30の高張力繊維には、「アラミド繊維」として商標登録されている芳香族ポリアミド繊維が適している。アラミド繊維(登録商標)は、引張り破断強度が鋼棒の数倍も強いので、アラミド繊維(登録商標)で補強している繊維強化ベルト31や高張力繊維を撚り合わせた線材からなる紐材は、軽量化しながら引張強度を極めて強くできる。ただ、高張力繊維には、アラミド繊維(登録商標)が適しているが、アラミド繊維(登録商標)に代わって、ポリイミド繊維、PBO繊維、超高分子量ポリエチレン繊維、ポリアリリート繊維、フッ素繊維、PPS繊維等の有機繊維が使用できる。さらに、高張力繊維や集合繊維には、カーボン繊維、炭化ケイ素繊維、アルミナ繊維、ガラス繊維、金属繊維等の無機繊維も使用できる。細い無機繊維は可撓性があるので、これを撚り合わせた芯線として成形材に埋設して繊維強化ベルトとし、また、細い無機繊維を撚り合わせた線材を紐材とし、さらにこの線材を束ねて紐材として使用できる。 芳香 As the high-tensile fiber of the cord material 30, an aromatic polyamide fiber registered as a trademark as “aramid fiber” is suitable. Since the aramid fiber (registered trademark) has a tensile breaking strength several times higher than that of a steel rod, a fiber reinforced belt 31 reinforced with an aramid fiber (registered trademark) or a cord made of a wire material in which high-tensile fibers are twisted are used. The tensile strength can be extremely increased while reducing the weight. However, aramid fiber (registered trademark) is suitable for high-tensile fiber, but instead of aramid fiber (registered trademark), polyimide fiber, PBO fiber, ultra-high molecular weight polyethylene fiber, polyarylite fiber, fluorine fiber, PPS fiber And other organic fibers can be used. Further, inorganic fibers such as carbon fiber, silicon carbide fiber, alumina fiber, glass fiber, and metal fiber can be used as the high tension fiber and the aggregate fiber. Since thin inorganic fibers are flexible, they are embedded in a molding material as a twisted core wire to form a fiber reinforced belt, and a wire obtained by twisting fine inorganic fibers is used as a string material, and this wire material is further bundled. Can be used as a cord.
 繊維強化ベルト31の成形材32は、エンジンのタイミングベルトに使用している水素添加ニトリルゴム(HNBR)等のゴム状弾性体が適しているが、ポリイミドやポリアミド等のエンジニアリングプラスチック等の耐熱特性に優れたプラスチックも使用できる。 As the molding material 32 of the fiber reinforced belt 31, a rubber-like elastic material such as hydrogenated nitrile rubber (HNBR) used for an engine timing belt is suitable. Excellent plastics can also be used.
 繊維強化ベルト31は、図9に示すように、高張力繊維を撚り合わせた複数の芯線33を成形材32にインサート成形して製造される。複数の芯線33は、エンドレスなループ状で、互いに平行な姿勢で長手方向に伸びる姿勢で成形材32に埋設される。エンドレスでループ状である複数の芯線33が平行姿勢に埋設されたループ状の繊維強化ベルト31は、シームレスな複数の芯線33が埋設されて引張強度が著しく増強される。したがって、エンジンのタイミングベルトと同様に、水素添加ニトリルゴム(HNBR)に、アラミド繊維(登録商標)を撚り合わせた複数の芯線33を平行姿勢に埋設する繊維強化ベルト31は、高張力鋼に匹敵する引張破壊強度を実現して軽量化できる。 As shown in FIG. 9, the fiber reinforced belt 31 is manufactured by insert-molding a plurality of core wires 33 in which high-tensile fibers are twisted into a molding material 32. The plurality of core wires 33 are embedded in the molding material 32 in an endless loop shape and in a posture extending in the longitudinal direction in a posture parallel to each other. In the loop-shaped fiber reinforced belt 31 in which a plurality of endless loop-shaped core wires 33 are embedded in a parallel posture, a plurality of seamless core wires 33 are embedded, and the tensile strength is significantly enhanced. Therefore, like the timing belt of the engine, the fiber reinforced belt 31 in which the plurality of core wires 33 in which the aramid fiber (registered trademark) is twisted in the hydrogenated nitrile rubber (HNBR) is buried in the parallel posture is comparable to the high tensile steel. To achieve a high tensile breaking strength.
 繊維強化ベルト31は、高張力繊維を撚り合わせた複数の芯線33を埋設して引張強度を強くできるが、高張力繊維を撚り合わせることなく多数の高張力繊維を平行姿勢に埋設して、引張強度を強くすることもできる。この繊維強化ベルトは、1本の長い高張力繊維をループ状に巻回し、高張力繊維を平行姿勢として成形材に埋設して製造される。この繊維強化ベルトは、高張力繊維の両端を連結し、あるいは連結することなく成形材に埋設して製造できる。高張力繊維をループ状に巻回して成形材に埋設する繊維強化ベルトは、ループ状に巻回する回数に比例して、高張力繊維に作用する引張力が低下する、すなわち、高張力繊維を1000回巻回して埋設する繊維強化ベルトは、1本の高張力繊維を埋設するベルトに比較して、高張力繊維に作用する引張力は1/1000に低下するので、高張力繊維の端部を成形材に埋設して位置ずれすることがなく、必ずしも連結することなく、繊維強化ベルトとして強い引張強度を実現する。 The fiber reinforced belt 31 can embed a plurality of core wires 33 in which high-tensile fibers are twisted to increase the tensile strength, but embeds a large number of high-tensile fibers in a parallel posture without twisting the high-tensile fibers and tensions the fibers. Strength can also be increased. This fiber reinforced belt is manufactured by winding one long high tension fiber in a loop shape and embedding the high tension fiber in a parallel posture in a molding material. This fiber reinforced belt can be manufactured by connecting both ends of a high-tensile fiber or burying it in a molding material without connecting. In a fiber reinforced belt in which high-tensile fibers are wound in a loop shape and embedded in a molding material, the tensile force acting on the high-tensile fibers decreases in proportion to the number of times of winding in a loop shape. A fiber reinforced belt wound 1000 times and embedded has a tensile force acting on the high strength fiber reduced to 1/1000 as compared with a belt embedded with one high strength fiber. The fiber reinforced belt realizes a high tensile strength without being displaced by being embedded in a molding material and without necessarily being connected.
 繊維強化ベルト31は、高張力繊維を長手方向に伸びる姿勢で埋設して引張強度を特に強くできるが、繊維強化ベルトは、所定の長さの高張力繊維を立体的に方向性なく集合する状態で成形材に埋設することもできる。また、繊維強化ベルトは、成形材に埋設する高張力繊維を、方向性なく埋設することなく、横方向よりも縦方向に伸びるように埋設して、横方向よりも縦方向の引張強度を強くすることができる。 The fiber reinforced belt 31 embeds the high-tensile fibers in a posture extending in the longitudinal direction, so that the tensile strength can be particularly increased. However, the fiber-reinforced belt is a state in which the high-tensile fibers of a predetermined length are gathered three-dimensionally without directionality. Can be embedded in the molding material. In addition, the fiber reinforced belt embeds high-tensile fibers buried in the molding material so as to extend in the vertical direction rather than the horizontal direction without burying it in any direction, and has a stronger tensile strength in the vertical direction than in the horizontal direction. can do.
 さらに、成形材に高張力繊維を埋設することなく、高張力繊維を撚り合わせた線材からなる紐材の結束材、または、高張力繊維を撚り合わせた複数の線材を束ねた紐材からなる結束材は、高張力繊維によって優れた引張破壊強度を実現するので、エンドレスなループ状とすることなく、図10に示すように、電池積層体2の表面に電池セル1を加圧する方向に巻き付けて、電池セル1を加圧状態に固定できる。この紐材30Xは、電池積層体2に巻回する回数を多くして、電池セル1を強い圧力で加圧して固定できる。たとえば、1本の紐材30Xを電池積層体2に巻回するバッテリシステム700は、紐材30Xを巻回する回数に比例して電池セル1の押圧力を強くできるので、巻回する回数を多くすることで、1本の紐材30Xに作用する引張力を増加することなく、電池セル1の押圧力を強くできる。電池積層体2に巻回される紐材30Xは、端部を連結する必要があるが、この連結強度を強くすることなく、電池セル1の押圧力を強くできる特長がある。電池積層体2に巻回される紐材30Xの両端は、図10に示すようにスリーブ等の連結部材36を介して連結され、あるいは、接着剤で連結することができる。 Furthermore, without embedding the high-tensile fiber in the molding material, a tying material consisting of a tying material composed of a wire material obtained by twisting high-tensile fibers, or a tying material consisting of a plurality of tying materials obtained by twisting high-tensile fibers. Since the material realizes excellent tensile breaking strength by the high-tensile fiber, the battery is wound around the surface of the battery stack 2 in the direction in which the battery cell 1 is pressed as shown in FIG. Thus, the battery cell 1 can be fixed in a pressurized state. The string material 30X can be fixed by pressing the battery cell 1 with a strong pressure by increasing the number of times of winding around the battery stack 2. For example, the battery system 700 that winds one string 30X around the battery stack 2 can increase the pressing force of the battery cell 1 in proportion to the number of turns of the string 30X. By increasing the number, the pressing force of the battery cell 1 can be increased without increasing the tensile force acting on one string material 30X. It is necessary to connect the ends of the string material 30X wound around the battery stack 2, but there is a feature that the pressing force of the battery cell 1 can be increased without increasing the connection strength. Both ends of the string material 30X wound around the battery stack 2 can be connected via a connecting member 36 such as a sleeve as shown in FIG. 10, or can be connected with an adhesive.
 図11と図12はエンドプレート4の定位置に結束材3を配置する構造を示している。図11と図12は、図4に示すバッテリシステム400のエンドプレート4と結束材3との連結構造を示す水平断面図及び垂直断面図である。これらの図に示すバッテリシステム400は、電池積層体2の両側部であって、上下面に2列の結束材3を装着している。したがって、一対のエンドプレート4は、外側面の両側部であって、中央部に設けた突出部4Aの両側にループ状の結束材3を配置している。図4、図8、図11、及び図12に示すバッテリシステム400は、エンドプレート4の外側面に配置される2列の結束材3を、バンドホルダー5と固定ボルト6とを介してエンドプレート4の定位置に配置している。 FIGS. 11 and 12 show a structure in which the binding material 3 is arranged at a fixed position on the end plate 4. FIGS. 11 and 12 are a horizontal sectional view and a vertical sectional view showing a connection structure between the end plate 4 and the binding material 3 of the battery system 400 shown in FIG. In the battery system 400 shown in these figures, two rows of binding materials 3 are mounted on the upper and lower surfaces on both sides of the battery stack 2. Therefore, the pair of end plates 4 have the loop-shaped binding members 3 on both sides of the outer side surface and on both sides of the projection 4A provided at the center. The battery system 400 shown in FIGS. 4, 8, 11, and 12 is configured such that two rows of binding materials 3 arranged on the outer surface of the end plate 4 are connected to the end plate 4 via a band holder 5 and fixing bolts 6. 4 is located at a fixed position.
(バンドホルダー5)
 バンドホルダー5は、繊維強化ベルト31である結束材3を位置決めしながらエンドプレート4の定位置に配置する。図4と図11に示すバンドホルダー5は、エンドプレート4の外側面であって、突出部4Aの両側に配置されており、エンドプレート4の外側面に沿って上下に延長して配置される繊維強化ベルト31の内側に配置されて、繊維強化ベルト31をエンドプレート4の定位置に配置する構造としている。図8と図13に示すバンドホルダー5は、帯状の繊維強化ベルト31の両側に沿って伸びる一対の側壁52を底板51の両側に設けており、対向する側壁52の間に、繊維強化ベルト31である結束材3を案内する位置決め溝53を設けている。図に示すバンドホルダー5は、側壁52の高さを繊維強化ベルト31の厚さとほぼ等しくしており、位置決め溝53に案内される繊維強化ベルト31がバンドホルダー5から外れるのを防止している。さらに、バンドホルダー5は、エンドプレート4のコーナー部で湾曲される繊維強化ベルト31の急激な湾曲を抑制するために、位置決め溝53の底面を形成する底板51の両端部に湾曲面54を設けている。図12のバンドホルダー5は、エンドプレート4の上下幅とほぼ等しい全長を有しており、上下方向に配置される底板51の両端部に、繊維強化ベルト31を所定の曲率半径で湾曲させる湾曲面54を設けている。バンドホルダー5は、例えば、結束材3による加圧に耐える強度を有するプラスチックで成形することができる。
(Band holder 5)
The band holder 5 is arranged at a fixed position of the end plate 4 while positioning the binding material 3 which is the fiber reinforced belt 31. The band holder 5 shown in FIGS. 4 and 11 is disposed on the outer surface of the end plate 4 on both sides of the protruding portion 4A, and is disposed so as to extend vertically along the outer surface of the end plate 4. The fiber reinforced belt 31 is disposed inside the fiber reinforced belt 31 so that the fiber reinforced belt 31 is disposed at a fixed position on the end plate 4. The band holder 5 shown in FIGS. 8 and 13 is provided with a pair of side walls 52 extending along both sides of the belt-shaped fiber reinforced belt 31 on both sides of the bottom plate 51. A positioning groove 53 for guiding the binding material 3 is provided. In the band holder 5 shown in the figure, the height of the side wall 52 is substantially equal to the thickness of the fiber reinforced belt 31, and the fiber reinforced belt 31 guided by the positioning groove 53 is prevented from coming off the band holder 5. . Further, the band holder 5 is provided with curved surfaces 54 at both ends of the bottom plate 51 forming the bottom surface of the positioning groove 53 in order to suppress the sharp bending of the fiber reinforced belt 31 curved at the corner of the end plate 4. ing. The band holder 5 shown in FIG. 12 has a total length substantially equal to the vertical width of the end plate 4, and is provided at both ends of the bottom plate 51 arranged in the vertical direction so as to bend the fiber reinforced belt 31 with a predetermined radius of curvature. A surface 54 is provided. The band holder 5 can be formed of, for example, a plastic having a strength enough to withstand the pressing by the binding material 3.
 以上のバンドホルダー5は、図8に示すように、電池積層体2の両端に積層されたエンドプレート4をプレス機(図示せず)で加圧する状態において、電池積層体2とエンドプレート4の外周に沿って装着される結束材3の内側に配置された状態でエンドプレート4の定位置に配置される。さらに、図11と図12に示すバッテリシステム400は、エンドプレート4の外側面に配置されるバンドホルダー5とエンドプレート4との間に、結束材3による電池積層体2の加圧状態を調整するスペーサ7を挿入している。このスペーサ7は金属プレートで、エンドプレート4の外側面とバンドホルダー5との間に挿入することで、電池積層体2を加圧する結束材3の張力を調整する。すなわち、エンドプレート4とバンドホルダー5との間に挿入するスペーサ7の厚さや枚数を調整することにより、各々のバッテリシステムにおける電池積層体2の加圧状態が均一になるように微調整して、電池セル1や結束材3の公差による圧力差を解消する。このように結束材の内側にスペーサ7を挿入する構造は、簡単かつ容易に電池積層体2の加圧状態を微調整できる。 As shown in FIG. 8, the band holder 5 is configured to press the end plates 4 stacked on both ends of the battery stack 2 with a press (not shown) so that the battery stack 2 and the end plates 4 are pressed. It is arranged at a fixed position of the end plate 4 while being arranged inside the binding material 3 attached along the outer periphery. Further, the battery system 400 shown in FIGS. 11 and 12 adjusts the pressurized state of the battery stack 2 by the binding material 3 between the band holder 5 and the end plate 4 arranged on the outer surface of the end plate 4. Spacer 7 is inserted. The spacer 7 is a metal plate, and is inserted between the outer surface of the end plate 4 and the band holder 5 to adjust the tension of the binding material 3 that presses the battery stack 2. That is, by adjusting the thickness and the number of the spacers 7 inserted between the end plate 4 and the band holder 5, fine adjustment is performed so that the pressurized state of the battery stack 2 in each battery system becomes uniform. In addition, the pressure difference due to the tolerance of the battery cell 1 and the binding material 3 is eliminated. Such a structure in which the spacer 7 is inserted inside the binding material can easily and easily finely adjust the pressurized state of the battery stack 2.
 エンドプレート4の定位置に配置されたバンドホルダー5は、これを貫通する固定ボルト6を介してエンドプレート4に固定される。したがって、バンドホルダー5と繊維強化ベルト31には固定ボルト6を貫通させる貫通孔55、35が設けられ、エンドプレート4には固定ボルト6をねじ込むためのねじ孔4aが設けられる。また、スペーサ7にも、貫通孔7aが設けられる。ここで、貫通孔35を有する繊維強化ベルト31は、図示しないが、所定の内径を有する金属管やプラスチック管を成形材に埋設することにより、成形材に埋設される高張力繊維を切断することなく貫通孔を設けることができる。以上のように、結束材3やバンドホルダー5を、これを貫通する固定ボルト6でエンドプレート4に直接固定する構造は、確実に、しかも強固に結束材3をエンドプレート4の定位置に固定できる特長がある。 バ ン ド The band holder 5 arranged at a fixed position of the end plate 4 is fixed to the end plate 4 via fixing bolts 6 penetrating therethrough. Therefore, the band holder 5 and the fiber reinforced belt 31 are provided with through holes 55 and 35 through which the fixing bolt 6 passes, and the end plate 4 is provided with a screw hole 4 a for screwing the fixing bolt 6. The spacer 7 also has a through hole 7a. Here, although not shown, the fiber reinforced belt 31 having the through-holes 35 can cut a high-tensile fiber embedded in a molding material by embedding a metal tube or a plastic tube having a predetermined inner diameter in the molding material. No through hole can be provided. As described above, the structure in which the binding material 3 and the band holder 5 are directly fixed to the end plate 4 with the fixing bolts 6 penetrating the same is surely and firmly fixed to the fixed position of the end plate 4. There are features that can be done.
 さらに、エンドプレート4は、図14に示す構造で結束材3を定位置に配置することもできる。図のエンドプレート4は、前述のように、バンドホルダー5とスペーサ7を介して繊維強化ベルト31である結束材3をエンドプレート4の外側面に配置するが、この繊維強化ベルト31は、固定ボルト6で直接にエンドプレート4には固定しない。このエンドプレート4は、突出部4Aの両側に配置されるバンドホルダー5の外側に、バンドホルダー5の移動を阻止する固定ブロック41を固定している。この固定ブロック41は、これを貫通する固定ボルト6を、エンドプレート4に設けたねじ孔4bにねじ込むことによりエンドプレート4に固定されて、バンドホルダー5を定位置に固定する。この構成によると、バンドホルダー5の位置決め溝53に嵌入された繊維強化ベルト31は、エンドプレート4から外れることなく、紐材30の長手方向に対して多少の自由度を有する状態でエンドプレート4の定位置に配置される Furthermore, the end plate 4 can arrange the binding material 3 at a fixed position by the structure shown in FIG. In the illustrated end plate 4, as described above, the binding material 3, which is the fiber reinforced belt 31, is disposed on the outer surface of the end plate 4 via the band holder 5 and the spacer 7, and the fiber reinforced belt 31 is fixed. It is not directly fixed to the end plate 4 by the bolt 6. The end plate 4 has fixed blocks 41 for preventing the band holder 5 from moving outside the band holders 5 arranged on both sides of the protrusion 4A. The fixing block 41 is fixed to the end plate 4 by screwing a fixing bolt 6 penetrating the fixing block 41 into a screw hole 4b provided in the end plate 4, thereby fixing the band holder 5 in a fixed position. According to this configuration, the fiber reinforced belt 31 fitted into the positioning groove 53 of the band holder 5 does not come off the end plate 4 and has a certain degree of freedom with respect to the longitudinal direction of the string material 30. Placed in a fixed position
 さらに、バッテリシステムは、電池積層体2やエンドプレート4の外周に沿って装着される結束材3の内側であって、とくに、電池セル1やエンドプレート4のコーナー部、例えば、上下の端面と積層面との境界部分や左右の側面と積層面との境界部分であるコーナー部と対向する位置に緩衝部材を配置することもできる。図5に示すバッテリシステム500は、図15の水平断面図に示すように、エンドプレート4の両側縁のコーナー部において、繊維強化ベルト31の内側に横断面形状がL字状となるように折曲ないし湾曲された緩衝部材8を介在させている。このように、エンドプレート4のコーナー部に緩衝部材8を配置することで、コーナー部で湾曲される繊維強化ベルト31の曲率半径を大きくして、急激な湾曲を抑制して繊維強化ベルト31にかかる負荷を低減できる。また、図示しないが、図1~図3に示すバッテリシステムにおいては、電池セル1のコーナー部と繊維強化ベルト31との間に緩衝部材を介在させてもよい。 Further, the battery system is provided inside the bundling material 3 attached along the outer periphery of the battery stack 2 and the end plate 4, and in particular, at the corners of the battery cells 1 and the end plate 4, for example, the upper and lower end faces. The buffer member may be arranged at a position facing a boundary portion between the lamination surface and a corner portion between the left and right side surfaces and the lamination surface. As shown in the horizontal sectional view of FIG. 15, the battery system 500 shown in FIG. 5 is folded inside the fiber reinforced belt 31 at the corners on both side edges of the end plate 4 so as to have an L-shaped cross section. A bent or curved buffer member 8 is interposed. By arranging the cushioning member 8 at the corner of the end plate 4 in this manner, the radius of curvature of the fiber reinforced belt 31 curved at the corner is increased, and sharp curvature is suppressed to provide the fiber reinforced belt 31. Such a load can be reduced. Although not shown, in the battery system shown in FIGS. 1 to 3, a buffer member may be interposed between the corner of the battery cell 1 and the fiber reinforced belt 31.
 図1~図3のバッテリシステムは、以下の工程で組み立てられる。
(1)所定の個数の電池セル1を、間にセパレータ(図示せず)を介在させる状態で、電池セル1の厚さ方向に積層して電池積層体2とする。このとき、互いに積層される複数の電池セル1は、封口板を上面とし、同一平面に配置して積層する。
(2)図7に示すように、電池積層体2を両端からプレス機(図示せず)で押圧して、電池積層体2を所定の圧力で加圧し、電池セル1を圧縮して加圧状態に保持する。
(3)電池積層体2を加圧する状態で、電池積層体2の外周面に沿ってループ状の結束材3を装着し、加圧された状態の電池積層体2をループ状の結束材3の内側に配置する。
 このとき、電池積層体2の両端に配置された電池セル1と結束材3との間にスペーサ7を配置して電池セル1の加圧状態を調整することもできる。
(4)さらに、この状態で、プレス機による電池積層体2のプレス状態を解除して、電池積層体2を結束材3で電池セル1の積層方向に結束して、各々の電池セル1を所定の加圧状態に固定する。
1 to 3 are assembled in the following steps.
(1) A predetermined number of battery cells 1 are stacked in the thickness direction of the battery cells 1 with a separator (not shown) interposed therebetween to form a battery stack 2. At this time, the plurality of battery cells 1 stacked on each other are arranged and stacked on the same plane with the sealing plate facing upward.
(2) As shown in FIG. 7, the battery stack 2 is pressed from both ends by a press (not shown) to press the battery stack 2 at a predetermined pressure, and to compress the battery cell 1 and pressurize. Hold in state.
(3) In a state where the battery stack 2 is pressurized, the loop-shaped binding material 3 is attached along the outer peripheral surface of the battery stack 2, and the pressed battery stack 2 is attached to the loop-shaped binding material 3. Place inside.
At this time, a spacer 7 may be arranged between the battery cells 1 arranged at both ends of the battery stack 2 and the binding material 3 to adjust the pressurized state of the battery cells 1.
(4) Further, in this state, the pressing state of the battery stack 2 by the press is released, and the battery stack 2 is bound by the binding material 3 in the stacking direction of the battery cells 1, and each battery cell 1 is connected. It is fixed at a predetermined pressurized state.
 また、図4~図6のバッテリシステムは、以下の工程で組み立てられる。
(1)所定の個数の電池セル1を、間にセパレータ(図示せず)を介在させる状態で、電池セル1の厚さ方向に積層して電池積層体2とする。このとき、互いに積層される複数の電池セル1は、封口板を上面とし、同一平面に配置して積層する。
(2)電池積層体2の両端にエンドプレート4を配置し、一対のエンドプレート4の突出部4A、4Bを両側からプレス機(図示せず)で押圧して、エンドプレート4でもって、電池積層体2を所定の圧力で加圧し、電池セル1を圧縮して加圧状態に保持する。
(3)電池積層体2をエンドプレート4で加圧する状態で、電池積層体2とエンドプレート4の外周面に沿ってループ状の結束材3を装着し、加圧された状態の電池積層体2とエンドプレート4をループ状の結束材3の内側に配置する。
 このとき、結束材3の内側にバンドホルダー5を配置して結束材をエンドプレートの定位置に配置することもできる。また、エンドプレート4の外側面と結束材3との間にスペーサ7を配置して電池セル1の加圧状態を調整することもできる。
(4)さらに、この状態で、プレス機によるエンドプレート4のプレス状態を解除して、電池積層体2とエンドプレート4を結束材3で電池セル1の積層方向に結束して、各々の電池セル1を所定の加圧状態に固定する。
4 to 6 are assembled in the following steps.
(1) A predetermined number of battery cells 1 are stacked in the thickness direction of the battery cells 1 with a separator (not shown) interposed therebetween to form a battery stack 2. At this time, the plurality of battery cells 1 stacked on each other are arranged and stacked on the same plane with the sealing plate facing upward.
(2) The end plates 4 are arranged at both ends of the battery stack 2, and the protrusions 4 </ b> A, 4 </ b> B of the pair of end plates 4 are pressed from both sides by a press (not shown). The laminate 2 is pressurized at a predetermined pressure, and the battery cells 1 are compressed and held in a pressurized state.
(3) In a state where the battery stack 2 is pressed by the end plate 4, the loop-shaped binding material 3 is attached along the outer peripheral surfaces of the battery stack 2 and the end plate 4, and the battery stack in a pressed state 2 and the end plate 4 are arranged inside the loop-shaped binding material 3.
At this time, the band holder 5 can be arranged inside the binding material 3 to arrange the binding material at a fixed position on the end plate. In addition, a spacer 7 can be arranged between the outer surface of the end plate 4 and the binding material 3 to adjust the pressurized state of the battery cell 1.
(4) Further, in this state, the pressing state of the end plate 4 by the press is released, and the battery stack 2 and the end plate 4 are bound with the binding material 3 in the stacking direction of the battery cells 1, and each battery is The cell 1 is fixed at a predetermined pressurized state.
 以上のバッテリシステムは、電動車両を走行させるモータに電力を供給する車両用の電源に最適である。バッテリシステムを搭載する電動車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの電動車両の電源として使用される。 The battery system described above is optimal for a vehicle power supply that supplies power to a motor that drives an electric vehicle. Electric vehicles equipped with a battery system include electric vehicles such as hybrid vehicles and plug-in hybrid vehicles that run on both an engine and a motor, or electric vehicles that run on only a motor, and are used as a power source for these electric vehicles. Is done.
(ハイブリッド車用バッテリシステム)
 図16に、エンジンとモータの両方で走行するハイブリッド車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両HVは、車両本体90と、車両本体90を走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給するバッテリシステム100と、バッテリシステム100の電池を充電する発電機94と、モータ93とエンジン96で駆動されて車両本体90を走行させる車輪97とを備えている。バッテリシステム100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、バッテリシステム100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム100の電池を充電する。
(Battery system for hybrid vehicles)
FIG. 16 shows an example in which a battery system is mounted on a hybrid vehicle that runs on both an engine and a motor. The vehicle HV equipped with the battery system shown in this figure includes a vehicle main body 90, an engine 96 for driving the vehicle main body 90 and a driving motor 93, a battery system 100 for supplying power to the motor 93, and a battery system 100. The vehicle includes a generator 94 for charging a battery, and wheels 97 driven by a motor 93 and an engine 96 to drive the vehicle body 90. The battery system 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV runs on both the motor 93 and the engine 96 while charging and discharging the battery of the battery system 100. The motor 93 is driven in a region where the engine efficiency is poor, for example, during acceleration or low-speed running, to run the vehicle. The motor 93 is driven by being supplied with electric power from the battery system 100. The generator 94 is driven by the engine 96 or by regenerative braking when a brake is applied to the vehicle to charge the battery of the battery system 100.
(電気自動車用バッテリシステム)
 また、図17に、モータのみで走行する電気自動車にバッテリシステムを搭載する例を示す。この図に示すバッテリシステムを搭載した車両EVは、車両本体90と、車両本体90を走行させる走行用のモータ93と、このモータ93に電力を供給するバッテリシステム100と、このバッテリシステム100の電池を充電する発電機94、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。モータ93は、バッテリシステム100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、バッテリシステム100の電池を充電する。
(Electric vehicle battery system)
FIG. 17 shows an example in which a battery system is mounted on an electric vehicle running only by a motor. The vehicle EV equipped with the battery system shown in this figure includes a vehicle body 90, a running motor 93 for running the vehicle body 90, a battery system 100 for supplying electric power to the motor 93, and a battery of the battery system 100. And a wheel 97 driven by a motor 93 to drive the vehicle body 90. The motor 93 is driven by being supplied with electric power from the battery system 100. The generator 94 is driven by energy at the time of regenerative braking the vehicle EV, and charges the battery of the battery system 100.
(蓄電用バッテリシステム)
 さらに、本発明はバッテリシステムの用途を電動車両に搭載するバッテリシステムには特定せず、たとえば、太陽光発電、風力発電などの自然エネルギーを蓄電する蓄電装置用のバッテリシステムとして使用でき、また深夜電力を蓄電する蓄電装置用のバッテリシステムのように、大電力を蓄電する全ての用途に使用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図18に示す。なお、図18に示す蓄電装置としての使用例では、所望の電力を得るために、上述したバッテリシステムを直列や並列に多数接続して、さらに必要な制御回路を付加した大容量、高出力の蓄電装置80を構築した例として説明する。
(Battery system for power storage)
Further, the present invention does not limit the use of the battery system to a battery system mounted on an electric vehicle, and can be used as a battery system for a power storage device that stores natural energy such as solar power and wind power, and It can be used for all applications that store large power, such as a battery system for a power storage device that stores power. For example, as a power supply for homes and factories, a power supply system that charges with sunlight or midnight power and discharges when necessary, a power supply for street lights that charges daytime sunlight and discharges at night, It can also be used as a backup power supply for driving traffic lights. FIG. 18 shows such an example. In the example of use as the power storage device shown in FIG. 18, in order to obtain desired power, a large number of battery systems described above are connected in series or in parallel, and a large-capacity, high-output An example in which the power storage device 80 is constructed will be described.
 図18に示す蓄電装置80は、複数のバッテリシステム100をユニット状に接続して電源ユニット82を構成している。各バッテリシステム100は、複数の電池セルが直列及び/又は並列に接続されている。各バッテリシステム100は、電源コントローラ84により制御される。この蓄電装置80は、電源ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため蓄電装置80は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して蓄電装置80と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、蓄電装置80の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから蓄電装置80への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、蓄電装置80から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、蓄電装置80への充電を同時に行うこともできる。 The power storage device 80 illustrated in FIG. 18 configures a power supply unit 82 by connecting a plurality of battery systems 100 in a unit shape. In each battery system 100, a plurality of battery cells are connected in series and / or in parallel. Each battery system 100 is controlled by a power controller 84. The power storage device 80 drives the load LD after charging the power supply unit 82 with the charging power supply CP. Therefore, power storage device 80 has a charge mode and a discharge mode. The load LD and the charging power supply CP are connected to the power storage device 80 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power storage device 80. In the charging mode, the power supply controller 84 turns on the charging switch CS and turns off the discharging switch DS to permit charging of the power storage device 80 from the charging power supply CP. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity equal to or more than a predetermined value is charged, the power supply controller 84 turns off the charge switch CS and turns on the discharge switch DS to discharge. The mode is switched to the mode, and discharge from the power storage device 80 to the load LD is permitted. If necessary, the charge switch CS is turned on and the discharge switch DS is turned on, so that the power supply of the load LD and the charging of the power storage device 80 can be performed simultaneously.
 蓄電装置80で駆動される負荷LDは、放電スイッチDSを介して蓄電装置80と接続されている。蓄電装置80の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、蓄電装置80からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、蓄電装置80の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図18の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power storage device 80 is connected to the power storage device 80 via the discharge switch DS. In the discharge mode of power storage device 80, power supply controller 84 switches discharge switch DS to ON, connects to load LD, and drives load LD with power from power storage device 80. A switching element such as an FET can be used as the discharge switch DS. ON / OFF of the discharge switch DS is controlled by the power controller 84 of the power storage device 80. Further, the power controller 84 includes a communication interface for communicating with an external device. In the example of FIG. 18, the connection to the host device HT is made according to an existing communication protocol such as UART or RS-232C. If necessary, a user interface for a user to operate the power supply system can be provided.
 各バッテリシステム100は、信号端子と電源端子を備える。信号端子は、入出力端子DIと、異常出力端子DAと、接続端子DOとを含む。入出力端子DIは、他のバッテリシステム100や電源コントローラ84からの信号を入出力するための端子であり、接続端子DOは他のバッテリシステム100に対して信号を入出力するための端子である。また異常出力端子DAは、バッテリシステム100の異常を外部に出力するための端子である。さらに電源端子は、バッテリシステム100同士を直列、並列に接続するための端子である。また電源ユニット82は、並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。 Each battery system 100 has a signal terminal and a power terminal. The signal terminals include an input / output terminal DI, an abnormal output terminal DA, and a connection terminal DO. The input / output terminal DI is a terminal for inputting / outputting a signal from another battery system 100 or the power controller 84, and the connection terminal DO is a terminal for inputting / outputting a signal to / from the other battery system 100. . The abnormality output terminal DA is a terminal for outputting an abnormality of the battery system 100 to the outside. Further, the power supply terminal is a terminal for connecting the battery systems 100 in series and in parallel. The power supply units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel with each other.
 本発明に係るバッテリシステムとこれを備える電動車両及び蓄電装置は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等のバッテリシステムとして好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源、携帯電話等の無線基地局用のバックアップ電源、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。 INDUSTRIAL APPLICABILITY A battery system according to the present invention, an electric vehicle including the same, and an electric storage device are preferably used as a battery system for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, and the like that can switch between an EV traveling mode and an HEV traveling mode. Available. Power storage devices and traffic lights combined with solar cells, such as backup power supplies that can be mounted on computer server racks, backup power supplies for wireless base stations such as mobile phones, home and factory power storage power supplies, and street light power supplies. It can also be used as appropriate for applications such as backup power sources.
 100、200、300、400、500、600、700…バッテリシステム、1…電池セル、2…電池積層体、3…結束材、4…エンドプレート、4A、4B…突出部、4a、4b…ねじ孔、5…バンドホルダー、6…固定ボルト、7…スペーサ、7a…貫通孔、8…緩衝部材、11…排出弁、12…ガス排出口、13…電極端子、30、30X…紐材、31…繊維強化ベルト、32…成形材、33…芯線、35…貫通孔、36…連結部材、41…固定ブロック、51…底板、52…側板、53…位置決め溝、54…湾曲面、55…貫通孔、80…蓄電装置、82…電源ユニット、84…電源コントローラ、85…並列接続スイッチ、90…車両本体、93…モータ、94…発電機、95…DC/ACインバータ、96…エンジン、97…車輪、EV…車両、HV…車両、LD…負荷、CP…充電用電源、DS…放電スイッチ、CS…充電スイッチ、OL…出力ライン、HT…ホスト機器、DI…入出力端子、DA…異常出力端子、DO…接続端子。 100, 200, 300, 400, 500, 600, 700 ... battery system, 1 ... battery cell, 2 ... battery stack, 3 ... binding material, 4 ... end plates, 4A, 4B ... projecting parts, 4a, 4b ... screws Holes, 5: Band holder, 6: Fixing bolt, 7: Spacer, 7a: Through hole, 8: Buffer member, 11: Discharge valve, 12: Gas outlet, 13: Electrode terminal, 30, 30X: String material, 31 ... Fiber reinforced belt, 32 ... Molding material, 33 ... Core wire, 35 ... Through hole, 36 ... Connecting member, 41 ... Fixing block, 51 ... Bottom plate, 52 ... Side plate, 53 ... Positioning groove, 54 ... Curved surface, 55 ... Penetration Hole: 80: power storage device, 82: power supply unit, 84: power supply controller, 85: parallel connection switch, 90: vehicle body, 93: motor, 94: generator, 95: DC / AC inverter, 96: engine, 9 … Wheel, EV… vehicle, HV… vehicle, LD… load, CP… charging power supply, DS… discharge switch, CS… charge switch, OL… output line, HT… host equipment, DI… input / output terminal, DA… abnormal Output terminal, DO ... connection terminal.

Claims (13)

  1.  複数の角形の電池セルを積層してなる電池積層体と、
     前記電池積層体を電池セルの積層方向に結束して、各々の前記電池セルを加圧状態に固定してなる結束材とを備え、
     前記結束材が可撓性のあるエンドレスなループ状の紐材であることを特徴とするバッテリシステム。
    A battery stack formed by stacking a plurality of rectangular battery cells;
    A binding material formed by binding the battery stack in the battery cell stacking direction and fixing each of the battery cells in a pressurized state;
    A battery system, wherein the binding material is a flexible endless loop-shaped string material.
  2.  前記電池積層体の積層方向の両端部に配置してなる一対のエンドプレートを備え、
     前記エンドプレートが前記結束材の内側に配置され、前記結束材が、前記エンドプレートを介して前記電池積層体を加圧状態に固定してなることを特徴とする請求項1に記載するバッテリシステム。
    It comprises a pair of end plates arranged at both ends in the stacking direction of the battery stack,
    The battery system according to claim 1, wherein the end plate is disposed inside the binding material, and the binding material fixes the battery stack in a pressurized state via the end plate. .
  3.  前記エンドプレートが突出部を有し、前記突出部の両側に前記結束材が配置されてなることを特徴とする請求項2に記載されるバッテリシステム。 The battery system according to claim 2, wherein the end plate has a protrusion, and the binding material is disposed on both sides of the protrusion.
  4.  前記結束材が、少なくとも表面を絶縁材としてなる紐材であることを特徴とする請求項1ないし3のいずれかに記載するバッテリシステム。 (4) The battery system according to any one of (1) to (3), wherein the binding material is a cord material having at least a surface serving as an insulating material.
  5.  前記結束材が、プラスチック又はゴム状弾性体からなる成形材に高張力繊維を埋設してなる繊維強化ベルトの紐材であることを特徴とする請求項1ないし4のいずれかに記載するバッテリシステム。 The battery system according to any one of claims 1 to 4, wherein the binding material is a string material of a fiber-reinforced belt obtained by embedding high-tensile fibers in a molding material made of plastic or a rubber-like elastic body. .
  6.  前記結束材が、高張力繊維を撚り合わせた複数の芯線を長手方向に埋設してなる繊維強化ベルトの紐材であることを特徴とする請求項5に記載されるバッテリシステム。 6. The battery system according to claim 5, wherein the binding material is a fiber material of a fiber-reinforced belt in which a plurality of core wires obtained by twisting high-tensile fibers are buried in a longitudinal direction.
  7.  前記繊維強化ベルトが、芯線をエンドレスなループ状として縦方向に埋設してなる繊維強化ベルトであることを特徴とする請求項6に記載するバッテリシステム。 7. The battery system according to claim 6, wherein the fiber reinforced belt is a fiber reinforced belt in which a core wire is embedded in an endless loop shape in a vertical direction.
  8.  前記結束材が、高張力繊維を撚り合わせた芯線を束ねてなる紐材であることを特徴とする請求項1ないし4のいずれかに記載するバッテリシステム。 (5) The battery system according to any one of (1) to (4), wherein the binding material is a cord material obtained by bundling core wires obtained by twisting high-tensile fibers.
  9.  前記結束材が高張力繊維を撚り合わせた芯線からなる紐材で、前記紐材が前記電池セルを加圧する方向に前記電池積層体に巻き付けられて、前記電池セルを加圧状態に固定してなることを特長とする請求項1ないし4のいずれかに記載するバッテリシステム。 The binding material is a cord composed of a core wire in which high-tensile fibers are twisted, and the cord is wound around the battery stack in a direction to press the battery cells, and the battery cells are fixed in a pressurized state. The battery system according to any one of claims 1 to 4, wherein:
  10.  前記結束材が、前記電池積層体の上下面に配置されて、前記電池積層体を結束してなることを特徴とする請求項1ないし9のいずれかに記載するバッテリシステム。 The battery system according to any one of claims 1 to 9, wherein the binding material is arranged on upper and lower surfaces of the battery stack to bind the battery stack.
  11.  前記結束材が、前記電池積層体の両側面に配置されて、前記電池積層体を結束してなることを特徴とする請求項1ないし9のいずれかに記載するバッテリシステム。 The battery system according to any one of claims 1 to 9, wherein the binding material is arranged on both side surfaces of the battery stack to bind the battery stack.
  12.  請求項1ないし11のいずれか一つに記載のバッテリシステムを備える電動車両であって、
     前記バッテリシステムと、該バッテリシステムから電力供給される走行用のモータと、該バッテリシステム及び前記モータを搭載してなる車両本体と、該モータで駆動されて前記車両本体を走行させる車輪とを備えることを特徴とするバッテリシステムを備える電動車両。
    An electric vehicle comprising the battery system according to any one of claims 1 to 11,
    The vehicle includes a battery system, a running motor supplied with power from the battery system, a vehicle body including the battery system and the motor, and wheels driven by the motor to run the vehicle body. An electric vehicle comprising a battery system.
  13.  請求項1から11のいずれか一つに記載のバッテリシステムを備えてなる蓄電装置であって、
     前記バッテリシステムと、該バッテリシステムへの充放電を制御する電源コントローラを備えており、
     前記電源コントローラでもって、外部からの電力により前記電池セルへの充電を可能とすると共に、前記電池セルに対し充電を行うよう制御することを特徴とする蓄電装置。
    A power storage device comprising the battery system according to any one of claims 1 to 11,
    The battery system, comprising a power supply controller for controlling the charging and discharging of the battery system,
    A power storage device, wherein the power supply controller enables charging of the battery cell with external power and controls charging of the battery cell.
PCT/JP2019/029336 2018-07-31 2019-07-26 Battery system, electric vehicle provided with battery system, and power storage device WO2020026961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144243A JP2021180063A (en) 2018-07-31 2018-07-31 Battery system, and electric vehicle and power storage device having battery system
JP2018-144243 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026961A1 true WO2020026961A1 (en) 2020-02-06

Family

ID=69232506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029336 WO2020026961A1 (en) 2018-07-31 2019-07-26 Battery system, electric vehicle provided with battery system, and power storage device

Country Status (2)

Country Link
JP (1) JP2021180063A (en)
WO (1) WO2020026961A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916600A (en) * 2020-07-17 2020-11-10 东莞新能安科技有限公司 Battery module
CN112909397A (en) * 2021-01-20 2021-06-04 上海兰钧新能源科技有限公司 Module end plate and battery module
CN114586225A (en) * 2020-07-01 2022-06-03 株式会社Lg新能源 Battery pack and device including the same
CN115207538A (en) * 2021-04-08 2022-10-18 泰星能源解决方案有限公司 Power storage module
WO2023216384A1 (en) * 2022-05-10 2023-11-16 宁德时代新能源科技股份有限公司 Battery and electric device
DE102022117553A1 (en) 2022-07-14 2024-01-25 Audi Aktiengesellschaft Battery module with a clamping device and method for producing a battery module
EP4120457A4 (en) * 2020-07-28 2024-05-22 Shenzhen Hairun New Energy Technology Co., Ltd. Battery module fixing assembly and battery pack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022130467A1 (en) * 2022-11-17 2024-05-23 Man Truck & Bus Se Electrical energy storage device and manufacturing process for an electrical energy storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244894A (en) * 2009-04-07 2010-10-28 Kawasaki Heavy Ind Ltd Battery module using sealing type square battery
JP2016046234A (en) * 2014-08-27 2016-04-04 三洋電機株式会社 Battery system
US20160204400A1 (en) * 2015-01-08 2016-07-14 Ford Global Technologies, Llc Retention Assembly for Traction Battery Cell Array
CN106450090A (en) * 2016-11-22 2017-02-22 湖南三迅新能源科技有限公司 Power battery module
CN207441881U (en) * 2017-11-29 2018-06-01 宁德时代新能源科技股份有限公司 Battery modules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244894A (en) * 2009-04-07 2010-10-28 Kawasaki Heavy Ind Ltd Battery module using sealing type square battery
JP2016046234A (en) * 2014-08-27 2016-04-04 三洋電機株式会社 Battery system
US20160204400A1 (en) * 2015-01-08 2016-07-14 Ford Global Technologies, Llc Retention Assembly for Traction Battery Cell Array
CN106450090A (en) * 2016-11-22 2017-02-22 湖南三迅新能源科技有限公司 Power battery module
CN207441881U (en) * 2017-11-29 2018-06-01 宁德时代新能源科技股份有限公司 Battery modules

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114586225A (en) * 2020-07-01 2022-06-03 株式会社Lg新能源 Battery pack and device including the same
JP2022550804A (en) * 2020-07-01 2022-12-05 エルジー エナジー ソリューション リミテッド Battery packs and devices containing them
JP7366485B2 (en) 2020-07-01 2023-10-23 エルジー エナジー ソリューション リミテッド Battery packs and devices containing them
CN111916600A (en) * 2020-07-17 2020-11-10 东莞新能安科技有限公司 Battery module
EP4120457A4 (en) * 2020-07-28 2024-05-22 Shenzhen Hairun New Energy Technology Co., Ltd. Battery module fixing assembly and battery pack
CN112909397A (en) * 2021-01-20 2021-06-04 上海兰钧新能源科技有限公司 Module end plate and battery module
CN115207538A (en) * 2021-04-08 2022-10-18 泰星能源解决方案有限公司 Power storage module
JP2022161161A (en) * 2021-04-08 2022-10-21 プライムプラネットエナジー&ソリューションズ株式会社 Power storage module
JP7323570B2 (en) 2021-04-08 2023-08-08 プライムプラネットエナジー&ソリューションズ株式会社 storage module
WO2023216384A1 (en) * 2022-05-10 2023-11-16 宁德时代新能源科技股份有限公司 Battery and electric device
DE102022117553A1 (en) 2022-07-14 2024-01-25 Audi Aktiengesellschaft Battery module with a clamping device and method for producing a battery module

Also Published As

Publication number Publication date
JP2021180063A (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020026961A1 (en) Battery system, electric vehicle provided with battery system, and power storage device
WO2018207608A1 (en) Power supply device, vehicle equipped with same, power storage device and separator for power supply device
CN111527621B (en) Power supply device, vehicle provided with power supply device, and power storage device
JP6184959B2 (en) Battery system, vehicle including battery system, and power storage device
CN113906616B (en) Power supply device, electric vehicle provided with same, and power storage device
JP2012160347A (en) Power supply and vehicle with power supply
JP7414808B2 (en) Power supply device, electric vehicle and power storage device equipped with this power supply device, fastening member for power supply device, method for manufacturing fastening member for power supply device, method for manufacturing power supply device
WO2019130937A1 (en) Power supply device, vehicle equipped with power supply device, and power storage device
JP2015207341A (en) Power unit, electric vehicle with power unit, and power storage device
WO2021033476A1 (en) Power supply device, and electric vehicle and electrical storage device each equipped with same
CN111630706A (en) Power supply device, vehicle provided with power supply device, and power storage device
US20230098629A1 (en) Power supply device, vehicle provided with same, and power storage device
CN113614983A (en) Power supply device and electric vehicle
WO2014010439A1 (en) Battery system, vehicle provided with battery system, and storage device
JP6271178B2 (en) Battery device, electric vehicle and power storage device including the battery device
CN113632306B (en) Power supply device, electric vehicle provided with same, power storage device, and fastening member for power supply device
WO2020262085A1 (en) Power source device, electric vehicle equipped with said power source device, and power storage device
WO2020261727A1 (en) Power supply device, electric vehicle comprising said power supply device, and power storage device
JP7286668B2 (en) Battery system, vehicle equipped with battery system, and power storage device
JP2021026956A (en) Power supply device and electric vehicle and power storage device that comprise power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP