WO2020026953A1 - Anti-herpes virus agent - Google Patents

Anti-herpes virus agent Download PDF

Info

Publication number
WO2020026953A1
WO2020026953A1 PCT/JP2019/029309 JP2019029309W WO2020026953A1 WO 2020026953 A1 WO2020026953 A1 WO 2020026953A1 JP 2019029309 W JP2019029309 W JP 2019029309W WO 2020026953 A1 WO2020026953 A1 WO 2020026953A1
Authority
WO
WIPO (PCT)
Prior art keywords
monogalactosyldiacylglycerol
mgdg
herpes virus
fatty acids
day
Prior art date
Application number
PCT/JP2019/029309
Other languages
French (fr)
Japanese (ja)
Inventor
真菜 浅野
久野 斉
欣也 渥美
京子 林
敏男 河原
さと子 小松
Original Assignee
株式会社デンソー
学校法人中部大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 学校法人中部大学 filed Critical 株式会社デンソー
Priority to JP2020533477A priority Critical patent/JPWO2020026953A1/en
Priority to CN201980050286.5A priority patent/CN112584850A/en
Publication of WO2020026953A1 publication Critical patent/WO2020026953A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/03Algae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7032Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a polyol, i.e. compounds having two or more free or esterified hydroxy groups, including the hydroxy group involved in the glycosidic linkage, e.g. monoglucosyldiacylglycerides, lactobionic acid, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/68Protozoa, e.g. flagella, amoebas, sporozoans, plasmodium or toxoplasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/748Cyanobacteria, i.e. blue-green bacteria or blue-green algae, e.g. spirulina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • A61K36/05Chlorophycota or chlorophyta (green algae), e.g. Chlorella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses

Definitions

  • the present invention relates to an anti-herpes virus agent. More specifically, the present invention relates to an anti-herpes virus agent using a substance derived from microalgae, its use, and the like.
  • This application claims the priority based on Japanese Patent Application No. 2018-143051 filed on Jul. 31, 2018, the entire content of which is incorporated by reference.
  • Herpes virus is a DNA virus having double-stranded DNA as its genome. Herpesviruses are classified into ⁇ -herpesvirinae, ⁇ -herpesvirinae and ⁇ -herpesvirinae.
  • Herpes simplex virus (HSV), which belongs to the alpha-herpesvirinae subfamily, causes various diseases in humans. Representative examples of HSV infection include herpes simplex virus type 1 (HSV-1), a pathogen herpes labialis, and herpes simplex virus type 2 (HSV-2), a genital herpes pathogen.
  • Herpes virus is characterized by latent infection (persistent infection in the body) after primary infection, reactivated by various causes (ultraviolet rays, fever, various stresses, menstruation, immunosuppression, etc.) Causes (regression). There is no fundamental cure for herpes virus infection, and individuals infected with herpes virus will experience repeated local pathology / symptoms.
  • Nucleic acid analogs and DNA synthesis inhibitors are used for the treatment of herpes virus infection (for example, see Non-Patent Documents 1 and 2), but there are many cases where a sufficient therapeutic effect cannot be obtained. The establishment of new treatment strategies is eagerly needed.
  • an object of the present invention is to provide a new means effective for treating or preventing herpes virus infection.
  • an extract (monogalactosyldiacylglycerol-containing extract) of Coccomyxa microalgae was found to have an effect of suppressing the onset of herpes virus infection and an effect of suppressing virus growth. It was also found that the effect was dramatically enhanced by the combined use of thymidine (a synergistic effect was exhibited). The same effect was observed not only in the extract but also in the dry powder (algae) of the microalgae of the genus Komikusa. Similar to the extract, the effect was significantly enhanced by the combined use of thymidine.
  • further studies revealed the structure of monogalactosyldiacylglycerol, the active ingredient in the extract. Further, further findings have been obtained which support that the utility value of the extract is extremely high.
  • the anti-herpes virus agent according to any one of [1] to [4], wherein the active ingredient is a dry powder of algal cells.
  • a composition comprising the anti-herpesvirus agent according to any one of [1] to [15].
  • the composition according to [16] which is a food or a feed.
  • Results of HSV-2 infection (genital herpes) experiment The onset courses in the case of single administration were compared.
  • Test plot # 1 control (distilled water)
  • test plot # 2 ACV (acyclovir) (1 mg / day)
  • test plot # 3 MGDG preparation (0.1 mg / day)
  • test plot # 4 MGDG preparation (1 mg / day)
  • test plot # 5 thymidine (1 mg / day)
  • test plot # 6 thymidine (5 mg / day)
  • test plot # 7 thymidine (20 mg / day).
  • Results of HSV-2 infection (genital herpes) experiment The onset course when MGDG preparation (0.1 mg administration) and thymidine were used together was compared.
  • Test plot # 1 control (distilled water), test plot # 2: ACV (acyclovir) (1 mg / day), test plot # 3: MGDG preparation (0.1 mg / day), test plot # 8: MGDG preparation (0.1 mg / day) + thymidine (1 mg / day), test group # 9: MGDG preparation (0.1 mg / day) + thymidine (5 mg / day), test group # 10: MGDG preparation (0.1 mg / day) day) + thymidine (20 mg / day).
  • Results of HSV-2 infection (genital herpes) experiment. The onset course when MGDG preparation (1 mg administration) and thymidine were used together was compared.
  • Test plot # 1 control (distilled water), test plot # 2: ACV (acyclovir) (1 mg / day), test plot # 4: MGDG preparation (1 mg / day), test plot # 11: MGDG preparation (1 mg / day) + thymidine (1 mg / day), test plot # 12: MGDG preparation (1 mg / day) + thymidine (5 mg / day), test plot # 13: MGDG preparation (1 mg / day) day) + thymidine (20 mg / day).
  • Results of HSV-2 infection (genital herpes) experiment. The onset course was compared when the alga body (dry powder) was administered alone or when the alga body and thymidine were used in combination.
  • Test plot # 1 control (distilled water), test plot # 2: ACV (acyclovir) (1 mg / day), test plot # 14: algal (20 mg / day), test plot # 15: algal (20 mg / day) + thymidine (1 mg / day), test plot # 16: algal cells (20 mg / day) + thymidine (5 mg / day), test plot # 17: algal cells (20 mg / day) + thymidine (20 mg / day).
  • Results of HSV-2 infection (genital herpes) experiment. The survival rates and cases of onset were compared. Results of HSV-2 infection (genital herpes) experiment. Three days after infection, the amount of virus was compared. * p ⁇ 0.05 vs.
  • Test plot # 24 control (distilled water), test plot # 25: ACV (1 mg / day), test plot # 26: MGDG preparation (1 mg / day), test plot # 27: thymidine (20 mg / day) ), Test plot # 28: ACV (1 mg / day) + MGDG preparation (1 mg / day).
  • Results of HSV-2 infection (genital herpes) experiment using algal cells (dry powder) of Kokkomixa sp. Three days after infection, the amount of virus was compared. * p ⁇ 0.05, ** p ⁇ 0.01 vs. control
  • the cream containing the MGDG preparation was applied to the affected area three times daily, and the progress was observed. Effect on cold sores (patient 2: 25 year old male). The cream containing the MGDG preparation was applied to the affected area daily, and the progress was observed. Analysis result (GC / FID chromatogram) of the content component (MGDG1) of the MGDG preparation. Analysis result (GC / FID chromatogram) of the content component (MGDG2) of the MGDG preparation. Analysis result (GC / FID chromatogram) of the component (MGDG3) of the MGDG preparation. Analysis result (GC / FID chromatogram) of the content component (MGDG4) of the MGDG preparation.
  • MGDG-1 to MGDG-5 are peaks derived from the KDG strain MGDG preparation, and peaks presumed to have the same structure as these are indicated by *.
  • HPLC chromatograms of MGDG preparations of various organisms Comixa sp. KJ strain, Euglena gracilis (Euglena of life, Biozyme), spinach.
  • MGDG-1 to MGDG-5 are peaks derived from the KDG strain MGDG preparation, and peaks presumed to have the same structure as these are indicated by *.
  • An anti-herpesvirus agent is an antiviral agent that targets a herpes virus.
  • the anti-herpes virus agent of the present invention can be expected to have a therapeutic or preventive effect on herpes virus infection.
  • the anti-herpes virus agent of the present invention exerts its effects through suppression of herpes virus growth in view of the results of the experiments described in the examples below.
  • herpesviruses are classified into three types of herpesvirinae ( ⁇ -herpesvirinae, ⁇ -herpesvirinae, and ⁇ -herpesvirinae).
  • Alpha herpesvirus subfamily includes herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2) and varicella-zoster virus (HHV-3). Megalovirus (HHV-5), human herpesvirus 6 (HHV-6) and human herpesvirus 7 (HHV-7) belong to the subfamily ⁇ -herpesvirinae, Epstein-Barr virus (HHV-4), human herpes Virus 8 (HHV-8, also known as Kaposi's sarcoma-associated herpesvirus (KSHV)) belongs.
  • a particularly preferred target of the anti-herpes virus agent of the present invention is herpes simplex virus type 1 (HSV-1) or herpes simplex virus type 2 (HSV-2).
  • the anti-herpes virus agent of the present invention contains a substance derived from a single-cell algae as an active ingredient.
  • the unicellular algae Tebouxia algae, Ephemeroptera, Cyanobacteria, Euglena algae, etc.
  • the unicellular algae are not particularly limited.
  • Coccomyxa microalgae specific examples are Coccomixa sp.
  • microalgae of the genus Kokkomikusa are particularly preferred.
  • the microalgae of the genus Kokkomikusa are not particularly limited, but preferred examples include Kokkomikusa sp. Strain KJ or a mutant thereof, or Kokkomikusa sp.
  • MBIC11204 strain or a mutant thereof was established on June 4, 2013 by the National Institute of Technology and Evaluation, National Institute of Technology and Evaluation Biotechnology Center Patent Organism Depositary Center (NITE-IPOD) (2-5 Kazusa Kamasa, Kisarazu-shi, Chiba) No. 8120) and deposited under accession number FERM BP-22254 on 2 June 2015 under the provisions of the Putavest Treaty on June 2, 2015.
  • NITE-IPOD National Institute of Technology and Evaluation Biotechnology Center Patent Organism Depositary Center
  • FERM BP-22254 accession number
  • Kokkomixa sp. MBIC11204 strain (N1) was acquired by the Patent Organism Depositary Center (IPOD) of the National Institute of Advanced Industrial Science and Technology (IPOD) on January 18, 2006.
  • NITE-IPOD National Institute of Technology and Evaluation Biotechnology Center
  • Mutants of the strain K. sp. KJ and the strains of strain S. cocoa M. sp. MBIC11204 can be irradiated with ultraviolet rays, X-rays, ⁇ -rays, etc. Editing, etc.).
  • the method for obtaining the mutant, the characteristics, and the like are not particularly limited.
  • the method for cultivating Microalgae of the genus Kokkomushi is not particularly limited.
  • the medium for cultivating the microalgae of the genus Kokkomikusa may be any of those commonly used for culturing microalgae.For example, various nutrients, trace metal salts, known media for freshwater microalgae containing vitamins, etc. Any medium for marine microalgae can be used. Examples of the medium include AF6 medium.
  • the composition of AF6 medium (per 100 ml) is as follows.
  • the nutrients include nitrogen sources such as NaNO 3 , KNO 3 , NH 4 Cl and urea, and phosphorus sources such as K 2 HPO 4 , KH 2 PO 4 and sodium glycerophosphate.
  • the trace metals include iron, magnesium, manganese, calcium, zinc and the like, and the vitamins include vitamin B1, vitamin B12 and the like.
  • stirring may be performed while supplying carbon dioxide under aeration conditions.
  • the cells are cultured by irradiating with a fluorescent lamp for 12 hours, irradiating with light and dark cycles such as 12 hours of dark conditions, or irradiating with continuous light.
  • the culture condition is not particularly limited as long as it does not adversely affect the growth of the microalgae of the genus Kompani.
  • the pH of the culture solution is 3 to 9, and the culture temperature is 10 to 35 ° C.
  • a monogalactosyldiacylglycerol-containing extract of a single-cell algae particularly preferably a microalga belonging to the genus Kokkomikusa
  • an alga body or a dry powder thereof second embodiment
  • Monogalactosyldiacylglycerol-containing extract In one embodiment of the present invention, a monogalactosyldiacylglycerol-containing extract of a single-cell algae (particularly preferably, a microalga belonging to the genus Kokkomikusa) is used as an active ingredient.
  • the extraction method is not particularly limited as long as an extract containing monogalactosyldiacylglycerol can be obtained. For example, ethanol extraction can be adopted as the extraction method.
  • a product obtained by purifying after ethanol extraction and increasing the content of monogalactosyldiacylglycerol is used as "monogalactosyldiacylglycerol-containing extract of unicellular algae (particularly preferably microalgae belonging to the genus Kokkomikusa)".
  • Examples of the purification method include column chromatography using a filler such as silica gel and alumina, gel filtration chromatography, and concentration.
  • the collected algal cells may be subjected to a drying treatment and / or a crushing treatment.
  • a dried alga body, a dried and crushed alga body (typically, a dry powder), or a crushed alga body may be prepared, and an extraction operation may be performed using the prepared alga body.
  • a single-cell algae that has been processed in advance (for example, a dried alga body, its powder / powder, or a tablet (which may contain an excipient, etc.)) is obtained and subjected to an extraction operation.
  • You may.
  • processed products of Chlorella vulgaris, Nannochloropsis oculata, Arthrospira platensis (spirulina), Euglena gracilis and the like are commercially available.
  • the content of monogalactosyldiacylglycerol in the active ingredient is not particularly limited as long as the extract shows anti-herpesvirus activity, and is, for example, 70% (w / v) to 99% (w / v), preferably 80% (w / v). w / v) to 99% (w / v), more preferably 90% (w / v) to 99% (w / v), even more preferably 95% (w / v) to 99% (w / v). (Specific examples are 96% (w / v), 97% (w / v), and 98% (w / v)).
  • Monogalactosyldiacylglycerol is one of glyceroglycolipids and is known as a component of the chloroplast thylakoid membrane of plants.
  • Monogalactosyldiacylglycerol has a skeleton in which galactose is ⁇ -linked to glycerol.
  • the anti-herpesvirus agent of the present invention contains monogalactosyldiacylglycerol as a main component.
  • monogalactosyldiacylglycerol examples include (1) constituent fatty acids C16: 3 and C18: 3 monogalactosyldiacylglycerol, and (2) constituent fatty acids C16: 2.
  • constituent fatty acids are C18: 3 and C18: 3 monogalactosyldiacylglycerol
  • constituent fatty acids are C16: 2 and C18: 2 monogalactosyldiacylglycerol
  • the constituent fatty acids are C18: 3 and C18: 2 monogalactosyldiacylglycerol
  • the constituent fatty acids are C16: 1 and C18: 2 monogalactosyldiacylglycerol.
  • the constituent fatty acids C18: 3 of (1) above are preferably C18: 3 (n- 3), at least one of the constituent fatty acids C18: 3 of the above (3) is preferably C18: 3 (n-3), and the constituent fatty acids C18: 2 of the above (4) are preferably C18: 2 (n -6), and the constituent fatty acid C18: 3 of the above (5) is preferably C18: 3 (n-3), and the C18: 2 is preferably C18: 2 (n-6).
  • the anti-herpesvirus agent of the present invention contains two or more monogalactosyldiacylglycerols having different structures.
  • the combination, content ratio, and the like are not particularly limited.
  • the anti-herpes virus agent of the present invention is preferably two or more of the above (1) to (6), more preferably three or more of the above (1) to (6), still more preferably the above ( It contains four or more of the above (1) to (6), more preferably five or more of the above (1) to (6), and still more preferably all of the above (1) to (6).
  • the anti-herpesvirus agent of a particularly preferred embodiment contains the monogalactosyldiacylglycerol (5) alone or in combination with one or more of (1), (2) to (4) and (6). Will be done.
  • an anti-herpesvirus agent comprising one or more monogalactosyldiacylglycerols as an active ingredient selected from the group consisting of the above (1) to (6).
  • the combination, content ratio, and the like are not particularly limited.
  • the monogalactosyldiacylglycerol (MGDG5) of (5) showed particularly high activity. Therefore, in a particularly preferred embodiment, the monogalactosyldiacylglycerol (5) is at least one of the active ingredients.
  • monogalactosyldiacylglycerol containing various fatty acids fatty acids are shown below.
  • monogalactosyldiacylglycerols including known monogalactosyldiacylglycerols, will generally be able to exert anti-herpesvirus activity.
  • an alga or a dry powder thereof is used as an active ingredient instead of an extract from the alga.
  • the dry powder can be prepared by subjecting the collected algal cells to a drying treatment and a crushing (crushing) treatment.
  • a drying treatment for example, drum drying, spray drying, freeze drying and the like can be employed.
  • a bead crusher, a homogenizer, a French press, a mixer / blender, a fine crusher, or the like can be used.
  • the order of the drying treatment and the crushing treatment does not matter.
  • a drying and crushing process may be performed simultaneously using an apparatus having drying and crushing functions.
  • the particle size of the dry powder is not particularly limited.
  • thymidine is used in combination with the above-mentioned active ingredient (monogalactosyldiacylglycerol-containing extract of microalga belonging to the genus Kokkomikusa, alga body, and dry powder of alga body).
  • the anti-herpesvirus agent of this embodiment contains, as active ingredients, a monogalactosyldiacylglycerol-containing extract of a microalga belonging to the genus Kokkomixa, an alga body or a dry powder of an alga body, and thymidine.
  • Thymidine By using thymidine in combination, a synergistic effect is exerted, and an anti-herpes virus agent having high anti-herpes virus activity (ie, enhanced therapeutic / prophylactic effect against herpes virus infection) is obtained.
  • Thymidine (CAS No. 50-89-5) is one of DNA nucleosides and has a structure in which deoxyribose is connected to a pyrimidine base, thymine.
  • the amount of thymidine used in combination is not particularly limited.However, when using a monogalactosyldiacylglycerol-containing extract of microalgae belonging to the genus Kokkomikusa as the active ingredient, the amount of the active ingredient and thymidine is in a weight ratio, for example, 1 : 1 to 1: 500, preferably 1:10 to 1: 200. On the other hand, when an alga body of a microalga belonging to the genus Kokkomikusa or a dry powder thereof is used as the active ingredient, the amount of the active ingredient and thymidine is in a weight ratio (however, in the case of an alga body, the dry weight is used). For example, 100: 1 to 1:10, preferably 20: 1 to 1: 1.
  • the anti-herpes virus agent of this embodiment will be provided as a combination preparation obtained by mixing the above-mentioned active ingredient and thymidine.
  • the anti-herpes virus agent of this embodiment can be provided in the form of a kit comprising the first component containing the active ingredient and the second component containing thymidine. In this case, the first component and the second component are used simultaneously.
  • Simultaneous here does not require strict synchronism, and the subject of application is the active ingredient of the first component (monogalactosyldiacylglycerol-containing extract of microalga belonging to the genus Kokkomikusa, alga, drying of alga)
  • the “simultaneous” condition is satisfied as long as a state in which the powder) and the active ingredient (thymidine) of the second component coexist is formed, and the synergistic effect of the combined use of thymidine is exhibited.
  • a medicament when constituted by using the anti-herpesvirus agent of the present invention, for example, it is administered to a subject to be treated or prevented (typically a human) after mixing both components, After administration, the other may be administered immediately.
  • the administration of one may be followed by administration of the other with a predetermined time difference. In this case, it is preferable to set the time difference as short as possible.
  • the other is administered within one hour (preferably within 30 minutes) after administration of one.
  • anti-herpes virus agent of the present invention can be typically used as a composition containing the same for anti-herpes virus infection control.
  • compositions here are pharmaceuticals, foods, feeds.
  • the anti-herpesvirus agent of the present invention is used.
  • HSV-1 herpes labialis, herpes stomatitis, corneal herpes, herpes simplex encephalitis, etc.
  • HSV-2 genital (genital) herpes, neonatal herpes
  • Myelitis Myelitis, etc.
  • the medicament of the present invention can exert a therapeutic effect or a preventive effect on herpes virus infection (these two effects are collectively referred to as “pharmaceutical effect”).
  • the medicinal effects include (1) prevention, suppression or delay of the onset of herpes virus infection, (2) alleviation of symptoms or accompanying symptoms characteristic of herpes virus infection (mildness), (3) It includes prevention, suppression or delay of deterioration of symptoms or accompanying symptoms characteristic of herpervirus infection, and the like. It should be noted that since the therapeutic effect and the preventive effect are partially overlapping concepts, it may be difficult to distinguish them clearly and the benefits of doing so are small.
  • Pharmaceutical formulation can be carried out according to a conventional method.
  • other pharmaceutically acceptable components eg, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiological Saline, etc.
  • an excipient lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used.
  • a disintegrant starch, carboxymethyl cellulose, calcium carbonate and the like can be used. Phosphates, citrates, acetates and the like can be used as buffers.
  • As the emulsifier gum arabic, sodium alginate, tragacanth and the like can be used.
  • glycerin monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate, and the like can be used.
  • Benzyl alcohol, chlorobutanol, sorbitol and the like can be used as a soothing agent.
  • propylene glycol, ascorbic acid, or the like can be used.
  • phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methyl paraben and the like can be used.
  • benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
  • the dosage form in the case of formulating is not particularly limited.
  • dosage forms include tablets, powders, fine granules, granules, capsules, syrups, injections, and external preparations (ointments, creams, lotions, solutions, gels, cataplasms, plasters, tapes) , Aerosols, etc.) and suppositories.
  • the drug is administered orally or parenterally (local injection into the affected area, intravenous, intraarterial, subcutaneous, intradermal, intramuscular or intraperitoneal injection, transdermal, transnasal, transmucosal, etc.) Applied to the subject.
  • Systemic administration and local administration are also adapted to the subject. These administration routes are not mutually exclusive, and arbitrarily selected two or more can be used in combination.
  • the medicament of the present invention contains an active ingredient in an amount necessary for obtaining the expected effect (ie, a therapeutically or prophylactically effective amount).
  • the amount of the active ingredient in the medicament of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set, for example, in the range of about 0.1% by weight to about 99% by weight to achieve a desired dose.
  • the dosage of the medicament of the present invention is set so as to obtain the expected effect.
  • symptoms, the age, sex, and weight of the patient are generally considered. Those skilled in the art can determine an appropriate dose in consideration of these matters.
  • the dosage can be set so that the daily amount of the active ingredient is 1 mg to 20 mg, preferably 2 mg to 10 mg for an adult (body weight: about 60 kg).
  • the administration schedule may be, for example, once to several times a day, once every two days, or once every three days. In preparing the administration schedule, the condition of the patient, the duration of the effect of the active ingredient, and the like can be considered.
  • the present application is to administer a therapeutic or prophylactically effective amount of a medicament containing the anti-herpes virus agent of the present invention to a subject suffering from or possibly suffering from herpes virus infection.
  • a method for treating or preventing a herpes virus infection characterized by the following.
  • the target of treatment or prevention is typically a human, but a mammal other than a human (eg, monkey, cow, pig, horse, goat, sheep, dog, cat, rabbit, etc.), bird (chicken, quail, turkey) , Geese, ducks, ostriches, ducks, parakeets, birds, etc.).
  • one of the utilization forms of the anti-herpes virus agent of the present invention is a food or feed containing the anti-herpes virus agent of the present invention.
  • the food of the present invention include general foods (cereals, vegetables, meat, various processed foods, confectionery and desserts, milk, soft drinks, fruit juice drinks, coffee drinks, vegetable juice drinks, alcoholic drinks, etc.), nutritional supplements ( Supplements, nutritional drinks, etc.), food additives, pet food for pets, and dietary supplements for pets.
  • dietary supplements or food additives they can be provided in the form of powders, granules, tablets, pastes, liquids and the like.
  • feed of the present invention examples are feed (eg, feed for livestock and poultry) and pet food.
  • the food or feed of the present invention preferably contains an active ingredient in an amount that can be expected to have a therapeutic or preventive effect.
  • the amount to be added can be determined in consideration of the condition, age, sex, weight, and the like of the person to whom it is used.
  • the collected algal cells were dried with a drum dryer and pulverized with a fine pulverizer to obtain a powder (dry powder of algal cells).
  • 1 l of ethanol was added to 100 g of the dry powder for dispersion, and the mixture was allowed to stand in a dark place for 3 days. After standing, the mixture was filtered to separate into a primary filtrate and a residue. To this residue, 1 l of ethanol was added and dispersed in the same manner as described above, allowed to stand for 3 days, and then filtered again to separate a secondary filtrate and a residue. This filtration operation was repeated once to obtain a tertiary filtrate and a residue.
  • the primary filtrate, the secondary filtrate, and the tertiary filtrate were mixed, ethanol was distilled off using an evaporator, and the residue was dried under reduced pressure to obtain an ethanol extract DE.
  • the DE was subjected to DIAION HP-20 (manufactured by Mitsubishi Chemical Corporation, 3.5 ⁇ 57 cm) column chromatography. Elution was performed with H 2 O, 50% ethanol (EtOH), EtOH and acetone in that order, and each eluted fraction was dried at room temperature under reduced pressure (DE1, 400.9 mg; DE2, 310.3 mg; DE3, 2.25 g; DE4, 4.86 g).
  • the acetone fraction (DE4) was subjected to silica gel column (3 ⁇ 42 cm) chromatography.
  • DE4D2 silica gel column (1.5 x 35 cm) chromatography, CHCl 3 -MeOH-H 2 0 DE4D2A by eluting with (10: 1: 0.1) and (15.6 mg) DE4D2B a (686.5 mg) Obtained.
  • DE4D2B was subjected to LH-20 column (Sigma-Aldrich) chromatography using chloroform (CHCl 3 ) -MeOH (3: 1) as a solvent system to obtain DE4D2Bl (11.6 mg) and DE4D2B2 (652.3 mg). Obtained.
  • HSV-2 infection genital herpes
  • HSV-1 infection skin herpes
  • skin herpes Effects of MGDG preparation of Algae sp. MBIC11204 strain and algal cells
  • the efficacy of the MGDG preparation and the alga body (dry powder) of Kokkomixa sp. MBIC11204 strain against HSV-2 infection and HSV-1 infection was evaluated. Changes in efficacy when used in combination with thymidine were also investigated.
  • HSV-2 UW268 strain
  • HSV-1 HSV-1
  • BALB / c mice (6 weeks old, female) were injected subcutaneously with medroxyprogesterone 17-acetate (3 mg / mouse) 6 days before and 1 day before virus inoculation I do.
  • medroxyprogesterone 17-acetate (3 mg / mouse) 6 days before and 1 day before virus inoculation I do.
  • Test plot # 1 control (distilled water)
  • Test plot # 2 ACV (acyclovir) (1 mg / day)
  • Test plot # 3 MGDG preparation (0.1 mg / day)
  • Test plot # 4 MGDG preparation (1 mg / day)
  • Test plot # 5 thymidine (1 mg / day)
  • Test plot # 6 thymidine (5 mg / day)
  • Test plot # 7 thymidine (20 mg / day)
  • Test plot # 8 MGDG preparation (0.1 mg / day) + thymidine (1 mg / day)
  • Test plot # 9 MGDG preparation (0.1 mg / day) + thymidine (5 mg / day)
  • Test plot # 10 MGDG preparation (0.1 mg / day) + thymidine (20 mg / day)
  • Test plot # 11 MGDG preparation (1 mg / day) + thymidine (1 mg / day)
  • Test plot # 12 MGDG preparation (1 mg / day) + thymidine (1 mg /
  • Test plot # 19 control (PBS) (application)
  • Test plot # 20 5% ACV (application)
  • Test plot # 21 5% MGDG preparation (application)
  • Test plot # 22 5% thymidine (applied)
  • Test plot # 23 5% MGDG preparation + 5% thymidine (applied)
  • Test plot # 24 control (distilled water)
  • Test plot # 25 ACV (1 mg / day)
  • Test plot # 26 MGDG preparation (1 mg / day)
  • Test plot # 27 thymidine (20 mg / day)
  • Test plot # 28 thymidine (20 mg / day) + MGDG preparation (1 mg / day)
  • Inject HSV-1 (2 ⁇ 10 5 PFU / 50 ⁇ l / mouse) into the depilated area with a microsyringe.
  • (4) Record the onset degree (lesion score) of herpes symptoms (appearing in a band) and death cases over 14 days.
  • HSV-2 genital herpes model (1) Onset and survival rate (Figs. 1 to 5) The MGDG preparation administered alone significantly suppressed the onset in the 0.1 mg and 1 mg / day administration groups (# 3, # 4) (FIG. 1), and there were no deaths (FIG. 5). Thymidine dose-dependently suppressed the onset and mortality, and a remarkable therapeutic effect was observed particularly in the 20 mg / day administration group (# 7) (FIGS. 1 and 5).
  • the MGDG preparation administered alone showed a stronger virus growth inhibitory effect as the virus inoculation amount was lower, and a sufficient effect was obtained even at 0.1 mg / day.
  • thymidine 1 mg, 5 mg
  • there was no difference in the effect due to the difference in the amount of virus inoculated and a marked suppression effect was observed in the 20 mg / day administration group.
  • the MGDG preparation and thymidine were used in combination, a remarkable combination effect was observed at a low inoculation dose, and a remarkable effect was observed even when a small amount of the MGDG preparation ⁇ 0.1 mg ⁇ + ⁇ thymidine ⁇ 1 mg / day was administered.
  • Dry powder when administered alone, was less effective than the MGDG preparation, but inhibited virus growth. When the amount of virus inoculated was reduced, a remarkable growth inhibitory effect was observed when used in combination with thymidine.
  • x-axis concentration of thymidine / IC 50 of thymidine in the absence of MGDG preparation (1.2 ⁇ g / ml)
  • y-axis IC 50 (12 ⁇ g / ml ) of MGDG preparation in IC 50 / thymidine absence of MGDG preparation in thymidine presence of a fixed concentration
  • x-axis concentration of MGDG preparation / IC 50 of thymidine in the absence of MGDG preparation (12 ⁇ g / ml)
  • y-axis IC thymidine in the presence of MGDG preparations constant concentration 50 / MGDG preparation IC 50 of MGDG preparation in the absence (1.2 ug / ml)
  • IC 50 value was calculated from the average of two measurements.
  • the IC 50 values of MGDG preparation is 12 ⁇ g / ml
  • IC 50 of thymidine was 1.2 ug / ml (Table 1).
  • HSV-2 infection (genital herpes) experiment (Effect of Kokkomikusa sp. KJ strain) It was verified that the strain KJ was similar to HSV-2 infectious disease, as was the case with S. spp. MBIC11204.
  • changes in efficacy when combined with thymidine (0.5 mg / day) were examined.
  • Test plot # 1 control (distilled water)
  • Test plot # 2 ACV (1 mg / day)
  • Test plot # 3 Algae (dry powder) (5 mg / day)
  • Test plot # 4 Algae (dry powder) (5 mg / day) + thymidine (0.5 mg / day)
  • Test plot # 5 Algae (dry powder) (10 mg / day)
  • (3) Local inoculation of HSV-2 (UW268 strain) (1 ⁇ 10 3 PFU / 20 ⁇ l / mouse).
  • (5) Record the onset of herpes symptoms (lesion score) and deaths over 14 days.
  • the HUT medium shown in FIG. 15 may be used in the usual manner (using the same culture conditions as those of the above-mentioned strain of Kokkomixa sp. KJ). May be).
  • Dried powder of each alga body can be obtained by drying the alga body collected from the culture solution by centrifugal separation with a drum dryer and pulverizing with a pulverizer.
  • An MGDG preparation of each algae can be obtained from the dried powder by the same extraction operation as in the case of Kokkomixa sp. KJ.
  • the obtained MGDG preparations were used for the following examinations: Commercially available spinach (Spinacia oleracea) was also finely dried and freeze-dried. The MGDG preparation was obtained by crushing with a crusher and extracting MGDG.
  • Tables 2 and 3 show the fatty acid composition ratio of each sample by the area percentage method.
  • Table 3 summarizes the calculation results excluding C6: 0 and unknown components 1 and 2 (Unknown 1 and 2).
  • the area ratio of the two components is extremely biased at 3: 1.
  • the combinations of fatty acid residues are (C18: 2 (other than n-6) and C18: 2 (other than n-6)) and (C18: 2 (other than n-6) and C18: 3 n3)
  • "-" Represents non-detection.
  • the constituent fatty acids are C16: 3 and C18: 3 (n-3) monogalactosyldiacylglycerol (MGDG1), and (2) the constituent fatty acids are C16: 2 and C18: 2.
  • MGDG2 Monogalactosyldiacylglycerol
  • MGDG3 monogalactosyldiacylglycerol
  • MGDG4 monogalactosyldiacylglycerol
  • MGDG5 monogalactosyldiacylglycerol
  • MGDG1 to MGDG5 The virucidal activity of each MGDG (MGDG1 to MGDG5) constituting the MGDG preparation was compared.
  • Methodhod> (1) The MGDG preparation derived from Kokkomixa sp. KJ strain was subjected to HPLC, and each peak was collected to obtain five kinds of purified MGDG (MGDG1, MGDG2, MGDG3, MGDG4, MGDG5). In addition, MGDG preparations (containing MGDG1 to MGDG5) before fractionation were prepared as Mix products.
  • each sample was mixed with each virus solution (2 ⁇ 10 5 PFU / ml) to a final concentration of 50 ⁇ g / ml, and allowed to stand at 37 ° C. for 60 minutes. Table 5 shows the viruses and host cells used.
  • (3) After diluting the mixed solution of (2) with a MEM medium containing no fetal bovine serum, a plaque assay medium was overlaid and cultured at 37 ° C. for 2 to 3 days.
  • the cells were fixed and stained with neutral red solution, and the number of plaques was measured under a microscope. Using the number of appearances of the virus when no sample was added as a reference (100%), the virus remaining rate of each sample was calculated. The virucidal performance of each sample was evaluated from the virus residual rate.
  • HPLC measurement results are shown in FIGS.
  • the vertical axis of the chromatogram is normalized so that the peak maximum value in each sample is 1.
  • -At least 5 peaks were detected in the MGJ preparation of the KJ strain.
  • the MGDG preparations of each organism other than the KJ strain at least one peak whose retention time was the same as or very close to that of the MGJ preparation of the KJ strain was detected. It is presumed that the peak having the same retention time has the same chemical structure as MGDG derived from the KJ strain.
  • -Virucidal activity against HSV-2, IFV and FCV is observed in five peaks derived from the KJ strain MGDG preparation (Experiment 9; Fig. 23).
  • the MGDG preparation of each organism other than the KJ strain has at least one peak corresponding to the five peaks derived from the KJ strain MGDG preparation, it is presumed to have virusicidal activity as well. You. That is, these MGDG preparations can be expected to have the same effects as those of the KJ strain MGDG preparation.
  • the fifth peak of the KDG strain MGDG preparation is known to have high virucidal activity against HSV-2 and IFV (FIG. 23).
  • the anti-herpes virus agent of the present invention contains a substance derived from a unicellular algae (preferably microalgae) as an active ingredient, and can exert anti-herpes virus activity by a different mechanism of action from existing anti-herpes virus agents. Therefore, it is also suitable for use in combination with existing anti-herpes virus agents, and provides a new therapeutic strategy.
  • the active ingredient of the anti-herpesvirus agent of the present invention is a single cell algae (preferably microalgae), high safety can be expected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Mycology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Nutrition Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Medical Informatics (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Animal Husbandry (AREA)
  • Pest Control & Pesticides (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

The present invention addresses the problem of providing a novel means that is effective in the treatment or the prevention of herpes virus infection. Provided is an anti-herpes virus agent containing a unicellular algae-derived substance as an active ingredient.

Description

抗ヘルペスウイルス剤Anti-herpes virus agent
 本発明は抗ヘルペスウイルス剤に関する。詳細には、微細藻類由来の物質を用いた抗ヘルペスウイルス剤及びその用途等に関する。本出願は、2018年7月31日に出願された日本国特許出願第2018-143051号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 (4) The present invention relates to an anti-herpes virus agent. More specifically, the present invention relates to an anti-herpes virus agent using a substance derived from microalgae, its use, and the like. This application claims the priority based on Japanese Patent Application No. 2018-143051 filed on Jul. 31, 2018, the entire content of which is incorporated by reference.
 ヘルペスウイルスは二本鎖DNAをゲノムとして有するDNAウイルスである。ヘルペスウイルスはαヘルペスウイルス亜科、βヘルペスウイルス亜科及びγヘルペスウイルス亜科に分類される。αヘルペスウイルス亜科に属する単純ヘルペスウイルス(HSV)はヒトに様々な疾患を引き起こす。HSV感染症の代表的なものとして、単純ヘルペスウイルス1型(HSV-1)が病原体の口唇ヘルペス、単純ヘルペスウイルス2型(HSV-2)が病原体の性器ヘルペスが挙げられる。ヘルペスウイルスの特徴は、初感染後、潜伏感染(体内に持続感染)することであり、種々の原因(紫外線、発熱、種々のストレス、月経、免疫抑制など)によって再活性化し、再び局所に病態を引き起こす(回帰発症)。ヘルペスウイルス感染に対する根本的な治療法はなく、ヘルペスウイルスに感染した個体は局所での病態/症状を繰り返し経験することになる。 Herpes virus is a DNA virus having double-stranded DNA as its genome. Herpesviruses are classified into α-herpesvirinae, β-herpesvirinae and γ-herpesvirinae. Herpes simplex virus (HSV), which belongs to the alpha-herpesvirinae subfamily, causes various diseases in humans. Representative examples of HSV infection include herpes simplex virus type 1 (HSV-1), a pathogen herpes labialis, and herpes simplex virus type 2 (HSV-2), a genital herpes pathogen. Herpes virus is characterized by latent infection (persistent infection in the body) after primary infection, reactivated by various causes (ultraviolet rays, fever, various stresses, menstruation, immunosuppression, etc.) Causes (regression). There is no fundamental cure for herpes virus infection, and individuals infected with herpes virus will experience repeated local pathology / symptoms.
 ヘルペスウイルス感染に対する治療には核酸アナログやDNA合成阻害剤等(例えば、アシクロビル、バラシクロビル)が用いられるが(例えば非特許文献1、2を参照)、十分に治療効果が得られない症例も多く、新たな治療戦略の確立が切望されている。 Nucleic acid analogs and DNA synthesis inhibitors (eg, acyclovir, valacyclovir) are used for the treatment of herpes virus infection (for example, see Non-Patent Documents 1 and 2), but there are many cases where a sufficient therapeutic effect cannot be obtained. The establishment of new treatment strategies is eagerly needed.
 以上の背景の下で本願発明は、ヘルペスウイルス感染症の治療又は予防に有効な新たな手段を提供することを課題とする。 で Under the above background, an object of the present invention is to provide a new means effective for treating or preventing herpes virus infection.
 上記課題を解決すべく鋭意検討した結果、コッコミクサ属(Coccomyxa)微細藻類の抽出物(モノガラクトシルジアシルグリセロール含有抽出物)にヘルペスウイルス感染症の発症抑制効果、及びウイルス増殖抑制効果が認められた。また、その効果がチミジンの併用によって飛躍的に増強されること(相乗効果の発揮)が判明した。また、抽出物のみならず、コッコミクサ属微細藻類の乾燥粉末(藻体)にも同種の効果が認められ、抽出物の場合と同様に、その効果はチミジンの併用によって著しく増強された。一方、更なる検討によって、抽出物中の有効成分であるモノガラクトシルジアシルグリセロールの構造が明らかになった。また、当該抽出物の利用価値が極めて高いことを裏付ける更なる知見が得られた。 鋭 As a result of intensive studies to solve the above-mentioned problems, an extract (monogalactosyldiacylglycerol-containing extract) of Coccomyxa microalgae was found to have an effect of suppressing the onset of herpes virus infection and an effect of suppressing virus growth. It was also found that the effect was dramatically enhanced by the combined use of thymidine (a synergistic effect was exhibited). The same effect was observed not only in the extract but also in the dry powder (algae) of the microalgae of the genus Komikusa. Similar to the extract, the effect was significantly enhanced by the combined use of thymidine. On the other hand, further studies revealed the structure of monogalactosyldiacylglycerol, the active ingredient in the extract. Further, further findings have been obtained which support that the utility value of the extract is extremely high.
 一方、クロレラ・ブルガリス、ナンノクロロプシス・オキュラータ、アルスロスピラ・プラテンシス(スピルリナ)及びユーグレナ・グラシリス由来のモノガラクトシルジアシルグリセロール含有抽出物にも、コッコミクサ属微細藻類由来のモノガラクトシルジアシルグリセロール含有抽出物と同様の効果を期待できることが明らかとなった。
 主として上記の成果及び考察に基づき、以下の発明が提供される。
 [1]単細胞藻類由来物質を有効成分として含む抗ヘルペスウイルス剤。
 [2]前記単細胞藻類がコッコミクサ属、クロレラ属、ナンノクロロプシス属、アルスロスピラ属又はミドリムシ属に属する微細藻類である、[1]に記載の抗ヘルペスウイルス剤。
 [3]前記単細胞藻類がコッコミクサ属に属する微細藻類である、[1]に記載の抗ヘルペスウイルス剤。
 [4]前記微細藻類がコッコミクサ sp. KJ株又はその変異株、或いはコッコミクサ sp. MBIC11204株又はその変異株である、[3]に記載の抗ヘルペスウイルス剤。
 [5]前記有効成分が、前記単細胞藻類のモノガラクトシルジアシルグリセロール含有抽出物である、[1]~[4]のいずれか一項に記載の抗ヘルペスウイルス剤。
 [6]主成分がモノガラクトシルジアシルグリセロールである、[5]に記載の抗ヘルペスウイルス剤。
 [7]前記モノガラクトシルジアシルグリセロールが、以下の(1)~(6)からなる群より選択される、一以上のモノガラクトシルジアシルグリセロールである、[6]に記載の抗ヘルペスウイルス剤:
 (1)構成脂肪酸がC16:3とC18:3のモノガラクトシルジアシルグリセロール;
 (2)構成脂肪酸がC16:2とC18:3のモノガラクトシルジアシルグリセロール;
 (3)構成脂肪酸がC18:3とC18:3のモノガラクトシルジアシルグリセロール;
 (4)構成脂肪酸がC16:2とC18:2のモノガラクトシルジアシルグリセロール;
 (5)構成脂肪酸がC18:3とC18:2のモノガラクトシルジアシルグリセロール;及び
 (6)構成脂肪酸がC16:1とC18:2のモノガラクトシルジアシルグリセロール。
 [8]前記有効成分が、前記単細胞藻類のエタノール抽出物をクロマトグラフィー精製し、モノガラクトシルジアシルグリセロールの含有量を高めたものである、[5]~[7]のいずれか一項に記載の抗ヘルペスウイルス剤。
 [9]前記有効成分中のモノガラクトシルジアシルグリセロール含有量が70%(w/v)~99%(w/v)である、[5]~[8]のいずれか一項に記載の抗ヘルペスウイルス剤。
 [10]前記有効成分が藻体である、[1]~[4]のいずれか一項に記載の抗ヘルペスウイルス剤。
 [11]前記有効成分が藻体の乾燥粉末である、[1]~[4]のいずれか一項に記載の抗ヘルペスウイルス剤。
 [12]以下の(1)~(6)からなる群より選択される、一以上のモノガラクトシルジアシルグリセロールが有効成分の抗ヘルペスウイルス剤:
 (1)構成脂肪酸がC16:3とC18:3のモノガラクトシルジアシルグリセロール;
 (2)構成脂肪酸がC16:2とC18:3のモノガラクトシルジアシルグリセロール;
 (3)構成脂肪酸がC18:3とC18:3のモノガラクトシルジアシルグリセロール;
 (4)構成脂肪酸がC16:2とC18:2のモノガラクトシルジアシルグリセロール;
 (5)構成脂肪酸がC18:3とC18:2のモノガラクトシルジアシルグリセロール;及び
 (6)構成脂肪酸がC16:1とC18:2のモノガラクトシルジアシルグリセロール。
 [13]チミジンが併用されることを特徴とする、[1]~[12]のいずれか一項に記載の抗ヘルペスウイルス剤。
 [14]前記有効成分とチミジンを含有する配合剤である、[13]に記載の抗ヘルペスウイルス剤。
 [15]標的のヘルペスウイルスが単純ヘルペスウイルス1型又は単純ヘルペスウイルス2型である、[1]~[14]のいずれか一項に記載の抗ヘルペスウイルス剤。
 [16][1]~[15]のいずれか一項に記載の抗ヘルペスウイルス剤を含む組成物。
 [17]ヘルペスウイルス感染症に対する医薬である、[16]に記載の組成物。
 [18]食品又は餌である、[16]に記載の組成物。
On the other hand, monogalactosyldiacylglycerol-containing extracts derived from Chlorella vulgaris, Nannochloropsis occultata, Arthrospira platensis (spirulina) and Euglena gracilis, as well as monogalactosyldiacylglycerol-containing extracts derived from Coccomica microalgae It became clear that the effect of can be expected.
The following inventions are provided mainly based on the above results and considerations.
[1] An anti-herpesvirus agent comprising a substance derived from a single-cell algae as an active ingredient.
[2] The anti-herpesvirus agent according to [1], wherein the unicellular algae is a microalga belonging to the genus Kokkomikusa, Chlorella, Nannochloropsis, Arthrospira or Euglena.
[3] The anti-herpes virus agent according to [1], wherein the single-cell algae is a microalga belonging to the genus Kokkomikusa.
[4] The anti-herpes virus agent according to [3], wherein the microalgae is a strain of Kokko-mixa sp. KJ or a mutant thereof, or a strain of Kokko-mixa sp. MBIC11204 or a mutant thereof.
[5] The anti-herpes virus agent according to any one of [1] to [4], wherein the active ingredient is a monogalactosyldiacylglycerol-containing extract of the single-cell algae.
[6] The anti-herpes virus agent according to [5], wherein the main component is monogalactosyldiacylglycerol.
[7] The anti-herpes virus agent according to [6], wherein the monogalactosyldiacylglycerol is one or more monogalactosyldiacylglycerols selected from the group consisting of the following (1) to (6):
(1) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 3 and C18: 3;
(2) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 2 and C18: 3;
(3) monogalactosyldiacylglycerol whose constituent fatty acids are C18: 3 and C18: 3;
(4) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 2 and C18: 2;
(5) Monogalactosyldiacylglycerol whose constituent fatty acids are C18: 3 and C18: 2; and (6) Monogalactosyldiacylglycerol whose constituent fatty acids are C16: 1 and C18: 2.
[8] The method according to any one of [5] to [7], wherein the active ingredient is obtained by purifying an ethanol extract of the single-cell algae by chromatography to increase the content of monogalactosyldiacylglycerol. Anti-herpes virus agent.
[9] The anti-herpes according to any one of [5] to [8], wherein the monogalactosyldiacylglycerol content in the active ingredient is 70% (w / v) to 99% (w / v). Viral agent.
[10] The anti-herpes virus agent according to any one of [1] to [4], wherein the active ingredient is an algal body.
[11] The anti-herpes virus agent according to any one of [1] to [4], wherein the active ingredient is a dry powder of algal cells.
[12] An anti-herpes virus agent containing one or more monogalactosyldiacylglycerols as an active ingredient selected from the group consisting of the following (1) to (6):
(1) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 3 and C18: 3;
(2) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 2 and C18: 3;
(3) monogalactosyldiacylglycerol whose constituent fatty acids are C18: 3 and C18: 3;
(4) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 2 and C18: 2;
(5) Monogalactosyldiacylglycerol whose constituent fatty acids are C18: 3 and C18: 2; and (6) Monogalactosyldiacylglycerol whose constituent fatty acids are C16: 1 and C18: 2.
[13] The anti-herpes virus agent according to any one of [1] to [12], which is used in combination with thymidine.
[14] The anti-herpes virus agent according to [13], which is a combination drug containing the active ingredient and thymidine.
[15] The anti-herpes virus agent according to any one of [1] to [14], wherein the target herpes virus is herpes simplex virus type 1 or herpes simplex virus type 2.
[16] A composition comprising the anti-herpesvirus agent according to any one of [1] to [15].
[17] The composition according to [16], which is a medicament for herpes virus infection.
[18] The composition according to [16], which is a food or a feed.
HSV-2感染(性器ヘルペス)実験の結果。単独投与の場合の発症経過を比較した。試験区#1:コントロール(蒸留水)、試験区#2:ACV(アシクロビル) (1 mg/day)、試験区#3:MGDG調製物 (0.1 mg/day)、試験区#4:MGDG調製物 (1 mg/day)、試験区#5:チミジン (1 mg/day)、試験区#6:チミジン (5 mg/day)、試験区#7:チミジン (20 mg/day)。Results of HSV-2 infection (genital herpes) experiment. The onset courses in the case of single administration were compared. Test plot # 1: control (distilled water), test plot # 2: ACV (acyclovir) (1 mg / day), test plot # 3: MGDG preparation (0.1 mg / day), test plot # 4: MGDG preparation (1 mg / day), test plot # 5: thymidine (1 mg / day), test plot # 6: thymidine (5 mg / day), test plot # 7: thymidine (20 mg / day). HSV-2感染(性器ヘルペス)実験の結果。MGDG調製物(0.1mg投与)とチミジンを併用した場合の発症経過を比較した。試験区#1:コントロール(蒸留水)、試験区#2:ACV(アシクロビル) (1 mg/day)、試験区#3:MGDG調製物 (0.1 mg/day)、試験区#8:MGDG調製物 (0.1 mg/day)+チミジン (1 mg/day)、試験区#9:MGDG調製物 (0.1 mg/day)+チミジン (5 mg/day)、試験区#10:MGDG調製物(0.1 mg/day)+チミジン (20 mg/day)。Results of HSV-2 infection (genital herpes) experiment. The onset course when MGDG preparation (0.1 mg administration) and thymidine were used together was compared. Test plot # 1: control (distilled water), test plot # 2: ACV (acyclovir) (1 mg / day), test plot # 3: MGDG preparation (0.1 mg / day), test plot # 8: MGDG preparation (0.1 mg / day) + thymidine (1 mg / day), test group # 9: MGDG preparation (0.1 mg / day) + thymidine (5 mg / day), test group # 10: MGDG preparation (0.1 mg / day) day) + thymidine (20 mg / day). HSV-2感染(性器ヘルペス)実験の結果。MGDG調製物(1mg投与)とチミジンを併用した場合の発症経過を比較した。試験区#1:コントロール(蒸留水)、試験区#2:ACV(アシクロビル) (1 mg/day)、試験区#4:MGDG調製物 (1 mg/day)、試験区#11:MGDG調製物 (1 mg/day)+チミジン (1 mg/day)、試験区#12:MGDG調製物 (1 mg/day)+チミジン (5 mg/day)、試験区#13:MGDG調製物 (1 mg/day)+チミジン (20 mg/day)。Results of HSV-2 infection (genital herpes) experiment. The onset course when MGDG preparation (1 mg administration) and thymidine were used together was compared. Test plot # 1: control (distilled water), test plot # 2: ACV (acyclovir) (1 mg / day), test plot # 4: MGDG preparation (1 mg / day), test plot # 11: MGDG preparation (1 mg / day) + thymidine (1 mg / day), test plot # 12: MGDG preparation (1 mg / day) + thymidine (5 mg / day), test plot # 13: MGDG preparation (1 mg / day) day) + thymidine (20 mg / day). HSV-2感染(性器ヘルペス)実験の結果。藻体(乾燥粉末)の単独投与又は藻体とチミジンを併用した場合の発症経過を比較した。試験区#1:コントロール(蒸留水)、試験区#2:ACV(アシクロビル) (1 mg/day)、試験区#14:藻体 (20 mg/day)、試験区#15:藻体 (20 mg/day)+チミジン (1 mg/day)、試験区#16:藻体 (20 mg/day)+チミジン (5 mg/day)、試験区#17:藻体 (20 mg/day)+チミジン (20 mg/day)。Results of HSV-2 infection (genital herpes) experiment. The onset course was compared when the alga body (dry powder) was administered alone or when the alga body and thymidine were used in combination. Test plot # 1: control (distilled water), test plot # 2: ACV (acyclovir) (1 mg / day), test plot # 14: algal (20 mg / day), test plot # 15: algal (20 mg / day) + thymidine (1 mg / day), test plot # 16: algal cells (20 mg / day) + thymidine (5 mg / day), test plot # 17: algal cells (20 mg / day) + thymidine (20 mg / day). HSV-2感染(性器ヘルペス)実験の結果。生存率、発症例を比較した。Results of HSV-2 infection (genital herpes) experiment. The survival rates and cases of onset were compared. HSV-2感染(性器ヘルペス)実験の結果。感染3日後のウイルス量を比較した。*p< 0.05 vs. コントロールResults of HSV-2 infection (genital herpes) experiment. Three days after infection, the amount of virus was compared. * p <0.05 vs. control HSV-1感染(皮膚ヘルペス)実験の結果。局所投与(塗布)の場合の発症経過を比較した。試験区#19:コントロール(PBS)(塗布)、試験区#20:5% ACV(塗布)、試験区#21:5% MGDG調製物(塗布)、試験区#22:5% チミジン(塗布)、試験区#23:5% MGDG調製物+5% チミジン(塗布)。Results of HSV-1 infection (skin herpes) experiment. The onset course in the case of local administration (application) was compared. Test plot # 19: control (PBS) (applied), test plot # 20: 5% ACV (applied), test plot # 21: 5% MGDG preparation (applied), test plot # 22: 5% thymidine (applied) Test plot # 23: 5% {MGDG preparation + 5%} thymidine (applied). HSV-1感染(皮膚ヘルペス)実験の結果。経口投与の場合の発症経過を比較した。試験区#24:コントロール(蒸留水)、試験区#25:ACV (1 mg/day)、試験区#26:MGDG調製物 (1 mg/day)、試験区#27:チミジン (20 mg/day)、試験区#28:ACV (1 mg/day)+MGDG調製物 (1 mg/day)。Results of HSV-1 infection (skin herpes) experiment. The course of onset in the case of oral administration was compared. Test plot # 24: control (distilled water), test plot # 25: ACV (1 mg / day), test plot # 26: MGDG preparation (1 mg / day), test plot # 27: thymidine (20 mg / day) ), Test plot # 28: ACV (1 mg / day) + MGDG preparation (1 mg / day). HSV-1感染(皮膚ヘルペス)実験の結果。生存率、発症例を比較した。Results of HSV-1 infection (skin herpes) experiment. The survival rates and cases of onset were compared. MGDG調製物とチミジンとの相互作用の検討。チミジンのHSV-2増殖阻害作用がMGDG調製物によって増強されることを示すIsobologram。Examination of the interaction between MGDG preparation and thymidine. Isobologram showing that the thymidine HSV-2 growth inhibitory effect is enhanced by MGDG preparation. MGDG調製物とチミジンとの相互作用の検討。MGDG調製物の抗HSV-2作用がチミジンによって増強されることを示すIsobologram。Examination of the interaction between MGDG preparation and thymidine. Isobologram showing that the anti-HSV-2 action of MGDG preparation is enhanced by thymidine. コッコミクサ sp. KJ株の藻体(乾燥粉末)を用いたHSV-2感染(性器ヘルペス)実験の結果。藻体(乾燥粉末)の単独投与又は藻体とチミジンを併用した場合の発症経過を比較した。試験区#1:コントロール(蒸留水)、試験区#2:ACV (1 mg/day)、試験区#3:藻体(乾燥粉末)(5 mg/day)、試験区#4:藻体(乾燥粉末)(5 mg/day)+チミジン(0.5 mg/day)、試験区#5:藻体(乾燥粉末)(10 mg/day)。Results of HSV-2 infection (genital herpes) experiment using algal cells (dry powder) of Kokkomixa sp. The onset course was compared when the alga body (dry powder) was administered alone or when the alga body and thymidine were used in combination. Test plot # 1: Control (distilled water), Test plot # 2: ACV (1 mg / day), Test plot # 3: Algae (dry powder) (5 mg / day), Test plot # 4: Algae ( Dry powder) (5 mg / day) + thymidine (0.5 mg / day), test group # 5: Algae (dry powder) (10 mg / day). コッコミクサ sp. KJ株の藻体(乾燥粉末)を用いたHSV-2感染(性器ヘルペス)実験の結果。感染3日後のウイルス量を比較した。*p<0.05, **p<0.01 vs. コントロールResults of HSV-2 infection (genital herpes) experiment using algal cells (dry powder) of Kokkomixa sp. Three days after infection, the amount of virus was compared. * p <0.05, ** p <0.01 vs. control クロレラ属微細藻類の培養に使用する培地の例(C培地)とナンノクロロプシス属微細藻類の培養に使用する培地の例(ESM培地)。An example of a medium used for culturing Chlorella microalgae (C medium) and an example of a medium used for culturing Nannochloropsis microalgae (ESM medium). アルスロスピラ属微細藻類の培養に使用する培地の例(MA培地)とミドリムシ属藻類の培養に使用する培地の例(HUT培地)。An example of a medium used for cultivation of microspheres of the genus Arthrospira (MA medium) and an example of a medium used for culture of algae of the genus Euglena (HUT medium). 口唇ヘルペスに対する効果(患者1:45歳女性)。MGDG調製物を配合したクリームを患部に毎日3回塗布し、経過を観察した。Effect on cold sores (patient 1: 45-year-old female). The cream containing the MGDG preparation was applied to the affected area three times daily, and the progress was observed. 口唇ヘルペスに対する効果(患者2:25歳男性)。MGDG調製物を配合したクリームを患部に毎日塗布し、経過を観察した。Effect on cold sores (patient 2: 25 year old male). The cream containing the MGDG preparation was applied to the affected area daily, and the progress was observed. MGDG調製物の含有成分(MGDG1)の分析結果(GC/FIDのクロマトグラム)。Analysis result (GC / FID chromatogram) of the content component (MGDG1) of the MGDG preparation. MGDG調製物の含有成分(MGDG2)の分析結果(GC/FIDのクロマトグラム)。Analysis result (GC / FID chromatogram) of the content component (MGDG2) of the MGDG preparation. MGDG調製物の含有成分(MGDG3)の分析結果(GC/FIDのクロマトグラム)。Analysis result (GC / FID chromatogram) of the component (MGDG3) of the MGDG preparation. MGDG調製物の含有成分(MGDG4)の分析結果(GC/FIDのクロマトグラム)。Analysis result (GC / FID chromatogram) of the content component (MGDG4) of the MGDG preparation. MGDG調製物の含有成分(MGDG5)の分析結果(GC/FIDのクロマトグラム)。Analysis result (GC / FID chromatogram) of the content component (MGDG5) of the MGDG preparation. 各MGDG画分(MGDG1~MGDG5)の殺ウイルス活性。インフルエンザウイルス、単純ヘルペスウイルス2型、ネコカリシウイルス及びポリオウイルスに対するMGDG1~MGDG5及びMGDG調製物(Mix品)の殺ウイルス活性を比較した。Virucidal activity of each MGDG fraction (MGDG1 to MGDG5). The virucidal activity of MGDG1 to MGDG5 and MGDG preparations (Mix product) against influenza virus, herpes simplex virus type 2, feline calicivirus and poliovirus was compared. 各種生物(コッコミクサ sp. KJ株、クロレラ・ブルガリス、ナンノクロロプシス・オキュラータ、アルスロスピラ・プラテンシス(スピルリナ))のMGDG調製物のHPLCクロマトグラム。MGDG-1からMGDG-5はKJ株MGDG調製物由来のピークであり、これらと同構造と推定されるピークを*で示す。HPLC chromatograms of MGDG preparations of various organisms (Cokkomixa @sp. @KJ strain, Chlorella vulgaris, Nannochloropsis oculata, Arsulospira platensis (spirulina)). MGDG-1 to MGDG-5 are peaks derived from the KDG strain MGDG preparation, and peaks presumed to have the same structure as these are indicated by *. 各種生物(コッコミクサ sp. KJ株、ユーグレナ・グラシリス(いのちのユーグレナ、バイオザイム)、ホウレンソウ)のMGDG調製物のHPLCクロマトグラム。MGDG-1からMGDG-5はKJ株MGDG調製物由来のピークであり、これらと同構造と推定されるピークを*で示す。HPLC chromatograms of MGDG preparations of various organisms (Comixa sp. KJ strain, Euglena gracilis (Euglena of life, Biozyme), spinach). MGDG-1 to MGDG-5 are peaks derived from the KDG strain MGDG preparation, and peaks presumed to have the same structure as these are indicated by *.
1.用語、作用
 抗ヘルペスウイルス剤とは、ヘルペスウイルスを標的とした抗ウイルス剤である。後述の実施例に示す通り、本発明の抗ヘルペスウイルス剤には、ヘルペスウイルス感染症に対する治療的又は予防的効果を期待できる。理論に拘泥するわけではないが、後述の実施例に示した実験の結果に鑑みれば、本発明の抗ヘルペスウイルス剤は、ヘルペスウイルスの増殖抑制を介してその効果を発揮するといえる。上記の通り、ヘルペスウイルスは、3種類のヘルペスウイルス亜科(αヘルペスウイルス亜科、βヘルペスウイルス亜科、γヘルペスウイルス亜科)に分類される。αヘルペスウイルス亜科には単純ヘルペスウイルス1型(HSV-1)、単純ヘルペスウイルス2型(HSV-2)、水痘・帯状疱疹ウイルス(HHV-3)が属し、βヘルペスウイルス亜科にはサイトメガロウイルス(HHV-5)、ヒトヘルペスウイルス6(HHV-6)、ヒトヘルペスウイルス7(HHV-7)が属し、γヘルペスウイルス亜科にはエプスタイン・バール・ウイルス(HHV-4)、ヒトヘルペスウイルス8(HHV-8、別名:カポジ肉腫関連ヘルペスウイルス(KSHV))が属する。本発明の抗ヘルペスウイルス剤の特に好適な標的は単純ヘルペスウイルス1型(HSV-1)又は単純ヘルペスウイルス2型(HSV-2)である。
1. Terms, actions An anti-herpesvirus agent is an antiviral agent that targets a herpes virus. As shown in the Examples below, the anti-herpes virus agent of the present invention can be expected to have a therapeutic or preventive effect on herpes virus infection. Although not wishing to be bound by theory, it can be said that the anti-herpes virus agent of the present invention exerts its effects through suppression of herpes virus growth in view of the results of the experiments described in the examples below. As described above, herpesviruses are classified into three types of herpesvirinae (α-herpesvirinae, β-herpesvirinae, and γ-herpesvirinae). Alpha herpesvirus subfamily includes herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2) and varicella-zoster virus (HHV-3). Megalovirus (HHV-5), human herpesvirus 6 (HHV-6) and human herpesvirus 7 (HHV-7) belong to the subfamily γ-herpesvirinae, Epstein-Barr virus (HHV-4), human herpes Virus 8 (HHV-8, also known as Kaposi's sarcoma-associated herpesvirus (KSHV)) belongs. A particularly preferred target of the anti-herpes virus agent of the present invention is herpes simplex virus type 1 (HSV-1) or herpes simplex virus type 2 (HSV-2).
2.抗ヘルペスウイルス剤の有効成分
 本発明の抗ヘルペスウイルス剤は単細胞藻類由来物質を有効成分とする。抗ヘルペスウイルス活性が認められる限り、単細胞藻類(トレボウクシア藻綱、真正眼点藻綱、藍藻綱、ユーグレナ藻綱等)は特に限定されない。好ましい単細胞藻類として、コッコミクサ属(Coccomyxa)微細藻類(具体例はコッコミクサ sp.KJ株)、クロレラ属(Chlorella)微細藻類(具体例はクロレラ・ブルガリス)、ナンノクロロプシス属(Nannochloropsis)微細藻類(具体例はナンノクロロプシス・オキュラータ)、アルスロスピラ属(Arthrospira)微細藻類(具体例はアルスロスピラ・プラテンシス(スピルリナ))又はミドリムシ属(Euglena)微細藻類(具体例はユーグレナ・グラシリス)を挙げることができる。この中でも、コッコミクサ属微細藻類は特に好ましい。コッコミクサ属微細藻類は特に限定されないが、好ましい例として、コッコミクサ sp. KJ株又はその変異株、或いはコッコミクサ sp. MBIC11204株又はその変異株を挙げることができる。コッコミクサ sp. KJ株(KJデンソー)は、2013年6月4日付で独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター 特許生物寄託センター(NITE-IPOD)(千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-22254として寄託され、2015年6月2日付でプタベスト条約の規定下で受託番号FERM BP-22254として国際寄託に移管されている。一方、コッコミクサ sp. MBIC11204株(N1)は、2006年1月18日付で独立行政法人産業技術総合研究所特許生物寄託センター(IPOD)(現在の独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター 特許生物寄託センター(NITE-IPOD) 千葉県木更津市かずさ鎌足2-5-8 120号室)に、受託番号FERM BP-10485として国際寄託されている。コッコミクサ sp. MBIC11204株(N1)は、独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター(NBRC) NBRCカルチャーコレクションにも、2016年6月14日付でNBRC番号 NBRC 112354として寄託されている。
2. Active ingredient of anti-herpes virus agent The anti-herpes virus agent of the present invention contains a substance derived from a single-cell algae as an active ingredient. As long as the anti-herpes virus activity is observed, the unicellular algae (Trebouxia algae, Ephemeroptera, Cyanobacteria, Euglena algae, etc.) are not particularly limited. As preferred unicellular algae, Coccomyxa microalgae (specific examples are Coccomixa sp. KJ strain), Chlorella microalgae (specific examples are Chlorella vulgaris), Nannochloropsis microalgae ( Specific examples include Nannochloropsis oculata), Arthrospira microalgae (a specific example is Arthrospira platensis (spirulina)) and Euglena microalgae (a specific example is Euglena gracilis). Among these, microalgae of the genus Kokkomikusa are particularly preferred. The microalgae of the genus Kokkomikusa are not particularly limited, but preferred examples include Kokkomikusa sp. Strain KJ or a mutant thereof, or Kokkomikusa sp. MBIC11204 strain or a mutant thereof. Co., Ltd. sp. KJ shares (KJ Denso) was established on June 4, 2013 by the National Institute of Technology and Evaluation, National Institute of Technology and Evaluation Biotechnology Center Patent Organism Depositary Center (NITE-IPOD) (2-5 Kazusa Kamasa, Kisarazu-shi, Chiba) No. 8120) and deposited under accession number FERM BP-22254 on 2 June 2015 under the provisions of the Putavest Treaty on June 2, 2015. On the other hand, Kokkomixa sp. MBIC11204 strain (N1) was acquired by the Patent Organism Depositary Center (IPOD) of the National Institute of Advanced Industrial Science and Technology (IPOD) on January 18, 2006. Deposit center (NITE-IPOD) has been deposited internationally under the accession number FERM BP-10485 at Room 2-5-8 Kazusa-Kamashita, Kisarazu-shi, Chiba. Strain MBIC11204 (N1) has been deposited with the National Institute of Technology and Evaluation Biotechnology Center (NBRC) NBRC Culture Collection on June 14, 2016 as NBRC No. NBRC 112354.
 コッコミクサ sp. KJ株の変異株及びコッコミクサ sp. MBIC11204株の変異株は、紫外線、X線、γ線などの照射、変異原処理、重ビーム照射、遺伝子操作(外来遺伝子の導入、遺伝子破壊、ゲノム編集による遺伝子改変等)等によって得ることができる。抗ヘルペスウイルス活性を示すモノガラクトシルジアシルグリセロールを産生する変異株が得られる限りにおいて、変異株の取得方法、特性等は特に限定されない。 Mutants of the strain K. sp. KJ and the strains of strain S. cocoa M. sp. MBIC11204 can be irradiated with ultraviolet rays, X-rays, γ-rays, etc. Editing, etc.). As long as a mutant producing monogalactosyldiacylglycerol exhibiting anti-herpesvirus activity can be obtained, the method for obtaining the mutant, the characteristics, and the like are not particularly limited.
 コッコミクサ属微細藻類の培養方法は特に限定されない。コッコミクサ属微細藻類を培養するための培地としては、微細藻類の培養に通常使用されているものでよく、例えば、各種栄養塩、微量金属塩、ビタミン等を含む公知の淡水産微細藻類用の培地、海産微細藻類用の培地のいずれも使用可能である。培地としては、例えば、AF6培地が挙げられる。AF6培地の組成(100mlあたり)は以下のとおりである。
 NaNO3  14mg
 NH4NO3  2.2mg
 MgSO4・7H2O  3mg
 KH2PO4  1mg
 K2HPO4  0.5mg
 CaCl2・2H2O  1mg
 CaCO3  1mg
 Fe-citrate  0.2mg
 Citric acid  0.2mg
 Biotin  0.2μg
 Thiamine HCl  1μg
 Vitamin B6  0.1μg
 Vitamin B12  0.1μg
 Trace metals  0.5mL
 Distilled water  99.5mL
The method for cultivating Microalgae of the genus Kokkomushi is not particularly limited. The medium for cultivating the microalgae of the genus Kokkomikusa may be any of those commonly used for culturing microalgae.For example, various nutrients, trace metal salts, known media for freshwater microalgae containing vitamins, etc. Any medium for marine microalgae can be used. Examples of the medium include AF6 medium. The composition of AF6 medium (per 100 ml) is as follows.
NaNO 3 14mg
NH 4 NO 3 2.2mg
MgSO 4 · 7H 2 O 3mg
KH 2 PO 4 1mg
K 2 HPO 4 0.5mg
CaC l2 · 2H 2 O 1mg
CaCO 3 1mg
Fe-citrate 0.2mg
Citric acid 0.2mg
Biotin 0.2μg
Thiamine HCl 1μg
Vitamin B 6 0.1μg
Vitamin B 12 0.1μg
Trace metals 0.5mL
Distilled water 99.5mL
 栄養塩としては、例えば、NaNO3、KNO3、NH4Cl、尿素などの窒素源、K2HPO4、KH2PO4、グリセロリン酸ナトリウムなどのリン源が挙げられる。また、微量金属としては、鉄、マグネシウム、マンガン、カルシウム、亜鉛等が挙げられ、ビタミンとしてはビタミンB1、ビタミンB12等が挙げられる。 Examples of the nutrients include nitrogen sources such as NaNO 3 , KNO 3 , NH 4 Cl and urea, and phosphorus sources such as K 2 HPO 4 , KH 2 PO 4 and sodium glycerophosphate. The trace metals include iron, magnesium, manganese, calcium, zinc and the like, and the vitamins include vitamin B1, vitamin B12 and the like.
 培養方法は、通気条件で二酸化炭素の供給とともに攪拌を行えばよい。その際、蛍光灯で12時間の光照射、12時間の暗条件などの明暗サイクルをつけた光照射、又は、連続光照射して培養する。培養条件も、コッコミクサ属微細藻類の増殖に悪影響を与えない範囲内であれば特に制限はされないが、例えば培養液のpHは3~9とし、培養温度は10~35℃にする。 As for the culture method, stirring may be performed while supplying carbon dioxide under aeration conditions. At this time, the cells are cultured by irradiating with a fluorescent lamp for 12 hours, irradiating with light and dark cycles such as 12 hours of dark conditions, or irradiating with continuous light. The culture condition is not particularly limited as long as it does not adversely affect the growth of the microalgae of the genus Kompani. For example, the pH of the culture solution is 3 to 9, and the culture temperature is 10 to 35 ° C.
 尚、コッコミクサ sp. KJ株の培養方法に関しては、特開2015-15918、WO 2015/190116 A1、Satoh, A. et al., Characterization of the Lipid Accumulation in a New Microalgal Species, Pseudochoricystis ellipsoidea (Trebouxiophyceae) J. Jpn. Inst. Energy (2010) 89:909-913.等が参考になる。同様に、コッコミクサ sp. MBIC11204株の培養方法に関しては、WO 2006/109588等が参考になる。 As for the method of cultivating the strain Kkkomixa sp. KJ, JP-A-2015-15918, WO 2015/190116 A1, Satoh, AA et al. . Jpn. Inst. Energy (2010) 89: 909-913. Similarly, WO 2006/109588 and the like can be referred to for the method of culturing Kokkomixa sp. MBIC11204 strain.
 有効成分として、単細胞藻類(特に好ましくはコッコミクサ属に属する微細藻類)のモノガラクトシルジアシルグリセロール含有抽出物(第1態様)、或いは藻体又はその乾燥粉末(第2態様)が用いられる。以下、各態様について説明する。尚、通常は、モノガラクトシルジアシルグリセロール含有抽出物、或いは藻体又はその乾燥粉末のいずれかが有効成分となるが、これら両者を有効成分として用いることを妨げるものではない。 As the active ingredient, a monogalactosyldiacylglycerol-containing extract of a single-cell algae (particularly preferably a microalga belonging to the genus Kokkomikusa) (first embodiment), or an alga body or a dry powder thereof (second embodiment) is used. Hereinafter, each embodiment will be described. Usually, either the monogalactosyl diacylglycerol-containing extract, the alga body or its dry powder is the active ingredient, but this does not preclude the use of both as the active ingredient.
(1)モノガラクトシルジアシルグリセロール含有抽出物
 本発明の一態様では、有効成分として、「単細胞藻類(特に好ましくはコッコミクサ属に属する微細藻類)のモノガラクトシルジアシルグリセロール含有抽出物」を用いる。抽出方法は、モノガラクトシルジアシルグリセロールを含有する抽出物が得られる限り、特に限定されない。抽出方法として例えばエタノール抽出を採用することができる。好ましくは、エタノール抽出後に精製し、モノガラクトシルジアシルグリセロールの含有量を高めたものを「単細胞藻類(特に好ましくはコッコミクサ属に属する微細藻類)のモノガラクトシルジアシルグリセロール含有抽出物」として用いる。精製方法の例として、シリカゲル、アルミナ等の充填剤を用いたカラムクロマトグラフィー、ゲル濾過クロマトグラフィー、濃縮等を例示することができる。
(1) Monogalactosyldiacylglycerol-containing extract In one embodiment of the present invention, a monogalactosyldiacylglycerol-containing extract of a single-cell algae (particularly preferably, a microalga belonging to the genus Kokkomikusa) is used as an active ingredient. The extraction method is not particularly limited as long as an extract containing monogalactosyldiacylglycerol can be obtained. For example, ethanol extraction can be adopted as the extraction method. Preferably, a product obtained by purifying after ethanol extraction and increasing the content of monogalactosyldiacylglycerol is used as "monogalactosyldiacylglycerol-containing extract of unicellular algae (particularly preferably microalgae belonging to the genus Kokkomikusa)". Examples of the purification method include column chromatography using a filler such as silica gel and alumina, gel filtration chromatography, and concentration.
 抽出に先立ち、回収した藻体を乾燥処理及び又は破砕処理に供してもよい。言い換えれば、乾燥した藻体、乾燥且つ破砕された藻体(典型的には乾燥粉末)、又は破砕された藻体を調製し、これを用いて抽出操作を行うことにしてもよい。単細胞藻類が予め加工処理されたもの(例えば、乾燥した藻体、その粉末/粉体、或いは錠剤(賦形剤等が含まれていても良い)等)を入手し、抽出操作に供することにしてもよい。例えば、クロレラ・ブルガリス、ナンノクロロプシス・オキュラータ、アルスロスピラ・プラテンシス(スピルリナ)、ユーグレナ・グラシリス等についてはその加工品が市販されている。 先 Prior to extraction, the collected algal cells may be subjected to a drying treatment and / or a crushing treatment. In other words, a dried alga body, a dried and crushed alga body (typically, a dry powder), or a crushed alga body may be prepared, and an extraction operation may be performed using the prepared alga body. A single-cell algae that has been processed in advance (for example, a dried alga body, its powder / powder, or a tablet (which may contain an excipient, etc.)) is obtained and subjected to an extraction operation. You may. For example, processed products of Chlorella vulgaris, Nannochloropsis oculata, Arthrospira platensis (spirulina), Euglena gracilis and the like are commercially available.
 有効成分中のモノガラクトシルジアシルグリセロールの含有量は、抽出物が抗ヘルペスウイルス活性を示す限り特に限定されず、例えば70%(w/v)~99%(w/v)、好ましくは80%(w/v)~99%(w/v)、更に好ましくは90%(w/v)~99%(w/v)より一層好ましくは95%(w/v)~99%(w/v)(具体例として96%(w/v)、97%(w/v)、98%(w/v))である。原則、モノガラクトシルジアシルグリセロールの含有量が高い程、強い抗ヘルペスウイルス活性を期待できる。「モノガラクトシルジアシルグリセロール」とは、グリセロ糖脂質の一つであり、植物の葉緑体チラコイド膜の構成成分として知られる。モノガラクトシルジアシルグリセロールはガラクトースがグリセロールにβ結合した骨格を有する。 The content of monogalactosyldiacylglycerol in the active ingredient is not particularly limited as long as the extract shows anti-herpesvirus activity, and is, for example, 70% (w / v) to 99% (w / v), preferably 80% (w / v). w / v) to 99% (w / v), more preferably 90% (w / v) to 99% (w / v), even more preferably 95% (w / v) to 99% (w / v). (Specific examples are 96% (w / v), 97% (w / v), and 98% (w / v)). In principle, the higher the content of monogalactosyldiacylglycerol, the higher the anti-herpesvirus activity can be expected. “Monogalactosyldiacylglycerol” is one of glyceroglycolipids and is known as a component of the chloroplast thylakoid membrane of plants. Monogalactosyldiacylglycerol has a skeleton in which galactose is β-linked to glycerol.
 好ましくは、本発明の抗ヘルペスウイルス剤ではモノガラクトシルジアシルグリセロールが主成分となる。本発明の抗ヘルペスウイルス剤が含有し得るモノガラクトシルジアシルグリセロールの例を挙げると、(1)構成脂肪酸がC16:3とC18:3のモノガラクトシルジアシルグリセロール、(2)構成脂肪酸がC16:2とC18:3のモノガラクトシルジアシルグリセロール、(3)構成脂肪酸がC18:3とC18:3のモノガラクトシルジアシルグリセロール、(4)構成脂肪酸がC16:2とC18:2のモノガラクトシルジアシルグリセロール、(5)構成脂肪酸がC18:3とC18:2のモノガラクトシルジアシルグリセロール及び(6)構成脂肪酸がC16:1とC18:2のモノガラクトシルジアシルグリセロールである。これらのモノガラクトシルジアシルグリセロールは、抗ヘルペスウイルス剤を示すコッコミクサ属微細藻類抽出物が含有するものとして同定された(詳細は後述の実施例の欄に示した「8.MGDG調製物中の成分の同定2」)。後述の実施例の欄に示した「7.MGDG調製物中の成分の同定1」の解析結果も考慮すれば、上記の(1)の構成脂肪酸C18:3は好ましくはC18:3(n-3)であり、上記(3)の構成脂肪酸C18:3の少なくとも片方は好ましくはC18:3(n-3)であり、上記(4)の構成脂肪酸C18:2は好ましくはC18:2(n-6)であり、上記(5)の構成脂肪酸C18:3は好ましくはC18:3(n-3)、同C18:2は好ましくはC18:2(n-6)である。特定のモノガラクトシルジアシルグリセロールを単独で含有することを除外するものではないが、通常、本発明の抗ヘルペスウイルス剤には、構造の異なる2種類以上のモノガラクトシルジアシルグリセロールが含有され、その場合の組合せ、含有比率などは特に限定されない。本発明の抗ヘルペスウイルス剤は、好ましくは上記(1)~(6)の中の二つ以上、更に好ましくは上記(1)~(6)の中の三つ以上、更に更に好ましくは上記(1)~(6)の中の四つ以上、一層好ましくは上記(1)~(6)の中の五つ以上、より一層好ましくは上記(1)~(6)の全て、を含有する。後述の実施例に示す通り、(5)のモノガラクトシルジアシルグリセロール(MGDG5)には特に高い活性が認められた。そこで、特に好ましい態様の抗ヘルペスウイルス剤には、(5)のモノガラクトシルジアシルグリセロールが単独又は(1)、(2)~(4)及び(6)の中の一つ以上との組合せで含有されることになる。 Preferably, the anti-herpesvirus agent of the present invention contains monogalactosyldiacylglycerol as a main component. Examples of the monogalactosyldiacylglycerol that the anti-herpesvirus agent of the present invention can contain include (1) constituent fatty acids C16: 3 and C18: 3 monogalactosyldiacylglycerol, and (2) constituent fatty acids C16: 2. C18: 3 monogalactosyldiacylglycerol, (3) constituent fatty acids are C18: 3 and C18: 3 monogalactosyldiacylglycerol, (4) constituent fatty acids are C16: 2 and C18: 2 monogalactosyldiacylglycerol, (5) The constituent fatty acids are C18: 3 and C18: 2 monogalactosyldiacylglycerol, and (6) the constituent fatty acids are C16: 1 and C18: 2 monogalactosyldiacylglycerol. These monogalactosyldiacylglycerols were identified as containing an extract of the genus Kokkomikusa, which is an anti-herpesvirus agent (for details, see “8. Identification 2 "). In consideration of the analysis results of “7. Identification of components in MGDG preparation 1” shown in the Examples section below, the constituent fatty acids C18: 3 of (1) above are preferably C18: 3 (n- 3), at least one of the constituent fatty acids C18: 3 of the above (3) is preferably C18: 3 (n-3), and the constituent fatty acids C18: 2 of the above (4) are preferably C18: 2 (n -6), and the constituent fatty acid C18: 3 of the above (5) is preferably C18: 3 (n-3), and the C18: 2 is preferably C18: 2 (n-6). Although it does not preclude the inclusion of a specific monogalactosyldiacylglycerol alone, usually, the anti-herpesvirus agent of the present invention contains two or more monogalactosyldiacylglycerols having different structures. The combination, content ratio, and the like are not particularly limited. The anti-herpes virus agent of the present invention is preferably two or more of the above (1) to (6), more preferably three or more of the above (1) to (6), still more preferably the above ( It contains four or more of the above (1) to (6), more preferably five or more of the above (1) to (6), and still more preferably all of the above (1) to (6). As shown in Examples below, monogalactosyldiacylglycerol (MGDG5) of (5) showed particularly high activity. Therefore, the anti-herpesvirus agent of a particularly preferred embodiment contains the monogalactosyldiacylglycerol (5) alone or in combination with one or more of (1), (2) to (4) and (6). Will be done.
 抗ヘルペスウイルス活性を示すコッコミクサ属微細藻類抽出物の主要な含有成分として同定されたモノガラクトシルジアシルグリセロールはそれ自体に抗ヘルペスウイルス活性を期待できる。そこで本発明の一態様では、上記(1)~(6)からなる群より選択される、一以上のモノガラクトシルジアシルグリセロールが有効成分の抗ヘルペスウイルス剤が提供される。2種類以上のモノガラクトシルジアシルグリセロールを有効成分とする場合の組合せ、含有比率等は特に限定されない。この態様においても、好ましくは上記(1)~(6)の中の二つ以上、更に好ましくは上記(1)~(6)の中の三つ以上、更に更に好ましくは上記(1)~(6)の中の四つ以上、一層好ましくは上記(1)~(6)の中の五つ以上、より一層好ましくは上記(1)~(6)の全て、を含有する。上記の通り、(5)のモノガラクトシルジアシルグリセロール(MGDG5)には特に高い活性が認められた。そこで、特に好ましい態様では、(5)のモノガラクトシルジアシルグリセロールが有効成分の少なくとも一つとなる。 (4) Monogalactosyldiacylglycerol, which has been identified as a major component of the extract of Microalgae belonging to the genus Aspergillus, exhibiting anti-herpesvirus activity, can be expected to have anti-herpesvirus activity itself. Thus, according to one aspect of the present invention, there is provided an anti-herpesvirus agent comprising one or more monogalactosyldiacylglycerols as an active ingredient selected from the group consisting of the above (1) to (6). When two or more types of monogalactosyldiacylglycerols are used as the active ingredient, the combination, content ratio, and the like are not particularly limited. Also in this embodiment, preferably two or more of the above (1) to (6), more preferably three or more of the above (1) to (6), further more preferably the above (1) to (6) It contains four or more of the above (6), more preferably five or more of the above (1) to (6), and still more preferably all of the above (1) to (6). As described above, monogalactosyldiacylglycerol (MGDG5) of (5) showed particularly high activity. Therefore, in a particularly preferred embodiment, the monogalactosyldiacylglycerol (5) is at least one of the active ingredients.
 ここで、各種脂肪酸(脂肪酸の例を以下に示す)を構成脂肪酸として含むモノガラクトシルジアシルグリセロールが存在する。本発明の教示を考慮すれば、公知のモノガラクトシルジアシルグリセロールを含め、モノガラクトシルジアシルグリセロールが一般に抗ヘルペスウイルス活性を発揮し得ることを合理的に期待できる。
<脂肪酸の例>
 C12:0, C13:0, C14:0, C14:1, C14:2, C15:0, C15:1, C16:0, C16:1, C16:4, C17:0, C17:1, C18:0, C18:1, C18:4, C19:0, C19:1, C20:0, C20:1, C20:2, C20:3, C20:4, C20:5, C22:0, C22:5, C24:0
Here, there is monogalactosyldiacylglycerol containing various fatty acids (fatty acids are shown below) as constituent fatty acids. In view of the teachings of the present invention, it can be reasonably expected that monogalactosyldiacylglycerols, including known monogalactosyldiacylglycerols, will generally be able to exert anti-herpesvirus activity.
<Examples of fatty acids>
C12: 0, C13: 0, C14: 0, C14: 1, C14: 2, C15: 0, C15: 1, C16: 0, C16: 1, C16: 4, C17: 0, C17: 1, C18: 0, C18: 1, C18: 4, C19: 0, C19: 1, C20: 0, C20: 1, C20: 2, C20: 3, C20: 4, C20: 5, C22: 0, C22: 5, C24: 0
(2)藻体又はその乾燥粉末
 この態様では、藻体からの抽出物ではなく、藻体又はその乾燥粉末を有効成分として用いる。乾燥粉末は、回収した藻体を乾燥処理と破砕(粉砕)処理に供することによって調製することができる。乾燥処理としては例えば、ドラムドライ、スプレードライ、凍結乾燥等を採用することができる。破砕処理には、ビーズ式破砕装置、ホモジナイザー、フレンチプレス、ミキサー/ブレンダー、微粉砕機等を利用することができる。乾燥処理と破砕処理の順序は問わない。また、乾燥及び破砕の機能を備えた装置を利用し、乾燥処理と破砕処理を同時に行うことにしてもよい。
(2) Algae or its dry powder In this embodiment, an alga or a dry powder thereof is used as an active ingredient instead of an extract from the alga. The dry powder can be prepared by subjecting the collected algal cells to a drying treatment and a crushing (crushing) treatment. As the drying treatment, for example, drum drying, spray drying, freeze drying and the like can be employed. For the crushing treatment, a bead crusher, a homogenizer, a French press, a mixer / blender, a fine crusher, or the like can be used. The order of the drying treatment and the crushing treatment does not matter. Alternatively, a drying and crushing process may be performed simultaneously using an apparatus having drying and crushing functions.
 乾燥粉末の粒子径は特に限定されない。例えば、平均粒子径が0.2μm~2mm、好ましくは0.4μm~400μmの乾燥粉末にする。 粒子 The particle size of the dry powder is not particularly limited. For example, a dry powder having an average particle size of 0.2 μm to 2 mm, preferably 0.4 μm to 400 μm.
3.チミジンの併用
 本発明の一態様では上記有効成分(コッコミクサ属に属する微細藻類のモノガラクトシルジアシルグリセロール含有抽出物、藻体、藻体の乾燥粉末)にチミジンが併用される。言い換えれば、この態様の抗ヘルペスウイルス剤は、コッコミクサ属に属する微細藻類のモノガラクトシルジアシルグリセロール含有抽出物、藻体又は藻体の乾燥粉末とチミジンを有効成分とする。チミジンを併用することにより相乗効果が発揮され、抗ヘルペスウイルス活性の高い(即ち、ヘルペスウイルス感染症に対する治療効果/予防効果が増強された)抗ヘルペスウイルス剤となる。チミジン(CAS番号 50-89-5)はDNAヌクレオシドの一つであり、デオキシリボースがピリミジン塩基のチミンに接続した構造を有する。
3. Combination of Thymidine In one embodiment of the present invention, thymidine is used in combination with the above-mentioned active ingredient (monogalactosyldiacylglycerol-containing extract of microalga belonging to the genus Kokkomikusa, alga body, and dry powder of alga body). In other words, the anti-herpesvirus agent of this embodiment contains, as active ingredients, a monogalactosyldiacylglycerol-containing extract of a microalga belonging to the genus Kokkomixa, an alga body or a dry powder of an alga body, and thymidine. By using thymidine in combination, a synergistic effect is exerted, and an anti-herpes virus agent having high anti-herpes virus activity (ie, enhanced therapeutic / prophylactic effect against herpes virus infection) is obtained. Thymidine (CAS No. 50-89-5) is one of DNA nucleosides and has a structure in which deoxyribose is connected to a pyrimidine base, thymine.
 併用するチミジンの量は特に限定されないが、上記有効成分としてコッコミクサ属に属する微細藻類のモノガラクトシルジアシルグリセロール含有抽出物を使用する場合には、当該有効成分とチミジンの量が重量比で、例えば1:1~1:500、好ましくは1:10~1:200となるようにする。一方、上記有効成分としてコッコミクサ属に属する微細藻類の藻体又はその乾燥粉末を使用する場合には、当該有効成分とチミジンの量が重量比で(但し、藻体の場合は乾燥重量とする)、例えば100:1~1:10、好ましくは20:1~1:1となるようにする。 The amount of thymidine used in combination is not particularly limited.However, when using a monogalactosyldiacylglycerol-containing extract of microalgae belonging to the genus Kokkomikusa as the active ingredient, the amount of the active ingredient and thymidine is in a weight ratio, for example, 1 : 1 to 1: 500, preferably 1:10 to 1: 200. On the other hand, when an alga body of a microalga belonging to the genus Kokkomikusa or a dry powder thereof is used as the active ingredient, the amount of the active ingredient and thymidine is in a weight ratio (however, in the case of an alga body, the dry weight is used). For example, 100: 1 to 1:10, preferably 20: 1 to 1: 1.
 典型的には、上記有効成分とチミジンを混合した配合剤として、この態様の抗ヘルペスウイルス剤が提供されることになる。但し、上記有効成分を含有する第1構成要素とチミジンを含有する第2構成要素とからなるキットの形態でこの態様の抗ヘルペスウイルス剤を提供することもできる。この場合、第1構成要素と第2構成要素は同時に使用されることになる。ここでの同時は、厳密な同時性を要求するものではなく、適用対象において第1構成要素の有効成分(コッコミクサ属に属する微細藻類のモノガラクトシルジアシルグリセロール含有抽出物、藻体、藻体の乾燥粉末)と第2構成要素の有効成分(チミジン)が共存する状態が形成され、チミジンを併用することによる相乗効果が発揮される限りにおいて、「同時」の条件を満たす。例えば、本発明の抗ヘルペスウイルス剤を用いて医薬を構成した場合には、治療又は予防の対象(典型的にはヒト)に対して、例えば、両要素を混合した後に投与したり、片方の投与後、速やかに他方を投与したりすればよい。また、チミジンを併用することによる効果が得られる限りにおいて、片方の投与後、所定の時間差で他方を投与することにしてもよい。この場合、時間差を可及的に短く設定することが好ましく、例えば片方の投与後1時間以内(好ましくは30分以内)に他方を投与する。 Typically, the anti-herpes virus agent of this embodiment will be provided as a combination preparation obtained by mixing the above-mentioned active ingredient and thymidine. However, the anti-herpes virus agent of this embodiment can be provided in the form of a kit comprising the first component containing the active ingredient and the second component containing thymidine. In this case, the first component and the second component are used simultaneously. Simultaneous here does not require strict synchronism, and the subject of application is the active ingredient of the first component (monogalactosyldiacylglycerol-containing extract of microalga belonging to the genus Kokkomikusa, alga, drying of alga) The “simultaneous” condition is satisfied as long as a state in which the powder) and the active ingredient (thymidine) of the second component coexist is formed, and the synergistic effect of the combined use of thymidine is exhibited. For example, when a medicament is constituted by using the anti-herpesvirus agent of the present invention, for example, it is administered to a subject to be treated or prevented (typically a human) after mixing both components, After administration, the other may be administered immediately. In addition, as long as the effect of the combined use of thymidine can be obtained, the administration of one may be followed by administration of the other with a predetermined time difference. In this case, it is preferable to set the time difference as short as possible. For example, the other is administered within one hour (preferably within 30 minutes) after administration of one.
4.抗ヘルペスウイルス剤の用途・使用方法
 本発明の抗ヘルペスウイルス剤は、典型的には、それを含む組成物として、ヘルペスウイルスの感染対策に用いることができる。ここでの組成物の例は医薬、食品、餌である。
4. Use and usage of anti-herpes virus agent The anti-herpes virus agent of the present invention can be typically used as a composition containing the same for anti-herpes virus infection control. Examples of compositions here are pharmaceuticals, foods, feeds.
 後述の実施例に裏付けられるように、好ましくは、HSV-1による感染症(口唇ヘルペス、ヘルペス口内炎、角膜ヘルペス、単純ヘルペス脳炎等)又はHSV-2による感染症(陰部(性器)ヘルペス、新生児ヘルペス、脊髄炎等)に対する医薬等に、本発明の抗ヘルペスウイルス剤の利用が図られる。 As evidenced by the examples described below, preferably, infection by HSV-1 (herpes labialis, herpes stomatitis, corneal herpes, herpes simplex encephalitis, etc.) or infection by HSV-2 (genital (genital) herpes, neonatal herpes) , Myelitis, etc.), the anti-herpesvirus agent of the present invention is used.
 本発明の医薬はヘルペスウイルス感染症に対して治療的効果又は予防的効果(これら二つの効果をまとめて「医薬効果」と呼ぶ)を発揮し得る。ここでの医薬効果には、(1)ヘルペスウイルス感染症の発症の阻止、抑制又は遅延、(2)ヘルペルウイルス感染症に特徴的な症状又は随伴症状の緩和(軽症化)、(3)ヘルペルウイルス感染症に特徴的な症状又は随伴症状の悪化の阻止、抑制又は遅延、等が含まれる。尚、治療的効果と予防的効果は一部において重複する概念であることから、明確に区別して捉えることは困難な場合があり、またそうすることの実益は少ない。 医 薬 The medicament of the present invention can exert a therapeutic effect or a preventive effect on herpes virus infection (these two effects are collectively referred to as “pharmaceutical effect”). Here, the medicinal effects include (1) prevention, suppression or delay of the onset of herpes virus infection, (2) alleviation of symptoms or accompanying symptoms characteristic of herpes virus infection (mildness), (3) It includes prevention, suppression or delay of deterioration of symptoms or accompanying symptoms characteristic of herpervirus infection, and the like. It should be noted that since the therapeutic effect and the preventive effect are partially overlapping concepts, it may be difficult to distinguish them clearly and the benefits of doing so are small.
 医薬の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含有させることができる。賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等を用いることができる。 Pharmaceutical formulation can be carried out according to a conventional method. When formulated, other pharmaceutically acceptable components (eg, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiological Saline, etc.). As an excipient, lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used. As a disintegrant, starch, carboxymethyl cellulose, calcium carbonate and the like can be used. Phosphates, citrates, acetates and the like can be used as buffers. As the emulsifier, gum arabic, sodium alginate, tragacanth and the like can be used. As a suspending agent, glycerin monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate, and the like can be used. Benzyl alcohol, chlorobutanol, sorbitol and the like can be used as a soothing agent. As a stabilizer, propylene glycol, ascorbic acid, or the like can be used. As a preservative, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methyl paraben and the like can be used. As the preservative, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
 製剤化する場合の剤形も特に限定されない。剤形の例は錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、注射剤、外用剤(軟膏剤、クリーム剤、ローション剤、液剤、ゲル剤、パップ剤、プラスター剤、テープ剤、エアゾール剤等)、及び座剤である。医薬はその剤形に応じて経口投与又は非経口投与(患部への局所注入、静脈内、動脈内、皮下、皮内、筋肉内、又は腹腔内注射、経皮、経鼻、経粘膜など)によって対象に適用される。また、全身的な投与と局所的な投与も対象により適応される。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる。 剤 The dosage form in the case of formulating is not particularly limited. Examples of dosage forms include tablets, powders, fine granules, granules, capsules, syrups, injections, and external preparations (ointments, creams, lotions, solutions, gels, cataplasms, plasters, tapes) , Aerosols, etc.) and suppositories. Depending on the dosage form, the drug is administered orally or parenterally (local injection into the affected area, intravenous, intraarterial, subcutaneous, intradermal, intramuscular or intraperitoneal injection, transdermal, transnasal, transmucosal, etc.) Applied to the subject. Systemic administration and local administration are also adapted to the subject. These administration routes are not mutually exclusive, and arbitrarily selected two or more can be used in combination.
 本発明の医薬には、期待される効果を得るために必要な量(即ち治療又は予防上有効量)の有効成分が含有される。本発明の医薬中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.1重量%~約99重量%の範囲内で設定する。 医 薬 The medicament of the present invention contains an active ingredient in an amount necessary for obtaining the expected effect (ie, a therapeutically or prophylactically effective amount). The amount of the active ingredient in the medicament of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set, for example, in the range of about 0.1% by weight to about 99% by weight to achieve a desired dose.
 本発明の医薬の投与量は、期待される効果が得られるように設定される。治療又は予防上有効な投与量の設定においては一般に症状、患者の年齢、性別、及び体重などが考慮される。当業者であればこれらの事項を考慮して適当な投与量を設定することが可能である。投与量の例を示すと、成人(体重約60kg)を対象として一日当たりの有効成分量が1 mg~20 mg、好ましくは2 mg~10 mgとなるよう投与量を設定することができる。投与スケジュールとしては例えば一日一回~数回、二日に一回、或いは三日に一回などを採用できる。投与スケジュールの作成においては、患者の状態や有効成分の効果持続時間などを考慮することができる。 投 与 The dosage of the medicament of the present invention is set so as to obtain the expected effect. In setting a therapeutically or prophylactically effective dose, symptoms, the age, sex, and weight of the patient are generally considered. Those skilled in the art can determine an appropriate dose in consideration of these matters. As an example of the dosage, the dosage can be set so that the daily amount of the active ingredient is 1 mg to 20 mg, preferably 2 mg to 10 mg for an adult (body weight: about 60 kg). The administration schedule may be, for example, once to several times a day, once every two days, or once every three days. In preparing the administration schedule, the condition of the patient, the duration of the effect of the active ingredient, and the like can be considered.
 以上の記述から明らかな通り本願は、ヘルペスウイルス感染症に罹患した対象又は罹患するおそれのある対象に対して、本発明の抗ヘルペスウイルス剤を含む医薬を、治療又は予防上有効量投与することを特徴とする、ヘルペスウイルス感染症を治療又は予防する方法も提供する。治療又は予防の対象は典型的にはヒトであるが、ヒト以外の哺乳動物(例えばサル、ウシ、ブタ、ウマ、ヤギ、ヒツジ、イヌ、ネコ、ウサギ、等)、鳥類(ニワトリ、ウズラ、七面鳥、ガチョウ、アヒル、ダチョウ、カモ、インコ、文鳥等)等に適用することにしてもよい。 As is apparent from the above description, the present application is to administer a therapeutic or prophylactically effective amount of a medicament containing the anti-herpes virus agent of the present invention to a subject suffering from or possibly suffering from herpes virus infection. Also provided is a method for treating or preventing a herpes virus infection characterized by the following. The target of treatment or prevention is typically a human, but a mammal other than a human (eg, monkey, cow, pig, horse, goat, sheep, dog, cat, rabbit, etc.), bird (chicken, quail, turkey) , Geese, ducks, ostriches, ducks, parakeets, birds, etc.).
 上記の通り、本発明の抗ヘルペスウイルス剤の利用形態の一つとして、本発明の抗ヘルペスウイルス剤を含む食品又は餌が挙げられる。本発明の食品の例として一般食品(穀類、野菜、食肉、各種加工食品、菓子・デザート類、牛乳、清涼飲料水、果汁飲料、珈琲飲料、野菜汁飲料、アルコール飲料等)、栄養補助食品(サプリメント、栄養ドリンク等)、食品添加物、愛玩動物用食品、愛玩動物用栄養補助食品を挙げることができる。栄養補助食品又は食品添加物の場合、粉末、顆粒末、タブレット、ペースト、液体等の形状で提供することができる。食品組成物の形態で提供することによって、本発明の有効成分を日常的に摂取したり、継続的に摂取したりすることが容易となる。 As described above, one of the utilization forms of the anti-herpes virus agent of the present invention is a food or feed containing the anti-herpes virus agent of the present invention. Examples of the food of the present invention include general foods (cereals, vegetables, meat, various processed foods, confectionery and desserts, milk, soft drinks, fruit juice drinks, coffee drinks, vegetable juice drinks, alcoholic drinks, etc.), nutritional supplements ( Supplements, nutritional drinks, etc.), food additives, pet food for pets, and dietary supplements for pets. In the case of dietary supplements or food additives, they can be provided in the form of powders, granules, tablets, pastes, liquids and the like. By providing in the form of a food composition, it becomes easy to take the active ingredient of the present invention on a daily basis or continuously.
 本発明の餌の例は、飼料(例えば家畜、家禽などの餌)、ペットフードである。 Examples of the feed of the present invention are feed (eg, feed for livestock and poultry) and pet food.
 本発明の食品又は餌には、治療的又は予防的効果が期待できる量の有効成分が含有されることが好ましい。添加量は、それが使用される対象となる者の状態、年齢、性別、体重などを考慮して定めることができる。 食品 The food or feed of the present invention preferably contains an active ingredient in an amount that can be expected to have a therapeutic or preventive effect. The amount to be added can be determined in consideration of the condition, age, sex, weight, and the like of the person to whom it is used.
1.コッコミクサ属微細藻類の乾燥粉末(藻体)と抽出物の調製、及び抽出物の精製
1-1.コッコミクサ sp. KJ株
 既報の方法に準じてコッコミクサ sp. KJ株を培養した。具体的には、AF6培地にコッコミクサ sp. KJ株を植藻した後、2%CO2(v/v)を通気し、光(300μmol/m2/s)を照射しながら室温(25℃)で48時間培養した。培養液から遠心分離により藻体を回収した。回収した藻体をドラムドライヤで乾燥させるとともに微粉砕機で粉砕し、粉末状とした(藻体の乾燥粉末)。次に、100gの乾燥粉末に対して1 lのエタノールを添加して分散させ、暗所で3日間静置した。静置後、ろ過して、1次ろ液と残渣とに分離した。この残渣に上記と同様に1 lのエタノールを添加して分散させ、3日間静置した後、再度ろ過して2次ろ液と残渣とに分離した。このろ過操作をもう一度繰り返し、3次ろ液と残渣とを得た。
1. Preparation of dry powder (algae) and extract of Kokkomikusa microalgae, and purification of extract 1-1. Kokkomikusa sp. KJ strain The Kokkomikusa sp. KJ strain was cultured according to the method described previously. Specifically, after inoculating the A. spp. KJ strain in the AF6 medium, 2% CO 2 (v / v) was aerated and room temperature (25 ° C.) while irradiating with light (300 μmol / m 2 / s). For 48 hours. Algae were collected from the culture solution by centrifugation. The collected algal cells were dried with a drum dryer and pulverized with a fine pulverizer to obtain a powder (dry powder of algal cells). Next, 1 l of ethanol was added to 100 g of the dry powder for dispersion, and the mixture was allowed to stand in a dark place for 3 days. After standing, the mixture was filtered to separate into a primary filtrate and a residue. To this residue, 1 l of ethanol was added and dispersed in the same manner as described above, allowed to stand for 3 days, and then filtered again to separate a secondary filtrate and a residue. This filtration operation was repeated once to obtain a tertiary filtrate and a residue.
 1次ろ液、2次ろ液、及び3次ろ液を混合し、エバポレーターでエタノールを留去し、減圧乾燥してエタノール抽出物DEとした。次に、DEをDIAION HP-20(三菱化学(株)製、3.5 x 57 cm)カラムクロマトグラフィーに供した。H2O、50%エタノール (EtOH)、EtOH及びアセトンで順次溶出し、各溶出フラクションを室温で減圧乾燥した(DE1, 400.9 mg; DE2, 310.3 mg; DE3, 2.25 g; DE4, 4.86 g)。アセトンフラクション(DE4)をシリカゲルカラム(3 x 42 cm)クロマトグラフィーに供した。ヘキサン、ヘキサン-酢酸エチル (AcOEt) (1:1)、AcOHt、AcOHt-アセトン (1:1)、アセトン及びメタノール (MeOH)で順次溶出し、各溶出フラクション、DE4A (55.4 mg)、DE4B (2.0 g)、DE4C (89.0 mg)、DE4D (1.01 g)、DE4E (95.5 mg)及びDE4F (177.1 mg)を得た。次に、DE4Dを、AcOEt-アセトンを溶媒系としたシリカゲルカラム(1.5 x 35 cm)クロマトグラフィーに供し、3フラクション、DE4D1 (49.9 mg)、DE4D2 (705.1 mg)及びDE4D3 (16.2 mg)を得た。続いて、DE4D2をシリカゲルカラム(1.5 x 35 cm)クロマトグラフィーに供し、CHCl3-MeOH-H20 (10:1:0.1)で溶出することでDE4D2A (15.6 mg)とDE4D2B (686.5 mg)を得た。この内、DE4D2Bを、クロロホルム (CHCl3)-MeOH (3:1)を溶媒系としたLH-20カラム(シグマアルドリッチ社製)クロマトグラフィーに供し、DE4D2Bl (11.6 mg)とDE4D2B2 (652.3 mg)を得た。DE4D2B2をシリカゲルカラム(2 x 50 cm)クロマトグラフィーに供し、CHCl3、CHCl3-MeOH (20:1)及びCHCl3-MeOH-H20(10:3:1)で溶出することで4フラクション、DE4D2B2A (4.8 mg)、DE4D2B2B (3.5 mg)、DE4D2B2C (25.1 mg)及びDE4D2B2D (620.5 mg)を得た。最後に、CHCl3-MeOH-酢酸 (AcOH)-H20 (80:9:12:2)で展開した分取液体クロマトグラフィー(PLC)でDE4D2B2Dを精製し、MGDG調製物 (578.9 mg)とした。 The primary filtrate, the secondary filtrate, and the tertiary filtrate were mixed, ethanol was distilled off using an evaporator, and the residue was dried under reduced pressure to obtain an ethanol extract DE. Next, the DE was subjected to DIAION HP-20 (manufactured by Mitsubishi Chemical Corporation, 3.5 × 57 cm) column chromatography. Elution was performed with H 2 O, 50% ethanol (EtOH), EtOH and acetone in that order, and each eluted fraction was dried at room temperature under reduced pressure (DE1, 400.9 mg; DE2, 310.3 mg; DE3, 2.25 g; DE4, 4.86 g). The acetone fraction (DE4) was subjected to silica gel column (3 × 42 cm) chromatography. Hexane, hexane-ethyl acetate (AcOEt) (1: 1), AcOHt, AcOHt-acetone (1: 1), acetone and methanol (MeOH) were eluted sequentially.Eluted fractions, DE4A (55.4 mg), DE4B (2.0 g), DE4C (89.0 mg), DE4D (1.01 g), DE4E (95.5 mg) and DE4F (177.1 mg). Next, DE4D was subjected to chromatography on a silica gel column (1.5 x 35 cm) using AcOEt-acetone as a solvent system to obtain 3 fractions, DE4D1 (49.9 mg), DE4D2 (705.1 mg), and DE4D3 (16.2 mg). . Subsequently, subjected DE4D2 silica gel column (1.5 x 35 cm) chromatography, CHCl 3 -MeOH-H 2 0 DE4D2A by eluting with (10: 1: 0.1) and (15.6 mg) DE4D2B a (686.5 mg) Obtained. Among these, DE4D2B was subjected to LH-20 column (Sigma-Aldrich) chromatography using chloroform (CHCl 3 ) -MeOH (3: 1) as a solvent system to obtain DE4D2Bl (11.6 mg) and DE4D2B2 (652.3 mg). Obtained. Subjected DE4D2B2 silica gel column (2 x 50 cm) chromatography, CHCl 3, CHCl 3 -MeOH ( 20: 1) and CHCl 3 -MeOH-H 2 0 ( 10: 3: 1) 4 fraction by eluting with , DE4D2B2A (4.8 mg), DE4D2B2B (3.5 mg), DE4D2B2C (25.1 mg) and DE4D2B2D (620.5 mg). Finally, CHCl 3 -MeOH-acetic acid (AcOH) -H 2 0 (80 : 9: 12: 2) by preparative liquid chromatography and developed with (PLC) was purified DE4D2B2D, MGDG preparations and (578.9 mg) did.
1-2.コッコミクサ sp. MBIC11204株
 1-1.の方法・操作に準じて、コッコミクサ sp. MBIC11204株から藻体の乾燥粉末及びMGDG調製物を得た。
1-2. Kokkomikusa sp. MBIC11204 strain 1-1. According to the method and operation described in the above, a dry powder of algal cells and an MGDG preparation were obtained from Kokkomixa sp. MBIC11204 strain.
2.HSV-2感染(性器ヘルペス)及びHSV-1感染(皮膚ヘルペス)実験(コッコミクサ sp. MBIC11204株のMGDG調製物及び藻体の効果)
 コッコミクサ sp. MBIC11204株のMGDG調製物及び藻体(乾燥粉末)について、HSV-2感染症及びHSV-1感染症に対する有効性を評価した。チミジンとの併用時の有効性の変化も検討した。
2. Experiments on HSV-2 infection (genital herpes) and HSV-1 infection (skin herpes) (Effects of MGDG preparation of Algae sp. MBIC11204 strain and algal cells)
The efficacy of the MGDG preparation and the alga body (dry powder) of Kokkomixa sp. MBIC11204 strain against HSV-2 infection and HSV-1 infection was evaluated. Changes in efficacy when used in combination with thymidine were also investigated.
<方法>
 ウイルス株はHSV-2 (UW268株)とHSV-1 (HAY株)を用いた。
(A)HSV-2感染による性器ヘルペスの治療実験
(1)BALB/cマウス(6週齢、メス)にmedroxyprogesterone 17-acetate (3 mg/mouse) を、ウイルス接種6日前および1日前に皮下注射する。
(2)以下の試験区を設け、ウイルス接種3日前から7日後までの間、1日2回(9時と18時)サンプルを経口投与する。
 試験区#1:コントロール(蒸留水)
 試験区#2:ACV(アシクロビル) (1 mg/day)
 試験区#3:MGDG調製物 (0.1 mg/day)
 試験区#4:MGDG調製物 (1 mg/day)
 試験区#5:チミジン (1 mg/day)
 試験区#6:チミジン (5 mg/day)
 試験区#7:チミジン (20 mg/day)
 試験区#8:MGDG調製物 (0.1 mg/day)+チミジン (1 mg/day)
 試験区#9:MGDG調製物 (0.1 mg/day)+チミジン (5 mg/day)
 試験区#10:MGDG調製物(0.1 mg/day)+チミジン (20 mg/day)
 試験区#11:MGDG調製物 (1 mg/day)+チミジン (1 mg/day)
 試験区#12:MGDG調製物 (1 mg/day)+チミジン (5 mg/day)
 試験区#13:MGDG調製物 (1 mg/day)+チミジン (20 mg/day)
 試験区#14:藻体 (20 mg/day)
 試験区#15:藻体 (20 mg/day)+チミジン (1 mg/day)
 試験区#16:藻体 (20 mg/day)+チミジン (5 mg/day)
 試験区#17:藻体 (20 mg/day)+チミジン (20 mg/day)
(3)HSV-2 (1 x 103 PFU/20 μl/mouse) を局所接種する。
(4)3日後に、冷PBS(100 μl)で局所洗浄し、そのウイルス量をプラークアッセイによって測定する。
(5)14日間にわたって、ヘルペス症状の発症程度(lesion score)と死亡例を記録する。
<Method>
The virus strain used HSV-2 (UW268 strain) and HSV-1 (HAY strain).
(A) Experimental treatment of genital herpes with HSV-2 infection (1) BALB / c mice (6 weeks old, female) were injected subcutaneously with medroxyprogesterone 17-acetate (3 mg / mouse) 6 days before and 1 day before virus inoculation I do.
(2) Set up the following test plots, and orally administer the sample twice a day (9:00 and 18:00) from 3 days before virus inoculation to 7 days after virus inoculation.
Test plot # 1: control (distilled water)
Test plot # 2: ACV (acyclovir) (1 mg / day)
Test plot # 3: MGDG preparation (0.1 mg / day)
Test plot # 4: MGDG preparation (1 mg / day)
Test plot # 5: thymidine (1 mg / day)
Test plot # 6: thymidine (5 mg / day)
Test plot # 7: thymidine (20 mg / day)
Test plot # 8: MGDG preparation (0.1 mg / day) + thymidine (1 mg / day)
Test plot # 9: MGDG preparation (0.1 mg / day) + thymidine (5 mg / day)
Test plot # 10: MGDG preparation (0.1 mg / day) + thymidine (20 mg / day)
Test plot # 11: MGDG preparation (1 mg / day) + thymidine (1 mg / day)
Test plot # 12: MGDG preparation (1 mg / day) + thymidine (5 mg / day)
Test plot # 13: MGDG preparation (1 mg / day) + thymidine (20 mg / day)
Test plot # 14: Algae (20 mg / day)
Test plot # 15: Algae (20 mg / day) + thymidine (1 mg / day)
Test plot # 16: Algae (20 mg / day) + thymidine (5 mg / day)
Test plot # 17: Algae (20 mg / day) + thymidine (20 mg / day)
(3) Local inoculation of HSV-2 (1 x 10 3 PFU / 20 μl / mouse).
(4) Three days later, local washing is performed with cold PBS (100 μl), and the amount of the virus is measured by a plaque assay.
(5) Record the onset of herpes symptoms (lesion score) and deaths over 14 days.
(B)HSV-1感染による皮膚ヘルペスの治療実験
(1)麻酔下でBALB/cマウス(6週齢、メス)の左側腹を除毛する(バリカン+除毛クリーム)。
(2)以下の試験区を設け、塗布群(#19~#22)ではウイルス接種1日前から14日後までの間、経口投与群(#23~#27)ではウイルス接種3日前から7日後までの間、1日2回(9時と18時)サンプルを投与する。(塗布群では、除毛部分に綿棒で塗布するが、その時の1回の塗布量はエマルジョンとして約50~60 mg/mouseである)。
 試験区#19:コントロール(PBS)(塗布)
 試験区#20:5% ACV(塗布)
 試験区#21:5% MGDG調製物(塗布)
 試験区#22:5% チミジン(塗布)
 試験区#23:5% MGDG調製物+5% チミジン(塗布)
 試験区#24:コントロール(蒸留水)
 試験区#25:ACV (1 mg/day)
 試験区#26:MGDG調製物 (1 mg/day)
 試験区#27:チミジン (20 mg/day)
 試験区#28:チミジン (20 mg/day)+MGDG調製物 (1 mg/day)
(3)HSV-1 (2 x 105 PFU/50μl/mouse) をマイクロシリンジで除毛部分に注射する。
(4)14日間にわたってヘルペス症状(帯状に出現する)の発症程度(lesion score)と死亡例を記録する。
(B) Treatment experiment of cutaneous herpes by HSV-1 infection (1) Under anesthesia, the left flank of a BALB / c mouse (6 weeks old, female) is dehaired (hair clipper + hair removal cream).
(2) The following test plots were set up, from 1 day to 14 days after virus inoculation in the application group (# 19 to # 22) and from 3 days to 7 days after virus inoculation in the oral group (# 23 to # 27) During the period, the sample is administered twice a day (9:00 and 18:00). (In the application group, the hair is removed with a cotton swab, and the amount of one application is about 50 to 60 mg / mouse as an emulsion).
Test plot # 19: control (PBS) (application)
Test plot # 20: 5% ACV (application)
Test plot # 21: 5% MGDG preparation (application)
Test plot # 22: 5% thymidine (applied)
Test plot # 23: 5% MGDG preparation + 5% thymidine (applied)
Test plot # 24: control (distilled water)
Test plot # 25: ACV (1 mg / day)
Test plot # 26: MGDG preparation (1 mg / day)
Test plot # 27: thymidine (20 mg / day)
Test plot # 28: thymidine (20 mg / day) + MGDG preparation (1 mg / day)
(3) Inject HSV-1 (2 × 10 5 PFU / 50 μl / mouse) into the depilated area with a microsyringe.
(4) Record the onset degree (lesion score) of herpes symptoms (appearing in a band) and death cases over 14 days.
<結果・考察>
(A)HSV-2性器ヘルペスモデル
(1)発症経過及び生存率(図1~5)
 単独投与のMGDG調製物は0.1 mg及び1 mg/day投与群(#3、#4)で発症を顕著に抑制し(図1)、死亡例もなかった(図5)。チミジンは用量依存的に発症及び死亡率を抑制し、特に20 mg/day投与群(#7)では顕著な治療効果がみられた(図1、5)。
<Results and Discussion>
(A) HSV-2 genital herpes model (1) Onset and survival rate (Figs. 1 to 5)
The MGDG preparation administered alone significantly suppressed the onset in the 0.1 mg and 1 mg / day administration groups (# 3, # 4) (FIG. 1), and there were no deaths (FIG. 5). Thymidine dose-dependently suppressed the onset and mortality, and a remarkable therapeutic effect was observed particularly in the 20 mg / day administration group (# 7) (FIGS. 1 and 5).
 MGDG調製物 (0.1 mg, 1 mg/day)とチミジンとを併用すると、それぞれの単独投与時に比べて、発症は完全に抑制され(図2、3)、死亡例もみられなかった(図5)。 When MGDG preparation (0.1 mg, 1 mg / day) was used in combination with thymidine, the onset was completely suppressed as compared to the case of each administration alone (FIGS. 2 and 3), and no deaths were observed (FIG. 5). .
 乾燥粉末20 mg/dayの単独投与時(#14)には、有意の発症抑制はみられず(図4)、5匹中2匹の死亡例もあった(図5)。しかし、チミジンと併用した場合(#15-17)、発症及び死亡は顕著に抑制された(図4、5)。 At the time of single administration of 時 dry powder 20 mg / day (# 14), no significant suppression of onset was observed (FIG. 4), and two out of five animals died (FIG. 5). However, when used in combination with thymidine (# 15-17), onset and death were significantly suppressed (FIGS. 4, 5).
(2)ウイルス増殖抑制効果(図6)
 全般的に、単独投与でも併用投与でも高い効果がみられ、特に併用(#8~#13、#15~#17)の効果は顕著であった。
(2) Virus growth inhibitory effect (Fig. 6)
In general, a high effect was observed in both the single administration and the combined administration, and the effect of the combination (# 8 to # 13, # 15 to # 17) was particularly remarkable.
 単独投与のMGDG調製物は、ウイルス接種量が低いほど強いウイルス増殖抑制効果を示し、0.1 mg/dayでも十分な効果が得られた。これに対してチミジン(1 mg, 5 mg)の場合には、ウイルス接種量の違いによる効果の差はみられず、20 mg/day投与群で顕著な抑制効果がみられた。MGDG調製物とチミジンの併用では、低接種量の場合に顕著な併用効果が現れ、MGDG調製物 0.1 mg + チミジン 1 mg/dayの少量の投与時にも著効が認められた。 (4) The MGDG preparation administered alone showed a stronger virus growth inhibitory effect as the virus inoculation amount was lower, and a sufficient effect was obtained even at 0.1 mg / day. In contrast, in the case of thymidine (1 mg, 5 mg), there was no difference in the effect due to the difference in the amount of virus inoculated, and a marked suppression effect was observed in the 20 mg / day administration group. When the MGDG preparation and thymidine were used in combination, a remarkable combination effect was observed at a low inoculation dose, and a remarkable effect was observed even when a small amount of the MGDG preparation {0.1 mg} + {thymidine} 1 mg / day was administered.
 乾燥粉末は単独投与の場合、MGDG調製物よりも効果は低いものの、ウイルス増殖を抑制した。また、ウイルス接種量を少なくすると、チミジンとの併用時に著しい増殖抑制効果がみられた。 Dry powder, when administered alone, was less effective than the MGDG preparation, but inhibited virus growth. When the amount of virus inoculated was reduced, a remarkable growth inhibitory effect was observed when used in combination with thymidine.
(B)HSV-1皮膚ヘルペスモデル
 局所投与(塗布)(図7、9)の場合、MGDG調製物(#21)、チミジン(#22)の単独投与時に比べて、両者の併用時(#23)の方が、発症経過や生存率の点で優れていた。
(B) HSV-1 cutaneous herpes model In the case of topical administration (application) (FIGS. 7 and 9), the MGDG preparation (# 21) and thymidine (# 22) were used together (# 23 ) Was superior in terms of the onset of the disease and the survival rate.
 経口投与(図8、9)の場合、コントロール(#24)に比べて、MGDG調製物(#26)は有意に発症を抑制したが、チミジン(#27)には有意の発症抑制効果がみられなかった。両者の併用時(#28)には、ACV(#25)に匹敵する発症抑制効果がみられ、死亡例もなかった。 In the case of oral administration (FIGS. 8 and 9), MGDG preparation (# 26) significantly suppressed the onset, but thymidine (# 27) showed a significant onset-suppressing effect as compared with control (# 24). I couldn't. When both were used together (# 28), an onset suppression effect comparable to ACV (# 25) was observed, and there were no deaths.
3.MGDG調製物の抗HSV-2活性及びチミジンとの相互作用(In vitro実験)
 コッコミクサ sp. MBIC11204株のMGDG調製物について、チミジンとの併用時の抗HSV-2活性増強効果を検討した。
3. Anti-HSV-2 activity of MGDG preparation and interaction with thymidine (In vitro experiment)
The anti-HSV-2 activity enhancing effect of the MGDG11204 MGC11204 sp. Strain combined with thymidine was examined.
<方法>
(1)Vero細胞を48ウェルプレートに培養する。
(2)翌日、HSV-2(UW268株)を0.1 PFU/cellで感染させる(室温、1時間)。
(3)PBSで2回洗浄後、MGDG調製物(0~20μg/ml)とチミジン(0~2μg/ml)をそれぞれ添加した培地を加え、培養する。
(4)24時間後にプレートを回収し、凍結融解処理(-80℃で凍結させた後、室温に戻す)を3回行う。
(5)35mm培養皿に単層状に培養したVero細胞を用いてプラークアッセイを行う。
(6)それぞれのプラーク数からIC50値を算出し、さらに下記の計算式に基づいてIsobologramを作成する。
<Method>
(1) Culture Vero cells in a 48-well plate.
(2) On the next day, HSV-2 (UW268 strain) is infected with 0.1 PFU / cell (room temperature, 1 hour).
(3) After washing twice with PBS, a medium to which MGDG preparation (0 to 20 μg / ml) and thymidine (0 to 2 μg / ml) are added, respectively, and culture is performed.
(4) After 24 hours, collect the plate, and perform freeze-thaw treatment (frozen at -80 ° C and then returned to room temperature) three times.
(5) A plaque assay is performed using Vero cells cultured in a monolayer on a 35 mm culture dish.
(6) to calculate IC 50 values from each of the number of plaques, further creates an Isobologram based on the following calculation equation.
[図10に示すIsobologramの計算式]
 x軸:チミジンの濃度/MGDG調製物非存在下でのチミジンのIC50 (1.2μg/ml)
 y軸:一定濃度のチミジン存在下でのMGDG調製物のIC50/チミジン非存在下でのMGDG調製物のIC50(12 μg/ml)
[Calculation formula of Isobologram shown in FIG. 10]
x-axis: concentration of thymidine / IC 50 of thymidine in the absence of MGDG preparation (1.2 μg / ml)
y-axis: IC 50 (12 μg / ml ) of MGDG preparation in IC 50 / thymidine absence of MGDG preparation in thymidine presence of a fixed concentration
[図11に示すIsobologramの計算式]
 x軸:MGDG調製物の濃度/MGDG調製物非存在下でのチミジンのIC50 (12μg/ml)
 y軸:一定濃度のMGDG調製物存在下でのチミジンのIC50/MGDG調製物非存在下でのMGDG調製物のIC50(1.2μg/ml)
[Calculation formula of Isobologram shown in FIG. 11]
x-axis: concentration of MGDG preparation / IC 50 of thymidine in the absence of MGDG preparation (12 μg / ml)
y-axis: IC thymidine in the presence of MGDG preparations constant concentration 50 / MGDG preparation IC 50 of MGDG preparation in the absence (1.2 ug / ml)
<結果・考察>
 各IC50値は2回の測定の平均値から算出した。MGDG調製物のIC50値は12μg/mlであり、チミジンのIC50は1.2μg/mlであった(表1)。
Figure JPOXMLDOC01-appb-T000001
<Results and Discussion>
Each IC 50 value was calculated from the average of two measurements. The IC 50 values of MGDG preparation is 12μg / ml, IC 50 of thymidine was 1.2 ug / ml (Table 1).
Figure JPOXMLDOC01-appb-T000001
 両者の併用による活性の変動を調べたところ、チミジンのHSV-2増殖阻害作用がMGDG調製物によって増強され(図10)、また、MGDG調製物の抗HSV-2作用がチミジンによって増強され(図11)、両物質間の相乗効果が確認された。 Examination of the change in activity caused by the combination of the two showed that the thromidine HSV-2 growth inhibitory effect was enhanced by the MGDG preparation (FIG. 10), and the anti-HSV-2 effect of the MGDG preparation was enhanced by thymidine (FIG. 11) A synergistic effect between the two substances was confirmed.
4.HSV-2感染(性器ヘルペス)実験(コッコミクサ sp. KJ株の効果)
 コッコミクサ sp. KJ株について、コッコミクサ sp. MBIC11204株と同様にHSV-2感染症に対して有効であることを検証した。また、チミジン(0.5 mg/day)との併用時の有効性の変化を検討した。
4. HSV-2 infection (genital herpes) experiment (Effect of Kokkomikusa sp. KJ strain)
It was verified that the strain KJ was similar to HSV-2 infectious disease, as was the case with S. spp. MBIC11204. In addition, changes in efficacy when combined with thymidine (0.5 mg / day) were examined.
<方法>
(1)BALB/cマウス(6週齢、メス)にmedroxyprogesterone 17-acetate (3 mg/mouse) を、ウイルス接種6日前及び1日前に皮下注射する。
(2)以下の試験区を設け、ウイルス接種3日前から7日後までの間、1日2回(9時と18時)サンプルを経口投与する。
 試験区#1:コントロール(蒸留水)
 試験区#2:ACV (1 mg/day) 
 試験区#3:藻体(乾燥粉末)(5 mg/day) 
 試験区#4:藻体(乾燥粉末)(5 mg/day)+チミジン(0.5 mg/day)
 試験区#5:藻体(乾燥粉末)(10 mg/day)
(3)HSV-2(UW268株) (1 x 103 PFU/20μl/mouse) を局所接種する。
(4)3日後に、冷PBS(100μl)で局所洗浄し、そのウイルス量をプラークアッセイによって測定する。
(5)14日間にわたって、ヘルペス症状の発症程度(lesion score)と死亡例を記録する。
<Method>
(1) BALB / c mice (6 weeks old, female) are injected subcutaneously with medroxyprogesterone 17-acetate (3 mg / mouse) 6 days before and 1 day before virus inoculation.
(2) Set up the following test plots and orally administer the sample twice a day (9:00 and 18:00) from 3 days before virus inoculation to 7 days after inoculation.
Test plot # 1: control (distilled water)
Test plot # 2: ACV (1 mg / day)
Test plot # 3: Algae (dry powder) (5 mg / day)
Test plot # 4: Algae (dry powder) (5 mg / day) + thymidine (0.5 mg / day)
Test plot # 5: Algae (dry powder) (10 mg / day)
(3) Local inoculation of HSV-2 (UW268 strain) (1 × 10 3 PFU / 20 μl / mouse).
(4) Three days later, local washing is performed with cold PBS (100 μl), and the amount of the virus is measured by a plaque assay.
(5) Record the onset of herpes symptoms (lesion score) and deaths over 14 days.
<結果・考察>
 KJ株藻体の単独投与は、低用量(5 mg又は10 mg/day)であるものの発症(図12)と死亡を抑制し、ウイルス量(図13)も有意に低下させた。両用量間には著しい差はみられなかった。一方、KJ株藻体にチミジンを併用すると、単独投与時に比べてヘルペス治療効果が向上した。
<Results and Discussion>
Administration of the KJ strain alga alone alone suppressed onset (FIG. 12) and mortality at a low dose (5 mg or 10 mg / day), and also significantly reduced viral load (FIG. 13). There was no significant difference between the two doses. On the other hand, when thymidine was used in combination with the alga bodies of the KJ strain, the herpes treatment effect was improved as compared with the case of single administration.
5.クロレラ・ブルガリス、ナンノクロロプシス・オキュラータ、アルスロスピラ・プラテンシス(スピルリナ)及びユーグレナ・グラシリスのMGDGの調製
 クロレラ・ブルガリス、ナンノクロロプシス・オキュラータ、アルスロスピラ・プラテンシス(スピルリナ)及びユーグレナ・グラシリスからMGDGを抽出する。各藻類の培養は、各々に適した培地(例えば、クロレラ・ブルガリスであれば、図14に示すC培地、ナンノクロロプシス・オキュラータであれば、図14に示すESM培地、アルスロスピラ・プラテンシス(スピルリナ)であれば、図15に示すMA培地、ユーグレナ・グラシリスであれば、図15に示すHUT培地)を用い、常法で行えばよい(上記コッコミクサ sp. KJ株と同様の培養条件を採用してもよい)。培養液から遠心分離により回収した藻体をドラムドライヤで乾燥させるとともに微粉砕機で粉砕することにより、各藻体の乾燥粉末を得ることができる。乾燥粉末からコッコミクサ sp. KJ株の場合と同様の抽出操作によって、各藻類のMGDG調製物を得ることができる。但し、今回の検討では、各藻類の加工品(クロレラ・ブルガリスは「クロレラ・ブルガリス乾燥粉末」(株式会社葵製茶)、ナンノクロロプシス・オキュラータは「ナンノクロロプシス・オキュラータ凍結品」(マリンテック株式会社)、アルスロスピラ・プラテンシス(スピルリナ)は「スピルリナパウダー」(DICライフテック株式会社)、ユーグレナ・グラシリスは「いのちのユーグレナ極み」(シックスセンスラボ株式会社)とバイオザイム(ユーグレナ)を購入し、MGDGの抽出に供した(抽出操作はコッコミクサ sp. KJ株の場合と同様)。得られた各MGDG調製物を以下の検討に用いる。市販のホウレンソウ(Spinacia oleracea)からも、凍結乾燥後に微粉砕機で粉砕し、MGDGを抽出することによってMGDG調製物を得た。
5. Preparation of MGDG from Chlorella vulgaris, Nannochloropsis oculata, Arsulospira platensis (Spirulina) and Euglena gracilis Extract MGDG from Chlorella vulgaris, Nannochloropsis oculata, Arthrospira platensis (Spirulina) and Euglena gracilis I do. Cultivation of each algae is performed using a culture medium (for example, C medium shown in FIG. 14 for Chlorella vulgaris, ESM medium shown in FIG. 14 for Nannochloropsis oculata, Arthrospira platensis (spirulina). ), The MA medium shown in FIG. 15, and Euglena gracilis, the HUT medium shown in FIG. 15) may be used in the usual manner (using the same culture conditions as those of the above-mentioned strain of Kokkomixa sp. KJ). May be). Dried powder of each alga body can be obtained by drying the alga body collected from the culture solution by centrifugal separation with a drum dryer and pulverizing with a pulverizer. An MGDG preparation of each algae can be obtained from the dried powder by the same extraction operation as in the case of Kokkomixa sp. KJ. However, in this study, the processed products of each algae (Chlorella vulgaris "Chlorella vulgaris dried powder" (Aoi Seika Co., Ltd.), Nannochloropsis oculata "Nanochlorochloropsis oculata frozen" (Marin Tech Co., Ltd.), Arthrospira Platensis (Spirulina) purchased "Spirulina Powder" (DIC Lifetech Co., Ltd.), and Euglena Grasilis purchased "Euglena of Life" (Six Sense Lab Co., Ltd.) and Biozyme (Euglena). (The extraction procedure was the same as that for the strain Kkkomikusa sp. KJ.) The obtained MGDG preparations were used for the following examinations: Commercially available spinach (Spinacia oleracea) was also finely dried and freeze-dried. The MGDG preparation was obtained by crushing with a crusher and extracting MGDG.
6.口唇ヘルペスに対する効果
 MGDG調製物の口唇ヘルペスに対する効果を検証した。
<方法>
(1)ハンドクリーム(moina、デンソー製) 30gを準備する。
(2)オリーブ油((株)J-オイルミルズ社製)0.610gにコッコミクサ sp. KJ株MGDG調製物を0.165g加え、混練し溶解させる(MGDG溶解物)。
(3)(1)で用意したハンドクリームに対し、均一になるよう混錬しながらMGDG溶解物を少量ずつ加え、全てを加え終えたものを塗布用サンプルとする。
(4)口唇ヘルペス発症した患者(以下の2名の患者を被験者とした)の患部に対し、毎日(1~3回)適量を塗り込み、患部の様子を経時的に観察する。
 患者1:45歳女性;口唇ヘルペスの発症経験(複数回)あり。普段はビダラビンを有効成分とする市販薬アラセナS(佐藤製薬株式会社)を使用して治療し、治癒までに2~3週間を要する。
 患者2:25歳男性;口唇ヘルペスの発症経験(複数回)あり。普段は薬を使用せず(自然に治癒するのを待つ)、2~3週後には目立たない程度に回復する。
6. Effect on cold sores The effect of MGDG preparation on cold sores was examined.
<Method>
(1) Prepare 30 g of hand cream (moina, manufactured by Denso).
(2) 0.165 g of a preparation of Kokkomixa sp. KJ strain MGDG is added to 0.610 g of olive oil (manufactured by J-Oil Mills), kneaded and dissolved (MGDG dissolved).
(3) To the hand cream prepared in (1), the MGDG solution is added little by little while kneading so as to be uniform, and the whole is added to obtain a coating sample.
(4) Apply an appropriate amount daily (1 to 3 times) to the affected area of a patient who developed herpes labialis (the following two patients were the subjects), and observe the state of the affected area over time.
Patient 1: 45-year-old female; experienced herpes labialis (several times). Usually, treatment is carried out using a commercial drug Aracena S (Sato Pharmaceutical Co., Ltd.) containing vidarabine as an active ingredient, and it takes 2 to 3 weeks to cure.
Patient 2: 25-year-old man; experience with onset of cold sores (multiple times). He usually does not use the drug (waits for healing spontaneously) and recovers to an inconspicuous level after 2-3 weeks.
<結果・考察>
 観察結果を図16(患者1)と図17(患者2)に示す。患者1では塗布3日目には明らかな改善を認め、塗布5日目には完治に近い状態になった(図16)。また、患者2の場合、塗布2日目から治療効果が認められ、塗布8日目にはほぼ完治した。このように、口唇ヘルペスに対してMGDG調製物は優れた治療効果を発揮した。特筆すべきは、市販薬を凌駕するともいえる驚くべき治療効果が示されたこと(患者1)である。
<Results and Discussion>
The observation results are shown in FIG. 16 (patient 1) and FIG. 17 (patient 2). In Patient 1, a clear improvement was observed on the third day of application, and the patient was almost completely cured on the fifth day of application (FIG. 16). In addition, in the case of Patient 2, the therapeutic effect was recognized from the second day of application, and almost completely cured on the eighth day of application. Thus, the MGDG preparation exerted an excellent therapeutic effect on cold sores. What is remarkable is that a surprising therapeutic effect that can be said to surpass that of the over-the-counter drug was obtained (patient 1).
7.MGDG調製物中の成分の同定1
 HPLC分析により、コッコミクサ sp. KJ株のMGDG調製物には5種類のMGDG(MGDG1、MGDG2、MGDG3、MGDG4、MGDG5と呼称する)が含まれていると推定された。これらのMGDGの構造を明らかにすべく、ガスクロマトグラフィー(GC/FID)を利用して脂肪酸組成を分析した。分析にはBPX90カラム(長さ100m×内径0.25mm、膜厚0.25μm)を使用し、水素をキャリアガスとした。同定用標準試料にはFAME Standard(F.A.M.E. Mix, C4-C24, SUPELCO社製)とMGDG(MGDG plant, Avanti社製)を用いた。
7. Identification of components in MGDG preparation 1
From the HPLC analysis, it was presumed that the MGDG preparation of the strain Kokkomixa sp. KJ contained five kinds of MGDG (referred to as MGDG1, MGDG2, MGDG3, MGDG4 and MGDG5). In order to elucidate the structure of these MGDG, fatty acid composition was analyzed using gas chromatography (GC / FID). A BPX90 column (length 100 m × inner diameter 0.25 mm, film thickness 0.25 μm) was used for analysis, and hydrogen was used as a carrier gas. FAME Standard (FAME Mix, C4-C24, manufactured by SUPELCO) and MGDG (MGDG plant, manufactured by Avanti) were used as standard samples for identification.
 各サンプル(MGDG1、MGDG2、MGDG3、MGDG4、MGDG5)のクロマトグラムを図18~22に示す。ここで、C6:0については、一般的な脂質の脂肪酸組成は近接した炭素数(偶数)の脂肪酸も合わせて含まれていることが通常であるところ、今回の分析ではそれらがほとんど検出されなかったため、同ピークは脂肪酸ではない可能性が高いと考えられた。また、Unknown1とUnknown2は、これらのピークの保持時間に検出される脂肪酸は一般的な脂質では想定し難いため、脂肪酸以外の成分である可能性が高いと考えられた。一方、保持時間から、Unknown3及びUnknown4はそれぞれC16:2及びC18:2(n-6以外)と推定された。 ク ロ Chromatograms of each sample (MGDG1, MGDG2, MGDG3, MGDG4, MGDG5) are shown in FIGS. Here, as for C6: 0, although the fatty acid composition of general lipids usually includes fatty acids with close carbon numbers (even numbers), these are hardly detected in this analysis. Therefore, it was considered that the peak was probably not a fatty acid. In addition, in the case of Unknown1 and Unknown2, the fatty acids detected during the retention time of these peaks are hardly assumed to be common lipids, and thus it is considered that there is a high possibility that the fatty acids are components other than the fatty acids. On the other hand, from the retention time, Unknown3 and Unknown4 were estimated to be C16: 2 and C18: 2 (other than n-6), respectively.
 分析の結果を以下の表2、表3に示す。表2は、各サンプルの脂肪酸組成比を面積百分率法で示したものである。表3はC6:0と不明成分1、2(Unknown1, 2)を除外して算出した結果をまとめたものである。尚、MGDG3については、二つの成分の面積比が3:1と極端に偏っている。これは、脂肪酸残基の組み合わせが、(C18:2(n-6以外)とC18:2(n-6以外))と(C18:2(n-6以外)とC18:3 n3)である2種のMGDGがおよそ1:1の割合で混合していると解釈できる。
Figure JPOXMLDOC01-appb-T000002
「-」は不検出を表す。
Figure JPOXMLDOC01-appb-T000003
「-」は不検出を表す。
The results of the analysis are shown in Tables 2 and 3 below. Table 2 shows the fatty acid composition ratio of each sample by the area percentage method. Table 3 summarizes the calculation results excluding C6: 0 and unknown components 1 and 2 (Unknown 1 and 2). In MGDG3, the area ratio of the two components is extremely biased at 3: 1. This means that the combinations of fatty acid residues are (C18: 2 (other than n-6) and C18: 2 (other than n-6)) and (C18: 2 (other than n-6) and C18: 3 n3) It can be interpreted that the two types of MGDG are mixed at a ratio of about 1: 1.
Figure JPOXMLDOC01-appb-T000002
"-" Represents non-detection.
Figure JPOXMLDOC01-appb-T000003
"-" Represents non-detection.
 以上の通り、MGDG調製物には、(1)構成脂肪酸がC16:3とC18:3(n-3)のモノガラクトシルジアシルグリセロール(MGDG1)、(2)構成脂肪酸がC16:2とC18:2のモノガラクトシルジアシルグリセロール(MGDG2)、(3)構成脂肪酸がC18:2とC18:3(n-3)のモノガラクトシルジアシルグリセロール(MGDG3)、(4)構成脂肪酸がC18:2とC18:2のモノガラクトシルジアシルグリセロール(MGDG3)、(5)構成脂肪酸がC16:2とC18:2(n-6)のモノガラクトシルジアシルグリセロール(MGDG4)、及び(6)構成脂肪酸がC18:2(n-6)とC18:3(n-3)のモノガラクトシルジアシルグリセロール(MGDG5)が含有されていることが明らかとなった。 As described above, in the MGDG preparation, (1) the constituent fatty acids are C16: 3 and C18: 3 (n-3) monogalactosyldiacylglycerol (MGDG1), and (2) the constituent fatty acids are C16: 2 and C18: 2. Monogalactosyldiacylglycerol (MGDG2), (3) monogalactosyldiacylglycerol (MGDG3) whose constituent fatty acids are C18: 2 and C18: 3 (n-3), (4) fatty acids of C18: 2 and C18: 2 Monogalactosyldiacylglycerol (MGDG3), (5) monogalactosyldiacylglycerol (MGDG4) whose constituent fatty acids are C16: 2 and C18: 2 (n-6), and (6) constituent fatty acid is C18: 2 (n-6) And C18: 3 (n-3) monogalactosyldiacylglycerol (MGDG5).
8.MGDG調製物中の成分の同定2
 トリプル四重極LC/MSシステムを用い、コッコミクサ sp. KJ株MGDG調製物に含まれるMGDGの構造を更に詳細に調べた。
<解析条件>
 装置名:トリプル四重極LC/MSシステム
 LCカラム:YMC Triant C-18(長さ100mm×内径2.1mm、粒子径1.9μm)
 移動相:メタノール、アセトニトリル、水、酢酸アンモニウム
 イオン源:ESI
 測定モード:MS2 scan、Product ion scan
8. Identification of components in MGDG preparation 2
Using a triple quadrupole LC / MS system, the structure of MGDG contained in the preparation of Kokkomixa sp. KJ strain MGDG was examined in more detail.
<Analysis conditions>
Equipment name: Triple quadrupole LC / MS system LC column: YMC Triant C-18 (length 100 mm x inner diameter 2.1 mm, particle diameter 1.9 μm)
Mobile phase: methanol, acetonitrile, water, ammonium acetate Ion source: ESI
Measurement mode: MS2 scan, Product ion scan
<結果>
 分取液体クロマトグラフィー(PLC)で検出した5種のMGDGに加え(7.MGDG調製物中の成分の同定1の欄を参照))、トリプル四重極LC/MS解析により、新たに6個目のMGDGを検出した。これらのMGDG(6個のピーク)について、MS scanとProduct ion scanの結果から、各MGDG(ピーク1:MGDG1、ピーク2:MGDG2、ピーク3:MGDG3、ピーク4:MGDG4、ピーク5:MGDG5、ピーク6:MGDG6)を構成する2つの脂肪酸側鎖を同定することができた。各MGDGの脂肪酸側鎖を以下の表に示す。
Figure JPOXMLDOC01-appb-T000004
<Result>
In addition to the five types of MGDG detected by preparative liquid chromatography (PLC) (see 7. Identification of components in MGDG preparation 1)), triple new LCDG analysis by LC / MS analysis Eye MGDG was detected. For these MGDGs (6 peaks), from the results of MS scan and product ion scan, each MGDG (peak 1: MGDG1, peak 2: MGDG2, peak 3: MGDG3, peak 4: MGDG4, peak 5: MGDG5, peak 6: MGDG6) could be identified as two fatty acid side chains. The following table shows the fatty acid side chains of each MGDG.
Figure JPOXMLDOC01-appb-T000004
9.各MGDG画分の殺ウイルス活性
 MGDG調製物を構成する各MGDG(MGDG1~MGDG5)の殺ウイルス活性を比較した。
<方法>
(1)コッコミクサ sp. KJ株由来のMGDG調製物をHPLCに供し、各ピークを分取することで5種のMGDG精製物(MGDG1、MGDG2、MGDG3、MGDG4、MGDG5)を得た。また、分取前のMGDG調製物(MGDG1~MGDG5を含有する)をMix品として準備した。
(2)各ウイルス液(2×105 PFU/ml)に対し、終濃度50μg/mlとなるように各サンプルを混合し、37℃にて60分間静置した。使用したウイルス及び宿主細胞を表5に示す。
Figure JPOXMLDOC01-appb-T000005
(3)(2)の混合液をウシ胎児血清不含MEM培地で希釈後、プラークアッセイ用培地を重層し、37℃で2~3日間培養した。
(4)プラークの出現を確認後、ニュートラルレッド液で細胞を固定・染色し、顕微鏡下でプラーク数を測定した。サンプルを添加しなかった場合のウイルスの出現数を基準(100%)とし、各サンプルのウイルス残存率を算出した。ウイルス残存率から各サンプルの殺ウイルス性能を評価した。
9. Virucidal activity of each MGDG fraction The virucidal activity of each MGDG (MGDG1 to MGDG5) constituting the MGDG preparation was compared.
<Method>
(1) The MGDG preparation derived from Kokkomixa sp. KJ strain was subjected to HPLC, and each peak was collected to obtain five kinds of purified MGDG (MGDG1, MGDG2, MGDG3, MGDG4, MGDG5). In addition, MGDG preparations (containing MGDG1 to MGDG5) before fractionation were prepared as Mix products.
(2) Each sample was mixed with each virus solution (2 × 10 5 PFU / ml) to a final concentration of 50 μg / ml, and allowed to stand at 37 ° C. for 60 minutes. Table 5 shows the viruses and host cells used.
Figure JPOXMLDOC01-appb-T000005
(3) After diluting the mixed solution of (2) with a MEM medium containing no fetal bovine serum, a plaque assay medium was overlaid and cultured at 37 ° C. for 2 to 3 days.
(4) After confirming the appearance of plaque, the cells were fixed and stained with neutral red solution, and the number of plaques was measured under a microscope. Using the number of appearances of the virus when no sample was added as a reference (100%), the virus remaining rate of each sample was calculated. The virucidal performance of each sample was evaluated from the virus residual rate.
<結果・考察>
 標的のウイルスによって活性の違いはあるものの、MGDG調製物(Mix品)及びMGDG1~MGDG5の全てについて殺ウイルス(不活化)活性が認められた(図23)。インフルエンザウイルスと単純ヘルペスウイルス2型に対して、MGDG5はMGDG調製物(Mix品)と比較した有意な不活化効果を示した。エンベロープを持たないネコカリシウイルス及びポリオウイルスでは他のサンプルよりも有意に高い活性を示すものはなかった。以上の結果は、MGDG調製物及びそれを構成する各MGDGに殺ウイルス活性があることを裏付けるとともに、MGDG5がインフルエンザウイルスや単純ヘルペスウイルス2型等、エンベロープを持つウイルスに対して特に高い殺ウイルス活性を発揮することを示す。
<Results and Discussion>
Although the activity differs depending on the target virus, virus killing (inactivation) activity was observed for all of MGDG preparation (Mix product) and MGDG1 to MGDG5 (FIG. 23). MGDG5 showed a significant inactivation effect on influenza virus and herpes simplex virus type 2 as compared with MGDG preparation (Mix product). None of the feline caliciviruses and polioviruses without the envelope showed significantly higher activity than the other samples. The above results confirm that the MGDG preparation and each of the constituent MGDGs have virucidal activity, and that MGDG5 has particularly high virucidal activity against enveloped viruses such as influenza virus and herpes simplex virus type 2. To demonstrate.
10.各種MGDG調製物の成分比較
 コッコミクサ sp. KJ株MGDG調製物、クロレラ・ブルガリスMGDG調製物、ナンノクロロプシス・オキュラータMGDG調製物、アルスロスピラ・プラテンシス(スピルリナ)MGDG調製物、ユーグレナ・グラシリスMGDG調製物及びホウレンソウMGDG調製物を逆相HPLCで分析し、含有成分(MGDG)を比較した。
<HPLC分析条件>
 装置名:Alliance2695
 カラム:YMC-Actus Triart C18
 移動相:メタノール、水、アセトニトリル混合溶液
 検出波長:205nm
10. Composition comparison of various MGDG preparations Kokkomakusa sp. KJ strain MGDG preparation, Chlorella vulgaris MGDG preparation, Nannochloropsis oculata MGDG preparation, Arthrospira platensis (spirulina) MGDG preparation, Euglena glaciris MGDG preparation and Spinach MGDG preparations were analyzed by reverse phase HPLC and the components (MGDG) were compared.
<HPLC analysis conditions>
Equipment name: Alliance2695
Column: YMC-Actus Triart C18
Mobile phase: mixed solution of methanol, water, and acetonitrile Detection wavelength: 205 nm
 HPLCの測定結果(クロマトグラム)を図24及び図25に示す。クロマトグラムの縦軸は、各サンプルにおけるピーク最大値が1となるように規格化している。
 ・KJ株のMGDG調製物には、少なくとも5本のピークが検出された。一方、KJ株以外の各生物のMGDG調製物にも、KJ株のMGDG調製物と保持時間が一致するか、または非常に近いピークが少なくとも1本検出された。保持時間が一致するピークについてはKJ株由来のMGDGと同じ化学構造を有すると推定される。
 ・KJ株MGDG調製物由来の5本のピークにはHSV-2、IFV及びFCVに対する殺ウイルス活性が認められている(9.の実験、図23)。上記の通り、KJ株以外の各生物のMGDG調製物には、KJ株MGDG調製物由来の5本のピークに対応するピークが少なくとも1本認められるため、同様に殺ウイルス活性を有すると推察される。即ち、これらのMGDG調製物にもKJ株MGDG調製物と同様の効果を期待できる。尚、KJ株MGDG調製物の5番目のピークはHSV-2、IFVに対し、高い殺ウイルス活性を持つことがわかっている(図23)。
HPLC measurement results (chromatograms) are shown in FIGS. The vertical axis of the chromatogram is normalized so that the peak maximum value in each sample is 1.
-At least 5 peaks were detected in the MGJ preparation of the KJ strain. On the other hand, in the MGDG preparations of each organism other than the KJ strain, at least one peak whose retention time was the same as or very close to that of the MGJ preparation of the KJ strain was detected. It is presumed that the peak having the same retention time has the same chemical structure as MGDG derived from the KJ strain.
-Virucidal activity against HSV-2, IFV and FCV is observed in five peaks derived from the KJ strain MGDG preparation (Experiment 9; Fig. 23). As described above, since the MGDG preparation of each organism other than the KJ strain has at least one peak corresponding to the five peaks derived from the KJ strain MGDG preparation, it is presumed to have virusicidal activity as well. You. That is, these MGDG preparations can be expected to have the same effects as those of the KJ strain MGDG preparation. The fifth peak of the KDG strain MGDG preparation is known to have high virucidal activity against HSV-2 and IFV (FIG. 23).
 本発明の抗ヘルペスウイルス剤は単細胞藻類(好ましくは微細藻類)由来の物質を有効成分とするものであり、既存の抗ヘルペスウイルス剤とは異なる作用機序による抗ヘルペスウイルス活性を発揮し得る。従って、既存の抗ヘルペスウイルス剤との併用にも適し、新たな治療戦略を提供する。一方、本発明の抗ヘルペスウイルス剤には、その有効成分が単細胞藻類(好ましくは微細藻類)の藻体であるが故に高い安全性も期待できる。 The anti-herpes virus agent of the present invention contains a substance derived from a unicellular algae (preferably microalgae) as an active ingredient, and can exert anti-herpes virus activity by a different mechanism of action from existing anti-herpes virus agents. Therefore, it is also suitable for use in combination with existing anti-herpes virus agents, and provides a new therapeutic strategy. On the other hand, since the active ingredient of the anti-herpesvirus agent of the present invention is a single cell algae (preferably microalgae), high safety can be expected.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiment and the example of the above invention. Various modifications are included in the present invention without departing from the scope of the claims and within the scope of those skilled in the art. The contents of articles, published patent gazettes, and patent gazettes specified in this specification are all incorporated by reference.

Claims (18)

  1.  単細胞藻類由来物質を有効成分として含む抗ヘルペスウイルス剤。 (4) An anti-herpes virus agent containing a single-cell algae-derived substance as an active ingredient.
  2.  前記単細胞藻類がコッコミクサ属、クロレラ属、ナンノクロロプシス属、アルスロスピラ属又はミドリムシ属に属する微細藻類である、請求項1に記載の抗ヘルペスウイルス剤。 The anti-herpesvirus agent according to claim 1, wherein the unicellular algae is a microalga belonging to the genus Kokkomikusa, Chlorella, Nannochloropsis, Arthrospira or Euglena.
  3.  前記単細胞藻類がコッコミクサ属に属する微細藻類である、請求項1に記載の抗ヘルペスウイルス剤。 The anti-herpes virus agent according to claim 1, wherein the single-cell algae is a microalga belonging to the genus Kokkomikusa.
  4.  前記微細藻類がコッコミクサ sp. KJ株又はその変異株、或いはコッコミクサ sp. MBIC11204株又はその変異株である、請求項3に記載の抗ヘルペスウイルス剤。 4. The anti-herpes virus agent according to claim 3, wherein the microalgae is a Kokkomixa sp. Strain KJ or a mutant thereof, or a Kokkomixa sp. MBIC11204 strain or a mutant thereof.
  5.  前記有効成分が、前記単細胞藻類のモノガラクトシルジアシルグリセロール含有抽出物である、請求項1~4のいずれか一項に記載の抗ヘルペスウイルス剤。 The anti-herpes virus agent according to any one of claims 1 to 4, wherein the active ingredient is a monogalactosyldiacylglycerol-containing extract of the single-cell algae.
  6.  主成分がモノガラクトシルジアシルグリセロールである、請求項5に記載の抗ヘルペスウイルス剤。 The anti-herpes virus agent according to claim 5, wherein the main component is monogalactosyldiacylglycerol.
  7.  前記モノガラクトシルジアシルグリセロールが、以下の(1)~(6)からなる群より選択される、一以上のモノガラクトシルジアシルグリセロールである、請求項6に記載の抗ヘルペスウイルス剤:
     (1)構成脂肪酸がC16:3とC18:3のモノガラクトシルジアシルグリセロール;
     (2)構成脂肪酸がC16:2とC18:3のモノガラクトシルジアシルグリセロール;
     (3)構成脂肪酸がC18:3とC18:3のモノガラクトシルジアシルグリセロール;
     (4)構成脂肪酸がC16:2とC18:2のモノガラクトシルジアシルグリセロール;
     (5)構成脂肪酸がC18:3とC18:2のモノガラクトシルジアシルグリセロール;及び
     (6)構成脂肪酸がC16:1とC18:2のモノガラクトシルジアシルグリセロール。
    The anti-herpes virus agent according to claim 6, wherein the monogalactosyldiacylglycerol is one or more monogalactosyldiacylglycerols selected from the group consisting of the following (1) to (6):
    (1) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 3 and C18: 3;
    (2) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 2 and C18: 3;
    (3) monogalactosyldiacylglycerol whose constituent fatty acids are C18: 3 and C18: 3;
    (4) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 2 and C18: 2;
    (5) Monogalactosyldiacylglycerol whose constituent fatty acids are C18: 3 and C18: 2; and (6) Monogalactosyldiacylglycerol whose constituent fatty acids are C16: 1 and C18: 2.
  8.  前記有効成分が、前記単細胞藻類のエタノール抽出物をクロマトグラフィー精製し、モノガラクトシルジアシルグリセロールの含有量を高めたものである、請求項5~7のいずれか一項に記載の抗ヘルペスウイルス剤。 (8) The anti-herpes virus agent according to any one of (5) to (7), wherein the active ingredient is obtained by increasing the content of monogalactosyldiacylglycerol by chromatographic purification of the ethanol extract of the single-cell algae.
  9.  前記有効成分中のモノガラクトシルジアシルグリセロール含有量が70%(w/v)~99%(w/v)である、請求項5~8のいずれか一項に記載の抗ヘルペスウイルス剤。 The anti-herpes virus agent according to any one of claims 5 to 8, wherein the monogalactosyldiacylglycerol content in the active ingredient is 70% (w / v) to 99% (w / v).
  10.  前記有効成分が藻体である、請求項1~4のいずれか一項に記載の抗ヘルペスウイルス剤。 抗 The anti-herpes virus agent according to any one of claims 1 to 4, wherein the active ingredient is an algal body.
  11.  前記有効成分が藻体の乾燥粉末である、請求項1~4のいずれか一項に記載の抗ヘルペスウイルス剤。 (5) The anti-herpes virus agent according to any one of (1) to (4), wherein the active ingredient is a dry powder of algal cells.
  12.  以下の(1)~(6)からなる群より選択される、一以上のモノガラクトシルジアシルグリセロールが有効成分の抗ヘルペスウイルス剤:
     (1)構成脂肪酸がC16:3とC18:3のモノガラクトシルジアシルグリセロール;
     (2)構成脂肪酸がC16:2とC18:3のモノガラクトシルジアシルグリセロール;
     (3)構成脂肪酸がC18:3とC18:3のモノガラクトシルジアシルグリセロール;
     (4)構成脂肪酸がC16:2とC18:2のモノガラクトシルジアシルグリセロール;
     (5)構成脂肪酸がC18:3とC18:2のモノガラクトシルジアシルグリセロール;及び
     (6)構成脂肪酸がC16:1とC18:2のモノガラクトシルジアシルグリセロール。
    An anti-herpesvirus agent comprising one or more monogalactosyldiacylglycerols as an active ingredient selected from the group consisting of the following (1) to (6):
    (1) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 3 and C18: 3;
    (2) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 2 and C18: 3;
    (3) monogalactosyldiacylglycerol whose constituent fatty acids are C18: 3 and C18: 3;
    (4) monogalactosyldiacylglycerol whose constituent fatty acids are C16: 2 and C18: 2;
    (5) Monogalactosyldiacylglycerol whose constituent fatty acids are C18: 3 and C18: 2; and (6) Monogalactosyldiacylglycerol whose constituent fatty acids are C16: 1 and C18: 2.
  13.  チミジンが併用されることを特徴とする、請求項1~12のいずれか一項に記載の抗ヘルペスウイルス剤。 The anti-herpesvirus agent according to any one of claims 1 to 12, wherein thymidine is used in combination.
  14.  前記有効成分とチミジンを含有する配合剤である、請求項13に記載の抗ヘルペスウイルス剤。 14. The anti-herpes virus agent according to claim 13, which is a combination preparation containing the active ingredient and thymidine.
  15.  標的のヘルペスウイルスが単純ヘルペスウイルス1型又は単純ヘルペスウイルス2型である、請求項1~14のいずれか一項に記載の抗ヘルペスウイルス剤。 (15) The anti-herpes virus agent according to any one of (1) to (14), wherein the target herpes virus is herpes simplex virus type 1 or herpes simplex virus type 2.
  16.  請求項1~15のいずれか一項に記載の抗ヘルペスウイルス剤を含む組成物。 A composition comprising the anti-herpesvirus agent according to any one of claims 1 to 15.
  17.  ヘルペスウイルス感染症に対する医薬である、請求項16に記載の組成物。 17. The composition according to claim 16, which is a medicament for herpes virus infection.
  18.  食品又は餌である、請求項16に記載の組成物。 17. The composition according to claim 16, which is a food or a feed.
PCT/JP2019/029309 2018-07-31 2019-07-25 Anti-herpes virus agent WO2020026953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020533477A JPWO2020026953A1 (en) 2018-07-31 2019-07-25 Anti-herpesvirus agent
CN201980050286.5A CN112584850A (en) 2018-07-31 2019-07-25 Anti-herpes virus agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018143051 2018-07-31
JP2018-143051 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026953A1 true WO2020026953A1 (en) 2020-02-06

Family

ID=69231755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029309 WO2020026953A1 (en) 2018-07-31 2019-07-25 Anti-herpes virus agent

Country Status (3)

Country Link
JP (1) JPWO2020026953A1 (en)
CN (1) CN112584850A (en)
WO (1) WO2020026953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019730A (en) * 2018-07-31 2020-02-06 株式会社デンソー Anti-influenza agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449242A (en) * 1990-06-15 1992-02-18 Chiba Seifun Kk Antiherpes agent and antiherpes agent for animal
JP2001505908A (en) * 1996-12-09 2001-05-08 ウインストン ダンカン ケルヴィン Biological control methods
JP2005247757A (en) * 2004-03-04 2005-09-15 Nikken Sohonsha Corp Antiviral agent
JP2007126383A (en) * 2005-11-02 2007-05-24 Univ Of Tokushima Protective agent of gastrointestinal mucous membrane, expression promoter of caveolin gene, and antistress agent
JP2010529012A (en) * 2007-06-01 2010-08-26 コミッサリア ア レネルジ アトミック Use of compounds having monogalactosyldiacylglycerol synthetase inhibitory activity as herbicides or algicides, herbicidal compositions and algicidal compositions
JP2014027929A (en) * 2012-07-06 2014-02-13 Euglena Co Ltd Biological feed additive
WO2014192940A1 (en) * 2013-05-31 2014-12-04 味の素株式会社 Method for producing glucosylglycerol
JP2015015918A (en) * 2013-07-10 2015-01-29 株式会社デンソー Novel microalgae

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449242A (en) * 1990-06-15 1992-02-18 Chiba Seifun Kk Antiherpes agent and antiherpes agent for animal
JP2001505908A (en) * 1996-12-09 2001-05-08 ウインストン ダンカン ケルヴィン Biological control methods
JP2005247757A (en) * 2004-03-04 2005-09-15 Nikken Sohonsha Corp Antiviral agent
JP2007126383A (en) * 2005-11-02 2007-05-24 Univ Of Tokushima Protective agent of gastrointestinal mucous membrane, expression promoter of caveolin gene, and antistress agent
JP2010529012A (en) * 2007-06-01 2010-08-26 コミッサリア ア レネルジ アトミック Use of compounds having monogalactosyldiacylglycerol synthetase inhibitory activity as herbicides or algicides, herbicidal compositions and algicidal compositions
JP2014027929A (en) * 2012-07-06 2014-02-13 Euglena Co Ltd Biological feed additive
WO2014192940A1 (en) * 2013-05-31 2014-12-04 味の素株式会社 Method for producing glucosylglycerol
JP2015015918A (en) * 2013-07-10 2015-01-29 株式会社デンソー Novel microalgae

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHIRASUWAN, N. ET AL.: "Anti HSV-1 activity of sulphoquinovosyl diacylglycerol isolated from Spirulina platensis", SCIENCEASIA, vol. 35, no. 2, 2009, pages 137 - 141, XP002680721, DOI: 10.2306/SCIENCEASIA1513-1874.2009.35.137 *
DE JULIAN-ORTIZ, J. V. ET AL.: "Virtual Combinatorial Syntheses and Computational Screening of New Potential Anti-Herpes Compounds", JOURNAL OF MEDICINAL CHEMISTRY, vol. 42, no. 17, 1999, pages 3308 - 3314, XP002909417, DOI: 10.1021/jm981132u *
HAYASHI, K. ET AL.: "In vitro and in vivo anti-herpes simplex virus activity of monogalactosyl diacylglyceride from Coccomyxa sp. KJ (IPOD FERM BP-22254), a green microalga", PLOS ONE, vol. 14, no. 7, 16 July 2019 (2019-07-16), pages e0219305, XP055682802 *
HERNANDEZ-CORONA, A. ET AL.: "Antiviral activity of Spirulina maxima against herpes simplex virus type 2", ANTIVIRAL RESEARCH, vol. 56, no. 3, 2002, pages 279 - 285, XP009121553, DOI: 10.1016/S0166-3542(02)00132-8 *
JANWITAYANUCHIT, W. ET AL.: "Synthesis and anti-herpes simplex viral activity of monoglycosyl diglycerides", PHYTOCHEMISTRY, vol. 64, no. 7, 2003, pages 1253 - 1264, XP004470666, DOI: 10.1016/j.phytochem.2003.09.008 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019730A (en) * 2018-07-31 2020-02-06 株式会社デンソー Anti-influenza agent
JP7233043B2 (en) 2018-07-31 2023-03-06 株式会社デンソー anti-influenza agent

Also Published As

Publication number Publication date
CN112584850A (en) 2021-03-30
JPWO2020026953A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US6524625B2 (en) Physiologically active extract obtained from indigo plant polygonum tinctorium
EP3960154A1 (en) Functional composition containing immortalized stem cell-derived exosome-rich culture medium and rosebud extract as active ingredients
KR101694958B1 (en) Composition for Improving Skin Conditions Comprising Andrographis paniculata Extract or andrographolide or salts thereof
WO2020026953A1 (en) Anti-herpes virus agent
WO2023249393A1 (en) Composition for prevention, amelioration or treatment of coronavirus infection comprising medicinal herb extract as active ingredient
WO2023249392A1 (en) Composition for prevention, amelioration or treatment of coronavirus infection, comprising medicinal herb extract as active ingredient
KR101841118B1 (en) Composition for skin external application comprising extract of scenedesmus sp.
WO2020026951A1 (en) Anti-norovirus agent
JP2020019729A (en) Herpes virus recurrent occurrence inhibitor
WO2020026945A1 (en) Virucidal agent
KR20210049698A (en) Composition for prevention or treatment of Porcine epidemic diarrhea virus infection including a complex comprising a curcuminoid compound, and licorice extract or a fraction thereof
RU2584245C2 (en) Antiviral composition
WO2023200289A1 (en) Composition for prevention, amelioration or treatment of coronavirus infection comprising medicinal herb extract as active ingredient
WO2023204602A1 (en) Composition, for preventing, ameliorating, or treating coronavirus infections, comprising herbal medicine extract as active ingredient
KR102533344B1 (en) Composition for preventing, ameliorating or treating coronavirus infectious disease comprising herbal medicine extract as effective component
WO2023204603A1 (en) Composition for preventing, alleviating, or treating coronavirus infection, containing medicinal herb complex extract as active ingredient
KR102527527B1 (en) Composition for preventing, ameliorating or treating coronavirus infectious disease comprising herbal medicine extract as effective component
KR102526308B1 (en) Composition for preventing, ameliorating or treating coronavirus infectious disease comprising herbal medicine extract as effective component
KR102524080B1 (en) Composition for preventing, ameliorating or treating coronavirus infectious disease comprising herbal medicine extract as effective component
JP7428430B1 (en) lipolysis accelerator
KR102508944B1 (en) Composition for preventing, ameliorating or treating coronavirus infectious disease comprising herbal medicine extract as effective component
KR102524088B1 (en) Composition for preventing, ameliorating or treating coronavirus infectious disease comprising herbal medicine extract as effective component
KR102499066B1 (en) Composition for preventing, ameliorating or treating coronavirus infectious disease comprising herbal medicine extract as effective component
KR102578871B1 (en) Composition for preventing, ameliorating or treating coronavirus infectious disease comprising herbal medicine extract as effective component
JP2002249437A (en) Health builder and composition thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533477

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844532

Country of ref document: EP

Kind code of ref document: A1