WO2020026777A1 - Seal member, stopcock, reaction device, and method for producing chemical product - Google Patents

Seal member, stopcock, reaction device, and method for producing chemical product Download PDF

Info

Publication number
WO2020026777A1
WO2020026777A1 PCT/JP2019/027788 JP2019027788W WO2020026777A1 WO 2020026777 A1 WO2020026777 A1 WO 2020026777A1 JP 2019027788 W JP2019027788 W JP 2019027788W WO 2020026777 A1 WO2020026777 A1 WO 2020026777A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal member
sample
cock
tube
reactor
Prior art date
Application number
PCT/JP2019/027788
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 鳥飼
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2020533394A priority Critical patent/JP7386538B2/en
Publication of WO2020026777A1 publication Critical patent/WO2020026777A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/02Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having conical surfaces; Packings therefor

Definitions

  • the present disclosure relates to a method for manufacturing a seal member, a cock, a reaction device, and a chemical product.
  • the present disclosure provides a seal member, a cock, and a reaction device capable of improving work efficiency when handling a chemical substance. Further, the present invention provides a method for manufacturing a chemical product, which can efficiently manufacture a chemical product.
  • a seal member according to an aspect of the present disclosure is a seal member provided between at least two tubes, has a holding portion for holding a sample, and moves a sample from one tube to the other tube. It is configured to be possible. Such a sealing member can move a sample while having a sealing property with a simple configuration, so that the working efficiency when handling a chemical substance can be improved.
  • the holding portion may be formed of a concave portion for accommodating the sample, and the concave portion may pivot to move the sample from one tube side to the other tube side.
  • the seal member is rotatably attached to a cock body that connects at least two pipes, and has a sliding portion that slides on an inner wall surface of the cock body, and the holding portion is defined by the sliding portion. May be provided in a region where By having such a sliding portion, the sealing property of the sealing member can be sufficiently improved.
  • the seal member may be slidably attached to a cock body connecting at least two pipes.
  • the seal member may be slid relative to the cock body such that a state in which the holding portion communicates with the flow path of one tube and a state in which the holding portion communicates with the other tube are switched.
  • a seal member according to an aspect of the present disclosure is a seal member provided between at least two pipes, which is slidably attached to a cock body that connects at least two pipes, and includes a seal member.
  • the inner wall surface of the cock body that connects the through-hole and the two pipes constitutes a holding part for holding the sample, and is configured to be able to move the sample from one tube side to the other tube side.
  • Such a sealing member can move a sample while having a sealing property with a simple configuration, so that the working efficiency when handling a chemical substance can be improved.
  • the at least two tubes may have a first tube and a second tube.
  • the seal member may be configured to be able to move the sample from the first tube side to the second tube side without communicating the first tube and the second tube. Thereby, the space between the first tube and the second tube can be sufficiently shut off.
  • a seal member according to an aspect of the present disclosure is a seal member rotatably attached to a cock body, a sliding portion that slides on an inner wall surface of the cock body when rotating, a sliding portion, And a concave portion formed in a region defined by the rotary member and configured to be able to hold and discharge the sample by rotating with the rotation.
  • Such a seal member can hold and discharge a sample by a simple operation of rotating the seal member with a simple configuration. Further, since the concave portion is formed in the area defined by the sliding portion, the sealing property is sufficiently excellent. Therefore, work efficiency when handling chemical substances can be improved.
  • a cock according to an aspect of the present disclosure includes at least two pipes, a cock body that connects them, and any one of the above-described seal members attached to the cock body.
  • This cock has a simple structure and has a seal member capable of holding and releasing a sample while having a sealing property, so that the working efficiency when handling a chemical substance can be improved.
  • a reaction device includes the seal member and the reactor, and the sample falls from the holding unit into the reactor. This reaction device drops the sample held by the holding unit into the reactor. Since such a reaction apparatus drops a sample into the reactor while having a sealing property with a simple configuration, it is possible to improve work efficiency when handling a chemical substance.
  • a reaction device includes a seal member and a reactor, and a sample falls into the reactor from the recess. This reaction device drops the sample held in the recess into the reactor. Since such a reaction apparatus drops a sample into the reactor while having a sealing property with a simple configuration, it is possible to improve work efficiency when handling a chemical substance.
  • a method of manufacturing a chemical product according to an aspect of the present disclosure includes a step of manufacturing a chemical product using the above-described reaction apparatus. In this manufacturing method, a chemical product can be efficiently manufactured because the above-described reaction apparatus is used.
  • a seal member capable of improving work efficiency when handling a chemical substance.
  • a reaction device capable of improving work efficiency when handling a chemical substance.
  • a method of manufacturing a chemical product that can efficiently manufacture a chemical product.
  • FIG. 1 is a diagram showing a seal member and a cock according to the first embodiment.
  • the cock 60 in FIG. 1 includes a cock body 40, a first tube 20 and a second tube 30, which are connected to the cock body 40 so as to sandwich the cock body 40, for example, from above and below, and a cock body 40.
  • a seal member 10 that is inserted between the first tubular body 20 and the second tubular body 30 to block the space between the first tubular body 20 and the second tubular body 30.
  • the seal member 10 has both a sealing function of suppressing gas intrusion, a function of holding the sample, and a function of moving the sample from the first tube 20 to the second tube 30.
  • the seal member 10 has a handle portion 14 at one end, a fixed portion 16 at the other end, and a sliding portion 18 between both ends. The movement of the seal member 10 in the horizontal direction in FIG.
  • the fixing portion 16 is screwed with the fixing member 52 via the packing 50, and the seal member 10 rotates with respect to the cock main body 40 integrally with the packing 50 and the fixing member 52.
  • the cock 60 can maintain good sealing performance even while the seal member 10 is rotating with respect to the cock main body 40. For example, it is possible to suppress gas from flowing from the first tube 20 to the second tube 30 and to prevent outside air from entering from a gap between the cock body 40 and the seal member 10.
  • the concave portion 12 may be formed in, for example, a mortar shape, a funnel shape, or a hemispherical shape so as to expand in a direction from the rotation axis of the seal member 10 toward the peripheral surface, from the viewpoint of sufficiently facilitating accommodation and release of the sample.
  • the outer edge of the concave portion 12 may be angular from the viewpoint of preventing the sample from entering between the sliding portion 18 and the inner wall surface 42.
  • FIG. 2 is a view showing the same cock 60 as FIG. 1, and shows a state different from the state of FIG.
  • FIG. 2 shows a state where the seal member 10 is rotated half a turn from the state shown in FIG.
  • the seal member 10 can be rotated by operating the handle portion 14.
  • the fixing member 52 and the packing 50 may also rotate together.
  • the packing 50 may rotate while sliding on the end face of the cock main body 40.
  • the sample may be introduced again into the concave portion 12 via the flow path of the first tube 20.
  • the concave portion 12 corresponding to the sample holding section can repeatedly store (hold) and release the sample.
  • the seal member 10 does not have a through hole that allows the first tube 20 and the second tube 30 to communicate with each other. For this reason, the flow of a medium such as gas between the first tube 20 and the second tube 30 can be suppressed.
  • the seal member 10 has the sliding portion 18 that slides on the inner wall surface 42 of the cock main body 40 during rotation, whereby the flow path of the second pipe 30 is continuously sealed. That is, the concave portion 12 is surrounded by the sliding portion 18 and is formed in a region defined by the sliding portion 18. For this reason, even when the concave portion 12 is exposed to the flow path of the second pipe 30, the inner wall surface 42 of the cock main body 40 and the sliding portion 18 are in contact with each other. Of the outside air into the flow path of the second pipe 30 can be sufficiently suppressed.
  • the cock 60 introduces the sample into the recess 12 in the state shown in FIG. 1 and discharges the sample from the recess 12 in the state shown in FIG. While the handle portion 14 is being operated to change from the state of FIG. 1 to the state of FIG. 2, the gap between the first tube 20 and the second tube 30 is continuously blocked by the seal member 10. .
  • the cock 60 is excellent not only in airtightness but also in blocking property between the first tube 20 and the second tube 30. Therefore, the cock 60 is particularly useful as a sample supply device for a reaction device requiring high airtightness and high shutoff performance.
  • the sample may be a liquid sample or a solid sample.
  • the type of the sample is not particularly limited, and may be an organic substance, an inorganic substance, or a mixture thereof.
  • it may be a sample used as a raw material for an organic synthesis reaction that needs to sufficiently suppress intrusion of air and moisture.
  • various organic compounds such as organic materials, medicines, and agricultural chemicals can be efficiently produced.
  • the sample can be introduced into the reactor while maintaining airtightness by, for example, cannulation.
  • the seal member 10 and the cock 60 of the present embodiment are particularly useful when it is necessary to introduce a sample that does not dissolve in a solvent or a sample that does not easily dissolve.
  • FIG. 3 is an exploded view showing the cock 60 in an exploded manner.
  • the sliding portion 18 between the handle portion 14 and the fixed portion 16 of the seal member 10 is tapered so as to become thinner from the handle portion 14 toward the fixed portion 16.
  • the seal member 10 is inserted into the cock main body 40 and the packing 50, and is rotatably attached to the cock main body 40 by screwing the fixing portion 16 and the fixing member 52 together.
  • the method of fixing the seal member 10 to the cock main body 40 is not limited to such a method, and a method capable of being rotatably fixed can be appropriately employed.
  • the seal member 10 may be made of, for example, resin, glass, or metal. It may be made of resin or glass from the viewpoint of improving sealing properties and corrosion resistance. Further, it may be made of resin from the viewpoint of ease of processing or slidability. The resin may be a fluororesin from the viewpoint of improving durability. When the seal member 10 is made of glass, at least the sliding portion 18 may be made of rubbed glass or resin from the viewpoint of improving airtightness and operability.
  • the cock main body 40 may be made of glass, resin, or metal.
  • FIG. 4 is a diagram showing a reaction device according to the first embodiment.
  • the reaction device 100 includes a reactor 70 and a cock 60 connected to the reactor 70.
  • the reactor 70 may be, for example, a glass flask having a main pipe 71 and a side pipe 72.
  • the cock 60 is arranged so that the first tube 20 is located above the cock body 40 and the second tube 30 is located below the cock body 40. Is inserted into the main pipe 71.
  • a detachable plug 86 is attached to the opening of the first tube 20. If the plug 86 is removed and the sample is introduced from the opening of the first tube 20, the sample can be stored in the concave portion of the sealing member 10 provided in the cock 60.
  • a valve 74 is connected to the side pipe 72 of the reactor 70.
  • a needle 84 communicating with the manifold 82 is penetrated and connected to the cap 76 attached to the tip of the valve 74.
  • an inert gas such as an argon gas can be supplied from the manifold 82 into the reactor 70, or the pressure in the reactor 70 can be reduced.
  • a refrigerant 90 containing dry ice is stored in the temperature control tank 95 having a stirring function, and at least a part of the reactor 70 is immersed in the refrigerant 90. If the magnetic stirrer is put into the reactor 70 together with the raw material liquid 110 and the stirring function is started, the raw material liquid 110 is stirred, and the raw material liquid 110 is cooled to a desired temperature range by heat exchange with the refrigerant 90.
  • the handle portion 14 of the cock 60 is operated in a state where the inside of the reactor 70 is replaced with an inert gas, the sample contained in the concave portion 12 is moved into the reactor 70 via the second tube 30. It falls and is mixed with the raw material liquid 110.
  • the sample can be introduced into the reactor 70 only by the simple operation of operating the handle portion 14.
  • the cock 60 can sufficiently suppress the invasion of the outside air into the second tube 30 while blocking the space between the first tube 20 and the second tube 30.
  • the sample can be introduced into the reactor 70 by a simple operation while sufficiently preventing the invasion of the outside air into the reactor 70. Therefore, it is particularly effective when performing a reaction requiring hermeticity.
  • the reaction device of the present disclosure is not limited to the above embodiment.
  • the coolant may be ice water or liquid nitrogen.
  • the temperature control tank 95 may be an oil bath, and in this case, the reactor 70 may be heated and perform the reaction under heated reflux.
  • the reactor 70 may be a reactor having a glass lining instead of a flask. In that case, the reactor may be a jacket type so that it can be heated by steam or the like.
  • FIG. 5 is a diagram illustrating a seal member according to the second embodiment of the present disclosure.
  • 5 includes a shutter portion 12A, and is provided between the first tubular body 20 and the second tubular body 30.
  • the shutter unit 12A has both a function as a sample holding unit and a function of shutting off between the first tube 20 and the second tube 30. If a sample is introduced from the first tube 20 with the shutter 12A closed, the sample is held on the shutter 12A. Then, when the shutter portion 12 ⁇ / b> A is opened by operating the lever 17, the sample moves from the first tube 20 to the second tube 30 and is discharged into the flow path of the second tube 30.
  • the sample discharged into the flow path of the second tube 30 is introduced into, for example, a reactor connected below the second tube 30. Thereafter, when the shutter 12A is closed, the shutter 12A can repeatedly hold and release the sample.
  • the sample can be held and released only by opening and closing the shutter 12A. Since the sample can be held and moved with a simple configuration as described above, it is possible to improve the working efficiency when handling a chemical substance.
  • FIGS. 6 to 8 are views showing a seal member and a cock according to the third embodiment of the present disclosure.
  • the cock 62 in FIG. 6 is connected to a cock body 40A having a cylindrical shape, a cylindrical seal member 10A slidably and rotatably attached to the cock body 40A, and an upper side of the cock body 40A.
  • the seal member 10A has a handle portion 14A on the base end side. The sealing member 10A is inserted into the cock main body 40A from the distal end side.
  • Three ring-shaped sliding portions 18A, 18B, 18C are attached to the seal member 10A along the circumferential direction.
  • the sliding portions 18A, 18B, 18C are, for example, resin rings.
  • the sliding portions 18A, 18B, 18C rotate or slide while sliding on the inner wall surface 42A of the cock body 40A.
  • the sliding portions 18A, 18B, 18C are attached at predetermined intervals in this order from the distal end to the proximal end of the seal member 10A.
  • the recess 12 is formed in a region defined by the sliding portion 18A and the sliding portion 18B.
  • a gas hole 44 is provided at the distal end of the cock body 40A facing the distal end of the seal member 10A. By providing the gas holes 44, gas can be circulated between the inside and the outside of the cock main body 40A.
  • the first tube 20 is connected to the distal end of the cock body 40A, while the second tube 30 is connected to the center of the cock body 40A. That is, the first tube 20 and the second tube 30 are connected to be shifted from each other when viewed along the sliding direction.
  • a cock 62 When such a cock 62 is used, the sample is moved from the first tube 20 to the second tube 30 by the following operation.
  • the seal member 10A is inserted into the cock body 40A. If the gas hole 44 is opened when the seal member 10A is inserted, the gas hole 44 functions as a gas vent in the cock main body 40A, and the insertion of the seal member 10A can be performed smoothly. Then, the seal member 10A is rotated with respect to the cock main body portion 40 using the handle portion 14A, and the positioning is performed so that the concave portion 12 formed in the seal member 10A is exposed to the flow path of the first pipe 20. After the alignment, the sample is introduced from the flow path of the first tubular body 20 and accommodated in the recess 12. At this time, since the flow path of the second tubular body 30 is located between the sliding portion 18B and the sliding portion 18C, the airtightness of the flow passage of the second tubular body 30 is maintained well.
  • the handle member 14A is operated to rotate the seal member 10A half a turn with respect to the cock main body 40A, and the concave portion 12 is turned downward and the cock 62 is brought into the state shown in FIG.
  • the concave portion 12 turns with the rotation of the seal member 10 ⁇ / b> A and is exposed to the flow path of the second pipe 30.
  • the concave portion 12 is formed in a region defined by the sliding portion 18A and the sliding portion 18B, the airtightness of the flow path of the second pipe 30 is favorably maintained. As shown in FIGS. 6 to 8, when the second pipe 30 is located below the first pipe 20, when the state shown in FIG.
  • the second pipe 30 is accommodated in the recess 12 in the state shown in FIGS.
  • the sample that has fallen falls in the flow path of the second tubular body 30 by gravity.
  • the sample can be introduced into a reactor or the like connected below the second tubular body 30 by a very simple operation.
  • the state returns to the state of FIG.
  • the seal member 10A is slid and inserted into the cock main body 40A
  • the state returns to the state of FIG.
  • the gas hole 44 is opened, the insertion of the sealing member 10A can be performed smoothly.
  • the sample may be introduced again into the concave portion 12 via the flow path of the first tube 20.
  • the concave portion 12 corresponding to the sample holding section can repeatedly store (hold) and release the sample.
  • the seal member 10A does not have a through-hole that allows the first tube 20 and the second tube 30 to communicate with each other. For this reason, the flow of a medium such as gas between the first tube 20 and the second tube 30 can be suppressed.
  • the seal member 10A has sliding portions 18A, 18B, and 18C that slide on the inner wall surface 42 of the cock main body 40A when the seal member 10A slides and rotates. It does not communicate with the outside. For this reason, even while the handle portion 14 is being operated, intrusion of outside air from both ends of the cock main body 40A into the second tubular body 30 can be sufficiently suppressed.
  • the cock 62 introduces the sample into the recess 12 in the state shown in FIG. 6, and discharges the sample from the recess 12 in the state shown in FIG. Also, while the handle portion 14A is being operated to change from the state of FIG. 6 to the state of FIG. 8 (for example, also including the state of FIG. 7), the distance between the first pipe 20 and the second pipe 30 is , Are continuously interrupted by the sliding portions 18A and 18B. As described above, the cock 62 is excellent not only in airtightness but also in blocking property between the first tube 20 and the second tube 30. Therefore, the cock 62 is particularly useful as a sample supply device for a reaction device requiring high airtightness and high shutoff performance.
  • FIGS. 9 and 10 are views showing a seal member and a cock according to the fourth embodiment of the present disclosure.
  • the cock 64 shown in FIG. 9 includes a cock body 40C, a seal member 10C slidably attached to the cock body 40C, a first tube 20 connected to an upper side of the cock body 40C, and a cock body. And a second pipe 30 connected to the lower side of 40C.
  • the seal member 10C has a handle portion 14C on the base end side.
  • the sealing member 10C is inserted into the cock main body 40C from the distal end side.
  • the cock main body 40C and the seal member 10C may have a columnar shape, or may have a prismatic shape such as a square pole.
  • Three ring-shaped sliding portions 18A, 18B, 18C are attached to the seal member 10C along the surface thereof.
  • the sliding portions 18A, 18B, 18C are, for example, resin rings.
  • the sliding portions 18A, 18B, 18C rotate or slide while sliding on the inner wall surface 42C of the cock body 40C.
  • the sliding portions 18A, 18B, 18C are attached at predetermined intervals in this order from the distal end to the proximal end of the seal member 10C.
  • the seal member 10C has a through hole 12B penetrating the seal member 10C in a region defined by the sliding portion 18A and the sliding portion 18B.
  • the through hole 12 ⁇ / b> B and the inner wall surface 42 ⁇ / b> C of the cock main body 40 ⁇ / b> C constitute a holder for the sample supplied from the first tube 20.
  • a gas hole 44 is provided at the tip of the cock body 40C facing the tip of the seal member 10C. By providing the gas holes 44, gas can be circulated between the inside and the outside of the cock main body 40C.
  • the second tube 30 is connected to the center of the cock body 40C. That is, the first tube 20 and the second tube 30 are connected to be shifted from each other when viewed along the sliding direction.
  • a cock 62 is used, the sample is moved from the first tube 20 to the second tube 30 by the following operation.
  • the seal member 10C is inserted into the cock body 40C. If the gas hole 44 is opened when the seal member 10C is inserted, the gas hole 44 functions as a gas vent in the cock main body 40C, and the insertion of the seal member 10C can be performed smoothly.
  • the seal member 10C and the cock body 40C are aligned so that the through hole 12B formed in the seal member 10C communicates with the flow path of the first pipe 20. Positioning can be performed by sliding the seal member 10C with respect to the cock main body 40 using the handle 14C.
  • the sample is introduced from the flow path of the first tubular body 20, and the sample is introduced and held in the through hole 12B. At this time, since the flow path of the second tubular body 30 is located between the sliding portion 18B and the sliding portion 18C, the airtightness of the flow passage of the second tubular body 30 is maintained well.
  • the user grips the handle 14C and slides the seal member 10C with respect to the cock main body 40C to obtain the state shown in FIG.
  • the gas hole 44 functions as a gas inlet, and the sliding of the seal member 10C can be performed smoothly.
  • the through hole 12 ⁇ / b> B communicates with the flow path of the second pipe 30. Also at this time, since the through hole 12B is formed between the sliding portion 18A and the sliding portion 18B, the airtightness of the flow path of the second pipe 30 is favorably maintained.
  • the state shown in FIG. 10 is retained in the through hole 12B in the state shown in FIG.
  • the sample falls downward in the flow path of the second tube 30 by gravity.
  • the sample can be introduced into a reactor or the like connected below the second tubular body 30 by a very simple operation.
  • the state After dropping the sample from the through hole 12B in the state of FIG. 10 and slidingly inserting the seal member 10C into the cock body 40C, the state returns to the state of FIG. At this time, if the gas hole 44 is opened, the insertion of the seal member 10C can be performed smoothly.
  • the sample may be introduced again into the through-hole 12B via the flow path of the first tube 20. As described above, the seal member 10C and the cock 64 can repeatedly hold and release the sample.
  • the seal member 10C has the through hole 12B, the sample can be moved from the first tube 20 to the second tube 30 by sliding the seal member 10C with respect to the cock body 40C. Since the through-hole 12 ⁇ / b> B does not communicate with both the first tube 20 and the second tube 30 at the same time, the flow of a medium such as a gas between the first tube 20 and the second tube 30 is suppressed. it can. Further, the seal member 10C has sliding portions 18A, 18B, and 18C that slide on the inner wall surface 42 of the cock main body 40C when the seal member 10C slides, and the flow path of the second pipe 30 communicates with the outside. It does not communicate. For this reason, even while the handle 14C is being operated, intrusion of outside air into the second pipe 30 from both ends of the cock main body 40C can be sufficiently suppressed.
  • the cock 64 introduces the sample into the through hole 12B in the state shown in FIG. 9 and discharges the sample from the through hole 12B in the state shown in FIG. Also, while the handle 14C is being operated to change from the state of FIG. 9 to the state of FIG. 10, the sliding portions 18A and 18B continue between the first tube 20 and the second tube 30. And be cut off. As described above, the cock 62 is excellent not only in airtightness but also in blocking property between the first tube 20 and the second tube 30. Therefore, the cock 64 is particularly useful as a sample supply device for a reaction device requiring high airtightness and high shutoff performance.
  • the seal members 10, 10A, 10B, 10C and the cocks 60, 62, 64 according to the above embodiments can be used by connecting to various reactors.
  • a reactor used for a reaction that needs to be performed in an inert gas atmosphere is required to have high airtightness in order to prevent inflow of outside air (oxygen). You may connect and use such a reactor.
  • the seal member, the cock, and the reaction device of the present disclosure can introduce a sample into the reactor by a simple operation without complicating the structure of the device and maintaining high sealing performance and airtightness. Therefore, work efficiency when handling chemical substances can be improved.
  • a chemical product can be efficiently and stably manufactured.
  • the chemical product can be, for example, a compound such as an organic or inorganic compound. Further, it may be a final product or an intermediate product.
  • each of the cocks of the above-described embodiments has two tubes, but may have three or more tubes.
  • the first sample may be introduced from the first tube, the first sample may be held in the holding unit, and the first sample may be discharged to the second tube.
  • the second sample may be introduced from the first tube, the second sample may be held in the holding unit, and the second sample may be discharged to the third tube.
  • the first sample and the second sample of different types may be configured to be discharged into separate tubes.
  • the reaction apparatus of FIG. 4 may have the cock 62 or 64 instead of the cock 60, or may have the sealing member 10B shown in FIG.
  • the shutter portion 12A of the seal member 10B, the handle portions 14 and 14A of the seal members 10 and 10A, and the handle portion 14C of the seal member 10C may be configured to be manually operated, and may be automatically operated by a control device (not shown). It may be configured to be operated.
  • the shape of the seal member 10 is not particularly limited, and may be, for example, a ball shape.
  • Example 1 A glycosylation reaction represented by the following reaction formula (1) was performed using a reaction apparatus 100 having the cock 60 shown in FIGS. The specific procedure was as follows.
  • the plug 86 is opened, and powdered indium triflate (In (OTf) 3 , 141 mg, 251 ⁇ mol) is placed in the concave portion 12 of the seal member 10 whose angle is adjusted so that the concave portion 12 faces upward as shown in FIG. Housed. Thereafter, the stopper 86 was closed, the seal member 10 was rotated, and indium triflate was dropped into the flask via the second tube 30 and mixed with the solution. The mixture in the flask was cooled by putting dry ice and ethanol in the temperature control tank 95, and reacted at -78 ° C to -40 ° C for 45 minutes while stirring with a stirrer.
  • In (OTf) 3 powdered indium triflate
  • Comparative Example 1 Synthesis was performed by a glycosylation reaction represented by the reaction formula (1) in the same manner as in Example 1 except that a reaction device having no cock portion as shown in FIGS. 1 and 2 was used.
  • the stopper at the top of the flask was opened, and powdered indium triflate was directly introduced into the flask. After the introduction, the stopper was immediately closed, and synthesis was performed under the same conditions as in Example 1.
  • the yield of the glucopyranoside represented by the formula (III) was 1% or less. It is considered that the reason why the yield was reduced as described above is that when indium triflate was introduced, outside air entered and water contained in the outside air inhibited the reaction.
  • a seal member, a cock, and a reaction device capable of improving work efficiency when handling a chemical substance are provided. Further, a method of manufacturing a chemical product capable of efficiently manufacturing a chemical product is provided.
  • 10, 10A, 10B, 10C seal member
  • 12 concave portion (holding portion)
  • 12A shutter portion (holding portion)
  • 14A handle portion
  • 14C handle portion
  • 16 fixing portion
  • 17 lever
  • 18 , 18A, 18B, 18C sliding portion
  • 20 30: tube
  • 40, 40A, 40C cock body, 42, 42A, 42C: inner wall surface
  • 44 gas hole
  • 50 packing
  • 52 fixing member
  • 70 ... reactor 71 ... main pipe, 72 ... side pipe, 74 ... valve, 76 ... cap, 82 ... manifold

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Taps Or Cocks (AREA)

Abstract

This stopcock comprises at least two pipe bodies, a stopcock main body part linking the pipe bodies, and a seal member attached to the stopcock main body part. The seal member has a holding part that holds a sample, and moves the sample from one pipe-body side to another pipe-body side.

Description

シール部材、コック、反応装置及び化学製品の製造方法Seal member, cock, reaction device, and method for producing chemical product
 本開示は、シール部材、コック、反応装置及び化学製品の製造方法に関する。 The present disclosure relates to a method for manufacturing a seal member, a cock, a reaction device, and a chemical product.
 化学物質を用いた実験又は化学製品の製造の際、副生物の低減、反応生成物の分解の抑制等のため、反応器内部への空気等の侵入を抑制することが必要な場合がある。このような場合、例えば、特許文献1に記載されているような不活性ガスが充填されるグローブボックス内に反応装置を入れ、その中で原料を供給したり、各種操作を行ったりすることが必要となる。このようなグローブボックスを用いての作業は、ボックスに直結されたグローブを着用して行う必要がある。 実 験 When conducting experiments using chemical substances or manufacturing chemical products, it may be necessary to suppress intrusion of air or the like into the reactor in order to reduce by-products and suppress the decomposition of reaction products. In such a case, for example, it is possible to put the reactor in a glove box filled with an inert gas as described in Patent Document 1 and supply the raw material therein or perform various operations. Required. Work using such a glove box must be performed by wearing gloves directly connected to the box.
特開2013-240850号公報JP 2013-240850 A
 グローブボックス内での作業は、グローブを着用した状態での作業であることから、手先で細かい操作を行うことが難しく、作業者の負担となっている。また、グローブボックス内に実験装置又は製造装置を設置したうえでグローブボックス内を不活性ガスで置換する必要がある。このため準備に時間と手間を要し、その結果作業効率が低下する。そこで、本開示では、化学物質を取り扱う際の作業効率を向上することが可能なシール部材、コック、及び反応装置を提供する。また、化学製品を効率よく製造することが可能な化学製品の製造方法を提供する。 作業 Since the work in the glove box is performed while wearing gloves, it is difficult to perform detailed operations with the hands, which is a burden on the operator. Further, it is necessary to replace the inside of the glove box with an inert gas after installing an experimental device or a manufacturing device in the glove box. For this reason, time and labor are required for preparation, and as a result, work efficiency is reduced. Thus, the present disclosure provides a seal member, a cock, and a reaction device capable of improving work efficiency when handling a chemical substance. Further, the present invention provides a method for manufacturing a chemical product, which can efficiently manufacture a chemical product.
 本開示の一側面に係るシール部材は、少なくとも2つの管体の間に設けられるシール部材であって、試料を保持する保持部を有し、一方の管体側から他方の管体側に試料を移動可能に構成される。このようなシール部材は、シンプルな構成でシール性を有しつつ試料を移動できるため、化学物質を取り扱う際の作業効率を向上することができる。 A seal member according to an aspect of the present disclosure is a seal member provided between at least two tubes, has a holding portion for holding a sample, and moves a sample from one tube to the other tube. It is configured to be possible. Such a sealing member can move a sample while having a sealing property with a simple configuration, so that the working efficiency when handling a chemical substance can be improved.
 保持部は試料を収容する凹部で構成され、凹部が旋回して試料を一方の管体側から他方の管体側に移動してよい。試料を収容する凹部を有することで、保持及び移動できる試料の量を多くすることができる。 (4) The holding portion may be formed of a concave portion for accommodating the sample, and the concave portion may pivot to move the sample from one tube side to the other tube side. By having the concave portion for accommodating the sample, the amount of the sample that can be held and moved can be increased.
 シール部材は、少なくとも2つの管体を連結するコック本体部に回転可能に取り付けられ、コック本体部の内壁面に対して摺動する摺動部を有し、保持部は摺動部によって区画される領域内に設けられてよい。このような摺動部を有することによって、シール部材のシール性を十分に優れたものにすることができる。 The seal member is rotatably attached to a cock body that connects at least two pipes, and has a sliding portion that slides on an inner wall surface of the cock body, and the holding portion is defined by the sliding portion. May be provided in a region where By having such a sliding portion, the sealing property of the sealing member can be sufficiently improved.
 シール部材は、少なくとも2つの管体を連結するコック本体部に対してスライド可能に取り付けられてもよい。これによって、簡便な操作で試料を移動することができる。シール部材は、コック本体部に対して、保持部が一方の管体の流路に連通する状態と、保持部が他方の管体に連通する状態とが切り替わるようにスライドしてよい。 The seal member may be slidably attached to a cock body connecting at least two pipes. Thus, the sample can be moved by a simple operation. The seal member may be slid relative to the cock body such that a state in which the holding portion communicates with the flow path of one tube and a state in which the holding portion communicates with the other tube are switched.
 本開示の一側面に係るシール部材は、少なくとも2つの管体の間に設けられるシール部材であって、少なくとも2つの管体を連結するコック本体部に対してスライド可能に取り付けられ、シール部材を貫通する貫通孔と2つの管体を連結するコック本体部の内壁面が試料を保持する保持部を構成し、一方の管体側から他方の管体側に試料を移動可能に構成される。このようなシール部材は、シンプルな構成でシール性を有しつつ試料を移動できるため、化学物質を取り扱う際の作業効率を向上することができる。 A seal member according to an aspect of the present disclosure is a seal member provided between at least two pipes, which is slidably attached to a cock body that connects at least two pipes, and includes a seal member. The inner wall surface of the cock body that connects the through-hole and the two pipes constitutes a holding part for holding the sample, and is configured to be able to move the sample from one tube side to the other tube side. Such a sealing member can move a sample while having a sealing property with a simple configuration, so that the working efficiency when handling a chemical substance can be improved.
 少なくとも2つの管体は、第1管体と第2管体とを有してよい。この場合、シール部材は、第1管体と第2管体とを連通させることなく、第1管体側から第2管体側に試料を移動可能に構成されてよい。これによって、第1管体と第2管体の間を十分に遮断することができる。 The at least two tubes may have a first tube and a second tube. In this case, the seal member may be configured to be able to move the sample from the first tube side to the second tube side without communicating the first tube and the second tube. Thereby, the space between the first tube and the second tube can be sufficiently shut off.
 本開示の一側面に係るシール部材は、コック本体部に回転可能に取り付けられるシール部材であって、回転の際にコック本体部の内壁面に対して摺動する摺動部と、摺動部によって区画された領域内に形成され、回転に伴って旋回して試料を保持及び放出可能に構成される凹部と、を備える。 A seal member according to an aspect of the present disclosure is a seal member rotatably attached to a cock body, a sliding portion that slides on an inner wall surface of the cock body when rotating, a sliding portion, And a concave portion formed in a region defined by the rotary member and configured to be able to hold and discharge the sample by rotating with the rotation.
 このようなシール部材は、シンプルな構成でシール部材を回転するという簡便な操作で試料の保持及び放出を行うことができる。また、凹部が摺動部によって区画された領域内に形成されることからシール性に十分に優れる。したがって、化学物質を取り扱う際の作業効率を向上することができる。 Such a seal member can hold and discharge a sample by a simple operation of rotating the seal member with a simple configuration. Further, since the concave portion is formed in the area defined by the sliding portion, the sealing property is sufficiently excellent. Therefore, work efficiency when handling chemical substances can be improved.
 本開示の一側面に係るコックは、少なくとも2つの管体と、これらを連結するコック本体部と、該コック本体部に取り付けられる上述のいずれかのシール部材と、を備える。このコックは、シンプルな構成でシール性を有しつつ試料を保持及び放出可能なシール部材を備えることから、化学物質を取り扱う際の作業効率を向上することができる。 コ ッ ク A cock according to an aspect of the present disclosure includes at least two pipes, a cock body that connects them, and any one of the above-described seal members attached to the cock body. This cock has a simple structure and has a seal member capable of holding and releasing a sample while having a sealing property, so that the working efficiency when handling a chemical substance can be improved.
 本開示の一側面に係る反応装置は、上記シール部材と反応器とを備え、上記保持部から試料が反応器内に落下する。この反応装置は、上記保持部で保持されていた試料を反応器内に落下させるものである。このような反応装置は、シンプルな構成でシール性を有しつつ試料を反応器内に落下させるものであることから、化学物質を取り扱う際の作業効率を向上することができる。 反 応 A reaction device according to an aspect of the present disclosure includes the seal member and the reactor, and the sample falls from the holding unit into the reactor. This reaction device drops the sample held by the holding unit into the reactor. Since such a reaction apparatus drops a sample into the reactor while having a sealing property with a simple configuration, it is possible to improve work efficiency when handling a chemical substance.
 本開示の一側面に係る反応装置は、シール部材と反応器とを備え、上記凹部から試料が反応器内に落下する。この反応装置は、上記凹部で保持されていた試料を反応器内に落下させるものである。このような反応装置は、シンプルな構成でシール性を有しつつ試料を反応器内に落下させるものであることから、化学物質を取り扱う際の作業効率を向上することができる。 反 応 A reaction device according to an aspect of the present disclosure includes a seal member and a reactor, and a sample falls into the reactor from the recess. This reaction device drops the sample held in the recess into the reactor. Since such a reaction apparatus drops a sample into the reactor while having a sealing property with a simple configuration, it is possible to improve work efficiency when handling a chemical substance.
 本開示の一側面に係る化学製品の製造方法は、上述の反応装置を用いて化学製品を製造する工程を有する。この製造方法では上述の反応装置を用いることから、化学製品を効率よく製造することができる。 化学 A method of manufacturing a chemical product according to an aspect of the present disclosure includes a step of manufacturing a chemical product using the above-described reaction apparatus. In this manufacturing method, a chemical product can be efficiently manufactured because the above-described reaction apparatus is used.
 本開示によれば、化学物質を取り扱う際の作業効率を向上することが可能なシール部材、コック、及び反応装置を提供することができる。また、化学製品を効率よく製造することが可能な化学製品の製造方法を提供することができる。 According to the present disclosure, it is possible to provide a seal member, a cock, and a reaction device capable of improving work efficiency when handling a chemical substance. In addition, it is possible to provide a method of manufacturing a chemical product that can efficiently manufacture a chemical product.
第1実施形態に係るシール部材及びコックを示す図である。It is a figure showing a seal member and a cock concerning a 1st embodiment. 第1実施形態に係るシール部材及びコックを示す図である。It is a figure showing a seal member and a cock concerning a 1st embodiment. 第1実施形態に係るコックの分解図である。It is an exploded view of the cock concerning a 1st embodiment. 第1実施形態に係る反応装置の図である。It is a figure of a reaction device concerning a 1st embodiment. 第2実施形態に係るシール部材を示す図である。It is a figure showing a seal member concerning a 2nd embodiment. 第3実施形態に係るシール部材及びコックを示す図である。It is a figure showing a seal member and a cock concerning a 3rd embodiment. 第3実施形態に係るシール部材及びコックを示す図である。It is a figure showing a seal member and a cock concerning a 3rd embodiment. 第3実施形態に係るシール部材及びコックを示す図である。It is a figure showing a seal member and a cock concerning a 3rd embodiment. 第4実施形態に係るシール部材及びコックを示す図である。It is a figure showing a seal member and a cock concerning a 4th embodiment. 第4実施形態に係るシール部材及びコックを示す図である。It is a figure showing a seal member and a cock concerning a 4th embodiment.
 以下、場合により図面を参照して、本開示の幾つかの実施形態について説明する。ただし、以下の各実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。 Hereinafter, some embodiments of the present disclosure will be described with reference to the drawings as necessary. However, each of the following embodiments is an example for explaining the present disclosure, and is not intended to limit the present disclosure to the following contents. In the description, the same elements or elements having the same functions will be denoted by the same reference symbols, and duplicate description will be omitted in some cases. Unless otherwise specified, the positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings. Further, the dimensional ratio of each element is not limited to the illustrated ratio.
 図1は、第1実施形態に係るシール部材及びコックを示す図である。図1のコック60は、コック本体部40と、コック本体部40を例えば上下方向から挟むようにしてコック本体部40にそれぞれ接続される第1管体20及び第2管体30と、コック本体部40に挿入され、第1管体20と第2管体30の間を遮断するシール部材10と、を備える。シール部材10は、ガスの侵入を抑制するシール機能と、試料を保持する機能と、試料を第1管体20側から第2管体30側に移動する機能を兼ね備える。 FIG. 1 is a diagram showing a seal member and a cock according to the first embodiment. The cock 60 in FIG. 1 includes a cock body 40, a first tube 20 and a second tube 30, which are connected to the cock body 40 so as to sandwich the cock body 40, for example, from above and below, and a cock body 40. And a seal member 10 that is inserted between the first tubular body 20 and the second tubular body 30 to block the space between the first tubular body 20 and the second tubular body 30. The seal member 10 has both a sealing function of suppressing gas intrusion, a function of holding the sample, and a function of moving the sample from the first tube 20 to the second tube 30.
 シール部材10は、一方の端部にハンドル部14と、他方の端部に固定部16と、両端部の間に摺動部18と、を有する。シール部材10は、ハンドル部14と固定部16とによって、図1の横方向の移動が規制され、コック本体部40に回転可能に固定される。固定部16は、パッキン50を介して固定部材52と螺合し、シール部材10は、パッキン50及び固定部材52と一体となって、コック本体部40に対して回転する。 The seal member 10 has a handle portion 14 at one end, a fixed portion 16 at the other end, and a sliding portion 18 between both ends. The movement of the seal member 10 in the horizontal direction in FIG. The fixing portion 16 is screwed with the fixing member 52 via the packing 50, and the seal member 10 rotates with respect to the cock main body 40 integrally with the packing 50 and the fixing member 52.
 シール部材10がコック本体部40に対して回転する際、シール部材10の摺動部18は、コック本体部40の内壁面42に対して摺動する。凹部12は摺動部18によって区画されており、摺動部18が内壁面42に対して摺動しながらシール部材10が回転する。このため、コック本体部40に対してシール部材10を回転している間も、コック60は良好なシール性を維持することができる。例えば、第1管体20から第2管体30にガスが流入すること、及び、コック本体部40とシール部材10との隙間から外気が侵入することを抑制することができる。 When the seal member 10 rotates with respect to the cock main body 40, the sliding portion 18 of the seal member 10 slides on the inner wall surface 42 of the cock main body 40. The concave portion 12 is defined by the sliding portion 18, and the seal member 10 rotates while the sliding portion 18 slides on the inner wall surface 42. For this reason, the cock 60 can maintain good sealing performance even while the seal member 10 is rotating with respect to the cock main body 40. For example, it is possible to suppress gas from flowing from the first tube 20 to the second tube 30 and to prevent outside air from entering from a gap between the cock body 40 and the seal member 10.
 図1に示すように、凹部12が第1管体20の流路に露出しているときに、第1管体20から試料を導入すれば、凹部12に試料が保持される。凹部12は試料の収容及び放出を十分に円滑にする観点から、シール部材10の回転軸から周面に向かう方向に拡がるように、例えばすり鉢状、漏斗状又は半球体状に形成されてよい。凹部12の外縁は、試料が摺動部18と内壁面42との間に入り込むことを抑制する観点から、角張っていてよい。 As shown in FIG. 1, when the sample is introduced from the first tube 20 while the recess 12 is exposed to the flow path of the first tube 20, the sample is held in the recess 12. The concave portion 12 may be formed in, for example, a mortar shape, a funnel shape, or a hemispherical shape so as to expand in a direction from the rotation axis of the seal member 10 toward the peripheral surface, from the viewpoint of sufficiently facilitating accommodation and release of the sample. The outer edge of the concave portion 12 may be angular from the viewpoint of preventing the sample from entering between the sliding portion 18 and the inner wall surface 42.
 図2は、図1と同じコック60を示す図であり、図1の状態とは違う状態を示している。図2は、図1に示す状態から、シール部材10を半回転させたときの状態を示している。シール部材10は、ハンドル部14を操作して回転させることができる。図1に示す状態からシール部材10を回転したときに、固定部材52及びパッキン50も一緒に回転してもよい。このとき、パッキン50はコック本体部40の端面に摺動しながら回転してよい。 FIG. 2 is a view showing the same cock 60 as FIG. 1, and shows a state different from the state of FIG. FIG. 2 shows a state where the seal member 10 is rotated half a turn from the state shown in FIG. The seal member 10 can be rotated by operating the handle portion 14. When the seal member 10 is rotated from the state shown in FIG. 1, the fixing member 52 and the packing 50 may also rotate together. At this time, the packing 50 may rotate while sliding on the end face of the cock main body 40.
 コック本体部40に対してシール部材10を半回転すると、凹部12はシール部材10の回転に伴って旋回し、第2管体30の流路に露出する。図1,2に示すように、第1管体20よりも第2管体30の方が下方にある場合、図2の状態になると、図1の状態において凹部12に収容されていた試料は、旋回した後、重力によって第2管体30の流路内を落下する。このように、コック60は、重力を利用して凹部12から試料を放出できるため、極めて単純な操作で第2管体30の下方に接続される反応器等に試料を導入することができる。 (4) When the seal member 10 makes a half turn with respect to the cock main body 40, the concave portion 12 turns with the rotation of the seal member 10 and is exposed to the flow path of the second pipe 30. As shown in FIGS. 1 and 2, when the second tube 30 is located below the first tube 20, when the state shown in FIG. 2 is reached, the sample accommodated in the recess 12 in the state shown in FIG. After turning, it falls in the flow path of the second pipe 30 by gravity. As described above, since the cock 60 can discharge the sample from the concave portion 12 using gravity, the sample can be introduced into a reactor or the like connected below the second tube 30 by a very simple operation.
 図2の状態で凹部12から試料を落下させた後、コック本体部40に対してシール部材10をさらに半回転すると、図1の状態に戻る。この状態では、第1管体20の流路を経由して再び凹部12に試料を導入してもよい。このように試料の保持部に相当する凹部12は試料の収容(保持)と放出とを繰り返し行うことができる。 (2) After the sample is dropped from the concave portion 12 in the state of FIG. In this state, the sample may be introduced again into the concave portion 12 via the flow path of the first tube 20. As described above, the concave portion 12 corresponding to the sample holding section can repeatedly store (hold) and release the sample.
 シール部材10は第1管体20と第2管体30とを連通させる貫通孔を有しない。このため、第1管体20と第2管体30との間を、ガス等の媒体が流通することを抑制することができる。また、シール部材10は、回転の際にコック本体部40の内壁面42と摺動する摺動部18を有し、これによって、第2管体30の流路が継続してシールされる。すなわち、凹部12は摺動部18に取り囲まれており、摺動部18によって区画される領域内に形成されている。このため、凹部12が第2管体30の流路に露出したときも、コック本体部40の内壁面42と摺動部18とが接触していることから、コック本体部40の両端部からの第2管体30の流路内への外気の侵入を十分に抑制することができる。 The seal member 10 does not have a through hole that allows the first tube 20 and the second tube 30 to communicate with each other. For this reason, the flow of a medium such as gas between the first tube 20 and the second tube 30 can be suppressed. In addition, the seal member 10 has the sliding portion 18 that slides on the inner wall surface 42 of the cock main body 40 during rotation, whereby the flow path of the second pipe 30 is continuously sealed. That is, the concave portion 12 is surrounded by the sliding portion 18 and is formed in a region defined by the sliding portion 18. For this reason, even when the concave portion 12 is exposed to the flow path of the second pipe 30, the inner wall surface 42 of the cock main body 40 and the sliding portion 18 are in contact with each other. Of the outside air into the flow path of the second pipe 30 can be sufficiently suppressed.
 コック60は、図1に示す状態で凹部12に試料が導入され、図2に示す状態で凹部12から試料を放出する。図1の状態から図2の状態に変更するためにハンドル部14を操作している間も、第1管体20と第2管体30の間は、シール部材10によって継続して遮断される。このように、コック60は気密性のみならず、第1管体20と第2管体30の間の遮断性にも優れる。したがって、コック60は、高い気密性と高い遮断性が求められる反応装置用の試料供給器として特に有用である。 The cock 60 introduces the sample into the recess 12 in the state shown in FIG. 1 and discharges the sample from the recess 12 in the state shown in FIG. While the handle portion 14 is being operated to change from the state of FIG. 1 to the state of FIG. 2, the gap between the first tube 20 and the second tube 30 is continuously blocked by the seal member 10. . As described above, the cock 60 is excellent not only in airtightness but also in blocking property between the first tube 20 and the second tube 30. Therefore, the cock 60 is particularly useful as a sample supply device for a reaction device requiring high airtightness and high shutoff performance.
 試料は、液状試料であってもよいし、固形試料であってもよい。試料の種類に特に制限はなく、有機物、無機物又はこれらの混合物のいずれであってもよい。例えば、空気及び水分の侵入を十分に抑制する必要がある有機合成反応の原料に用いられる試料であってよい。これによって、例えば、有機材料、医薬、農薬など、種々の有機合成物を効率よく製造することができる。 The sample may be a liquid sample or a solid sample. The type of the sample is not particularly limited, and may be an organic substance, an inorganic substance, or a mixture thereof. For example, it may be a sample used as a raw material for an organic synthesis reaction that needs to sufficiently suppress intrusion of air and moisture. Thereby, for example, various organic compounds such as organic materials, medicines, and agricultural chemicals can be efficiently produced.
 試料は、もし液体であれば、例えばキャニュレーションによって気密性を維持しつつ反応器内に試料を導入することができる。しかしながら、試料が固形である場合、キャニュレーションによって導入することができない。このため、本実施形態のシール部材10及びコック60は、溶媒に溶解しない試料、又は溶解し難い試料を導入することが必要な場合に特に有用である。なお、キャニュレーションの場合、特に反応に不要な溶媒を用いることが必要になる場合があるが、本実施形態のコックは、反応に不要な溶媒を用いずに試料を導入することができる点で優位性がある。 If the sample is a liquid, the sample can be introduced into the reactor while maintaining airtightness by, for example, cannulation. However, if the sample is solid, it cannot be introduced by cannulation. For this reason, the seal member 10 and the cock 60 of the present embodiment are particularly useful when it is necessary to introduce a sample that does not dissolve in a solvent or a sample that does not easily dissolve. In the case of cannulation, it may be necessary to use a solvent unnecessary for the reaction in particular.However, the cock of the present embodiment can introduce a sample without using a solvent unnecessary for the reaction. There is an advantage.
 図3は、コック60を分解して示す分解図である。シール部材10のハンドル部14と固定部16との間の摺動部18は、ハンドル部14から固定部16に向かって細くなるようにテーパー状に加工されている。シール部材10は、コック本体部40及びパッキン50に挿入され、固定部16と固定部材52とを螺合することによって、コック本体部40に回転可能に取り付けられる。シール部材10のコック本体部40への固定方法は、このような方法に限定されず、回転可能に固定可能な方法を適宜採用することができる。 FIG. 3 is an exploded view showing the cock 60 in an exploded manner. The sliding portion 18 between the handle portion 14 and the fixed portion 16 of the seal member 10 is tapered so as to become thinner from the handle portion 14 toward the fixed portion 16. The seal member 10 is inserted into the cock main body 40 and the packing 50, and is rotatably attached to the cock main body 40 by screwing the fixing portion 16 and the fixing member 52 together. The method of fixing the seal member 10 to the cock main body 40 is not limited to such a method, and a method capable of being rotatably fixed can be appropriately employed.
 シール部材10は、例えば樹脂製であってもよく、ガラス製又は金属製であってもよい。シール性の向上及び耐腐食性の観点から、樹脂製又はガラス製であってよい。さらに、加工の容易性の観点又は摺動性の観点から、樹脂製であってよい。樹脂は、耐久性向上の観点から、フッ素樹脂であってよい。シール部材10をガラス製とする場合は、気密性及び操作性向上の観点から、少なくとも摺動部18の部分を擦りガラスや樹脂製で構成してもよい。コック本体部40はガラス製であってもよいし、樹脂製又は金属製であってもよい。 The seal member 10 may be made of, for example, resin, glass, or metal. It may be made of resin or glass from the viewpoint of improving sealing properties and corrosion resistance. Further, it may be made of resin from the viewpoint of ease of processing or slidability. The resin may be a fluororesin from the viewpoint of improving durability. When the seal member 10 is made of glass, at least the sliding portion 18 may be made of rubbed glass or resin from the viewpoint of improving airtightness and operability. The cock main body 40 may be made of glass, resin, or metal.
 図4は、第1実施形態に係る反応装置を示す図である。反応装置100は、反応器70と、反応器70に接続されたコック60とを備える。反応器70は、例えば主管71と側管72を備えるガラス製のフラスコであってよい。コック60は、第1管体20がコック本体部40よりも上側に、第2管体30がコック本体部40よりも下側になるように配置され、第2管体30は、反応器70の主管71に挿入されている。第1管体20の開口部には着脱可能な栓体86が取り付けられている。栓体86を取り外し、第1管体20の開口から試料を導入すれば、コック60に備えられるシール部材10の凹部に試料を収容することができる。 FIG. 4 is a diagram showing a reaction device according to the first embodiment. The reaction device 100 includes a reactor 70 and a cock 60 connected to the reactor 70. The reactor 70 may be, for example, a glass flask having a main pipe 71 and a side pipe 72. The cock 60 is arranged so that the first tube 20 is located above the cock body 40 and the second tube 30 is located below the cock body 40. Is inserted into the main pipe 71. A detachable plug 86 is attached to the opening of the first tube 20. If the plug 86 is removed and the sample is introduced from the opening of the first tube 20, the sample can be stored in the concave portion of the sealing member 10 provided in the cock 60.
 反応器70の側管72には、バルブ74が連結されている。バルブ74の先端に取り付けられたキャップ76には、マニホールド82と連通するニードル84が貫通して連結されている。バルブ74を操作することによって、マニホールド82から反応器70内にアルゴンガスなどの不活性ガスを供給したり、反応器70内の圧力を減圧状態にしたりすることができる。 バ ル ブ A valve 74 is connected to the side pipe 72 of the reactor 70. A needle 84 communicating with the manifold 82 is penetrated and connected to the cap 76 attached to the tip of the valve 74. By operating the valve 74, an inert gas such as an argon gas can be supplied from the manifold 82 into the reactor 70, or the pressure in the reactor 70 can be reduced.
 攪拌機能を備える温度調節槽95には、ドライアイスを含む冷媒90が貯留され、冷媒90内に反応器70の少なくとも一部を浸漬させる。反応器70内に原料液110とともにマグネチックスターラーを入れ、攪拌機能を起動すれば、原料液110が攪拌され、冷媒90との熱交換によって原料液110が所望の温度範囲に冷却される。反応器70の内部を不活性ガスに置換した状態で、コック60のハンドル部14を操作すれば、凹部12に収容されていた試料が、第2管体30を経由して反応器70内に落下し、原料液110に混合される。 冷媒 A refrigerant 90 containing dry ice is stored in the temperature control tank 95 having a stirring function, and at least a part of the reactor 70 is immersed in the refrigerant 90. If the magnetic stirrer is put into the reactor 70 together with the raw material liquid 110 and the stirring function is started, the raw material liquid 110 is stirred, and the raw material liquid 110 is cooled to a desired temperature range by heat exchange with the refrigerant 90. When the handle portion 14 of the cock 60 is operated in a state where the inside of the reactor 70 is replaced with an inert gas, the sample contained in the concave portion 12 is moved into the reactor 70 via the second tube 30. It falls and is mixed with the raw material liquid 110.
 このように、ハンドル部14を操作するという簡便な作業だけで、試料を反応器70内に導入することができる。また、コック60は、第1管体20と第2管体30と間を遮断しつつ第2管体30への外気の侵入を十分に抑制することができる。このようにシール性にも優れることから反応器70内への外気の侵入を十分に抑制しつつ、簡便な操作で反応器70内に試料を導入することができる。したがって、気密性が求められる反応を行う場合に特に有効である。 As described above, the sample can be introduced into the reactor 70 only by the simple operation of operating the handle portion 14. In addition, the cock 60 can sufficiently suppress the invasion of the outside air into the second tube 30 while blocking the space between the first tube 20 and the second tube 30. As described above, since the sealing property is excellent, the sample can be introduced into the reactor 70 by a simple operation while sufficiently preventing the invasion of the outside air into the reactor 70. Therefore, it is particularly effective when performing a reaction requiring hermeticity.
 本開示の反応装置は、上述の実施形態に限定されない。冷媒は氷水でもよいし、液体窒素であってよい。温度調節槽95はオイルバスであってよく、この場合、反応器70は加熱され、加熱環流下で反応を行うものであってもよい。反応器70はフラスコではなく、グラスライニングを有する反応器であってもよい。その場合、反応器をジャケット式として、スチーム等で加熱できるようにしてもよい。 反 応 The reaction device of the present disclosure is not limited to the above embodiment. The coolant may be ice water or liquid nitrogen. The temperature control tank 95 may be an oil bath, and in this case, the reactor 70 may be heated and perform the reaction under heated reflux. The reactor 70 may be a reactor having a glass lining instead of a flask. In that case, the reactor may be a jacket type so that it can be heated by steam or the like.
 図5は、本開示の第2実施形態に係るシール部材を示す図である。図5のシール部材10Bは、シャッター部12Aを備えており、第1管体20と第2管体30との間に設けられる。シャッター部12Aは、試料の保持部としての機能と、第1管体20と第2管体30との間を遮断する機能とを兼ね備える。シャッター部12Aを閉止した状態で、第1管体20から試料を導入すれば、シャッター部12Aの上に試料が保持される。そして、レバー17を操作してシャッター部12Aを開放すれば、試料は第1管体20側から第2管体30側に移動し、第2管体30の流路に放出される。 FIG. 5 is a diagram illustrating a seal member according to the second embodiment of the present disclosure. 5 includes a shutter portion 12A, and is provided between the first tubular body 20 and the second tubular body 30. The shutter unit 12A has both a function as a sample holding unit and a function of shutting off between the first tube 20 and the second tube 30. If a sample is introduced from the first tube 20 with the shutter 12A closed, the sample is held on the shutter 12A. Then, when the shutter portion 12 </ b> A is opened by operating the lever 17, the sample moves from the first tube 20 to the second tube 30 and is discharged into the flow path of the second tube 30.
 第2管体30の流路に放出された試料は、例えば第2管体30の下方に接続された反応器に導入される。その後、シャッター部12Aを閉止すれば、シャッター部12Aは試料の保持と放出を繰り返して行うことができる。本実施形態では、シャッター部12Aの開閉操作のみで試料の保持と放出とを行うことができる。このようにシンプルな構成で試料を保持して移動できることから、化学物質を取り扱う際の作業効率を向上することができる。 試 料 The sample discharged into the flow path of the second tube 30 is introduced into, for example, a reactor connected below the second tube 30. Thereafter, when the shutter 12A is closed, the shutter 12A can repeatedly hold and release the sample. In the present embodiment, the sample can be held and released only by opening and closing the shutter 12A. Since the sample can be held and moved with a simple configuration as described above, it is possible to improve the working efficiency when handling a chemical substance.
 図6~図8は、本開示の第3実施形態に係るシール部材及びコックを示す図である。図6のコック62は、円柱形状を有するコック本体部40Aと、コック本体部40Aに対してスライド可能且つ回転可能に取り付けられる円柱形状を有するシール部材10Aと、コック本体部40Aの上側に接続される第1管体20と、コック本体部40Aの下側に接続される第2管体30とを備える。シール部材10Aは基端側にハンドル部14Aを有する。シール部材10Aは先端側からコック本体部40Aに挿入される。 FIGS. 6 to 8 are views showing a seal member and a cock according to the third embodiment of the present disclosure. The cock 62 in FIG. 6 is connected to a cock body 40A having a cylindrical shape, a cylindrical seal member 10A slidably and rotatably attached to the cock body 40A, and an upper side of the cock body 40A. A first pipe 20 and a second pipe 30 connected to the lower side of the cock body 40A. The seal member 10A has a handle portion 14A on the base end side. The sealing member 10A is inserted into the cock main body 40A from the distal end side.
 シール部材10Aには、円周方向に沿って3本のリング状の摺動部18A,18B,18Cが取り付けられている。摺動部18A,18B,18Cは、例えば樹脂製のリングである。コック本体部40Aに対してシール部材10Aを回転又はスライドさせると、摺動部18A,18B,18Cはコック本体部40Aの内壁面42Aに対して摺動しながら回転又はスライドする。摺動部18A,18B,18Cは、シール部材10Aの先端から基端に向かって、この順で所定の間隔で取り付けられている。凹部12は、摺動部18Aと摺動部18Bで区画される領域内に形成されている。シール部材10Aの先端と対向するコック本体部40Aの先端部にはガス孔44が設けられている。ガス孔44を設けることによって、コック本体部40Aの内部と外部との間でガスを流通させることができる。 リ ン グ Three ring-shaped sliding portions 18A, 18B, 18C are attached to the seal member 10A along the circumferential direction. The sliding portions 18A, 18B, 18C are, for example, resin rings. When the sealing member 10A is rotated or slid with respect to the cock body 40A, the sliding portions 18A, 18B, 18C rotate or slide while sliding on the inner wall surface 42A of the cock body 40A. The sliding portions 18A, 18B, 18C are attached at predetermined intervals in this order from the distal end to the proximal end of the seal member 10A. The recess 12 is formed in a region defined by the sliding portion 18A and the sliding portion 18B. A gas hole 44 is provided at the distal end of the cock body 40A facing the distal end of the seal member 10A. By providing the gas holes 44, gas can be circulated between the inside and the outside of the cock main body 40A.
 第1管体20はコック本体部40Aの先端部側に接続されるのに対し、第2管体30はコック本体部40Aの中央部に接続されている。すなわち、スライド方向に沿ってみたときに、第1管体20と第2管体30は、互いにずれるように接続されている。このようなコック62を用いた場合、第1管体20側から第2管体30側への試料の移動は、以下の操作で行う。 The first tube 20 is connected to the distal end of the cock body 40A, while the second tube 30 is connected to the center of the cock body 40A. That is, the first tube 20 and the second tube 30 are connected to be shifted from each other when viewed along the sliding direction. When such a cock 62 is used, the sample is moved from the first tube 20 to the second tube 30 by the following operation.
 図6に示すように、シール部材10Aがコック本体部40Aの奥まで挿入された状態にする。シール部材10Aを挿入する際に、ガス孔44を開放しておけば、ガス孔44は、コック本体部40A内のガス抜きとして機能し、シール部材10Aの挿入を円滑に行うことができる。そして、ハンドル部14Aを用いてシール部材10Aをコック本体部40に対して回転させ、シール部材10Aに形成された凹部12が第1管体20の流路に露出するように位置合わせを行う。位置合わせ後、第1管体20の流路から試料を導入し、凹部12に収容する。このとき、第2管体30の流路は、摺動部18Bと摺動部18Cの間に位置するため、第2管体30の流路の気密性は良好に維持される。 。As shown in FIG. 6, the seal member 10A is inserted into the cock body 40A. If the gas hole 44 is opened when the seal member 10A is inserted, the gas hole 44 functions as a gas vent in the cock main body 40A, and the insertion of the seal member 10A can be performed smoothly. Then, the seal member 10A is rotated with respect to the cock main body portion 40 using the handle portion 14A, and the positioning is performed so that the concave portion 12 formed in the seal member 10A is exposed to the flow path of the first pipe 20. After the alignment, the sample is introduced from the flow path of the first tubular body 20 and accommodated in the recess 12. At this time, since the flow path of the second tubular body 30 is located between the sliding portion 18B and the sliding portion 18C, the airtightness of the flow passage of the second tubular body 30 is maintained well.
 次に、ハンドル部14Aをコック本体部40Aに対してスライドさせる操作を行い、コック本体部40Aと第2管体30との接続部が、摺動部18A,18Bの間になるように位置合わせを行う。これによって、コック62を図7の状態にする。この操作の際、ガス孔44を開放しておけば、ガス孔44はガス流入口として機能し、シール部材10Aのスライドを円滑に行うことができる。この状態では、試料は凹部12に保持されている。 Next, an operation of sliding the handle portion 14A with respect to the cock main body portion 40A is performed so that the connecting portion between the cock main body portion 40A and the second pipe 30 is positioned between the sliding portions 18A and 18B. I do. This brings the cock 62 into the state shown in FIG. In this operation, if the gas hole 44 is opened, the gas hole 44 functions as a gas inlet, and the sliding of the seal member 10A can be performed smoothly. In this state, the sample is held in the recess 12.
 続いて、ハンドル部14Aを操作してシール部材10Aをコック本体部40Aに対して半回転させ、凹部12を旋回して下方に向け、コック62を図8に示す状態にする。凹部12はシール部材10Aの回転に伴って旋回し、第2管体30の流路に露出する。このときも、凹部12は、摺動部18Aと摺動部18Bに区画される領域内に形成されていることから、第2管体30の流路の気密性が良好に維持される。図6~図8に示すように、第1管体20よりも第2管体30の方が下方にある場合、図8の状態になると、図6,図7の状態において凹部12に収容されていた試料は、重力によって第2管体30の流路内を下方に落下する。このように重力を利用して試料を落下できるため、極めて単純な操作で、第2管体30の下方に接続される反応器等に試料を導入することができる。 Next, the handle member 14A is operated to rotate the seal member 10A half a turn with respect to the cock main body 40A, and the concave portion 12 is turned downward and the cock 62 is brought into the state shown in FIG. The concave portion 12 turns with the rotation of the seal member 10 </ b> A and is exposed to the flow path of the second pipe 30. Also at this time, since the concave portion 12 is formed in a region defined by the sliding portion 18A and the sliding portion 18B, the airtightness of the flow path of the second pipe 30 is favorably maintained. As shown in FIGS. 6 to 8, when the second pipe 30 is located below the first pipe 20, when the state shown in FIG. 8 is reached, the second pipe 30 is accommodated in the recess 12 in the state shown in FIGS. The sample that has fallen falls in the flow path of the second tubular body 30 by gravity. As described above, since the sample can be dropped using gravity, the sample can be introduced into a reactor or the like connected below the second tubular body 30 by a very simple operation.
 図8の状態で凹部12から試料を落下させた後、コック本体部40Aに対してシール部材10Aをさらに半回転すると、図7の状態に戻る。そして、コック本体部40Aに対してシール部材10Aをスライドさせて挿入すれば、図6の状態に戻る。この際、ガス孔44を開放しておけば、シール部材10Aの挿入を円滑に行うことができる。図6の状態で、第1管体20の流路を経由して再び凹部12に試料を導入してもよい。このように試料の保持部に相当する凹部12は試料の収容(保持)と放出とを繰り返し行うことができる。 後 After the sample is dropped from the concave portion 12 in the state of FIG. 8 and the seal member 10A is further rotated half a turn with respect to the cock body 40A, the state returns to the state of FIG. Then, if the seal member 10A is slid and inserted into the cock main body 40A, the state returns to the state of FIG. At this time, if the gas hole 44 is opened, the insertion of the sealing member 10A can be performed smoothly. In the state of FIG. 6, the sample may be introduced again into the concave portion 12 via the flow path of the first tube 20. As described above, the concave portion 12 corresponding to the sample holding section can repeatedly store (hold) and release the sample.
 シール部材10Aは第1管体20と第2管体30とを連通させる貫通孔を有しない。このため、第1管体20と第2管体30との間を、ガス等の媒体が流通することを抑制することができる。また、シール部材10Aは、シール部材10Aのスライド及び回転の際にコック本体部40Aの内壁面42と摺動する摺動部18A,18B,18Cを有し、第2管体30の流路が外部と連通しないようになっている。このため、ハンドル部14を操作している間も、コック本体部40Aの両端部から第2管体30への外気の侵入を十分に抑制することができる。 The seal member 10A does not have a through-hole that allows the first tube 20 and the second tube 30 to communicate with each other. For this reason, the flow of a medium such as gas between the first tube 20 and the second tube 30 can be suppressed. The seal member 10A has sliding portions 18A, 18B, and 18C that slide on the inner wall surface 42 of the cock main body 40A when the seal member 10A slides and rotates. It does not communicate with the outside. For this reason, even while the handle portion 14 is being operated, intrusion of outside air from both ends of the cock main body 40A into the second tubular body 30 can be sufficiently suppressed.
 コック62は、図6に示す状態で凹部12に試料が導入され、図8に示す状態で凹部12から試料を放出する。また、図6の状態から図8の状態に変更するためにハンドル部14Aを操作している間(例えば図7の状態も含む)も、第1管体20と第2管体30の間は、摺動部18A,18Bによって継続して遮断される。このように、コック62は気密性のみならず、第1管体20と第2管体30の間の遮断性にも優れる。したがって、コック62は、高い気密性と高い遮断性が求められる反応装置用の試料供給器として特に有用である。 The cock 62 introduces the sample into the recess 12 in the state shown in FIG. 6, and discharges the sample from the recess 12 in the state shown in FIG. Also, while the handle portion 14A is being operated to change from the state of FIG. 6 to the state of FIG. 8 (for example, also including the state of FIG. 7), the distance between the first pipe 20 and the second pipe 30 is , Are continuously interrupted by the sliding portions 18A and 18B. As described above, the cock 62 is excellent not only in airtightness but also in blocking property between the first tube 20 and the second tube 30. Therefore, the cock 62 is particularly useful as a sample supply device for a reaction device requiring high airtightness and high shutoff performance.
 図9~図10は、本開示の第4実施形態に係るシール部材及びコックを示す図である。図9のコック64は、コック本体部40Cと、コック本体部40Cに対してスライド可能に取り付けられるシール部材10Cと、コック本体部40Cの上側に接続される第1管体20と、コック本体部40Cの下側に接続される第2管体30とを備える。シール部材10Cは基端側に取手部14Cを有する。シール部材10Cは先端側からコック本体部40Cに挿入される。コック本体部40C及びシール部材10Cは、円柱形状を有していてもよいし、四角柱等の角柱形状を有していてもよい。 FIGS. 9 and 10 are views showing a seal member and a cock according to the fourth embodiment of the present disclosure. The cock 64 shown in FIG. 9 includes a cock body 40C, a seal member 10C slidably attached to the cock body 40C, a first tube 20 connected to an upper side of the cock body 40C, and a cock body. And a second pipe 30 connected to the lower side of 40C. The seal member 10C has a handle portion 14C on the base end side. The sealing member 10C is inserted into the cock main body 40C from the distal end side. The cock main body 40C and the seal member 10C may have a columnar shape, or may have a prismatic shape such as a square pole.
 シール部材10Cには、その表面に沿って3本のリング状の摺動部18A,18B,18Cが取り付けられている。摺動部18A,18B,18Cは、例えば樹脂製のリングである。コック本体部40Cに対してシール部材10Cをスライドさせると、摺動部18A,18B,18Cはコック本体部40Cの内壁面42Cに対して摺動しながら回転又はスライドする。摺動部18A,18B,18Cは、シール部材10Cの先端から基端に向かって、この順で所定の間隔で取り付けられている。 リ ン グ Three ring-shaped sliding portions 18A, 18B, 18C are attached to the seal member 10C along the surface thereof. The sliding portions 18A, 18B, 18C are, for example, resin rings. When the seal member 10C is slid with respect to the cock body 40C, the sliding portions 18A, 18B, 18C rotate or slide while sliding on the inner wall surface 42C of the cock body 40C. The sliding portions 18A, 18B, 18C are attached at predetermined intervals in this order from the distal end to the proximal end of the seal member 10C.
 シール部材10Cには、摺動部18Aと摺動部18Bで区画される領域内において、シール部材10Cを貫通する貫通孔12Bが形成されている。貫通孔12Bとコック本体部40Cの内壁面42Cは、第1管体20から供給される試料の保持部を構成する。 The seal member 10C has a through hole 12B penetrating the seal member 10C in a region defined by the sliding portion 18A and the sliding portion 18B. The through hole 12 </ b> B and the inner wall surface 42 </ b> C of the cock main body 40 </ b> C constitute a holder for the sample supplied from the first tube 20.
 シール部材10Cの先端と対向するコック本体部40Cの先端部にはガス孔44が設けられている。ガス孔44を設けることによって、コック本体部40Cの内部と外部との間でガスを流通させることができる。 ガ ス A gas hole 44 is provided at the tip of the cock body 40C facing the tip of the seal member 10C. By providing the gas holes 44, gas can be circulated between the inside and the outside of the cock main body 40C.
 第1管体20はコック本体部40Cの先端部側に接続されるのに対し、第2管体30はコック本体部40Cの中央部に接続されている。すなわち、スライド方向に沿ってみたときに、第1管体20と第2管体30は、互いにずれるように接続されている。このようなコック62を用いた場合、第1管体20側から第2管体30側への試料の移動は、以下の操作で行う。 While the first tube 20 is connected to the distal end of the cock body 40C, the second tube 30 is connected to the center of the cock body 40C. That is, the first tube 20 and the second tube 30 are connected to be shifted from each other when viewed along the sliding direction. When such a cock 62 is used, the sample is moved from the first tube 20 to the second tube 30 by the following operation.
 図9に示すように、シール部材10Cがコック本体部40Cの奥まで挿入された状態にする。シール部材10Cを挿入する際に、ガス孔44を開放しておけば、ガス孔44は、コック本体部40C内のガス抜きとして機能し、シール部材10Cの挿入を円滑に行うことができる。図9の状態では、シール部材10Cに形成された貫通孔12Bが第1管体20の流路に連通するように、シール部材10Cとコック本体部40Cとが位置合わせされている。位置合わせは、取手部14Cを用いてシール部材10Cをコック本体部40に対してスライドすることによって行うことができる。図9に示す状態で、第1管体20の流路から試料を導入し、貫通孔12B内に試料を導入して保持する。このとき、第2管体30の流路は、摺動部18Bと摺動部18Cの間に位置するため、第2管体30の流路の気密性は良好に維持される。 。As shown in FIG. 9, the seal member 10C is inserted into the cock body 40C. If the gas hole 44 is opened when the seal member 10C is inserted, the gas hole 44 functions as a gas vent in the cock main body 40C, and the insertion of the seal member 10C can be performed smoothly. In the state of FIG. 9, the seal member 10C and the cock body 40C are aligned so that the through hole 12B formed in the seal member 10C communicates with the flow path of the first pipe 20. Positioning can be performed by sliding the seal member 10C with respect to the cock main body 40 using the handle 14C. In the state shown in FIG. 9, the sample is introduced from the flow path of the first tubular body 20, and the sample is introduced and held in the through hole 12B. At this time, since the flow path of the second tubular body 30 is located between the sliding portion 18B and the sliding portion 18C, the airtightness of the flow passage of the second tubular body 30 is maintained well.
 次に、取手部14Cを把持してシール部材10Cをコック本体部40Cに対してスライドさせ、図10に示す状態にする。この操作の際、ガス孔44を開放しておけば、ガス孔44はガス流入口として機能し、シール部材10Cのスライドを円滑に行うことができる。図10の状態では、貫通孔12Bは、第2管体30の流路に連通する。このときも、貫通孔12Bは、摺動部18Aと摺動部18Bの間に形成されていることから、第2管体30の流路の気密性が良好に維持される。 Next, the user grips the handle 14C and slides the seal member 10C with respect to the cock main body 40C to obtain the state shown in FIG. In this operation, if the gas hole 44 is opened, the gas hole 44 functions as a gas inlet, and the sliding of the seal member 10C can be performed smoothly. In the state of FIG. 10, the through hole 12 </ b> B communicates with the flow path of the second pipe 30. Also at this time, since the through hole 12B is formed between the sliding portion 18A and the sliding portion 18B, the airtightness of the flow path of the second pipe 30 is favorably maintained.
 図9,図10に示すように、第1管体20よりも第2管体30の方が下方にある場合、図10の状態になると、図9の状態において貫通孔12B内に保持されていた試料は、重力によって第2管体30の流路内を下方に落下する。このように重力を利用して試料を落下できるため、極めて単純な操作で、第2管体30の下方に接続される反応器等に試料を導入することができる。 As shown in FIGS. 9 and 10, when the second tube 30 is lower than the first tube 20, the state shown in FIG. 10 is retained in the through hole 12B in the state shown in FIG. The sample falls downward in the flow path of the second tube 30 by gravity. As described above, since the sample can be dropped using gravity, the sample can be introduced into a reactor or the like connected below the second tubular body 30 by a very simple operation.
 図10の状態で貫通孔12Bから試料を落下させた後、コック本体部40Cに対してシール部材10Cをスライドさせて挿入すれば、図9の状態に戻る。この際、ガス孔44を開放しておけば、シール部材10Cの挿入を円滑に行うことができる。図9の状態で、第1管体20の流路を経由して再び貫通孔12B内に試料を導入してもよい。このように、シール部材10C及びコック64は、試料の保持と放出とを繰り返し行うことができる。 後 After dropping the sample from the through hole 12B in the state of FIG. 10 and slidingly inserting the seal member 10C into the cock body 40C, the state returns to the state of FIG. At this time, if the gas hole 44 is opened, the insertion of the seal member 10C can be performed smoothly. In the state of FIG. 9, the sample may be introduced again into the through-hole 12B via the flow path of the first tube 20. As described above, the seal member 10C and the cock 64 can repeatedly hold and release the sample.
 シール部材10Cは貫通孔12Bを有するため、コック本体部40Cに対してシール部材10Cをスライドすることによって、試料を第1管体20側から第2管体30側に移動することができる。貫通孔12Bは、第1管体20と第2管体30の両方に同時に連通しないため、第1管体20と第2管体30との間を、ガス等の媒体が流通することを抑制できる。また、シール部材10Cは、シール部材10Cのスライドの際にコック本体部40Cの内壁面42と摺動する摺動部18A,18B,18Cを有し、第2管体30の流路が外部と連通しないようになっている。このため、取手部14Cを操作している間も、コック本体部40Cの両端部から第2管体30への外気の侵入を十分に抑制することができる。 た め Since the seal member 10C has the through hole 12B, the sample can be moved from the first tube 20 to the second tube 30 by sliding the seal member 10C with respect to the cock body 40C. Since the through-hole 12 </ b> B does not communicate with both the first tube 20 and the second tube 30 at the same time, the flow of a medium such as a gas between the first tube 20 and the second tube 30 is suppressed. it can. Further, the seal member 10C has sliding portions 18A, 18B, and 18C that slide on the inner wall surface 42 of the cock main body 40C when the seal member 10C slides, and the flow path of the second pipe 30 communicates with the outside. It does not communicate. For this reason, even while the handle 14C is being operated, intrusion of outside air into the second pipe 30 from both ends of the cock main body 40C can be sufficiently suppressed.
 コック64は、図9に示す状態で貫通孔12B内に試料が導入され、図10に示す状態で貫通孔12Bから試料を放出する。また、図9の状態から図10の状態に変更するために取手部14Cを操作している間も、第1管体20と第2管体30の間は、摺動部18A,18Bによって継続して遮断される。このように、コック62は気密性のみならず、第1管体20と第2管体30の間の遮断性にも優れる。したがって、コック64は、高い気密性と高い遮断性が求められる反応装置用の試料供給器として特に有用である。 The cock 64 introduces the sample into the through hole 12B in the state shown in FIG. 9 and discharges the sample from the through hole 12B in the state shown in FIG. Also, while the handle 14C is being operated to change from the state of FIG. 9 to the state of FIG. 10, the sliding portions 18A and 18B continue between the first tube 20 and the second tube 30. And be cut off. As described above, the cock 62 is excellent not only in airtightness but also in blocking property between the first tube 20 and the second tube 30. Therefore, the cock 64 is particularly useful as a sample supply device for a reaction device requiring high airtightness and high shutoff performance.
 上記各実施形態に係るシール部材10,10A,10B,10C、及びコック60,62,64は、種々の反応器に接続して用いることができる。例えば、不活性ガス雰囲気下で行う必要がある反応に用いられる反応器は、外気(酸素)の流入を防止するため高い気密性を有することが求められる。このような反応器に接続して用いてもよい。 シ ー ル The seal members 10, 10A, 10B, 10C and the cocks 60, 62, 64 according to the above embodiments can be used by connecting to various reactors. For example, a reactor used for a reaction that needs to be performed in an inert gas atmosphere is required to have high airtightness in order to prevent inflow of outside air (oxygen). You may connect and use such a reactor.
 本開示のシール部材、コック及び反応装置は、装置構造を複雑化することなく、高いシール性及び気密性を維持しつつも、試料を簡便な操作で反応器内に導入することができる。したがって、化学物質を取り扱う際の作業効率を向上することができる。また、このような反応器を用いて化学製品を製造する工程を行うことによって、効率よく且つ安定的に化学製品を製造することができる。化学製品は、例えば有機化合物又は無機化合物等の化合物であってよい。また、最終製品であってもよいし中間製品であってもよい。 シ ー ル The seal member, the cock, and the reaction device of the present disclosure can introduce a sample into the reactor by a simple operation without complicating the structure of the device and maintaining high sealing performance and airtightness. Therefore, work efficiency when handling chemical substances can be improved. In addition, by performing a step of manufacturing a chemical product using such a reactor, a chemical product can be efficiently and stably manufactured. The chemical product can be, for example, a compound such as an organic or inorganic compound. Further, it may be a final product or an intermediate product.
 以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、上述の実施形態のコックは、いずれも2本の管体を有していたが、3本以上の管体を備えていてもよい。例えば3本の管体を備える場合、第1管体から第1の試料を導入して保持部に第1の試料を保持し、第2管体に第1の試料を放出してよい。その後、第1管体から第2の試料を導入して保持部に第2の試料を保持し、第3管体に第2の試料を放出してよい。このように、互いに種類の異なる第1の試料及び第2の試料を別々の管体に放出するように構成されてよい。 Although some embodiments have been described above, the present disclosure is not limited to the above embodiments. For example, each of the cocks of the above-described embodiments has two tubes, but may have three or more tubes. For example, when three tubes are provided, the first sample may be introduced from the first tube, the first sample may be held in the holding unit, and the first sample may be discharged to the second tube. Thereafter, the second sample may be introduced from the first tube, the second sample may be held in the holding unit, and the second sample may be discharged to the third tube. In this way, the first sample and the second sample of different types may be configured to be discharged into separate tubes.
 また、図4の反応装置は、コック60に代えてコック62又はコック64を有していてもよいし、図5に示すシール部材10Bを有していてもよい。シール部材10Bのシャッター部12A、シール部材10,10Aのハンドル部14,14A、及びシール部材10Cの取手部14Cは、手動で操作するように構成されていてもよく、図示しない制御装置によって自動で操作されるように構成されていてもよい。また、シール部材10の形状は特に限定されず、例えばボール形状であってよい。 4 The reaction apparatus of FIG. 4 may have the cock 62 or 64 instead of the cock 60, or may have the sealing member 10B shown in FIG. The shutter portion 12A of the seal member 10B, the handle portions 14 and 14A of the seal members 10 and 10A, and the handle portion 14C of the seal member 10C may be configured to be manually operated, and may be automatically operated by a control device (not shown). It may be configured to be operated. The shape of the seal member 10 is not particularly limited, and may be, for example, a ball shape.
 実施例及び比較例を参照して本発明の内容をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1)
 図1,2に示すコック60を備える図4のような反応装置100を用いて、以下の反応式(1)で表されるグリコシル化反応を行った。具体的な手順は以下のとおりとした。
The content of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
(Example 1)
A glycosylation reaction represented by the following reaction formula (1) was performed using a reaction apparatus 100 having the cock 60 shown in FIGS. The specific procedure was as follows.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 スターラーとモレキュラーシーブ4A(20mg)を入れたフラスコの内部をアルゴンガスで置換した。ジクロロメタン(0.50mL)、N-ヨードスクシンイミド(68.1mg,303μmol)、上記反応式(1)における化合物(I)(50.6mg,84.2μml)及び上記反応式(1)におけるアルコール化合物(II)(48.1mg,84.3μmol)の溶液を、反応器70に相当するフラスコ内に入れた。 The inside of the flask containing the stirrer and Molecular Sieve 4A (20 mg) was replaced with argon gas. Dichloromethane (0.50 mL), N-iodosuccinimide (68.1 mg, 303 μmol), compound (I) (50.6 mg, 84.2 μml) in the above reaction formula (1) and alcohol compound (50.6 mg, 84.2 μml) in the above reaction formula (1) A solution of II) (48.1 mg, 84.3 μmol) was placed in a flask corresponding to reactor 70.
 栓体86を開放し、図1に示すように凹部12が上方を向くように角度調製されたシール部材10の凹部12に、粉状のインジウムトリフラート(In(OTf),141mg,251μmol)を収容した。その後、栓体86を閉止し、シール部材10を回転させ、第2管体30を経由してフラスコ内にインジウムトリフラートを落下させ、溶液に混合した。温度調節槽95内にドライアイスとエタノールを入れてフラスコ内の混合液を冷却し、スターラーで攪拌しながら-78℃~-40℃で45分間反応させた。その後、-78℃で、ジクロロメタンに溶解した下記式(IV)のアルコール(125μL,125μmol)のジクロロメタン溶液(アルコール濃度:1M)を反応液に加え、攪拌しながら60分間かけて0℃まで昇温し、チオ硫酸ナトリウムと炭酸水素ナトリウムの飽和水溶液を加えて反応を停止した。 The plug 86 is opened, and powdered indium triflate (In (OTf) 3 , 141 mg, 251 μmol) is placed in the concave portion 12 of the seal member 10 whose angle is adjusted so that the concave portion 12 faces upward as shown in FIG. Housed. Thereafter, the stopper 86 was closed, the seal member 10 was rotated, and indium triflate was dropped into the flask via the second tube 30 and mixed with the solution. The mixture in the flask was cooled by putting dry ice and ethanol in the temperature control tank 95, and reacted at -78 ° C to -40 ° C for 45 minutes while stirring with a stirrer. Thereafter, a dichloromethane solution (alcohol concentration: 1 M) of an alcohol of the following formula (IV) (125 μL, 125 μmol) dissolved in dichloromethane was added to the reaction solution at −78 ° C., and the temperature was raised to 0 ° C. over 60 minutes with stirring. Then, a saturated aqueous solution of sodium thiosulfate and sodium hydrogen carbonate was added to terminate the reaction.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 無水硫酸ナトリウムを用いて有機層を脱水し、減圧下で濃縮した。シリカゲルクロマトグラフィー(溶媒:ヘキサン/エチルアセテート=10/1~5/1)を用いて濃縮液の精製を行い無色の生成物を得た。生成物の分析の結果、上記反応式(1)で表される反応が進行していることが確認された。式(III)で表されるグルコピラノシド(58.7mg,54.0μmol)の収率は64%であった。 有機 The organic layer was dehydrated using anhydrous sodium sulfate and concentrated under reduced pressure. The concentrate was purified by silica gel chromatography (solvent: hexane / ethyl acetate = 10/1 to 5/1) to obtain a colorless product. As a result of analysis of the product, it was confirmed that the reaction represented by the above reaction formula (1) was in progress. The yield of the glucopyranoside represented by the formula (III) (58.7 mg, 54.0 μmol) was 64%.
 グルコピラノシドの分析結果は、以下のとおりであった。
・比施光度:[α]D 21 +11.15 (c 0.90, CHCl3)
・屈折率:Rf = 0.43 (hexane/EtOAc = 2/1) 
・IR分析: 2891, 1727, 1271, 1094, 1027, 700 cm-1
The analysis results for glucopyranosides were as follows.
・ Comparative light intensity: [α] D 21 +11.15 (c 0.90, CHCl 3 )
・ Refractive index: R f = 0.43 (hexane / EtOAc = 2/1)
・ IR analysis: 2891, 1727, 1271, 1094, 1027, 700 cm -1
1H NMR (400 MHz, C6D6): δ 8.18 (dd, J = 7.6, 1.2 Hz, 2H), 8.09 (dd, J = 7.6, 1.2 Hz, 2H), 7.58 (dd, J = 7.6, 2.0 Hz, 2H), 7.47 (dd, J = 7.6, 2.0 Hz, 2H), 7.30 (d, J = 6.9 Hz, 2H), 7.22 (dd, J = 7.6, 7.6 Hz, 2H), 7.14-6.88 (m, 21H), 6.07 (dd, J = 10.8, 9.6 Hz, 1H), 5.84 (dd, J = 10.8, 7.8 Hz, 1H), 5.34 (d, J = 6.4 Hz, 1H), 5.26 (s, 1H), 5.17 (d, J = 6.4 Hz, 1H), 5.11 (d, J = 6.4 Hz, 1H), 5.06 (d, J = 6.4 Hz, 1H), 4.90 (d, J = 11.9 Hz, 1H), 4.80-4.67 (m, 3H), 4.59 (d, J = 11.2 Hz, 1H), 4.51 (d, J = 7.8 Hz, 1H), 4.43 (d, J = 11.2 Hz, 1H), 4.36 (d, J = 7.8 Hz, 1H), 4.26 (dd, J = 10.3, 4.8 Hz, 1H), 4.22-4.10 (m, 2H), 4.04 (dd, J = 9.2, 7.8 Hz, 1H), 3.87 (ddd, J = 9.6, 6.0, 6.0 Hz, 1H), 3.81-3.66 (m, J = 7.1 Hz, 2H), 3.66-3.38 (m, 3H), 3.34-3.17 (m, 2H), 2.48 (dd, J = 8.0, 6.8 Hz, 2H), 1.79-1.55 (m, 2H) 1 H NMR (400 MHz, C 6 D 6 ): δ 8.18 (dd, J = 7.6, 1.2 Hz, 2H), 8.09 (dd, J = 7.6, 1.2 Hz, 2H), 7.58 (dd, J = 7.6 , 2.0 Hz, 2H), 7.47 (dd, J = 7.6, 2.0 Hz, 2H), 7.30 (d, J = 6.9 Hz, 2H), 7.22 (dd, J = 7.6, 7.6 Hz, 2H), 7.14-6.88 (m, 21H), 6.07 (dd, J = 10.8, 9.6 Hz, 1H), 5.84 (dd, J = 10.8, 7.8 Hz, 1H), 5.34 (d, J = 6.4 Hz, 1H), 5.26 (s, 1H), 5.17 (d, J = 6.4 Hz, 1H), 5.11 (d, J = 6.4 Hz, 1H), 5.06 (d, J = 6.4 Hz, 1H), 4.90 (d, J = 11.9 Hz, 1H) , 4.80-4.67 (m, 3H), 4.59 (d, J = 11.2 Hz, 1H), 4.51 (d, J = 7.8 Hz, 1H), 4.43 (d, J = 11.2 Hz, 1H), 4.36 (d, J = 7.8 Hz, 1H), 4.26 (dd, J = 10.3, 4.8 Hz, 1H), 4.22-4.10 (m, 2H), 4.04 (dd, J = 9.2, 7.8 Hz, 1H), 3.87 (ddd, J = 9.6, 6.0, 6.0 Hz, 1H), 3.81-3.66 (m, J = 7.1 Hz, 2H), 3.66-3.38 (m, 3H), 3.34-3.17 (m, 2H), 2.48 (dd, J = 8.0 , 6.8 Hz, 2H), 1.79-1.55 (m, 2H)
13C NMR (100 MHz, C6D6):δ 166.0, 165.6, 141.9, 138.8, 138.7, 138.2, 138.1, 133.2, 133.1, 130.3, 130.2, 130.1 (2C), 130.0 (2C), 129.1, 128.9 (3C), 128.7 (3C), 128.6 (3C), 128.6 (5C), 128.5 (4C), 127.9 (4C), 127.6, 126.8 (3C), 126.0 (2C), 104.5, 101.8, 101.2, 95.6, 95.4, 81.4, 77.9, 77.4, 76.8, 75.9, 75.4, 74.9, 72.8, 70.3, 70.0, 69.0, 69.0, 68.7, 66.6, 32.1, 32.4
・高分解能質量分析(HRESIMS):m/z 1109.4303 [M + Na]+ (calcd for C65H66NaO15, 1109.4294)
13 C NMR (100 MHz, C 6 D 6 ): δ 166.0, 165.6, 141.9, 138.8, 138.7, 138.2, 138.1, 133.2, 133.1, 130.3, 130.2, 130.1 (2C), 130.0 (2C), 129.1, 128.9 (3C), 128.7 (3C), 128.6 (3C), 128.6 (5C), 128.5 (4C), 127.9 (4C), 127.6, 126.8 (3C), 126.0 (2C), 104.5, 101.8, 101.2, 95.6, 95.4 , 81.4, 77.9, 77.4, 76.8, 75.9, 75.4, 74.9, 72.8, 70.3, 70.0, 69.0, 69.0, 68.7, 66.6, 32.1, 32.4
And high resolution mass spectrometry (HRESIMS): m / z 1109.4303 [M + Na] + (calcd for C 65 H 66 NaO 15, 1109.4294)
(比較例1)
 図1,2に示すようなコック部を備えない反応装置を用いたこと以外は、実施例1と同様にして、反応式(1)で表されるグリコシル化反応による合成を試みた。比較例1では、フラスコ上部の栓体を開けて、粉状のインジウムトリフラートをフラスコ内に直接導入した。導入後、栓体をすぐに閉止し、実施例1と同じ条件で合成を行った。一連の操作を行って得られた生成物の分析を行ったところ、式(III)で表されるグルコピラノシドの収率は1%以下であった。このように収率が低くなった要因として、インジウムトリフラートを導入する際に、外気が侵入し、外気に含まれる水分が反応を阻害したものと考えられる。
(Comparative Example 1)
Synthesis was performed by a glycosylation reaction represented by the reaction formula (1) in the same manner as in Example 1 except that a reaction device having no cock portion as shown in FIGS. 1 and 2 was used. In Comparative Example 1, the stopper at the top of the flask was opened, and powdered indium triflate was directly introduced into the flask. After the introduction, the stopper was immediately closed, and synthesis was performed under the same conditions as in Example 1. When the product obtained by performing a series of operations was analyzed, the yield of the glucopyranoside represented by the formula (III) was 1% or less. It is considered that the reason why the yield was reduced as described above is that when indium triflate was introduced, outside air entered and water contained in the outside air inhibited the reaction.
 本開示によれば、化学物質を取り扱う際の作業効率を向上することが可能なシール部材、コック、及び反応装置が提供される。また、化学製品を効率よく製造することが可能な化学製品の製造方法が提供される。 According to the present disclosure, a seal member, a cock, and a reaction device capable of improving work efficiency when handling a chemical substance are provided. Further, a method of manufacturing a chemical product capable of efficiently manufacturing a chemical product is provided.
 10,10A,10B,10C…シール部材、12…凹部(保持部)、12A…シャッター部(保持部)、14,14A…ハンドル部、14C…取手部、16…固定部、17…レバー、18,18A,18B,18C…摺動部,20,30…管体、40,40A,40C…コック本体部,42,42A,42C…内壁面、44…ガス孔、50…パッキン、52…固定部材、60,62,64…コック、70…反応器、71…主管、72…側管、74…バルブ、76…キャップ、82…マニホールド、84…ニードル、86…栓体、90…冷媒、95…温度調節槽、100…反応装置、110…原料液。
 
10, 10A, 10B, 10C: seal member, 12: concave portion (holding portion), 12A: shutter portion (holding portion), 14, 14A: handle portion, 14C: handle portion, 16: fixing portion, 17: lever, 18 , 18A, 18B, 18C: sliding portion, 20, 30: tube, 40, 40A, 40C: cock body, 42, 42A, 42C: inner wall surface, 44: gas hole, 50: packing, 52: fixing member , 60, 62, 64 ... cock, 70 ... reactor, 71 ... main pipe, 72 ... side pipe, 74 ... valve, 76 ... cap, 82 ... manifold, 84 ... needle, 86 ... plug, 90 ... refrigerant, 95 ... Temperature control tank, 100: reactor, 110: raw material liquid.

Claims (11)

  1.  少なくとも2つの管体の間に設けられるシール部材であって、
     試料を保持する保持部を有し、
     一方の管体側から他方の管体側に前記試料を移動可能に構成される、シール部材。
    A seal member provided between at least two pipes,
    A holding unit for holding the sample,
    A seal member configured to be able to move the sample from one tube side to the other tube side.
  2.  前記保持部は前記試料を収容する凹部で構成され、
     前記凹部が旋回して前記試料を一方の管体側から他方の管体側に移動する、請求項1に記載のシール部材。
    The holding unit is configured by a concave portion that accommodates the sample,
    The seal member according to claim 1, wherein the concave portion turns to move the sample from one tube side to the other tube side.
  3.  少なくとも2つの管体を連結するコック本体部に回転可能に取り付けられ、
     前記コック本体部の内壁面に対して摺動する摺動部を有し、
     前記保持部は前記摺動部によって区画される領域内に設けられる、請求項1又は2に記載のシール部材。
    Rotatably attached to a cock body connecting at least two pipes,
    Having a sliding portion that slides on the inner wall surface of the cock body,
    The seal member according to claim 1, wherein the holding portion is provided in a region defined by the sliding portion.
  4.  少なくとも2つの管体を連結するコック本体部に対してスライド可能に取り付けられる、請求項1~3のいずれか一項に記載のシール部材。 The seal member according to any one of claims 1 to 3, wherein the seal member is slidably attached to a cock body that connects at least two pipes.
  5.  少なくとも2つの管体の間に設けられるシール部材であって、
     少なくとも2つの管体を連結するコック本体部に対してスライド可能に取り付けられ、
     前記シール部材を貫通する貫通孔と2つの管体を連結するコック本体部の内壁面が、試料を保持する保持部を構成し、
     一方の管体側から他方の管体側に前記試料を移動可能に構成される、シール部材。
    A seal member provided between at least two pipes,
    Slidably attached to a cock body connecting at least two pipes,
    An inner wall surface of the cock body that connects the through-hole and the two pipes that penetrate the seal member constitutes a holding unit that holds the sample,
    A seal member configured to be able to move the sample from one tube side to the other tube side.
  6.  少なくとも2つの管体は、第1管体と第2管体とを有し、
     第1管体と第2管体とを連通させることなく、第1管体側から第2管体側に前記試料を移動可能に構成される、請求項1~5のいずれか一項に記載のシール部材。
    At least two tubes have a first tube and a second tube,
    The seal according to any one of claims 1 to 5, wherein the sample is configured to be movable from the first tubular body side to the second tubular body side without communicating the first tubular body and the second tubular body. Element.
  7.  コック本体部に回転可能に取り付けられるシール部材であって、
     回転の際に前記コック本体部の内壁面に対して摺動する摺動部と、
     該摺動部によって区画された領域内に形成され、回転に伴って旋回して試料を保持及び放出可能に構成される凹部と、を備える、シール部材。
    A seal member rotatably attached to the cock body,
    A sliding portion that slides on the inner wall surface of the cock main body during rotation,
    A recess formed in an area defined by the sliding portion, the recess being configured to be able to hold and discharge the sample by rotating with rotation.
  8.  少なくとも2つの管体と、これらを連結するコック本体部と、該コック本体部に取り付けられる請求項1~7のいずれか一項に記載のシール部材と、を備えるコック。 (8) A cock including at least two pipes, a cock body for connecting the two, and a seal member according to any one of claims 1 to 7 attached to the cock body.
  9.  請求項1~6のいずれか一項に記載のシール部材と反応器とを備え、
     前記保持部から前記試料が反応器内に落下する反応装置。
    A seal member and a reactor according to any one of claims 1 to 6,
    A reaction device in which the sample falls into the reactor from the holding unit.
  10.  請求項7に記載のシール部材と反応器とを備え、
     前記凹部から前記試料が反応器内に落下する反応装置。
    A reactor comprising the seal member according to claim 7 and a reactor,
    A reactor in which the sample falls into the reactor from the recess.
  11.  請求項9又は10に記載の反応装置を用いて化学製品を製造する工程を有する、化学製品の製造方法。 A method for producing a chemical product, comprising a step of producing a chemical product using the reactor according to claim 9 or 10.
PCT/JP2019/027788 2018-07-31 2019-07-12 Seal member, stopcock, reaction device, and method for producing chemical product WO2020026777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020533394A JP7386538B2 (en) 2018-07-31 2019-07-12 Cooks, reaction equipment, and chemical product manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018143585 2018-07-31
JP2018-143585 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026777A1 true WO2020026777A1 (en) 2020-02-06

Family

ID=69231632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027788 WO2020026777A1 (en) 2018-07-31 2019-07-12 Seal member, stopcock, reaction device, and method for producing chemical product

Country Status (2)

Country Link
JP (1) JP7386538B2 (en)
WO (1) WO2020026777A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138347A (en) * 2004-11-10 2006-06-01 Fuji Photo Film Co Ltd Micro-switching valve
JP2007534503A (en) * 2004-04-27 2007-11-29 インドレフ オーワイ Closure of discharge channel in metal casting vessel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122250A (en) * 2000-10-16 2002-04-26 Nidec Tosok Corp Spool
JP5188234B2 (en) * 2008-03-26 2013-04-24 京セラ株式会社 Flow path regulating member and liquid ejection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534503A (en) * 2004-04-27 2007-11-29 インドレフ オーワイ Closure of discharge channel in metal casting vessel
JP2006138347A (en) * 2004-11-10 2006-06-01 Fuji Photo Film Co Ltd Micro-switching valve

Also Published As

Publication number Publication date
JPWO2020026777A1 (en) 2021-08-19
JP7386538B2 (en) 2023-11-27

Similar Documents

Publication Publication Date Title
CN105473994B (en) System and method for using cooling resolution area to prepare chemical analysis sample
WO2020026777A1 (en) Seal member, stopcock, reaction device, and method for producing chemical product
WO2022094807A1 (en) Pesticide proportioning device for use in agricultural planting, and method therefor
CA2459241C (en) Sealing system with flow channels
Ataee et al. The speciation of inorganic arsenic in soil and vegetables irrigated with treated municipal wastewater
JP2005176839A (en) Rapidly opening/closing door for bio-equipment
CN103983685B (en) The low temperature conversion of chlorine isotope and assay method in a kind of chloro herbicide
Farrell et al. A simple, low-cost method for the dissolution of metal and mineral samples in plastic pressure vessels
Li et al. Ex situ Generation of Thiazyl Trifluoride (NSF3) as a Gaseous SuFEx Hub
EP0894257B1 (en) Chemical sampling/dispensing apparatus
Norby et al. A reaction cell for in situ studies of hydrothermal titration
US20090312567A1 (en) System and method for suppressing sublimation of materials during chemical transformation at high temperatures
JP6753859B2 (en) Equipment and methods for sampling halosilane
CN213022555U (en) Low boiling point material sampling pretreatment device
Karak et al. Simple Apparatus for Adding Small Amounts of Powder Materials under an Inert Atmosphere
CA2301094C (en) A combined laboratory condensor and vessel connector
IL135492A (en) Method of producing zinc bromide
CN112229944A (en) Method for detecting total pH value and chloride ion content of vinyl chloride monomer
Gerasimchuk et al. Inorganic synthesis: a manual for laboratory experiments
CN108786677B (en) A kind of microreactor of Click labelled synthesis PET imaging agent and its preparation and reaction method
CN221100652U (en) Indoor evaluation device for various oil extraction medicaments
CN217120251U (en) Reaction vessel for redox reaction of chemicals
NO850961L (en) PROCEDURE AND APPARATUS FOR PREPARING A CHLORO Dioxide SOLUTION
Crowther Autoclave digestion procedure for the determination of total iron content of waters
Hamner et al. Use of 50-Cm. Heated Gas Cell in Ultraviolet Spectrophotometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020533394

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844903

Country of ref document: EP

Kind code of ref document: A1