WO2020026767A1 - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
WO2020026767A1
WO2020026767A1 PCT/JP2019/027723 JP2019027723W WO2020026767A1 WO 2020026767 A1 WO2020026767 A1 WO 2020026767A1 JP 2019027723 W JP2019027723 W JP 2019027723W WO 2020026767 A1 WO2020026767 A1 WO 2020026767A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
lithium
positive electrode
aqueous secondary
Prior art date
Application number
PCT/JP2019/027723
Other languages
French (fr)
Japanese (ja)
Inventor
真 今野
菜摘 伊藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2020026767A1 publication Critical patent/WO2020026767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

This nonaqueous secondary battery comprises: an electrode assembly formed by impregnating, with a nonaqueous electrolytic solution, a laminate having laminated therein a positive electrode, a negative electrode, and a separator; and a third electrode containing lithium. The nonaqueous secondary battery is characterized in that: the third electrode is disposed so as to be adjacent to the electrode assembly in the thickness direction thereof across a lithium-ion impermeable film; in the surface of the electrode assembly, the entirety of a surface that faces the third electrode is covered with the lithium-ion impermeable film; and the electrode assembly and the third electrode have shared use of the nonaqueous electrolytic solution.

Description

非水系二次電池Non-aqueous secondary battery
本発明は、非水系二次電池に関する。 The present invention relates to a non-aqueous secondary battery.
リチウム二次電池を初めとする非水系二次電池は、高い電源電圧が得られ、高容量の蓄電デバイスとして知られている。 Non-aqueous secondary batteries such as lithium secondary batteries can obtain a high power supply voltage and are known as high-capacity power storage devices.
しかしながら、電極や電解液の構成や組成が充放電の繰返しによって変化した場合、鉛蓄電池等の開放形電池では電極の交換や電解液の補充によって元の状態に復元可能であるが、リチウム二次電池などの密閉形電池では充放電過程の副反応等により劣化した電解液を交換あるいは補充などをすることができず、再生の方法が課題となっていた。
リチウム二次電池は充放電負荷や時間経過に起因して容量が減少し、蓄積及び放出可能なエネルギー量が減少してしまう。容量減少のメカニズムの一つとしては、例えば、負極材に炭素材料を用いた場合、その表面で発生する副反応により負極表面に皮膜が生じ、一旦充電されたリチウムイオンが負極中に固定されてしまい、そのために充放電に関わるリチウムイオン量が減少することで電池容量が減少する現象が知られている。
However, when the composition and composition of the electrodes and electrolyte change due to repeated charge and discharge, open batteries such as lead-acid batteries can be restored to the original state by replacing the electrodes or replenishing the electrolyte. In a sealed battery such as a battery, an electrolyte solution degraded due to a side reaction or the like in a charging / discharging process cannot be replaced or supplemented, and a method of regeneration has been a problem.
The capacity of the lithium secondary battery is reduced due to the charging / discharging load and the passage of time, and the amount of energy that can be stored and released is reduced. As one of the mechanisms of capacity reduction, for example, when a carbon material is used for the negative electrode material, a film is formed on the negative electrode surface by a side reaction occurring on the surface, and once charged lithium ions are fixed in the negative electrode. As a result, a phenomenon is known in which the battery capacity decreases due to a decrease in the amount of lithium ions involved in charge and discharge.
リチウム二次電池の容量減少に対して、例えば、容量低下がリチウムイオンの減少によるものであるか否かを判定し、リチウムイオンの減少量を算出し、減少量に相当するリチウムイオンを補充して電池容量を回復させることが開示されている。
リチウム二次電池容量の回復技術において、電池の容量低下がリチウムイオンの減少によるものであるとの判定に基づいてリチウムイオンを補充した場合、それによりリチウム二次電池の劣化を早める場合がある。例えば、高温状態のような環境下でリチウム二次電池を使用するような場合、リチウムイオンの補充から比較的短時間しか経過していなくても、再びリチウムイオンの減少による電池の容量低下と判定される場合がある。このような場合に再度リチウムイオンを補充した場合に電池の劣化をもたらすことが知られている。このような劣化は、金属リチウムの析出(リチウムデンドライトの析出)が発生し、これにより電池寿命を短くすることになる。
With respect to the capacity decrease of the lithium secondary battery, for example, it is determined whether or not the capacity decrease is due to the decrease of lithium ions, the decrease amount of lithium ions is calculated, and lithium ions corresponding to the decrease amount are supplemented. It is disclosed that the battery capacity can be restored by using this method.
In the technology for restoring the capacity of a lithium secondary battery, when lithium ions are replenished based on the determination that the decrease in battery capacity is due to a decrease in lithium ions, deterioration of the lithium secondary battery may be accelerated. For example, when a lithium secondary battery is used in an environment such as a high temperature state, even if a relatively short time has passed since the replenishment of lithium ions, it is determined that the capacity of the battery is reduced again due to a decrease in lithium ions. May be done. It is known that replenishment of lithium ions in such a case causes deterioration of the battery. Such deterioration causes deposition of metallic lithium (deposition of lithium dendrite), thereby shortening the battery life.
特許文献1には、正極、負極、電解質及びリチウム元素を含む材料を活物質とする第3電極とを有するリチウムイオン電池と、第3電極と正極との間、および第3電極と負極との間の少なくとも一方を、電気的接続状態と電気的非接続状態との間で切り替えることが可能な接続部と、リチウムイオン電池を制御する制御部と、を含むリチウムイオン電池システムが開示されており、制御部は、接続部に対して、電気的接続状態から電気的非接続状態に切り替えた後において、正極上または負極上へのリチウムイオンの集中度合に対応する物理量が所定の条件を満たすまで再度電気的接続状態とすることを禁止することが記載されている。 Patent Literature 1 discloses a lithium-ion battery including a positive electrode, a negative electrode, an electrolyte, and a third electrode using an electrolyte and a material containing a lithium element as an active material; a lithium-ion battery between the third electrode and the positive electrode; A lithium ion battery system including a connection unit that can switch between at least one of an electrically connected state and an electrically disconnected state, and a control unit that controls the lithium ion battery, is disclosed. After the control unit switches the connection unit from the electrically connected state to the electrically disconnected state, until the physical quantity corresponding to the concentration of lithium ions on the positive electrode or the negative electrode satisfies a predetermined condition. It is described that the electrical connection state is prohibited again.
特開2016-51570号公報JP 2016-51570A
しかしながら、上記記載されたリチウムイオン電池システムの発明は、電池を劣化させることなく、電極にリチウムイオンを供給して容量を回復するために、電気的接続状態と電気的非接続状態との間で切り替えることが可能な接続部と、リチウムイオン電池を制御する制御部が必要であり、二次電池単体で容量回復を制御できない、制御するために安定した電源が必要である、二次電池の外部に制御部が別途必要である、といった課題がある。本発明では、上記課題を鑑み、簡単な構造で、容量を回復できる非水系二次電池を提供することを目的とする。 However, the above-described invention of the lithium-ion battery system is configured to switch between the electrically connected state and the electrically disconnected state in order to supply lithium ions to the electrodes and recover the capacity without deteriorating the battery. Requires a switchable connection and a control unit to control the lithium-ion battery; capacity recovery cannot be controlled by the secondary battery alone; requires a stable power supply to control; external to the secondary battery However, there is a problem that a control unit is separately required. In view of the above problems, an object of the present invention is to provide a non-aqueous secondary battery capable of recovering capacity with a simple structure.
上記課題を解決するため、本発明の非水系二次電池は、正極と負極とセパレータとが積層した積層体に非水系電解液が浸透した電極集合体と、リチウムを含む第三電極と、からなる非水系二次電池であって、上記第三電極がリチウムイオン不浸透性フィルムを挟んで上記電極集合体の厚さ方向に隣接して配置されており、上記電極集合体の表面のうち上記第三電極と対向する表面の全部が、上記リチウムイオン不浸透性フィルムに覆われており、上記電極集合体と上記第三電極は上記非水系電解液を共有していることを特徴とする。 In order to solve the above problems, a non-aqueous secondary battery of the present invention is an electrode assembly in which a non-aqueous electrolyte has penetrated a laminate in which a positive electrode, a negative electrode, and a separator are laminated, and a third electrode containing lithium. The non-aqueous secondary battery, wherein the third electrode is disposed adjacent to the thickness of the electrode assembly with a lithium ion impervious film interposed therebetween, and the surface of the electrode assembly includes The entire surface facing the third electrode is covered with the lithium ion impervious film, and the electrode assembly and the third electrode share the nonaqueous electrolyte.
本発明の非水系二次電池では、第三電極がリチウムイオン不浸透性フィルムを挟んで電極集合体の厚さ方向に隣接して配置されており、電極集合体と第三電極は非水系電解液を共有している。一方で、電極集合体の表面のうち第三電極と対向する表面の全部が、リチウムイオン不浸透性フィルムに覆われているため、第三電極に含まれるリチウムはリチウムイオン不浸透性フィルムを通過できず、リチウムイオン不浸透性フィルムの側面に回り込んで電極集合体へと供給される。このため、電極集合体の表面のうち第三電極に近い部分に優先的にリチウムイオンが供給されることがなくなり、第三電極からの距離に関係なく、それぞれの電極(正極及び負極)に概ね等しくリチウムイオンを供給することができる。
また、電極集合体を構成する正極及び負極と第三電極とは、リチウムイオン不浸透性フィルムにより隔てられているので、容量回復のため正極あるいは負極にリチウムを供給しても、リチウムイオンの偏りが生じにくく、構造を簡単にすることができる。
In the non-aqueous secondary battery of the present invention, the third electrode is disposed adjacent to the electrode assembly in the thickness direction with the lithium ion impervious film interposed therebetween, and the electrode assembly and the third electrode are non-aqueous electrolytic cells. Share the liquid. On the other hand, since the entire surface of the electrode assembly facing the third electrode is covered with the lithium ion impervious film, lithium contained in the third electrode passes through the lithium ion impervious film. It cannot be supplied to the electrode assembly by wrapping around the side surface of the lithium ion impervious film. Therefore, lithium ions are not preferentially supplied to a portion of the surface of the electrode assembly that is closer to the third electrode, and the respective electrodes (positive electrode and negative electrode) are substantially independent of the distance from the third electrode. Lithium ions can be supplied equally.
In addition, since the positive electrode and the negative electrode constituting the electrode assembly are separated from the third electrode by the lithium ion impervious film, even if lithium is supplied to the positive electrode or the negative electrode for capacity recovery, the bias of the lithium ion is biased. And the structure can be simplified.
本発明の非水系二次電池においては、第三電極と正極又は負極とを、非水系二次電池の外部において電気的に接続することで、第三電極に含まれるリチウムを、正極又は負極へと供給することができる。このとき、電極集合体を構成する正極及び負極と、第三電極とは、リチウムイオン不浸透性フィルムにより隔てられているので、第三電極から正極又は負極に対するリチウムイオンの供給速度が速くなりすぎず、リチウムデンドライトの析出等がおこりにくい。
回復させたい電極を構成する電極材(正極材又は負極材のいずれか)に合わせて、適当な抵抗器を介して第三電極と正極又は負極を接続することによって、ほぼ自動的に第三電極から正極又は負極に対するリチウムイオンの供給が開始される。その後は、選択した抵抗が電気抵抗となって自動的にリチウムイオンの供給速度が遅くなる。そのため、リチウムイオンの過剰供給による電極の劣化がおこらない。
In the non-aqueous secondary battery of the present invention, by electrically connecting the third electrode and the positive electrode or the negative electrode outside the non-aqueous secondary battery, lithium contained in the third electrode is converted to the positive electrode or the negative electrode. And can be supplied. At this time, since the positive electrode and the negative electrode constituting the electrode assembly are separated from the third electrode by the lithium ion impervious film, the supply speed of lithium ions from the third electrode to the positive electrode or the negative electrode is too high. And precipitation of lithium dendrite is unlikely to occur.
By connecting the third electrode and the positive electrode or the negative electrode through an appropriate resistor according to the electrode material (either the positive electrode material or the negative electrode material) constituting the electrode to be recovered, the third electrode is almost automatically connected. , The supply of lithium ions to the positive electrode or the negative electrode is started. Thereafter, the selected resistance becomes an electric resistance, and the supply speed of lithium ions is automatically reduced. Therefore, deterioration of the electrode due to excessive supply of lithium ions does not occur.
本発明の非水系二次電池は、次の態様であることが好ましい。 The non-aqueous secondary battery of the present invention preferably has the following aspects.
(1)上記正極を構成する正極集電体及び/又は上記負極を構成する負極集電体は、リチウムイオン不浸透性の金属箔である。 (1) The positive electrode current collector constituting the positive electrode and / or the negative electrode current collector constituting the negative electrode is a lithium ion impervious metal foil.
(2)上記第三電極は、リチウム-シリコン合金系活物質で構成されている。 (2) The third electrode is made of a lithium-silicon alloy-based active material.
(3)上記電極集合体は、平板型である。 (3) The electrode assembly is of a flat plate type.
(4)上記電極集合体、上記リチウムイオン不浸透性フィルム及び上記第三電極は、ラミネートフィルムに封入されている。 (4) The electrode assembly, the lithium ion impervious film, and the third electrode are sealed in a laminate film.
本発明によれば、第三電極からの距離に関係なく、それぞれの電極(正極及び負極)に概ね等しくリチウムイオンを供給することができる非水系二次電池を提供することができる。
また、電極集合体を構成する正極及び負極と、第三電極とは、リチウムイオン不浸透性フィルムにより隔てられているので、容量回復のため正極又は負極にリチウムイオンを供給しても、供給したリチウムイオンに偏りが生じにくく、構造を簡単にすることができる。
According to the present invention, it is possible to provide a non-aqueous secondary battery capable of supplying lithium ions to the respective electrodes (the positive electrode and the negative electrode) substantially equally regardless of the distance from the third electrode.
In addition, since the positive electrode and the negative electrode constituting the electrode assembly and the third electrode are separated by the lithium ion impervious film, even if lithium ions were supplied to the positive electrode or the negative electrode for capacity recovery, they were supplied. Lithium ions are less likely to be biased, and the structure can be simplified.
図1は、本発明の非水系二次電池の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of the non-aqueous secondary battery of the present invention. 図2は、図1におけるA-A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 図3は、実施例1に係る非水系二次電池を展開した様子を示す写真である。FIG. 3 is a photograph showing a state in which the nonaqueous secondary battery according to Example 1 is developed. 図4は、比較例1に係る非水系二次電池を模式的に示す斜視図である。FIG. 4 is a perspective view schematically illustrating the non-aqueous secondary battery according to Comparative Example 1. 図5は、図4におけるB-B線断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 図6は、実施例1及び比較例1に係る非水系二次電池のサイクル特性を示す図である。FIG. 6 is a diagram illustrating the cycle characteristics of the nonaqueous secondary batteries according to Example 1 and Comparative Example 1. 図7は、実施例1に係る非水系二次電池の、充放電試験終了後の正極集電体の様子を示す写真である。FIG. 7 is a photograph showing the state of the positive electrode current collector of the nonaqueous secondary battery according to Example 1 after the completion of the charge / discharge test. 図8は、実施例1に係る非水系二次電池の、充放電試験終了後の正極材の表面の様子を示す写真である。FIG. 8 is a photograph showing the appearance of the surface of the positive electrode material of the nonaqueous secondary battery according to Example 1 after the completion of the charge / discharge test.
本発明の非水系二次電池は、正極と負極とセパレータとが積層した積層体に非水系電解液が浸透した電極集合体と、リチウムを含む第三電極と、からなる非水系二次電池であって、上記第三電極がリチウムイオン不浸透性フィルムを挟んで上記電極集合体の厚さ方向に隣接して配置されており、上記電極集合体の表面のうち上記第三電極と対向する表面の全部が、上記リチウムイオン不浸透性フィルムに覆われており、上記電極集合体と上記第三電極は上記非水系電解液を共有していることを特徴とする。 The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery composed of an electrode assembly in which a non-aqueous electrolyte solution permeates a laminate in which a positive electrode, a negative electrode, and a separator are laminated, and a third electrode containing lithium. The third electrode is disposed adjacent to the lithium ion-impermeable film in the thickness direction of the electrode assembly, and a surface of the electrode assembly facing the third electrode among the surfaces of the electrode assembly Are covered by the lithium ion impervious film, and the electrode assembly and the third electrode share the nonaqueous electrolyte.
本発明の非水系二次電池では、第三電極がリチウムイオン不浸透性フィルムを挟んで電極集合体の厚さ方向に隣接して配置されており、電極集合体と第三電極は非水系電解液を共有している。一方で、電極集合体の表面のうち第三電極と対向する表面の全部が、リチウムイオン不浸透性フィルムに覆われているため、第三電極に含まれるリチウムはリチウムイオン不浸透性フィルムを通過できず、リチウムイオン不浸透性フィルムの側面を回り込んで電極集合体へと供給される。このため、電極集合体の表面のうち第三電極に近い部分に優先的にリチウムイオンが供給されることがなくなり、第三電極からの距離に関係なく、それぞれの電極(正極及び負極)に概ね等しくリチウムイオンを供給することができる。 In the non-aqueous secondary battery of the present invention, the third electrode is disposed adjacent to the electrode assembly in the thickness direction with the lithium ion impervious film interposed therebetween, and the electrode assembly and the third electrode are non-aqueous electrolytic cells. Share the liquid. On the other hand, since the entire surface of the electrode assembly facing the third electrode is covered with the lithium ion impervious film, lithium contained in the third electrode passes through the lithium ion impervious film. It cannot be supplied to the electrode assembly by wrapping around the side surface of the lithium ion impervious film. Therefore, lithium ions are not preferentially supplied to a portion of the surface of the electrode assembly that is closer to the third electrode, and the respective electrodes (positive electrode and negative electrode) are substantially independent of the distance from the third electrode. Lithium ions can be supplied equally.
本発明の非水系二次電池の構成について、図1及び図2を参照しながら説明する。
図1は、本発明の非水系二次電池の一例を模式的に示す斜視図であり、図2は、図1におけるA-A線断面図である。
図1及び図2に示すように、非水系二次電池1は、正極10とセパレータ20と負極30とが積層した積層体40に非水系電解液80が浸透した電極集合体50と、リチウムを含む第三電極70からなる。電極集合体50の表面のうち第三電極70と対向する表面31aの全部(図2中、電極集合体50と第三電極70とが重なる部分であり、両矢印Sで示される部分)がリチウムイオン不浸透性フィルム60に覆われており、電極集合体50と第三電極70は非水系電解液80を共有している。
正極10は正極集電体11及び正極材12からなり、負極30は負極集電体31及び負極材32からなる。電極集合体50、リチウムイオン不浸透性フィルム60及び第三電極70は、外装体であるラミネートフィルム90に封入されている。ラミネートフィルム90の外側には、正極10と接続される外部端子110、負極30と接続される外部端子130、第三電極70と接続される外部端子170がそれぞれ露出している。
なお、図2に示す非水系二次電池1では、電極集合体50の表面のうち第三電極70と隣接する表面31aの全部が第三電極70と対向しているが、電極集合体よりも第三電極の大きさが小さい場合には、電極集合体の表面のうち第三電極と隣接する表面の一部だけが、第三電極と対向する部分となる。
The configuration of the non-aqueous secondary battery of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view schematically showing an example of the non-aqueous secondary battery of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG.
As shown in FIGS. 1 and 2, the non-aqueous secondary battery 1 includes an electrode assembly 50 in which a non-aqueous electrolyte solution 80 permeates a laminate 40 in which a positive electrode 10, a separator 20, and a negative electrode 30 are laminated, and lithium. Including the third electrode 70. The entire surface 31a of the surface of the electrode assembly 50 facing the third electrode 70 (the portion where the electrode assembly 50 and the third electrode 70 overlap in FIG. 2 and the portion indicated by the double-headed arrow S) is lithium. The electrode assembly 50 and the third electrode 70 are covered with the ion-impermeable film 60 and share the non-aqueous electrolyte 80.
The positive electrode 10 includes a positive electrode current collector 11 and a positive electrode material 12, and the negative electrode 30 includes a negative electrode current collector 31 and a negative electrode material 32. The electrode assembly 50, the lithium ion impervious film 60, and the third electrode 70 are sealed in a laminate film 90 as an exterior body. Outside the laminated film 90, an external terminal 110 connected to the positive electrode 10, an external terminal 130 connected to the negative electrode 30, and an external terminal 170 connected to the third electrode 70 are respectively exposed.
In the non-aqueous secondary battery 1 illustrated in FIG. 2, the entire surface 31 a of the surface of the electrode assembly 50 adjacent to the third electrode 70 faces the third electrode 70, but is larger than the electrode assembly. When the size of the third electrode is small, only a part of the surface of the electrode assembly adjacent to the third electrode is a portion facing the third electrode.
なお、電極集合体と第三電極が非水系電解液を共有しているとは、非水系電解液を構成する電解質及び溶媒の両方を、電極集合体と第三電極が共有していることを意味する。
電極集合体と第三電極が非水系電解液を共有していると、電極集合体と第三電極との間でリチウムイオンの授受を行うことができる。
In addition, that the electrode assembly and the third electrode share the non-aqueous electrolyte means that both the electrolyte and the solvent constituting the non-aqueous electrolyte are shared by the electrode assembly and the third electrode. means.
When the electrode assembly and the third electrode share the non-aqueous electrolyte, lithium ions can be exchanged between the electrode assembly and the third electrode.
本発明の非水系二次電池においては、電極集合体を構成する正極又は負極と第三電極とを、非水系二次電池の外部で電気的に接続することによって、第三電極から正極又は負極にリチウムイオンを供給することができる。このとき、正極又は負極と第三電極との間に抵抗器を介することで、第三電極からのリチウムイオンの供給を制御することができる。
正極又は負極と第三電極との間に接続する抵抗器の抵抗の大きさは、第三電極と接続する電極を構成する電極材(正極材又は負極材)の種類、面積、活物質の量に応じて適宜選択すればよい。
In the non-aqueous secondary battery of the present invention, the positive electrode or the negative electrode constituting the electrode assembly and the third electrode, by electrically connecting outside the non-aqueous secondary battery, the positive electrode or the negative electrode from the third electrode Can be supplied with lithium ions. At this time, the supply of lithium ions from the third electrode can be controlled by interposing a resistor between the positive electrode or the negative electrode and the third electrode.
The magnitude of the resistance of the resistor connected between the positive electrode or negative electrode and the third electrode depends on the type, area, and amount of the active material (electrode material or negative electrode material) constituting the electrode connected to the third electrode. May be appropriately selected according to the conditions.
本発明の非水系二次電池において、リチウムイオン不浸透性フィルムは、樹脂、樹脂含浸紙や、少なくとも一方の表面、望ましくは両面に樹脂被覆を施した金属箔などが利用できる。 In the non-aqueous secondary battery of the present invention, as the lithium ion impervious film, a resin, a resin-impregnated paper, a metal foil coated with a resin on at least one surface, preferably both surfaces, or the like can be used.
本発明の非水系二次電池において、リチウムイオン不浸透性フィルムを構成する樹脂としては、耐電解液性を有しているもの、例えば、ポリプロピレン系樹脂、ポリオレフィン系樹脂、ポリイミド系樹脂、フッ素系樹脂等が利用できる。 In the non-aqueous secondary battery of the present invention, as the resin constituting the lithium ion impervious film, those having an electrolytic solution resistance, for example, a polypropylene resin, a polyolefin resin, a polyimide resin, a fluorine resin Resins and the like can be used.
本発明の非水系二次電池において、リチウムイオン不浸透性フィルムの大きさは、電極集合体の積層方向に正面視した際に、電極(正極あるいは負極)の表面のうち第三電極と対向する表面の全部を覆っていればよい。すなわち、リチウムイオン不浸透性フィルムの大きさは、電極と第三電極とが対向する部分の大きさと同じかそれ以上であればよい。
リチウムイオン不浸透性フィルムの大きさが電極と第三電極とが対向する部分の大きさと同じかそれ以上であると、電極と第三電極との間の電圧の勾配(電圧/距離)が最も大きくなるリチウムイオンの移動経路が、リチウムイオン不浸透性フィルムによって遮断されるため、リチウムイオンがリチウムイオン不浸透性フィルムを回り込んで電極に届く。そのため、リチウムが局所的に析出してデンドライドなどを形成せず、均等にリチウムイオンを供給することができる。
リチウムイオン不浸透性フィルムの大きさが、電極と第三電極とが対向する部分の大きさよりも大きい場合、電極集合体の積層方向に正面視した際に、電極と第三電極とが対向する部分からリチウムイオン不浸透性フィルムがはみ出すこととなるが、このときの長さ(ギャップともいう)は、それぞれの端面において0.5mm以上であることが好ましく、1mm以上であることがより好ましい。
なお第三電極の大きさは、上記条件を満たすものであればよく、上記条件を満たしている限り、電極より大きくてもよく、リチウムイオン不浸透性フィルムより大きくてもよい。
In the non-aqueous secondary battery of the present invention, the size of the lithium ion-impermeable film is opposed to the third electrode of the surface of the electrode (positive electrode or negative electrode) when viewed from the front in the stacking direction of the electrode assembly. It is only necessary to cover the entire surface. That is, the size of the lithium ion impervious film may be equal to or larger than the size of the portion where the electrode and the third electrode face each other.
When the size of the lithium ion impervious film is equal to or larger than the size of the portion where the electrode and the third electrode face each other, the voltage gradient (voltage / distance) between the electrode and the third electrode is the most. Since the moving path of the growing lithium ion is blocked by the lithium ion impervious film, the lithium ion wraps around the lithium ion impervious film and reaches the electrode. Therefore, lithium ions can be supplied evenly without depositing lithium locally to form dendrites or the like.
When the size of the lithium ion-impermeable film is larger than the size of the portion where the electrode and the third electrode face each other, the electrode and the third electrode face each other when viewed from the front in the stacking direction of the electrode assembly. The lithium ion impervious film protrudes from the portion, and the length (also called gap) at this time is preferably 0.5 mm or more at each end face, more preferably 1 mm or more.
The size of the third electrode may be any size that satisfies the above condition, and may be larger than the electrode or larger than the lithium ion impervious film as long as the above condition is satisfied.
本発明の非水系二次電池において、リチウムイオン不浸透性フィルムの厚さは特に限定されないが、10~100μmであることが好ましい。 In the non-aqueous secondary battery of the present invention, the thickness of the lithium ion-impermeable film is not particularly limited, but is preferably from 10 to 100 μm.
本発明の非水系二次電池において、正極を構成する正極集電体及び/又は負極を構成する負極集電体は、リチウムイオン不浸透性の金属箔であることが好ましい。
正極を構成する正極集電体及び/又は負極を構成する負極集電体がリチウムイオン不浸透性の金属箔であると、第三電極のリチウムイオンが、電極集合体の側面から回り込むように供給されるため、リチウムイオン浸透性の金属箔(すなわち、有孔の金属箔)を使用しなくてもリチウムイオンを電極に供給することができる。
リチウムイオン不浸透性の金属箔としては、例えば有孔処理が施されていない銅箔、アルミニウム箔等を利用することができる。
In the nonaqueous secondary battery of the present invention, the positive electrode current collector constituting the positive electrode and / or the negative electrode current collector constituting the negative electrode is preferably a lithium ion impervious metal foil.
When the positive electrode current collector constituting the positive electrode and / or the negative electrode current collector constituting the negative electrode is a lithium ion impervious metal foil, lithium ions of the third electrode are supplied so as to wrap around from the side surface of the electrode assembly. Therefore, lithium ions can be supplied to the electrode without using a lithium ion permeable metal foil (that is, a perforated metal foil).
As the lithium ion impervious metal foil, for example, a copper foil or an aluminum foil that has not been subjected to a perforation treatment can be used.
本発明の非水系二次電池において、正極を構成する正極材(正極活物質ともいう)及び負極を構成する負極材(負極活物質ともいう)としては、従来公知のものを好適に使用することができる。
正極材としては、例えば、LiCoO、LiNiO、LiMn、LiFePO等が挙げられる。
負極材としては、例えば、黒鉛、ハードカーボン、リチウム-シリコン合金系活物質、リチウム-スズ合金系活物質、リチウム-アンチモン合金系活物質、リチウム-アルミニウム合金系活物質、リチウム-マグネシウム合金系活物質等が挙げられる。
In the non-aqueous secondary battery of the present invention, as the positive electrode material (also referred to as a positive electrode active material) constituting the positive electrode and the negative electrode material (also referred to as the negative electrode active material) constituting the negative electrode, conventionally known materials are preferably used. Can be.
Examples of the positive electrode material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and LiFePO 4 .
Examples of the negative electrode material include graphite, hard carbon, lithium-silicon alloy-based active material, lithium-tin alloy-based active material, lithium-antimony alloy-based active material, lithium-aluminum alloy-based active material, and lithium-magnesium alloy-based active material. Substances and the like.
本発明の非水系二次電池において、電極集合体の形状は特に限定されないが、平板型であることが好ましい。
平板型の電極集合体を用いた非水系二次電池では、電極集合体の側面の四方向からリチウムイオンが侵入することができるので、効率よく容量回復をすることができる。
四方向からリチウムイオンが侵入すると、電極を上面視した際の周辺と中央とのリチウムイオンの供給量の差を小さくすることができる。
In the nonaqueous secondary battery of the present invention, the shape of the electrode assembly is not particularly limited, but is preferably a flat type.
In a non-aqueous secondary battery using a plate-type electrode assembly, lithium ions can enter from four directions on the side surface of the electrode assembly, so that capacity can be efficiently recovered.
When lithium ions enter from four directions, the difference in the supply amount of lithium ions between the periphery and the center when the electrode is viewed from above can be reduced.
本発明の非水系二次電池において、第三電極を構成する活物質は、リチウムを含むものであれば特に限定されず、金属リチウム、リチウム-シリコン合金系活物質、リチウム-スズ合金系活物質、リチウム-アンチモン合金系活物質、リチウム-アルミニウム合金系活物質、リチウム-マグネシウム合金系活物質等が挙げられ、これらの中ではリチウム-シリコン合金系活物質が好ましい。
リチウム-シリコン合金系活物質は、多くのリチウムを貯蔵することができる。また、リチウムが合金化して貯蔵されるので、金属リチウムと比較して安全性が高い。
In the non-aqueous secondary battery of the present invention, the active material constituting the third electrode is not particularly limited as long as it contains lithium, and is selected from the group consisting of metallic lithium, lithium-silicon alloy-based active material, and lithium-tin alloy-based active material. , A lithium-antimony alloy-based active material, a lithium-aluminum alloy-based active material, a lithium-magnesium alloy-based active material, and the like. Of these, a lithium-silicon alloy-based active material is preferable.
A lithium-silicon alloy-based active material can store a large amount of lithium. In addition, since lithium is alloyed and stored, the safety is higher than that of metallic lithium.
本発明の非水系二次電池において、非水系電解液は従来公知のものを好適に用いることができる。
非水系電解液を構成する電解質としては、例えば、LiPF、LiBF、LiClO等が挙げられ、2種以上を併用してもよい。
非水系電解液を構成する溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチレンカーボネート(DEC)、ジメチルカーボネート(DMC)などが挙げられ、2種以上を併用してもよい。
In the non-aqueous secondary battery of the present invention, a conventionally known non-aqueous electrolyte can be suitably used.
Examples of the electrolyte constituting the non-aqueous electrolyte include LiPF 6 , LiBF 4 , and LiClO 4 , and two or more kinds may be used in combination.
Examples of the solvent constituting the non-aqueous electrolyte include propylene carbonate (PC), ethylene carbonate (EC), diethylene carbonate (DEC), dimethyl carbonate (DMC), and the like, and two or more kinds may be used in combination. .
本発明の非水系二次電池において、電極集合体、リチウムイオン不浸透性フィルム及び第三電極は、ラミネートフィルムに封入されていることが好ましい。
電極集合体、リチウムイオン不浸透性フィルム及び第三電極がラミネートフィルムに封入されていると、電極集合体と、リチウムイオン不浸透性フィルム及び第三電極が密着するので、空間の利用効率が高い。
In the non-aqueous secondary battery of the present invention, the electrode assembly, the lithium ion impervious film, and the third electrode are preferably sealed in a laminate film.
When the electrode assembly, the lithium ion impervious film and the third electrode are sealed in the laminate film, the electrode assembly and the lithium ion impervious film and the third electrode are in close contact with each other, so that the space utilization efficiency is high. .
本発明の非水系二次電池において、第三電極は2箇所以上に設けられていてもよい。
例えば、第1の第三電極、リチウムイオン不浸透性フィルム、電極集合体、リチウムイオン不浸透性フィルム、第2の第三電極をこの順で積層し、ラミネートフィルムに封入したものも、本発明の非水系二次電池である。
In the nonaqueous secondary battery of the present invention, the third electrode may be provided at two or more locations.
For example, the first third electrode, the lithium ion impervious film, the electrode assembly, the lithium ion impervious film, and the second third electrode which are laminated in this order and sealed in a laminate film are also provided by the present invention. Is a non-aqueous secondary battery.
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
(Example)
Hereinafter, examples that more specifically disclose the present invention will be described. Note that the present invention is not limited to only these examples.
(実施例1)
[正極の作製]
正極材であるLiCoO97重量部、導電助剤であるアセチレンブラック2重量部、バインダであるPVdF1重量部、イオン交換水200重量部を混合攪拌機で混合して正極形成用スラリーを準備した。有孔処理が施されていないアルミニウム箔(厚さ10μm、平面視寸法70mm×60mm、一方の主面に電流取り出し用の外部端子を溶接したもの)の外部端子が溶接されていない面に、正極形成用スラリーをドクターブレードにより塗布し、乾燥させて厚さ90μmの正極を準備した。
(Example 1)
[Preparation of positive electrode]
97 parts by weight of LiCoO 2 as a positive electrode material, 2 parts by weight of acetylene black as a conductive additive, 1 part by weight of PVdF as a binder, and 200 parts by weight of ion-exchanged water were mixed by a mixing stirrer to prepare a slurry for forming a positive electrode. A positive electrode is applied to the surface of the non-perforated aluminum foil (thickness 10 μm, 70 mm × 60 mm in plan view, one main surface to which an external terminal for current extraction is welded) is not welded. The forming slurry was applied by a doctor blade and dried to prepare a positive electrode having a thickness of 90 μm.
[負極の作製]
負極材である黒鉛粉末90重量部、導電助剤であるアセチレンブラック5重量部、バインダであるSBR系共重合体バインダ4重量部及びカルボキシメチルセルロース(CMC)2重量部、イオン交換水200重量部を混合攪拌機で混合して負極形成用スラリーを準備した。有孔処理が施されていない銅箔(厚さ10μm、平面視寸法70mm×62mm、一方の主面に電流取り出し用の外部端子を溶接したもの)の外部端子が溶接されていない面に、負極形成用スラリーをドクターブレードにより塗布し、乾燥させて厚さ70μmの負極を準備した。
[Preparation of negative electrode]
90 parts by weight of graphite powder as a negative electrode material, 5 parts by weight of acetylene black as a conductive additive, 4 parts by weight of an SBR-based copolymer binder as a binder, 2 parts by weight of carboxymethyl cellulose (CMC), and 200 parts by weight of ion-exchanged water The mixture was mixed with a mixing stirrer to prepare a slurry for forming a negative electrode. A negative electrode is applied to the surface of the copper foil that has not been subjected to the perforation treatment (thickness: 10 μm, size in plan view: 70 mm × 62 mm, external terminal for current extraction welded to one main surface) where the external terminal is not welded. The forming slurry was applied by a doctor blade and dried to prepare a 70 μm-thick negative electrode.
正極及び負極をセパレータ(セルロース製、厚さ20μm、平面視寸法66mm×66mm)を介して、正極材及び負極材が対向する向きに積層して積層体を得た。なお、正極と負極は10mmずらして重ねられ、対応する部分の平面視寸法は60mm×60mmとなる。 The positive electrode and the negative electrode were laminated via a separator (made of cellulose, 20 μm in thickness, 66 mm × 66 mm in plan view) in a direction in which the positive electrode material and the negative electrode material face each other to obtain a laminate. In addition, the positive electrode and the negative electrode are shifted by 10 mm and overlapped with each other, and the corresponding portion in plan view has a size of 60 mm × 60 mm.
[第三電極の作製]
第三電極となるリチウム-シリコン合金(Li21Si合金)の箔(厚さ20μm、平面視寸法72mm×70mm)の一方の主面にニッケルメッキを施した後、外部端子を溶接した。
[Preparation of third electrode]
After nickel plating was applied to one main surface of a lithium-silicon alloy (Li 21 Si 5 alloy) foil (thickness: 20 μm, dimension in plan view: 72 mm × 70 mm) serving as a third electrode, external terminals were welded.
[非水系二次電池の作製]
積層体の正極側の表面と第三電極とを、リチウムイオン不浸透性フィルム(フッ素樹脂製、厚さ50μm、平面視寸法80mm×66mm)を介して積層して、アルミニウム製ラミネートフィルムの外装体に収容した後、完全に封止する前に非水系電解液であるLiPFの1M(DMC:EC=1:1体積比)溶液を注液し、積層体を電極集合体とするとともに、アルミニウム製ラミネートフィルムを完全に封止して、実施例1に係る非水系二次電池を作製した。
実施例1に係る非水系二次電池では、第三電極と対向する正極集電体の表面は全て、リチウムイオン不浸透性フィルムにより覆われていた。
実施例1に係る非水系二次電池を展開した様子を図3に示す。
図3は、実施例1に係る非水系二次電池を展開した様子を示す写真であるが、リチウムイオン不浸透性フィルムが透明であるため、枠状の破線で示している。
図3においては、外装体となるアルミニウムラミネートフィルム、負極、セパレータ、正極、リチウムイオン不浸透性フィルムの順に積層されており、第三電極は取り除かれている。
[Production of non-aqueous secondary battery]
The surface on the positive electrode side of the laminate and the third electrode are laminated via a lithium ion impervious film (made of fluororesin, 50 μm thick, 80 mm × 66 mm in plan view), and an aluminum laminate film package Then, before completely sealing, a 1M (DMC: EC = 1: 1 volume ratio) solution of LiPF 6 which is a non-aqueous electrolyte is injected to form a laminate into an electrode assembly and aluminum. The non-aqueous secondary battery according to Example 1 was produced by completely sealing the laminated film made of the same.
In the non-aqueous secondary battery according to Example 1, the entire surface of the positive electrode current collector facing the third electrode was covered with the lithium ion impervious film.
FIG. 3 shows a developed state of the non-aqueous secondary battery according to the first embodiment.
FIG. 3 is a photograph showing a state in which the non-aqueous secondary battery according to Example 1 is developed, and is shown by a frame-shaped broken line because the lithium ion impervious film is transparent.
In FIG. 3, an aluminum laminate film serving as an exterior body, a negative electrode, a separator, a positive electrode, and a lithium ion impervious film are laminated in this order, and the third electrode is removed.
(比較例1)
図4及び図5に示すような非水系二次電池を作製し、比較例1に係る非水系二次電池とした。
図4は、比較例1に係る非水系二次電池を模式的に示す斜視図であり、図5は、図4におけるB-B線断面図である。比較例1に係る非水系二次電池は、第三電極及びリチウムイオン不浸透性フィルムを外装体内に配置しない以外は、実施例1と同様の手順で作製した。すなわち、図4及び図5に示す非水系二次電池1’は、正極10とセパレータ20と負極30とが積層した積層体40に非水系電解液80が浸透した電極集合体50からなり、電極集合体50は外装体であるラミネートフィルム90に封入されている。非水系二次電池1’には、図1及び図2に示した非水系二次電池とは異なり、第三電極及びリチウムイオン不浸透性フィルムが存在しない。
なお、比較例1に係る非水系二次電池の体積に対する実施例1に係る非水系二次電池の体積の割合は1.03であった。
(Comparative Example 1)
A non-aqueous secondary battery as shown in FIG. 4 and FIG. 5 was manufactured, and a non-aqueous secondary battery according to Comparative Example 1 was obtained.
FIG. 4 is a perspective view schematically showing the non-aqueous secondary battery according to Comparative Example 1, and FIG. 5 is a sectional view taken along line BB in FIG. The non-aqueous secondary battery according to Comparative Example 1 was manufactured in the same procedure as in Example 1, except that the third electrode and the lithium ion-impermeable film were not disposed in the package. That is, the non-aqueous secondary battery 1 ′ shown in FIGS. 4 and 5 includes an electrode assembly 50 in which a non-aqueous electrolyte solution 80 permeates a laminate 40 in which the positive electrode 10, the separator 20, and the negative electrode 30 are laminated. The assembly 50 is sealed in a laminate film 90 as an exterior body. Unlike the non-aqueous secondary battery shown in FIGS. 1 and 2, the non-aqueous secondary battery 1 'does not include a third electrode and a lithium ion impermeable film.
The ratio of the volume of the nonaqueous secondary battery according to Example 1 to the volume of the nonaqueous secondary battery according to Comparative Example 1 was 1.03.
[充放電試験]
充放電試験機[BioLogic社製マルチポテンショスタット]を用いて、実施例1に係る非水系二次電池を、0.2Cで正極-負極間の電位差が4.2Vとなるまで充電した後、0.2Cで正極-負極間の電位差が3.0Vとなるまで放電する操作を131回繰り返し、その後132回目の充電を行って、充放電試験を終了した。
ただし、30回目、80回目、130回目の充電後、30回目、80回目、130回目の放電前にそれぞれ、正極の外部端子と第三電極の外部端子とを、50kΩの抵抗器を介して接続し、60時間静置して回復処理を行った。
1回目の放電容量を100%とした際の各サイクルにおける電池容量(放電容量)を図6に示す。
図6は、実施例1及び比較例1に係る非水系二次電池のサイクル特性を示す図である。
[Charge and discharge test]
After charging the non-aqueous secondary battery according to Example 1 at 0.2 C until the potential difference between the positive electrode and the negative electrode became 4.2 V using a charge / discharge tester [Multi Potentio Stat manufactured by BioLogic], the voltage was increased to 0 V. The operation of discharging until the potential difference between the positive electrode and the negative electrode became 3.0 V at .2C was repeated 131 times, and then the 132nd charge was performed to complete the charge / discharge test.
However, after the 30th, 80th, and 130th charging, and before the 30th, 80th, and 130th discharging, respectively, the external terminal of the positive electrode and the external terminal of the third electrode are connected via a 50 kΩ resistor. Then, it was allowed to stand for 60 hours to perform a recovery process.
FIG. 6 shows the battery capacity (discharge capacity) in each cycle when the first discharge capacity was set to 100%.
FIG. 6 is a diagram illustrating the cycle characteristics of the nonaqueous secondary batteries according to Example 1 and Comparative Example 1.
[回復処理後の正極の観察]
充放電試験終了後にアルミニウム製ラミネートフィルムを開封して、正極の表面(正極集電体の表面、及び、正極材の表面の両方)の様子を目視で観察した。3回の回復処理を経た正極集電体の様子を示す写真をそれぞれ図7、図8に示す。
図7は、実施例1に係る非水系二次電池の、充放電試験終了後の正極集電体の様子を示す写真であり、図8は、実施例1に係る非水系二次電池の、充放電試験終了後の正極材の表面の様子を示す写真である。
図7及び図8に示すように、正極集電体の表面及び正極材の表面にはいずれも、リチウムの析出が確認されなかった。
[Observation of positive electrode after recovery treatment]
After the completion of the charge / discharge test, the aluminum laminate film was opened, and the state of the surface of the positive electrode (both the surface of the positive electrode current collector and the surface of the positive electrode material) was visually observed. FIGS. 7 and 8 show photographs showing the state of the positive electrode current collector after the three times of the recovery processing.
FIG. 7 is a photograph showing the state of the positive electrode current collector after the end of the charge / discharge test of the nonaqueous secondary battery according to Example 1, and FIG. 8 is a photograph of the nonaqueous secondary battery according to Example 1. 4 is a photograph showing a state of a surface of a positive electrode material after completion of a charge / discharge test.
As shown in FIGS. 7 and 8, no lithium was deposited on the surface of the positive electrode current collector or the surface of the positive electrode material.
[正極材の電位の測定]
図8に示す正極材について、その表面を20個の領域に分割し、それぞれの領域における正極材の電位(vs. Li/Li)をミリオームハイテスター[日置電機(株)製]により測定した。結果を表1に示す。
表1には、図8に示す正極材の表面を縦方向をA1~A4に4分割し、横方向をB1~B5に5分割した際の、AとBの組み合わせで示される合計20個の領域における正極材の電位[V(vs. Li/Li)]を示している。表1に示すように、正極材の電位は4.109V~4.124V(vs. Li/Li)(標準偏差σ=0.004)であり、リチウムイオンが概ね等しく供給されていることが確認できた。
[Measurement of potential of positive electrode material]
The surface of the positive electrode material shown in FIG. 8 was divided into 20 regions, and the potential (vs. Li / Li + ) of the positive electrode material in each region was measured with a milliohm high tester (manufactured by Hioki Electric Co., Ltd.). . Table 1 shows the results.
Table 1 shows that the surface of the positive electrode material shown in FIG. 8 is divided into four parts in the vertical direction A1 to A4 and five parts in the horizontal direction B1 to B5. The potential [V (vs. Li / Li + )] of the positive electrode material in the region is shown. As shown in Table 1, the potential of the positive electrode material was 4.109 V to 4.124 V (vs. Li / Li + ) (standard deviation σ = 0.004), and lithium ions were supplied almost equally. It could be confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
図6の結果より、第三電極を用いて回復処理を行うことで、非水系二次電池の容量を回復することができることがわかる。
また、実施例1に係る非水系二次電池は、回復処理に際して電流値の制御等が不要であるため、構造が簡単である。さらに、本発明の非水系二次電池では、回復処理に用いる抵抗器よりも電気抵抗値の高い抵抗器を常時接続しておくことによって、電池容量の変動を小さくすることができる。
From the results in FIG. 6, it is understood that the capacity of the nonaqueous secondary battery can be recovered by performing the recovery process using the third electrode.
Further, the non-aqueous secondary battery according to the first embodiment does not require control of a current value or the like at the time of recovery processing, and thus has a simple structure. Furthermore, in the non-aqueous secondary battery of the present invention, fluctuations in battery capacity can be reduced by constantly connecting a resistor having a higher electric resistance value than the resistor used for the recovery process.
本発明の非水系二次電池は、蓄電デバイス用に好適に用いることができる。 The non-aqueous secondary battery of the present invention can be suitably used for power storage devices.
1、1’ 非水系二次電池
10   正極
11   正極集電体
12   正極材
20   セパレータ
30   負極
31   負極集電体
32   負極材
40   積層体
50   電極集合体
60   リチウムイオン不浸透性フィルム
70   第三電極
80   非水系電解液
90   ラミネートフィルム
110  外部端子(正極)
130  外部端子(負極)
170  外部端子(第三電極)
1, 1 'Non-aqueous secondary battery 10 Positive electrode 11 Positive electrode current collector 12 Positive electrode material 20 Separator 30 Negative electrode 31 Negative electrode current collector 32 Negative electrode material 40 Stack 50 Electrode assembly 60 Lithium ion impervious film 70 Third electrode 80 Non-aqueous electrolyte 90 Laminated film 110 External terminal (positive electrode)
130 External terminal (negative electrode)
170 External terminal (third electrode)

Claims (5)

  1. 正極と負極とセパレータとが積層した積層体に非水系電解液が浸透した電極集合体と、リチウムを含む第三電極と、からなる非水系二次電池であって、
    前記第三電極がリチウムイオン不浸透性フィルムを挟んで前記電極集合体の厚さ方向に隣接して配置されており、
    前記電極集合体の表面のうち前記第三電極と対向する表面の全部が、前記リチウムイオン不浸透性フィルムに覆われており、
    前記電極集合体と前記第三電極は前記非水系電解液を共有していることを特徴とする非水系二次電池。
    A non-aqueous secondary battery including an electrode assembly in which a non-aqueous electrolyte solution has permeated a laminate in which a positive electrode, a negative electrode, and a separator are laminated, and a third electrode containing lithium,
    The third electrode is disposed adjacent to the electrode assembly in the thickness direction of the lithium ion impervious film,
    All of the surface of the electrode assembly facing the third electrode is covered with the lithium ion impervious film,
    The non-aqueous secondary battery, wherein the electrode assembly and the third electrode share the non-aqueous electrolyte.
  2. 前記正極を構成する正極集電体及び/又は前記負極を構成する負極集電体は、リチウムイオン不浸透性の金属箔である請求項1に記載の非水系二次電池。 The non-aqueous secondary battery according to claim 1, wherein the positive electrode current collector constituting the positive electrode and / or the negative electrode current collector constituting the negative electrode is a lithium ion impervious metal foil.
  3. 前記第三電極は、リチウム-シリコン合金系活物質で構成されている請求項1または2に記載の非水系二次電池。 3. The non-aqueous secondary battery according to claim 1, wherein the third electrode is made of a lithium-silicon alloy-based active material.
  4. 前記電極集合体は、平板型である請求項1~3のいずれか1項に記載の非水系二次電池。 4. The non-aqueous secondary battery according to claim 1, wherein the electrode assembly is of a flat plate type.
  5. 前記電極集合体、前記リチウムイオン不浸透性フィルム及び前記第三電極は、ラミネートフィルムに封入されている請求項4に記載の非水系二次電池。 The non-aqueous secondary battery according to claim 4, wherein the electrode assembly, the lithium ion impervious film, and the third electrode are sealed in a laminate film.
PCT/JP2019/027723 2018-07-30 2019-07-12 Nonaqueous secondary battery WO2020026767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018142487A JP7101072B2 (en) 2018-07-30 2018-07-30 Non-water-based secondary battery
JP2018-142487 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020026767A1 true WO2020026767A1 (en) 2020-02-06

Family

ID=69232576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027723 WO2020026767A1 (en) 2018-07-30 2019-07-12 Nonaqueous secondary battery

Country Status (2)

Country Link
JP (1) JP7101072B2 (en)
WO (1) WO2020026767A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176748A1 (en) * 2020-03-06 2021-09-10 株式会社日立ハイテク Battery characteristic determination device and secondary battery system
WO2024020764A1 (en) * 2022-07-26 2024-02-01 宁德时代新能源科技股份有限公司 Battery cell, battery, and electric device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415352B2 (en) * 2019-07-17 2024-01-17 住友金属鉱山株式会社 How to recycle lithium ion secondary batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050476A (en) * 2003-03-31 2010-03-04 Fuji Heavy Ind Ltd Organic electrolyte capacitor
JP2011258798A (en) * 2010-06-10 2011-12-22 Nec Tokin Corp Electrochemical device
JP2013510405A (en) * 2009-11-03 2013-03-21 エンビア・システムズ・インコーポレイテッド High capacity anode materials for lithium ion batteries
JP2018067384A (en) * 2016-10-17 2018-04-26 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050476A (en) * 2003-03-31 2010-03-04 Fuji Heavy Ind Ltd Organic electrolyte capacitor
JP2013510405A (en) * 2009-11-03 2013-03-21 エンビア・システムズ・インコーポレイテッド High capacity anode materials for lithium ion batteries
JP2011258798A (en) * 2010-06-10 2011-12-22 Nec Tokin Corp Electrochemical device
JP2018067384A (en) * 2016-10-17 2018-04-26 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176748A1 (en) * 2020-03-06 2021-09-10 株式会社日立ハイテク Battery characteristic determination device and secondary battery system
WO2024020764A1 (en) * 2022-07-26 2024-02-01 宁德时代新能源科技股份有限公司 Battery cell, battery, and electric device

Also Published As

Publication number Publication date
JP7101072B2 (en) 2022-07-14
JP2020021555A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
US10686212B2 (en) Coated cathode active material for a battery cell
JP3982165B2 (en) Solid electrolyte battery
JP2019517722A (en) High energy density, high power density, high capacity and room temperature compatible "anode free" secondary battery
CN111384399B (en) Protective coating for lithium metal electrodes
US20190288273A1 (en) Electrolyte systems for silicon-containing electrodes
WO2007006123A1 (en) Lithium ion rocking chair rechargeable battery
JP2018198131A (en) Lithium ion secondary battery
CN112448047B (en) Method for prelithiation of electrodes
WO2020026767A1 (en) Nonaqueous secondary battery
CN114982027B (en) Battery pack, battery pack, electric device, and method and apparatus for manufacturing battery pack
JP2014532955A (en) Secondary battery
JP5856611B2 (en) Lithium electrochemical accumulator with specific bipolar structure
WO2019181278A1 (en) Lithium secondary battery
US6489061B1 (en) Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
CN114982035A (en) Battery pack, battery pack, electrical device, and method and apparatus for manufacturing battery pack
KR20180036715A (en) Lithium secondary battery
JP2002170567A (en) Nonaqueous electrolyte cell
JP2012113842A (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP6656370B2 (en) Lithium ion secondary battery and battery pack
CN115832187A (en) Electrode, method for producing same, secondary battery, battery module, battery pack, and electric device
WO2021100272A1 (en) Secondary battery and method for producing same
CN108023092B (en) Battery cell and battery comprising electroactive material
US10833319B2 (en) Active material for a positive electrode of a battery cell, positive electrode, and battery cell
CN220367979U (en) Laminated cell, secondary battery and electricity utilization device
JP2013239356A (en) Negative electrode protective agent for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845216

Country of ref document: EP

Kind code of ref document: A1