WO2020026650A1 - Automatic travel control system, automatic travel control method, automatic travel control program, and storage medium - Google Patents

Automatic travel control system, automatic travel control method, automatic travel control program, and storage medium Download PDF

Info

Publication number
WO2020026650A1
WO2020026650A1 PCT/JP2019/025304 JP2019025304W WO2020026650A1 WO 2020026650 A1 WO2020026650 A1 WO 2020026650A1 JP 2019025304 W JP2019025304 W JP 2019025304W WO 2020026650 A1 WO2020026650 A1 WO 2020026650A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
work
traveling
automatic
return
Prior art date
Application number
PCT/JP2019/025304
Other languages
French (fr)
Japanese (ja)
Inventor
阪口和央
佐野友彦
吉田脩
中林隆志
川畑翔太郎
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018223782A external-priority patent/JP7130535B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to KR1020217005529A priority Critical patent/KR20210038610A/en
Priority to CN201980051247.7A priority patent/CN112512297A/en
Publication of WO2020026650A1 publication Critical patent/WO2020026650A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines

Definitions

  • the present invention relates to an automatic travel control system for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit.
  • the harvester harvests crops in a field while automatically traveling along a traveling path calculated in advance.
  • the harvester separates from the travel route and arrives at an intermediate work position (the “parking position for harvest discharge” in the literature). Is selected as a work route on the way ("discharge route” in the literature), and the vehicle automatically travels along the work route on the way.
  • Patent Document 1 a traveling route of a harvested work site is selected as a work route on the way.
  • the traveling route used as an intermediate work route is calculated in advance on the assumption that crops in the field are harvested. Since the position and shape of the unworked land in the field before harvesting constantly change depending on the harvesting situation in the field, the halfway work route disclosed in Patent Document 1 may not always be optimal.
  • an object of the present invention is to provide an automatic traveling control system that can generate an optimal halfway work route according to the position of a machine body and a harvesting situation in a field.
  • An automatic traveling control system is an automatic traveling control system for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit, wherein the harvesting machine automatically travels.
  • a route setting unit that sets a traveling route for performing, an automatic traveling control unit that performs automatic traveling control of the aircraft based on the position of the aircraft and the traveling route, and a state detection unit that detects a state of the harvester
  • an interruption determination unit that can determine the interruption of the automatic traveling based on the detection result of the state detection unit, wherein the route setting unit determines that the interruption of the automatic traveling is interrupted by the interruption determination unit.
  • an intermediate work route is generated at the time when the interruption of the automatic traveling is determined based on the detection result of the state detection unit, and the intermediate work route is the position of the aircraft when the interruption of the automatic traveling is determined. And the harvest condition of the field. Therefore, as compared with a configuration in which the traveling route calculated in advance is used as the halfway work route, the distance of the halfway work route is shorter, and the optimum halfway work according to the position and shape of the unworked land before harvesting in the field is performed. A route is generated. As a result, an automatic traveling control system that can generate an optimal halfway work route according to the position of the machine body and the harvest situation in the field is realized.
  • the technical features of the automatic cruise control system described above are also applicable to an automatic cruise control program. Therefore, in the present invention, the automatic driving control program can also be covered by the right. Furthermore, a storage medium such as an optical disk, a magnetic disk, or a semiconductor memory in which the automatic cruise control program having this technical feature is stored can be a target of the right.
  • the automatic traveling control program in this case is an automatic traveling control program for a harvester that harvests crops in a field while traveling automatically and stores the harvested product in a storage unit, wherein the harvester is the automatic traveling control program.
  • a function, an interruption determination function capable of determining the interruption of the automatic traveling based on the detection result of the state detection function, and when the interruption of the automatic traveling is determined by the interruption determination function, the automatic traveling in the field is On the basis of a preset work position for working after the suspension, a position of the aircraft when the suspension of the automatic traveling is determined, and a harvest condition in the field,
  • the automatic traveling control method in this case is an automatic traveling control method for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit, wherein the harvester is the automatic traveling control method.
  • a route setting step of setting a traveling route for traveling, an automatic traveling control step of performing automatic traveling control of the aircraft based on a position of the aircraft and the traveling route, and a state detection of detecting a state of the harvester A step, an interruption determination step capable of determining the interruption of the automatic traveling based on the detection result of the state detection step, and when the interruption of the automatic traveling is determined by the interruption determination step, the automatic traveling in the field is determined.
  • the route setting unit generates the midway work route by adding a condition of the body at the time when the interruption of the automatic traveling is determined to a condition.
  • the orientation of the machine is taken into account when generating the work route on the way. For this reason, for example, at the position of the fuselage when the interruption of the automatic traveling is determined, if the route heading in the direction opposite to the direction of the fuselage is the shortest halfway work route, if the area of the already-worked place is sufficient In addition, a work route on the way of the aircraft turning 180 degrees at the current position can be generated. On the other hand, if the size of the existing work area is not sufficient, the aircraft may turn while turning back with the reverse running, but such a turn may take time to warp or roughen the field.
  • the route setting unit can generate an optimal halfway work route according to the actual condition of the field, taking into account the orientation of the machine.
  • the route setting unit obtains, as the harvest status of the field, position information of an unworked place where the harvesting work in the field has not been completed yet.
  • the route setting unit can generate an optimal halfway work path while bypassing the unworked area.
  • the route setting unit determines whether or not there is an unworked land where the harvesting work in the field has not yet been completed, on a straight line connecting the current position of the machine and the intermediate work position, If the unworked land does not exist on a straight line, the intermediate work route is generated so as to approximate the straight line, and if the unworked land exists on the straight line, Calculate the corner position of the nearest corner from the current position, and then determine whether or not the unworked area exists on another straight line connecting the corner position and the halfway work position, If the unworked area does not exist on a straight line, the intermediate work path is generated from the current position, the angular position, and the intermediate work position, and if the unworked area exists on the another straight line, And the unworked area does not exist. Until it finds a straight line it is preferable to repeat these operations.
  • the route setting unit when the route setting unit calculates a corner position of a corner closest to the current position, calculates a corner position of a corner closest to the traveling direction of the aircraft from the current position. Is preferably calculated.
  • the state detection unit includes a storage measurement unit that is provided in the storage unit and that measures a storage amount of the harvest stored in the storage unit. It is preferable that the interruption determination unit determines the interruption of the automatic traveling when a set amount of the harvest is stored in the storage unit.
  • the interrupt determination unit can determine whether to stop the automatic traveling before the storage of the kernel in the storage unit is full. .
  • the state detecting unit includes a fuel measuring unit provided in the fuel tank and measuring a remaining amount of the fuel stored in the fuel tank, and replenishing the fuel tank with the fuel at the intermediate work position.
  • a possible replenishment position is included, and when the remaining amount of fuel stored in the fuel tank falls below a set amount, the interruption determination unit preferably determines the interruption of the automatic traveling.
  • the fuel measuring unit detects the remaining amount of fuel in the fuel tank, so that the interruption determining unit can determine whether to stop the automatic driving before the fuel runs out.
  • Another feature of the automatic travel control system is an automatic travel control system for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit.
  • a route setting unit that sets a traveling route for the aircraft to perform automatic traveling; and an automatic traveling control unit that performs automatic traveling control of the aircraft based on the position of the aircraft and the traveling route.
  • the unit calculates the return position in the travel route based on the halfway work position and the harvesting status of the field after the automatic running is interrupted and the work is performed at a preset halfway work position in the field.
  • a return route for moving to the return position is generated based on the return position and the harvest condition in the field.
  • the return route is generated in consideration of the work position on the way and the harvest status of the field. For this reason, the distance of the return route is shorter than the configuration in which the traveling route calculated in advance before the harvest in the field is used as the return route, and the optimal distance is determined according to the position and shape of the unworked land before the harvest in the field. Return path is generated. Further, in the present invention, the position where the automatic traveling is interrupted does not need to be the return position, and the route setting unit can calculate the optimum return position according to the work position on the way and the harvest status of the field. As a result, an automatic traveling control system capable of generating an optimal return route according to the position of the machine body and the harvest situation in the field is realized.
  • an automatic driving control program having this technical feature can be covered by the right.
  • a storage medium such as an optical disk, a magnetic disk, or a semiconductor memory in which the automatic cruise control program having this technical feature is stored can be a target of the right.
  • the automatic traveling control program in this case is an automatic traveling control program for a harvester that harvests crops in a field while traveling automatically and stores the harvested product in a storage unit, wherein the harvester is the automatic traveling control program.
  • the return position in the traveling route is calculated based on the intermediate work position and the harvest condition of the field, and based on the return position and the harvest condition of the field.
  • causing the computer to execute a return path generation function of generating a return path for moving to the return position.
  • the automatic traveling control method in this case is an automatic traveling control method for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit, wherein the harvester is the automatic traveling control method.
  • the return position in the traveling route is calculated based on the intermediate work position and the harvest condition of the field, and based on the return position and the harvest condition of the field. And generating a return route for moving to the return position.
  • the route setting unit generates the return route by adding a condition of the machine body at the time of completion of the work at the halfway work position to the condition.
  • the orientation of the aircraft is taken into account when generating the return route. Therefore, for example, when the path going in the direction opposite to the direction of the aircraft is the shortest return path at the work position in the middle, if the area of the work site is sufficient, the return of the aircraft by 180 degrees at the current position is possible. A route can be generated. On the other hand, if the size of the work site is not sufficient, the aircraft may turn while turning back with the reverse traveling, but if such a turn is performed, it takes time to return to the traveling route while warping. Or the field may be damaged. In such a case, even if the route is a circuitous route, the route that moves forward without changing the direction of the body is the optimal return route. Thus, the route setting unit can generate an optimal return route according to the actual condition of the field, taking into account the orientation of the machine.
  • the route setting unit obtains, as the harvest status of the field, position information of an unworked place where the harvesting work in the field has not been completed yet.
  • the path setting unit can specify the optimum point of the unworked land where the harvest should be restarted, calculate the return position based on the optimum point of restarting the harvest, and generate the return path.
  • the route setting unit is the closest end on the traveling direction side of the aircraft from the halfway working position. It is preferable to calculate a portion as the return position.
  • This configuration prevents the calculation of the return position in the direction opposite to the traveling direction, and prevents the harvester from forcibly turning sharply. Further, according to this configuration, even if the position where the automatic driving is interrupted is located farther than the corner from the halfway operation position, the return position is set at a position closer to the intermediate operation position than the position where the automatic driving is interrupted. You. For this reason, even when the harvester moves to the position where the automatic traveling has been interrupted, the harvester can move with the harvesting operation, and the harvesting operation is performed efficiently.
  • the route setting unit determines whether or not there is an unworked land on which the harvesting work in the field has not yet been completed, on a straight line connecting the halfway work position and the return position, If the unworked land does not exist, the return route is generated so as to approximate the straight line, and if the unworked land exists on the straight line, the work position in the middle of the unworked land Calculate the corner position of the nearest corner from, and then determine whether or not the unworked land exists on another straight line connecting the corner position and the return position, and on the another straight line If the unworked land does not exist, the return path is generated from the halfway work position, the corner position, and the return position, and if the unworked land exists on the another straight line, the unworked land is generated. Find another straight line with no land It is preferable to repeat these operations until the.
  • the route setting unit calculates the corner position of the corner closest to the halfway work position
  • the route setting unit calculates the corner position of the closest corner on the traveling direction side of the aircraft from the halfway work position. Is preferably calculated.
  • the intermediate work position includes a discharge position at which the harvest stored in the storage section can be discharged.
  • the path setting unit considers the capacity of the grain tank, etc., and returns the return position in the work target area so that the discharge path when the aircraft departs from the traveling path next time is as short as possible. Can be calculated.
  • the intermediate work position includes a replenishing position at which fuel can be supplied to the fuel tank.
  • the route setting unit considers the capacity of the fuel tank and the like, and sets the return position in the work target area so that the refueling route when the aircraft departs from the traveling route next time is as short as possible. It is possible to calculate.
  • FIG. 3 is a diagram illustrating a traveling route in automatic traveling.
  • FIG. 3 is a functional block diagram illustrating a configuration of a combine control system. It is a system block diagram showing a control system in automatic running. It is a figure showing the discharge course in automatic running. It is a figure showing the discharge course in automatic running. It is a system block diagram showing a control system in automatic running. It is a figure showing a return course in automatic running. It is a figure showing a return course in automatic running. It is a figure showing another embodiment of a discharge course in automatic running. It is a figure showing another embodiment of a discharge course in automatic running. It is a figure showing another embodiment of a discharge course in automatic running. It is a figure showing another embodiment of a discharge course in automatic running. It is a figure showing another embodiment of a discharge course in automatic running.
  • the direction of arrow “F” shown in FIG. 1 is the forward direction of the aircraft, and the direction of arrow “B” is the backward direction of the aircraft unless otherwise specified.
  • the direction of arrow “U” shown in FIG. 1 is the upward direction, and the direction of arrow “D” is the downward direction.
  • an ordinary combine which is one form of a harvester includes a body 10, a crawler-type traveling device 11, an operating unit 12, a threshing device 13, a grain tank 14 as a storage unit, a harvesting device H , A transport device 16, a grain discharging device 18, and a vehicle position detecting module 80.
  • the traveling device 11 is provided at a lower part of the combine.
  • the combine can be driven by the traveling device 11 by itself.
  • the operating unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11, and these are configured as an upper portion of the body 10.
  • a driver who drives the combine or a monitor who monitors the work of the combine can board the driving unit 12.
  • the driver and the supervisor are concurrently used.
  • the monitor may monitor the combine operation from outside the combine. That is, the monitor in the present invention includes a driver.
  • the grain discharge device 18 is connected to a lower rear portion of the grain tank 14.
  • the vehicle position detection module 80 is attached to the upper front part of the driving unit 12.
  • the harvesting device H is provided at the front of the combine.
  • the transport device 16 is provided adjacent to and behind the harvesting device H. Further, the harvesting device H has a reaper 15 and a reel 17.
  • the cutting device 15 cuts crops in the field.
  • the crop is, for example, planted grain culm such as rice, but may be soybean or corn.
  • the reel 17 scrapes the crop to be harvested while rotating and driving. With this configuration, the harvesting device H harvests cereals in the field. Then, the combine is capable of harvesting traveling in which the harvester 15 travels by the traveling device 11 while harvesting crops in the field.
  • the combine has the cutting device 15 for cutting crops in the field.
  • the crop (for example, the harvested culm) cut by the cutting device 15 is transferred to the threshing device 13 by the transfer device 16.
  • the cut crop is threshed.
  • Grains as harvested products obtained by threshing are stored in a grain tank 14.
  • the grains stored in the grain tank 14 are discharged out of the machine by a grain discharging device 18 as necessary.
  • the operating unit 12 is provided with the communication terminal 2.
  • the communication terminal 2 is configured to be able to display various information.
  • the communication terminal 2 is fixed to the driving unit 12.
  • the communication terminal 2 may be configured to be detachable from the driving unit 12 or may be located outside the combine.
  • the combine automatically travels along a travel route set in a field.
  • the own vehicle position detection module 80 is used to detect the own vehicle position.
  • the vehicle position detection module 80 includes a satellite navigation module 81 and an inertial navigation module 82.
  • the satellite navigation module 81 receives a GNSS (Global Navigation / Satellite / System) signal (including a GPS signal) from the artificial satellite GS and outputs positioning data for calculating the position of the own vehicle.
  • the inertial navigation module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction.
  • the inertial navigation module 82 is used to supplement the own vehicle position calculation by the satellite navigation module 81.
  • the inertial navigation module 82 may be installed at a different location from the satellite navigation module 81.
  • FIG. 2 shows an example of the outer peripheral area SA and the work target area CA.
  • the observer makes the body 10 travel two or three times.
  • the width of the outer peripheral area SA is increased by the working width of the combine every time the body 10 makes a round.
  • the width of the outer peripheral area SA becomes about twice to three times the working width of the combine.
  • the outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling in the work target area CA.
  • the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
  • the transport vehicle CV shown in FIG. 2 can collect and transport the kernels discharged from the combine. At the time of discharging the grain, the combine moves to the vicinity of the transport vehicle CV, and then discharges the grain to the transport vehicle CV by the grain discharging device 18.
  • the traveling route in the work area CA is calculated as shown in FIG.
  • the traveling route includes a plurality of straight traveling routes extending in parallel with each other and a direction changing traveling route connecting the straight traveling routes.
  • the straight traveling route is not limited to a straight line, and may be a curved line or a combination of a curved line and a straight line.
  • the interval between the traveling routes arranged in parallel is determined based on the work width, which is the harvest width of the harvesting device H, and the overlap for absorbing the traveling error.
  • the calculated travel routes are sequentially set based on the work travel pattern, and the combine is automatically controlled to travel along the set travel route.
  • FIG. 3 shows a work mode in which the direction is changed while repeatedly moving forward and backward at the corners while mowing around the work target area CA.
  • FIG. 4 shows a combine control system using the automatic cruise control system according to the present invention.
  • the control system of the combine includes a control unit 5 composed of a large number of electronic control units called ECUs, and various input / output devices that perform signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is configured.
  • the notification device 62 is a device for notifying a monitoring person or the like of a work traveling state or various warnings, and includes a buzzer, a lamp, a speaker, a display, and the like.
  • the communication unit 66 is used for the control system of the combine to exchange data with the communication terminal 2 (see FIG. 1) or with a management computer installed at a remote place.
  • the communication terminal 2 includes a tablet computer operated by an observer standing on a field or an observer riding in a combine, a computer installed in a home or a management office, and the like.
  • the control unit 5 is a core element of the control system, and is shown as an aggregate of a plurality of ECUs. A signal from the vehicle position detection module 80 is input to the control unit 5 through the on-vehicle LAN.
  • the control unit 5 includes an output processing unit 58 and an input processing unit 57 as input / output interfaces.
  • the output processing unit 58 is connected to various operating devices 70 via a device driver 65.
  • the operating devices 70 include a traveling device group 71 that is a traveling-related device and a working device group 72 that is a working-related device.
  • the traveling equipment group 71 includes, for example, steering equipment, engine equipment, transmission equipment, braking equipment, and the like.
  • the work equipment group 72 includes power control equipment and the like in the harvest work apparatus (the harvest apparatus H, the threshing apparatus 13, the transport apparatus 16, and the grain discharge apparatus 18) as shown in FIG.
  • steering in the present embodiment is to change the direction of the body 10 according to the speed difference between the left and right crawlers in the crawler-type traveling device 11, but when the traveling device 11 is a wheel, the steering of the wheel itself is performed. Changing the direction of the aircraft 10 by changing the direction is also included in “steering”.
  • the input processing unit 57 is connected with a running state sensor group 63, a working state sensor group 64, a running operation unit 90, and the like.
  • the running state sensor group 63 includes an engine speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the traveling state sensor group 63 includes a fuel measuring unit 63A.
  • the fuel measuring section 63A is provided on a fuel tank (not shown) mounted on the body 10, and measures the remaining amount of fuel stored in the fuel tank.
  • the fuel measuring section 63A may be configured as a part of the state detecting section in the present invention.
  • the work state sensor group 64 includes a sensor that detects the drive state of the harvesting work device (the harvesting device H, the threshing device 13, the transport device 16, and the grain discharging device 18) as illustrated in FIG. Sensors for detecting the state of the particles are included. Further, the work state sensor group 64 includes a storage measurement unit 64A as a state detection unit.
  • the storage measurement unit 64A is, for example, a load cell provided below the grain tank 14 and measures the amount of stored grains in the grain tank 14.
  • the storage measurement unit 64A may be configured as a part of the grain tank 14.
  • the traveling operation unit 90 is a general term for operating tools that are manually operated by a monitor and whose operation signals are input to the control unit 5.
  • the traveling operation unit 90 includes a main speed change operation tool, a steering operation tool, a mode operation tool, an automatic start operation tool, and the like.
  • the main transmission operating tool is an operating tool for driving the traveling device 11 (see FIG. 1) forward or backward.
  • the mode operation tool has a function of sending a command for switching between automatic operation and manual operation to the control unit 5.
  • the automatic start operation tool has a function of sending a final automatic start command to start automatic traveling to the control unit 5.
  • the control unit 5 includes a travel control unit 51, a work control unit 52, a travel mode management unit 53, a vehicle position calculation unit 55, a notification unit 56, an interruption determination unit 59, a route generation module 4, and the like.
  • the vehicle position calculation unit 55 calculates the vehicle position that is the map coordinates (or the field coordinates) of the specific location of the aircraft 10 that is set in advance. calculate.
  • the position of a reference point of the body 10 for example, the center of the vehicle body, the center of the harvesting device H shown in FIG. 1, and the like
  • the notification unit 56 generates notification data based on a command or the like from each functional unit of the control unit 5 and provides the notification data to the notification device 62.
  • the travel control unit 51 has an engine control function, a steering control function, a vehicle speed control function, and the like, and provides a control signal to the traveling equipment group 71.
  • the work control unit 52 sends a control signal to the work equipment group 72 to control the movement of the harvesting work device (the harvesting device H, the threshing device 13, the transport device 16, the grain discharging device 18, etc.) as shown in FIG. give.
  • the traveling control unit 51 includes a manual traveling control unit 51A and an automatic traveling control unit 51B.
  • the automatic driving mode is set when performing the automatic driving
  • the manual driving mode is set for performing the manual driving.
  • the switching of the traveling mode is managed by the traveling mode management unit 53. That is, the traveling mode management unit 53 is configured to be able to switch the traveling mode between an automatic traveling mode for executing automatic traveling and a manual traveling mode for executing manual traveling.
  • the route generation module 4 includes a traveling route setting unit 41 as a route setting unit, a discharge position setting unit 42, and a leaving position calculation unit 43.
  • a traveling route for the combine as a harvester to perform automatic traveling is set by the traveling route setting unit 41, and the traveling route setting unit 41 generates a traveling route by a route calculation algorithm by itself.
  • the function of the traveling route setting unit 41 for setting the traveling route in this way is the “route setting function” of the present invention.
  • the route setting function is configured by a program executed by a computer.
  • the method for setting the traveling route in this way is the “route setting step” of the present invention.
  • the travel route setting unit 41 may download and use the travel route generated by the communication terminal 2 (see FIG. 1) or a remote management computer.
  • the discharge position setting unit 42 sets a discharge position DP, which is an example of an intermediate work position, at a location on the ridge where the transport vehicle CV can be laid sideways in the outer peripheral area SA.
  • the discharge position DP is preset based on the shape of the field and the position of the transport vehicle CV, but the discharge position DP is provided at a plurality of locations in the outer peripheral area SA, and one of the plurality of discharge positions DP is appropriately selected. May be adopted.
  • the discharge position setting unit 42 sets the discharge position DP for discharging the kernel from the kernel tank 14 in the outer peripheral area SA in the field.
  • the storage degree of the kernel in the kernel tank 14 is configured to be detectable by the storage measuring unit 64A.
  • the interruption determination unit 59 is configured to be able to determine the interruption of the automatic traveling based on the detection result of the storage measurement unit 64A as the state detection unit. That is, when the storage amount of the grain based on the detection of the storage measurement unit 64A reaches or exceeds the set amount, the interruption determination unit 59 performs the interruption determination. Further, the interruption determination section 59 outputs the determination result to the separation position calculation section 43.
  • the departure position calculation unit 43 calculates the departure position WP at which the departure from the traveling route on which the vehicle is traveling is started based on the current position of the aircraft 10.
  • the traveling route setting unit 41 generates, by a route calculation algorithm, a discharge route Pt for the combine to reach the discharge position DP from the separation position WP through the outer peripheral area SA.
  • the discharge path Pt is an example of an intermediate work path.
  • the automatic traveling control unit 51B controls the traveling equipment group 71 by generating a control signal for vehicle speed change including automatic steering and stopping.
  • the traveling route is set by the traveling route setting unit 41, and the own vehicle position is calculated by the own vehicle position calculating unit 55.
  • the control signal relating to the automatic steering is generated such that the azimuth deviation and the positional deviation between the own vehicle position and the traveling route are eliminated.
  • the control signal relating to the vehicle speed change is generated based on a vehicle speed value set corresponding to a forward position of a main speed change operation tool (not shown).
  • the automatic traveling based on the control block as shown in FIG. 5 is similarly performed in the control block as shown in FIG.
  • the manual traveling control unit 51A shown in FIG. 4 When the manual traveling mode is selected, the manual traveling control unit 51A shown in FIG. 4 generates a control signal based on the operation by the monitor and controls the traveling equipment group 71, thereby realizing the manual driving. .
  • the travel route calculated by the travel route setting unit 41 can be used for guidance for the combine to travel along the travel route even when the vehicle is operated manually.
  • the storage amount of the grain in the grain tank 14 (see FIG. 1) is full, harvesting of the crop by the harvesting device H cannot be continued.
  • the storage amount of the grain in the grain tank 14 is calculated based on the detection value of the storage measurement unit 64A. Further, the current position of the aircraft 10 is detected based on the own vehicle position detection module 80. For this reason, when the storage amount of the grains in the grain tank 14 reaches or exceeds the set amount, the interruption determination unit 59 determines that the automatic traveling is interrupted. Then, the departure position calculation unit 43 sets the current position of the aircraft 10 as the departure position WP. 6 and 7, the discharge position DP is a point adjacent to the horizontal position of the transport vehicle CV.
  • the condition for generating the discharge route Pt by the traveling route setting unit 41 includes that the aircraft 10 passes only the outer peripheral area SA without passing through the work target area CA.
  • the travel route setting unit 41 includes a preset intermediate work position for performing work after the interruption of the automatic traveling in the field, a detachment position WP as a position of the body 10 when the interruption of the automatic traveling is determined, Based on the harvesting status of, an intermediate work path for moving to the discharge position DP as an intermediate work position is generated.
  • the function of the traveling route setting unit 41 that generates the halfway work route in this way is the “halfway work route generation function” of the present invention.
  • the halfway work route generation function is configured by a program executed by a computer.
  • a method for generating a halfway work route in this way is the “halfway work route generation step” of the present invention.
  • 6 and 7 show a discharge path Pt as an intermediate work path. Then, the traveling route setting unit 41 acquires the position information of the work target area CA as an unworked place where the harvesting work in the field has not been completed yet, as the field harvest condition.
  • the traveling route setting unit 41 attempts to generate a first straight discharge route Pt1 that can move the separation position WP and the discharge position DP linearly (or substantially linearly). At the same time, the traveling route setting unit 41 generates a first turning route Pc1 for the body 10 to enter the discharging position DP while turning. At a position before reaching the discharge position DP, one end of the first straight discharge path Pt1 is tangentially in contact with the arc of the first turning path Pc1. In addition, the traveling route setting unit 41 determines whether or not the work target area CA in the field exists on the first straight discharge route Pt1 connecting the current position (the detachment position WP) of the body 10 and the discharge position DP. . In FIG.
  • the first straight discharge path Pt1 is a path that can reach the discharge position DP without crossing the work area CA.
  • the first straight discharge path Pt1 is used as the discharge path Pt, and the generation of the discharge path Pt is determined. That is, when the work target area CA does not exist on the first straight discharge path Pt1, the traveling path setting unit 41 generates the discharge path Pt so as to approximate a straight line.
  • the first turning path Pc1 has, for example, a turning radius equal to the minimum turning radius of the machine body 10, and this turning radius can be appropriately changed.
  • a second turning path Pc2, a third turning path Pc3, and the like, which will be described later, are the same as the first turning path Pc1, and each turning path Pc may have a configuration having a different turning radius.
  • the work target area CA as an unworked place is formed in a square shape, and the work target area CA formed in the square shape has corners P1, P2, P3, and P4.
  • the shape of the work target area CA keeps changing. Therefore, the positions of the polygonal corners P1, P2, P3, and P4 in the work target area CA also change according to the harvesting situation in the field.
  • the traveling route setting unit 41 (see FIGS. 4 and 5) moves the aircraft 10 from the detachment position WP to the ejection position DP according to the detachment position WP, the discharge position DP, and the harvest status of the field.
  • a discharge path Pt for automatic movement is generated.
  • the discharge route Pt is a route that detours outside the work target area CA.
  • the corner P1 is the corner of the corners P1, P2, P3, and P4 that is closest to the separation position WP that is the current position of the body 10. It is.
  • the corner P1 is a place where the body 10 can cut through when the body 10 goes straight without leaving the traveling route at the separation position WP.
  • the traveling path setting unit 41 sets a first angular position C1 for the aircraft 10 to turn at a position adjacent to the corner P1 in the outer peripheral area SA. As described above, the traveling route setting unit 41 calculates the first corner position C1 of the corner P1 closest to the traveling direction of the body 10 from the current position.
  • the traveling route setting unit 41 provides a first bypass discharge route Pd1 for the body 10 to travel in the outer peripheral area SA along the outer periphery of the work target area CA over the detachment position WP and the first angular position C1. Generate At the same time, the traveling route setting unit 41 generates an arc-shaped second turning route Pc2 based on the first angular position C1. One end of the first bypass discharge path Pd1 is tangent to the arc of the second turning path Pc2. The first angular position C1 is used as a reference point when generating the second turning path Pc2.
  • the second turning path Pc2 may be generated around the first angular position C1, or the second turning path Pc2 may be generated in a state where the first angular position C1 and the arc of the second turning path Pc2 overlap. .
  • the first bypass discharge path Pd1 and the second turning path Pc2 are included in a part of the discharge path Pt.
  • the traveling path setting unit 41 sets the first angular position C1 and the discharge position DP in a state where they extend tangentially from the arc of the second turning path Pc2. An attempt is made to generate a second straight discharge path Pt2 that can move linearly (or substantially linearly). At a position before reaching the discharge position DP, one end of the second straight discharge path Pt2 tangentially contacts on the arc of the first turning path Pc1. Further, the traveling route setting unit 41 determines whether or not the work target area CA exists on the second straight discharge route Pt2 connecting the first corner position C1 and the discharge position DP.
  • the traveling path setting unit 41 determines the discharge path Pt from the current position, the separation position WP, the first corner position C1, and the discharge position DP. Generate However, in the example shown in FIG. 7, since the second straight discharge path Pt2 crosses the work target area CA, the second straight discharge path Pt2 is not used as the discharge path Pt, and the generation of the discharge path Pt is not determined. .
  • the corner P2 is located on the opposite side of the corner P1 from the side where the first bypass discharge path Pd1 is located.
  • the traveling route setting unit 41 sets a second angular position C2 for the aircraft 10 to turn at a position adjacent to the corner P2 in the outer peripheral area SA.
  • the travel route setting unit 41 performs the second bypass discharge for the body 10 to travel in the outer peripheral area SA along the outer periphery of the work target area CA over the first angular position C1 and the second angular position C2.
  • a path Pd2 is generated.
  • the traveling route setting unit 41 generates an arc-shaped third turning route Pc3 based on the second angular position C2.
  • One end of the second bypass discharge path Pd2 is tangent to the arc of the third turning path Pc3.
  • the second angular position C2 is used as a reference point when generating the third turning path Pc3.
  • the third turning path Pc3 may be generated around the second angular position C2, or the third turning path Pc3 may be generated in a state where the second angular position C2 and the arc of the third turning path Pc3 overlap. .
  • the second bypass discharge path Pd2 and the third turning path Pc3 are included in a part of the discharge path Pt.
  • the traveling path setting unit 41 sets the second angular position C2 and the discharge position DP in a state where the second angular position C2 and the discharge position DP are extended tangentially from the arc of the third turning path Pc3.
  • An attempt is made to generate a third straight discharge path Pt3 that can move linearly (or substantially linearly).
  • One end of the third straight discharge path Pt3 is tangent to the arc of the first turning path Pc1.
  • the traveling route setting unit 41 determines whether or not the work target area CA exists on the third straight discharge route Pt3 connecting the second angular position C2 and the discharge position DP. In the example shown in FIG.
  • the third straight discharge path Pt3 is a path that can reach the discharge position DP without crossing the work target area CA. Therefore, the third straight discharge path Pt3 is included in a part of the discharge path Pt. Therefore, in FIG. 7, the traveling route setting unit 41 generates the discharge route Pt from the departure position WP, which is the current position, the first angular position C1, the second angular position C2, and the discharge position DP. As a result, the discharge route Pt moves from the separation position WP to the first bypass discharge route Pd1, the second turning route Pc2, the second bypass discharging route Pd2, the third turning route Pc3, the third straight discharging route Pt3, and the first turning route. It becomes a path to the discharge position DP via the order of Pc1.
  • the traveling route setting unit 41 attempts to create the discharge route Pt by preferentially using the straight route from the separation position WP to the discharge position DP. Then, when the work area CA exists on the straight path, the discharge path Pt is generated by searching for a straight path to the discharge position DP while inserting a detour path to the nearest corner position. In other words, when the work target area CA exists on another straight line other than the first straight discharge path Pt1 (for example, the second straight discharge path Pt2), the traveling path setting unit 41 does not include the work target area CA. The above calculation is repeated until another straight line is found.
  • the combine leaves the traveling path in the work target area CA and moves to the discharge path Pt generated in the outer peripheral area SA while continuing the harvesting by the harvesting device H. Movement to the discharge route Pt is performed based on a control signal of the automatic traveling control unit 51B. That is, the automatic traveling control unit 51B leaves the outer peripheral area SA side of the traveling route while traveling, and moves to the discharge position DP while causing the harvesting device H to harvest the crop.
  • the body 10 moves obliquely forward while traveling forward from the separation position WP toward the side where the discharge path Pt is located. Thereby, the machine body 10 can smoothly move to the discharge position DP without traveling backward, and there is no possibility that unharvested crops are stepped down by the machine body 10 at that time.
  • the generation of the return route Rt will be described with reference to FIGS.
  • the discharge position DP may be a replenishing position where fuel can be supplied to a fuel tank (not shown).
  • the intermediate work position may include a discharge position DP at which the kernels as the harvest stored in the kernel tank 14 as the storage unit can be discharged, or refuel the fuel tank (not shown). Possible supply positions may be included.
  • the traveling route setting unit 41 shown in FIGS. 4 and 8 calculates the return position RP shown in FIGS. 9 and 10 based on the detachment position WP and the harvest condition of the field.
  • the traveling route setting unit 41 includes a return position calculation unit that calculates a return position RP. Then, the return position calculation unit of the traveling route setting unit 41 takes into account the capacity of the grain tank 14 and the like, so that the discharge route Pt when the aircraft 10 next leaves the traveling route becomes the shortest, for example, The return position RP in the work area CA is calculated.
  • the return position calculating unit of the traveling route setting unit 41 is an example, and the traveling route setting unit 41 and the return position calculating unit may be configured as separate modules.
  • the traveling route setting unit 41 interrupts the automatic traveling and performs the work at the preset detachment position WP (intermediate work position) in the field, and then performs the operation based on the intermediate work position and the harvest status of the field.
  • the return position RP in the travel route is calculated, and a return route Rt that moves to the return position RP is generated based on the return position RP and the field harvest condition.
  • the traveling route setting unit 41 obtains, as the harvest status of the field, the position information of the work target area CA as an unworked place where the harvest work in the field has not been completed yet.
  • the traveling route setting unit 41 includes a separation position WP among the ends of the traveling route set in an unworked area (work target area CA) where the harvesting work in the field has not yet been completed.
  • a configuration in which the end closest to the traveling direction of the machine body 10 from the (intermediate work position) may be calculated as the return position RP.
  • the traveling route setting unit 41 may be configured to calculate the departure position WP shown in FIG. 7 as the return position RP as it is.
  • the traveling route setting unit 41 shown in FIGS. 4 and 8 considers, for example, the capacity of the grain tank 14 and the like, and sets a discharge route Pt (FIG. 6 and FIG. 7) when the aircraft 10 next leaves the traveling route.
  • the reference position may be calculated so as to minimize the return position RP in the work area CA.
  • the travel route setting unit 41 When the travel route setting unit 41 generates the return route Rt, the travel route setting unit 41 first generates the return route Rt by adding the orientation of the machine 10 at the time of completion of the work at the separation position WP (intermediate work position). I do. A first turning path Rc1 at the time of start of departure when leaving from the departure position WP is generated in front of the body 10, and a second turning path Rc2 for the body 10 to enter the return position RP while turning is generated. . At the same time, the traveling route setting unit 41 can linearly (or substantially linearly) move the first turning route Rc1 located near the departure position WP and the second turning route Rc2 located near the return position RP. The first straight return route Rt1 is attempted.
  • Both ends of the first rectilinear return route Rt1 are tangent to the respective arcs of the first turning route Rc1 and the second turning route Rc2.
  • the traveling route setting unit 41 determines whether or not the work target area CA in the field exists on the first straight return route Rt1 that connects the separation position WP and the return position RP.
  • the first rectilinear return route Rt1 is a route that can reach the return position RP without crossing the work target area CA. Therefore, in FIG. 9, the first straight return route Rt1 is used as the return route Rt, and the generation of the return route Rt is determined. That is, when the work target area CA does not exist on the first straight return route Rt1, the traveling route setting unit 41 generates the return route Rt so as to approximate a straight line.
  • the first turning route Rc1 and the second turning route Rc2 have a turning radius equal to, for example, the minimum turning radius of the body 10, and the turning radius can be changed as appropriate.
  • a third turning path Rc3, a fourth turning path Rc4, and the like described later are the same as the first turning path Rc1 and the second turning path Rc2, and each turning path Rc has a different turning radius. Or a configuration having the same turning radius.
  • the work target area CA as an unworked place is formed in a square shape, and the work target area CA formed in the square shape has corner portions R1, R2, R3, and R4.
  • the shape of the work target area CA keeps changing.
  • the positions of the polygonal corners R1, R2, R3, and R4 in the work target area CA also change according to the harvesting situation in the field.
  • the traveling route setting unit 41 moves from the detachment position WP to the return position RP in accordance with the detachment position WP, the return position RP, and the field harvest condition.
  • a return route Rt for automatically moving the body 10 is generated.
  • the function of the traveling route setting unit 41 that generates the return route Rt is the “return route generation function” of the present invention.
  • the halfway work route generation function is configured by a program executed by a computer.
  • the method of generating the return route Rt in this manner is the “return route generation step” of the present invention.
  • the return route Rt is a route that detours outside the work target area CA.
  • the traveling route setting unit 41 sets a first angular position C11 for the aircraft 10 to turn at a position adjacent to the corner R1 in the outer peripheral area SA. As described above, when the traveling route setting unit 41 calculates the corner position of the corner R1 closest to the separation position WP, the traveling route setting unit 41 computes the nearest corner on the traveling direction side of the body 10 from the midway work position. The first angular position C11 of R1 is calculated.
  • the travel route setting unit 41 performs the first detour return route Rd1 for the vehicle body 10 to travel in the outer peripheral area SA along the outer periphery of the work target area CA over the detachment position WP and the first angular position C11. Generate At the same time, the traveling route setting unit 41 generates an arc-shaped third turning route Rc3 based on the first angular position C11. One end of the first detour return route Rd1 is tangent to the arc of the third turning route Rc3. The first angular position C11 is used as a reference point when generating the third turning route Rc3.
  • the third turning path Rc3 may be generated around the first angular position C11, or the third turning path Rc3 may be generated in a state where the first angular position C11 and the arc of the third turning path Rc3 overlap. .
  • the first detour return route Rd1 and the third turning route Rc3 are included in a part of the return route Rt.
  • the traveling route setting unit 41 sets the first angular position C11 and the return position RP in a state where the first turning position R11 extends tangentially from the arc of the third turning route Rc3.
  • An attempt is made to generate a second rectilinear return route Rt2 that can move linearly (or substantially linearly).
  • the traveling route setting unit 41 determines whether or not the work target area CA exists on the second rectilinear returning route Rt2 connecting the first corner position C11 and the returning position RP.
  • the traveling route setting unit 41 determines the return route Rt from the departure position WP that is the current position, the first angular position C11, and the return position RP. Generate However, in the example shown in FIG. 10, since the second straight return route Rt2 crosses the work target area CA, the second straight return route Rt2 is not used as the return route Rt, and the generation of the return route Rt is not determined. .
  • a corner R2 exists on the side opposite to the side where the first detour return route Rd1 is located with respect to the corner R1.
  • the traveling route setting unit 41 sets a second angular position C12 for the aircraft 10 to turn at a position adjacent to the corner R2 in the outer peripheral area SA.
  • the traveling route setting unit 41 performs the second detour return for the body 10 to travel in the outer peripheral area SA along the outer periphery of the work target area CA over the first angular position C11 and the second angular position C12.
  • a route Rd2 is generated.
  • the traveling route setting unit 41 generates an arc-shaped fourth turning route Rc4 based on the second angular position C12.
  • One end of the second detour return route Rd2 is tangent to the arc of the fourth turning route Rc4.
  • the second angular position C12 is used as a reference point when generating the fourth turning route Rc4.
  • the fourth turning path Rc4 may be generated around the second angular position C12, or the fourth turning path Rc4 may be generated in a state where the second angular position C12 and the arc of the fourth turning path Rc4 overlap. .
  • the second detour return route Rd2 and the fourth turning route Rc4 are included in a part of the return route Rt.
  • the traveling route setting unit 41 sets the second angular position C12 and the return position RP in a state in which the second turning position Rc4 extends tangentially from the arc of the fourth turning route Rc4.
  • An attempt is made to generate a third rectilinear return route Rt3 that can move linearly (or substantially linearly).
  • the third rectilinear return path Rt3 is tangentially in contact with the arc of the third turning path Rc3, but in FIG. 10, the third rectilinear return path Rt3 is in the second angular position C12 ( It is linear over the arc of the fourth turning route Rc4) and the return position RP.
  • the traveling route setting unit 41 determines whether or not the work target area CA exists on the third rectilinear return route Rt3 connecting the second angular position C12 and the return position RP.
  • the third rectilinear return route Rt3 is a route that can reach the return position RP without crossing the work target area CA. Therefore, the third straight return route Rt3 is included in a part of the return route Rt. Therefore, in FIG. 10, the traveling route setting unit 41 generates the return route Rt from the departure position WP, which is the current position, the first angular position C11, the second angular position C12, and the return position RP.
  • the return route Rt is moved from the separation position WP to the first turn route Rc1, the first detour return route Rd1, the third turn route Rc3, the second detour return route Rd2, the fourth turn route Rc4, and the third straight return route.
  • the route becomes the return position RP via the order of Rt3.
  • the traveling route setting unit 41 attempts to create the return route Rt by preferentially using the straight route from the departure position WP to the return position RP. Then, when the work target area CA exists on the straight route, the return route Rt is generated by searching for a straight route to the return position RP while inserting a bypass route to the nearest corner position. In other words, when the work target area CA exists on another straight line other than the first straight return route Rt1 (for example, the second straight return route Rt2), the travel route setting unit 41 further does not include the work target area CA. The above calculation is repeated until another straight line is found.
  • the discharge position DP shown in FIG. 7 is illustrated as an example of the halfway work position in the above-described embodiment.
  • the halfway work position is not limited to the position for discharging the kernels. It may be a position for replenishment.
  • the discharge route Pt is illustrated as an intermediate work route
  • the intermediate work route may be, for example, a route for refueling.
  • the fuel supply position may be set as an intermediate work position at a location other than the discharge position DP in the field, and an intermediate work path corresponding to the fuel supply position may be set.
  • a plurality of intermediate work positions may be provided for each application in one field, and the intermediate work path may be set separately for each intermediate work position.
  • the state detection unit is not limited to the storage measurement unit 64A, and a fuel measurement unit 63A (see FIG. 4) or the like may be used. That is, a replenishing position at which fuel can be supplied to a fuel tank (not shown) may be included in the intermediate working position, or a harvested product stored in a grain tank 14 (see FIG. 1) as a storage unit may be included. A discharge position DP capable of discharging grains may be included.
  • the state detection unit that detects the state of the harvester may include a storage measurement unit 64A that measures the storage amount of the kernel as the harvest stored in the kernel tank 14 as the storage unit. Alternatively, a fuel measuring unit 63A for measuring the remaining amount of fuel stored in the fuel tank may be included.
  • the interruption determination unit 59 may have any configuration that can determine the interruption of the automatic traveling based on the measurement result of the state detection unit. Accordingly, the suspension determination unit 59 may be configured to determine the suspension of the automatic traveling when the remaining amount of the fuel stored in the fuel tank falls below the set amount. Further, the travel route setting unit 41 shown in FIGS. 4 and 8 takes into account the capacity of the fuel tank and the like, and the refueling route (intermediate work route) when the aircraft 10 departs from the travel route next time becomes as short as possible. As described above, the configuration may be such that the return position RP in the work target area CA is calculated.
  • the detachment position calculation unit 43 calculates the departure position WP based on the current position of the aircraft 10, but is not limited to this embodiment.
  • the separation position calculation unit 43 may set the separation position WP before the storage amount of the grain reaches the set amount. For example, as shown in FIG. 11, the detachment position calculation unit 43 calculates a point where the kernel in the kernel tank 14 is full (or almost full) based on the detection value of the storage measurement unit 64A, A configuration in which the separation position WP is set may be used. Then, the travel route setting unit 41 may generate a discharge route Pt, and when the machine body 10 reaches the disengagement position WP, the travel route setting unit 41 may depart from the travel route of the work target area CA and move to the discharge route Pt.
  • the traveling route setting unit 41 calculates the first corner position C1 of the corner P1 closest to the traveling direction of the body 10 from the current position,
  • the discharge route Pt is generated based on the first corner position C1, but is not limited to this embodiment.
  • FIG. 12 shows an example of the discharge path Pt that does not pass through the first corner position C1.
  • the traveling path setting unit 41 attempts to generate the first turning path Pc1 and also generate the first straight discharge path Pt11 that can linearly (or substantially linearly) move between the separation position WP and the discharge position DP.
  • the traveling route setting unit 41 calculates the first angular position C1 of the corner P1 closest to the traveling direction of the body 10 and the first bypass discharge route over the departure position WP and the first angular position C1. Generate Pd11. While repeating these calculations, generation of the second straight discharge path Pt12 and generation of the third straight discharge path Pt13 accompanied by generation of the fourth turning path Pc4 are attempted, and the second bypass discharge path Pd12 and the third Each of the bypass discharge path Pd13 is generated. In addition, a second turning path Pc2, a third turning path Pc3, and a fifth turning path Pc5 are also generated.
  • the method of generating the first to fifth turning paths Pc1 to Pc5 is the same as the method of generating the first to third turning paths Pc1 to Pc3 described above with reference to FIG. It is generated in accordance with a change in the approach direction to the ten discharge positions DP.
  • the fourth straight discharge path Pt14 is a path that can reach the discharge position DP without crossing the work target area CA. For this reason, the traveling route setting unit 41 can generate a discharge route Pt extending from the first bypass discharge route Pd11, the second bypass discharge route Pd12, the third bypass discharge route Pd13, and the fourth straight discharge route Pt14.
  • the travel route setting unit 41 determines that the discharge route from the first detour discharge route Pd11 to the fourth straight discharge route Pt14.
  • a configuration that does not generate Pt is also possible.
  • the traveling route setting unit 41 determines whether or not the outer peripheral area SA leaving the leaving position WP has a turning space for the body 10. Then, when it is determined that there is a turning space in the outer peripheral area SA departing from the departure position WP, the traveling route setting unit 41 determines the nearest corner P4 from the current position toward the side opposite to the traveling direction of the aircraft 10. Is calculated.
  • the travel route setting unit 41 generates a fourth bypass discharge route Pd14 for the vehicle body 10 to travel in the outer peripheral area SA over the separation position WP and the fourth square position C4, and at the fourth square position C4. Based on this, an arc-shaped sixth turning path Pc6 that is tangent to the fourth bypass discharge path Pd14 is generated. Thereafter, the traveling route setting unit 41 moves the fourth position C4 and the discharge position DP linearly (or substantially linearly) in a state where the fourth position is extended tangentially from the arc of the sixth turning route Pc6. An attempt is made to generate the straight discharge path Pt15.
  • the traveling route setting unit 41 may be configured to generate a discharge route Pt that extends from the fourth bypass discharge route Pd14 to the fifth straight discharge route Pt15. With this configuration, the distance of the discharge path Pt is shorter than that of the path from the first bypass discharge path Pd11 to the fourth straight discharge path Pt14. As described above, the traveling route setting unit 41 may generate the discharge route Pt in addition to the condition of the orientation of the body 10 when the interruption of the automatic traveling is determined.
  • the airframe 10 may make a U-turn immediately before the halfway operation at the discharge position DP, or the airframe 10 may make a U-turn immediately after the halfway operation at the discharge position DP. good.
  • the fourth detour path Pd14 does not need to be a path on which the aircraft 10 turns. good.
  • a route that replaces the fourth bypass discharge route Pd14 a route in which the aircraft 10 moves backward until the fifth straight discharge route Pt15 is reached may be used.
  • it takes time only with the reverse running it is conceivable that the aircraft 10 makes a turn while turning back with the reverse running. However, such turning back takes a long time and warps the field.
  • the traveling route setting unit 41 can generate an optimal discharge route Pt (intermediate work route) according to the actual condition of the field, taking into account the direction of the machine body 10.
  • the traveling route setting unit 41 can generate an optimal return route Rt according to the actual condition of the field in consideration of the orientation of the machine body 10.
  • the storage measurement unit 64A is provided as the state detection unit. However, the storage measurement unit 64A performs the processing of the kernel when the kernel is supplied from the threshing device 13 to the kernel tank 14. A sensor that detects the flow rate may be used.
  • the discharge path Pt is generated based on round cutting as shown in FIG. 3, but the discharge path Pt is generated based on reciprocating cutting as shown in FIG. There may be.
  • a plurality of parallel lines L are generated as a travel route in the work target area CA, and the combine performs reciprocal cutting in order along the line L from one end of the field.
  • the traveling route setting unit 41 calculates the departure position WP, and generates a discharge route Pt for the body 10 to pass from the departure position WP through the outer peripheral area SA to reach the discharge position DP. There may be.
  • the route generation module 4 includes the traveling route setting unit 41, the discharge position setting unit 42, and the leaving position calculation unit 43, but is not limited to this embodiment.
  • the route setting unit, the traveling route setting unit 41, the discharge position setting unit 42, and the leaving position calculation unit 43 may be integrally configured.
  • the first turning path Pc1, the second turning path Pc2, and the third turning path Pc3 shown in FIGS. 6, 7, 11, and 12 do not have to be independent structures.
  • the first turning path Pc1 illustrated in FIG. 6 may be configured as a part of the first straight discharge path Pt1.
  • the first swirl path Pc1 shown in FIG. 7 may be configured as a part of the third rectilinear discharge path Pt3, or the second swirl path Pc2 or the third swirl path Pc3 may be adjacent to the detour discharge path.
  • the fourth turning path Pc4, the fifth turning path Pc5, and the sixth turning path Pc6 shown in FIG. 12 are the same as the first turning path Pc1 and the like.
  • the first turning path Rc1, the second turning path Rc2, the third turning path Rc3, and the fourth turning path Rc4 shown in FIGS. 9 and 10 do not have to be independent structures.
  • the first turning route Rc1 shown in FIG. 9 may be configured as a part of the first straight return route Rt1.
  • the second turning route Rc2 shown in FIG. 10 may be configured as a part of the third straight return route Rt3, or the second turning route Rc2 and the third turning route Pc3 may be adjacent detour return routes. Or, it may be configured as a part of a straight return path.
  • Each functional unit in the above-described embodiment may be configured as an automatic traveling control program for the harvester.
  • This automatic running control program is stored in a storage medium such as an optical disk, a magnetic disk (for example, a hard disk), a semiconductor memory (for example, flash memory, EPROM, EEPROM, mask ROM, FeRAM, MRAM, and ReRAM), and can be read by a computer. May be.
  • the processing performed by each functional unit in the above-described embodiment can be configured as an automatic traveling control method.
  • the present invention is an automatic travel control system for a harvester, it can be used not only for a normal type combine but also for an automatic travel control system for a self-removing type combine.
  • the present invention can also be used for an automatic traveling control system for various harvesters such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
  • Airframe 14 Grain tank (storage section) 41: travel route setting unit (route setting unit) 51B: Automatic traveling control unit 59: Interruption determination unit 63A: Fuel measurement unit (state detection unit) 64A: Storage measurement unit (state detection unit) CA: Work target area (non-work area) DP: Discharge position (working position on the way) RP: Return position WP: Release position (body position) Pt: discharge route (work route on the way) Rt: return route P1: corner R1: corner C1: first corner position (corner position) C11: First corner position (corner position)

Abstract

An automatic travel control system for a harvesting machine that harvests crops in a farm field while automatically travelling, and that accumulates the harvested crops in an accumulation unit is provided with: a route setting unit which sets a travel route for automatic travel; an automatic travel control unit which, on the basis of the position of a machine body 10 and the travel route, performs automatic travel control for the machine body 10; a state detection unit which detects the state of the harvesting machine; and an interruption determination unit which can determine interruption of automatic travel on the basis of the result of detection performed by the state detection unit. The route setting unit, when interruption of automatic travel has been determined by the interruption determination unit, generates a mid-work route Pt for moving to a mid-work position DP on the basis of the mid-work position DP for work after interruption of automatic travel in the farm field, a position WP of the machine body 10 when interruption of automatic travel was determined, and a harvest status of the farm field.

Description

自動走行制御システム、自動走行制御方法、自動走行制御プログラム、及び、記憶媒体Automatic traveling control system, automatic traveling control method, automatic traveling control program, and storage medium
 本発明は、自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御システムに関する。 The present invention relates to an automatic travel control system for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit.
 特許文献1に開示された作業車自動走行システムでは、収穫機が、予め算出された走行経路に沿って自動走行しながら圃場の作物を収穫する。貯留部に貯留された収穫物を排出する場合、収穫機は、当該走行経路から離脱して、途中作業位置(文献の「収穫物排出用駐車位置」)に到達するために予め算出された別の走行経路を途中作業経路(文献の「排出経路」)として選択し、この途中作業経路に沿って自動走行する。 In the work vehicle automatic traveling system disclosed in Patent Document 1, the harvester harvests crops in a field while automatically traveling along a traveling path calculated in advance. When discharging the harvest stored in the storage unit, the harvester separates from the travel route and arrives at an intermediate work position (the “parking position for harvest discharge” in the literature). Is selected as a work route on the way ("discharge route" in the literature), and the vehicle automatically travels along the work route on the way.
国際公開第2018/042853号公報WO2018 / 042853
 ところで特許文献1において、途中作業経路として収穫済みの既作業地の走行経路が選択される。しかし、途中作業経路として用いられる走行経路は、圃場の作物を収穫することを前提として予め算出されたものである。圃場の収穫状況によって、圃場における収穫前の未作業地の位置や形状は常に変化するため、特許文献1に開示された途中作業経路は必ずしも最適ではない場合もある。 By the way, in Patent Document 1, a traveling route of a harvested work site is selected as a work route on the way. However, the traveling route used as an intermediate work route is calculated in advance on the assumption that crops in the field are harvested. Since the position and shape of the unworked land in the field before harvesting constantly change depending on the harvesting situation in the field, the halfway work route disclosed in Patent Document 1 may not always be optimal.
 上述した実情に鑑みて、本発明の目的は、機体の位置や圃場の収穫状況に応じて最適な途中作業経路を生成可能な自動走行制御システムを提供することにある。 In view of the above-described circumstances, an object of the present invention is to provide an automatic traveling control system that can generate an optimal halfway work route according to the position of a machine body and a harvesting situation in a field.
 本発明による自動走行制御システムは、自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御システムであって、前記収穫機が自動走行を行うための走行経路を設定する経路設定部と、機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御部と、前記収穫機の状態を検出する状態検出部と、前記状態検出部の検出結果に基づいて前記自動走行の中断を判定可能な中断判定部と、が備えられ、前記経路設定部は、前記中断判定部によって前記自動走行の中断が判定されると、圃場内において前記自動走行の中断後に作業するために予め設定された途中作業位置と、前記自動走行の中断が判定されたときの前記機体の位置と、圃場の収穫状況と、に基づいて、前記途中作業位置へ移動する途中作業経路を生成することを特徴とする。 An automatic traveling control system according to the present invention is an automatic traveling control system for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit, wherein the harvesting machine automatically travels. A route setting unit that sets a traveling route for performing, an automatic traveling control unit that performs automatic traveling control of the aircraft based on the position of the aircraft and the traveling route, and a state detection unit that detects a state of the harvester And an interruption determination unit that can determine the interruption of the automatic traveling based on the detection result of the state detection unit, wherein the route setting unit determines that the interruption of the automatic traveling is interrupted by the interruption determination unit. And a preset work position for working after the interruption of the automatic traveling in the field, the position of the machine when the interruption of the automatic traveling is determined, and a harvesting state of the field, based on , And generating an intermediate work passage to move to serial middle working position.
 本発明によると、状態検出部の検出結果に基づいて自動走行の中断が判定された時点で途中作業経路が生成され、途中作業経路は、自動走行の中断が判定されたときの機体の位置と、圃場の収穫状況と、を勘案して生成される。このため、予め算出された走行経路を途中作業経路として用いる構成と比較して、途中作業経路の距離が短くなって、圃場における収穫前の未作業地の位置や形状に応じて最適な途中作業経路が生成される。これにより、機体の位置や圃場の収穫状況に応じて最適な途中作業経路を生成可能な自動走行制御システムが実現される。 According to the present invention, an intermediate work route is generated at the time when the interruption of the automatic traveling is determined based on the detection result of the state detection unit, and the intermediate work route is the position of the aircraft when the interruption of the automatic traveling is determined. And the harvest condition of the field. Therefore, as compared with a configuration in which the traveling route calculated in advance is used as the halfway work route, the distance of the halfway work route is shorter, and the optimum halfway work according to the position and shape of the unworked land before harvesting in the field is performed. A route is generated. As a result, an automatic traveling control system that can generate an optimal halfway work route according to the position of the machine body and the harvest situation in the field is realized.
 また、上述した自動走行制御システムの技術的特徴は、自動走行制御プログラムにも適用可能である。そのため、本発明は自動走行制御プログラムも権利の対象とすることができる。さらに、この技術的特徴を有する自動走行制御プログラムが記憶された光ディスクや磁気ディスク、半導体メモリ等の記憶媒体も権利の対象とすることができる。この場合における自動走行制御プログラムは、自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御プログラムであって、前記収穫機が前記自動走行を行うための走行経路を設定する経路設定機能と、機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御機能と、前記収穫機の状態を検出する状態検出機能と、前記状態検出機能の検出結果に基づいて前記自動走行の中断を判定可能な中断判定機能と、前記中断判定機能によって前記自動走行の中断が判定されると、圃場内において前記自動走行の中断後に作業するために予め設定された途中作業位置と、前記自動走行の中断が判定されたときの前記機体の位置と、圃場の収穫状況と、に基づいて、前記途中作業位置へ移動する途中作業経路を生成する途中作業経路生成機能と、をコンピュータに実行させることを特徴とする。 The technical features of the automatic cruise control system described above are also applicable to an automatic cruise control program. Therefore, in the present invention, the automatic driving control program can also be covered by the right. Furthermore, a storage medium such as an optical disk, a magnetic disk, or a semiconductor memory in which the automatic cruise control program having this technical feature is stored can be a target of the right. The automatic traveling control program in this case is an automatic traveling control program for a harvester that harvests crops in a field while traveling automatically and stores the harvested product in a storage unit, wherein the harvester is the automatic traveling control program. A route setting function for setting a traveling route for traveling, an automatic traveling control function for performing automatic traveling control of the aircraft based on the position of the aircraft and the traveling route, and a state detection for detecting a state of the harvester. A function, an interruption determination function capable of determining the interruption of the automatic traveling based on the detection result of the state detection function, and when the interruption of the automatic traveling is determined by the interruption determination function, the automatic traveling in the field is On the basis of a preset work position for working after the suspension, a position of the aircraft when the suspension of the automatic traveling is determined, and a harvest condition in the field, A middle working path generation function of generating an intermediate work passage to move to work position, characterized by causing a computer to execute the.
 加えて、上述した自動走行制御システムや自動走行制御プログラムの技術的特徴は、自動走行制御方法にも適用可能である。このため、本発明は自動走行制御方法も権利の対象とすることができる。この場合における自動走行制御方法は、自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御方法であって、前記収穫機が前記自動走行を行うための走行経路を設定する経路設定ステップと、機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御ステップと、前記収穫機の状態を検出する状態検出ステップと、前記状態検出ステップの検出結果に基づいて前記自動走行の中断を判定可能な中断判定ステップと、前記中断判定ステップによって前記自動走行の中断が判定されると、圃場内において前記自動走行の中断後に作業するために予め設定された途中作業位置と、前記自動走行の中断が判定されたときの前記機体の位置と、圃場の収穫状況と、に基づいて、前記途中作業位置へ移動する途中作業経路を生成する途中作業経路生成ステップと、が含まれることを特徴とする。 In addition, the technical features of the above-described automatic cruise control system and automatic cruise control program can be applied to the automatic cruise control method. For this reason, the present invention can also cover the automatic driving control method. The automatic traveling control method in this case is an automatic traveling control method for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit, wherein the harvester is the automatic traveling control method. A route setting step of setting a traveling route for traveling, an automatic traveling control step of performing automatic traveling control of the aircraft based on a position of the aircraft and the traveling route, and a state detection of detecting a state of the harvester A step, an interruption determination step capable of determining the interruption of the automatic traveling based on the detection result of the state detection step, and when the interruption of the automatic traveling is determined by the interruption determination step, the automatic traveling in the field is determined. An intermediate work position set in advance to work after the interruption, a position of the body when the interruption of the automatic traveling is determined, and a harvesting state of a field, , A middle working path generating step of generating an intermediate work passage to move to the middle working position, characterized in that it is included.
 本発明において、前記経路設定部は、前記自動走行の中断が判定されたときの前記機体の向きを条件に加えて前記途中作業経路を生成すると好適である。 In the present invention, it is preferable that the route setting unit generates the midway work route by adding a condition of the body at the time when the interruption of the automatic traveling is determined to a condition.
 本構成であれば、途中作業経路の生成に機体の向きが勘案される。このため、例えば、自動走行の中断が判定されたときの機体の位置において、機体の向きと反対方向に向かう経路が最短の途中作業経路となる場合、既作業地の広さが十分であれば、現在位置において機体が180度旋回する途中作業経路を生成できる。一方、既作業地の広さが十分でない場合、機体の後進走行を伴って切り返しながら旋回することも考えられるが、このような旋回が行われると、反って時間が掛かったり、圃場が荒らされたりする虞がある。このような場合には、遠回りの経路であっても、機体の向きを変えずにそのまま前進させる経路が最適な途中作業経路となる。このように、経路設定部は、機体の向きを勘案して、圃場の実態に応じた最適な途中作業経路を生成できる。 With this configuration, the orientation of the machine is taken into account when generating the work route on the way. For this reason, for example, at the position of the fuselage when the interruption of the automatic traveling is determined, if the route heading in the direction opposite to the direction of the fuselage is the shortest halfway work route, if the area of the already-worked place is sufficient In addition, a work route on the way of the aircraft turning 180 degrees at the current position can be generated. On the other hand, if the size of the existing work area is not sufficient, the aircraft may turn while turning back with the reverse running, but such a turn may take time to warp or roughen the field. Or there is a risk of In such a case, even if the route is a circuitous route, the route that advances without changing the direction of the body is the optimal halfway work route. In this way, the route setting unit can generate an optimal halfway work route according to the actual condition of the field, taking into account the orientation of the machine.
 本発明において、前記経路設定部は、前記圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地の位置情報を取得すると好適である。 In the present invention, it is preferable that the route setting unit obtains, as the harvest status of the field, position information of an unworked place where the harvesting work in the field has not been completed yet.
 本構成によって、未作業地の位置情報に基づいて、未作業地の形状の把握が容易になるため、経路設定部は未作業地を迂回しつつも最適な途中作業経路を生成できる。 According to this configuration, the shape of the unworked area can be easily grasped based on the position information of the unworked area. Therefore, the route setting unit can generate an optimal halfway work path while bypassing the unworked area.
 本発明において、前記経路設定部は、前記機体の現在位置と前記途中作業位置とを結ぶ直線上に、圃場における収穫作業がまだ終わっていない未作業地が存在するかしないかを判定し、前記直線上に前記未作業地が存在しない場合は、前記直線に近似するように前記途中作業経路を生成し、前記直線上に前記未作業地が存在する場合は、前記未作業地のうち、前記現在位置から最も近い角部の角位置を算出し、続いて、前記角位置と前記途中作業位置とを結ぶ別の直線上に前記未作業地が存在するかしないかを判定し、前記別の直線上に前記未作業地が存在しない場合は、前記現在位置と前記角位置と前記途中作業位置とから前記途中作業経路を生成し、前記別の直線上に前記未作業地が存在する場合は、前記未作業地が存在しないさらに別の直線が見つかるまでこれらの演算を繰り返すと好適である。 In the present invention, the route setting unit determines whether or not there is an unworked land where the harvesting work in the field has not yet been completed, on a straight line connecting the current position of the machine and the intermediate work position, If the unworked land does not exist on a straight line, the intermediate work route is generated so as to approximate the straight line, and if the unworked land exists on the straight line, Calculate the corner position of the nearest corner from the current position, and then determine whether or not the unworked area exists on another straight line connecting the corner position and the halfway work position, If the unworked area does not exist on a straight line, the intermediate work path is generated from the current position, the angular position, and the intermediate work position, and if the unworked area exists on the another straight line, And the unworked area does not exist. Until it finds a straight line it is preferable to repeat these operations.
 本構成であれば、未作業地の角部の検出を繰り返すことによって、未作業地を迂回した形状の途中作業経路が容易に生成される。また、現在位置と途中作業位置とを結ぶ途中作業経路が角位置を経由する構成によって、未作業地の外周に沿って途中作業経路が生成され、途中作業経路の距離が短くなる。 With this configuration, by repeatedly detecting the corners of the un-worked area, a work path halfway around the un-worked area is easily generated. In addition, with the configuration in which the halfway work route connecting the current position and the halfway work position passes through the corner position, the halfway work route is generated along the outer periphery of the unworked place, and the distance of the halfway work route is reduced.
 本発明において、前記経路設定部が前記現在位置から最も近い角部の角位置を算出する際に、前記経路設定部は、前記現在位置から前記機体の進行方向側の最も近い角部の角位置を算出すると好適である。 In the present invention, when the route setting unit calculates a corner position of a corner closest to the current position, the route setting unit calculates a corner position of a corner closest to the traveling direction of the aircraft from the current position. Is preferably calculated.
 本構成によって、進行方向とは逆方向の角部の算出が防止され、収穫機の無理な急旋回が回避される。 With this configuration, calculation of the corner in the direction opposite to the traveling direction is prevented, and an excessive sharp turn of the harvester is avoided.
 本発明において、前記状態検出部に、前記貯留部に設けられ、前記貯留部に貯留された収穫物の貯留量を測定する貯留測定部が含まれ、前記途中作業位置に、前記貯留部に貯留された収穫物を排出可能な排出位置が含まれ、前記中断判定部は、前記貯留部に設定量の収穫物が貯留されると、前記自動走行の中断を判定すると好適である。 In the present invention, the state detection unit includes a storage measurement unit that is provided in the storage unit and that measures a storage amount of the harvest stored in the storage unit. It is preferable that the interruption determination unit determines the interruption of the automatic traveling when a set amount of the harvest is stored in the storage unit.
 本構成であれば、貯留測定部によって貯留部における穀粒の貯留量が検出されるため、貯留部における穀粒の貯留が満杯になる前に中断判定部は自動走行の中断判定を可能となる。 With this configuration, since the storage amount of the kernel in the storage unit is detected by the storage measurement unit, the interrupt determination unit can determine whether to stop the automatic traveling before the storage of the kernel in the storage unit is full. .
 本発明において、前記状態検出部に、燃料タンクに設けられ、前記燃料タンクに貯留された燃料の残量を測定する燃料測定部が含まれ、前記途中作業位置に、前記燃料タンクに燃料を補給可能な補給位置が含まれ、前記中断判定部は、前記燃料タンクに貯留された燃料の残量が設定量を下回ると、前記自動走行の中断を判定すると好適である。 In the present invention, the state detecting unit includes a fuel measuring unit provided in the fuel tank and measuring a remaining amount of the fuel stored in the fuel tank, and replenishing the fuel tank with the fuel at the intermediate work position. Preferably, a possible replenishment position is included, and when the remaining amount of fuel stored in the fuel tank falls below a set amount, the interruption determination unit preferably determines the interruption of the automatic traveling.
 本構成であれば、燃料測定部によって燃料タンクにおける燃料の残量が検出されるため、中断判定部は燃料切れになる前に自動走行の中断判定を可能となる。 According to this configuration, the fuel measuring unit detects the remaining amount of fuel in the fuel tank, so that the interruption determining unit can determine whether to stop the automatic driving before the fuel runs out.
 本発明による自動走行制御システムにおける別の特徴は、自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御システムであって、前記収穫機が自動走行を行うための走行経路を設定する経路設定部と、機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御部と、が備えられ、前記経路設定部は、前記自動走行が中断して圃場内において予め設定された途中作業位置で作業が行われた後、前記途中作業位置と圃場の収穫状況とに基づいて前記走行経路における復帰位置を算定するとともに、前記復帰位置と圃場の収穫状況とに基づいて前記復帰位置へ移動する復帰経路を生成する点にある。 Another feature of the automatic travel control system according to the present invention is an automatic travel control system for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit. A route setting unit that sets a traveling route for the aircraft to perform automatic traveling; and an automatic traveling control unit that performs automatic traveling control of the aircraft based on the position of the aircraft and the traveling route. The unit calculates the return position in the travel route based on the halfway work position and the harvesting status of the field after the automatic running is interrupted and the work is performed at a preset halfway work position in the field. In addition, a return route for moving to the return position is generated based on the return position and the harvest condition in the field.
 本発明によると、復帰経路は、途中作業位置と、圃場の収穫状況と、を勘案して生成される。このため、圃場の収穫前に予め算出された走行経路を復帰経路として用いる構成と比較して、復帰経路の距離が短くなって、圃場における収穫前の未作業地の位置や形状に応じて最適な復帰経路が生成される。また、本発明では、自動走行が中断した位置が復帰位置である必要はなく、経路設定部は途中作業位置と圃場の収穫状況とに応じて最適な復帰位置を算定可能である。これにより、機体の位置や圃場の収穫状況に応じて最適な復帰経路を生成可能な自動走行制御システムが実現される。 According to the present invention, the return route is generated in consideration of the work position on the way and the harvest status of the field. For this reason, the distance of the return route is shorter than the configuration in which the traveling route calculated in advance before the harvest in the field is used as the return route, and the optimal distance is determined according to the position and shape of the unworked land before the harvest in the field. Return path is generated. Further, in the present invention, the position where the automatic traveling is interrupted does not need to be the return position, and the route setting unit can calculate the optimum return position according to the work position on the way and the harvest status of the field. As a result, an automatic traveling control system capable of generating an optimal return route according to the position of the machine body and the harvest situation in the field is realized.
 また、上述した自動走行制御システムにおける別の技術的特徴は、自動走行制御プログラムにも適用可能である。そのため、本発明は、この技術的特徴を有する自動走行制御プログラムも権利の対象とすることができる。さらに、この技術的特徴を有する自動走行制御プログラムが記憶された光ディスクや磁気ディスク、半導体メモリ等の記憶媒体も権利の対象とすることができる。この場合における自動走行制御プログラムは、自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御プログラムであって、前記収穫機が前記自動走行を行うための走行経路を設定する経路設定機能と、機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御機能と、前記自動走行が中断して圃場内において予め設定された途中作業位置で作業が行われた後、前記途中作業位置と圃場の収穫状況とに基づいて前記走行経路における復帰位置を算定するとともに、前記復帰位置と圃場の収穫状況とに基づいて前記復帰位置へ移動する復帰経路を生成する復帰経路生成機能と、をコンピュータに実行させることを特徴とする。 別 Further, the other technical features of the above-described automatic cruise control system can be applied to an automatic cruise control program. Therefore, in the present invention, an automatic driving control program having this technical feature can be covered by the right. Furthermore, a storage medium such as an optical disk, a magnetic disk, or a semiconductor memory in which the automatic cruise control program having this technical feature is stored can be a target of the right. The automatic traveling control program in this case is an automatic traveling control program for a harvester that harvests crops in a field while traveling automatically and stores the harvested product in a storage unit, wherein the harvester is the automatic traveling control program. A route setting function for setting a traveling route for performing traveling, an automatic traveling control function for performing automatic traveling control of the aircraft based on the position of the aircraft and the traveling route, and in the field where the automatic traveling is interrupted. After the work is performed at the preset intermediate work position, the return position in the traveling route is calculated based on the intermediate work position and the harvest condition of the field, and based on the return position and the harvest condition of the field. And causing the computer to execute a return path generation function of generating a return path for moving to the return position.
 加えて、上述した自動走行制御システムや自動走行制御プログラムの別の技術的特徴は、自動走行制御方法にも適用可能である。このため、本発明は、この技術的特徴を有する自動走行制御方法も権利の対象とすることができる。この場合における自動走行制御方法は、自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御方法であって、前記収穫機が前記自動走行を行うための走行経路を設定する経路設定ステップと、機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御ステップと、前記自動走行が中断して圃場内において予め設定された途中作業位置で作業が行われた後、前記途中作業位置と圃場の収穫状況とに基づいて前記走行経路における復帰位置を算定するとともに、前記復帰位置と圃場の収穫状況とに基づいて前記復帰位置へ移動する復帰経路を生成する復帰経路生成ステップと、が含まれることを特徴とする。 In addition, the other technical features of the above-described automatic cruise control system and automatic cruise control program can be applied to the automatic cruise control method. For this reason, the present invention can also cover an automatic driving control method having this technical feature. The automatic traveling control method in this case is an automatic traveling control method for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit, wherein the harvester is the automatic traveling control method. A route setting step of setting a traveling route for performing traveling, an automatic traveling control step of performing automatic traveling control of the aircraft based on a position of the aircraft and the traveling route, and the automatic traveling is interrupted in a field. After the work is performed at the preset intermediate work position, the return position in the traveling route is calculated based on the intermediate work position and the harvest condition of the field, and based on the return position and the harvest condition of the field. And generating a return route for moving to the return position.
 本発明において、前記経路設定部は、前記途中作業位置における作業完了時の前記機体の向きを条件に加えて前記復帰経路を生成すると好適である。 In the present invention, it is preferable that the route setting unit generates the return route by adding a condition of the machine body at the time of completion of the work at the halfway work position to the condition.
 本構成であれば、復帰経路の生成に機体の向きが勘案される。このため、例えば、途中作業位置において、機体の向きと反対方向に向かう経路が最短の復帰経路となる場合、既作業地の広さが十分であれば、現在位置において機体が180度旋回する復帰経路を生成できる。一方、既作業地の広さが十分でない場合、機体の後進走行を伴って切り返しながら旋回することも考えられるが、このような旋回が行われると、反って走行経路への復帰に時間が掛かったり、圃場が荒らされたりする虞がある。このような場合には、遠回りの経路であっても、機体の向きを変えずにそのまま前進させる経路が最適な復帰経路となる。このように、経路設定部は、機体の向きを勘案して、圃場の実態に応じた最適な復帰経路を生成できる。 With this configuration, the orientation of the aircraft is taken into account when generating the return route. Therefore, for example, when the path going in the direction opposite to the direction of the aircraft is the shortest return path at the work position in the middle, if the area of the work site is sufficient, the return of the aircraft by 180 degrees at the current position is possible. A route can be generated. On the other hand, if the size of the work site is not sufficient, the aircraft may turn while turning back with the reverse traveling, but if such a turn is performed, it takes time to return to the traveling route while warping. Or the field may be damaged. In such a case, even if the route is a circuitous route, the route that moves forward without changing the direction of the body is the optimal return route. Thus, the route setting unit can generate an optimal return route according to the actual condition of the field, taking into account the orientation of the machine.
 本発明において、前記経路設定部は、前記圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地の位置情報を取得すると好適である。 In the present invention, it is preferable that the route setting unit obtains, as the harvest status of the field, position information of an unworked place where the harvesting work in the field has not been completed yet.
 本構成によって、未作業地の位置情報に基づいて、未作業地の形状の把握が容易になる。ため、経路設定部は、未作業地のうちの収穫を再開する最適な箇所を特定でき、収穫を再開する最適な箇所に基づいて復帰位置を算定するとともに復帰経路を生成できる。 With this configuration, it is easy to grasp the shape of the unworked land based on the position information of the unworked land. Therefore, the path setting unit can specify the optimum point of the unworked land where the harvest should be restarted, calculate the return position based on the optimum point of restarting the harvest, and generate the return path.
 本発明において、前記経路設定部は、圃場における収穫作業がまだ終わっていない未作業地に設定された前記走行経路の端部のうち、前記途中作業位置から前記機体の進行方向側の最も近い端部を前記復帰位置として算定すると好適である。 In the present invention, among the ends of the traveling route set in the unworked land where the harvesting work in the field has not yet been completed, the route setting unit is the closest end on the traveling direction side of the aircraft from the halfway working position. It is preferable to calculate a portion as the return position.
 本構成によって、進行方向とは逆方向の復帰位置の算出が防止され、収穫機の無理な急旋回が回避される。また、本構成であれば、自動走行が中断した位置が途中作業位置から角部よりも遠い位置にあっても、自動走行が中断した位置よりも途中作業位置に近い箇所に復帰位置が設定される。このため、自動走行が中断した位置に収穫機が移動する場合であっても、収穫機が収穫作業を伴って移動可能であるため、収穫作業が効率的に行われる。 This configuration prevents the calculation of the return position in the direction opposite to the traveling direction, and prevents the harvester from forcibly turning sharply. Further, according to this configuration, even if the position where the automatic driving is interrupted is located farther than the corner from the halfway operation position, the return position is set at a position closer to the intermediate operation position than the position where the automatic driving is interrupted. You. For this reason, even when the harvester moves to the position where the automatic traveling has been interrupted, the harvester can move with the harvesting operation, and the harvesting operation is performed efficiently.
 本発明において、前記経路設定部は、前記途中作業位置と前記復帰位置とを結ぶ直線上に、圃場における収穫作業がまだ終わっていない未作業地が存在するかしないかを判定し、前記直線上に前記未作業地が存在しない場合は、前記直線に近似するように前記復帰経路を生成し、前記直線上に前記未作業地が存在する場合は、前記未作業地のうち、前記途中作業位置から最も近い角部の角位置を算出し、続いて、前記角位置と前記復帰位置とを結ぶ別の直線上に前記未作業地が存在するかしないかを判定し、前記別の直線上に前記未作業地が存在しない場合は、前記途中作業位置と前記角位置と前記復帰位置とから前記復帰経路を生成し、前記別の直線上に前記未作業地が存在する場合は、前記未作業地が存在しないさらに別の直線が見つかるまでこれらの演算を繰り返すと好適である。 In the present invention, the route setting unit determines whether or not there is an unworked land on which the harvesting work in the field has not yet been completed, on a straight line connecting the halfway work position and the return position, If the unworked land does not exist, the return route is generated so as to approximate the straight line, and if the unworked land exists on the straight line, the work position in the middle of the unworked land Calculate the corner position of the nearest corner from, and then determine whether or not the unworked land exists on another straight line connecting the corner position and the return position, and on the another straight line If the unworked land does not exist, the return path is generated from the halfway work position, the corner position, and the return position, and if the unworked land exists on the another straight line, the unworked land is generated. Find another straight line with no land It is preferable to repeat these operations until the.
 本構成であれば、未作業地の角部の検出を繰り返すことによって、未作業地を迂回した形状の復帰経路が容易に生成される。また、途中作業位置と復帰位置とを結ぶ復帰経路が角位置を経由する構成によって、未作業地の外周に沿って復帰経路が生成される。 With this configuration, by repeatedly detecting the corners of the un-worked area, a return path having a shape bypassing the un-worked area is easily generated. Also, with a configuration in which the return path connecting the halfway work position and the return position passes through the corner position, a return path is generated along the outer periphery of the unworked place.
 また、前記経路設定部が前記途中作業位置から最も近い角部の角位置を算出する際に、前記経路設定部は、前記途中作業位置から前記機体の進行方向側の最も近い角部の角位置を算出すると好適である。 When the route setting unit calculates the corner position of the corner closest to the halfway work position, the route setting unit calculates the corner position of the closest corner on the traveling direction side of the aircraft from the halfway work position. Is preferably calculated.
 本構成によって、進行方向とは逆方向の角位置の算出が防止され、機体は、無理な急旋回を行うことなく未作業地の角位置に沿って未作業地の周囲を旋回可能となる。 With this configuration, the calculation of the angular position in the direction opposite to the traveling direction is prevented, and the aircraft can turn around the unworked ground along the angular position of the unworked ground without performing an excessive sharp turn.
 本発明において、前記途中作業位置に、前記貯留部に貯留された収穫物を排出可能な排出位置が含まれると好適である。 In the present invention, it is preferable that the intermediate work position includes a discharge position at which the harvest stored in the storage section can be discharged.
 本構成であれば、経路設定部は、穀粒タンクの容量等を勘案して、次回に機体が走行経路から離脱する際の排出経路が出来るだけ短くなるように、作業対象領域内における復帰位置を算出することが可能である。 With this configuration, the path setting unit considers the capacity of the grain tank, etc., and returns the return position in the work target area so that the discharge path when the aircraft departs from the traveling path next time is as short as possible. Can be calculated.
 本発明において、前記途中作業位置に、燃料タンクに燃料を補給可能な補給位置が含まれると好適である。 In the present invention, it is preferable that the intermediate work position includes a replenishing position at which fuel can be supplied to the fuel tank.
 本構成であれば、経路設定部は、燃料タンクの容量等を勘案して、次回に機体が走行経路から離脱する際の給油経路が出来るだけ短くなるように、作業対象領域内における復帰位置を算出することが可能である。 With this configuration, the route setting unit considers the capacity of the fuel tank and the like, and sets the return position in the work target area so that the refueling route when the aircraft departs from the traveling route next time is as short as possible. It is possible to calculate.
収穫機の一例としてのコンバインの側面図である。It is a side view of a combine as an example of a harvester. コンバインの自動走行の概要を示す図である。It is a figure showing the outline of automatic running of a combine. 自動走行における走行経路を示す図である。FIG. 3 is a diagram illustrating a traveling route in automatic traveling. コンバインの制御系の構成を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating a configuration of a combine control system. 自動走行における制御系統を示す系統ブロック図である。It is a system block diagram showing a control system in automatic running. 自動走行における排出経路を示す図である。It is a figure showing the discharge course in automatic running. 自動走行における排出経路を示す図である。It is a figure showing the discharge course in automatic running. 自動走行における制御系統を示す系統ブロック図である。It is a system block diagram showing a control system in automatic running. 自動走行における復帰経路を示す図である。It is a figure showing a return course in automatic running. 自動走行における復帰経路を示す図である。It is a figure showing a return course in automatic running. 自動走行における排出経路の別実施形態を示す図である。It is a figure showing another embodiment of a discharge course in automatic running. 自動走行における排出経路の別実施形態を示す図である。It is a figure showing another embodiment of a discharge course in automatic running. 自動走行における排出経路の別実施形態を示す図である。It is a figure showing another embodiment of a discharge course in automatic running.
 本発明を実施するための形態について、図面に基づき説明する。なお、以下の説明においては、特に断りがない限り、図1に示す矢印「F」の方向が機体前方向であり、矢印「B」の方向が機体後方向である。また、図1に示す矢印「U」の方向が上方向であり、矢印「D」の方向が下方向である。 形態 An embodiment for carrying out the present invention will be described with reference to the drawings. In the following description, the direction of arrow "F" shown in FIG. 1 is the forward direction of the aircraft, and the direction of arrow "B" is the backward direction of the aircraft unless otherwise specified. The direction of arrow "U" shown in FIG. 1 is the upward direction, and the direction of arrow "D" is the downward direction.
〔コンバインの全体構成〕
 図1に示すように、収穫機の一形態である普通型のコンバインは、機体10、クローラ式の走行装置11、運転部12、脱穀装置13、貯留部としての穀粒タンク14、収穫装置H、搬送装置16、穀粒排出装置18、自車位置検出モジュール80を備えている。
[Overall structure of combine]
As shown in FIG. 1, an ordinary combine which is one form of a harvester includes a body 10, a crawler-type traveling device 11, an operating unit 12, a threshing device 13, a grain tank 14 as a storage unit, a harvesting device H , A transport device 16, a grain discharging device 18, and a vehicle position detecting module 80.
 走行装置11は、コンバインにおける下部に備えられている。コンバインは、走行装置11によって自走可能である。 The traveling device 11 is provided at a lower part of the combine. The combine can be driven by the traveling device 11 by itself.
 また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11よりも上側に備えられ、これらは機体10の上部として構成されている。コンバインを運転する運転者やコンバインの作業を監視する監視者が、運転部12に搭乗可能である。通常、運転者と監視者とは兼務される。なお、運転者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視していても良い。つまり、本発明における監視者とは、運転者も含まれる。 運 転 Further, the operating unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11, and these are configured as an upper portion of the body 10. A driver who drives the combine or a monitor who monitors the work of the combine can board the driving unit 12. Usually, the driver and the supervisor are concurrently used. When the driver and the monitor are different persons, the monitor may monitor the combine operation from outside the combine. That is, the monitor in the present invention includes a driver.
 穀粒排出装置18は、穀粒タンク14の後下部に連結されている。また、自車位置検出モジュール80は、運転部12の前上部に取り付けられている。 The grain discharge device 18 is connected to a lower rear portion of the grain tank 14. The vehicle position detection module 80 is attached to the upper front part of the driving unit 12.
 収穫装置Hは、コンバインの前部に備えられている。そして、搬送装置16は、収穫装置Hよりも後側に隣接して設けられている。また、収穫装置Hは、刈取装置15及びリール17を有している。刈取装置15は、圃場の作物を刈り取る。作物は、例えば稲等の植立穀稈であるが、大豆やトウモロコシ等であっても良い。また、リール17は、回転駆動しながら収穫対象の作物を掻き込む。この構成により、収穫装置Hは、圃場の穀物を収穫する。そして、コンバインは、刈取装置15によって圃場の作物を刈り取りながら走行装置11によって走行する収穫走行が可能である。 The harvesting device H is provided at the front of the combine. The transport device 16 is provided adjacent to and behind the harvesting device H. Further, the harvesting device H has a reaper 15 and a reel 17. The cutting device 15 cuts crops in the field. The crop is, for example, planted grain culm such as rice, but may be soybean or corn. Further, the reel 17 scrapes the crop to be harvested while rotating and driving. With this configuration, the harvesting device H harvests cereals in the field. Then, the combine is capable of harvesting traveling in which the harvester 15 travels by the traveling device 11 while harvesting crops in the field.
 このように、コンバインは、圃場における作物を刈り取る刈取装置15を有している。 Thus, the combine has the cutting device 15 for cutting crops in the field.
 刈取装置15によって刈り取られた作物(例えば刈取穀稈)は、搬送装置16によって脱穀装置13へ搬送される。脱穀装置13において、刈り取られた作物は脱穀処理される。脱穀処理により得られた収穫物としての穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 作物 The crop (for example, the harvested culm) cut by the cutting device 15 is transferred to the threshing device 13 by the transfer device 16. In the threshing device 13, the cut crop is threshed. Grains as harvested products obtained by threshing are stored in a grain tank 14. The grains stored in the grain tank 14 are discharged out of the machine by a grain discharging device 18 as necessary.
 また、運転部12には、通信端末2が設置されている。通信端末2は、種々の情報を表示可能に構成されている。本実施形態において、通信端末2は、運転部12に固定されている。なお、通信端末2は、運転部12に対して着脱可能に構成されていても良いし、コンバインの機外に位置していても良い。 運 転 The operating unit 12 is provided with the communication terminal 2. The communication terminal 2 is configured to be able to display various information. In the present embodiment, the communication terminal 2 is fixed to the driving unit 12. Note that the communication terminal 2 may be configured to be detachable from the driving unit 12 or may be located outside the combine.
 図2に示すように、このコンバインは、圃場において設定された走行経路に沿って自動走行する。自車位置を検出するために、自車位置検出モジュール80が用いられる。自車位置検出モジュール80には、衛星航法モジュール81と慣性航法モジュール82とが含まれる。衛星航法モジュール81は、人工衛星GSからのGNSS(Global Navigation Satellite System)の信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。慣性航法モジュール82は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の走行方向を示す位置ベクトルを出力する。慣性航法モジュール82は、衛星航法モジュール81による自車位置算出を補完するために用いられる。慣性航法モジュール82は、衛星航法モジュール81とは別の場所に設置されてもよい。 コ ン As shown in FIG. 2, the combine automatically travels along a travel route set in a field. The own vehicle position detection module 80 is used to detect the own vehicle position. The vehicle position detection module 80 includes a satellite navigation module 81 and an inertial navigation module 82. The satellite navigation module 81 receives a GNSS (Global Navigation / Satellite / System) signal (including a GPS signal) from the artificial satellite GS and outputs positioning data for calculating the position of the own vehicle. The inertial navigation module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction. The inertial navigation module 82 is used to supplement the own vehicle position calculation by the satellite navigation module 81. The inertial navigation module 82 may be installed at a different location from the satellite navigation module 81.
 このコンバインによって圃場での収穫作業を行う場合の手順は、以下に説明する通りである。 手 順 The procedure for performing harvesting work in the field using this combine is as described below.
 まず、監視者は、コンバインを手動で操作し、図2に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行う。これにより既作業地となった領域は、外周領域SAとして設定される。そして、外周領域SAの内側に未作業地のまま残された領域は、作業対象領域CAとして設定される。図2は、外周領域SA及び作業対象領域CAの一例を示している。 {Circle around (1)} First, the observer manually operates the combine and performs harvesting traveling so as to orbit along the boundary of the field at the outer peripheral portion in the field as shown in FIG. As a result, the area that has become a work site is set as the outer peripheral area SA. Then, the area left unoccupied in the outer peripheral area SA is set as the work target area CA. FIG. 2 shows an example of the outer peripheral area SA and the work target area CA.
 また、このとき、外周領域SAの幅をある程度広く確保するために、監視者は、機体10を二周または三周走行させる。この走行においては、機体10が一周する毎に、コンバインの作業幅分だけ外周領域SAの幅が拡大する。最初に、例えば二周または三周の走行が終わると、外周領域SAの幅は、コンバインの作業幅の二倍から三倍程度の幅となる。 At this time, in order to secure the width of the outer peripheral area SA to some extent, the observer makes the body 10 travel two or three times. In this traveling, the width of the outer peripheral area SA is increased by the working width of the combine every time the body 10 makes a round. First, for example, when two or three rounds of traveling are completed, the width of the outer peripheral area SA becomes about twice to three times the working width of the combine.
 外周領域SAは、作業対象領域CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。 (4) The outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling in the work target area CA. In addition, the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
 なお、図2に示す運搬車CVは、コンバインから排出された穀粒を収集し、運搬することができる。穀粒排出の際、コンバインは、運搬車CVの近傍へ移動した後、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 運 搬 Note that the transport vehicle CV shown in FIG. 2 can collect and transport the kernels discharged from the combine. At the time of discharging the grain, the combine moves to the vicinity of the transport vehicle CV, and then discharges the grain to the transport vehicle CV by the grain discharging device 18.
 外周領域SA及び作業対象領域CAが設定されると、図3に示すように、作業対象領域CAにおける走行経路が算定される。この例では、走行経路は、複数の互いに平行に延びた直進走行経路と、直進走行経路をつなぐ方向転換走行経路とから構成される。なお、直進走行経路は、直線に限定されるわけではなく、曲線であってもよいし、曲線と直線との組み合わせであってもよい。平行に並んだ走行経路の間隔は、収穫装置Hの収穫幅である作業幅と、走行誤差を吸収するためのオーバーラップと、に基づいて決定される。算定された走行経路は、作業走行のパターンに基づいて順次設定され、設定された走行経路に沿って走行するように、コンバインが自動走行制御される。図3には、作業対象領域CAの周囲に沿って回り刈りをしながら、角部にて前後進を繰り返しながら方向転換する作業形態が示されている。 When the outer peripheral area SA and the work area CA are set, the traveling route in the work area CA is calculated as shown in FIG. In this example, the traveling route includes a plurality of straight traveling routes extending in parallel with each other and a direction changing traveling route connecting the straight traveling routes. Note that the straight traveling route is not limited to a straight line, and may be a curved line or a combination of a curved line and a straight line. The interval between the traveling routes arranged in parallel is determined based on the work width, which is the harvest width of the harvesting device H, and the overlap for absorbing the traveling error. The calculated travel routes are sequentially set based on the work travel pattern, and the combine is automatically controlled to travel along the set travel route. FIG. 3 shows a work mode in which the direction is changed while repeatedly moving forward and backward at the corners while mowing around the work target area CA.
 図4に、本発明による自動走行制御システムを利用するコンバインの制御系が示されている。コンバインの制御系は、多数のECUと呼ばれる電子制御ユニットからなる制御ユニット5、及び、この制御ユニット5との間で車載LANなどの配線網を通じて信号通信(データ通信)を行う各種入出力機器から構成されている。 FIG. 4 shows a combine control system using the automatic cruise control system according to the present invention. The control system of the combine includes a control unit 5 composed of a large number of electronic control units called ECUs, and various input / output devices that perform signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is configured.
 報知デバイス62は、監視者等に作業走行状態や種々の警告を報知するためのデバイスであり、ブザー、ランプ、スピーカ、ディスプレイなどである。このコンバインの制御系が、通信端末2(図1参照)との間で、あるいは、遠隔地に設置されている管理コンピュータとの間でデータ交換するために、通信部66は用いられる。通信端末2には、圃場に立っている監視者、またはコンバインに乗り込んでいる監視者が操作するタブレットコンピュータ、自宅や管理事務所に設置されているコンピュータなども含まれる。制御ユニット5は、この制御系の中核要素であり、複数のECUの集合体として示されている。自車位置検出モジュール80からの信号は、車載LANを通じて制御ユニット5に入力される。 The notification device 62 is a device for notifying a monitoring person or the like of a work traveling state or various warnings, and includes a buzzer, a lamp, a speaker, a display, and the like. The communication unit 66 is used for the control system of the combine to exchange data with the communication terminal 2 (see FIG. 1) or with a management computer installed at a remote place. The communication terminal 2 includes a tablet computer operated by an observer standing on a field or an observer riding in a combine, a computer installed in a home or a management office, and the like. The control unit 5 is a core element of the control system, and is shown as an aggregate of a plurality of ECUs. A signal from the vehicle position detection module 80 is input to the control unit 5 through the on-vehicle LAN.
 制御ユニット5は、入出力インタフェースとして、出力処理部58と入力処理部57とを備えている。出力処理部58は、機器ドライバ65を介して種々の動作機器70と接続している。動作機器70として、走行関係の機器である走行機器群71と作業関係の機器である作業機器群72とがある。走行機器群71には、例えば、操舵機器、エンジン機器、変速機器、制動機器などが含まれる。作業機器群72には、図1に示すような収穫作業装置(収穫装置H、脱穀装置13、搬送装置16、穀粒排出装置18)における動力制御機器などが含まれる。なお、本実施形態における「操舵」とは、クローラ式の走行装置11における左右のクローラの速度差によって機体10の向きを変更することであるが、走行装置11が車輪である場合、車輪自体の向きの変更による機体10の向きを変更することも、「操舵」に含まれる。 The control unit 5 includes an output processing unit 58 and an input processing unit 57 as input / output interfaces. The output processing unit 58 is connected to various operating devices 70 via a device driver 65. The operating devices 70 include a traveling device group 71 that is a traveling-related device and a working device group 72 that is a working-related device. The traveling equipment group 71 includes, for example, steering equipment, engine equipment, transmission equipment, braking equipment, and the like. The work equipment group 72 includes power control equipment and the like in the harvest work apparatus (the harvest apparatus H, the threshing apparatus 13, the transport apparatus 16, and the grain discharge apparatus 18) as shown in FIG. Note that “steering” in the present embodiment is to change the direction of the body 10 according to the speed difference between the left and right crawlers in the crawler-type traveling device 11, but when the traveling device 11 is a wheel, the steering of the wheel itself is performed. Changing the direction of the aircraft 10 by changing the direction is also included in “steering”.
 入力処理部57には、走行状態センサ群63、作業状態センサ群64、走行操作ユニット90、などが接続されている。走行状態センサ群63には、エンジン回転数センサ、オーバーヒート検出センサ、ブレーキペダル位置検出センサ、変速位置検出センサ、操舵位置検出センサなどが含まれる。また、走行状態センサ群63に、燃料測定部63Aが含まれる。燃料測定部63Aは、機体10に搭載された燃料タンク(不図示)に設けられ、燃料タンクに貯留された燃料の残量を測定する。なお、燃料測定部63Aは、本発明における状態検出部の一部として構成されても良い。 The input processing unit 57 is connected with a running state sensor group 63, a working state sensor group 64, a running operation unit 90, and the like. The running state sensor group 63 includes an engine speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The traveling state sensor group 63 includes a fuel measuring unit 63A. The fuel measuring section 63A is provided on a fuel tank (not shown) mounted on the body 10, and measures the remaining amount of fuel stored in the fuel tank. The fuel measuring section 63A may be configured as a part of the state detecting section in the present invention.
 作業状態センサ群64には、図1に示すような収穫作業装置(収穫装置H、脱穀装置13、搬送装置16、穀粒排出装置18)の駆動状態を検出するセンサ、収穫後の作物や穀粒の状態を検出するセンサなどが含まれる。また、作業状態センサ群64に、状態検出部としての貯留測定部64Aが含まれる。貯留測定部64Aは、例えば穀粒タンク14よりも下側に設けられたロードセルであって、穀粒タンク14における穀粒の貯留量を測定する。なお、貯留測定部64Aは、穀粒タンク14の一部として構成されても良い。 The work state sensor group 64 includes a sensor that detects the drive state of the harvesting work device (the harvesting device H, the threshing device 13, the transport device 16, and the grain discharging device 18) as illustrated in FIG. Sensors for detecting the state of the particles are included. Further, the work state sensor group 64 includes a storage measurement unit 64A as a state detection unit. The storage measurement unit 64A is, for example, a load cell provided below the grain tank 14 and measures the amount of stored grains in the grain tank 14. The storage measurement unit 64A may be configured as a part of the grain tank 14.
 走行操作ユニット90は、監視者によって手動操作され、その操作信号が制御ユニット5に入力される操作具の総称である。走行操作ユニット90には、主変速操作具、操舵操作具、モード操作具、自動開始操作具、などが含まれる。主変速操作具は、走行装置11(図1参照)を前進駆動または後進駆動させるための操作具である。モード操作具は、自動運転と手動運転とを切り替えるための指令を制御ユニット5に送り出す機能を有する。自動開始操作具は、自動走行を開始するための最終的な自動開始指令を制御ユニット5に送る機能を有する。 The traveling operation unit 90 is a general term for operating tools that are manually operated by a monitor and whose operation signals are input to the control unit 5. The traveling operation unit 90 includes a main speed change operation tool, a steering operation tool, a mode operation tool, an automatic start operation tool, and the like. The main transmission operating tool is an operating tool for driving the traveling device 11 (see FIG. 1) forward or backward. The mode operation tool has a function of sending a command for switching between automatic operation and manual operation to the control unit 5. The automatic start operation tool has a function of sending a final automatic start command to start automatic traveling to the control unit 5.
 制御ユニット5には、走行制御部51、作業制御部52、走行モード管理部53、自車位置算出部55、報知部56、中断判定部59、経路生成モジュール4、などが備えられている。自車位置算出部55は、自車位置検出モジュール80から逐次送られてくる測位データに基づいて、予め設定されている機体10の特定箇所の地図座標(または圃場座標)である自車位置を算出する。自車位置として、機体10の基準点(例えば車体中心、図1に示す収穫装置Hの中心など)の位置を設定することができる。報知部56は、制御ユニット5の各機能部からの指令等に基づいて報知データを生成し、報知デバイス62に与える。 The control unit 5 includes a travel control unit 51, a work control unit 52, a travel mode management unit 53, a vehicle position calculation unit 55, a notification unit 56, an interruption determination unit 59, a route generation module 4, and the like. Based on the positioning data sequentially sent from the vehicle position detection module 80, the vehicle position calculation unit 55 calculates the vehicle position that is the map coordinates (or the field coordinates) of the specific location of the aircraft 10 that is set in advance. calculate. As the own vehicle position, the position of a reference point of the body 10 (for example, the center of the vehicle body, the center of the harvesting device H shown in FIG. 1, and the like) can be set. The notification unit 56 generates notification data based on a command or the like from each functional unit of the control unit 5 and provides the notification data to the notification device 62.
 走行制御部51は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群71に制御信号を与える。作業制御部52は、図1に示すような収穫作業装置(収穫装置H、脱穀装置13、搬送装置16、穀粒排出装置18など)の動きを制御するために、作業機器群72に制御信号を与える。 The travel control unit 51 has an engine control function, a steering control function, a vehicle speed control function, and the like, and provides a control signal to the traveling equipment group 71. The work control unit 52 sends a control signal to the work equipment group 72 to control the movement of the harvesting work device (the harvesting device H, the threshing device 13, the transport device 16, the grain discharging device 18, etc.) as shown in FIG. give.
 このコンバインは、自動走行で収穫作業を行う自動運転と、手動走行で収穫作業を行う手動運転と、の両方で走行可能である。このため、走行制御部51には、手動走行制御部51Aと自動走行制御部51Bとが含まれる。なお、自動運転を行う際には、自動走行モードが設定され、手動運転を行うためには手動走行モードが設定される。走行モードの切換えは、走行モード管理部53によって管理される。つまり、走行モード管理部53は、走行モードを、自動走行を実行する自動走行モードと、手動走行を実行する手動走行モードと、に切換可能なように構成されている。 This combine can run in both automatic operation, in which harvesting is performed by automatic running, and manual operation, in which harvesting is performed by manual running. Therefore, the traveling control unit 51 includes a manual traveling control unit 51A and an automatic traveling control unit 51B. Note that the automatic driving mode is set when performing the automatic driving, and the manual driving mode is set for performing the manual driving. The switching of the traveling mode is managed by the traveling mode management unit 53. That is, the traveling mode management unit 53 is configured to be able to switch the traveling mode between an automatic traveling mode for executing automatic traveling and a manual traveling mode for executing manual traveling.
 経路生成モジュール4に、経路設定部としての走行経路設定部41と、排出位置設定部42と、離脱位置算出部43と、が備えられている。収穫機としてのコンバインが自動走行を行うための走行経路は走行経路設定部41によって設定され、走行経路設定部41は、経路算出アルゴリズムによって自ら走行経路を生成する。このように走行経路を設定する走行経路設定部41の機能が、本発明の『経路設定機能』である。経路設定機能は、コンピュータに実行させるプログラムによって構成されている。また、このように走行経路を設定する方法が、本発明の『経路設定ステップ』である。なお、通信端末2(図1参照)や遠隔地の管理コンピュータ等で生成された走行経路を走行経路設定部41がダウンロードして用いる構成であっても良い。 The route generation module 4 includes a traveling route setting unit 41 as a route setting unit, a discharge position setting unit 42, and a leaving position calculation unit 43. A traveling route for the combine as a harvester to perform automatic traveling is set by the traveling route setting unit 41, and the traveling route setting unit 41 generates a traveling route by a route calculation algorithm by itself. The function of the traveling route setting unit 41 for setting the traveling route in this way is the “route setting function” of the present invention. The route setting function is configured by a program executed by a computer. The method for setting the traveling route in this way is the “route setting step” of the present invention. The travel route setting unit 41 may download and use the travel route generated by the communication terminal 2 (see FIG. 1) or a remote management computer.
 排出位置設定部42は、図6及び図7に示すように、外周領域SAのうち、運搬車CVが横付け可能な畦際の箇所に、途中作業位置の一例である排出位置DPを設定する。排出位置DPは、圃場の形状や運搬車CVが横付け位置に基づいて予め設定されるが、外周領域SAにおいて排出位置DPが複数の箇所に設けられて、複数の排出位置DPの一つが適宜選択される構成であっても良い。要するに、排出位置設定部42は、穀粒を穀粒タンク14から排出するための排出位置DPを、圃場における外周領域SAに設定する。 6) As shown in FIGS. 6 and 7, the discharge position setting unit 42 sets a discharge position DP, which is an example of an intermediate work position, at a location on the ridge where the transport vehicle CV can be laid sideways in the outer peripheral area SA. The discharge position DP is preset based on the shape of the field and the position of the transport vehicle CV, but the discharge position DP is provided at a plurality of locations in the outer peripheral area SA, and one of the plurality of discharge positions DP is appropriately selected. May be adopted. In short, the discharge position setting unit 42 sets the discharge position DP for discharging the kernel from the kernel tank 14 in the outer peripheral area SA in the field.
 穀粒タンク14における穀粒の貯留度合いは、貯留測定部64Aによって検出可能に構成されている。中断判定部59は、状態検出部としての貯留測定部64Aの検出結果に基づいて、自動走行の中断を判定可能なように構成されている。つまり、貯留測定部64Aの検出に基づく穀粒の貯留量が設定量以上に到達すると、中断判定部59は中断判定を行う。また、中断判定部59は判定結果を離脱位置算出部43に出力する。中断判定部59が自動走行の中断を判定した場合、離脱位置算出部43は、機体10の現在位置に基づいて、走行中の走行経路からの離脱を開始する離脱位置WPを算出する。そして、走行経路設定部41は、コンバインが離脱位置WPから外周領域SAを通過して排出位置DPに到達するための排出経路Ptを、経路算出アルゴリズムによって生成する。排出経路Ptは途中作業経路の一例である。このように収穫機は、中断判定部59の中断判定に基づいて、自動走行を中断して走行中の走行経路から離脱し、途中作業経路に沿って走行する。 度 合 い The storage degree of the kernel in the kernel tank 14 is configured to be detectable by the storage measuring unit 64A. The interruption determination unit 59 is configured to be able to determine the interruption of the automatic traveling based on the detection result of the storage measurement unit 64A as the state detection unit. That is, when the storage amount of the grain based on the detection of the storage measurement unit 64A reaches or exceeds the set amount, the interruption determination unit 59 performs the interruption determination. Further, the interruption determination section 59 outputs the determination result to the separation position calculation section 43. When the interruption determination unit 59 determines that the automatic traveling is interrupted, the departure position calculation unit 43 calculates the departure position WP at which the departure from the traveling route on which the vehicle is traveling is started based on the current position of the aircraft 10. Then, the traveling route setting unit 41 generates, by a route calculation algorithm, a discharge route Pt for the combine to reach the discharge position DP from the separation position WP through the outer peripheral area SA. The discharge path Pt is an example of an intermediate work path. Thus, based on the interruption determination of the interruption determination unit 59, the harvester suspends the automatic traveling, separates from the traveling traveling route, and travels along the work route on the way.
 自動走行モードが設定されている場合、図5に示すような制御ブロックに基づいて自動走行が行われる。自動走行制御部51Bは、自動操舵及び停車を含む車速変更の制御信号を生成して、走行機器群71を制御する。走行経路は走行経路設定部41によって設定され、自車位置は自車位置算出部55によって算出される。そして、自動操舵に関する制御信号は、自車位置と走行経路との間の方位ずれ、及び、位置ずれが解消されるように生成される。車速変更に関する制御信号は、主変速操作具(不図示)の前進位置に対応して設定された車速値に基づいて生成される。なお、図5に示すような制御ブロックに基づいて自動走行は、図8に示す制御ブロックにおいても同様に行われる。 When the automatic driving mode is set, automatic driving is performed based on a control block as shown in FIG. The automatic traveling control unit 51B controls the traveling equipment group 71 by generating a control signal for vehicle speed change including automatic steering and stopping. The traveling route is set by the traveling route setting unit 41, and the own vehicle position is calculated by the own vehicle position calculating unit 55. Then, the control signal relating to the automatic steering is generated such that the azimuth deviation and the positional deviation between the own vehicle position and the traveling route are eliminated. The control signal relating to the vehicle speed change is generated based on a vehicle speed value set corresponding to a forward position of a main speed change operation tool (not shown). The automatic traveling based on the control block as shown in FIG. 5 is similarly performed in the control block as shown in FIG.
 手動走行モードが選択されている場合、監視者による操作に基づいて、図4に示す手動走行制御部51Aが制御信号を生成し、走行機器群71を制御することによって、手動運転が実現される。なお、走行経路設定部41によって算出された走行経路は、手動運転であっても、コンバインが当該走行経路に沿って走行するためのガイダンス目的で利用できる。 When the manual traveling mode is selected, the manual traveling control unit 51A shown in FIG. 4 generates a control signal based on the operation by the monitor and controls the traveling equipment group 71, thereby realizing the manual driving. . The travel route calculated by the travel route setting unit 41 can be used for guidance for the combine to travel along the travel route even when the vehicle is operated manually.
〔自動走行制御システムによる排出経路の生成について〕
 排出経路Ptの生成に関して、図5乃至図7に基づいて説明する。図6及び図7に示される機体10のうち、収穫装置Hの位置する側に進行方向の矢印が示され、機体10はこの矢印の方向に前進走行する。後述する図9乃至図12に関しても同じである。
[Generation of discharge route by automatic driving control system]
The generation of the discharge path Pt will be described with reference to FIGS. 6 and 7, an arrow in the traveling direction is shown on the side where the harvesting device H is located, and the aircraft 10 travels forward in the direction of the arrow. The same applies to FIGS. 9 to 12 described later.
 穀粒タンク14(図1参照)における穀粒の貯留量が満杯状態になると、収穫装置Hによる作物の収穫は継続不能となる。穀粒タンク14における穀粒の貯留量は、貯留測定部64Aの検出値に基づいて算出される。また、機体10の現在位置は、自車位置検出モジュール80に基づいて検出される。このため、穀粒タンク14における穀粒の貯留量が設定量以上に到達すると、中断判定部59が自動走行の中断を判定する。そして、離脱位置算出部43は、機体10の現在位置を離脱位置WPとして設定する。図6及び図7において、排出位置DPは運搬車CVの横付け位置に隣接する地点である。 (4) When the storage amount of the grain in the grain tank 14 (see FIG. 1) is full, harvesting of the crop by the harvesting device H cannot be continued. The storage amount of the grain in the grain tank 14 is calculated based on the detection value of the storage measurement unit 64A. Further, the current position of the aircraft 10 is detected based on the own vehicle position detection module 80. For this reason, when the storage amount of the grains in the grain tank 14 reaches or exceeds the set amount, the interruption determination unit 59 determines that the automatic traveling is interrupted. Then, the departure position calculation unit 43 sets the current position of the aircraft 10 as the departure position WP. 6 and 7, the discharge position DP is a point adjacent to the horizontal position of the transport vehicle CV.
 走行経路設定部41による排出経路Ptの生成の条件に、機体10が作業対象領域CAを通過せずに外周領域SAのみを通過することが含まれる。走行経路設定部41は、圃場内において自動走行の中断後に作業するために予め設定された途中作業位置と、自動走行の中断が判定されたときの機体10の位置としての離脱位置WPと、圃場の収穫状況と、に基づいて、途中作業位置としての排出位置DPへ移動する途中作業経路を生成する。このように途中作業経路を生成する走行経路設定部41の機能が、本発明の『途中作業経路生成機能』である。途中作業経路生成機能は、コンピュータに実行させるプログラムによって構成されている。また、このように途中作業経路を生成する方法が、本発明の『途中作業経路生成ステップ』である。図6及び図7に、途中作業経路としての排出経路Ptが示される。そして、走行経路設定部41は、圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地としての作業対象領域CAの位置情報を取得する。 The condition for generating the discharge route Pt by the traveling route setting unit 41 includes that the aircraft 10 passes only the outer peripheral area SA without passing through the work target area CA. The travel route setting unit 41 includes a preset intermediate work position for performing work after the interruption of the automatic traveling in the field, a detachment position WP as a position of the body 10 when the interruption of the automatic traveling is determined, Based on the harvesting status of, an intermediate work path for moving to the discharge position DP as an intermediate work position is generated. The function of the traveling route setting unit 41 that generates the halfway work route in this way is the “halfway work route generation function” of the present invention. The halfway work route generation function is configured by a program executed by a computer. A method for generating a halfway work route in this way is the “halfway work route generation step” of the present invention. 6 and 7 show a discharge path Pt as an intermediate work path. Then, the traveling route setting unit 41 acquires the position information of the work target area CA as an unworked place where the harvesting work in the field has not been completed yet, as the field harvest condition.
 最初に、走行経路設定部41は、離脱位置WPと排出位置DPとを直線的(または略直線的)に移動可能な第一直進排出経路Pt1の生成を試みる。これと同時に走行経路設定部41は、排出位置DPに機体10が旋回しながら進入するための第一旋回経路Pc1を生成する。排出位置DPの到達手前の位置において、第一直進排出経路Pt1の一端が第一旋回経路Pc1の円弧と接線方向で接する。また、走行経路設定部41は、機体10の現在位置(離脱位置WP)と排出位置DPとを結ぶ第一直進排出経路Pt1上に、圃場における作業対象領域CAが存在するかしないかを判定する。図6において、第一直進排出経路Pt1は作業対象領域CAを横切ることなく排出位置DPに到達可能な経路となる。このため、図6において、第一直進排出経路Pt1が排出経路Ptとして用いられ、排出経路Ptの生成が確定する。つまり、第一直進排出経路Pt1上に作業対象領域CAが存在しない場合、走行経路設定部41は、直線に近似するように排出経路Ptを生成する。なお、第一旋回経路Pc1は、例えば機体10の最小旋回半径と等しい旋回半径を有し、この旋回半径は適宜変更可能である。後述する第二旋回経路Pc2や第三旋回経路Pc3等についても第一旋回経路Pc1と同じであって、夫々の旋回経路Pcは、各別の旋回半径を有する構成であっても良いし、同一の旋回半径を有する構成であっても良い。 {Circle around (1)} First, the traveling route setting unit 41 attempts to generate a first straight discharge route Pt1 that can move the separation position WP and the discharge position DP linearly (or substantially linearly). At the same time, the traveling route setting unit 41 generates a first turning route Pc1 for the body 10 to enter the discharging position DP while turning. At a position before reaching the discharge position DP, one end of the first straight discharge path Pt1 is tangentially in contact with the arc of the first turning path Pc1. In addition, the traveling route setting unit 41 determines whether or not the work target area CA in the field exists on the first straight discharge route Pt1 connecting the current position (the detachment position WP) of the body 10 and the discharge position DP. . In FIG. 6, the first straight discharge path Pt1 is a path that can reach the discharge position DP without crossing the work area CA. For this reason, in FIG. 6, the first straight discharge path Pt1 is used as the discharge path Pt, and the generation of the discharge path Pt is determined. That is, when the work target area CA does not exist on the first straight discharge path Pt1, the traveling path setting unit 41 generates the discharge path Pt so as to approximate a straight line. The first turning path Pc1 has, for example, a turning radius equal to the minimum turning radius of the machine body 10, and this turning radius can be appropriately changed. A second turning path Pc2, a third turning path Pc3, and the like, which will be described later, are the same as the first turning path Pc1, and each turning path Pc may have a configuration having a different turning radius. A configuration having a turning radius of?
 一方、図7においては、第一直進排出経路Pt1は作業対象領域CAを横切るため、第一直進排出経路Pt1は排出経路Ptとしては用いられず、排出経路Ptの生成は確定しない。 On the other hand, in FIG. 7, since the first straight discharge path Pt1 crosses the work target area CA, the first straight discharge path Pt1 is not used as the discharge path Pt, and the generation of the discharge path Pt is not determined.
 図7において、未作業地としての作業対象領域CAは四角形状に形成され、この四角形に形成された作業対象領域CAは、角部P1,P2,P3,P4を有する。圃場におけるコンバインの収穫走行が行われると、作業対象領域CAの形状が変化し続ける。このため、作業対象領域CAにおける多角形状の角部P1,P2,P3,P4の位置も、圃場の収穫状況に応じて変化する。このことから、走行経路設定部41(図4及び図5参照)は、離脱位置WPと、排出位置DPと、圃場の収穫状況と、に応じて、離脱位置WPから排出位置DPへ機体10を自動的に移動させるための排出経路Ptを生成する。図7において、排出経路Ptは、作業対象領域CAよりも外側を迂回する経路となる。 In FIG. 7, the work target area CA as an unworked place is formed in a square shape, and the work target area CA formed in the square shape has corners P1, P2, P3, and P4. When the harvesting run of the combine in the field is performed, the shape of the work target area CA keeps changing. Therefore, the positions of the polygonal corners P1, P2, P3, and P4 in the work target area CA also change according to the harvesting situation in the field. For this reason, the traveling route setting unit 41 (see FIGS. 4 and 5) moves the aircraft 10 from the detachment position WP to the ejection position DP according to the detachment position WP, the discharge position DP, and the harvest status of the field. A discharge path Pt for automatic movement is generated. In FIG. 7, the discharge route Pt is a route that detours outside the work target area CA.
 離脱位置WPよりも機体10の前進側に角部P1が存在し、角部P1は、角部P1,P2,P3,P4のうち、機体10の現在位置である離脱位置WPから最も近い角部である。また、角部P1は、離脱位置WPで機体10が走行経路から離脱せずにそのまま直進する場合に、機体10が刈り抜ける箇所である。第一直進排出経路Pt1の生成を試みた後、走行経路設定部41は、外周領域SAのうち角部P1に隣接する箇所に、機体10が旋回するための第一角位置C1を設定する。このように、走行経路設定部41は、現在位置から機体10の進行方向に向かって最も近い角部P1の第一角位置C1を算出する。そして、走行経路設定部41は、離脱位置WPと第一角位置C1とに亘って、作業対象領域CAの外周辺に沿って機体10が外周領域SAを走行するための第一迂回排出経路Pd1を生成する。同時に走行経路設定部41は、第一角位置C1に基づいて円弧状の第二旋回経路Pc2を生成する。第一迂回排出経路Pd1の一端が第二旋回経路Pc2の円弧と接線方向で接する。第一角位置C1は第二旋回経路Pc2を生成する際の基準点として用いられる。第一角位置C1を中心に第二旋回経路Pc2が生成されても良いし、第一角位置C1と第二旋回経路Pc2の円弧とが重なる状態で第二旋回経路Pc2が生成されても良い。第一迂回排出経路Pd1及び第二旋回経路Pc2は排出経路Ptの一部に含まれる。 There is a corner P1 on the forward side of the body 10 relative to the separation position WP, and the corner P1 is the corner of the corners P1, P2, P3, and P4 that is closest to the separation position WP that is the current position of the body 10. It is. The corner P1 is a place where the body 10 can cut through when the body 10 goes straight without leaving the traveling route at the separation position WP. After attempting to generate the first straight discharge path Pt1, the traveling path setting unit 41 sets a first angular position C1 for the aircraft 10 to turn at a position adjacent to the corner P1 in the outer peripheral area SA. As described above, the traveling route setting unit 41 calculates the first corner position C1 of the corner P1 closest to the traveling direction of the body 10 from the current position. Then, the traveling route setting unit 41 provides a first bypass discharge route Pd1 for the body 10 to travel in the outer peripheral area SA along the outer periphery of the work target area CA over the detachment position WP and the first angular position C1. Generate At the same time, the traveling route setting unit 41 generates an arc-shaped second turning route Pc2 based on the first angular position C1. One end of the first bypass discharge path Pd1 is tangent to the arc of the second turning path Pc2. The first angular position C1 is used as a reference point when generating the second turning path Pc2. The second turning path Pc2 may be generated around the first angular position C1, or the second turning path Pc2 may be generated in a state where the first angular position C1 and the arc of the second turning path Pc2 overlap. . The first bypass discharge path Pd1 and the second turning path Pc2 are included in a part of the discharge path Pt.
 第一迂回排出経路Pd1及び第二旋回経路Pc2の生成後、走行経路設定部41は、第二旋回経路Pc2の円弧上から接線方向に延びる状態で、第一角位置C1と排出位置DPとを直線的(または略直線的)に移動可能な第二直進排出経路Pt2の生成を試みる。排出位置DPの到達手前の位置において、第一旋回経路Pc1の円弧上で第二直進排出経路Pt2の一端が接線方向で接する。また、走行経路設定部41は、第一角位置C1と排出位置DPとを結ぶ第二直進排出経路Pt2上に作業対象領域CAが存在するかしないかを判定する。 After the generation of the first detour discharge path Pd1 and the second turning path Pc2, the traveling path setting unit 41 sets the first angular position C1 and the discharge position DP in a state where they extend tangentially from the arc of the second turning path Pc2. An attempt is made to generate a second straight discharge path Pt2 that can move linearly (or substantially linearly). At a position before reaching the discharge position DP, one end of the second straight discharge path Pt2 tangentially contacts on the arc of the first turning path Pc1. Further, the traveling route setting unit 41 determines whether or not the work target area CA exists on the second straight discharge route Pt2 connecting the first corner position C1 and the discharge position DP.
 第二直進排出経路Pt2上に作業対象領域CAが存在しない場合は、走行経路設定部41は、現在位置である離脱位置WPと、第一角位置C1と、排出位置DPと、から排出経路Ptを生成する。しかし、図7で示された例において、第二直進排出経路Pt2は作業対象領域CAを横切るため、第二直進排出経路Pt2は排出経路Ptとしては用いられず、排出経路Ptの生成は確定しない。 When the work target area CA does not exist on the second straight discharge path Pt2, the traveling path setting unit 41 determines the discharge path Pt from the current position, the separation position WP, the first corner position C1, and the discharge position DP. Generate However, in the example shown in FIG. 7, since the second straight discharge path Pt2 crosses the work target area CA, the second straight discharge path Pt2 is not used as the discharge path Pt, and the generation of the discharge path Pt is not determined. .
 角部P1に対して、第一迂回排出経路Pd1の位置する側と反対側に角部P2が存在する。第二直進排出経路Pt2の生成を試みた後、走行経路設定部41は、外周領域SAのうち角部P2に隣接する箇所に、機体10が旋回するための第二角位置C2を設定する。そして、走行経路設定部41は、第一角位置C1と第二角位置C2とに亘って、作業対象領域CAの外周辺に沿って機体10が外周領域SAを走行するための第二迂回排出経路Pd2を生成する。同時に走行経路設定部41は、第二角位置C2に基づいて円弧状の第三旋回経路Pc3を生成する。第二迂回排出経路Pd2の一端が第三旋回経路Pc3の円弧と接線方向で接する。第二角位置C2は第三旋回経路Pc3を生成する際の基準点として用いられる。第二角位置C2を中心に第三旋回経路Pc3が生成されても良いし、第二角位置C2と第三旋回経路Pc3の円弧とが重なる状態で第三旋回経路Pc3が生成されても良い。第二迂回排出経路Pd2及び第三旋回経路Pc3は排出経路Ptの一部に含まれる。 The corner P2 is located on the opposite side of the corner P1 from the side where the first bypass discharge path Pd1 is located. After trying to generate the second straight discharge route Pt2, the traveling route setting unit 41 sets a second angular position C2 for the aircraft 10 to turn at a position adjacent to the corner P2 in the outer peripheral area SA. Then, the travel route setting unit 41 performs the second bypass discharge for the body 10 to travel in the outer peripheral area SA along the outer periphery of the work target area CA over the first angular position C1 and the second angular position C2. A path Pd2 is generated. At the same time, the traveling route setting unit 41 generates an arc-shaped third turning route Pc3 based on the second angular position C2. One end of the second bypass discharge path Pd2 is tangent to the arc of the third turning path Pc3. The second angular position C2 is used as a reference point when generating the third turning path Pc3. The third turning path Pc3 may be generated around the second angular position C2, or the third turning path Pc3 may be generated in a state where the second angular position C2 and the arc of the third turning path Pc3 overlap. . The second bypass discharge path Pd2 and the third turning path Pc3 are included in a part of the discharge path Pt.
 第二迂回排出経路Pd2及び第三旋回経路Pc3の生成後、走行経路設定部41は、第三旋回経路Pc3の円弧上から接線方向に延びる状態で、第二角位置C2と排出位置DPとを直線的(または略直線的)に移動可能な第三直進排出経路Pt3の生成を試みる。第三直進排出経路Pt3の一端が第一旋回経路Pc1の円弧と接線方向で接する。また、走行経路設定部41は、第二角位置C2と排出位置DPとを結ぶ第三直進排出経路Pt3上に作業対象領域CAが存在するかしないかを判定する。図7で示された例において、第三直進排出経路Pt3は、作業対象領域CAを横切らずに排出位置DPに到達可能な経路である。このため、第三直進排出経路Pt3が排出経路Ptの一部に含まれる。したがって、図7において、走行経路設定部41は、現在位置である離脱位置WPと、第一角位置C1と、第二角位置C2と、排出位置DPと、から排出経路Ptを生成する。この結果、排出経路Ptは、離脱位置WPから、第一迂回排出経路Pd1、第二旋回経路Pc2、第二迂回排出経路Pd2、第三旋回経路Pc3、第三直進排出経路Pt3、第一旋回経路Pc1、の順番に経由して排出位置DPに至る経路となる。 After the generation of the second bypass discharge path Pd2 and the third turning path Pc3, the traveling path setting unit 41 sets the second angular position C2 and the discharge position DP in a state where the second angular position C2 and the discharge position DP are extended tangentially from the arc of the third turning path Pc3. An attempt is made to generate a third straight discharge path Pt3 that can move linearly (or substantially linearly). One end of the third straight discharge path Pt3 is tangent to the arc of the first turning path Pc1. Further, the traveling route setting unit 41 determines whether or not the work target area CA exists on the third straight discharge route Pt3 connecting the second angular position C2 and the discharge position DP. In the example shown in FIG. 7, the third straight discharge path Pt3 is a path that can reach the discharge position DP without crossing the work target area CA. Therefore, the third straight discharge path Pt3 is included in a part of the discharge path Pt. Therefore, in FIG. 7, the traveling route setting unit 41 generates the discharge route Pt from the departure position WP, which is the current position, the first angular position C1, the second angular position C2, and the discharge position DP. As a result, the discharge route Pt moves from the separation position WP to the first bypass discharge route Pd1, the second turning route Pc2, the second bypass discharging route Pd2, the third turning route Pc3, the third straight discharging route Pt3, and the first turning route. It becomes a path to the discharge position DP via the order of Pc1.
 このように、走行経路設定部41は、離脱位置WPから排出位置DPまでの直線経路を優先的に用いて排出経路Ptの作成を試みる。そして、当該直線経路上に作業対象領域CAが存在する場合には、最寄りの角位置に至る迂回経路を挿入しながら排出位置DPまでの直線経路を探索して排出経路Ptを生成する。換言すると、走行経路設定部41は、第一直進排出経路Pt1以外の別の直線上(例えば第二直進排出経路Pt2)に作業対象領域CAが存在する場合は、作業対象領域CAが存在しないさらに別の直線が見つかるまで上述の演算を繰り返す。 As described above, the traveling route setting unit 41 attempts to create the discharge route Pt by preferentially using the straight route from the separation position WP to the discharge position DP. Then, when the work area CA exists on the straight path, the discharge path Pt is generated by searching for a straight path to the discharge position DP while inserting a detour path to the nearest corner position. In other words, when the work target area CA exists on another straight line other than the first straight discharge path Pt1 (for example, the second straight discharge path Pt2), the traveling path setting unit 41 does not include the work target area CA. The above calculation is repeated until another straight line is found.
 なお、離脱位置WPにおいて、コンバインは、収穫装置Hによる収穫を継続しつつ、作業対象領域CAの走行経路から離脱して、外周領域SAに生成された排出経路Ptに移動する。排出経路Ptへの移動は、自動走行制御部51Bの制御信号に基づいて行われる。つまり、自動走行制御部51Bは、収穫装置Hに作物を刈り取らせつつ、走行中の走行経路よりも外周領域SA側に離脱し、かつ、排出位置DPまで移動する。機体10は、離脱位置WPから排出経路Ptの位置する側に向かって、前進走行しながら斜め前方向に移動する。これにより、機体10は、後進走行することなく排出位置DPへ円滑に移動でき、その際に未収穫の作物が機体10に踏み倒される虞も生じない。 At the detachment position WP, the combine leaves the traveling path in the work target area CA and moves to the discharge path Pt generated in the outer peripheral area SA while continuing the harvesting by the harvesting device H. Movement to the discharge route Pt is performed based on a control signal of the automatic traveling control unit 51B. That is, the automatic traveling control unit 51B leaves the outer peripheral area SA side of the traveling route while traveling, and moves to the discharge position DP while causing the harvesting device H to harvest the crop. The body 10 moves obliquely forward while traveling forward from the separation position WP toward the side where the discharge path Pt is located. Thereby, the machine body 10 can smoothly move to the discharge position DP without traveling backward, and there is no possibility that unharvested crops are stepped down by the machine body 10 at that time.
〔自動走行制御システムによる復帰経路の生成について〕
 復帰経路Rtの生成に関して、図8乃至図10に基づいて説明する。穀粒タンク14(図1参照)からの穀粒の排出が完了すると、収穫装置Hによる作物の収穫の再開が可能となる。また、機体10の現在位置は、自車位置検出モジュール80に基づいて検出される。このため、排出位置DPで作業が行われた後、離脱位置算出部43は、この途中作業位置としての排出位置DPを離脱位置WPとして設定する。なお、この排出位置DPは、燃料タンク(不図示)に燃料を補給可能な補給位置であっても良い。つまり、途中作業位置に、貯留部としての穀粒タンク14に貯留された収穫物としての穀粒を排出可能な排出位置DPが含まれても良いし、燃料タンク(不図示)に燃料を補給可能な補給位置が含まれても良い。
[Generation of return route by automatic driving control system]
The generation of the return route Rt will be described with reference to FIGS. When the discharge of the grain from the grain tank 14 (see FIG. 1) is completed, the harvesting of the crop by the harvesting device H can be restarted. Further, the current position of the aircraft 10 is detected based on the own vehicle position detection module 80. For this reason, after the work is performed at the discharge position DP, the separation position calculation unit 43 sets the discharge position DP as the intermediate work position as the separation position WP. The discharge position DP may be a replenishing position where fuel can be supplied to a fuel tank (not shown). In other words, the intermediate work position may include a discharge position DP at which the kernels as the harvest stored in the kernel tank 14 as the storage unit can be discharged, or refuel the fuel tank (not shown). Possible supply positions may be included.
 図4及び図8に示す走行経路設定部41は、図9及び図10に示す復帰位置RPを、離脱位置WPと圃場の収穫状況とに基づいて算出する。具体的な構成の例として、走行経路設定部41に復帰位置RPを算定する復帰位置算定部が備えられている。そして、走行経路設定部41の復帰位置算定部が、穀粒タンク14の容量等を勘案して、次回に機体10が走行経路から離脱する際の排出経路Ptが、例えば最短となるように、作業対象領域CA内における復帰位置RPを算定する。なお、走行経路設定部41の復帰位置算定部は例示であって、走行経路設定部41と復帰位置算定部とが別のモジュールとして構成されても良い。 The traveling route setting unit 41 shown in FIGS. 4 and 8 calculates the return position RP shown in FIGS. 9 and 10 based on the detachment position WP and the harvest condition of the field. As an example of a specific configuration, the traveling route setting unit 41 includes a return position calculation unit that calculates a return position RP. Then, the return position calculation unit of the traveling route setting unit 41 takes into account the capacity of the grain tank 14 and the like, so that the discharge route Pt when the aircraft 10 next leaves the traveling route becomes the shortest, for example, The return position RP in the work area CA is calculated. Note that the return position calculating unit of the traveling route setting unit 41 is an example, and the traveling route setting unit 41 and the return position calculating unit may be configured as separate modules.
 つまり、走行経路設定部41は、自動走行が中断して圃場内において予め設定された離脱位置WP(途中作業位置)で作業が行われた後、途中作業位置と圃場の収穫状況とに基づいて走行経路における復帰位置RPを算定するとともに、復帰位置RPと圃場の収穫状況とに基づいて復帰位置RPへ移動する復帰経路Rtを生成する。走行経路設定部41は、圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地としての作業対象領域CAの位置情報を取得する。 That is, the traveling route setting unit 41 interrupts the automatic traveling and performs the work at the preset detachment position WP (intermediate work position) in the field, and then performs the operation based on the intermediate work position and the harvest status of the field. The return position RP in the travel route is calculated, and a return route Rt that moves to the return position RP is generated based on the return position RP and the field harvest condition. The traveling route setting unit 41 obtains, as the harvest status of the field, the position information of the work target area CA as an unworked place where the harvest work in the field has not been completed yet.
 図8及び図9に示すように、走行経路設定部41は、圃場における収穫作業がまだ終わっていない未作業地(作業対象領域CA)に設定された走行経路の端部のうち、離脱位置WP(途中作業位置)から機体10の進行方向側の最も近い端部を復帰位置RPとして算定する構成であっても良い。また、図8及び図10に示すように、走行経路設定部41は図7に示される離脱位置WPをそのまま復帰位置RPとして算定する構成であっても良い。さらに、図4及び図8に示す走行経路設定部41は、例えば穀粒タンク14の容量等を勘案して、次回に機体10が走行経路から離脱する際の排出経路Pt(図6及び図7参照)が最短になるように、作業対象領域CA内における復帰位置RPを算定する構成であっても良い。 As shown in FIG. 8 and FIG. 9, the traveling route setting unit 41 includes a separation position WP among the ends of the traveling route set in an unworked area (work target area CA) where the harvesting work in the field has not yet been completed. A configuration in which the end closest to the traveling direction of the machine body 10 from the (intermediate work position) may be calculated as the return position RP. Further, as shown in FIGS. 8 and 10, the traveling route setting unit 41 may be configured to calculate the departure position WP shown in FIG. 7 as the return position RP as it is. Further, the traveling route setting unit 41 shown in FIGS. 4 and 8 considers, for example, the capacity of the grain tank 14 and the like, and sets a discharge route Pt (FIG. 6 and FIG. 7) when the aircraft 10 next leaves the traveling route. The reference position may be calculated so as to minimize the return position RP in the work area CA.
 走行経路設定部41が復帰経路Rtを生成する際、最初に走行経路設定部41は、離脱位置WP(途中作業位置)における作業完了時の機体10の向きを条件に加えて復帰経路Rtを生成する。離脱位置WPから離脱する際の離脱開始時点での第一旋回経路Rc1を機体10の前方に生成するとともに、復帰位置RPに機体10が旋回しながら進入するための第二旋回経路Rc2を生成する。同時に走行経路設定部41は、離脱位置WPの近傍に位置する第一旋回経路Rc1と、復帰位置RPの近傍に位置する第二旋回経路Rc2と、を直線的(または略直線的)に移動可能な第一直進復帰経路Rt1の生成を試みる。第一直進復帰経路Rt1の両端は、第一旋回経路Rc1及び第二旋回経路Rc2の夫々の円弧と接線方向で接する。また、走行経路設定部41は、離脱位置WPと復帰位置RPとを結ぶ第一直進復帰経路Rt1上に、圃場における作業対象領域CAが存在するかしないかを判定する。図9において、第一直進復帰経路Rt1は作業対象領域CAを横切ることなく復帰位置RPに到達可能な経路となる。このため、図9において、第一直進復帰経路Rt1が復帰経路Rtとして用いられ、復帰経路Rtの生成が確定する。つまり、第一直進復帰経路Rt1上に作業対象領域CAが存在しない場合、走行経路設定部41は、直線に近似するように復帰経路Rtを生成する。 When the travel route setting unit 41 generates the return route Rt, the travel route setting unit 41 first generates the return route Rt by adding the orientation of the machine 10 at the time of completion of the work at the separation position WP (intermediate work position). I do. A first turning path Rc1 at the time of start of departure when leaving from the departure position WP is generated in front of the body 10, and a second turning path Rc2 for the body 10 to enter the return position RP while turning is generated. . At the same time, the traveling route setting unit 41 can linearly (or substantially linearly) move the first turning route Rc1 located near the departure position WP and the second turning route Rc2 located near the return position RP. The first straight return route Rt1 is attempted. Both ends of the first rectilinear return route Rt1 are tangent to the respective arcs of the first turning route Rc1 and the second turning route Rc2. In addition, the traveling route setting unit 41 determines whether or not the work target area CA in the field exists on the first straight return route Rt1 that connects the separation position WP and the return position RP. In FIG. 9, the first rectilinear return route Rt1 is a route that can reach the return position RP without crossing the work target area CA. Therefore, in FIG. 9, the first straight return route Rt1 is used as the return route Rt, and the generation of the return route Rt is determined. That is, when the work target area CA does not exist on the first straight return route Rt1, the traveling route setting unit 41 generates the return route Rt so as to approximate a straight line.
 なお、第一旋回経路Rc1及び第二旋回経路Rc2は、例えば機体10の最小旋回半径と等しい旋回半径を有し、この旋回半径は適宜変更可能である。後述する第三旋回経路Rc3や第四旋回経路Rc4等についても第一旋回経路Rc1及び第二旋回経路Rc2と同じであって、夫々の旋回経路Rcは、各別の旋回半径を有する構成であっても良いし、同一の旋回半径を有する構成であっても良い。 The first turning route Rc1 and the second turning route Rc2 have a turning radius equal to, for example, the minimum turning radius of the body 10, and the turning radius can be changed as appropriate. A third turning path Rc3, a fourth turning path Rc4, and the like described later are the same as the first turning path Rc1 and the second turning path Rc2, and each turning path Rc has a different turning radius. Or a configuration having the same turning radius.
 一方、図10においては、第一直進復帰経路Rt1は作業対象領域CAを横切るため、第一直進復帰経路Rt1は復帰経路Rtとしては用いられず、復帰経路Rtの生成は確定しない。 On the other hand, in FIG. 10, since the first straight return route Rt1 crosses the work target area CA, the first straight return route Rt1 is not used as the return route Rt, and the generation of the return route Rt is not determined.
 図10において、未作業地としての作業対象領域CAは四角形状に形成され、この四角形に形成された作業対象領域CAは、角部R1,R2,R3,R4を有する。圃場におけるコンバインの収穫走行が行われると、作業対象領域CAの形状が変化し続ける。このため、作業対象領域CAにおける多角形状の角部R1,R2,R3,R4の位置も、圃場の収穫状況に応じて変化する。このことから、走行経路設定部41(図4及び図8参照、以下同様)は、離脱位置WPと、復帰位置RPと、圃場の収穫状況と、に応じて、離脱位置WPから復帰位置RPへ機体10を自動的に移動させるための復帰経路Rtを生成する。このように復帰経路Rtを生成する走行経路設定部41の機能が、本発明の『復帰経路生成機能』である。途中作業経路生成機能は、コンピュータに実行させるプログラムによって構成されている。また、このように復帰経路Rtを生成する方法が、本発明の『復帰経路生成ステップ』である。図10において、復帰経路Rtは、作業対象領域CAよりも外側を迂回する経路となる。 In FIG. 10, the work target area CA as an unworked place is formed in a square shape, and the work target area CA formed in the square shape has corner portions R1, R2, R3, and R4. When the harvesting run of the combine in the field is performed, the shape of the work target area CA keeps changing. For this reason, the positions of the polygonal corners R1, R2, R3, and R4 in the work target area CA also change according to the harvesting situation in the field. For this reason, the traveling route setting unit 41 (see FIGS. 4 and 8, the same applies hereinafter) moves from the detachment position WP to the return position RP in accordance with the detachment position WP, the return position RP, and the field harvest condition. A return route Rt for automatically moving the body 10 is generated. The function of the traveling route setting unit 41 that generates the return route Rt is the “return route generation function” of the present invention. The halfway work route generation function is configured by a program executed by a computer. The method of generating the return route Rt in this manner is the “return route generation step” of the present invention. In FIG. 10, the return route Rt is a route that detours outside the work target area CA.
 離脱位置WPよりも機体10の前進側に角部R1が存在し、角部R1は、角部R1,R2,R3,R4のうち、離脱位置WP(途中作業位置)から最も近い角部である。第一直進復帰経路Rt1の生成を試みた後、走行経路設定部41は、外周領域SAのうち角部R1に隣接する箇所に、機体10が旋回するための第一角位置C11を設定する。このように、走行経路設定部41が離脱位置WPから最も近い角部R1の角位置を算出する際に、走行経路設定部41は、途中作業位置から機体10の進行方向側の最も近い角部R1の第一角位置C11を算出する。そして、走行経路設定部41は、離脱位置WPと第一角位置C11とに亘って、作業対象領域CAの外周辺に沿って機体10が外周領域SAを走行するための第一迂回復帰経路Rd1を生成する。同時に走行経路設定部41は、第一角位置C11に基づいて円弧状の第三旋回経路Rc3を生成する。第一迂回復帰経路Rd1の一端が第三旋回経路Rc3の円弧と接線方向で接する。第一角位置C11は第三旋回経路Rc3を生成する際の基準点として用いられる。第一角位置C11を中心に第三旋回経路Rc3が生成されても良いし、第一角位置C11と第三旋回経路Rc3の円弧とが重なる状態で第三旋回経路Rc3が生成されても良い。第一迂回復帰経路Rd1及び第三旋回経路Rc3は復帰経路Rtの一部に含まれる。 There is a corner R1 on the forward side of the fuselage 10 beyond the separation position WP, and the corner R1 is the corner of the corners R1, R2, R3, and R4 that is closest to the separation position WP (intermediate work position). . After attempting to generate the first straight return route Rt1, the traveling route setting unit 41 sets a first angular position C11 for the aircraft 10 to turn at a position adjacent to the corner R1 in the outer peripheral area SA. As described above, when the traveling route setting unit 41 calculates the corner position of the corner R1 closest to the separation position WP, the traveling route setting unit 41 computes the nearest corner on the traveling direction side of the body 10 from the midway work position. The first angular position C11 of R1 is calculated. Then, the travel route setting unit 41 performs the first detour return route Rd1 for the vehicle body 10 to travel in the outer peripheral area SA along the outer periphery of the work target area CA over the detachment position WP and the first angular position C11. Generate At the same time, the traveling route setting unit 41 generates an arc-shaped third turning route Rc3 based on the first angular position C11. One end of the first detour return route Rd1 is tangent to the arc of the third turning route Rc3. The first angular position C11 is used as a reference point when generating the third turning route Rc3. The third turning path Rc3 may be generated around the first angular position C11, or the third turning path Rc3 may be generated in a state where the first angular position C11 and the arc of the third turning path Rc3 overlap. . The first detour return route Rd1 and the third turning route Rc3 are included in a part of the return route Rt.
 第一迂回復帰経路Rd1及び第三旋回経路Rc3の生成後、走行経路設定部41は、第三旋回経路Rc3の円弧上から接線方向に延びる状態で、第一角位置C11と復帰位置RPとを直線的(または略直線的)に移動可能な第二直進復帰経路Rt2の生成を試みる。復帰位置RPの到達手前の位置において、第二直進復帰経路Rt2の一端が第二旋回経路Rc2の円弧と接線方向で接する。また、走行経路設定部41は、第一角位置C11と復帰位置RPとを結ぶ第二直進復帰経路Rt2上に作業対象領域CAが存在するかしないかを判定する。 After the generation of the first detour return route Rd1 and the third turning route Rc3, the traveling route setting unit 41 sets the first angular position C11 and the return position RP in a state where the first turning position R11 extends tangentially from the arc of the third turning route Rc3. An attempt is made to generate a second rectilinear return route Rt2 that can move linearly (or substantially linearly). At a position before reaching the return position RP, one end of the second rectilinear return path Rt2 is tangentially in contact with the arc of the second turning path Rc2. Further, the traveling route setting unit 41 determines whether or not the work target area CA exists on the second rectilinear returning route Rt2 connecting the first corner position C11 and the returning position RP.
 第二直進復帰経路Rt2上に作業対象領域CAが存在しない場合は、走行経路設定部41は、現在位置である離脱位置WPと、第一角位置C11と、復帰位置RPと、から復帰経路Rtを生成する。しかし、図10で示された例において、第二直進復帰経路Rt2は作業対象領域CAを横切るため、第二直進復帰経路Rt2は復帰経路Rtとしては用いられず、復帰経路Rtの生成は確定しない。 When the work target area CA does not exist on the second rectilinear return route Rt2, the traveling route setting unit 41 determines the return route Rt from the departure position WP that is the current position, the first angular position C11, and the return position RP. Generate However, in the example shown in FIG. 10, since the second straight return route Rt2 crosses the work target area CA, the second straight return route Rt2 is not used as the return route Rt, and the generation of the return route Rt is not determined. .
 角部R1に対して、第一迂回復帰経路Rd1の位置する側と反対側に角部R2が存在する。第二直進復帰経路Rt2の生成を試みた後、走行経路設定部41は、外周領域SAのうち角部R2に隣接する箇所に、機体10が旋回するための第二角位置C12を設定する。そして、走行経路設定部41は、第一角位置C11と第二角位置C12とに亘って、作業対象領域CAの外周辺に沿って機体10が外周領域SAを走行するための第二迂回復帰経路Rd2を生成する。同時に走行経路設定部41は、第二角位置C12に基づいて円弧状の第四旋回経路Rc4を生成する。第二迂回復帰経路Rd2の一端が第四旋回経路Rc4の円弧と接線方向で接する。第二角位置C12は第四旋回経路Rc4を生成する際の基準点として用いられる。第二角位置C12を中心に第四旋回経路Rc4が生成されても良いし、第二角位置C12と第四旋回経路Rc4の円弧とが重なる状態で第四旋回経路Rc4が生成されても良い。第二迂回復帰経路Rd2及び第四旋回経路Rc4は復帰経路Rtの一部に含まれる。 A corner R2 exists on the side opposite to the side where the first detour return route Rd1 is located with respect to the corner R1. After attempting to generate the second rectilinear return route Rt2, the traveling route setting unit 41 sets a second angular position C12 for the aircraft 10 to turn at a position adjacent to the corner R2 in the outer peripheral area SA. Then, the traveling route setting unit 41 performs the second detour return for the body 10 to travel in the outer peripheral area SA along the outer periphery of the work target area CA over the first angular position C11 and the second angular position C12. A route Rd2 is generated. At the same time, the traveling route setting unit 41 generates an arc-shaped fourth turning route Rc4 based on the second angular position C12. One end of the second detour return route Rd2 is tangent to the arc of the fourth turning route Rc4. The second angular position C12 is used as a reference point when generating the fourth turning route Rc4. The fourth turning path Rc4 may be generated around the second angular position C12, or the fourth turning path Rc4 may be generated in a state where the second angular position C12 and the arc of the fourth turning path Rc4 overlap. . The second detour return route Rd2 and the fourth turning route Rc4 are included in a part of the return route Rt.
 第二迂回復帰経路Rd2及び第四旋回経路Rc4の生成後、走行経路設定部41は、第四旋回経路Rc4の円弧上から接線方向に延びる状態で、第二角位置C12と復帰位置RPとを直線的(または略直線的)に移動可能な第三直進復帰経路Rt3の生成を試みる。復帰位置RPの到達手前の位置において、第三直進復帰経路Rt3の一端が第三旋回経路Rc3の円弧と接線方向で接するが、図10では第三直進復帰経路Rt3は、第二角位置C12(第四旋回経路Rc4の円弧上)と復帰位置RPとに亘って直線状となっている。 After generating the second detour return route Rd2 and the fourth turning route Rc4, the traveling route setting unit 41 sets the second angular position C12 and the return position RP in a state in which the second turning position Rc4 extends tangentially from the arc of the fourth turning route Rc4. An attempt is made to generate a third rectilinear return route Rt3 that can move linearly (or substantially linearly). At a position short of the return position RP, one end of the third rectilinear return path Rt3 is tangentially in contact with the arc of the third turning path Rc3, but in FIG. 10, the third rectilinear return path Rt3 is in the second angular position C12 ( It is linear over the arc of the fourth turning route Rc4) and the return position RP.
 走行経路設定部41は、第二角位置C12と復帰位置RPとを結ぶ第三直進復帰経路Rt3上に作業対象領域CAが存在するかしないかを判定する。図10で示された例において、第三直進復帰経路Rt3は、作業対象領域CAを横切らずに復帰位置RPに到達可能な経路である。このため、第三直進復帰経路Rt3が復帰経路Rtの一部に含まれる。したがって、図10において、走行経路設定部41は、現在位置である離脱位置WPと、第一角位置C11と、第二角位置C12と、復帰位置RPと、から復帰経路Rtを生成する。この結果、復帰経路Rtは、離脱位置WPから、第一旋回経路Rc1、第一迂回復帰経路Rd1、第三旋回経路Rc3、第二迂回復帰経路Rd2、第四旋回経路Rc4、第三直進復帰経路Rt3、の順番に経由して復帰位置RPに至る経路となる。 The traveling route setting unit 41 determines whether or not the work target area CA exists on the third rectilinear return route Rt3 connecting the second angular position C12 and the return position RP. In the example shown in FIG. 10, the third rectilinear return route Rt3 is a route that can reach the return position RP without crossing the work target area CA. Therefore, the third straight return route Rt3 is included in a part of the return route Rt. Therefore, in FIG. 10, the traveling route setting unit 41 generates the return route Rt from the departure position WP, which is the current position, the first angular position C11, the second angular position C12, and the return position RP. As a result, the return route Rt is moved from the separation position WP to the first turn route Rc1, the first detour return route Rd1, the third turn route Rc3, the second detour return route Rd2, the fourth turn route Rc4, and the third straight return route. The route becomes the return position RP via the order of Rt3.
 このように、走行経路設定部41は、離脱位置WPから復帰位置RPまでの直線経路を優先的に用いて復帰経路Rtの作成を試みる。そして、当該直線経路上に作業対象領域CAが存在する場合には、最寄りの角位置に至る迂回経路を挿入しながら復帰位置RPまでの直線経路を探索して復帰経路Rtを生成する。換言すると、走行経路設定部41は、第一直進復帰経路Rt1以外の別の直線上(例えば第二直進復帰経路Rt2)に作業対象領域CAが存在する場合は、作業対象領域CAが存在しないさらに別の直線が見つかるまで上述の演算を繰り返す。 As described above, the traveling route setting unit 41 attempts to create the return route Rt by preferentially using the straight route from the departure position WP to the return position RP. Then, when the work target area CA exists on the straight route, the return route Rt is generated by searching for a straight route to the return position RP while inserting a bypass route to the nearest corner position. In other words, when the work target area CA exists on another straight line other than the first straight return route Rt1 (for example, the second straight return route Rt2), the travel route setting unit 41 further does not include the work target area CA. The above calculation is repeated until another straight line is found.
〔別実施形態〕
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
[Another embodiment]
The present invention is not limited to the configuration exemplified in the above-described embodiment, and another representative embodiment of the present invention will be exemplified below.
(1)上述した実施形態における途中作業位置として、例えば図7に示される排出位置DPが例示されたが、途中作業位置は穀粒を排出するための位置に限定されず、例えばコンバインの燃料を補給するための位置であっても良い。また、途中作業経路として排出経路Ptが例示されたが、途中作業経路は、例えば燃料を補給するための経路であっても良い。このため、圃場内において排出位置DP以外にも別の箇所に燃料補給位置が途中作業位置として設定され、燃料補給位置に対応する途中作業経路が設定される構成であっても良い。さらに、一つの圃場内において用途ごとに途中作業位置が複数設けられ、夫々の途中作業位置ごとに途中作業経路が各別に設定される構成であっても良い。また、状態検出部は貯留測定部64Aに限定されず、燃料測定部63A(図4参照)等が用いられても良い。つまり、途中作業位置に、燃料タンク(不図示)に燃料を補給可能な補給位置が含まれても良いし、貯留部としての穀粒タンク14(図1参照)に貯留された収穫物としての穀粒を排出可能な排出位置DPが含まれても良い。加えて、収穫機の状態を検出する状態検出部に、貯留部としての穀粒タンク14に貯留された収穫物としての穀粒の貯留量を測定する貯留測定部64Aが含まれても良いし、燃料タンクに貯留された燃料の残量を測定する燃料測定部63Aが含まれても良い。 (1) The discharge position DP shown in FIG. 7 is illustrated as an example of the halfway work position in the above-described embodiment. However, the halfway work position is not limited to the position for discharging the kernels. It may be a position for replenishment. In addition, although the discharge route Pt is illustrated as an intermediate work route, the intermediate work route may be, for example, a route for refueling. For this reason, the fuel supply position may be set as an intermediate work position at a location other than the discharge position DP in the field, and an intermediate work path corresponding to the fuel supply position may be set. Further, a plurality of intermediate work positions may be provided for each application in one field, and the intermediate work path may be set separately for each intermediate work position. Further, the state detection unit is not limited to the storage measurement unit 64A, and a fuel measurement unit 63A (see FIG. 4) or the like may be used. That is, a replenishing position at which fuel can be supplied to a fuel tank (not shown) may be included in the intermediate working position, or a harvested product stored in a grain tank 14 (see FIG. 1) as a storage unit may be included. A discharge position DP capable of discharging grains may be included. In addition, the state detection unit that detects the state of the harvester may include a storage measurement unit 64A that measures the storage amount of the kernel as the harvest stored in the kernel tank 14 as the storage unit. Alternatively, a fuel measuring unit 63A for measuring the remaining amount of fuel stored in the fuel tank may be included.
 また、図4及び図5に示す中断判定部59は、燃料タンク(不図示)における燃料残量に基づいて自動走行の中断を判定する構成であっても良い。つまり、中断判定部59は、状態検出部の測定結果に基づいて自動走行の中断を判定可能な構成であれば良い。このことから、中断判定部59は、燃料タンクに貯留された燃料の残量が設定量を下回ると、自動走行の中断を判定する構成であっても良い。さらに、図4及び図8に示す走行経路設定部41は、燃料タンクの容量等を勘案して、次回に機体10が走行経路から離脱する際の給油経路(途中作業経路)が出来るだけ短くなるように、作業対象領域CA内における復帰位置RPを算定する構成であっても良い。 4 and 5 may be configured to determine the interruption of the automatic traveling based on the remaining amount of fuel in a fuel tank (not shown). That is, the interruption determination unit 59 may have any configuration that can determine the interruption of the automatic traveling based on the measurement result of the state detection unit. Accordingly, the suspension determination unit 59 may be configured to determine the suspension of the automatic traveling when the remaining amount of the fuel stored in the fuel tank falls below the set amount. Further, the travel route setting unit 41 shown in FIGS. 4 and 8 takes into account the capacity of the fuel tank and the like, and the refueling route (intermediate work route) when the aircraft 10 departs from the travel route next time becomes as short as possible. As described above, the configuration may be such that the return position RP in the work target area CA is calculated.
(2)上述した実施形態では、貯留測定部64A(図4及び図5参照)の検出に基づく穀粒の貯留量が設定量以上に到達すると、離脱位置算出部43(図4及び図5参照)は、機体10の現在位置に基づいて離脱位置WPを算出するが、この実施形態に限定されない。離脱位置算出部43は、穀粒の貯留量が設定量に到達する前に、離脱位置WPを設定しても良い。例えば図11に示すように、離脱位置算出部43は、貯留測定部64Aの検出値に基づいて、穀粒タンク14における穀粒が満杯状態(または略満杯状態)となる地点を算出して、離脱位置WPを設定する構成であっても良い。そして、走行経路設定部41が排出経路Ptを生成し、機体10が離脱位置WPに到達すると、作業対象領域CAの走行経路から離脱して排出経路Ptに移動する構成であっても良い。 (2) In the above-described embodiment, when the storage amount of the kernel based on the detection of the storage measurement unit 64A (see FIGS. 4 and 5) reaches the set amount or more, the detachment position calculation unit 43 (see FIGS. 4 and 5). ) Calculates the departure position WP based on the current position of the aircraft 10, but is not limited to this embodiment. The separation position calculation unit 43 may set the separation position WP before the storage amount of the grain reaches the set amount. For example, as shown in FIG. 11, the detachment position calculation unit 43 calculates a point where the kernel in the kernel tank 14 is full (or almost full) based on the detection value of the storage measurement unit 64A, A configuration in which the separation position WP is set may be used. Then, the travel route setting unit 41 may generate a discharge route Pt, and when the machine body 10 reaches the disengagement position WP, the travel route setting unit 41 may depart from the travel route of the work target area CA and move to the discharge route Pt.
(3)上述した実施形態では、走行経路設定部41(図4及び図5参照)は、現在位置から機体10の進行方向に向かって最も近い角部P1の第一角位置C1を算出し、第一角位置C1に基づいて排出経路Ptを生成するが、この実施形態に限定されない。図12に、第一角位置C1を通過しない排出経路Ptの例が示されている。走行経路設定部41は、第一旋回経路Pc1の生成とともに、離脱位置WPと排出位置DPとを直線的(または略直線的)に移動可能な第一直進排出経路Pt11の生成を試みる。その後、走行経路設定部41は、機体10の進行方向に向かって最も近い角部P1の第一角位置C1を算出し、離脱位置WPと第一角位置C1とに亘って第一迂回排出経路Pd11を生成する。これらの演算を繰り返しながら、第二直進排出経路Pt12の生成と、第四旋回経路Pc4の生成を伴う第三直進排出経路Pt13の生成と、が試みられ、第二迂回排出経路Pd12と、第三迂回排出経路Pd13と、の夫々が生成される。また、第二旋回経路Pc2,第三旋回経路Pc3,第五旋回経路Pc5も生成される。第一旋回経路Pc1乃至第五旋回経路Pc5の生成手法は、図7に基づいて上述した第一旋回経路Pc1乃至第三旋回経路Pc3の生成手法と同一であるが、第四旋回経路Pc4は機体10の排出位置DPへの進入方向の変化に伴って生成される。そして、第四直進排出経路Pt14は、作業対象領域CAを横切らずに排出位置DPに到達可能な経路である。このため、走行経路設定部41は、第一迂回排出経路Pd11と第二迂回排出経路Pd12と第三迂回排出経路Pd13と第四直進排出経路Pt14とに亘る排出経路Ptを生成可能である。 (3) In the embodiment described above, the traveling route setting unit 41 (see FIGS. 4 and 5) calculates the first corner position C1 of the corner P1 closest to the traveling direction of the body 10 from the current position, The discharge route Pt is generated based on the first corner position C1, but is not limited to this embodiment. FIG. 12 shows an example of the discharge path Pt that does not pass through the first corner position C1. The traveling path setting unit 41 attempts to generate the first turning path Pc1 and also generate the first straight discharge path Pt11 that can linearly (or substantially linearly) move between the separation position WP and the discharge position DP. After that, the traveling route setting unit 41 calculates the first angular position C1 of the corner P1 closest to the traveling direction of the body 10 and the first bypass discharge route over the departure position WP and the first angular position C1. Generate Pd11. While repeating these calculations, generation of the second straight discharge path Pt12 and generation of the third straight discharge path Pt13 accompanied by generation of the fourth turning path Pc4 are attempted, and the second bypass discharge path Pd12 and the third Each of the bypass discharge path Pd13 is generated. In addition, a second turning path Pc2, a third turning path Pc3, and a fifth turning path Pc5 are also generated. The method of generating the first to fifth turning paths Pc1 to Pc5 is the same as the method of generating the first to third turning paths Pc1 to Pc3 described above with reference to FIG. It is generated in accordance with a change in the approach direction to the ten discharge positions DP. The fourth straight discharge path Pt14 is a path that can reach the discharge position DP without crossing the work target area CA. For this reason, the traveling route setting unit 41 can generate a discharge route Pt extending from the first bypass discharge route Pd11, the second bypass discharge route Pd12, the third bypass discharge route Pd13, and the fourth straight discharge route Pt14.
 しかし、この場合、機体10は作業対象領域CAの外周に沿って半周を越える距離を走行するため、走行経路設定部41は、第一迂回排出経路Pd11から第四直進排出経路Pt14に至る排出経路Ptを生成しない構成も可能である。この場合、離脱位置WPから離脱する外周領域SAが、機体10の旋回スペースを有するかどうかを、走行経路設定部41は判定する。そして、離脱位置WPから離脱する外周領域SAに旋回スペースが在ることが判定されると、走行経路設定部41は、現在位置から機体10の進行方向と反対側に向かって最も近い角部P4の第四角位置C4を算出する。そして走行経路設定部41は、離脱位置WPと第四角位置C4とに亘って、機体10が外周領域SAを走行するための第四迂回排出経路Pd14を生成するとともに、第四角位置C4に基づいて第四迂回排出経路Pd14と接線方向で接する円弧状の第六旋回経路Pc6を生成する。その後、走行経路設定部41は、第六旋回経路Pc6の円弧上から接線方向に延びる状態で、第四角位置C4と排出位置DPとを直線的(または略直線的)に移動可能な第五直進排出経路Pt15の生成を試みる。排出位置DPの到達手前の位置において、第五直進排出経路Pt15の一端が第一旋回経路Pc1の円弧と接線方向で接する。そして、第五直進排出経路Pt15は、作業対象領域CAを横切らずに排出位置DPに到達可能な経路である。このため、走行経路設定部41は、第四迂回排出経路Pd14と第五直進排出経路Pt15とに亘る排出経路Ptを生成する、という構成も可能である。この構成であれば、第一迂回排出経路Pd11から第四直進排出経路Pt14に至る経路と比較して、排出経路Ptの距離が短くなる。このように、走行経路設定部41は、自動走行の中断が判定されたときの機体10の向きを条件に加えて排出経路Ptを生成しても良い。なお、この場合、排出位置DPに機体10が到達するとき、機体10の進行方向が自動走行の進行方向と反転する。このような場合には、排出位置DPにおける途中作業の直前に機体10がUターンする構成であっても良いし、排出位置DPにおける途中作業の直後に機体10がUターンする構成であっても良い。 However, in this case, since the body 10 travels a distance that exceeds a half circumference along the outer periphery of the work target area CA, the travel route setting unit 41 determines that the discharge route from the first detour discharge route Pd11 to the fourth straight discharge route Pt14. A configuration that does not generate Pt is also possible. In this case, the traveling route setting unit 41 determines whether or not the outer peripheral area SA leaving the leaving position WP has a turning space for the body 10. Then, when it is determined that there is a turning space in the outer peripheral area SA departing from the departure position WP, the traveling route setting unit 41 determines the nearest corner P4 from the current position toward the side opposite to the traveling direction of the aircraft 10. Is calculated. Then, the travel route setting unit 41 generates a fourth bypass discharge route Pd14 for the vehicle body 10 to travel in the outer peripheral area SA over the separation position WP and the fourth square position C4, and at the fourth square position C4. Based on this, an arc-shaped sixth turning path Pc6 that is tangent to the fourth bypass discharge path Pd14 is generated. Thereafter, the traveling route setting unit 41 moves the fourth position C4 and the discharge position DP linearly (or substantially linearly) in a state where the fourth position is extended tangentially from the arc of the sixth turning route Pc6. An attempt is made to generate the straight discharge path Pt15. At a position just before reaching the discharge position DP, one end of the fifth rectilinear discharge path Pt15 is tangent to the arc of the first turning path Pc1. The fifth straight discharge path Pt15 is a path that can reach the discharge position DP without crossing the work target area CA. Therefore, the traveling route setting unit 41 may be configured to generate a discharge route Pt that extends from the fourth bypass discharge route Pd14 to the fifth straight discharge route Pt15. With this configuration, the distance of the discharge path Pt is shorter than that of the path from the first bypass discharge path Pd11 to the fourth straight discharge path Pt14. As described above, the traveling route setting unit 41 may generate the discharge route Pt in addition to the condition of the orientation of the body 10 when the interruption of the automatic traveling is determined. In this case, when the body 10 reaches the discharge position DP, the traveling direction of the body 10 is reversed from the traveling direction of the automatic traveling. In such a case, the airframe 10 may make a U-turn immediately before the halfway operation at the discharge position DP, or the airframe 10 may make a U-turn immediately after the halfway operation at the discharge position DP. good.
(4)図12の第四迂回排出経路Pd14で示されるような旋回スペースが外周領域SAに確保されていない場合には、第四迂回排出経路Pd14は、機体10が旋回する経路でなくても良い。例えば、第四迂回排出経路Pd14に代わる経路として、第五直進排出経路Pt15に到達するまで、機体10が後進する経路であっても良い。一方、後進走行だけでは時間が掛かる場合には、機体10が後進走行を伴って切り返しながら旋回することも考えられるが、このような切り返しの旋回では、反って時間が掛かったり、圃場が荒らされたりする虞がある。そのような場合には、遠回りの経路であっても、機体10の向きを変えずにそのまま前進させ、第一迂回排出経路Pd11と第二迂回排出経路Pd12と第三迂回排出経路Pd13と第四直進排出経路Pt14とに亘る排出経路Ptが最適となる。このように、走行経路設定部41は、機体10の向きを勘案して、圃場の実態に応じた最適な排出経路Pt(途中作業経路)を生成できる。また、走行経路設定部41は、機体10の向きを勘案して、圃場の実態に応じた最適な復帰経路Rtを生成できる。 (4) When the turning space as shown by the fourth detour path Pd14 in FIG. 12 is not secured in the outer peripheral area SA, the fourth detour path Pd14 does not need to be a path on which the aircraft 10 turns. good. For example, as a route that replaces the fourth bypass discharge route Pd14, a route in which the aircraft 10 moves backward until the fifth straight discharge route Pt15 is reached may be used. On the other hand, in the case where it takes time only with the reverse running, it is conceivable that the aircraft 10 makes a turn while turning back with the reverse running. However, such turning back takes a long time and warps the field. Or there is a risk of In such a case, even in the circuitous route, the body 10 is advanced without changing the direction, and the first bypass discharge route Pd11, the second bypass discharge route Pd12, the third bypass discharge route Pd13, and the fourth The discharge path Pt extending to the straight discharge path Pt14 is optimal. As described above, the traveling route setting unit 41 can generate an optimal discharge route Pt (intermediate work route) according to the actual condition of the field, taking into account the direction of the machine body 10. In addition, the traveling route setting unit 41 can generate an optimal return route Rt according to the actual condition of the field in consideration of the orientation of the machine body 10.
(5)上述した実施形態では、状態検出部として貯留測定部64Aが備えられているが、貯留測定部64Aは、脱穀装置13から穀粒タンク14に穀粒が投入される際の穀粒の流量を検出するセンサであっても良い。 (5) In the above-described embodiment, the storage measurement unit 64A is provided as the state detection unit. However, the storage measurement unit 64A performs the processing of the kernel when the kernel is supplied from the threshing device 13 to the kernel tank 14. A sensor that detects the flow rate may be used.
(6)上述した実施形態では、図3に示すような回り刈りに基づいて排出経路Ptが生成されているが、図13に示すような往復刈りに基づいて排出経路Ptが生成される構成であっても良い。例えば図13では、作業対象領域CAに、走行経路として平行な複数のラインLが生成され、コンバインが、圃場の一端側からラインLに沿って順番に往復刈りを行う。この場合にも、走行経路設定部41によって、離脱位置WPが算出され、機体10が離脱位置WPから外周領域SAを通過して排出位置DPに到達するための排出経路Ptが生成される構成であっても良い。 (6) In the above-described embodiment, the discharge path Pt is generated based on round cutting as shown in FIG. 3, but the discharge path Pt is generated based on reciprocating cutting as shown in FIG. There may be. For example, in FIG. 13, a plurality of parallel lines L are generated as a travel route in the work target area CA, and the combine performs reciprocal cutting in order along the line L from one end of the field. Also in this case, the traveling route setting unit 41 calculates the departure position WP, and generates a discharge route Pt for the body 10 to pass from the departure position WP through the outer peripheral area SA to reach the discharge position DP. There may be.
(7)上述した実施形態において、経路生成モジュール4として、走行経路設定部41と、排出位置設定部42と、離脱位置算出部43と、が備えられているが、この実施形態に限定されない。経路設定部として、走行経路設定部41と、排出位置設定部42と、離脱位置算出部43と、が一体的に構成されていても良い。 (7) In the above-described embodiment, the route generation module 4 includes the traveling route setting unit 41, the discharge position setting unit 42, and the leaving position calculation unit 43, but is not limited to this embodiment. As the route setting unit, the traveling route setting unit 41, the discharge position setting unit 42, and the leaving position calculation unit 43 may be integrally configured.
(8)図6、図7、図11、図12に示された第一旋回経路Pc1,第二旋回経路Pc2,第三旋回経路Pc3は、独立した構成でなくても良い。例えば、図6に示された第一旋回経路Pc1が第一直進排出経路Pt1の一部として構成されていても良い。また、図7に示された第一旋回経路Pc1が第三直進排出経路Pt3の一部として構成されていても良いし、第二旋回経路Pc2や第三旋回経路Pc3が、隣接する迂回排出経路や直進排出経路の一部として構成されていても良い。図12に示された第四旋回経路Pc4,第五旋回経路Pc5,第六旋回経路Pc6に関しても、第一旋回経路Pc1等と同様である。 (8) The first turning path Pc1, the second turning path Pc2, and the third turning path Pc3 shown in FIGS. 6, 7, 11, and 12 do not have to be independent structures. For example, the first turning path Pc1 illustrated in FIG. 6 may be configured as a part of the first straight discharge path Pt1. Further, the first swirl path Pc1 shown in FIG. 7 may be configured as a part of the third rectilinear discharge path Pt3, or the second swirl path Pc2 or the third swirl path Pc3 may be adjacent to the detour discharge path. Or may be configured as a part of a straight discharge path. The fourth turning path Pc4, the fifth turning path Pc5, and the sixth turning path Pc6 shown in FIG. 12 are the same as the first turning path Pc1 and the like.
 図9及び図10に示された第一旋回経路Rc1,第二旋回経路Rc2,第三旋回経路Rc3,第四旋回経路Rc4は、独立した構成でなくても良い。例えば、図9に示された第一旋回経路Rc1が第一直進復帰経路Rt1の一部として構成されていても良い。また、図10に示された第二旋回経路Rc2が第三直進復帰経路Rt3の一部として構成されていても良いし、第二旋回経路Rc2や第三旋回経路Pc3が、隣接する迂回復帰経路や直進復帰経路の一部として構成されていても良い。 第一 The first turning path Rc1, the second turning path Rc2, the third turning path Rc3, and the fourth turning path Rc4 shown in FIGS. 9 and 10 do not have to be independent structures. For example, the first turning route Rc1 shown in FIG. 9 may be configured as a part of the first straight return route Rt1. Further, the second turning route Rc2 shown in FIG. 10 may be configured as a part of the third straight return route Rt3, or the second turning route Rc2 and the third turning route Pc3 may be adjacent detour return routes. Or, it may be configured as a part of a straight return path.
(9)上述の実施形態における各機能部を、収穫機のための自動走行制御プログラムとして構成することも可能である。この自動走行制御プログラムは、光ディスク、磁気ディスク(例えばハードディスク)、半導体メモリ(例えばフラッシュメモリ、EPROM、EEPROM、マスクROM、FeRAM、MRAM、ReRAM)等の記憶媒体に保存され、コンピュータによって読み出し可能であっても良い。さらに、上述の実施形態における各機能部が行う処理を、自動走行制御方法として構成することも可能である。 (9) Each functional unit in the above-described embodiment may be configured as an automatic traveling control program for the harvester. This automatic running control program is stored in a storage medium such as an optical disk, a magnetic disk (for example, a hard disk), a semiconductor memory (for example, flash memory, EPROM, EEPROM, mask ROM, FeRAM, MRAM, and ReRAM), and can be read by a computer. May be. Furthermore, the processing performed by each functional unit in the above-described embodiment can be configured as an automatic traveling control method.
 なお、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configuration disclosed in the above-described embodiment (including another embodiment, the same applies hereinafter) can be applied in combination with the configuration disclosed in other embodiments, as long as no contradiction occurs. The embodiment disclosed in the present specification is an exemplification, and the embodiment of the present invention is not limited thereto, and can be appropriately modified without departing from the object of the present invention.
 本発明は、収穫機のための自動走行制御システムであるため、普通型のコンバインだけでなく、自脱型のコンバインのための自動走行制御システムにも利用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機のための自動走行制御システムにも利用できる。 た め Since the present invention is an automatic travel control system for a harvester, it can be used not only for a normal type combine but also for an automatic travel control system for a self-removing type combine. The present invention can also be used for an automatic traveling control system for various harvesters such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
 10   :機体
 14   :穀粒タンク(貯留部)
 41   :走行経路設定部(経路設定部)
 51B  :自動走行制御部
 59   :中断判定部
 63A  :燃料測定部(状態検出部)
 64A  :貯留測定部(状態検出部)
 CA   :作業対象領域(未作業地)
 DP   :排出位置(途中作業位置)
 RP   :復帰位置
 WP   :離脱位置(機体の位置)
 Pt   :排出経路(途中作業経路)
 Rt   :復帰経路
 P1   :角部
 R1   :角部
 C1   :第一角位置(角位置)
 C11  :第一角位置(角位置)
10: Airframe 14: Grain tank (storage section)
41: travel route setting unit (route setting unit)
51B: Automatic traveling control unit 59: Interruption determination unit 63A: Fuel measurement unit (state detection unit)
64A: Storage measurement unit (state detection unit)
CA: Work target area (non-work area)
DP: Discharge position (working position on the way)
RP: Return position WP: Release position (body position)
Pt: discharge route (work route on the way)
Rt: return route P1: corner R1: corner C1: first corner position (corner position)
C11: First corner position (corner position)

Claims (46)

  1.  自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御システムであって、
     前記収穫機が前記自動走行を行うための走行経路を設定する経路設定部と、
     機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御部と、
     前記収穫機の状態を検出する状態検出部と、
     前記状態検出部の検出結果に基づいて前記自動走行の中断を判定可能な中断判定部と、が備えられ、
     前記経路設定部は、前記中断判定部によって前記自動走行の中断が判定されると、圃場内において前記自動走行の中断後に作業するために予め設定された途中作業位置と、前記自動走行の中断が判定されたときの前記機体の位置と、圃場の収穫状況と、に基づいて、前記途中作業位置へ移動する途中作業経路を生成する自動走行制御システム。
    An automatic traveling control system for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit,
    A path setting unit that sets a traveling path for the harvester to perform the automatic traveling,
    An automatic traveling control unit that performs automatic traveling control of the aircraft based on the position of the aircraft and the traveling route;
    A state detection unit that detects a state of the harvester,
    An interruption determination unit that can determine the interruption of the automatic traveling based on the detection result of the state detection unit,
    The route setting unit, when the interruption of the automatic traveling is determined by the interruption determination unit, a preset intermediate work position to work after the interruption of the automatic traveling in the field, the interruption of the automatic traveling is An automatic cruise control system for generating an intermediate work route to the intermediate work position based on the position of the body at the time of the determination and a harvest situation in a field.
  2.  前記経路設定部は、前記自動走行の中断が判定されたときの前記機体の向きを条件に加えて前記途中作業経路を生成する請求項1に記載の自動走行制御システム。 2. The automatic traveling control system according to claim 1, wherein the route setting unit generates the halfway work route by adding a condition of the body when the interruption of the automatic traveling is determined as a condition.
  3.  前記経路設定部は、前記圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地の位置情報を取得する請求項1または2に記載の自動走行制御システム。 The automatic traveling control system according to claim 1 or 2, wherein the route setting unit obtains, as the harvest status of the field, positional information of an unworked place where the harvesting work in the field has not been completed yet.
  4.  前記経路設定部は、
     前記機体の現在位置と前記途中作業位置とを結ぶ直線上に、圃場における収穫作業がまだ終わっていない未作業地が存在するかしないかを判定し、
     前記直線上に前記未作業地が存在しない場合は、前記直線に近似するように前記途中作業経路を生成し、
     前記直線上に前記未作業地が存在する場合は、前記未作業地のうち、前記現在位置から最も近い角部の角位置を算出し、続いて、前記角位置と前記途中作業位置とを結ぶ別の直線上に前記未作業地が存在するかしないかを判定し、前記別の直線上に前記未作業地が存在しない場合は、前記現在位置と前記角位置と前記途中作業位置とから前記途中作業経路を生成し、前記別の直線上に前記未作業地が存在する場合は、前記未作業地が存在しないさらに別の直線が見つかるまでこれらの演算を繰り返す請求項1から3の何れか一項に記載の自動走行制御システム。
    The route setting unit,
    On a straight line connecting the current position of the machine and the midway work position, determine whether or not there is an unworked land where the harvesting work in the field has not yet been completed,
    If the unworked land does not exist on the straight line, generate the work route halfway to approximate the straight line,
    When the unworked area exists on the straight line, among the unworked areas, a corner position of a corner closest to the current position is calculated, and subsequently, the corner position and the halfway work position are connected. It is determined whether or not the unworked land exists on another straight line.If the unworked land does not exist on the another straight line, the current position, the angular position, and the halfway work position are used to determine the unworked land. 4. The method according to claim 1, wherein a work route is generated halfway, and when the unworked area exists on the another straight line, these calculations are repeated until a further straight line having no unworked area is found. The automatic traveling control system according to claim 1.
  5.  前記経路設定部は、前記現在位置から最も近い角部の角位置を算出する際に、前記現在位置から前記機体の進行方向側の最も近い角部の角位置を算出する請求項4に記載の自動走行制御システム。 5. The route setting unit according to claim 4, wherein when calculating the corner position of the corner closest to the current position, the route setting unit calculates the corner position of the closest corner on the traveling direction side of the aircraft from the current position. 6. Automatic driving control system.
  6.  前記状態検出部に、前記貯留部に設けられ、前記貯留部に貯留された収穫物の貯留量を測定する貯留測定部が含まれ、
     前記途中作業位置に、前記貯留部に貯留された収穫物を排出可能な排出位置が含まれ、
     前記中断判定部は、前記貯留部に設定量の収穫物が貯留されると、前記自動走行の中断を判定する請求項1から5の何れか一項に記載の自動走行制御システム。
    The state detection unit, provided in the storage unit, includes a storage measurement unit that measures the storage amount of the harvest stored in the storage unit,
    The intermediate work position includes a discharge position capable of discharging the crop stored in the storage unit,
    The automatic traveling control system according to any one of claims 1 to 5, wherein the interruption determining unit determines the interruption of the automatic traveling when a set amount of harvest is stored in the storage unit.
  7.  前記状態検出部に、燃料タンクに設けられ、前記燃料タンクに貯留された燃料の残量を測定する燃料測定部が含まれ、
     前記途中作業位置に、前記燃料タンクに燃料を補給可能な補給位置が含まれ、
     前記中断判定部は、前記燃料タンクに貯留された燃料の残量が設定量を下回ると、前記自動走行の中断を判定する請求項1から6の何れか一項に記載の自動走行制御システム。
    The state detection unit includes a fuel measurement unit that is provided in a fuel tank and measures the remaining amount of fuel stored in the fuel tank.
    The intermediate work position includes a replenishment position where the fuel tank can be refueled,
    The automatic traveling control system according to any one of claims 1 to 6, wherein the interruption determining unit determines interruption of the automatic traveling when a remaining amount of fuel stored in the fuel tank falls below a set amount.
  8.  自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御システムであって、
     前記収穫機が前記自動走行を行うための走行経路を設定する経路設定部と、
     機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御部と、が備えられ、
     前記経路設定部は、前記自動走行が中断して圃場内において予め設定された途中作業位置で作業が行われた後、前記途中作業位置と圃場の収穫状況とに基づいて前記走行経路における復帰位置を算定するとともに、前記復帰位置と圃場の収穫状況とに基づいて前記復帰位置へ移動する復帰経路を生成する自動走行制御システム。
    An automatic traveling control system for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit,
    A path setting unit that sets a traveling path for the harvester to perform the automatic traveling,
    An automatic traveling control unit that performs automatic traveling control of the aircraft based on the position of the aircraft and the traveling route,
    The route setting unit, after the automatic traveling is interrupted and the work is performed at a preset halfway work position in the field, the return position in the travel route based on the halfway work position and the field harvest condition. And an automatic cruise control system for calculating a return route based on the return position and the harvest condition of the field.
  9.  前記経路設定部は、前記途中作業位置における作業完了時の前記機体の向きを条件に加えて前記復帰経路を生成する請求項8に記載の自動走行制御システム。 The automatic cruise control system according to claim 8, wherein the route setting unit generates the return route by adding a condition of the body at the time of completion of the work at the halfway work position to the condition.
  10.  前記経路設定部は、前記圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地の位置情報を取得する請求項8または9に記載の自動走行制御システム。 The automatic travel control system according to claim 8 or 9, wherein the route setting unit obtains, as the harvest status of the field, positional information of an unworked place where the harvesting work in the field has not been completed yet.
  11.  前記経路設定部は、圃場における収穫作業がまだ終わっていない未作業地に設定された前記走行経路の端部のうち、前記途中作業位置から前記機体の進行方向側の最も近い端部を前記復帰位置として算定する請求項8から10の何れか一項に記載の自動走行制御システム。 The route setting unit returns the end of the traveling route set in an unworked area where the harvesting work in the field has not been completed yet to the end closest to the traveling direction of the aircraft from the halfway work position. The automatic travel control system according to claim 8, wherein the position is calculated as a position.
  12.  前記経路設定部は、
     前記途中作業位置と前記復帰位置とを結ぶ直線上に、圃場における収穫作業がまだ終わっていない未作業地が存在するかしないかを判定し、
     前記直線上に前記未作業地が存在しない場合は、前記直線に近似するように前記復帰経路を生成し、
     前記直線上に前記未作業地が存在する場合は、前記未作業地のうち、前記途中作業位置から最も近い角部の角位置を算出し、続いて、前記角位置と前記復帰位置とを結ぶ別の直線上に前記未作業地が存在するかしないかを判定し、前記別の直線上に前記未作業地が存在しない場合は、前記途中作業位置と前記角位置と前記復帰位置とから前記復帰経路を生成し、前記別の直線上に前記未作業地が存在する場合は、前記未作業地が存在しないさらに別の直線が見つかるまでこれらの演算を繰り返す請求項8から11の何れか一項に記載の自動走行制御システム。
    The route setting unit,
    On a straight line connecting the halfway work position and the return position, it is determined whether or not there is an unworked land where the harvesting work in the field has not yet been completed,
    If the unworked land does not exist on the straight line, the return path is generated to approximate the straight line,
    In a case where the unworked area exists on the straight line, among the unworked areas, a corner position of a corner closest to the halfway work position is calculated, and subsequently, the corner position and the return position are connected. It is determined whether or not the unworked land exists on another straight line, and if the unworked land does not exist on the another straight line, the intermediate work position, the angular position, and the return position 12. A return route is generated, and when the unworked area exists on the another straight line, these calculations are repeated until a further straight line without the unworked area is found. Automatic traveling control system according to the paragraph.
  13.  前記経路設定部は、前記途中作業位置から最も近い角部の角位置を算出する際に、前記途中作業位置から前記機体の進行方向側の最も近い角部の角位置を算出する請求項12に記載の自動走行制御システム。 13. The route setting unit according to claim 12, wherein when calculating a corner position of a corner closest to the halfway work position, the route setting unit calculates a corner position of a closest corner on the traveling direction side of the aircraft from the halfway work position. Automatic driving control system as described.
  14.  前記途中作業位置に、前記貯留部に貯留された収穫物を排出可能な排出位置が含まれる請求項8から13の何れか一項に記載の自動走行制御システム。 The automatic travel control system according to any one of claims 8 to 13, wherein the intermediate work position includes a discharge position at which the crop stored in the storage unit can be discharged.
  15.  前記途中作業位置に、燃料タンクに燃料を補給可能な補給位置が含まれる請求項8から14の何れか一項に記載の自動走行制御システム。 The automatic traveling control system according to any one of claims 8 to 14, wherein the intermediate work position includes a replenishing position at which fuel can be supplied to the fuel tank.
  16.  自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御方法であって、
     前記収穫機が前記自動走行を行うための走行経路を設定する経路設定ステップと、
     機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御ステップと、
     前記収穫機の状態を検出する状態検出ステップと、
     前記状態検出ステップの検出結果に基づいて前記自動走行の中断を判定可能な中断判定ステップと、
     前記中断判定ステップによって前記自動走行の中断が判定されると、圃場内において前記自動走行の中断後に作業するために予め設定された途中作業位置と、前記自動走行の中断が判定されたときの前記機体の位置と、圃場の収穫状況と、に基づいて、前記途中作業位置へ移動する途中作業経路を生成する途中作業経路生成ステップと、が含まれる自動走行制御方法。
    An automatic traveling control method for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit,
    A path setting step of setting a traveling path for the harvester to perform the automatic traveling,
    An automatic traveling control step of performing automatic traveling control of the aircraft based on the position of the aircraft and the traveling route;
    A state detection step of detecting a state of the harvester,
    An interruption determination step capable of determining interruption of the automatic traveling based on a detection result of the state detection step,
    When the interruption of the automatic traveling is determined by the interruption determination step, a preset work position for working after the interruption of the automatic traveling in the field, and the interruption when the interruption of the automatic traveling is determined. An automatic traveling control method including an intermediate work route generating step of generating an intermediate work route for moving to the intermediate work position based on a position of the machine body and a harvest situation in a field.
  17.  前記途中作業経路生成ステップにおいて、前記自動走行の中断が判定されたときの前記機体の向きを条件に加えて前記途中作業経路を生成する請求項16に記載の自動走行制御方法。 17. The automatic traveling control method according to claim 16, wherein the intermediate traveling route is generated by adding a direction of the body when the interruption of the automatic traveling is determined in the intermediate traveling route generating step to a condition.
  18.  前記途中作業経路生成ステップは、前記圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地の位置情報を取得する請求項16または17に記載の自動走行制御方法。 18. The automatic traveling control method according to claim 16 or 17, wherein the intermediate work route generation step acquires position information of an unworked place where the harvesting work in the field has not yet been completed, as the harvesting state of the field.
  19.  前記途中作業経路生成ステップにおいて、
     前記機体の現在位置と前記途中作業位置とを結ぶ直線上に、圃場における収穫作業がまだ終わっていない未作業地が存在するかしないかを判定し、
     前記直線上に前記未作業地が存在しない場合は、前記直線に近似するように前記途中作業経路を生成し、
     前記直線上に前記未作業地が存在する場合は、前記未作業地のうち、前記現在位置から最も近い角部の角位置を算出し、続いて、前記角位置と前記途中作業位置とを結ぶ別の直線上に前記未作業地が存在するかしないかを判定し、前記別の直線上に前記未作業地が存在しない場合は、前記現在位置と前記角位置と前記途中作業位置とから前記途中作業経路を生成し、前記別の直線上に前記未作業地が存在する場合は、前記未作業地が存在しないさらに別の直線が見つかるまでこれらの演算を繰り返す請求項16から18の何れか一項に記載の自動走行制御方法。
    In the halfway work route generation step,
    On a straight line connecting the current position of the machine and the midway work position, determine whether or not there is an unworked land where the harvesting work in the field has not yet been completed,
    If the unworked land does not exist on the straight line, generate the work route halfway to approximate the straight line,
    When the unworked area exists on the straight line, among the unworked areas, a corner position of a corner closest to the current position is calculated, and subsequently, the corner position and the halfway work position are connected. It is determined whether or not the unworked land exists on another straight line.If the unworked land does not exist on the another straight line, the current position, the angular position, and the halfway work position are used to determine the unworked land. 19. The method according to claim 16, wherein a work route is generated halfway, and when the unworked area exists on the another straight line, these calculations are repeated until a further straight line having no unworked area is found. The automatic traveling control method according to claim 1.
  20.  前記途中作業経路生成ステップにおいて、前記現在位置から最も近い角部の角位置を算出する際に、前記現在位置から前記機体の進行方向側の最も近い角部の角位置を算出する請求項19に記載の自動走行制御方法。 20. The method according to claim 19, wherein, in calculating the corner position of a corner closest to the current position in the halfway work path generating step, calculating a corner position of a corner closest to the traveling direction of the aircraft from the current position. Automatic driving control method as described.
  21.  前記状態検出ステップに、前記貯留部に貯留された収穫物の貯留量を測定する貯留測定ステップが含まれ、
     前記途中作業位置に、前記貯留部に貯留された収穫物を排出可能な排出位置が含まれ、
     前記中断判定ステップは、前記貯留部に設定量の収穫物が貯留されると、前記自動走行の中断を判定する請求項16から20の何れか一項に記載の自動走行制御方法。
    The state detection step includes a storage measurement step of measuring the storage amount of the crop stored in the storage unit,
    The intermediate work position includes a discharge position capable of discharging the crop stored in the storage unit,
    The automatic travel control method according to any one of claims 16 to 20, wherein the suspension determination step determines the suspension of the automatic travel when a set amount of harvest is stored in the storage unit.
  22.  前記状態検出ステップに、燃料タンクに貯留された燃料の残量を測定する燃料測定ステップが含まれ、
     前記途中作業位置に、前記燃料タンクに燃料を補給可能な補給位置が含まれ、
     前記中断判定ステップにおいて、前記燃料タンクに貯留された燃料の残量が設定量を下回ると、前記自動走行の中断を判定する請求項16から21の何れか一項に記載の自動走行制御方法。
    The state detection step includes a fuel measurement step of measuring the remaining amount of fuel stored in the fuel tank,
    The intermediate work position includes a replenishment position where the fuel tank can be refueled,
    22. The automatic traveling control method according to claim 16, wherein in the interruption determining step, if the remaining amount of fuel stored in the fuel tank falls below a set amount, it is determined that the automatic traveling is interrupted.
  23.  自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御方法であって、
     前記収穫機が前記自動走行を行うための走行経路を設定する経路設定ステップと、
     機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御ステップと、
     前記自動走行が中断して圃場内において予め設定された途中作業位置で作業が行われた後、前記途中作業位置と圃場の収穫状況とに基づいて前記走行経路における復帰位置を算定するとともに、前記復帰位置と圃場の収穫状況とに基づいて前記復帰位置へ移動する復帰経路を生成する復帰経路生成ステップと、が含まれる自動走行制御方法。
    An automatic traveling control method for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit,
    A path setting step of setting a traveling path for the harvester to perform the automatic traveling,
    An automatic traveling control step of performing automatic traveling control of the aircraft based on the position of the aircraft and the traveling route;
    After the automatic traveling is interrupted and the work is performed at a preset intermediate work position in the field, the return position in the traveling route is calculated based on the intermediate work position and the harvesting status of the field, and A return route generating step of generating a return route that moves to the return position based on the return position and the harvest situation in the field.
  24.  前記復帰経路生成ステップにおいて、前記途中作業位置における作業完了時の前記機体の向きを条件に加えて前記復帰経路を生成する請求項23に記載の自動走行制御方法。 24. The automatic traveling control method according to claim 23, wherein in the return route generation step, the return route is generated by adding a direction of the machine at the time of completion of the work at the halfway work position to a condition.
  25.  前記復帰経路生成ステップにおいて、前記圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地の位置情報を取得する請求項23または24に記載の自動走行制御方法。 25. The automatic traveling control method according to claim 23, wherein in the return route generation step, position information of an unworked place where the harvesting work in the field has not been completed is acquired as the harvesting state of the field.
  26.  前記復帰経路生成ステップにおいて、圃場における収穫作業がまだ終わっていない未作業地に設定された前記走行経路の端部のうち、前記途中作業位置から前記機体の進行方向側の最も近い端部を前記復帰位置として算定する請求項23から25の何れか一項に記載の自動走行制御方法。 In the return route generation step, among the ends of the traveling route set in an unworked place where the harvesting work in the field has not yet been completed, the closest end on the traveling direction side of the aircraft from the halfway working position is the The automatic traveling control method according to any one of claims 23 to 25, wherein the method is calculated as a return position.
  27.  前記復帰経路生成ステップにおいて、
     前記途中作業位置と前記復帰位置とを結ぶ直線上に、圃場における収穫作業がまだ終わっていない未作業地が存在するかしないかを判定し、
     前記直線上に前記未作業地が存在しない場合は、前記直線に近似するように前記復帰経路を生成し、
     前記直線上に前記未作業地が存在する場合は、前記未作業地のうち、前記途中作業位置から最も近い角部の角位置を算出し、続いて、前記角位置と前記復帰位置とを結ぶ別の直線上に前記未作業地が存在するかしないかを判定し、前記別の直線上に前記未作業地が存在しない場合は、前記途中作業位置と前記角位置と前記復帰位置とから前記復帰経路を生成し、前記別の直線上に前記未作業地が存在する場合は、前記未作業地が存在しないさらに別の直線が見つかるまでこれらの演算を繰り返す請求項23から26の何れか一項に記載の自動走行制御方法。
    In the return route generation step,
    On a straight line connecting the halfway work position and the return position, it is determined whether or not there is an unworked land where the harvesting work in the field has not yet been completed,
    If the unworked land does not exist on the straight line, the return path is generated to approximate the straight line,
    In a case where the unworked area exists on the straight line, among the unworked areas, a corner position of a corner closest to the halfway work position is calculated, and subsequently, the corner position and the return position are connected. It is determined whether or not the unworked land exists on another straight line, and if the unworked land does not exist on the another straight line, the intermediate work position, the angular position, and the return position 27. A return route is generated, and when the unworked land exists on the another straight line, these calculations are repeated until a further straight line without the unworked land is found. Automatic traveling control method according to the paragraph.
  28.  前記復帰経路生成ステップにおいて、前記途中作業位置から最も近い角部の角位置を算出する際に、前記途中作業位置から前記機体の進行方向側の最も近い角部の角位置を算出する請求項27に記載の自動走行制御方法。 28. In the return route generation step, when calculating a corner position of a corner portion closest to the halfway work position, calculating a corner position of a corner portion closest to the traveling direction of the aircraft from the halfway work position. 3. The automatic travel control method according to claim 1.
  29.  前記途中作業位置に、前記貯留部に貯留された収穫物を排出可能な排出位置が含まれる請求項23から28の何れか一項に記載の自動走行制御方法。 29. The automatic traveling control method according to claim 23, wherein the intermediate work position includes a discharge position at which the crop stored in the storage unit can be discharged.
  30.  前記途中作業位置に、燃料タンクに燃料を補給可能な補給位置が含まれる請求項23から29の何れか一項に記載の自動走行制御方法。 The automatic traveling control method according to any one of claims 23 to 29, wherein the intermediate work position includes a replenishing position at which fuel can be supplied to a fuel tank.
  31.  自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御プログラムであって、
     前記収穫機が前記自動走行を行うための走行経路を設定する経路設定機能と、
     機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御機能と、
     前記収穫機の状態を検出する状態検出機能と、
     前記状態検出機能の検出結果に基づいて前記自動走行の中断を判定可能な中断判定機能と、
     前記中断判定機能によって前記自動走行の中断が判定されると、圃場内において前記自動走行の中断後に作業するために予め設定された途中作業位置と、前記自動走行の中断が判定されたときの前記機体の位置と、圃場の収穫状況と、に基づいて、前記途中作業位置へ移動する途中作業経路を生成する途中作業経路生成機能と、をコンピュータに実行させる自動走行制御プログラム。
    An automatic traveling control program for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit,
    A path setting function for setting a traveling path for the harvester to perform the automatic traveling,
    An automatic traveling control function for performing automatic traveling control of the aircraft based on the position of the aircraft and the traveling route;
    A state detection function for detecting the state of the harvester,
    An interruption determination function capable of determining interruption of the automatic driving based on a detection result of the state detection function,
    When the interruption of the automatic traveling is determined by the interruption determination function, a preset work position for working after the interruption of the automatic traveling in the field, and the interruption when the interruption of the automatic traveling is determined. An automatic traveling control program for causing a computer to execute a midway work route generation function of generating a midway work route to move to the midway work position based on a position of the machine body and a harvest situation in a field.
  32.  前記途中作業経路生成機能は、前記自動走行の中断が判定されたときの前記機体の向きを条件に加えて前記途中作業経路を生成する請求項31に記載の自動走行制御プログラム。 32. The automatic traveling control program according to claim 31, wherein the intermediate traveling route generating function generates the intermediate traveling route by adding a direction of the body when the interruption of the automatic traveling is determined to a condition.
  33.  前記途中作業経路生成機能は、前記圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地の位置情報を取得する請求項31または32に記載の自動走行制御プログラム。 33. The automatic traveling control program according to claim 31, wherein the halfway work route generation function acquires, as the harvesting status of the field, position information of an unworked place where the harvesting work in the field has not been completed yet.
  34.  前記途中作業経路生成機能は、
     前記機体の現在位置と前記途中作業位置とを結ぶ直線上に、圃場における収穫作業がまだ終わっていない未作業地が存在するかしないかを判定し、
     前記直線上に前記未作業地が存在しない場合は、前記直線に近似するように前記途中作業経路を生成し、
     前記直線上に前記未作業地が存在する場合は、前記未作業地のうち、前記現在位置から最も近い角部の角位置を算出し、続いて、前記角位置と前記途中作業位置とを結ぶ別の直線上に前記未作業地が存在するかしないかを判定し、前記別の直線上に前記未作業地が存在しない場合は、前記現在位置と前記角位置と前記途中作業位置とから前記途中作業経路を生成し、前記別の直線上に前記未作業地が存在する場合は、前記未作業地が存在しないさらに別の直線が見つかるまでこれらの演算を繰り返す請求項31から33の何れか一項に記載の自動走行制御プログラム。
    The midway work route generation function includes:
    On a straight line connecting the current position of the machine and the midway work position, determine whether or not there is an unworked land where the harvesting work in the field has not yet been completed,
    If the unworked land does not exist on the straight line, generate the work route halfway to approximate the straight line,
    When the unworked area exists on the straight line, among the unworked areas, a corner position of a corner closest to the current position is calculated, and subsequently, the corner position and the halfway work position are connected. It is determined whether or not the unworked land exists on another straight line.If the unworked land does not exist on the another straight line, the current position, the angular position, and the halfway work position are used to determine the unworked land. 34. A work route is generated halfway, and when the unworked place exists on the another straight line, these calculations are repeated until a further straight line without the unworked place is found. An automatic traveling control program according to one of the preceding claims.
  35.  前記途中作業経路生成機能は、前記現在位置から最も近い角部の角位置を算出する際に、前記現在位置から前記機体の進行方向側の最も近い角部の角位置を算出する請求項34に記載の自動走行制御プログラム。 35. The midway work route generation function according to claim 34, wherein, when calculating a corner position of a corner closest to the current position, calculating a corner position of a corner closest to the traveling direction of the aircraft from the current position. Automatic driving control program as described.
  36.  前記状態検出機能に、前記貯留部に貯留された収穫物の貯留量を測定する貯留測定機能が含まれ、
     前記途中作業位置に、前記貯留部に貯留された収穫物を排出可能な排出位置が含まれ、
     前記中断判定機能は、前記貯留部に設定量の収穫物が貯留されると、前記自動走行の中断を判定する請求項31から35の何れか一項に記載の自動走行制御プログラム。
    The state detection function includes a storage measurement function of measuring the storage amount of the crop stored in the storage unit,
    The intermediate work position includes a discharge position capable of discharging the crop stored in the storage unit,
    The automatic travel control program according to any one of claims 31 to 35, wherein the suspension determination function determines the suspension of the automatic travel when a set amount of harvest is stored in the storage unit.
  37.  前記状態検出機能に、燃料タンクに貯留された燃料の残量を測定する燃料測定機能が含まれ、
     前記途中作業位置に、前記燃料タンクに燃料を補給可能な補給位置が含まれ、
     前記中断判定機能は、前記燃料タンクに貯留された燃料の残量が設定量を下回ると、前記自動走行の中断を判定する請求項31から36の何れか一項に記載の自動走行制御プログラム。
    The state detection function includes a fuel measurement function for measuring the remaining amount of fuel stored in the fuel tank,
    The intermediate work position includes a replenishment position where the fuel tank can be refueled,
    The automatic travel control program according to any one of claims 31 to 36, wherein the suspension determination function determines the suspension of the automatic traveling when the remaining amount of fuel stored in the fuel tank falls below a set amount.
  38.  自動走行しながら圃場の作物を収穫し、収穫された収穫物を貯留部に貯留する収穫機のための自動走行制御プログラムであって、
     前記収穫機が前記自動走行を行うための走行経路を設定する経路設定機能と、
     機体の位置と前記走行経路とに基づいて前記機体の自動走行制御を行う自動走行制御機能と、
     前記自動走行が中断して圃場内において予め設定された途中作業位置で作業が行われた後、前記途中作業位置と圃場の収穫状況とに基づいて前記走行経路における復帰位置を算定するとともに、前記復帰位置と圃場の収穫状況とに基づいて前記復帰位置へ移動する復帰経路を生成する復帰経路生成機能と、をコンピュータに実行させる自動走行制御プログラム。
    An automatic traveling control program for a harvester that harvests crops in a field while traveling automatically and stores the harvested crop in a storage unit,
    A path setting function for setting a traveling path for the harvester to perform the automatic traveling,
    An automatic traveling control function for performing automatic traveling control of the aircraft based on the position of the aircraft and the traveling route;
    After the automatic traveling is interrupted and the work is performed at a preset intermediate work position in the field, the return position in the traveling route is calculated based on the intermediate work position and the harvesting status of the field, and An automatic travel control program for causing a computer to execute a return route generation function of generating a return route that moves to the return position based on the return position and a harvest situation in a field.
  39.  前記復帰経路生成機能は、前記途中作業位置における作業完了時の前記機体の向きを条件に加えて前記復帰経路を生成する請求項38に記載の自動走行制御プログラム。 39. The automatic travel control program according to claim 38, wherein the return route generation function generates the return route by adding a condition of the body at the time of completion of the work at the halfway work position to a condition.
  40.  前記復帰経路生成機能は、前記圃場の収穫状況として、圃場における収穫作業がまだ終わっていない未作業地の位置情報を取得する請求項38または39に記載の自動走行制御プログラム。 40. The automatic travel control program according to claim 38, wherein the return route generation function acquires, as the harvest status of the field, position information of an unworked place where the harvesting work in the field has not been completed yet.
  41.  前記復帰経路生成機能は、圃場における収穫作業がまだ終わっていない未作業地に設定された前記走行経路の端部のうち、前記途中作業位置から前記機体の進行方向側の最も近い端部を前記復帰位置として算定する請求項38から40の何れか一項に記載の自動走行制御プログラム。 The return route generation function, among the ends of the traveling route set in the unworked land where the harvesting work in the field has not yet been completed, the closest end on the traveling direction side of the aircraft from the midway work position is 41. The automatic travel control program according to claim 38, wherein the automatic travel control program calculates the return position.
  42.  前記復帰経路生成機能は、
     前記途中作業位置と前記復帰位置とを結ぶ直線上に、圃場における収穫作業がまだ終わっていない未作業地が存在するかしないかを判定し、
     前記直線上に前記未作業地が存在しない場合は、前記直線に近似するように前記復帰経路を生成し、
     前記直線上に前記未作業地が存在する場合は、前記未作業地のうち、前記途中作業位置から最も近い角部の角位置を算出し、続いて、前記角位置と前記復帰位置とを結ぶ別の直線上に前記未作業地が存在するかしないかを判定し、前記別の直線上に前記未作業地が存在しない場合は、前記途中作業位置と前記角位置と前記復帰位置とから前記復帰経路を生成し、前記別の直線上に前記未作業地が存在する場合は、前記未作業地が存在しないさらに別の直線が見つかるまでこれらの演算を繰り返す請求項38から41の何れか一項に記載の自動走行制御プログラム。
    The return path generation function includes:
    On a straight line connecting the halfway work position and the return position, it is determined whether or not there is an unworked land where the harvesting work in the field has not yet been completed,
    If the unworked land does not exist on the straight line, the return path is generated to approximate the straight line,
    In a case where the unworked area exists on the straight line, among the unworked areas, a corner position of a corner closest to the halfway work position is calculated, and subsequently, the corner position and the return position are connected. It is determined whether or not the unworked land exists on another straight line, and if the unworked land does not exist on the another straight line, the intermediate work position, the angular position, and the return position 42. A return route is generated, and when the unworked area exists on the another straight line, these calculations are repeated until a further straight line without the unworked area is found. Automatic traveling control program according to the paragraph.
  43.  前記復帰経路生成機能は、前記途中作業位置から最も近い角部の角位置を算出する際に、前記途中作業位置から前記機体の進行方向側の最も近い角部の角位置を算出する請求項42に記載の自動走行制御プログラム。 43. The return route generation function calculates a corner position of a corner closest to the traveling direction of the aircraft from the halfway work position when calculating a corner position of a corner closest to the halfway work position. Automatic driving control program according to the item.
  44.  前記途中作業位置に、前記貯留部に貯留された収穫物を排出可能な排出位置が含まれる請求項38から43の何れか一項に記載の自動走行制御プログラム。 The automatic traveling control program according to any one of claims 38 to 43, wherein the intermediate work position includes a discharge position at which the crop stored in the storage unit can be discharged.
  45.  前記途中作業位置に、燃料タンクに燃料を補給可能な補給位置が含まれる請求項38から44の何れか一項に記載の自動走行制御プログラム。 45. The automatic traveling control program according to claim 38, wherein the intermediate work position includes a replenishing position at which fuel can be supplied to a fuel tank.
  46.  請求項31から45の何れか一項に記載の自動走行制御プログラムが記録されるとともにコンピュータで読み取り可能な記録媒体。
     
     
    A computer-readable recording medium on which the automatic traveling control program according to any one of claims 31 to 45 is recorded.

PCT/JP2019/025304 2018-08-01 2019-06-26 Automatic travel control system, automatic travel control method, automatic travel control program, and storage medium WO2020026650A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217005529A KR20210038610A (en) 2018-08-01 2019-06-26 Automatic travel control system, automatic travel control method, automatic travel control program and storage medium
CN201980051247.7A CN112512297A (en) 2018-08-01 2019-06-26 Automatic travel control system, automatic travel control method, automatic travel control program, and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-145120 2018-08-01
JP2018145120 2018-08-01
JP2018-223782 2018-11-29
JP2018223782A JP7130535B2 (en) 2018-08-01 2018-11-29 automatic driving control system

Publications (1)

Publication Number Publication Date
WO2020026650A1 true WO2020026650A1 (en) 2020-02-06

Family

ID=69232166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025304 WO2020026650A1 (en) 2018-08-01 2019-06-26 Automatic travel control system, automatic travel control method, automatic travel control program, and storage medium

Country Status (1)

Country Link
WO (1) WO2020026650A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317712A (en) * 1996-04-17 1996-12-03 Yanmar Agricult Equip Co Ltd Travel control system in working vehicle
US20070192024A1 (en) * 2003-03-31 2007-08-16 Deere & Company Path planner and method for planning a contour path of a vehicle
JP2015181371A (en) * 2014-03-20 2015-10-22 ヤンマー株式会社 Traveling harvester
JP2017173969A (en) * 2016-03-22 2017-09-28 ヤンマー株式会社 Autonomous travel system
JP2018073050A (en) * 2016-10-27 2018-05-10 株式会社クボタ Running route creating device
JP2018099113A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route determination device
JP2018116608A (en) * 2017-01-20 2018-07-26 株式会社クボタ Travel route generating device and travel route generating program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317712A (en) * 1996-04-17 1996-12-03 Yanmar Agricult Equip Co Ltd Travel control system in working vehicle
US20070192024A1 (en) * 2003-03-31 2007-08-16 Deere & Company Path planner and method for planning a contour path of a vehicle
JP2015181371A (en) * 2014-03-20 2015-10-22 ヤンマー株式会社 Traveling harvester
JP2017173969A (en) * 2016-03-22 2017-09-28 ヤンマー株式会社 Autonomous travel system
JP2018073050A (en) * 2016-10-27 2018-05-10 株式会社クボタ Running route creating device
JP2018099113A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route determination device
JP2018116608A (en) * 2017-01-20 2018-07-26 株式会社クボタ Travel route generating device and travel route generating program

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map

Similar Documents

Publication Publication Date Title
WO2020026650A1 (en) Automatic travel control system, automatic travel control method, automatic travel control program, and storage medium
JP7130535B2 (en) automatic driving control system
JP6832828B2 (en) Travel route determination device
WO2018116770A1 (en) Work vehicle automatic traveling system
EP3351075B1 (en) Work vehicle support system
WO2020044726A1 (en) Automated steering system, harvesting machine, automated steering method, automated steering program, and recording medium
WO2020031473A1 (en) External shape calculation system, external shape calculation method, external shape calculation program, storage medium having external shape calculation program stored therein, farm field map generation system, farm field map generation program, storage medium having farm field map generation program stored therein, and farm field map generation method
WO2020026651A1 (en) Harvesting machine, travel system, travel method, travel program, and storage medium
JP7014687B2 (en) Harvester
JP6639835B2 (en) Traveling work machine
JP2020127405A (en) Work vehicle automatic travel system
JP6920970B2 (en) Travel route determination device
JP2020018236A (en) Harvester
JP6920969B2 (en) Travel route management system
JP6689738B2 (en) Work vehicle automatic traveling system
JP6891097B2 (en) Travel route determination device
JP6884092B2 (en) Travel route selection system for work vehicles and work vehicles
JP6983734B2 (en) Harvester
JP6745784B2 (en) Work vehicle
JP6982116B2 (en) Work vehicle automatic driving system and driving route management device
JP6789800B2 (en) Work vehicle automatic driving system
JP2018099112A5 (en)
JP2022028836A5 (en)
WO2020111102A1 (en) Automatic travel control system, automatic travel control program, recording medium having automatic travel control program recorded thereon, automatic travel control method, control device, control program, recording medium having control program recorded thereon, and control method
JP7423666B2 (en) harvester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005529

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19844051

Country of ref document: EP

Kind code of ref document: A1