WO2020026609A1 - Breaker - Google Patents

Breaker Download PDF

Info

Publication number
WO2020026609A1
WO2020026609A1 PCT/JP2019/023705 JP2019023705W WO2020026609A1 WO 2020026609 A1 WO2020026609 A1 WO 2020026609A1 JP 2019023705 W JP2019023705 W JP 2019023705W WO 2020026609 A1 WO2020026609 A1 WO 2020026609A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
trip
lever
state
circuit breaker
Prior art date
Application number
PCT/JP2019/023705
Other languages
French (fr)
Japanese (ja)
Inventor
貢 森
祐也 三ケ田
智也 出口
隆之介 今枝
雄大 相良
遼太 森岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980049831.9A priority Critical patent/CN112514018B/en
Priority to JP2020534091A priority patent/JP6987253B2/en
Priority to TW108125534A priority patent/TWI709990B/en
Publication of WO2020026609A1 publication Critical patent/WO2020026609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • the present invention relates to a circuit breaker using an electromagnetic solenoid for the closing operation.
  • Patent Literature 1 has a link mechanism as a transmission mechanism for interlocking a plunger of an electromagnet and a movable contact, and moves the plunger by energizing a coil of the electromagnet to make the movable contact a fixed contact.
  • a circuit breaker adapted to be closed is disclosed.
  • a circuit breaker is required to have a function that can be shut down immediately after the closing operation starts. Therefore, in a conventional breaker that performs closing by an electromagnet, the transmission mechanism has a complicated mechanism in order to prevent the return operation of the plunger immediately after the start of the closing operation due to the inertia and residual magnetism of the plunger of the electromagnet to be delayed. Therefore, the number of components constituting the transmission mechanism increases. Since many parts work in conjunction with each other, the behavior becomes complicated, and if used for a long period of time, the parts may be damaged or the mechanical characteristics may change over time, thereby reducing the reliability of the circuit breaker. Can be done.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a circuit breaker capable of simplifying a transmission mechanism.
  • a circuit breaker of the present invention includes a housing, a fixed terminal, a mover, an electromagnetic solenoid, a transmission mechanism, and a drive circuit.
  • the fixed terminal has a fixed contact and is fixed to the housing.
  • the mover has a movable contact facing the fixed contact.
  • the electromagnetic solenoid has a plunger that moves linearly.
  • the transmission mechanism moves the mover in accordance with the movement of the plunger, and changes from a cutoff state in which the movable contact is separated from the fixed contact to a closed state in which the movable contact comes into contact with the fixed contact and is energized.
  • the drive circuit drives the electromagnetic solenoid by energizing the coil of the electromagnetic solenoid.
  • the drive circuit includes a series body of a diode and a current reduction unit that reduces a current flowing through the diode, and the series body is connected in parallel to a coil of the electromagnetic solenoid.
  • FIG. 2 is a diagram illustrating a configuration example of an electric circuit of a circuit breaker including a drive circuit according to the first embodiment
  • FIG. 3 is a diagram illustrating an example of a specific configuration of a drive circuit according to the first embodiment
  • FIG. 2 is a configuration diagram showing a circuit breaker according to the first embodiment in a cutoff state
  • Enlarged view of the tripping mechanism shown in FIG. FIG. 2 is a configuration diagram showing a state at the moment when the contact of the circuit breaker according to the first embodiment is started.
  • Enlarged view of the tripping mechanism shown in FIG. FIG. 2 is a diagram illustrating a configuration example of an electric circuit of a circuit breaker including a drive circuit according to the first embodiment
  • FIG. 3 is a diagram illustrating an example of a specific configuration of a drive circuit according to the first embodiment
  • FIG. 2 is a configuration diagram showing a circuit breaker according to the first embodiment in a cutoff state
  • FIG. 2 is a configuration diagram illustrating a state where the circuit breaker according to the first embodiment has reached a maximum closing position.
  • Enlarged view of the tripping mechanism shown in FIG. Enlarged view of the tripping mechanism after the trip lever rotates from the state shown in FIG.
  • FIG. 2 is a configuration diagram showing a state where the circuit breaker according to the first embodiment has reached the closing completion position.
  • FIG. 3 is a diagram illustrating a configuration example of a current reduction unit and a control switch according to the first embodiment;
  • FIG. 3 is a diagram illustrating a configuration example of a current reduction unit and a control switch according to the first embodiment;
  • FIG. 3 is a diagram illustrating a configuration example of a current reduction unit and a control switch according to the first embodiment
  • FIG. 4 is a diagram illustrating a relationship between a movement position of an iron core plunger and a load applied to an electromagnetic solenoid according to the first embodiment.
  • Diagram showing a configuration example of the MCR mechanism Diagram showing a configuration example of the MCR mechanism
  • FIG. 4 is a diagram illustrating a configuration example of an electric circuit of a circuit breaker including a drive circuit according to a second embodiment of the present invention. Timing chart for explaining the MCR function of the circuit breaker according to the second embodiment
  • the circuit breaker according to the first embodiment is an aerial circuit breaker that opens and closes an electric circuit such as a low-voltage distribution line, and detects at least one of an overcurrent and a leak to cut off the electric circuit.
  • the Z-axis positive direction is set to the upper side
  • the Z-axis negative direction is set to the lower side
  • the X-axis positive direction is set to the right
  • the X-axis negative direction is set to the left
  • the Y-axis positive direction is set to the front
  • the Y-axis negative direction is the rear.
  • clockwise and counterclockwise mean clockwise and counterclockwise in the drawings described later.
  • FIG. 1 is a diagram illustrating a configuration example of the circuit breaker according to the first embodiment of the present invention.
  • a circuit breaker 1 according to a first embodiment includes a housing 2 formed of an insulating member, and a power supply side attached to the housing 2 through a wall 2 a of the housing 2.
  • a movable element 6 having one end 6 a connected to the other end 5 b of the flexible conductor 5 and one end 7 a is rotatably attached to the housing 2 inside the housing 2.
  • the movable member holder 7 includes a contact pressure spring 8 having one end and the other end attached to the other end 7 b of the mover holder 7 and the other end 6 b of the mover 6.
  • the power supply side terminal 3 is connected to a power supply side conductor (not shown) outside the housing 2, and the load side terminal 4 is connected to a load side conductor (not shown) outside the housing 2.
  • a fixed contact 10 is electrically connected to the power supply side terminal 3 inside the housing 2, and a movable contact 11 is electrically connected to the other end 6 b of the mover 6.
  • the power supply terminal 3 and the load terminal 4 are fixed apart from each other. In the example illustrated in FIG. 1, the power supply terminal 3 is disposed above the load terminal 4, but the load terminal 4 may be disposed above the power supply terminal 3.
  • the flexible conductor 5 is a conductor having flexibility, and one end 5 a is connected to the load terminal 4 and the other end 5 b is connected to the mover 6.
  • the load side terminal 4 and the mover 6 are electrically connected by the flexible conductor 5.
  • the movable contact 11 is electrically connected to the mover 6, and when the movable contact 11 contacts the fixed contact 10, the circuit breaker 1 electrically connects the power supply terminal 3 and the load terminal 4 to each other. Is connected to the power-on state.
  • the circuit breaker 1 enters a cutoff state in which the power supply terminal 3 and the load terminal 4 are electrically cut off.
  • One end 7a of the mover holder 7 is attached to the housing 2 by a holder shaft 12 so as to be rotatable about a holder axis 12a.
  • the middle part 7c of the mover holder 7 is rotatably attached to one end 6a of the mover 6 by a connecting pin 13.
  • the mover holder 7 is provided with a mover stopper 9.
  • the mover stopper 9 restricts the angle at which the mover 6 rotates about the connecting pin 13 with respect to the mover holder 7.
  • One end 6a of the mover 6 is in contact with the mover stopper 9 in the state shown in FIG. For this reason, rotation of the other end 6 b of the mover 6 in a direction away from the other end 7 b of the mover holder 7 is restricted by the mover stopper 9, but the other end 6 b of the mover 6 is It is possible to rotate the holder 7 in a direction approaching the other end 7b.
  • the contact pressure spring 8 is a spring for pressing the movable contact 11 against the fixed contact 10.
  • the contact pressure spring 8 is in a state in which the contact pressure spring 8 is charged shorter than its natural length, and has a predetermined initial contact pressure in advance. Therefore, when the other end 6b of the mover 6 rotates in a direction approaching the other end 7b of the mover holder 7, the distance between the other end 6b of the mover 6 and the other end 7b of the mover holder 7 becomes smaller. As a result, the contact pressure spring 8 is further charged.
  • the circuit breaker 1 transmits an electromagnetic solenoid 20 disposed inside the housing 2 as a closing actuator of the circuit breaker 1 and a driving force of the electromagnetic solenoid 20 to the mover 6, and the fixed contact of the movable contact 11.
  • a transmission mechanism 30 that contacts and separates the transmission mechanism 10, an opening spring 40 having one end and the other end attached to the transmission mechanism 30 and the housing 2, and maintains the closed state and releases the closed state
  • a drive circuit 70 for driving the electromagnetic solenoid 20 is not limited to the arrangement shown in FIG.
  • the electromagnetic solenoid 20 includes a yoke 21 made of a magnetic material, a loading coil 22 wound around a bobbin (not shown) and fixed inside the yoke 21, and an iron core plunger 23 that can reciprocate linearly in a vertical direction. And a protrusion 24 formed on the upper part of the iron core plunger 23.
  • At least one of the electromagnetic solenoid 20 and the housing 2 is provided with a guide (not shown) for guiding the moving direction of the iron core plunger 23 in the vertical direction, and the core plunger 23 is displaced only in the vertical direction by such a guide. It is possible. It is sufficient that the core plunger 23 and the protruding portion 24 are fixed, and the method of fixing the core plunger 23 and the protruding portion 24 does not matter.
  • the drive coil 70 energizes the input coil 22
  • an electromagnetic attraction force is generated in the electromagnetic solenoid 20. Due to the generation of the electromagnetic attraction, the iron core plunger 23 moves upward, and when the gap 25 between the iron core plunger 23 and the inside of the input coil 22 disappears, the movement of the iron core plunger 23 is restricted and the iron plunger 23 is moved. Stops physically.
  • the position where the iron core plunger 23 stops is the position where the iron core plunger 23 is in the uppermost direction, and is hereinafter described as the maximum insertion position or the maximum movement position.
  • the structure in which the iron core plunger 23 stops is not limited to the above-described example. For example, a configuration may be employed in which a projecting portion is provided below the iron core plunger 23 and the projecting portion is locked to the bobbin or yoke 21 of the input coil 22 so that the iron core plunger 23 physically stops.
  • the electromagnetic solenoid 20 stops generating the electromagnetic attraction force by stopping the power supply to the closing coil 22.
  • the electromagnetic attraction force of the electromagnetic solenoid 20 disappears, the iron core plunger 23 exerts a downward force from the maximum closing position due to the own weight of the iron core plunger 23 and the opening force of the opening spring 40, for example.
  • the transmission mechanism 30 includes a connecting link 31 having one end 31 a rotatably connected to the protrusion 24 of the electromagnetic solenoid 20, a lever 32 rotatably connected to the other end 31 b of the connecting link 31, and a lever 32.
  • An insulating bar 33 rotatably connected to the one end 32a.
  • connection link 31 One end 31 a of the connection link 31 is rotatably connected to the protrusion 24 of the electromagnetic solenoid 20 by a connection pin 34, and the other end 31 b of the connection link 31 is rotatably connected to the lever 32 by a connection pin 35. .
  • the lever 32 is attached to the lever shaft 37 so as to be rotatable around a lever shaft center 36 whose absolute position is fixed to the housing 2.
  • a region closer to the release mechanism 50 than the lever shaft 37 is connected to the other end 31 b of the connection link 31 by a connection pin 35.
  • the transmission mechanism 30 of the circuit breaker 1 includes an engagement pin 51, and the engagement pin 51 is fixed to the other end 32 b of the lever 32.
  • One end 33a of the insulating bar 33 is rotatably connected to one end 32a of the lever 32 by a connecting pin 38, and the other end 33b is rotatably mounted to the one end 6a of the mover 6 by the connecting pin 13.
  • the insulating bar 33 is made of a material having high electrical insulation such as a resin. Therefore, when the circuit breaker 1 is in the energized state, the current flowing between the power supply terminal 3 and the load terminal 4 does not leak through the lever 32. Note that the entirety of the insulating bar 33 does not need to be made of an insulating material, and a part of the insulating bar 33 may be formed of a conductor as long as the connecting pin 13 and the connecting pin 38 are in an insulating state.
  • the lever 32 and the insulating bar 33 constitute a toggle mechanism in a four-joint link with the lever axis 36 and the holder axis 12a as fixed rotation centers. Therefore, the transmission mechanism 30 can be driven with a smaller force as the lever shaft center 36, the connection pin 38, and the connection pin 13 approach the dead center where they are linearly arranged.
  • the protrusion 24, the connection link 31, the lever 32, the insulating bar 33, the mover 6, and the mover holder 7 constitute a link structure.
  • One end and the other end of the opening spring 40 are attached to the lever 32 and the housing 2 as described above, and the transmission mechanism 30 is moved by the elastic restoring force of the opening spring 40 to a shut-off state position to be described later. It is urged in the direction of displacement.
  • FIG. 2 is an enlarged view of the tripping mechanism shown in FIG. In FIG. 2, the housing 2 of the circuit breaker 1 is indicated by a broken line.
  • the tripping mechanism 50 includes a trip lever 52 that engages with an engagement pin 51 fixed to the other end 32 b of the lever 32, and one end portion of the trip lever 52 and the housing 2.
  • a first reset spring 53 having an end attached thereto.
  • the tripping mechanism 50 includes a trip bar 54 that is rotated by a driving force of an actuator (not shown), a second reset spring 55 having one end and the other end attached to the trip bar 54 and the housing 2. Is provided.
  • the engagement pin 51 projects rightward from the lever 32 in a direction perpendicular to the direction in which the lever 32 extends.
  • the trip lever 52 has an arc portion 56 having an arc surface that comes into contact with the engagement pin 51 in the closing process at one end portion 52 a, and the other end portion 52 b is formed around a trip lever axis 60 fixed to the housing 2. It is rotatably mounted on. In the middle of the trip lever 52, a concave portion 52c that is recessed rearward is formed. An engagement surface 57 that engages with the engagement pin 51 in the closed state is formed in the concave portion 52c. Further, an engagement portion 59 that engages with the trip bar 54 is provided in a region on the front side of the other end portion 52 b of the trip lever 52.
  • One end 54 a of the trip bar 54 is attached to the housing 2 so as to be rotatable about a trip bar axis 61, and has a semicircular semicircular portion 58 centered on the trip bar axis 61. I have.
  • the semicircular portion 58 is formed by an arc portion 58a having an arc surface and a flat portion 58b having a flat surface.
  • the driving force of the actuator causes the semicircular portion 58 to rotate about the trip bar axis 61, and the arc portion 58 a of the semicircular portion 58 engages with the engaging portion 59 formed on the other end 52 b of the trip lever 52. By this, the rotation of the one end 52a of the trip lever 52 forward is restricted.
  • the second reset spring 55 urges the trip bar 54 in a direction to rotate the other end 54b of the trip bar 54 facing upward in the forward direction about the trip bar axis 61. That is, the second reset spring 55 urges the trip bar 54 clockwise.
  • FIG. 3 is a diagram illustrating a configuration example of an electric circuit of the circuit breaker including the drive circuit according to the first embodiment.
  • the circuit breaker 1 according to the first embodiment includes a drive circuit 70 that energizes the closing coil 22, an internal ON switch 71 provided in front of the circuit breaker 1, And an external ON switch 72 that enables the circuit breaker 1 to be turned on from a position away from the switch.
  • the control power supply 73 is connected to the terminal block provided on the circuit breaker 1, power is supplied to the drive circuit 70.
  • the circuit breaker 1 has an internal off switch 74 that is linked to an unshown off operation button provided on the front of the circuit breaker 1 and a pull that enables the circuit breaker 1 to be turned off from a position away from the circuit breaker 1. And a detachable attachment device 75.
  • the trip attachment device 75 can perform control to automatically trip the circuit breaker 1 when the voltage of the drive circuit 70 falls below the reference value.
  • the circuit breaker 1 also includes a detection unit 76 that detects an overcurrent or a leakage in the electric circuit, a trip coil 77 that drives an actuator (not shown), and a drive circuit 78 that energizes the trip coil 77.
  • the detection unit 76 includes a current transformer 97 whose primary side is provided in the electric circuit, and a trip relay 98 connected to the secondary side of the current transformer 97.
  • the trip relay 98 detects an overcurrent or a leakage based on the secondary current of the current transformer 97 and outputs a high-level voltage as a trip command.
  • the detection unit 76 may be any configuration as long as it detects an overcurrent or a leakage and outputs a trip command, and is not limited to the example illustrated in FIG. 3.
  • the drive circuit 78 energizes the trip coil 77 when the detection command is output from the detection unit 76.
  • an actuator (not shown) is driven, and the actuator drives the trip bar 54 shown in FIG. 2 to rotate counterclockwise.
  • the engagement of the tripping mechanism 50 with the transmission mechanism 30 is released. Therefore, the movable contact 11 is separated from the fixed contact 10, and the circuit breaker 1 is turned off.
  • the drive circuit 70 supplies a current to the closing coil 22 to energize the closing coil 22. .
  • the iron core plunger 23 moves, and the fixed contact 10 and the movable contact 11 come into contact with each other, so that the circuit breaker 1 is turned on.
  • the drive circuit 70 is used for turning on when there is an off operation using the internal off switch 74, when there is an off operation using the trip accessory 75, or when the voltage of the drive circuit 70 falls below the reference value.
  • the energization of the coil 22 is stopped.
  • the drive circuit 78 is used for tripping when there is an off operation using the internal off switch 74, when there is an off operation using the trip attachment 75, or when the voltage of the drive circuit 70 falls below the reference value.
  • the coil 77 is energized.
  • FIG. 4 is a diagram illustrating an example of a specific configuration of the drive circuit according to the first embodiment.
  • the drive circuit 70 according to the first embodiment includes a rectifier circuit 80, a constant voltage circuit 81, a control circuit 83, a control switch 84, a series body 85, and resistors R1, R2, R3.
  • the drive circuit 70 may have a configuration including the resistor R4.
  • the rectifier circuit 80 rectifies the AC voltage output from the control power supply 73 and converts it into a DC voltage Va.
  • the constant voltage circuit 81 reduces the DC voltage Va output from the rectifier circuit 80 and outputs a constant voltage Vb.
  • the constant voltage Vb is, for example, 24V.
  • the control circuit 83 performs control switches based on the state of each of the internal ON switch 71, the external ON switch 72, the internal OFF switch 74, and the tripping accessory 75, and the detection result of overcurrent or leakage by the detection unit 76. 84 is turned on or off.
  • the control switch 84 is connected between the other end of the input coil 22 to which the DC voltage Va is supplied at one end and the ground, and performs connection and disconnection between the other end of the input coil 22 and the ground. .
  • the control switch 84 When the control switch 84 is in the ON state, the other end of the closing coil 22 and the ground are in a short-circuit state, and the excitation current is supplied to the closing coil 22.
  • the control switch 84 is in the off state, the connection between the other end of the closing coil 22 and the ground is in a cutoff state, and the supply of the exciting current to the closing coil 22 is stopped.
  • the series body 85 is connected in parallel to the input coil 22 of the electromagnetic solenoid 20.
  • the series body 85 is configured by connecting a diode 86 and a current reducing unit 87 in series.
  • the diode 86 has an anode connected to the control switch 84 and a cathode connected to one end of the current reducing unit 87.
  • the DC voltage Va is applied to the other end of the current reducing section 87.
  • the current reduction unit 87 reduces the return current flowing through the insertion coil 22 via the diode 86 when the control switch 84 is turned off from the on state and the energization of the insertion coil 22 is stopped. With the current reduction unit 87, the breaking can be performed immediately after the closing operation of the circuit breaker 1 is started, as described later, without the transmission mechanism 30 having a complicated configuration.
  • the control circuit 83 includes OR circuits 91 and 95, a latch circuit 92, an AND circuit 93, a logical NOT circuit 94, and terminals T1, T2, T3, T4, T5, and T6.
  • the terminal T1 is connected to the internal ON switch 71.
  • the terminal T2 is connected to the external ON switch 72.
  • Terminal T3 is connected to a switch block that includes an internal off switch 74 and a trip accessory 75.
  • the terminal T4 is connected to an output terminal of the detection unit 76.
  • the terminal T5 is connected to a micro switch 88 that operates in conjunction with the operation of the core plunger 23 being turned on.
  • the OR circuit 91 In the OR circuit 91, one input terminal is connected to the terminal T1, and the other input terminal is connected to the terminal T2.
  • the OR circuit 91 outputs a closing signal to the latch circuit 92 when the closing signal is output from the internal ON switch 71 or the external ON switch 72.
  • a high-level voltage is input to the OR circuit 91 as a closing signal
  • the high-level voltage is input from the OR circuit 91 as a closing signal.
  • the latch circuit 92 outputs, for example, a high-level voltage to the AND circuit 93 as an ON signal when the control circuit 84 is not in the ON state and the ON signal is output from the OR circuit 91 for a certain period of time.
  • the latch circuit 92 has a built-in timer circuit, and outputs a low-level voltage to the AND circuit 93 as an off signal when a certain period of time has elapsed since the output of the on signal.
  • the AND circuit 93 has one input terminal connected to the terminal T3 to which the cutoff signal is input from the internal off switch 74 or the trip attachment device 75, and the other input terminal connected to the output terminal of the latch circuit 92. ing.
  • the AND circuit 93 outputs a high level voltage to the control switch 84. Output as In the example shown in FIG. 4, the cutoff signal is a low-level voltage.
  • the control switch 84 has an input terminal connected to the terminal T6, and is turned on when an on signal is output from the AND circuit 93 via the terminal T6.
  • the control switch 84 is turned on, the excitation current is supplied to the closing coil 22. Thereby, the closing operation by the iron core plunger 23 starts.
  • the AND circuit 93 turns off the low-level voltage to the control switch 84 when the off signal is output from the latch circuit 92 or when the cutoff signal is output from the internal off switch 74 or the trip attachment 75. Output as a signal.
  • the control switch 84 switches from the on state to the off state when the signal output from the AND circuit 93 changes from the on signal to the off signal. When the control switch 84 is turned off, the supply of the exciting current to the closing coil 22 is stopped.
  • the OR circuit 95 is a three-input one-output OR circuit.
  • the OR circuit 95 has a first input terminal connected to the terminal T4, a second input terminal connected to the output terminal of the logical NOT circuit 94, and a third input terminal connected to the terminal T5.
  • the input terminal of the logical NOT circuit 94 is connected to the terminal T3.
  • the OR circuit 95 outputs a tripping command from the detection unit 76, outputs a cutoff signal from the internal off switch 74 or the tripping attachment device 75, or outputs a high-level voltage from the microswitch 88. In this case, a high-level voltage is output to the latch circuit 92 as a reset signal.
  • the reset signal is output from the OR circuit 95 while the ON signal is being output, the latch circuit 92 switches the output signal from the ON signal to the OFF signal.
  • the configuration of the control circuit 83 is not limited to the configuration illustrated in FIG. 4, and the control circuit 83 may be a circuit that can realize the above-described functions.
  • FIG. 5 is a configuration diagram illustrating a cutoff state of the circuit breaker according to the first embodiment
  • FIG. 6 is an enlarged view of the tripping mechanism illustrated in FIG.
  • FIG. 7 is a configuration diagram illustrating a state at the moment when the contact of the circuit breaker according to the first embodiment starts
  • FIG. 8 is an enlarged view of the tripping mechanism illustrated in FIG. 7.
  • 9 is a configuration diagram illustrating a state where the circuit breaker according to the first embodiment has reached the maximum closing position
  • FIG. 10 is an enlarged view of the tripping mechanism illustrated in FIG. 9, and FIG. FIG.
  • FIG. 6 is an enlarged view of the tripping mechanism after the trip lever has rotated from the state shown in FIG.
  • FIG. 12 is a configuration diagram illustrating a state where the circuit breaker according to the first embodiment has reached the closing completion position
  • FIG. 13 is an enlarged view of the tripping mechanism illustrated in FIG. 5 to 13, the housing 2 is indicated by a broken line.
  • the iron core plunger 23 forming the electromagnetic solenoid 20 reaches the lowermost portion by the opening spring 40 and is in physical contact with the housing 2. You can no longer descend downwards. At this time, the size of the gap 25 is maximum.
  • the other end 32b of the lever 32 When the iron core plunger 23 is at the lowermost position, the other end 32b of the lever 32 is located below the one end 32a, and is located at a position facing the one end 52a of the trip lever 52 in the left-right direction.
  • One end 52a of the trip lever 52 is tensioned rearward by the elastic restoring force of the first reset spring 53. Therefore, the engagement pin 51 attached to the other end 32 b of the lever 32 is in contact with the arc portion 56 formed on the one end 52 a of the trip lever 52.
  • the rotation of the mover 6 in the direction in which the other end 6b of the mover 6 is separated from the other end 7b of the mover holder 7 by the mover stopper 9 of the mover holder 7, that is, Clockwise rotation of the mover 6 is limited. Since the contact pressure spring 8 has a predetermined initial contact pressure as described above, as long as the reaction force from the fixed contact 10 to the movable contact 11 does not exceed the initial contact pressure, One end 6a of the mover 6 does not separate from the mover stopper 9.
  • the separation distance which is the physically shortest distance between the movable contact 11 and the fixed contact 10 of the mover 6, is maximum.
  • the flat portion 58b of the semicircular portion 58 of the trip bar 54 is elastically restored by the second reset spring 55 which tries to rotate the trip bar 54 clockwise. As a result, it is in contact with the corner of the engaging portion 59 formed on the other end 52b of the trip lever 52. Therefore, the rotation of the trip lever 52 is restricted, and the state shown in FIG. 6 is maintained.
  • the one end portion 52a of the trip lever 52 is formed into a circular arc portion by the elastic restoring force of the first reset spring 53 that attempts to rotate the trip lever 52 clockwise so that the one end portion 52a of the trip lever 52 moves backward. At 56, it is in contact with the engagement pin 51 of the lever 32. Thereby, the clockwise rotation of the trip lever 52 is restricted, and the state shown in FIG. 6 is maintained.
  • connection angle is an angle formed by the extension direction of the lever 32 and the extension direction of the insulating bar 33, and the connection angle becomes smaller as the circuit breaker 1 changes from the state shown in FIG. 5 to the state shown in FIG.
  • connection angle decreases, the mover 6 moves forward, and the fixed contact 10 and the movable contact 11 come into contact with each other.
  • the state at the moment when the movable contact 11 and the fixed contact 10 start contact is the contact contact start state. At this time, a current flows between the power supply terminal 3 and the load terminal 4 through the fixed contact 10, the movable contact 11, and the flexible conductor 5.
  • the engagement pin 51 attached to the tip of the lever 32 rotatable about the lever axis 36 is provided with a first reset spring 53 as the connection angle becomes smaller. While maintaining the state of contact with the trip lever 52 to which the elastic restoring force has been given by the elastic member, the circular arc portion 56 formed on the one end portion 52a of the trip lever 52 is slid.
  • the arc portion 56 of the trip lever 52 is formed by an arc centered on the lever axis 36 of the lever 32. Therefore, the position of the trip lever 52 does not change even if the engagement pin 51 moves from the state shown in FIG. 6 to the state shown in FIG.
  • the mover 6 When the circuit breaker 1 reaches the contact abutment start state, the mover 6 is restricted from rotating clockwise by the mover stopper 9 provided on the mover holder 7, but can be rotated counterclockwise. It is.
  • the iron core plunger 23 further advances from the contact abutment start state shown in FIG. 7, the contact reaction force from the fixed contact 10 to the movable contact 11 attached to the other end 6b of the mover 6 increases, and The other end 6 b of the armature 6 rotates counterclockwise around the connection pin 13 and approaches the other end 7 b of the mover holder 7. Therefore, the contact pressure spring 8 is further charged from the state shown in FIG.
  • the movable contact 11 causes the movable element 6 to move with respect to the movable element holder 7 by the contact reaction force from the fixed contact 10.
  • the angle of rotation is maximum, and the amount of stored energy of the contact pressure spring 8 is also maximum.
  • the trip bar 54 When the engagement pin 51 reaches the upper part of the engagement surface 57 of the trip lever 52 and the trip lever 52 rotates, the trip bar 54, whose rotation in the clockwise direction is restricted by the trip lever 52, becomes a second reset spring 55. 10 and 11, the arc portion 58a of the semicircular portion 58 goes over the engaging portion 59 and stops.
  • the circuit breaker 1 is provided with a stopper (not shown) for restricting the rotation of the trip bar 54, and restricts the rotation of the trip bar 54 in the state shown in FIGS.
  • the reaction force of the stored contact pressure spring 8 acts between the fixed contact 10 and the movable contact 11, and moves the iron core plunger 23 of the electromagnetic solenoid 20 from the maximum closing position to the shut-off position through the transmission mechanism 30.
  • a force is generated that pushes back in the direction to move to.
  • the force in the direction of moving the iron core plunger 23 from the maximum closing position to the shut-off state is also applied by the own weight of the iron core plunger 23 and the opening force of the opening spring 40.
  • the core plunger 23 starts moving downward from the maximum insertion position shown in FIG.
  • the circuit breaker 1 when the circuit breaker 1 is in the cut-off state, a constant initial contact pressure is applied to the contact pressure spring 8 in advance, and from the moment when the movable contact 11 starts to contact the fixed contact 10, the fixed contact 10 Is set such that the contact pressure of the movable contact 11 with respect to Therefore, when the circuit breaker 1 is in the energized state, the occurrence of separation between the contacts due to the electromagnetic repulsion generated between the movable contact 11 and the fixed contact 10 is prevented, and after the tripping command is issued.
  • the separation speed between the movable contact 11 and the fixed contact 10, ie, the opening speed can be increased.
  • the detecting unit 76 outputs a tripping command when detecting an overcurrent or a leakage in the electric circuit.
  • the drive circuit 78 energizes the trip coil 77 when a detection command is output from the detection unit 76.
  • an actuator (not shown) is driven, and the actuator drives the trip bar 54 shown in FIGS. 12 and 13 to rotate counterclockwise.
  • the arc portion 58a of the semicircular portion 58 of the trip bar 54 separates from the engagement portion 59 of the trip lever 52, and the engagement between the arc portion 58a and the engagement portion 59 is released. Is done. Therefore, the trip lever 52 rotates counterclockwise around the trip lever shaft center 60 by the force based on the reaction force of the contact pressure spring 8, and the iron core plunger 23 goes through the state shown in FIG. Return. Thereby, the tripping of the circuit breaker 1 is completed.
  • the control circuit 83 outputs an ON signal, and the control switch 84 is in the ON state, so that the exciting current flows through the closing coil 22.
  • the control circuit 83 outputs an off signal to the control switch 84.
  • the supply of the exciting current to the closing coil 22 is stopped.
  • the drive circuit 70 is provided with a diode 86 for preventing an overvoltage from being applied to the control switch 84 by a surge voltage.
  • a diode 86 is also called a protection diode or a freewheeling diode.
  • the circuit breaker 1 is provided with the current reducing section 87 in series with the diode 86 as described above.
  • the current reduction unit 87 reduces the return current flowing through the making coil 22 via the diode 86. Therefore, the closed state can be prevented from being maintained by the return current, and the return operation of the plunger immediately after the start of the closing operation can be prevented from being delayed. Therefore, the transmission mechanism 30 can have a simple configuration.
  • FIGS. 14 to 16 are diagrams illustrating a configuration example of the current reduction unit and the control switch according to the first embodiment.
  • the current reducing section 87 is configured by the resistor R10.
  • the current reducing section 87 has a configuration in which a resistor R10 and a capacitor C10 are connected in series.
  • the current reducing section 87 shown in FIG. 15 has a configuration in which the resistor R10 and the capacitor C10 are connected in series, but may have a configuration in which the resistor R10 and the capacitor C10 are connected in parallel.
  • the configuration including the resistor R10 and the capacitor C10 is also called a snubber circuit.
  • control switch 84 is configured using an N-channel MOSFET 79a, and in the example illustrated in FIG. 16, the control switch 84 is configured using a P-channel MOSFET 79b.
  • control circuit 83 is configured such that a signal having a polarity opposite to that of the example shown in FIG. 4 is output from the terminal T6.
  • the current reducing section 87 may be formed by the snubber circuit described above. It is preferable to use a fast recovery diode as the diode 86 so that the inductance energy of the input coil 22 can be quickly consumed by the resistor R10.
  • the current reducing unit 87 sets the value of the resistor R10 and the value of the capacitor C10 so that the return current does not hinder the tripping by the tripping mechanism 50 after the supply of the exciting current to the closing coil 22 is stopped. You.
  • the value of the resistor R10 included in the current reduction unit 87 is set to a value that can reduce the return current until the throw input by the return current falls below the electromagnetic repulsion force and tripping force at the time of interruption.
  • FIG. 17 is a diagram illustrating a relationship between the movement position of the iron core plunger according to the first embodiment and the load applied to the electromagnetic solenoid.
  • the iron core plunger 23 moves in a range from the position shown in FIG. 5 to the maximum insertion position shown in FIG.
  • the upward movement of the core plunger 23 is referred to as forward, and the downward movement of the core plunger 23 is referred to as retreat.
  • the moving position of the core plunger 23 when the core plunger 23 moves forward is described as a forward position
  • the moving position of the core plunger 23 when the core plunger 23 retreats is described as a retreat position.
  • a load applied to the electromagnetic solenoid 20 when the iron core plunger 23 moves forward is referred to as a forward load
  • a load applied to the electromagnetic solenoid 20 when the iron core plunger 23 moves backward is referred to as a reverse load.
  • the lever 32 and the insulating bar 33 are brought closer to a straight line. Is the closest to the dead center. Therefore, the component of the reaction force from the contact pressure spring 8 acting on the connecting pin 38 in the direction perpendicular to the straight line connecting the lever axis 36 and the connecting pin 38 approaches zero, and the electromagnetic solenoid 20 necessary for rotating the lever 32 is rotated. Also rapidly approach zero.
  • the load force action is the distance that the iron core plunger 23 of the electromagnetic solenoid 20 moves forward to apply a load torque to the lever 32 in accordance with the throwing power of the electromagnetic solenoid 20 that increases due to the displacement from the shut-off state position to the closed state position.
  • the distance is reduced. Therefore, not only can the electromagnetic attraction force of the electromagnetic solenoid 20 be efficiently used for the closing operation of the circuit breaker 1, but also the electromagnetic solenoid 20 having a size corresponding to the change in the working distance of the load force required for the closing operation of the circuit breaker 1. Can be used, and the size and cost of the electromagnetic solenoid 20 can be reduced.
  • the iron core plunger 23 is configured to stop moving forward before the above-described toggle mechanism crosses the dead center. , The configuration of the tripping mechanism 50 can be prevented from becoming complicated.
  • the configuration of the tripping mechanism 50 can be simplified. Therefore, the size of the tripping mechanism 50 can be reduced, the size of the circuit breaker 1 can be reduced, and the number of components of the tripping mechanism 50 can be reduced, so that the durability of the tripping mechanism 50 can be reduced. Sex can be raised.
  • the load characteristics required for closing the electromagnetic solenoid 20 in the circuit breaker 1 can be formulated. For example, by formulating the load characteristics required for turning on the electromagnetic solenoid 20 in each of the states shown in FIGS. 5, 7, 9 and 12, the mechanical load at the time of the trip is greatly reduced by utilizing the mechanical friction. It is possible to design the circuit breaker 1 to reduce the input load characteristic of the electromagnetic solenoid 20 and reduce the hysteresis.
  • the circuit breaker 1 includes the housing 2, the power supply side terminal 3, the mover 6, the electromagnetic solenoid 20, the transmission mechanism 30, and the drive circuit 70.
  • the power supply side terminal 3 is an example of a fixed terminal, and is fixed to the housing 2 with a fixed contact 10 attached thereto.
  • the movable contact 6 has a movable contact 11 facing the fixed contact 10.
  • the electromagnetic solenoid 20 has an iron core plunger 23 that moves linearly.
  • the iron core plunger 23 is an example of a plunger.
  • the transmission mechanism 30 moves the movable element 6 in accordance with the movement of the iron core plunger 23, and switches the movable contact 11 from the fixed contact 10 to the closed state where the movable contact 11 contacts the fixed contact 10 and energizes the movable contact 11.
  • the drive circuit 70 energizes the closing coil 22 of the electromagnetic solenoid 20 to drive the electromagnetic solenoid 20.
  • the drive circuit 70 includes a series body 85 of a diode 86 and a current reducing unit 87 for reducing a current flowing through the diode 86, and the series body 85 is connected in parallel to the input coil 22 of the electromagnetic solenoid 20.
  • the current reducing section 87 includes the resistor R10 or the resistor R10 and the capacitor C10. Thereby, the current flowing through the diode 86 can be easily reduced.
  • the circuit breaker 1 further includes a detection unit 76 that detects an overcurrent or a leakage of an electric circuit that is brought into a conductive state by the contact between the fixed contact 10 and the movable contact 11 and outputs a trip command indicating the detection result as a detection result.
  • the drive circuit 70 stops energizing the closing coil 22 based on the trip command output from the detection unit 76.
  • the trip command is an example of a detection signal.
  • the circuit breaker 1 includes the tripping mechanism 50.
  • the tripping mechanism 50 engages with the transmission mechanism 30 to hold the closed state, and releases the engagement with the transmission mechanism 30 to release the held state.
  • the transmission mechanism 30 includes a lever 32 and an insulating bar 33.
  • the lever 32 rotates around a lever axis 36 fixed to the housing 2 as the iron core plunger 23 moves.
  • the lever axis 36 is an example of a first axis.
  • One end 33 a of the insulating bar 33 is rotatably connected to one end 32 a of the lever 32, and the other end 33 b is rotatably connected to the mover 6.
  • the core plunger 23 of the electromagnetic solenoid 20 reaches the maximum movement position where the movement of the core plunger 23 is restricted before the toggle mechanism including the lever 32 and the insulating bar 33 becomes a dead center. Therefore, for example, by setting the maximum movement position of the iron core plunger 23 to a position immediately before the toggle mechanism becomes a dead center, the leverage of the toggle mechanism causes the electromagnetic solenoid 20 necessary for rotating the lever 32 to be turned on. The load can be rapidly reduced to zero. Therefore, the load applied to the tripping mechanism 50 in the closed state can be reduced.
  • the position immediately before the above-mentioned dead center is a position where the dead center is not reached even when there is a manufacturing error.
  • the maximum movement position is an example of a first position.
  • the tripping mechanism 50 engages with the transmission mechanism 30 in a state where the iron core plunger 23 is retracted after reaching the maximum movement position and is in the loading completion position, and holds the loading state.
  • the loading completion position is an example of a second position. Accordingly, when the moving direction of the iron core plunger 23 is changed to the backward direction, the direction of the frictional force applied to the entire transmission mechanism 30 is also changed. Thus, the load on the trip mechanism 50 in the closed state can be reduced. Therefore, it is possible to reduce the necessity of making the tripping mechanism of the circuit breaker a complicated mechanism, and it is possible to reduce the size of the tripping mechanism 50 and to improve the assemblability.
  • the circuit breaker 1 further includes an engagement pin 51 attached to the other end 32b of the lever 32.
  • the engagement pin 51 is an example of an engagement portion.
  • the tripping mechanism 50 includes a trip lever 52 and a trip bar 54.
  • the trip lever 52 is rotatably attached to the housing 2 in a state where the trip lever 52 is urged in a direction toward the engagement pin 51, and is in contact with the engagement pin 51 during a closing process of shifting from a blocking state to a closing state. Is maintained, and the core plunger 23 is engaged with the engagement pin 51 in the state where it is in the closing completion position, thereby restricting the rotation of the lever 32 around the lever axis 36.
  • the trip bar 54 regulates the rotation of the trip lever 52 and releases the regulation.
  • the tripping mechanism 50 can be constituted by at least two members including the trip lever 52 and the trip bar 54 except for the engagement pin 51, the tripping mechanism 50 can be downsized and the assemblability can be improved. Can be achieved. Further, since the engagement pin 51 is brought into contact with the trip lever 52 from the shut-off state to the closing state, the tripping operation can be easily performed only by changing the movable amount of the trip lever 52 in the direction away from the engagement pin 51. be able to.
  • the trip lever 52 has an arc shape centered on the lever axis 36, and engages with the arc portion 56 with which the engaging pin 51 is movably contacted during the closing process, and with the engaging pin 51 in the closed state. And a recess 51c.
  • the trip lever 52 has a semicircular portion 58 formed with an arc portion 58 a and a flat portion 58 b and rotating around a trip bar axis 61 fixed to the housing 2.
  • the trip bar axis 61 is an example of a second axis.
  • the trip lever 52 contacts the flat portion 58b of the semicircular portion 58 in the shut-off state and is restricted from rotating.
  • the trip lever 52 contacts the arc portion 58a of the semicircular portion 58 in the closed state and restricts the rotation. Accordingly, the amount of movement of the trip lever 52 in the direction away from the engagement pin 51 can be easily adjusted only by rotating the trip lever 52.
  • Embodiment 2 FIG.
  • the circuit breaker according to the second embodiment is different from the circuit breaker 1 according to the first embodiment in that the circuit breaker according to the second embodiment is provided in a drive circuit that realizes an MCR (Making Current Release) function.
  • MCR Manufacturing Current Release
  • the MCR mechanism that realizes the MCR function will be described.
  • the MCR mechanism enables the instantaneous tripping characteristic during the closing operation of the circuit breaker, instantaneously trips for a short circuit accident during the closing operation, and invalidates the instantaneous tripping characteristic after the closing operation of the circuit breaker is completed. As a result, it is possible to expand a selection cooperative area with a load device having a large inrush current or a lower circuit breaker.
  • FIGS. 18 and 19 are diagrams showing a configuration example of the MCR mechanism.
  • FIG. 18 shows a state at the time of the closing operation of the circuit breaker
  • FIG. 19 shows a state after the closing operation of the circuit breaker is completed.
  • clockwise and counterclockwise mean clockwise and counterclockwise in FIGS. 18 and 19, respectively.
  • the MCR mechanism 100 shown in FIGS. 18 and 19 will be described as being included in the circuit breaker 1 described above.
  • the MCR mechanism 100 shown in FIG. 18 includes an MCR plate 101, an insulating plate 102, a micro switch 103, and an auxiliary plate 104.
  • the insulating plate 102, the microswitch 103, and the auxiliary plate 104 are fixed to the MCR plate 101 at two points by screws 105.
  • a normally closed terminal is used for the microswitch 103.
  • the microswitch 103 is provided with an actuator 106, and the actuator 106 is fixed to a rotating shaft 109 rotatably supported by the MCR plate 101.
  • the MCR mechanism 100 includes a weight 107 attached to the other end of the actuator 106 and a spring 108 suspended between the MCR plate 101 and the weight 107.
  • the spring 108 applies a force to the actuator 106 in a direction in which the spring 108 rotates counterclockwise about the rotation shaft 109. Therefore, when the closing operation of the circuit breaker 1 is not performed, as shown in FIG. 19, one end of the actuator 106 presses the micro switch button 103a.
  • the micro switch 103 transmits an always-on signal to the trip relay 98 shown in FIGS. 3 and 4 while the micro switch button 103a is being pressed. As a result, in the trip relay 98, the instantaneous trip characteristic becomes invalid.
  • the receiving portion 106a of the actuator 106 has a shape for receiving the operation of the lever shaft 37 in the mechanism for opening and closing the main contact of the circuit breaker 1.
  • the receiving portion 106a rotates clockwise around the rotation shaft 109 by rotation of the lever shaft 37 during the closing operation of the circuit breaker 1, and one end presses the micro switch button 103a for about several ms.
  • the microswitch 103 trips the off signal of about several ms and transmits it to the relay 98.
  • the instantaneous trip characteristic is effective while the off signal of about several ms is being input to the trip relay 98.
  • the MCR mechanism 100 can invalidate the instantaneous tripping characteristic during the closing operation of the circuit breaker 1 while disabling the instantaneous tripping characteristic except during the closing operation of the circuit breaker 1.
  • FIG. 20 is a diagram illustrating a configuration example of an electric circuit of the circuit breaker including the drive circuit according to the second embodiment of the present invention.
  • the drive circuit 70A of the circuit breaker 1A according to the second embodiment is different from the drive circuit 70 of the circuit breaker 1 in having an MCR circuit 79 that realizes an MCR function.
  • the MCR circuit 79 is connected to the terminal T6 and receives a signal output from the AND circuit 93.
  • the signal input from the AND circuit 93 to the MCR circuit 79 is the same signal as the signal input from the AND circuit 93 to the control switch 84.
  • the MCR circuit 79 outputs an ON signal or an OFF signal to the trip relay 98 based on a signal input from the AND circuit 93.
  • the MCR circuit 79 includes a photocoupler and the like in order to keep the control circuit 83 and the like and the trip relay 98 insulated.
  • the MCR circuit 79 When the ON signal is input from the AND circuit 93, the MCR circuit 79 outputs an ON signal that is a high-level voltage to the trip relay 98.
  • the ON signal output to the trip relay 98 is a signal for validating the instantaneous trip characteristic, and may be hereinafter referred to as an MCR control signal.
  • the trip relay 98 issues a trip command to the drive circuit 78 when an overcurrent or a leakage is detected based on the secondary current of the current transformer 97 while the MCR control signal is output from the MCR circuit 79. Output. As a result, the trip coil 77 is energized, and the circuit breaker 1A is turned off.
  • the MCR circuit 79 When the OFF signal is output from the AND circuit 93, the MCR circuit 79 outputs a low-level voltage to the trip relay 98 to invalidate the instantaneous trip characteristic.
  • the trip relay 98 issues a trip command to the drive circuit 78 even when an overcurrent or a leakage is detected based on the secondary current of the current transformer 97 in a state where a low level voltage is output from the MCR circuit 79. Is not output. As a result, the instantaneous trip characteristic can be invalidated after the closing operation of the circuit breaker 1A is completed.
  • FIG. 21 is a timing chart for explaining the MCR function of the circuit breaker according to the second embodiment.
  • a closing signal which is a high level voltage
  • the latch circuit 92 When the input signal is output from the OR circuit 91, the latch circuit 92 outputs a high-level voltage to the AND circuit 93. Therefore, the AND circuit 93 outputs a high-level voltage to the MCR circuit 79 and the control switch 84 as an ON signal.
  • the MCR circuit 79 outputs a high-level voltage to the relay 98 as an MCR control signal while the ON signal is being output from the AND circuit 93.
  • the instantaneous trip characteristic becomes effective during the closing operation of the circuit breaker 1A.
  • the control switch 84 is turned on when an on signal is output from the AND circuit 93 via the terminal T6.
  • the control switch 84 is turned on, the excitation current is supplied to the closing coil 22. Accordingly, the closing operation by the iron core plunger 23 starts, and at time t2, a high-level voltage is output to the control circuit 83 from the microswitch 88 that is linked to the operation of bringing the iron core plunger 23 into the closing state.
  • a high-level voltage is output from the microswitch 88, the latch circuit 92 is reset, and a low-level voltage is output from the control circuit 83 to the control switch 84 as an off signal.
  • the MCR circuit 79 outputs the high-level voltage during the period from time t1 to time t2.
  • the voltage is output as an MCR control signal to the relay 98.
  • the period from time t1 to time t2 is, for example, about 200 ms, whereby a stable MCR control signal is output to the trip relay 98. Therefore, the instantaneous trip characteristic of the trip relay 98 can be stably activated during the period in which the MCR control signal is output.
  • the control circuit 83 When the control switch 84 has the configuration shown in FIG. 16, the control circuit 83 outputs a low-level voltage as an ON signal.
  • the control circuit 83 is provided with, for example, a logical NOT circuit between the logical product circuit 93 and the terminal T6.
  • the MCR circuit 79 trips the high-level voltage as the MCR control signal and outputs it to the relay 98 while the control circuit 83 outputs the low-level ON signal.
  • the MCR control signal output from the MCR circuit 79 may be a low-level voltage.
  • the tripping relay 98 has an instantaneous tripping characteristic at a low-level voltage.
  • the circuit breaker 1A is configured to output a trip command when an overcurrent or a short circuit occurs in a circuit that is brought into a conductive state by the contact between the fixed contact 10 and the movable contact 11.
  • a relay 98 is provided.
  • the drive circuit 70A includes a control circuit 83, which is an example of a first control circuit, and an MCR circuit 79, which is an example of a second control circuit.
  • the control circuit 83 outputs an ON signal for driving the electromagnetic solenoid 20 when the internal ON switch 71 or the external ON switch 72 is turned ON, and interlocks with the operation in which the iron core plunger 23 of the electromagnetic solenoid 20 is turned on.
  • the output of the ON signal is stopped based on the signal from the micro switch 88 to be turned on.
  • the internal ON switch 71 or the external ON switch 72 is an example of an ON switch.
  • the MCR circuit 79 outputs the MCR control signal to the trip relay 98 while the ON signal is being output from the control circuit 83, and enables the trip command to be output from the trip relay 98.
  • the MCR function can be realized without providing the MCR mechanism 100 as shown in FIG. 18 and FIG.

Landscapes

  • Breakers (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

This breaker is provided with a transmission mechanism which, with movement of an electromagnetic solenoid plunger, moves a movable piece and changes the breaker from the breaking state to the closing state, and a drive circuit (70) which drives the electromagnetic solenoid. The drive circuit (70) is provided with a series body (85) comprising a diode (86) and a current reducing unit (87) which reduces the current flowing through the diode (86), and the series body (85) is connected in parallel with a coil (22) of the electromagnetic solenoid.

Description

遮断器Breaker
 本発明は、投入動作に電磁ソレノイドを利用する遮断器に関する。 The present invention relates to a circuit breaker using an electromagnetic solenoid for the closing operation.
 従来、電磁ソレノイドを投入動作に利用する遮断器が知られている。例えば、特許文献1には、電磁石のプランジャと可動接触子とを連動させる伝達機構としてリンク機構を有し、電磁石のコイルへの通電によってプランジャを移動させることにより、可動接触子を固定接触子に投入するようにした遮断器が開示されている。 Conventionally, circuit breakers that use an electromagnetic solenoid for closing operation are known. For example, Patent Literature 1 has a link mechanism as a transmission mechanism for interlocking a plunger of an electromagnet and a movable contact, and moves the plunger by energizing a coil of the electromagnet to make the movable contact a fixed contact. A circuit breaker adapted to be closed is disclosed.
特開2010-44927号公報JP 2010-44927 A
 遮断器においては投入動作開始直後に遮断できる機能が要求される。そのため、従来の電磁石により投入を行う遮断器では、電磁石のプランジャの慣性および残留磁気によって投入動作開始直後のプランジャの復帰動作が遅れることを防ぐため、伝達機構は、複雑な機構を有しており、伝達機構を構成する部品が多くなる。多くの部品が関連して動作することで複雑な挙動となるため、長期間の使用を続けることによって部品が破損したり機構特性の経年変化が発生したりして、遮断器の信頼性が低下してしまう可能性がある。 A circuit breaker is required to have a function that can be shut down immediately after the closing operation starts. Therefore, in a conventional breaker that performs closing by an electromagnet, the transmission mechanism has a complicated mechanism in order to prevent the return operation of the plunger immediately after the start of the closing operation due to the inertia and residual magnetism of the plunger of the electromagnet to be delayed. Therefore, the number of components constituting the transmission mechanism increases. Since many parts work in conjunction with each other, the behavior becomes complicated, and if used for a long period of time, the parts may be damaged or the mechanical characteristics may change over time, thereby reducing the reliability of the circuit breaker. Could be done.
 本発明は、上記に鑑みてなされたものであって、伝達機構の簡素化を図ることができる遮断器を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a circuit breaker capable of simplifying a transmission mechanism.
 上述した課題を解決し、目的を達成するために、本発明の遮断器は、筐体と、固定端子と、可動子と、電磁ソレノイドと、伝達機構と、駆動回路とを備える。固定端子は、固定接点が取り付けられ筐体に固定される。可動子は、固定接点に対向する可動接点が取り付けられる。電磁ソレノイドは、直線状に移動するプランジャを有する。伝達機構は、プランジャの移動に伴って可動子を移動させて、可動接点が固定接点と開離する遮断状態から可動接点が固定接点に接触して通電する投入状態へ変化させる。駆動回路は、電磁ソレノイドのコイルへ通電して電磁ソレノイドを駆動する。駆動回路は、ダイオードとダイオードに流れる電流を低減する電流低減部との直列体を備え、直列体は、電磁ソレノイドのコイルに並列接続される。 解決 In order to solve the above-described problems and achieve the object, a circuit breaker of the present invention includes a housing, a fixed terminal, a mover, an electromagnetic solenoid, a transmission mechanism, and a drive circuit. The fixed terminal has a fixed contact and is fixed to the housing. The mover has a movable contact facing the fixed contact. The electromagnetic solenoid has a plunger that moves linearly. The transmission mechanism moves the mover in accordance with the movement of the plunger, and changes from a cutoff state in which the movable contact is separated from the fixed contact to a closed state in which the movable contact comes into contact with the fixed contact and is energized. The drive circuit drives the electromagnetic solenoid by energizing the coil of the electromagnetic solenoid. The drive circuit includes a series body of a diode and a current reduction unit that reduces a current flowing through the diode, and the series body is connected in parallel to a coil of the electromagnetic solenoid.
 本発明によれば、伝達機構の簡素化を図ることができる、という効果を奏する。 According to the present invention, there is an effect that the transmission mechanism can be simplified.
本発明の実施の形態1にかかる遮断器の構成例を示す断面図Sectional drawing which shows the example of a structure of the circuit breaker concerning Embodiment 1 of this invention. 図1に示す引き外し機構の拡大図Enlarged view of the tripping mechanism shown in FIG. 実施の形態1にかかる駆動回路を含む遮断器の電気回路の構成例を示す図FIG. 2 is a diagram illustrating a configuration example of an electric circuit of a circuit breaker including a drive circuit according to the first embodiment; 実施の形態1にかかる駆動回路の具体的な構成の一例を示す図FIG. 3 is a diagram illustrating an example of a specific configuration of a drive circuit according to the first embodiment; 実施の形態1にかかる遮断器の遮断状態を示す構成図FIG. 2 is a configuration diagram showing a circuit breaker according to the first embodiment in a cutoff state; 図5に示す引き外し機構の拡大図Enlarged view of the tripping mechanism shown in FIG. 実施の形態1にかかる遮断器の接点当接開始瞬間の状態を示す構成図FIG. 2 is a configuration diagram showing a state at the moment when the contact of the circuit breaker according to the first embodiment is started. 図7に示す引き外し機構の拡大図Enlarged view of the tripping mechanism shown in FIG. 実施の形態1にかかる遮断器の最大投入位置に達した状態を示す構成図FIG. 2 is a configuration diagram illustrating a state where the circuit breaker according to the first embodiment has reached a maximum closing position. 図9に示す引き外し機構の拡大図Enlarged view of the tripping mechanism shown in FIG. 図9に示す状態からトリップレバーが回転した後の引き外し機構の拡大図Enlarged view of the tripping mechanism after the trip lever rotates from the state shown in FIG. 実施の形態1にかかる遮断器の投入完了位置に達した状態を示す構成図FIG. 2 is a configuration diagram showing a state where the circuit breaker according to the first embodiment has reached the closing completion position. 図12に示す引き外し機構の拡大図Enlarged view of the tripping mechanism shown in FIG. 実施の形態1にかかる電流低減部と制御スイッチの構成例を示す図FIG. 3 is a diagram illustrating a configuration example of a current reduction unit and a control switch according to the first embodiment; 実施の形態1にかかる電流低減部と制御スイッチの構成例を示す図FIG. 3 is a diagram illustrating a configuration example of a current reduction unit and a control switch according to the first embodiment; 実施の形態1にかかる電流低減部と制御スイッチの構成例を示す図FIG. 3 is a diagram illustrating a configuration example of a current reduction unit and a control switch according to the first embodiment; 実施の形態1にかかる鉄心プランジャの移動位置と電磁ソレノイドにかかる負荷量との関係を示す図FIG. 4 is a diagram illustrating a relationship between a movement position of an iron core plunger and a load applied to an electromagnetic solenoid according to the first embodiment. MCR機構の構成例を示す図Diagram showing a configuration example of the MCR mechanism MCR機構の構成例を示す図Diagram showing a configuration example of the MCR mechanism 本発明の実施の形態2にかかる駆動回路を含む遮断器の電気回路の構成例を示す図FIG. 4 is a diagram illustrating a configuration example of an electric circuit of a circuit breaker including a drive circuit according to a second embodiment of the present invention. 実施の形態2にかかる遮断器のMCR機能を説明するためのタイミングチャートTiming chart for explaining the MCR function of the circuit breaker according to the second embodiment
 以下に、本発明の実施の形態にかかる遮断器を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a circuit breaker according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the embodiment.
実施の形態1.
 実施の形態1にかかる遮断器は、低電圧配電線といった電路を開閉する気中遮断器であり、過電流および漏電の少なくとも一方を検出して電路を遮断する。以下においては、説明の便宜上、Z軸正方向を上方とし、Z軸負方向を下方とし、X軸正方向を右方とし、X軸負方向を左方とし、Y軸正方向を前方とし、Y軸負方向を後方とする。また、以下において、時計回りおよび反時計回りとは、後述する図面上において時計回りおよび反時計回りであることを意味する。
Embodiment 1 FIG.
The circuit breaker according to the first embodiment is an aerial circuit breaker that opens and closes an electric circuit such as a low-voltage distribution line, and detects at least one of an overcurrent and a leak to cut off the electric circuit. In the following, for convenience of explanation, the Z-axis positive direction is set to the upper side, the Z-axis negative direction is set to the lower side, the X-axis positive direction is set to the right, the X-axis negative direction is set to the left, and the Y-axis positive direction is set to the front, The Y-axis negative direction is the rear. In the following, clockwise and counterclockwise mean clockwise and counterclockwise in the drawings described later.
 図1は、本発明の実施の形態1にかかる遮断器の構成例を示す図である。図1に示すように、実施の形態1にかかる遮断器1は、絶縁部材で形成された筐体2と、筐体2の壁部2aを貫通して筐体2に各々取り付けられた電源側端子3および負荷側端子4と、筐体2の内部において負荷側端子4に一端部5aが接続された可撓性導体5とを備える。また、遮断器1は、可撓性導体5の他端部5bに一端部6aが接続された可動子6と、筐体2の内部において筐体2に一端部7aが回転可能に取り付けられた可動子ホルダ7と、可動子ホルダ7の他端部7bと可動子6の他端部6bに一端部と他端部とが取り付けられた接圧バネ8とを備える。 FIG. 1 is a diagram illustrating a configuration example of the circuit breaker according to the first embodiment of the present invention. As shown in FIG. 1, a circuit breaker 1 according to a first embodiment includes a housing 2 formed of an insulating member, and a power supply side attached to the housing 2 through a wall 2 a of the housing 2. A terminal 3 and a load-side terminal 4, and a flexible conductor 5 having one end 5 a connected to the load-side terminal 4 inside the housing 2. In the circuit breaker 1, a movable element 6 having one end 6 a connected to the other end 5 b of the flexible conductor 5 and one end 7 a is rotatably attached to the housing 2 inside the housing 2. The movable member holder 7 includes a contact pressure spring 8 having one end and the other end attached to the other end 7 b of the mover holder 7 and the other end 6 b of the mover 6.
 電源側端子3は、筐体2の外部において不図示の電源側導体に接続され、負荷側端子4は、筐体2の外部において不図示の負荷側導体に接続される。電源側端子3は、筐体2の内部において固定接点10が電気的に接続され、可動子6の他端部6bには、可動接点11が電気的に接続されている。電源側端子3と負荷側端子4は互いに離して固定されている。図1に示す例では、電源側端子3が負荷側端子4の上方に配置されているが、負荷側端子4が電源側端子3の上方に配置されていてもよい。 (4) The power supply side terminal 3 is connected to a power supply side conductor (not shown) outside the housing 2, and the load side terminal 4 is connected to a load side conductor (not shown) outside the housing 2. A fixed contact 10 is electrically connected to the power supply side terminal 3 inside the housing 2, and a movable contact 11 is electrically connected to the other end 6 b of the mover 6. The power supply terminal 3 and the load terminal 4 are fixed apart from each other. In the example illustrated in FIG. 1, the power supply terminal 3 is disposed above the load terminal 4, but the load terminal 4 may be disposed above the power supply terminal 3.
 可撓性導体5は、可撓性を有する導体であり、一端部5aが負荷側端子4に接続され他端部5bが可動子6に接続される。かかる可撓性導体5によって負荷側端子4と可動子6とが電気的に接続される。上述したように可動接点11は可動子6に電気的に接続されており、可動接点11が固定接点10に接触することによって、遮断器1は電源側端子3と負荷側端子4とが電気的に接続されて通電する投入状態になる。可動接点11が固定接点10から開離することによって、遮断器1は電源側端子3と負荷側端子4とが電気的に遮断される遮断状態になる。 The flexible conductor 5 is a conductor having flexibility, and one end 5 a is connected to the load terminal 4 and the other end 5 b is connected to the mover 6. The load side terminal 4 and the mover 6 are electrically connected by the flexible conductor 5. As described above, the movable contact 11 is electrically connected to the mover 6, and when the movable contact 11 contacts the fixed contact 10, the circuit breaker 1 electrically connects the power supply terminal 3 and the load terminal 4 to each other. Is connected to the power-on state. When the movable contact 11 is separated from the fixed contact 10, the circuit breaker 1 enters a cutoff state in which the power supply terminal 3 and the load terminal 4 are electrically cut off.
 可動子ホルダ7の一端部7aは、ホルダ軸12によってホルダ軸心12aを中心として回転可能に筐体2に取り付けられている。また、可動子ホルダ7の中途部7cは、連結ピン13によって回転可能に可動子6の一端部6aに取り付けられている。可動子ホルダ7には、可動子ストッパ9が設けられる。 一端 One end 7a of the mover holder 7 is attached to the housing 2 by a holder shaft 12 so as to be rotatable about a holder axis 12a. The middle part 7c of the mover holder 7 is rotatably attached to one end 6a of the mover 6 by a connecting pin 13. The mover holder 7 is provided with a mover stopper 9.
 可動子ストッパ9は、可動子ホルダ7に対して可動子6が連結ピン13を中心に回転する角度に対して制限を与える。可動子6は、図1に示す状態で一端部6aが可動子ストッパ9に当接している。そのため、可動子6の他端部6bが可動子ホルダ7の他端部7bから離れる方向へ回転することが可動子ストッパ9により規制されているが、可動子6の他端部6bが可動子ホルダ7の他端部7bに近づく方向へ回転することは可能である。 The mover stopper 9 restricts the angle at which the mover 6 rotates about the connecting pin 13 with respect to the mover holder 7. One end 6a of the mover 6 is in contact with the mover stopper 9 in the state shown in FIG. For this reason, rotation of the other end 6 b of the mover 6 in a direction away from the other end 7 b of the mover holder 7 is restricted by the mover stopper 9, but the other end 6 b of the mover 6 is It is possible to rotate the holder 7 in a direction approaching the other end 7b.
 接圧バネ8は、固定接点10に可動接点11を圧接するためのバネである。接圧バネ8は、図1に示す状態において、自然長よりも短く蓄勢された状態であり、予め一定の初期接圧を有する状態となっている。そのため、可動子6の他端部6bが可動子ホルダ7の他端部7bに近づく方向に回転した場合、可動子6の他端部6bと可動子ホルダ7の他端部7bとの距離が小さくなり、接圧バネ8がさらに蓄勢される。 The contact pressure spring 8 is a spring for pressing the movable contact 11 against the fixed contact 10. In the state shown in FIG. 1, the contact pressure spring 8 is in a state in which the contact pressure spring 8 is charged shorter than its natural length, and has a predetermined initial contact pressure in advance. Therefore, when the other end 6b of the mover 6 rotates in a direction approaching the other end 7b of the mover holder 7, the distance between the other end 6b of the mover 6 and the other end 7b of the mover holder 7 becomes smaller. As a result, the contact pressure spring 8 is further charged.
 また、遮断器1は、遮断器1の投入アクチュエータとして筐体2の内部に配設される電磁ソレノイド20と、電磁ソレノイド20の駆動力を可動子6に伝達して、可動接点11の固定接点10への接触および開離を行う伝達機構30と、伝達機構30と筐体2とに一端部と他端部とが取り付けられた開極バネ40と、投入状態を維持し且つ投入状態を解除する引き外し機構50と、電磁ソレノイド20を駆動する駆動回路70とを備える。なお、駆動回路70の配置は図1に示す配置に限定されない。 Further, the circuit breaker 1 transmits an electromagnetic solenoid 20 disposed inside the housing 2 as a closing actuator of the circuit breaker 1 and a driving force of the electromagnetic solenoid 20 to the mover 6, and the fixed contact of the movable contact 11. A transmission mechanism 30 that contacts and separates the transmission mechanism 10, an opening spring 40 having one end and the other end attached to the transmission mechanism 30 and the housing 2, and maintains the closed state and releases the closed state And a drive circuit 70 for driving the electromagnetic solenoid 20. Note that the arrangement of the driving circuit 70 is not limited to the arrangement shown in FIG.
 電磁ソレノイド20は、磁性体で形成されたヨーク21と、不図示のボビンに巻かれてヨーク21の内側に固定された投入用コイル22と、上下方向に直線状に往復移動可能な鉄心プランジャ23と、鉄心プランジャ23の上部に形成される突出部24とを備える。電磁ソレノイド20および筐体2の少なくとも一方には、鉄心プランジャ23の移動方向を上下方向に案内するための不図示のガイドが設けられており、かかるガイドによって、鉄心プランジャ23は上下方向にのみ変位可能である。なお、鉄心プランジャ23と突出部24とは固定されていればよく、鉄心プランジャ23と突出部24との固定方法は問わない。 The electromagnetic solenoid 20 includes a yoke 21 made of a magnetic material, a loading coil 22 wound around a bobbin (not shown) and fixed inside the yoke 21, and an iron core plunger 23 that can reciprocate linearly in a vertical direction. And a protrusion 24 formed on the upper part of the iron core plunger 23. At least one of the electromagnetic solenoid 20 and the housing 2 is provided with a guide (not shown) for guiding the moving direction of the iron core plunger 23 in the vertical direction, and the core plunger 23 is displaced only in the vertical direction by such a guide. It is possible. It is sufficient that the core plunger 23 and the protruding portion 24 are fixed, and the method of fixing the core plunger 23 and the protruding portion 24 does not matter.
 駆動回路70による投入用コイル22への通電によって、電磁ソレノイド20に電磁吸引力が発生する。かかる電磁吸引力の発生により、鉄心プランジャ23は、上方向へ移動していき、鉄心プランジャ23と投入用コイル22の内部とのギャップ25がなくなったところで鉄心プランジャ23の移動が制限され鉄心プランジャ23が物理的に停止する。このように、鉄心プランジャ23が停止する位置は、鉄心プランジャ23が最も上方向になる位置であり、以下において、最大投入位置または最大移動位置と記載する。なお、鉄心プランジャ23が停止する構造は、上述した例に限定されない。例えば、鉄心プランジャ23の下部に突出部を設け、かかる突出部が投入用コイル22のボビンまたはヨーク21に係止されることで、鉄心プランジャ23が物理的に停止する構成であってもよい。 (4) When the drive coil 70 energizes the input coil 22, an electromagnetic attraction force is generated in the electromagnetic solenoid 20. Due to the generation of the electromagnetic attraction, the iron core plunger 23 moves upward, and when the gap 25 between the iron core plunger 23 and the inside of the input coil 22 disappears, the movement of the iron core plunger 23 is restricted and the iron plunger 23 is moved. Stops physically. As described above, the position where the iron core plunger 23 stops is the position where the iron core plunger 23 is in the uppermost direction, and is hereinafter described as the maximum insertion position or the maximum movement position. The structure in which the iron core plunger 23 stops is not limited to the above-described example. For example, a configuration may be employed in which a projecting portion is provided below the iron core plunger 23 and the projecting portion is locked to the bobbin or yoke 21 of the input coil 22 so that the iron core plunger 23 physically stops.
 鉄心プランジャ23の位置が最大投入位置になってから一定時間が経過した後、電磁ソレノイド20は、投入用コイル22への通電が停止されることにより電磁吸引力の発生を停止する。電磁ソレノイド20の電磁吸引力がなくなることにより、鉄心プランジャ23は、例えば、鉄心プランジャ23の自重および開極バネ40の開極力によって最大投入位置から下方向へ向けた力が働く。 後 After a certain period of time has elapsed since the position of the iron core plunger 23 has reached the maximum closing position, the electromagnetic solenoid 20 stops generating the electromagnetic attraction force by stopping the power supply to the closing coil 22. When the electromagnetic attraction force of the electromagnetic solenoid 20 disappears, the iron core plunger 23 exerts a downward force from the maximum closing position due to the own weight of the iron core plunger 23 and the opening force of the opening spring 40, for example.
 伝達機構30は、電磁ソレノイド20の突出部24に回転可能に一端部31aが連結された連結リンク31と、連結リンク31の他端部31bに回転可能に連結されたレバー32と、レバー32の一端部32aに回転可能に連結された絶縁バー33とを備える。 The transmission mechanism 30 includes a connecting link 31 having one end 31 a rotatably connected to the protrusion 24 of the electromagnetic solenoid 20, a lever 32 rotatably connected to the other end 31 b of the connecting link 31, and a lever 32. An insulating bar 33 rotatably connected to the one end 32a.
 連結リンク31の一端部31aは、連結ピン34によって電磁ソレノイド20の突出部24に回転可能に連結され、連結リンク31の他端部31bは、連結ピン35によってレバー32に回転可能に連結される。 One end 31 a of the connection link 31 is rotatably connected to the protrusion 24 of the electromagnetic solenoid 20 by a connection pin 34, and the other end 31 b of the connection link 31 is rotatably connected to the lever 32 by a connection pin 35. .
 レバー32は、筐体2に対して絶対位置が固定されたレバー軸心36を中心に回転可能にレバー軸37に取り付けられる。レバー32は、レバー軸37よりも引き外し機構50側の領域が連結リンク31の他端部31bに連結ピン35によって連結される。また、遮断器1の伝達機構30は、係合ピン51を備えており、係合ピン51は、レバー32の他端部32bに固定されている。 The lever 32 is attached to the lever shaft 37 so as to be rotatable around a lever shaft center 36 whose absolute position is fixed to the housing 2. In the lever 32, a region closer to the release mechanism 50 than the lever shaft 37 is connected to the other end 31 b of the connection link 31 by a connection pin 35. Further, the transmission mechanism 30 of the circuit breaker 1 includes an engagement pin 51, and the engagement pin 51 is fixed to the other end 32 b of the lever 32.
 絶縁バー33は、一端部33aがレバー32の一端部32aに回転可能に連結ピン38によって連結され、他端部33bが連結ピン13によって回転可能に可動子6の一端部6aに取り付けられている。絶縁バー33は、樹脂といった電気絶縁性の高い材料で構成されている。そのため、遮断器1が通電状態である場合に電源側端子3と負荷側端子4との間を流れる電流がレバー32を通じて漏電しない。なお、絶縁バー33の全体が絶縁素材である必要はなく、連結ピン13と連結ピン38との間で絶縁状態となっていれば、一部が導体から構成されていてもよい。 One end 33a of the insulating bar 33 is rotatably connected to one end 32a of the lever 32 by a connecting pin 38, and the other end 33b is rotatably mounted to the one end 6a of the mover 6 by the connecting pin 13. . The insulating bar 33 is made of a material having high electrical insulation such as a resin. Therefore, when the circuit breaker 1 is in the energized state, the current flowing between the power supply terminal 3 and the load terminal 4 does not leak through the lever 32. Note that the entirety of the insulating bar 33 does not need to be made of an insulating material, and a part of the insulating bar 33 may be formed of a conductor as long as the connecting pin 13 and the connecting pin 38 are in an insulating state.
 レバー32および絶縁バー33は、レバー軸心36とホルダ軸心12aとを固定の回転中心とした4節リンクにおけるトグル機構を構成している。そのため、レバー軸心36と連結ピン38と連結ピン13とが直線状に配置される死点に近づくほど、小さい力で伝達機構30を駆動することができる。突出部24、連結リンク31、レバー32、絶縁バー33、可動子6および可動子ホルダ7は、リンク構造を構成している。 The lever 32 and the insulating bar 33 constitute a toggle mechanism in a four-joint link with the lever axis 36 and the holder axis 12a as fixed rotation centers. Therefore, the transmission mechanism 30 can be driven with a smaller force as the lever shaft center 36, the connection pin 38, and the connection pin 13 approach the dead center where they are linearly arranged. The protrusion 24, the connection link 31, the lever 32, the insulating bar 33, the mover 6, and the mover holder 7 constitute a link structure.
 開極バネ40は、上述したように、レバー32と筐体2とに一端部と他端部とが取り付けられており、開極バネ40の弾性復元力によって伝達機構30を後述する遮断状態位置へ変位させる方向に付勢している。 One end and the other end of the opening spring 40 are attached to the lever 32 and the housing 2 as described above, and the transmission mechanism 30 is moved by the elastic restoring force of the opening spring 40 to a shut-off state position to be described later. It is urged in the direction of displacement.
 引き外し機構50は、上述したように、投入状態を維持し且つ投入状態を解除する機能を有する。図2は、図1に示す引き外し機構の拡大図である。なお、図2では、遮断器1の筐体2を破線で示している。 (4) As described above, the tripping mechanism 50 has a function of maintaining the closed state and releasing the closed state. FIG. 2 is an enlarged view of the tripping mechanism shown in FIG. In FIG. 2, the housing 2 of the circuit breaker 1 is indicated by a broken line.
 図2に示すように、引き外し機構50は、レバー32の他端部32bに固定された係合ピン51に係合するトリップレバー52と、トリップレバー52と筐体2とに一端部と他端部とが取り付けられた第1のリセットバネ53とを備える。また、引き外し機構50は、不図示のアクチュエータの駆動力で回転するトリップバー54と、トリップバー54と筐体2とに一端部と他端部とが取り付けられた第2のリセットバネ55とを備える。 As shown in FIG. 2, the tripping mechanism 50 includes a trip lever 52 that engages with an engagement pin 51 fixed to the other end 32 b of the lever 32, and one end portion of the trip lever 52 and the housing 2. A first reset spring 53 having an end attached thereto. The tripping mechanism 50 includes a trip bar 54 that is rotated by a driving force of an actuator (not shown), a second reset spring 55 having one end and the other end attached to the trip bar 54 and the housing 2. Is provided.
 係合ピン51は、レバー32の延伸方向と直交する右方にレバー32から突出している。トリップレバー52は、一端部52aには投入過程において係合ピン51と接触する円弧面を有する円弧部56が形成されており、他端部52bが筐体2に固定のトリップレバー軸心60周りに回転可能に取り付けられている。また、トリップレバー52の中途部には、後方側に凹んだ凹部52cが形成されている。かかる凹部52cには、投入状態において係合ピン51と係合する係合面57が形成されている。さらに、トリップレバー52の他端部52bのうち前方側の領域にトリップバー54と係合する係合部59が設けられている。 The engagement pin 51 projects rightward from the lever 32 in a direction perpendicular to the direction in which the lever 32 extends. The trip lever 52 has an arc portion 56 having an arc surface that comes into contact with the engagement pin 51 in the closing process at one end portion 52 a, and the other end portion 52 b is formed around a trip lever axis 60 fixed to the housing 2. It is rotatably mounted on. In the middle of the trip lever 52, a concave portion 52c that is recessed rearward is formed. An engagement surface 57 that engages with the engagement pin 51 in the closed state is formed in the concave portion 52c. Further, an engagement portion 59 that engages with the trip bar 54 is provided in a region on the front side of the other end portion 52 b of the trip lever 52.
 トリップバー54の一端部54aは、トリップバー軸心61を中心に回転可能に筐体2に取り付けられており、トリップバー軸心61を中心とした半円状の半円部58を有している。半円部58は、円弧面を有する円弧部分58aと平坦面を有する平坦部分58bとによって形成されている。 One end 54 a of the trip bar 54 is attached to the housing 2 so as to be rotatable about a trip bar axis 61, and has a semicircular semicircular portion 58 centered on the trip bar axis 61. I have. The semicircular portion 58 is formed by an arc portion 58a having an arc surface and a flat portion 58b having a flat surface.
 不図示のアクチュエータの駆動力で半円部58がトリップバー軸心61を中心として回転し半円部58の円弧部分58aがトリップレバー52の他端部52bに形成された係合部59に係合することで、トリップレバー52の一端部52aの前方側への回転が規制される。 The driving force of the actuator (not shown) causes the semicircular portion 58 to rotate about the trip bar axis 61, and the arc portion 58 a of the semicircular portion 58 engages with the engaging portion 59 formed on the other end 52 b of the trip lever 52. By this, the rotation of the one end 52a of the trip lever 52 forward is restricted.
 第2のリセットバネ55は、上方に向いているトリップバー54の他端部54bを、トリップバー軸心61を中心として前方に向かう方向に回転させる方向へトリップバー54を付勢している。すなわち、第2のリセットバネ55は、トリップバー54を時計回りに付勢している。 The second reset spring 55 urges the trip bar 54 in a direction to rotate the other end 54b of the trip bar 54 facing upward in the forward direction about the trip bar axis 61. That is, the second reset spring 55 urges the trip bar 54 clockwise.
 図3は、実施の形態1にかかる駆動回路を含む遮断器の電気回路の構成例を示す図である。図3に示すように、実施の形態1にかかる遮断器1は、投入用コイル22への通電を行う駆動回路70と、遮断器1の正面に設けられた内部オンスイッチ71と、遮断器1から離れた位置からの遮断器1のオン操作を可能とする外部オンスイッチ72とを備える。遮断器1上部に設けられた端子台に制御電源73が接続されることで、駆動回路70に電力が供給される。 FIG. 3 is a diagram illustrating a configuration example of an electric circuit of the circuit breaker including the drive circuit according to the first embodiment. As shown in FIG. 3, the circuit breaker 1 according to the first embodiment includes a drive circuit 70 that energizes the closing coil 22, an internal ON switch 71 provided in front of the circuit breaker 1, And an external ON switch 72 that enables the circuit breaker 1 to be turned on from a position away from the switch. When the control power supply 73 is connected to the terminal block provided on the circuit breaker 1, power is supplied to the drive circuit 70.
 また、遮断器1は、遮断器1の正面に設けられた図示しないオフ操作ボタンに連動する内部オフスイッチ74と、遮断器1から離れた位置からの遮断器1のオフ操作を可能とする引き外し付属装置75とを備える。引き外し付属装置75は、駆動回路70の電圧が基準値より低下した場合に、遮断器1を自動的に引き外す制御を行うことができる。 The circuit breaker 1 has an internal off switch 74 that is linked to an unshown off operation button provided on the front of the circuit breaker 1 and a pull that enables the circuit breaker 1 to be turned off from a position away from the circuit breaker 1. And a detachable attachment device 75. The trip attachment device 75 can perform control to automatically trip the circuit breaker 1 when the voltage of the drive circuit 70 falls below the reference value.
 また、遮断器1は、電路の過電流または漏電を検出する検出部76と、不図示のアクチュエータを駆動するトリップ用コイル77と、トリップ用コイル77への通電を行う駆動回路78とを備える。検出部76は、1次側が電路に設けられた変流器97と、変流器97の2次側に接続された引き外しリレー98とを備える。引き外しリレー98は、変流器97の2次側電流に基づいて過電流または漏電を検出し、ハイレベルの電圧を引き外し指令として出力する。なお、検出部76は、過電流または漏電を検出して引き外し指令を出力する構成であればよく、図3に示す例に限定されない。 The circuit breaker 1 also includes a detection unit 76 that detects an overcurrent or a leakage in the electric circuit, a trip coil 77 that drives an actuator (not shown), and a drive circuit 78 that energizes the trip coil 77. The detection unit 76 includes a current transformer 97 whose primary side is provided in the electric circuit, and a trip relay 98 connected to the secondary side of the current transformer 97. The trip relay 98 detects an overcurrent or a leakage based on the secondary current of the current transformer 97 and outputs a high-level voltage as a trip command. Note that the detection unit 76 may be any configuration as long as it detects an overcurrent or a leakage and outputs a trip command, and is not limited to the example illustrated in FIG. 3.
 駆動回路78は、検出部76から引き外し指令が出力された場合に、トリップ用コイル77への通電を行う。トリップ用コイル77への通電が行われると、不図示のアクチュエータが駆動され、かかるアクチュエータにより図2に示すトリップバー54が反時計回りに回転するように駆動される。これにより、引き外し機構50の伝達機構30との係合が解除される。そのため、可動接点11が固定接点10から開離し、遮断器1が遮断状態になる。 The drive circuit 78 energizes the trip coil 77 when the detection command is output from the detection unit 76. When the trip coil 77 is energized, an actuator (not shown) is driven, and the actuator drives the trip bar 54 shown in FIG. 2 to rotate counterclockwise. Thus, the engagement of the tripping mechanism 50 with the transmission mechanism 30 is released. Therefore, the movable contact 11 is separated from the fixed contact 10, and the circuit breaker 1 is turned off.
 駆動回路70は、内部オンスイッチ71を用いたオン操作がある場合または外部オンスイッチ72を用いたオン操作がある場合に、投入用コイル22に電流を流して、投入用コイル22の通電を行う。これにより、鉄心プランジャ23が移動し、固定接点10と可動接点11とが接触して、遮断器1が通電状態になる。 When there is an ON operation using the internal ON switch 71 or when there is an ON operation using the external ON switch 72, the drive circuit 70 supplies a current to the closing coil 22 to energize the closing coil 22. . Thereby, the iron core plunger 23 moves, and the fixed contact 10 and the movable contact 11 come into contact with each other, so that the circuit breaker 1 is turned on.
 また、駆動回路70は、内部オフスイッチ74を用いたオフ操作がある場合、引き外し付属装置75を用いたオフ操作がある場合、または駆動回路70の電圧が基準値より低下した場合、投入用コイル22への通電を停止する。また、駆動回路78は、内部オフスイッチ74を用いたオフ操作がある場合、引き外し付属装置75を用いたオフ操作がある場合、または駆動回路70の電圧が基準値より低下した場合、トリップ用コイル77への通電を行う。 In addition, the drive circuit 70 is used for turning on when there is an off operation using the internal off switch 74, when there is an off operation using the trip accessory 75, or when the voltage of the drive circuit 70 falls below the reference value. The energization of the coil 22 is stopped. The drive circuit 78 is used for tripping when there is an off operation using the internal off switch 74, when there is an off operation using the trip attachment 75, or when the voltage of the drive circuit 70 falls below the reference value. The coil 77 is energized.
 図4は、実施の形態1にかかる駆動回路の具体的な構成の一例を示す図である。図4に示すように、実施の形態1にかかる駆動回路70は、整流回路80と、定電圧回路81と、制御回路83と、制御スイッチ84と、直列体85と、抵抗R1,R2,R3とを備える。なお、駆動回路70は、抵抗R4を含む構成であってもよい。 FIG. 4 is a diagram illustrating an example of a specific configuration of the drive circuit according to the first embodiment. As shown in FIG. 4, the drive circuit 70 according to the first embodiment includes a rectifier circuit 80, a constant voltage circuit 81, a control circuit 83, a control switch 84, a series body 85, and resistors R1, R2, R3. And Note that the drive circuit 70 may have a configuration including the resistor R4.
 整流回路80は、制御電源73から出力される交流電圧を整流して直流電圧Vaへ変換する。定電圧回路81は、整流回路80から出力される直流電圧Vaを降圧して定電圧Vbを出力する。定電圧Vbは、例えば、24Vである。制御回路83は、内部オンスイッチ71、外部オンスイッチ72、内部オフスイッチ74、および引き外し付属装置75の各々の状態、および検出部76による過電流または漏電の検出結果などに基づいて、制御スイッチ84をオン状態またはオフ状態にする。 (4) The rectifier circuit 80 rectifies the AC voltage output from the control power supply 73 and converts it into a DC voltage Va. The constant voltage circuit 81 reduces the DC voltage Va output from the rectifier circuit 80 and outputs a constant voltage Vb. The constant voltage Vb is, for example, 24V. The control circuit 83 performs control switches based on the state of each of the internal ON switch 71, the external ON switch 72, the internal OFF switch 74, and the tripping accessory 75, and the detection result of overcurrent or leakage by the detection unit 76. 84 is turned on or off.
 制御スイッチ84は、一端に直流電圧Vaが供給される投入用コイル22の他端とグランドとの間に接続されており、投入用コイル22の他端とグランドとの間の接続および遮断を行う。制御スイッチ84がオン状態である場合、投入用コイル22の他端とグランドとの間が短絡状態であり、投入用コイル22への励磁電流の供給が行われる。また、制御スイッチ84がオフ状態である場合、投入用コイル22の他端とグランドとの間が遮断状態であり、投入用コイル22への励磁電流の供給が停止される。 The control switch 84 is connected between the other end of the input coil 22 to which the DC voltage Va is supplied at one end and the ground, and performs connection and disconnection between the other end of the input coil 22 and the ground. . When the control switch 84 is in the ON state, the other end of the closing coil 22 and the ground are in a short-circuit state, and the excitation current is supplied to the closing coil 22. When the control switch 84 is in the off state, the connection between the other end of the closing coil 22 and the ground is in a cutoff state, and the supply of the exciting current to the closing coil 22 is stopped.
 直列体85は、電磁ソレノイド20の投入用コイル22に並列接続される。直列体85は、ダイオード86と電流低減部87とが直列に接続されて構成される。ダイオード86は、アノードが制御スイッチ84に接続され、カソードが電流低減部87の一端に接続される。電流低減部87の他端には、直流電圧Vaが印加される。 The series body 85 is connected in parallel to the input coil 22 of the electromagnetic solenoid 20. The series body 85 is configured by connecting a diode 86 and a current reducing unit 87 in series. The diode 86 has an anode connected to the control switch 84 and a cathode connected to one end of the current reducing unit 87. The DC voltage Va is applied to the other end of the current reducing section 87.
 かかる電流低減部87は、制御スイッチ84がオン状態からオフ状態になって投入用コイル22の通電が停止された場合に、ダイオード86を介して投入用コイル22に流れる還流電流を低減する。かかる電流低減部87によって、伝達機構30が複雑な構成をとることなく、後述するように、遮断器1の投入動作開始直後に遮断を行うことができる。 The current reduction unit 87 reduces the return current flowing through the insertion coil 22 via the diode 86 when the control switch 84 is turned off from the on state and the energization of the insertion coil 22 is stopped. With the current reduction unit 87, the breaking can be performed immediately after the closing operation of the circuit breaker 1 is started, as described later, without the transmission mechanism 30 having a complicated configuration.
 制御回路83は、論理和回路91,95と、ラッチ回路92と、論理積回路93と、論理否定回路94と、端子T1,T2,T3,T4,T5,T6とを備える。端子T1は、内部オンスイッチ71に接続される。端子T2は、外部オンスイッチ72に接続される。端子T3は、内部オフスイッチ74および引き外し付属装置75を含むスイッチブロックに接続される。端子T4は、検出部76の出力端子に接続される。端子T5は、鉄心プランジャ23が投入状態となる動作と連動するマイクロスイッチ88に接続される。 The control circuit 83 includes OR circuits 91 and 95, a latch circuit 92, an AND circuit 93, a logical NOT circuit 94, and terminals T1, T2, T3, T4, T5, and T6. The terminal T1 is connected to the internal ON switch 71. The terminal T2 is connected to the external ON switch 72. Terminal T3 is connected to a switch block that includes an internal off switch 74 and a trip accessory 75. The terminal T4 is connected to an output terminal of the detection unit 76. The terminal T5 is connected to a micro switch 88 that operates in conjunction with the operation of the core plunger 23 being turned on.
 論理和回路91は、端子T1に一方の入力端子が接続され、端子T2に他方の入力端子が接続されている。論理和回路91は、内部オンスイッチ71または外部オンスイッチ72から投入信号が出力された場合に、ラッチ回路92に投入信号を出力する。図4に示す例では、内部オンスイッチ71または外部オンスイッチ72が短絡することで投入信号としてハイレベルの電圧が論理和回路91へ入力され、論理和回路91から投入信号としてハイレベルの電圧がラッチ回路92へ出力される。 In the OR circuit 91, one input terminal is connected to the terminal T1, and the other input terminal is connected to the terminal T2. The OR circuit 91 outputs a closing signal to the latch circuit 92 when the closing signal is output from the internal ON switch 71 or the external ON switch 72. In the example illustrated in FIG. 4, when the internal ON switch 71 or the external ON switch 72 is short-circuited, a high-level voltage is input to the OR circuit 91 as a closing signal, and the high-level voltage is input from the OR circuit 91 as a closing signal. Output to the latch circuit 92.
 ラッチ回路92は、例えば、制御スイッチ84をオン状態にしていない状態で、論理和回路91から投入信号が出力されると、オン信号としてハイレベルの電圧を論理積回路93に一定時間出力する。なお、ラッチ回路92は、タイマー回路を内蔵しており、オン信号を出力してから一定時間が経過すると、オフ信号としてローレベルの電圧を論理積回路93に出力する。 The latch circuit 92 outputs, for example, a high-level voltage to the AND circuit 93 as an ON signal when the control circuit 84 is not in the ON state and the ON signal is output from the OR circuit 91 for a certain period of time. Note that the latch circuit 92 has a built-in timer circuit, and outputs a low-level voltage to the AND circuit 93 as an off signal when a certain period of time has elapsed since the output of the on signal.
 論理積回路93は、内部オフスイッチ74または引き外し付属装置75から遮断信号が入力される端子T3に一方の入力端子が接続されており、他方の入力端子がラッチ回路92の出力端子に接続されている。論理積回路93は、内部オフスイッチ74または引き外し付属装置75から遮断信号が出力されていない状態で、ラッチ回路92からオン信号が出力されると、制御スイッチ84にハイレベルの電圧をオン信号として出力する。なお、図4に示す例では、遮断信号は、ローレベルの電圧である。 The AND circuit 93 has one input terminal connected to the terminal T3 to which the cutoff signal is input from the internal off switch 74 or the trip attachment device 75, and the other input terminal connected to the output terminal of the latch circuit 92. ing. When the ON signal is output from the latch circuit 92 in a state where the cutoff signal is not output from the internal OFF switch 74 or the trip attachment device 75, the AND circuit 93 outputs a high level voltage to the control switch 84. Output as In the example shown in FIG. 4, the cutoff signal is a low-level voltage.
 制御スイッチ84は、入力端子が端子T6に接続されており、論理積回路93から端子T6を介してオン信号が出力された場合、オン状態になる。制御スイッチ84がオン状態になることで、投入用コイル22への励磁電流の供給が行われる。これにより、鉄心プランジャ23による投入動作が開始する。 The control switch 84 has an input terminal connected to the terminal T6, and is turned on when an on signal is output from the AND circuit 93 via the terminal T6. When the control switch 84 is turned on, the excitation current is supplied to the closing coil 22. Thereby, the closing operation by the iron core plunger 23 starts.
 また、論理積回路93は、ラッチ回路92からオフ信号が出力された場合、または内部オフスイッチ74または引き外し付属装置75から遮断信号が出力された場合、制御スイッチ84にローレベルの電圧をオフ信号として出力する。制御スイッチ84は、論理積回路93から出力される信号がオン信号からオフ信号になった場合、オン状態からオフ状態に切り替わる。制御スイッチ84がオフ状態になることで、投入用コイル22への励磁電流の供給が停止される。 The AND circuit 93 turns off the low-level voltage to the control switch 84 when the off signal is output from the latch circuit 92 or when the cutoff signal is output from the internal off switch 74 or the trip attachment 75. Output as a signal. The control switch 84 switches from the on state to the off state when the signal output from the AND circuit 93 changes from the on signal to the off signal. When the control switch 84 is turned off, the supply of the exciting current to the closing coil 22 is stopped.
 論理和回路95は、3入力1出力の論理和回路である。論理和回路95は、第1の入力端子が端子T4に接続され、第2の入力端子が論理否定回路94の出力端子に接続され、第3の入力端子が端子T5に接続される。なお、論理否定回路94の入力端子は、端子T3に接続されている。 The OR circuit 95 is a three-input one-output OR circuit. The OR circuit 95 has a first input terminal connected to the terminal T4, a second input terminal connected to the output terminal of the logical NOT circuit 94, and a third input terminal connected to the terminal T5. The input terminal of the logical NOT circuit 94 is connected to the terminal T3.
 論理和回路95は、検出部76から引き外し指令が出力された場合、内部オフスイッチ74または引き外し付属装置75から遮断信号が出力された場合、またはマイクロスイッチ88からハイレベルの電圧が出力された場合、ハイレベルの電圧をリセット信号としてラッチ回路92に出力する。ラッチ回路92は、オン信号を出力している状態で、論理和回路95からリセット信号が出力された場合、出力信号をオン信号からオフ信号へ切り替える。なお、制御回路83の構成は図4に示す構成に限定されず、制御回路83は、上述した機能を実現することができる回路であればよい。 The OR circuit 95 outputs a tripping command from the detection unit 76, outputs a cutoff signal from the internal off switch 74 or the tripping attachment device 75, or outputs a high-level voltage from the microswitch 88. In this case, a high-level voltage is output to the latch circuit 92 as a reset signal. When the reset signal is output from the OR circuit 95 while the ON signal is being output, the latch circuit 92 switches the output signal from the ON signal to the OFF signal. Note that the configuration of the control circuit 83 is not limited to the configuration illustrated in FIG. 4, and the control circuit 83 may be a circuit that can realize the above-described functions.
 以上のように構成された遮断器1の動作について、具体的に説明する。図5は、実施の形態1にかかる遮断器の遮断状態を示す構成図であり、図6は、図5に示す引き外し機構の拡大図である。図7は、実施の形態1にかかる遮断器の接点当接開始瞬間の状態を示す構成図であり、図8は、図7に示す引き外し機構の拡大図である。図9は、実施の形態1にかかる遮断器の最大投入位置に達した状態を示す構成図であり、図10は、図9に示す引き外し機構の拡大図であり、図11は、図9に示す状態からトリップレバーが回転した後の引き外し機構の拡大図である。図12は、実施の形態1にかかる遮断器の投入完了位置に達した状態を示す構成図であり、図13は、図12に示す引き外し機構の拡大図である。なお、図5から図13において、筐体2を破線で示している。 動作 The operation of the circuit breaker 1 configured as described above will be specifically described. FIG. 5 is a configuration diagram illustrating a cutoff state of the circuit breaker according to the first embodiment, and FIG. 6 is an enlarged view of the tripping mechanism illustrated in FIG. FIG. 7 is a configuration diagram illustrating a state at the moment when the contact of the circuit breaker according to the first embodiment starts, and FIG. 8 is an enlarged view of the tripping mechanism illustrated in FIG. 7. 9 is a configuration diagram illustrating a state where the circuit breaker according to the first embodiment has reached the maximum closing position, FIG. 10 is an enlarged view of the tripping mechanism illustrated in FIG. 9, and FIG. FIG. 6 is an enlarged view of the tripping mechanism after the trip lever has rotated from the state shown in FIG. FIG. 12 is a configuration diagram illustrating a state where the circuit breaker according to the first embodiment has reached the closing completion position, and FIG. 13 is an enlarged view of the tripping mechanism illustrated in FIG. 5 to 13, the housing 2 is indicated by a broken line.
 図5に示すように、遮断器1が遮断状態にある場合、電磁ソレノイド20を構成する鉄心プランジャ23は、開極バネ40によって最下部に達して筐体2と物理的に接触しており、これ以上、下方に降下することはできない。このとき、ギャップ25の大きさは最大となっている。 As shown in FIG. 5, when the circuit breaker 1 is in the cutoff state, the iron core plunger 23 forming the electromagnetic solenoid 20 reaches the lowermost portion by the opening spring 40 and is in physical contact with the housing 2. You can no longer descend downwards. At this time, the size of the gap 25 is maximum.
 また、鉄心プランジャ23が最下部にある場合、レバー32の他端部32bは、一端部32aよりも下方に位置しており、トリップレバー52の一端部52aと左右方向で対向する位置にある。また、トリップレバー52の一端部52aは、第1のリセットバネ53の弾性復元力によって後方へ張力が与えられている。そのため、レバー32の他端部32bに取り付けられた係合ピン51は、トリップレバー52の一端部52aに形成された円弧部56と接触した状態になっている。 When the iron core plunger 23 is at the lowermost position, the other end 32b of the lever 32 is located below the one end 32a, and is located at a position facing the one end 52a of the trip lever 52 in the left-right direction. One end 52a of the trip lever 52 is tensioned rearward by the elastic restoring force of the first reset spring 53. Therefore, the engagement pin 51 attached to the other end 32 b of the lever 32 is in contact with the arc portion 56 formed on the one end 52 a of the trip lever 52.
 遮断器1が遮断状態にある場合、可動子ホルダ7の可動子ストッパ9によって可動子6の他端部6bが可動子ホルダ7の他端部7bから離れる方向への可動子6の回転、すなわち可動子6の時計回りの回転が制限される。そして、接圧バネ8は、上述したように予め一定の初期接圧を有する状態となっているため、固定接点10からの可動接点11への押し付け反力が初期接圧を越えない限りにおいて、可動子ストッパ9から可動子6の一端部6aが離れない。 When the breaker 1 is in the cutoff state, the rotation of the mover 6 in the direction in which the other end 6b of the mover 6 is separated from the other end 7b of the mover holder 7 by the mover stopper 9 of the mover holder 7, that is, Clockwise rotation of the mover 6 is limited. Since the contact pressure spring 8 has a predetermined initial contact pressure as described above, as long as the reaction force from the fixed contact 10 to the movable contact 11 does not exceed the initial contact pressure, One end 6a of the mover 6 does not separate from the mover stopper 9.
 図5に示すように、遮断器1が遮断状態である場合、可動子6の可動接点11と固定接点10との物理的な最短距離である開離距離は最大となっている。図5に示す状態において、図6に示すように、トリップバー54における半円部58の平坦部分58bが、トリップバー54を時計回りに回転させようとする第2のリセットバネ55による弾性復元力によって、トリップレバー52の他端部52bに形成された係合部59の角部分に接触している。そのため、トリップレバー52の回転が制限され、図6に示す状態が維持される。 As shown in FIG. 5, when the circuit breaker 1 is in the cut-off state, the separation distance, which is the physically shortest distance between the movable contact 11 and the fixed contact 10 of the mover 6, is maximum. In the state shown in FIG. 5, as shown in FIG. 6, the flat portion 58b of the semicircular portion 58 of the trip bar 54 is elastically restored by the second reset spring 55 which tries to rotate the trip bar 54 clockwise. As a result, it is in contact with the corner of the engaging portion 59 formed on the other end 52b of the trip lever 52. Therefore, the rotation of the trip lever 52 is restricted, and the state shown in FIG. 6 is maintained.
 また、トリップレバー52の一端部52aは、トリップレバー52の一端部52aが後方へ向かうようにトリップレバー52を時計回りに回転させようとする第1のリセットバネ53の弾性復元力により、円弧部56においてレバー32の係合ピン51と接触している。これにより、トリップレバー52の時計回りの回転が制限され、図6に示す状態が維持される。 Further, the one end portion 52a of the trip lever 52 is formed into a circular arc portion by the elastic restoring force of the first reset spring 53 that attempts to rotate the trip lever 52 clockwise so that the one end portion 52a of the trip lever 52 moves backward. At 56, it is in contact with the engagement pin 51 of the lever 32. Thereby, the clockwise rotation of the trip lever 52 is restricted, and the state shown in FIG. 6 is maintained.
 次に、遮断器1が遮断状態にある状態において、電磁ソレノイド20の投入用コイル22への通電を行う駆動回路70の動作について図4を参照して説明する。なお、以下においては、制御電源73が駆動回路70に電力を供給しており、かつ整流回路80および定電圧回路81が正常に動作しているものとする。 Next, the operation of the drive circuit 70 for energizing the closing coil 22 of the electromagnetic solenoid 20 when the circuit breaker 1 is in the cut-off state will be described with reference to FIG. In the following, it is assumed that the control power supply 73 supplies power to the drive circuit 70 and that the rectifier circuit 80 and the constant voltage circuit 81 operate normally.
 遮断器1が遮断状態にある状態において、内部オンスイッチ71または外部オンスイッチ72がオン操作によって短絡されると、内部オンスイッチ71または外部オンスイッチ72から制御回路83へ投入信号が出力される。制御回路83は、内部オンスイッチ71または外部オンスイッチ72から投入信号が出力されると、制御スイッチ84にオン信号を出力する。これにより、投入用コイル22への通電が行われる。 (4) When the internal ON switch 71 or the external ON switch 72 is short-circuited by the ON operation while the circuit breaker 1 is in the interrupted state, a closing signal is output from the internal ON switch 71 or the external ON switch 72 to the control circuit 83. The control circuit 83 outputs an ON signal to the control switch 84 when the ON signal is output from the internal ON switch 71 or the external ON switch 72. Thus, power is supplied to the input coil 22.
 駆動回路70により投入用コイル22への通電が行われると、図7に示すように、鉄心プランジャ23が上方へ移動する。鉄心プランジャ23の上方への移動によって、レバー32がレバー軸心36を中心に回転し、レバー32と絶縁バー33との連結角度が小さくなっていく。連結角度は、レバー32の延伸方向と絶縁バー33の延伸方向とが為す角度であり、遮断器1が図5に示す状態から図7に示す状態へ変化するにつれて連結角度が小さくなる。 When the drive coil 70 energizes the closing coil 22, the core plunger 23 moves upward as shown in FIG. The upward movement of the core plunger 23 causes the lever 32 to rotate about the lever axis 36, and the connection angle between the lever 32 and the insulating bar 33 decreases. The connection angle is an angle formed by the extension direction of the lever 32 and the extension direction of the insulating bar 33, and the connection angle becomes smaller as the circuit breaker 1 changes from the state shown in FIG. 5 to the state shown in FIG.
 連結角度が小さくなるにつれて、可動子6が前方へ移動していき、固定接点10と可動接点11とが接触する。可動接点11と固定接点10が当接を開始した瞬間の状態が接点当接開始状態である。このとき、電源側端子3と負荷側端子4との間が固定接点10と可動接点11と可撓性導体5を通じて通電状態となる。 に つ れ て As the connection angle decreases, the mover 6 moves forward, and the fixed contact 10 and the movable contact 11 come into contact with each other. The state at the moment when the movable contact 11 and the fixed contact 10 start contact is the contact contact start state. At this time, a current flows between the power supply terminal 3 and the load terminal 4 through the fixed contact 10, the movable contact 11, and the flexible conductor 5.
 また、図6および図8に示すように、レバー軸心36を中心に回転可能なレバー32の先端に取り付けられている係合ピン51は、連結角度が小さくなるにつれて、第1のリセットバネ53によって弾性復元力が与えられたトリップレバー52と接触した状態を維持したまま、トリップレバー52の一端部52aに形成された円弧部56を摺動する。 As shown in FIGS. 6 and 8, the engagement pin 51 attached to the tip of the lever 32 rotatable about the lever axis 36 is provided with a first reset spring 53 as the connection angle becomes smaller. While maintaining the state of contact with the trip lever 52 to which the elastic restoring force has been given by the elastic member, the circular arc portion 56 formed on the one end portion 52a of the trip lever 52 is slid.
 トリップレバー52の円弧部56は、レバー32のレバー軸心36を中心とする円弧で形成されている。そのため、図6に示す状態から図8に示す状態に至るまでの間、係合ピン51が移動してもトリップレバー52の位置は変化しない。 円 The arc portion 56 of the trip lever 52 is formed by an arc centered on the lever axis 36 of the lever 32. Therefore, the position of the trip lever 52 does not change even if the engagement pin 51 moves from the state shown in FIG. 6 to the state shown in FIG.
 遮断器1が接点当接開始状態に達したとき、可動子6は、可動子ホルダ7に設けられた可動子ストッパ9で時計回りの回転が制限されているが、反時計回りの回転は可能である。鉄心プランジャ23が図7に示す接点当接開始状態からさらに前進すると、可動子6の他端部6bに取り付けられた可動接点11に対して固定接点10からの接触反力が増加するため、可動子6の他端部6bが連結ピン13を中心に反時計回りに回転して可動子ホルダ7の他端部7bに近づく。そのため、図7に示す状態から接圧バネ8がさらに蓄勢される。 When the circuit breaker 1 reaches the contact abutment start state, the mover 6 is restricted from rotating clockwise by the mover stopper 9 provided on the mover holder 7, but can be rotated counterclockwise. It is. When the iron core plunger 23 further advances from the contact abutment start state shown in FIG. 7, the contact reaction force from the fixed contact 10 to the movable contact 11 attached to the other end 6b of the mover 6 increases, and The other end 6 b of the armature 6 rotates counterclockwise around the connection pin 13 and approaches the other end 7 b of the mover holder 7. Therefore, the contact pressure spring 8 is further charged from the state shown in FIG.
 図9に示すように、鉄心プランジャ23の上方への移動によって鉄心プランジャ23の位置が最大投入位置になると、可動接点11が固定接点10からの接触反力によって可動子6の可動子ホルダ7に対する回転の角度が最大となっており、接圧バネ8の蓄勢量も最大となっている。 As shown in FIG. 9, when the position of the iron core plunger 23 becomes the maximum closing position due to the upward movement of the iron core plunger 23, the movable contact 11 causes the movable element 6 to move with respect to the movable element holder 7 by the contact reaction force from the fixed contact 10. The angle of rotation is maximum, and the amount of stored energy of the contact pressure spring 8 is also maximum.
 また、鉄心プランジャ23の位置が最大投入位置になると、図10に示すように、トリップレバー52の円弧部56を摺動していた係合ピン51は、トリップレバー52の円弧部56を通過してトリップレバー52の係合面57の上部に達する。そのため、係合ピン51は、トリップレバー52と瞬間的に非接触状態となる。 When the position of the iron core plunger 23 reaches the maximum closing position, as shown in FIG. 10, the engaging pin 51 sliding on the arc portion 56 of the trip lever 52 passes through the arc portion 56 of the trip lever 52. To reach the upper part of the engagement surface 57 of the trip lever 52. Therefore, the engagement pin 51 momentarily comes into non-contact with the trip lever 52.
 係合ピン51によって時計回りの回転が制限されていたトリップレバー52は、係合ピン51との関係が非接触状態に変化すると時計回りの回転の規制が解除される。そのため、図11に示すように、トリップレバー52の凹部52cは、第1のリセットバネ53の弾性復元力によって時計回りに回転し、係合ピン51に接触する。係合ピン51がトリップレバー52の凹部52cと接触することによって、トリップレバー52の時計回りの回転が規制される。 (4) The clockwise rotation of the trip lever 52 whose rotation has been restricted by the engagement pin 51 is released when the relationship with the engagement pin 51 changes to a non-contact state. Therefore, as shown in FIG. 11, the concave portion 52 c of the trip lever 52 rotates clockwise by the elastic restoring force of the first reset spring 53 and comes into contact with the engaging pin 51. When the engagement pin 51 comes into contact with the concave portion 52c of the trip lever 52, clockwise rotation of the trip lever 52 is restricted.
 また、係合ピン51がトリップレバー52の係合面57の上部に達してトリップレバー52が回転すると、トリップレバー52によって時計回りの回転が制限されていたトリップバー54が第2のリセットバネ55の弾性復元力によって時計回りに回転し、図10および図11に示すように、半円部58の円弧部分58aが係合部59の上方に回り込んで停止する。なお、遮断器1には、トリップバー54の回転を規制する不図示のストッパが設けられており、図10および図11に示す状態でトリップバー54の回転が規制される。 When the engagement pin 51 reaches the upper part of the engagement surface 57 of the trip lever 52 and the trip lever 52 rotates, the trip bar 54, whose rotation in the clockwise direction is restricted by the trip lever 52, becomes a second reset spring 55. 10 and 11, the arc portion 58a of the semicircular portion 58 goes over the engaging portion 59 and stops. The circuit breaker 1 is provided with a stopper (not shown) for restricting the rotation of the trip bar 54, and restricts the rotation of the trip bar 54 in the state shown in FIGS.
 図4に示すマイクロスイッチ88は、鉄心プランジャ23が投入状態になる動作と連動して短絡状態となるため、マイクロスイッチ88からハイレベルの電圧が制御回路83へ出力される。制御回路83は、マイクロスイッチ88からハイレベルの電圧が出力されると、制御スイッチ84へオフ信号を出力する。これにより、鉄心プランジャ23が投入状態になると、投入用コイル22への通電が停止する。なお、鉄心プランジャ23が投入状態である場合、鉄心プランジャ23の位置が最大投入位置である。 た め Since the micro switch 88 shown in FIG. 4 is short-circuited in conjunction with the operation of turning on the core plunger 23, a high-level voltage is output from the micro switch 88 to the control circuit 83. When a high-level voltage is output from the micro switch 88, the control circuit 83 outputs an off signal to the control switch 84. As a result, when the iron core plunger 23 enters the closed state, the power supply to the closing coil 22 is stopped. When the core plunger 23 is in the closed state, the position of the core plunger 23 is the maximum inserted position.
 これにより、鉄心プランジャ23の位置が最大投入位置になった後に、電磁ソレノイド20への通電が完了する。電磁ソレノイド20への通電が完了すると、電磁ソレノイド20による伝達機構30への駆動が解除される。 This completes the energization of the electromagnetic solenoid 20 after the position of the iron core plunger 23 has reached the maximum insertion position. When the energization of the electromagnetic solenoid 20 is completed, the drive of the transmission mechanism 30 by the electromagnetic solenoid 20 is released.
 そのため、蓄勢された接圧バネ8による反力が固定接点10と可動接点11との間に作用して、伝達機構30を介して電磁ソレノイド20の鉄心プランジャ23を最大投入位置から遮断状態位置へ移動させる方向へ押し戻そうとする力が発生する。また、鉄心プランジャ23の自重および開極バネ40の開極力によって鉄心プランジャ23を最大投入位置から遮断状態位置へ移動させる方向の力も同時に働いている。これにより、鉄心プランジャ23は図9に示した最大投入位置から下方への移動を開始する。 Therefore, the reaction force of the stored contact pressure spring 8 acts between the fixed contact 10 and the movable contact 11, and moves the iron core plunger 23 of the electromagnetic solenoid 20 from the maximum closing position to the shut-off position through the transmission mechanism 30. A force is generated that pushes back in the direction to move to. Further, the force in the direction of moving the iron core plunger 23 from the maximum closing position to the shut-off state is also applied by the own weight of the iron core plunger 23 and the opening force of the opening spring 40. Thus, the core plunger 23 starts moving downward from the maximum insertion position shown in FIG.
 鉄心プランジャ23が最大投入位置から下方へ移動すると、レバー32がレバー軸心36を中心として反時計回りに回転する。レバー32が反時計回りに回転すると、係合ピン51は、レバー軸心36を中心として反時計回りに回転して、図12および図13に示すように、トリップレバー52の係合面57に接触して、鉄心プランジャ23が投入完了位置に達した状態になり、遮断器1の投入動作が完了する。 When the iron core plunger 23 moves downward from the maximum closing position, the lever 32 rotates counterclockwise about the lever axis 36. When the lever 32 rotates counterclockwise, the engaging pin 51 rotates counterclockwise about the lever axis 36, and as shown in FIGS. As a result, the core plunger 23 reaches the closing completion position, and the closing operation of the circuit breaker 1 is completed.
 トリップレバー52は、鉄心プランジャ23が投入完了位置になったときに、半円部58の円弧部分58aがトリップレバー52の他端部52bに形成された係合部59の平坦部に係合しており、トリップレバー52の一端部52aの前方側への回転が規制されている。 When the core plunger 23 is at the closing position, the arc portion 58a of the semicircular portion 58 engages with the flat portion of the engaging portion 59 formed on the other end portion 52b of the trip lever 52. Thus, the forward rotation of the one end 52a of the trip lever 52 is restricted.
 そのため、係合ピン51を通じてトリップレバー52にはトリップレバー軸心60に対して反時計方向に回転させようとする接圧バネ8の反力に基づく力が働いているにも拘わらずトリップレバー52は、図13に示すように、半円部58の円弧部分58aによる回転規制によって回転しない。 Therefore, despite the fact that a force based on the reaction force of the contact pressure spring 8 for rotating the trip lever 52 counterclockwise with respect to the trip lever axis 60 is applied to the trip lever 52 through the engagement pin 51, the trip lever 52 is 13, does not rotate due to the rotation restriction by the arc portion 58a of the semicircular portion 58, as shown in FIG.
 上述したように、遮断器1が遮断状態である場合、接圧バネ8には一定の初期接圧が予め与えられており、可動接点11が固定接点10に接触を開始した瞬間から固定接点10に対する可動接点11の接圧が強くなるように設定されている。そのため、遮断器1が通電状態である場合、可動接点11と固定接点10との間に生ずる電磁反発力による接点間の開離の発生が予防されるとともに、引き外し指令が発令された後の可動接点11と固定接点10の開離速度、すなわち開極速度を速めることができる。 As described above, when the circuit breaker 1 is in the cut-off state, a constant initial contact pressure is applied to the contact pressure spring 8 in advance, and from the moment when the movable contact 11 starts to contact the fixed contact 10, the fixed contact 10 Is set such that the contact pressure of the movable contact 11 with respect to Therefore, when the circuit breaker 1 is in the energized state, the occurrence of separation between the contacts due to the electromagnetic repulsion generated between the movable contact 11 and the fixed contact 10 is prevented, and after the tripping command is issued. The separation speed between the movable contact 11 and the fixed contact 10, ie, the opening speed, can be increased.
 次に、遮断器1における引き外し動作について説明する。遮断器1が図12に示す投入完了位置の状態で電路に過電流または漏電が発生した場合の駆動回路70の動作について図4を参照して説明する。 Next, the tripping operation of the circuit breaker 1 will be described. The operation of the drive circuit 70 when the overcurrent or the leakage occurs in the electric circuit when the circuit breaker 1 is in the closed position shown in FIG. 12 will be described with reference to FIG.
 検出部76は、電路の過電流または漏電を検出すると、引き外し指令を出力する。駆動回路78は、検出部76から引き外し指令が出力されると、トリップ用コイル77への通電を行う。トリップ用コイル77への通電が行われると、不図示のアクチュエータが駆動され、かかるアクチュエータによって図12および図13に示すトリップバー54が反時計回りに回転されるように駆動される。 The detecting unit 76 outputs a tripping command when detecting an overcurrent or a leakage in the electric circuit. The drive circuit 78 energizes the trip coil 77 when a detection command is output from the detection unit 76. When the trip coil 77 is energized, an actuator (not shown) is driven, and the actuator drives the trip bar 54 shown in FIGS. 12 and 13 to rotate counterclockwise.
 トリップバー54の反時計回りの回転によって、トリップバー54の半円部58の円弧部分58aがトリップレバー52の係合部59から離れて、円弧部分58aと係合部59との係合が解除される。そのため、接圧バネ8の反力に基づく力によってトリップレバー軸心60を中心にトリップレバー52が反時計方向に回転し、鉄心プランジャ23が図7に示す状態を経て図5の遮断状態位置に戻る。これにより、遮断器1の引き外しが完了する。 Due to the counterclockwise rotation of the trip bar 54, the arc portion 58a of the semicircular portion 58 of the trip bar 54 separates from the engagement portion 59 of the trip lever 52, and the engagement between the arc portion 58a and the engagement portion 59 is released. Is done. Therefore, the trip lever 52 rotates counterclockwise around the trip lever shaft center 60 by the force based on the reaction force of the contact pressure spring 8, and the iron core plunger 23 goes through the state shown in FIG. Return. Thereby, the tripping of the circuit breaker 1 is completed.
 ところで、遮断器1における投入動作開始直後においては、制御回路83は、オン信号を出力しており、制御スイッチ84がオン状態であるため、投入用コイル22に励磁電流が流れている。投入用コイル22に励磁電流が流れている状態において、検出部76から引き外し指令が出力されると、制御回路83は、制御スイッチ84にオフ信号を出力する。これにより、投入用コイル22への励磁電流の供給が停止される。 By the way, immediately after the start of the closing operation of the circuit breaker 1, the control circuit 83 outputs an ON signal, and the control switch 84 is in the ON state, so that the exciting current flows through the closing coil 22. When a trip command is output from the detection unit 76 in a state where the exciting current is flowing through the closing coil 22, the control circuit 83 outputs an off signal to the control switch 84. Thus, the supply of the exciting current to the closing coil 22 is stopped.
 制御スイッチ84がオフ状態になることで投入用コイル22への励磁電流の供給が停止されると、投入用コイル22の逆起電力が発生する。かかる逆起電力は、サージ電圧とも呼ばれる。駆動回路70には、サージ電圧によって制御スイッチ84に過電圧が印加されることを防止するためにダイオード86が設けられている。かかるダイオード86は、保護ダイオードまたは還流ダイオードとも呼ばれる。 When the supply of the excitation current to the closing coil 22 is stopped by turning off the control switch 84, the back electromotive force of the closing coil 22 is generated. Such a back electromotive force is also called a surge voltage. The drive circuit 70 is provided with a diode 86 for preventing an overvoltage from being applied to the control switch 84 by a surge voltage. Such a diode 86 is also called a protection diode or a freewheeling diode.
 投入用コイル22には、サージ電圧によりダイオード86を介して還流電流が流れる。かかる還流電流を低減するために、遮断器1には、上述したように、ダイオード86に直列に電流低減部87が設けられている。投入用コイル22への励磁電流の供給が停止された場合、電流低減部87によって、ダイオード86を介して投入用コイル22に流れる還流電流が低減される。そのため、還流電流によって投入状態が維持されることを防止でき、投入動作開始直後のプランジャの復帰動作が遅れることが防止される。したがって、伝達機構30を簡素な構成とすることができる。 還 流 A return current flows through the closing coil 22 via the diode 86 due to the surge voltage. In order to reduce such a return current, the circuit breaker 1 is provided with the current reducing section 87 in series with the diode 86 as described above. When the supply of the exciting current to the making coil 22 is stopped, the current reduction unit 87 reduces the return current flowing through the making coil 22 via the diode 86. Therefore, the closed state can be prevented from being maintained by the return current, and the return operation of the plunger immediately after the start of the closing operation can be prevented from being delayed. Therefore, the transmission mechanism 30 can have a simple configuration.
 図14から図16は、実施の形態1にかかる電流低減部と制御スイッチの構成例を示す図である。図14および図16に示す例では、電流低減部87は、抵抗R10によって構成される。また、図15に示す例では、電流低減部87は、抵抗R10とコンデンサC10とが直列に接続された構成である。 FIGS. 14 to 16 are diagrams illustrating a configuration example of the current reduction unit and the control switch according to the first embodiment. In the example shown in FIGS. 14 and 16, the current reducing section 87 is configured by the resistor R10. In the example shown in FIG. 15, the current reducing section 87 has a configuration in which a resistor R10 and a capacitor C10 are connected in series.
 図15に示す電流低減部87は、抵抗R10とコンデンサC10とが直列に接続された構成であるが、抵抗R10とコンデンサC10とが並列に接続された構成であってもよい。抵抗R10とコンデンサC10とを含む構成はスナバ回路とも呼ばれる。 The current reducing section 87 shown in FIG. 15 has a configuration in which the resistor R10 and the capacitor C10 are connected in series, but may have a configuration in which the resistor R10 and the capacitor C10 are connected in parallel. The configuration including the resistor R10 and the capacitor C10 is also called a snubber circuit.
 また、図14および図15に示す例では、NチャンネルMOSFET79aを用いて制御スイッチ84が構成され、図16に示す例では、PチャンネルMOSFET79bを用いて制御スイッチ84が構成されている。図16に示す制御スイッチ84の場合、制御回路83は、図4に示す例とは逆極性となる信号が端子T6から出力されるように構成される。 14 and 15, the control switch 84 is configured using an N-channel MOSFET 79a, and in the example illustrated in FIG. 16, the control switch 84 is configured using a P-channel MOSFET 79b. In the case of the control switch 84 shown in FIG. 16, the control circuit 83 is configured such that a signal having a polarity opposite to that of the example shown in FIG. 4 is output from the terminal T6.
 なお、図16において、電流低減部87は、上述したスナバ回路で構成されてもよい。また、投入用コイル22のインダクタンスエネルギーを迅速に抵抗R10で消費できるように、ダイオード86には、ファストリカバリーダイオードを用いることが好適である。 In FIG. 16, the current reducing section 87 may be formed by the snubber circuit described above. It is preferable to use a fast recovery diode as the diode 86 so that the inductance energy of the input coil 22 can be quickly consumed by the resistor R10.
 投入用コイル22への励磁電流の供給が停止される際、電流低減部87がない場合、ダイオード86を介して投入用コイル22に流れる還流電流によって、電磁ソレノイド20は投入動作を維持しようとする。そのため、遮断器1の投入動作開始直後に遮断することが難しい場合があるが、遮断器1では、電流低減部87を設けているため、ダイオード86を介して投入用コイル22に流れる還流電流を低減することができる。 When the supply of the exciting current to the closing coil 22 is stopped, if there is no current reduction unit 87, the return current flowing through the closing coil 22 via the diode 86 causes the electromagnetic solenoid 20 to maintain the closing operation. . Therefore, it may be difficult to cut off immediately after the start of the closing operation of the circuit breaker 1. However, since the circuit breaker 1 is provided with the current reducing section 87, the return current flowing through the closing coil 22 via the diode 86 is reduced. Can be reduced.
 これにより、複雑な伝達機構を用いることなく、遮断器1における投入動作開始直後の遮断を迅速に行うことができる。なお、電流低減部87は、投入用コイル22への励磁電流の供給が停止された後に還流電流が引き外し機構50による引き外しを阻害しないように抵抗R10の値およびコンデンサC10の値が設定される。例えば、電流低減部87を構成する抵抗R10の値は、還流電流による投入力が遮断時の電磁反発力と引き外し力を下回るまで還流電流を低減することができる値に設定される。 This makes it possible to quickly shut off the circuit breaker 1 immediately after the start of the closing operation without using a complicated transmission mechanism. The current reducing unit 87 sets the value of the resistor R10 and the value of the capacitor C10 so that the return current does not hinder the tripping by the tripping mechanism 50 after the supply of the exciting current to the closing coil 22 is stopped. You. For example, the value of the resistor R10 included in the current reduction unit 87 is set to a value that can reduce the return current until the throw input by the return current falls below the electromagnetic repulsion force and tripping force at the time of interruption.
 なお、上述した例では、投入動作開始直後に過電流または漏電が検出された場合の例を説明したが、遮断器1は、投入動作開始直後に内部オフスイッチ74または引き外し付属装置75から遮断信号が出力された場合も、複雑な伝達機構を用いることなく、投入動作開始直後の遮断を行うことができる。 In the above-described example, an example in which an overcurrent or a short circuit is detected immediately after the start of the closing operation has been described. However, the circuit breaker 1 is disconnected from the internal off switch 74 or the trip attachment 75 immediately after the start of the closing operation. Even when a signal is output, it is possible to shut off immediately after the start of the closing operation without using a complicated transmission mechanism.
 ここで、鉄心プランジャ23の移動位置と電磁ソレノイド20にかかる負荷量との関係を説明する。図17は、実施の形態1にかかる鉄心プランジャの移動位置と電磁ソレノイドにかかる負荷量との関係を示す図である。鉄心プランジャ23は、図5に示す位置から図9に示す最大投入位置までの範囲で移動する。 Here, the relationship between the moving position of the iron core plunger 23 and the load applied to the electromagnetic solenoid 20 will be described. FIG. 17 is a diagram illustrating a relationship between the movement position of the iron core plunger according to the first embodiment and the load applied to the electromagnetic solenoid. The iron core plunger 23 moves in a range from the position shown in FIG. 5 to the maximum insertion position shown in FIG.
 以下において、鉄心プランジャ23の上方への移動を前進と記載し、鉄心プランジャ23の下方への移動を後退と記載する。また、鉄心プランジャ23の前進時の移動位置を前進位置と記載し、鉄心プランジャ23の後退時の移動位置を後退位置と記載する。また、鉄心プランジャ23の前進時の電磁ソレノイド20にかかる負荷を前進時負荷と記載し、鉄心プランジャ23の後退時の電磁ソレノイド20にかかる負荷を後退時負荷と記載する。 In the following, the upward movement of the core plunger 23 is referred to as forward, and the downward movement of the core plunger 23 is referred to as retreat. In addition, the moving position of the core plunger 23 when the core plunger 23 moves forward is described as a forward position, and the moving position of the core plunger 23 when the core plunger 23 retreats is described as a retreat position. Further, a load applied to the electromagnetic solenoid 20 when the iron core plunger 23 moves forward is referred to as a forward load, and a load applied to the electromagnetic solenoid 20 when the iron core plunger 23 moves backward is referred to as a reverse load.
 図17に示すように、鉄心プランジャ23の前進位置が遮断状態位置から接点当接開始位置になるまでの遮断状態位置である場合、固定接点10と可動接点11とが接触していない状態で伝達機構30が駆動される。そのため、鉄心プランジャ23の前進位置が遮断状態位置である場合、電磁ソレノイド20にかかる負荷は、相対的に小さい。そして、鉄心プランジャ23の前進位置が接点当接開始位置になると、可動接点11の固定接点10への接触が開始する。そのため、レバー32が、接圧バネ8からの反力を、連結ピン13,38を介しレバー軸心36を中心とする反時計回りの負荷トルクとして受け、電磁ソレノイド20にかかる投入負荷が急激に大きくなる。 As shown in FIG. 17, when the forward position of the core plunger 23 is the interrupted state position from the interrupted state position to the contact abutment start position, the transmission is performed in a state where the fixed contact 10 and the movable contact 11 are not in contact with each other. The mechanism 30 is driven. Therefore, when the forward position of the iron core plunger 23 is in the shut-off state position, the load applied to the electromagnetic solenoid 20 is relatively small. Then, when the forward position of the iron core plunger 23 becomes the contact contact start position, the contact of the movable contact 11 with the fixed contact 10 starts. Therefore, the lever 32 receives the reaction force from the contact pressure spring 8 via the connecting pins 13 and 38 as a counterclockwise load torque around the lever axis 36, and the load applied to the electromagnetic solenoid 20 rapidly increases. growing.
 ところが、鉄心プランジャ23がさらに前進すると、作用点である連結ピン38に働く接圧バネ8からの反力におけるレバー軸心36と連結ピン38を結ぶ直線に垂直な方向の成分が、急激に小さくなる。そのため、レバー軸心36を中心とする反時計回りの負荷トルクが減少し始める。この負荷トルクの減少に応じて、レバー32を回転させるのに必要な電磁ソレノイド20の投入負荷も減少に転じる。 However, when the iron core plunger 23 further advances, the component in the direction perpendicular to the straight line connecting the lever axis 36 and the connecting pin 38 in the reaction force from the contact pressure spring 8 acting on the connecting pin 38, which is the action point, suddenly decreases. Become. Therefore, the counterclockwise load torque around the lever axis 36 starts to decrease. As the load torque decreases, the load applied to the electromagnetic solenoid 20 required to rotate the lever 32 also starts to decrease.
 鉄心プランジャ23がさらに前進し、前進位置が投入動作開始以降はじめて最大投入位置となった遮断器1の機構状態において、レバー32および絶縁バー33が一直線に近づいた状態となり、レバー32および絶縁バー33で構成されるトグル機構が最も死点に近づく。そのため、連結ピン38に働く接圧バネ8からの反力におけるレバー軸心36と連結ピン38を結ぶ直線に垂直な方向の成分がゼロに近づき、レバー32を回転させるのに必要な電磁ソレノイド20の投入負荷も急激にゼロへと近づいていく。すなわち、遮断状態位置から投入状態位置への変位によって増加する電磁ソレノイド20の投入力に合わせて、レバー32に負荷トルクを加えるために電磁ソレノイド20の鉄心プランジャ23が前進する距離である負荷力作用距離を小さくする構成となっている。したがって、遮断器1の投入動作に電磁ソレノイド20の電磁吸引力を効率良く利用することができるだけでなく、遮断器1の投入動作に必要な負荷力作用距離の変化に合わせたサイズの電磁ソレノイド20を用いることができ、電磁ソレノイド20の小型化および低コスト化を図ることができる。また、実施の形態1にかかる遮断器1では、上述したトグル機構が死点を越える前に鉄心プランジャ23は前進を停止するように構成されており、投入状態から遮断状態への移行時に死点を越えないことから引き外し機構50の構成が複雑になることを回避することができる。 In the mechanism state of the circuit breaker 1 in which the iron core plunger 23 is further advanced and the advanced position is the maximum closing position for the first time after the start of the closing operation, the lever 32 and the insulating bar 33 are brought closer to a straight line. Is the closest to the dead center. Therefore, the component of the reaction force from the contact pressure spring 8 acting on the connecting pin 38 in the direction perpendicular to the straight line connecting the lever axis 36 and the connecting pin 38 approaches zero, and the electromagnetic solenoid 20 necessary for rotating the lever 32 is rotated. Also rapidly approach zero. That is, the load force action is the distance that the iron core plunger 23 of the electromagnetic solenoid 20 moves forward to apply a load torque to the lever 32 in accordance with the throwing power of the electromagnetic solenoid 20 that increases due to the displacement from the shut-off state position to the closed state position. The distance is reduced. Therefore, not only can the electromagnetic attraction force of the electromagnetic solenoid 20 be efficiently used for the closing operation of the circuit breaker 1, but also the electromagnetic solenoid 20 having a size corresponding to the change in the working distance of the load force required for the closing operation of the circuit breaker 1. Can be used, and the size and cost of the electromagnetic solenoid 20 can be reduced. In the circuit breaker 1 according to the first embodiment, the iron core plunger 23 is configured to stop moving forward before the above-described toggle mechanism crosses the dead center. , The configuration of the tripping mechanism 50 can be prevented from becoming complicated.
 遮断器1における接点当接後の状態では、可動接点11と固定接点10の接触により接圧バネ8からの反力を受けた接圧が生じると絶縁バー33およびレバー32を通じてレバー軸37に前後方向の押し付け力が発生する。レバー軸37に対する押し付け力が発生すると、レバー軸37に対する摩擦トルクが発生し、また、連結リンク31を通じて電磁ソレノイド20に伝達される負荷の前後方向の成分による電磁ソレノイド20の上下方向の摺動摩擦負荷が合わさって、無視できない摩擦力として電磁ソレノイド20の投入負荷を増大させる。 In the state after the contact of the circuit breaker 1 with the contact, the contact between the movable contact 11 and the fixed contact 10 generates a contact pressure receiving the reaction force from the contact pressure spring 8. Directional pressing force is generated. When a pressing force against the lever shaft 37 is generated, a friction torque is generated against the lever shaft 37, and a vertical sliding friction load of the electromagnetic solenoid 20 due to a front-rear component of the load transmitted to the electromagnetic solenoid 20 through the connection link 31. Are combined, and the input load of the electromagnetic solenoid 20 is increased as a friction force that cannot be ignored.
 鉄心プランジャ23が最大投入位置に達した後、鉄心プランジャ23の移動方向が後退に転換する際に、伝達機構30の全体にかかる摩擦力の方向も転換する。そのため、摩擦力に由来する引き外し荷重の減少効果によって投入状態における引き外し機構50への負荷を低減することができる。 後 After the core plunger 23 reaches the maximum insertion position, when the moving direction of the core plunger 23 is changed to the backward direction, the direction of the frictional force applied to the entire transmission mechanism 30 is also changed. Therefore, the load on the tripping mechanism 50 in the closed state can be reduced by the effect of reducing the tripping load derived from the frictional force.
 このように、投入状態における引き外し機構50への負荷を低減することができるため、引き外し機構50の構成を簡易にすることができる。そのため、引き外し機構50の小型化を図ったり、遮断器1の小型化を図ったりすることができ、また、引き外し機構50の部品数を削減することによって引き外し機構50の耐久性において信頼性を上昇させたりすることができる。 As described above, since the load on the tripping mechanism 50 in the closed state can be reduced, the configuration of the tripping mechanism 50 can be simplified. Therefore, the size of the tripping mechanism 50 can be reduced, the size of the circuit breaker 1 can be reduced, and the number of components of the tripping mechanism 50 can be reduced, so that the durability of the tripping mechanism 50 can be reduced. Sex can be raised.
 可動接点11が固定接点10に接触するまでは、連結ピン13,38、レバー軸37、連結ピン34,35の各回転部分における回転に伴う摩擦力が主として発生する。そのため、可動接点11が固定接点10に接触するまでは、レバー軸37に対する摩擦トルクおよび電磁ソレノイド20の上下方向の摺動摩擦負荷は、可動接点11と固定接点10との接触後の接圧バネ8からの反力による接圧が生じた後の状態に比べ小さい。したがって、図17に示すように接点当接前の摩擦力による前進時と後進時との投入負荷の差は、接点当接後の摩擦力による投入負荷の差に比べて小さくなる。 Until the movable contact 11 comes into contact with the fixed contact 10, a frictional force is generated mainly by the rotation of the rotating portions of the connecting pins 13, 38, the lever shaft 37, and the connecting pins 34, 35. Therefore, until the movable contact 11 contacts the fixed contact 10, the friction torque on the lever shaft 37 and the vertical sliding friction load of the electromagnetic solenoid 20 are reduced by the contact pressure spring 8 after the contact between the movable contact 11 and the fixed contact 10. Smaller than the state after the contact pressure due to the reaction force from Therefore, as shown in FIG. 17, the difference between the applied load due to the frictional force before contacting the contact and the applied load due to the frictional force after the contacting is smaller than the difference between the applied load due to the frictional force after the contact.
 遮断器1の一連の投入動作および投入負荷について、遮断器1における電磁ソレノイド20の投入に必要な負荷特性は定式化することができる。例えば、図5,図7,図9および図12の各状態における電磁ソレノイド20の投入に必要な負荷特性を定式化することで、機構摩擦を利用することで引き外し時の機構負荷を大幅に低減し、電磁ソレノイド20の投入負荷特性にヒステリシスを有する遮断器1の設計が可能である。 に つ い て Regarding a series of closing operation and closing load of the circuit breaker 1, the load characteristics required for closing the electromagnetic solenoid 20 in the circuit breaker 1 can be formulated. For example, by formulating the load characteristics required for turning on the electromagnetic solenoid 20 in each of the states shown in FIGS. 5, 7, 9 and 12, the mechanical load at the time of the trip is greatly reduced by utilizing the mechanical friction. It is possible to design the circuit breaker 1 to reduce the input load characteristic of the electromagnetic solenoid 20 and reduce the hysteresis.
 以上のように、実施の形態1にかかる遮断器1は、筐体2と、電源側端子3と、可動子6と、電磁ソレノイド20と、伝達機構30と、駆動回路70とを備える。電源側端子3は、固定端子の一例であり、固定接点10が取り付けられ筐体2に固定される。可動子6は、固定接点10に対向する可動接点11が取り付けられる。電磁ソレノイド20は、直線状に移動する鉄心プランジャ23を有する。鉄心プランジャ23は、プランジャの一例である。伝達機構30は、鉄心プランジャ23の移動に伴って可動子6を移動させて、可動接点11が固定接点10と開離する遮断状態から可動接点11が固定接点10に接触して通電する投入状態へ変化させる。駆動回路70は、電磁ソレノイド20の投入用コイル22へ通電して電磁ソレノイド20を駆動する。駆動回路70は、ダイオード86とダイオード86に流れる電流を低減する電流低減部87との直列体85を備え、直列体85は、電磁ソレノイド20の投入用コイル22に並列接続される。これにより、複雑な機構をとることなく、遮断器1の投入動作開始直後に遮断を行うことができる。したがって、伝達機構30の簡素化を図ることができる。 As described above, the circuit breaker 1 according to the first embodiment includes the housing 2, the power supply side terminal 3, the mover 6, the electromagnetic solenoid 20, the transmission mechanism 30, and the drive circuit 70. The power supply side terminal 3 is an example of a fixed terminal, and is fixed to the housing 2 with a fixed contact 10 attached thereto. The movable contact 6 has a movable contact 11 facing the fixed contact 10. The electromagnetic solenoid 20 has an iron core plunger 23 that moves linearly. The iron core plunger 23 is an example of a plunger. The transmission mechanism 30 moves the movable element 6 in accordance with the movement of the iron core plunger 23, and switches the movable contact 11 from the fixed contact 10 to the closed state where the movable contact 11 contacts the fixed contact 10 and energizes the movable contact 11. Change to The drive circuit 70 energizes the closing coil 22 of the electromagnetic solenoid 20 to drive the electromagnetic solenoid 20. The drive circuit 70 includes a series body 85 of a diode 86 and a current reducing unit 87 for reducing a current flowing through the diode 86, and the series body 85 is connected in parallel to the input coil 22 of the electromagnetic solenoid 20. Thus, the breaking can be performed immediately after the closing operation of the circuit breaker 1 is started without taking a complicated mechanism. Therefore, the transmission mechanism 30 can be simplified.
 また、電流低減部87は、抵抗R10、または、抵抗R10およびコンデンサC10を含む。これにより、ダイオード86に流れる電流を容易に低減することができる。 The current reducing section 87 includes the resistor R10 or the resistor R10 and the capacitor C10. Thereby, the current flowing through the diode 86 can be easily reduced.
 また、遮断器1は、固定接点10と可動接点11との接触によって導通状態になる電路の過電流または漏電を検出し、検出した結果を示す引き外し指令を検出結果として出力する検出部76を備える。駆動回路70は、検出部76から出力される引き外し指令に基づいて、投入用コイル22への通電を停止する。これにより、遮断器1の投入動作開始直後に電路の過電流または漏電が生じた場合において、複雑な機構をとることなく、遮断器1の投入動作開始直後に遮断を行うことができる。したがって、伝達機構30の簡素化を図ることができる。なお、引き外し指令は、検出信号の一例である。 The circuit breaker 1 further includes a detection unit 76 that detects an overcurrent or a leakage of an electric circuit that is brought into a conductive state by the contact between the fixed contact 10 and the movable contact 11 and outputs a trip command indicating the detection result as a detection result. Prepare. The drive circuit 70 stops energizing the closing coil 22 based on the trip command output from the detection unit 76. Thus, in the case where an overcurrent or a short circuit occurs in the electric circuit immediately after the start of the closing operation of the circuit breaker 1, the breaking can be performed immediately after the start of the closing operation of the circuit breaker 1 without taking a complicated mechanism. Therefore, the transmission mechanism 30 can be simplified. The trip command is an example of a detection signal.
 また、実施の形態1にかかる遮断器1は、引き外し機構50を備える。引き外し機構50は、伝達機構30に係合して投入状態の保持を行い、かつ伝達機構30との係合を解除して投入状態の保持を解除する。伝達機構30は、レバー32と、絶縁バー33とを備える。レバー32は、鉄心プランジャ23の移動に伴って筐体2に固定のレバー軸心36回りに回転する。レバー軸心36は、第1の軸心の一例である。絶縁バー33は、一端部33aがレバー32の一端部32aに回転可能に連結され、他端部33bが可動子6に回転可能に連結される。電磁ソレノイド20の鉄心プランジャ23は、レバー32と絶縁バー33とから構成されるトグル機構が死点になる前に鉄心プランジャ23の移動が制限される最大移動位置に到達する。したがって、例えば、鉄心プランジャ23の最大移動位置をトグル機構が死点になる直前の位置に設定することで、トグル機構による梃子の効果により、レバー32を回転させるのに必要な電磁ソレノイド20の投入負荷を急激に0へと近づけることができる。そのため、投入状態に引き外し機構50にかかる負荷を低減することができる。なお、上述した死点になる直前の位置とは、製造誤差があった場合でも、死点に到達しない位置である。最大移動位置は、第1の位置の一例である。また、引き外し機構50は、鉄心プランジャ23が最大移動位置に達した後に後退して投入完了位置にある状態で伝達機構30と係合して投入状態の保持を行う。投入完了位置は、第2の位置の一例である。これにより、鉄心プランジャ23の移動方向が後退に転換する際に、伝達機構30の全体にかかる摩擦力の方向も転換するため、摩擦力に由来する荷重の減少効果、すなわち、投入負荷特性のヒステリシスによって投入状態における引き外し機構50への負荷を低減することができる。したがって、遮断器の引き外し機構を複雑な機構にする必要性を低減することができ、引き外し機構50の小型化および組み立て性の向上を図ることができる。 遮断 The circuit breaker 1 according to the first embodiment includes the tripping mechanism 50. The tripping mechanism 50 engages with the transmission mechanism 30 to hold the closed state, and releases the engagement with the transmission mechanism 30 to release the held state. The transmission mechanism 30 includes a lever 32 and an insulating bar 33. The lever 32 rotates around a lever axis 36 fixed to the housing 2 as the iron core plunger 23 moves. The lever axis 36 is an example of a first axis. One end 33 a of the insulating bar 33 is rotatably connected to one end 32 a of the lever 32, and the other end 33 b is rotatably connected to the mover 6. The core plunger 23 of the electromagnetic solenoid 20 reaches the maximum movement position where the movement of the core plunger 23 is restricted before the toggle mechanism including the lever 32 and the insulating bar 33 becomes a dead center. Therefore, for example, by setting the maximum movement position of the iron core plunger 23 to a position immediately before the toggle mechanism becomes a dead center, the leverage of the toggle mechanism causes the electromagnetic solenoid 20 necessary for rotating the lever 32 to be turned on. The load can be rapidly reduced to zero. Therefore, the load applied to the tripping mechanism 50 in the closed state can be reduced. The position immediately before the above-mentioned dead center is a position where the dead center is not reached even when there is a manufacturing error. The maximum movement position is an example of a first position. In addition, the tripping mechanism 50 engages with the transmission mechanism 30 in a state where the iron core plunger 23 is retracted after reaching the maximum movement position and is in the loading completion position, and holds the loading state. The loading completion position is an example of a second position. Accordingly, when the moving direction of the iron core plunger 23 is changed to the backward direction, the direction of the frictional force applied to the entire transmission mechanism 30 is also changed. Thus, the load on the trip mechanism 50 in the closed state can be reduced. Therefore, it is possible to reduce the necessity of making the tripping mechanism of the circuit breaker a complicated mechanism, and it is possible to reduce the size of the tripping mechanism 50 and to improve the assemblability.
 また、遮断器1は、レバー32の他端部32bに取り付けられた係合ピン51を備える。係合ピン51は、係合部の一例である。また、引き外し機構50は、トリップレバー52と、トリップバー54とを備える。トリップレバー52は、係合ピン51に向かう方向に付勢された状態で筐体2に回転可能に取り付けられており、遮断状態から投入状態へ移行する投入過程で係合ピン51と接触した状態を維持し、鉄心プランジャ23が投入完了位置にある状態において係合ピン51と係合してレバー32のレバー軸心36回りの回転を規制する。トリップバー54は、トリップレバー52の回転の規制および規制の解除を行う。このように、引き外し機構50は、係合ピン51を除き、トリップレバー52とトリップバー54を含む少なくとも2つの部材で構成することができるため、引き外し機構50の小型化および組み立て性の向上を図ることができる。また、遮断状態から投入状態にかけてトリップレバー52に係合ピン51を接触させることから、トリップレバー52の係合ピン51から離れる方向への移動可能量を変化させるだけで引き外し動作を容易に行うことができる。 遮断 The circuit breaker 1 further includes an engagement pin 51 attached to the other end 32b of the lever 32. The engagement pin 51 is an example of an engagement portion. The tripping mechanism 50 includes a trip lever 52 and a trip bar 54. The trip lever 52 is rotatably attached to the housing 2 in a state where the trip lever 52 is urged in a direction toward the engagement pin 51, and is in contact with the engagement pin 51 during a closing process of shifting from a blocking state to a closing state. Is maintained, and the core plunger 23 is engaged with the engagement pin 51 in the state where it is in the closing completion position, thereby restricting the rotation of the lever 32 around the lever axis 36. The trip bar 54 regulates the rotation of the trip lever 52 and releases the regulation. As described above, since the tripping mechanism 50 can be constituted by at least two members including the trip lever 52 and the trip bar 54 except for the engagement pin 51, the tripping mechanism 50 can be downsized and the assemblability can be improved. Can be achieved. Further, since the engagement pin 51 is brought into contact with the trip lever 52 from the shut-off state to the closing state, the tripping operation can be easily performed only by changing the movable amount of the trip lever 52 in the direction away from the engagement pin 51. be able to.
 また、トリップレバー52は、レバー軸心36を中心とする円弧形状を有し、投入過程で係合ピン51が移動可能に接触する円弧部56と、投入状態において係合ピン51と係合する凹部51cとを備える。これにより、投入過程においてトリップレバー52の位置が変化しないため、伝達機構30を駆動させる電磁ソレノイド20の投入負荷が投入過程においてトリップレバー52によって変動することを抑制できる。 The trip lever 52 has an arc shape centered on the lever axis 36, and engages with the arc portion 56 with which the engaging pin 51 is movably contacted during the closing process, and with the engaging pin 51 in the closed state. And a recess 51c. Thus, since the position of the trip lever 52 does not change during the closing process, it is possible to suppress the load applied to the electromagnetic solenoid 20 that drives the transmission mechanism 30 from being varied by the trip lever 52 during the closing process.
 また、トリップレバー52は、円弧部分58aと平坦部分58bとが形成され、筐体2に固定されたトリップバー軸心61回りに回転する半円部58を備える。トリップバー軸心61は、第2の軸心の一例である。トリップレバー52は、遮断状態で半円部58の平坦部分58bに接触して回転が規制され、投入状態で半円部58の円弧部分58aに接触して回転が規制される。これにより、トリップレバー52を回転させるだけで、トリップレバー52の係合ピン51から離れる方向への移動可能量を容易に調整することができる。 ト リ ッ プ The trip lever 52 has a semicircular portion 58 formed with an arc portion 58 a and a flat portion 58 b and rotating around a trip bar axis 61 fixed to the housing 2. The trip bar axis 61 is an example of a second axis. The trip lever 52 contacts the flat portion 58b of the semicircular portion 58 in the shut-off state and is restricted from rotating. The trip lever 52 contacts the arc portion 58a of the semicircular portion 58 in the closed state and restricts the rotation. Accordingly, the amount of movement of the trip lever 52 in the direction away from the engagement pin 51 can be easily adjusted only by rotating the trip lever 52.
実施の形態2.
 実施の形態2にかかる遮断器は、MCR(Making Current Release)機能を実現する駆動回路に設けている点で、実施の形態1にかかる遮断器1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の遮断器1と異なる点を中心に説明する。
Embodiment 2 FIG.
The circuit breaker according to the second embodiment is different from the circuit breaker 1 according to the first embodiment in that the circuit breaker according to the second embodiment is provided in a drive circuit that realizes an MCR (Making Current Release) function. In the following, components having the same functions as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The following description focuses on differences from circuit breaker 1 of the first embodiment.
 まず、MCR機能を実現するMCR機構について説明する。MCR機構は、遮断器の投入動作時は瞬時引き外し特性を有効にして投入動作時の短絡事故に対して瞬時トリップさせ、遮断器の投入動作完了後は瞬時引き外し特性を無効にする。これにより、突入電流の大きな負荷機器または下位遮断器との選択協調領域を拡大することができる。 First, the MCR mechanism that realizes the MCR function will be described. The MCR mechanism enables the instantaneous tripping characteristic during the closing operation of the circuit breaker, instantaneously trips for a short circuit accident during the closing operation, and invalidates the instantaneous tripping characteristic after the closing operation of the circuit breaker is completed. As a result, it is possible to expand a selection cooperative area with a load device having a large inrush current or a lower circuit breaker.
 図18および図19は、MCR機構の構成例を示す図であり、図18は、遮断器の投入動作時の状態を示し、図19は、遮断器の投入動作完了後の状態を示す。また、以下において、時計回りおよび反時計回りとは、図18および図19において時計回りおよび反時計回りであることを意味する。また、図18および図19に示すMCR機構100は、上述した遮断器1に含まれるものとして説明する。 FIGS. 18 and 19 are diagrams showing a configuration example of the MCR mechanism. FIG. 18 shows a state at the time of the closing operation of the circuit breaker, and FIG. 19 shows a state after the closing operation of the circuit breaker is completed. In the following, clockwise and counterclockwise mean clockwise and counterclockwise in FIGS. 18 and 19, respectively. The MCR mechanism 100 shown in FIGS. 18 and 19 will be described as being included in the circuit breaker 1 described above.
 図18に示すMCR機構100は、MCRプレート101と、絶縁板102と、マイクロスイッチ103と、補助板104とを備える。絶縁板102、マイクロスイッチ103、および補助板104は、ネジ105によりMCRプレート101に2点で固定されている。また、マイクロスイッチ103には、ノーマルクローズの端子が用いられている。マイクロスイッチ103には、アクチュエータ106が設けられており、かかるアクチュエータ106は、MCRプレート101に回転可能に支持された回転軸109に固定されている。 The MCR mechanism 100 shown in FIG. 18 includes an MCR plate 101, an insulating plate 102, a micro switch 103, and an auxiliary plate 104. The insulating plate 102, the microswitch 103, and the auxiliary plate 104 are fixed to the MCR plate 101 at two points by screws 105. A normally closed terminal is used for the microswitch 103. The microswitch 103 is provided with an actuator 106, and the actuator 106 is fixed to a rotating shaft 109 rotatably supported by the MCR plate 101.
 MCR機構100は、アクチュエータ106の他端に取り付けられた重り107と、MCRプレート101と重り107との間に掛渡されたスプリング108とを備える。スプリング108は、回転軸109を中心として反時計回りに回転させる方向にアクチュエータ106に力を与えている。そのため、遮断器1の投入動作が行われていない状態では、図19に示すように、アクチュエータ106の一端がマイクロスイッチボタン103aを押している。マイクロスイッチ103は、マイクロスイッチボタン103aが押されている間は常時オン信号を図3および図4に示す引き外しリレー98に送信する。これにより、引き外しリレー98において、瞬時引き外し特性が無効となる。 The MCR mechanism 100 includes a weight 107 attached to the other end of the actuator 106 and a spring 108 suspended between the MCR plate 101 and the weight 107. The spring 108 applies a force to the actuator 106 in a direction in which the spring 108 rotates counterclockwise about the rotation shaft 109. Therefore, when the closing operation of the circuit breaker 1 is not performed, as shown in FIG. 19, one end of the actuator 106 presses the micro switch button 103a. The micro switch 103 transmits an always-on signal to the trip relay 98 shown in FIGS. 3 and 4 while the micro switch button 103a is being pressed. As a result, in the trip relay 98, the instantaneous trip characteristic becomes invalid.
 アクチュエータ106の受け部106aは遮断器1の主接点を開閉させる機構部におけるレバー軸37の動作を受ける形状である。アクチュエータ106は、遮断器1の投入動作時におけるレバー軸37の回転により受け部106aが回転軸109を中心として時計回りに回転し、一端がマイクロスイッチボタン103aを数ms程度押す。これにより、マイクロスイッチ103は、この数ms程度のオフ信号を引き外しリレー98に送信する。引き外しリレー98において、数ms程度のオフ信号が入力されている間、瞬時引き外し特性が有効となる。このように、MCR機構100は、遮断器1の投入動作時以外においては瞬時引き外し特性を無効にしつつ、遮断器1の投入動作時においては瞬時引き外し特性を有効にすることができる。 The receiving portion 106a of the actuator 106 has a shape for receiving the operation of the lever shaft 37 in the mechanism for opening and closing the main contact of the circuit breaker 1. In the actuator 106, the receiving portion 106a rotates clockwise around the rotation shaft 109 by rotation of the lever shaft 37 during the closing operation of the circuit breaker 1, and one end presses the micro switch button 103a for about several ms. As a result, the microswitch 103 trips the off signal of about several ms and transmits it to the relay 98. The instantaneous trip characteristic is effective while the off signal of about several ms is being input to the trip relay 98. As described above, the MCR mechanism 100 can invalidate the instantaneous tripping characteristic during the closing operation of the circuit breaker 1 while disabling the instantaneous tripping characteristic except during the closing operation of the circuit breaker 1.
 次に、実施の形態2にかかる遮断器の駆動回路について説明する。図20は、本発明の実施の形態2にかかる駆動回路を含む遮断器の電気回路の構成例を示す図である。図20に示すように、実施の形態2にかかる遮断器1Aの駆動回路70Aは、MCR機能を実現するMCR回路79を有する点で、遮断器1の駆動回路70と異なる。 Next, a drive circuit of the circuit breaker according to the second embodiment will be described. FIG. 20 is a diagram illustrating a configuration example of an electric circuit of the circuit breaker including the drive circuit according to the second embodiment of the present invention. As shown in FIG. 20, the drive circuit 70A of the circuit breaker 1A according to the second embodiment is different from the drive circuit 70 of the circuit breaker 1 in having an MCR circuit 79 that realizes an MCR function.
 図20に示すように、MCR回路79は、端子T6に接続されて論理積回路93から出力される信号が入力される。論理積回路93からMCR回路79へ入力される信号は、論理積回路93から制御スイッチ84へ入力される信号と同じ信号である。MCR回路79は、論理積回路93から入力される信号に基づいて、引き外しリレー98へオン信号またはオフ信号を出力する。MCR回路79は、制御回路83などと引き外しリレー98との絶縁を保つため、フォトカプラなどを含んで構成される。 As shown in FIG. 20, the MCR circuit 79 is connected to the terminal T6 and receives a signal output from the AND circuit 93. The signal input from the AND circuit 93 to the MCR circuit 79 is the same signal as the signal input from the AND circuit 93 to the control switch 84. The MCR circuit 79 outputs an ON signal or an OFF signal to the trip relay 98 based on a signal input from the AND circuit 93. The MCR circuit 79 includes a photocoupler and the like in order to keep the control circuit 83 and the like and the trip relay 98 insulated.
 MCR回路79は、論理積回路93からオン信号が入力される場合、引き外しリレー98へハイレベルの電圧であるオン信号を出力する。引き外しリレー98へ出力されるオン信号は、瞬時引き外し特性を有効にするための信号であり、以下においてMCR制御信号と記載する場合がある。引き外しリレー98は、MCR回路79からMCR制御信号が出力されている状態で、変流器97の2次側電流に基づいて過電流または漏電を検出した場合、駆動回路78へ引き外し指令を出力する。これにより、トリップ用コイル77への通電が行われ、遮断器1Aが遮断状態になる。 When the ON signal is input from the AND circuit 93, the MCR circuit 79 outputs an ON signal that is a high-level voltage to the trip relay 98. The ON signal output to the trip relay 98 is a signal for validating the instantaneous trip characteristic, and may be hereinafter referred to as an MCR control signal. The trip relay 98 issues a trip command to the drive circuit 78 when an overcurrent or a leakage is detected based on the secondary current of the current transformer 97 while the MCR control signal is output from the MCR circuit 79. Output. As a result, the trip coil 77 is energized, and the circuit breaker 1A is turned off.
 また、MCR回路79は、論理積回路93からオフ信号が出力される場合、引き外しリレー98へ瞬時引き外し特性を無効にするためのローレベルの電圧を出力する。引き外しリレー98は、MCR回路79からローレベルの電圧が出力されている状態において、変流器97の2次側電流に基づいて過電流または漏電を検出した場合でも駆動回路78へ引き外し指令を出力しない。これにより、遮断器1Aの投入動作完了後は瞬時引き外し特性を無効にすることができる。 {Circle around (4)} When the OFF signal is output from the AND circuit 93, the MCR circuit 79 outputs a low-level voltage to the trip relay 98 to invalidate the instantaneous trip characteristic. The trip relay 98 issues a trip command to the drive circuit 78 even when an overcurrent or a leakage is detected based on the secondary current of the current transformer 97 in a state where a low level voltage is output from the MCR circuit 79. Is not output. As a result, the instantaneous trip characteristic can be invalidated after the closing operation of the circuit breaker 1A is completed.
 図21は、実施の形態2にかかる遮断器のMCR機能を説明するためのタイミングチャートである。時刻t1において、内部オンスイッチ71または外部オンスイッチ72がオン操作されると、図21に示すように、ハイレベルの電圧である投入信号が論理和回路91からラッチ回路92へ出力される。ラッチ回路92は、論理和回路91から投入信号が出力されると、ハイレベルの電圧を論理積回路93へ出力する。そのため、論理積回路93は、ハイレベルの電圧をオン信号としてMCR回路79および制御スイッチ84へ出力する。MCR回路79は、論理積回路93からオン信号が出力されている間、ハイレベルの電圧をMCR制御信号として引き外しリレー98へ出力する。これにより、遮断器1Aの投入動作時において瞬時引き外し特性が有効になる。 FIG. 21 is a timing chart for explaining the MCR function of the circuit breaker according to the second embodiment. At time t1, when the internal ON switch 71 or the external ON switch 72 is turned on, a closing signal, which is a high level voltage, is output from the OR circuit 91 to the latch circuit 92 as shown in FIG. When the input signal is output from the OR circuit 91, the latch circuit 92 outputs a high-level voltage to the AND circuit 93. Therefore, the AND circuit 93 outputs a high-level voltage to the MCR circuit 79 and the control switch 84 as an ON signal. The MCR circuit 79 outputs a high-level voltage to the relay 98 as an MCR control signal while the ON signal is being output from the AND circuit 93. As a result, the instantaneous trip characteristic becomes effective during the closing operation of the circuit breaker 1A.
 制御スイッチ84は、論理積回路93から端子T6を介してオン信号が出力された場合、オン状態になる。制御スイッチ84がオン状態になることで、投入用コイル22への励磁電流の供給が行われる。これにより、鉄心プランジャ23による投入動作が開始し、時刻t2において、鉄心プランジャ23が投入状態となる動作と連動するマイクロスイッチ88からハイレベルの電圧が制御回路83へ出力される。マイクロスイッチ88からハイレベルの電圧が出力されると、ラッチ回路92がリセットされ、制御回路83から制御スイッチ84へローレベルの電圧がオフ信号として出力される。 The control switch 84 is turned on when an on signal is output from the AND circuit 93 via the terminal T6. When the control switch 84 is turned on, the excitation current is supplied to the closing coil 22. Accordingly, the closing operation by the iron core plunger 23 starts, and at time t2, a high-level voltage is output to the control circuit 83 from the microswitch 88 that is linked to the operation of bringing the iron core plunger 23 into the closing state. When a high-level voltage is output from the microswitch 88, the latch circuit 92 is reset, and a low-level voltage is output from the control circuit 83 to the control switch 84 as an off signal.
 このように、論理積回路93は、時刻t1から時刻t2までの期間において、ハイレベルの電圧をオン信号として出力するため、MCR回路79は、時刻t1から時刻t2までの期間において、ハイレベルの電圧をMCR制御信号として引き外しリレー98へ出力する。時刻t1から時刻t2までの期間は、例えば、200ms程度であり、これにより、安定したMCR制御信号が引き外しリレー98へ出力される。したがって、MCR制御信号が出力される期間において、引き外しリレー98の瞬時引き外し特性を安定して有効化することができる。 As described above, since the AND circuit 93 outputs the high-level voltage as the ON signal during the period from time t1 to time t2, the MCR circuit 79 outputs the high-level voltage during the period from time t1 to time t2. The voltage is output as an MCR control signal to the relay 98. The period from time t1 to time t2 is, for example, about 200 ms, whereby a stable MCR control signal is output to the trip relay 98. Therefore, the instantaneous trip characteristic of the trip relay 98 can be stably activated during the period in which the MCR control signal is output.
 また、時刻t2以降において、論理積回路93からローレベルの電圧がオフ信号として出力される。MCR回路79は、論理積回路93からオフ信号が出力されている間、ローレベルの電圧を引き外しリレー98へ出力する。これにより、遮断器1Aの投入完了後において瞬時引き外し特性が無効化される。 (4) After time t2, a low-level voltage is output from the AND circuit 93 as an off signal. The MCR circuit 79 trips the low-level voltage and outputs it to the relay 98 while the off signal is being output from the AND circuit 93. As a result, the instantaneous trip characteristic is invalidated after the closing of the circuit breaker 1A is completed.
 なお、制御スイッチ84が図16に示す構成である場合、制御回路83は、ローレベルの電圧をオン信号として出力する。この場合、制御回路83には、例えば、論理積回路93と端子T6との間に論理否定回路が設けられる。MCR回路79は、制御回路83からローレベルの電圧であるオン信号が出力されている間、ハイレベルの電圧をMCR制御信号として引き外しリレー98へ出力する。なお、MCR回路79から出力されるMCR制御信号は、ローレベルの電圧であってもよい。この場合、引き外しリレー98は、ローレベルの電圧で瞬時引き外し特性が有効になる。 When the control switch 84 has the configuration shown in FIG. 16, the control circuit 83 outputs a low-level voltage as an ON signal. In this case, the control circuit 83 is provided with, for example, a logical NOT circuit between the logical product circuit 93 and the terminal T6. The MCR circuit 79 trips the high-level voltage as the MCR control signal and outputs it to the relay 98 while the control circuit 83 outputs the low-level ON signal. Note that the MCR control signal output from the MCR circuit 79 may be a low-level voltage. In this case, the tripping relay 98 has an instantaneous tripping characteristic at a low-level voltage.
 以上のように、実施の形態2にかかる遮断器1Aは、固定接点10と可動接点11との接触によって導通状態になる電路の過電流または漏電が発生した場合に引き外し指令を出力する引き外しリレー98を備える。駆動回路70Aは、第1制御回路の一例である制御回路83と、第2制御回路の一例であるMCR回路79とを備える。制御回路83は、内部オンスイッチ71または外部オンスイッチ72がオン操作された場合に電磁ソレノイド20を駆動するためのオン信号を出力し、電磁ソレノイド20の鉄心プランジャ23が投入状態になる動作と連動するマイクロスイッチ88からの信号に基づきオン信号の出力を停止する。内部オンスイッチ71または外部オンスイッチ72はオンスイッチの一例である。MCR回路79は、制御回路83からオン信号が出力されている間、MCR制御信号を引き外しリレー98へ出力し、引き外しリレー98からの引き外し指令の出力を可能にする。これにより、遮断器1Aでは、図18および図19に示すようなMCR機構100を設けることなく、MCR機能を実現することができる。 As described above, the circuit breaker 1A according to the second embodiment is configured to output a trip command when an overcurrent or a short circuit occurs in a circuit that is brought into a conductive state by the contact between the fixed contact 10 and the movable contact 11. A relay 98 is provided. The drive circuit 70A includes a control circuit 83, which is an example of a first control circuit, and an MCR circuit 79, which is an example of a second control circuit. The control circuit 83 outputs an ON signal for driving the electromagnetic solenoid 20 when the internal ON switch 71 or the external ON switch 72 is turned ON, and interlocks with the operation in which the iron core plunger 23 of the electromagnetic solenoid 20 is turned on. The output of the ON signal is stopped based on the signal from the micro switch 88 to be turned on. The internal ON switch 71 or the external ON switch 72 is an example of an ON switch. The MCR circuit 79 outputs the MCR control signal to the trip relay 98 while the ON signal is being output from the control circuit 83, and enables the trip command to be output from the trip relay 98. Thereby, in the circuit breaker 1A, the MCR function can be realized without providing the MCR mechanism 100 as shown in FIG. 18 and FIG.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are merely examples of the contents of the present invention, and can be combined with other known technologies, and can be combined with other known technologies without departing from the gist of the present invention. Parts can be omitted or changed.
 1 遮断器、2 筐体、2a 壁部、3 電源側端子、4 負荷側端子、5 可撓性導体、5a,6a,7a,31a,32a,33a,52a,54a 一端部、5b,6b,7b,31b,32b,33b,52b,54b 他端部、6 可動子、7 可動子ホルダ、7c 中途部、8 接圧バネ、9 可動子ストッパ、10 固定接点、11 可動接点、12 ホルダ軸、12a ホルダ軸心、13,34,35,38 連結ピン、20 電磁ソレノイド、21 ヨーク、22 投入用コイル、23 鉄心プランジャ、24 突出部、25 ギャップ、30 伝達機構、31 連結リンク、32 レバー、33 絶縁バー、36 レバー軸心、37 レバー軸、40 開極バネ、50 引き外し機構、51 係合ピン、52 トリップレバー、52c 凹部、53 第1のリセットバネ、54 トリップバー、55 第2のリセットバネ、56 円弧部、57 係合面、58 半円部、58a 円弧部分、58b 平坦部分、59 係合部、60 トリップレバー軸心、61 トリップバー軸心、70,78 駆動回路、71 内部オンスイッチ、72 外部オンスイッチ、73 制御電源、74 内部オフスイッチ、75 引き外し付属装置、76 検出部、77 トリップ用コイル、79 MCR回路、80 整流回路、81 定電圧回路、83 制御回路、84 制御スイッチ、85 直列体、86 ダイオード、87 電流低減部、88 マイクロスイッチ、91,95 論理和回路、92 ラッチ回路、93 論理積回路、94 論理否定回路、97 変流器、98 引き外しリレー、100 MCR機構、101 MCRプレート、102 絶縁板、103 マイクロスイッチ、103a マイクロスイッチボタン、104 補助板、105 ネジ、106 アクチュエータ、106a 受け部、107 重り、108 スプリング、109 回転軸、C10 コンデンサ、R1,R2,R3,R4,R10 抵抗、T1,T2,T3,T4,T5,T6 端子。 1 breaker, 2 housing, 2a wall, 3 power terminal, 4 load terminal, 5 flexible conductor, 5a, 6a, 7a, 31a, 32a, 33a, 52a, 54a, one end, 5b, 6b, 7b, 31b, 32b, 33b, 52b, 54b {other end, 6} mover, 7 # mover holder, 7c # midway, 8 # contact pressure spring, 9 # mover stopper, 10 # fixed contact, 11 # movable contact, 12 # holder shaft, 12a holder axis, 13, 34, 35, 38 connection pin, 20 electromagnetic solenoid, 21 yoke, 22 closing coil, 23 iron plunger, 24 projection, 25 gap, 30 transmission mechanism, 31 connection link, 32 lever, 33 Insulation bar, 36 ° lever axis, 37 ° lever axis, 40 ° opening spring, 50 ° release mechanism, 51 ° engaging pin, 52 ° Lever, 52c concave portion, 53 first reset spring, 54 trip bar, 55 second reset spring, 56 arc portion, 57 engagement surface, 58 semicircle portion, 58a arc portion, 58b flat portion, 59 engagement portion, 60 trip lever shaft center, 61 trip bar shaft center, 70, 78 drive circuit, 71 オ ン internal on switch, 72 external on switch, 73 control power supply, 74 internal off switch, 75 tripping attachment device, 76 detection unit, 77 trip Coil, 79 MCR circuit, 80 rectifier circuit, 81 constant voltage circuit, 83 control circuit, 84 control switch, 85 series, 86 diode, 87 current reducing section, 88 micro switch, 91, 95 OR circuit, 92 latch circuit, 93 logical AND circuit, 94 logical NOT circuit, 97 current transformer, 8 trip relay, 100 MCR mechanism, 101 MCR plate, 102 insulating plate, 103 micro switch, 103 a micro switch button, 104 auxiliary plate, 105 screw, 106 actuator, 106 a receiving part, 107 weight, 108 spring, 109 rotating shaft, C10 capacitor, R1, R2, R3, R4, R10 resistor, T1, T2, T3, T4, T5, T6 terminal.

Claims (7)

  1.  筐体と、
     固定接点が取り付けられ前記筐体に固定された固定端子と、
     前記固定接点に対向する可動接点が取り付けられた可動子と、
     直線状に移動するプランジャを有する電磁ソレノイドと、
     前記プランジャの移動に伴って前記可動子を移動させて、前記可動接点が前記固定接点と開離する遮断状態から前記可動接点が前記固定接点に接触して通電する投入状態へ変化させる伝達機構と、
     前記電磁ソレノイドのコイルへ通電して前記電磁ソレノイドを駆動する駆動回路と、を備え、
     前記駆動回路は、
     ダイオードと前記ダイオードに流れる電流を低減する電流低減部との直列体を備え、前記直列体は、前記電磁ソレノイドのコイルに並列接続される
     ことを特徴とする遮断器。
    A housing,
    A fixed terminal to which a fixed contact is attached and fixed to the housing;
    A mover having a movable contact facing the fixed contact,
    An electromagnetic solenoid having a plunger that moves linearly;
    A transmission mechanism for moving the mover with the movement of the plunger to change from a cut-off state in which the movable contact is separated from the fixed contact to a closed state in which the movable contact comes into contact with the fixed contact and is energized; ,
    A drive circuit for energizing the coil of the electromagnetic solenoid to drive the electromagnetic solenoid,
    The driving circuit includes:
    A circuit breaker, comprising: a series body of a diode and a current reduction unit that reduces a current flowing through the diode, wherein the series body is connected in parallel to a coil of the electromagnetic solenoid.
  2.  前記電流低減部は、
     抵抗、または、抵抗およびコンデンサを含む
     ことを特徴とする請求項1に記載の遮断器。
    The current reducing unit includes:
    The circuit breaker according to claim 1, comprising a resistor or a resistor and a capacitor.
  3.  前記固定接点と前記可動接点との接触によって導通状態になる電路の過電流または漏電を検出し、検出した結果を示す検出信号を出力する検出部を備え、
     前記駆動回路は、
     前記検出部から出力される検出信号に基づいて、前記コイルへの通電を停止する
     ことを特徴とする請求項1または2に記載の遮断器。
    A detection unit that detects an overcurrent or a leakage of an electric circuit that is brought into a conductive state by contact between the fixed contact and the movable contact, and outputs a detection signal indicating a result of the detection,
    The driving circuit includes:
    The circuit breaker according to claim 1, wherein energization of the coil is stopped based on a detection signal output from the detection unit.
  4.  前記伝達機構に係合して前記投入状態の保持を行い、かつ前記伝達機構との係合を解除して前記投入状態の保持を解除する引き外し機構を備え、
     前記伝達機構は、
     前記プランジャの移動に伴って前記筐体に固定の第1の軸心回りに回転するレバーと、
     一端部が前記レバーの一端部に回転可能に連結され、他端部が前記可動子に回転可能に連結された絶縁バーと、前記レバーの他端部に取り付けられた係合部と、を備え、
     前記引き外し機構は、
     前記係合部に向かう方向に付勢された状態で前記筐体に回転可能に取り付けられており、前記遮断状態から前記投入状態へ移行する投入過程で前記係合部と接触した状態を維持し、前記投入状態で前記係合部と係合して前記レバーの前記第1の軸心回りの回転を規制するトリップレバーと、
     前記トリップレバーの回転の規制および前記規制の解除を行うトリップバーと、を備える
     ことを特徴とする請求項1から3のいずれか一つに記載の遮断器。
    A trip mechanism that engages with the transmission mechanism to hold the closed state, and releases the engagement with the transmission mechanism to release the held state,
    The transmission mechanism,
    A lever that rotates about a first axis fixed to the housing with movement of the plunger;
    An insulating bar having one end rotatably connected to one end of the lever and the other end rotatably connected to the mover, and an engaging portion attached to the other end of the lever. ,
    The trip mechanism is
    It is rotatably attached to the housing in a state where it is urged in the direction toward the engaging portion, and maintains a state of contact with the engaging portion in a closing process of shifting from the blocking state to the closing state. A trip lever that engages with the engagement portion in the closed state to restrict rotation of the lever around the first axis;
    The circuit breaker according to any one of claims 1 to 3, further comprising: a trip bar configured to restrict rotation of the trip lever and release the restriction.
  5.  前記トリップレバーは、
     前記第1の軸心を中心とする円弧形状を有し、前記投入過程で前記係合部が移動可能に接触する円弧部と、
     前記投入状態において前記係合部と係合する凹部と、を備える
     ことを特徴とする請求項4に記載の遮断器。
    The trip lever is
    An arc portion having an arc shape centered on the first axis, wherein the engagement portion is movably contacted in the inserting process;
    The circuit breaker according to claim 4, further comprising: a concave portion that engages with the engaging portion in the closed state.
  6.  前記トリップバーは、
     円弧部分と平坦部分とが形成され、前記筐体に固定された第2の軸心回りに回転する半円部を備え、
     前記トリップレバーは、
     前記遮断状態で前記半円部の前記平坦部分に接触して回転が規制され、前記投入状態で前記半円部の前記円弧部分に接触して回転が規制される
     ことを特徴とする請求項5に記載の遮断器。
    The trip bar is
    An arc portion and a flat portion are formed, and a semi-circular portion that rotates around a second axis fixed to the housing is provided.
    The trip lever is
    The rotation is regulated by contacting the flat portion of the semicircular portion in the shut-off state, and the rotation is regulated by contacting the arc portion of the semicircular portion in the closed state. The circuit breaker according to the above.
  7.  前記固定接点と前記可動接点との接触によって導通状態になる電路の過電流または漏電が発生した場合に引き外し指令を出力する引き外しリレーを備え、
     前記駆動回路は、
     オンスイッチがオン操作された場合に前記電磁ソレノイドを駆動するためのオン信号を出力し、前記電磁ソレノイドのプランジャが投入状態になる動作と連動するマイクロスイッチからの信号に基づき前記オン信号の出力を停止する第1制御回路と、
     前記第1制御回路から前記オン信号が出力されている間、前記引き外しリレーからの前記引き外し指令の出力を可能にする第2制御回路と、を備える
     ことを特徴とする請求項1から6のいずれか一つに記載の遮断器。
    A trip relay that outputs a trip command when an overcurrent or leakage occurs in an electric circuit that is brought into a conductive state by contact between the fixed contact and the movable contact,
    The driving circuit includes:
    An on signal for driving the electromagnetic solenoid is output when an on switch is turned on, and the output of the on signal is output based on a signal from a micro switch that is interlocked with an operation in which a plunger of the electromagnetic solenoid is turned on. A first control circuit to stop;
    7. A second control circuit which enables the trip command to be output from the trip relay while the on signal is being output from the first control circuit. 8. The circuit breaker according to any one of the above.
PCT/JP2019/023705 2018-07-31 2019-06-14 Breaker WO2020026609A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980049831.9A CN112514018B (en) 2018-07-31 2019-06-14 Circuit breaker
JP2020534091A JP6987253B2 (en) 2018-07-31 2019-06-14 Circuit breaker
TW108125534A TWI709990B (en) 2018-07-31 2019-07-19 Circuit breaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/028742 WO2020026357A1 (en) 2018-07-31 2018-07-31 Breaker
JPPCT/JP2018/028742 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026609A1 true WO2020026609A1 (en) 2020-02-06

Family

ID=69230606

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/028742 WO2020026357A1 (en) 2018-07-31 2018-07-31 Breaker
PCT/JP2019/023705 WO2020026609A1 (en) 2018-07-31 2019-06-14 Breaker

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028742 WO2020026357A1 (en) 2018-07-31 2018-07-31 Breaker

Country Status (4)

Country Link
JP (1) JP6987253B2 (en)
CN (1) CN112514018B (en)
TW (1) TWI709990B (en)
WO (2) WO2020026357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499684B2 (en) 2020-11-20 2024-06-14 三菱電機株式会社 Electromagnetic Actuators and Circuit Breakers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676702A (en) * 1992-08-25 1994-03-18 Mitsubishi Electric Corp Circuit breaker
JPH07130254A (en) * 1993-11-04 1995-05-19 Energy Support Corp Automatic switch
JPH1140014A (en) * 1997-07-18 1999-02-12 Mitsubishi Electric Corp Switchgear
JP2002216594A (en) * 2001-01-19 2002-08-02 Hitachi Ltd Operation mechanism for switch device
JP2008166085A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Circuit breaker and its opening and closing method
WO2015098142A1 (en) * 2013-12-26 2015-07-02 三菱電機株式会社 Bypass switch

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278885B (en) * 2002-10-30 2007-04-11 Hitachi Ltd Solenoid-operated device, solenoid-operated switch device and electromagnet control device
JP5215268B2 (en) * 2009-09-04 2013-06-19 三菱電機株式会社 Breaker
JP6009340B2 (en) * 2012-12-12 2016-10-19 三菱電機株式会社 Circuit breaker and electromagnetic trip device
JP6033107B2 (en) * 2013-02-13 2016-11-30 三菱電機株式会社 Circuit breaker
JP6218675B2 (en) * 2014-05-29 2017-10-25 三菱電機株式会社 Circuit breaker
JP6231445B2 (en) * 2014-07-02 2017-11-15 株式会社日立産機システム Commutation type DC circuit breaker and monitoring method thereof
JP6658360B2 (en) * 2016-07-05 2020-03-04 三菱電機株式会社 Earth leakage breaker

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676702A (en) * 1992-08-25 1994-03-18 Mitsubishi Electric Corp Circuit breaker
JPH07130254A (en) * 1993-11-04 1995-05-19 Energy Support Corp Automatic switch
JPH1140014A (en) * 1997-07-18 1999-02-12 Mitsubishi Electric Corp Switchgear
JP2002216594A (en) * 2001-01-19 2002-08-02 Hitachi Ltd Operation mechanism for switch device
JP2008166085A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Circuit breaker and its opening and closing method
WO2015098142A1 (en) * 2013-12-26 2015-07-02 三菱電機株式会社 Bypass switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499684B2 (en) 2020-11-20 2024-06-14 三菱電機株式会社 Electromagnetic Actuators and Circuit Breakers

Also Published As

Publication number Publication date
CN112514018B (en) 2023-09-19
CN112514018A (en) 2021-03-16
WO2020026357A1 (en) 2020-02-06
JPWO2020026609A1 (en) 2020-12-17
TWI709990B (en) 2020-11-11
TW202018748A (en) 2020-05-16
JP6987253B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
CN103681132B (en) Remote-operated circuit breaker
AU2016208304A1 (en) Dropout recloser
US8410876B2 (en) Electronic overload relay switch actuation
KR20010043645A (en) Contact mechanism for electronic overload
AU2004201318B2 (en) Circuit breaker mechanism including mechanism for breaking tack weld
JPWO2006114870A1 (en) Overcurrent relay
US20120119856A1 (en) Multi-phase medium voltage contactor
CN108475599B (en) Circuit breaker
WO2020026609A1 (en) Breaker
TW201009873A (en) Switching apparatus with tripping device
JP2019096575A (en) Vacuum circuit breaker
CA2338671C (en) Remotely controllable circuit breaker
US20240128040A1 (en) Circuit breaker including a remote on/off breaker
TWI673744B (en) Breaker
CN212209393U (en) Separating brake mechanism and circuit breaker
US20180308652A1 (en) Magnetic trip device of air circuit breaker
EP1209711B1 (en) Auxiliary device
JP2010140719A (en) Circuit breaker
CN111599650A (en) Switching-off mechanism, circuit breaker and switching-off reason indication method
KR20160147180A (en) Magnetic contactor driven permament magnet and two-coil
JP2023094101A (en) Tripping device and breaker
JP2024072986A (en) Switch operating mechanism, switch, and switch operating method
RU2344507C1 (en) Automatic air circuit breaker
CN112309795A (en) Instantaneous protection electromagnetic tripping device for direct current breaker
JP2019087484A (en) Circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844289

Country of ref document: EP

Kind code of ref document: A1