WO2020025846A1 - Method for synthesising mww material in its nanocrystalline form and its use in catalytic applications - Google Patents

Method for synthesising mww material in its nanocrystalline form and its use in catalytic applications Download PDF

Info

Publication number
WO2020025846A1
WO2020025846A1 PCT/ES2019/070537 ES2019070537W WO2020025846A1 WO 2020025846 A1 WO2020025846 A1 WO 2020025846A1 ES 2019070537 W ES2019070537 W ES 2019070537W WO 2020025846 A1 WO2020025846 A1 WO 2020025846A1
Authority
WO
WIPO (PCT)
Prior art keywords
combinations
synthesis method
zeolitic material
mww structure
mww
Prior art date
Application number
PCT/ES2019/070537
Other languages
Spanish (es)
French (fr)
Inventor
Eva María GALLEGO SÁNCHEZ
Cecilia Gertrudis PARIS CARRIZO
María Cristina MARTÍNEZ SÁNCHEZ
Manuel MOLINER MARÍN
Avelino Corma Canos
Original Assignee
Universitat Politècnica De València
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València, Consejo Superior De Investigaciones Científicas (Csic) filed Critical Universitat Politècnica De València
Publication of WO2020025846A1 publication Critical patent/WO2020025846A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a new method of synthesis of the zeolite with MWW crystalline structure in its nanocrystalline form, as well as the use as a catalyst of the zeolitic material synthesized according to the present synthesis procedure.
  • T Si, Al, P, Ti, Ge, Sn
  • IZA International Association of Zeolites
  • the International Association of Zeolites (IZA) has accepted more than 230 zeolites (http://www.iza-online.org) with different topology, zeolites that can be classified according to the size of their pores, whose openings or windows are delimited by a number T of atoms.
  • small pore zeolites have windows delimited by 8 T atoms
  • medium pore zeolites have windows delimited by 10 T atoms
  • medium pore zeolites have windows delimited by 12 T atoms
  • extra-large pore zeolites they have windows delimited by more than 12 T atoms.
  • zeolitic structures depending on their chemical composition (eg aluminosilicates), are traditionally anionic and, therefore, can be compensated by cations, such as cations alkaline and / or alkaline earth (eg Na, K, Ca, Mg, among others), ammonium cations, protons, and also any cation of a metallic nature, such as (Cu, Pd, Pt, Rh, Au, among others).
  • cations such as cations alkaline and / or alkaline earth (eg Na, K, Ca, Mg, among others), ammonium cations, protons, and also any cation of a metallic nature, such as (Cu, Pd, Pt, Rh, Au, among others).
  • the MWW zeolitic structure is composed of two independent pore systems, one of which is formed by large cavities of -0.7x1.8 nm connected by openings delimited by rings of 10 T atoms, and the other is defined by a circular channel of 10 T atoms.
  • the external surface of the MWW structure exposes half of the large cavities, generating a kind of superficial “cups”.
  • Different research groups have described various synthesis methodologies in order to control the crystal size of zeolites with MWW structure in their nanometric scale (less than 100 nm), at least in some dimension of crystals with MWW structure.
  • MWW zeolite with heterogeneous crystal sizes, with ranges between 10-900 nm or 50-300 nm, has recently been described using MWW crystals as sowing in the synthesis gel (CN 104528757; Shiyou Huagong, 2012, 41, 19-21, respectively).
  • the present invention relates to a new method of synthesis of a crystalline material that presents the MWW zeolitic structure in its nanocrystalline form using simple organic molecules, where the size of the crystals of said zeolitic material along the crystallographic directions [100] and [010] is on average in the range of 10 to 100 nm, and along the crystallographic direction [001] is on average in the range of 2 to 50 nm.
  • the axes [100] and [010] define the circular channels of 10 T atoms present in the MWW structure, which allow improving accessibility to the large cavities present in the MWW structure.
  • the present invention also relates to the subsequent use of said synthesized material as a catalyst and / or adsorbent in various catalytic processes, preferably as a catalyst in aromatic alkylation processes with light olefins, as a catalyst for the selective catalytic reduction (RCS) of NOx, or as a passive NOx adsorbent at low temperatures.
  • This new method of synthesis of a zeolitic material with the MWW structure in its nanocrystalline form can comprise at least the following steps:
  • ADE01 is selected from a monocyclic quaternary ammonium where at least one of the substituents is a linear alkyl chain consisting of 3-6 carbon atoms
  • ADE02 is selected from any amine or ammonium capable of directing the synthesis to crystallization of a zeolite with MWW structure.
  • the molar composition of the mixture is:
  • / is in the range of 0 to 0.5, preferably between 0.003 to 0.1; and more preferably between 0.01 to 0.075.
  • m is in the range of 0.01 to 1, preferably between 0.01 to 0.5; and more preferably between 0.05 to 0.2.
  • n is in the range of 0.01 to 2, preferably between 0.05 to 1; and more preferably between 0.1 to 0.6.
  • a is in the range of 0 to 2, preferably 0 to 1; and more preferably between 0 to 0.8.
  • the source of the tetravalent element Y may be selected from silicon, tin, titanium, zirconium, germanium, and combinations thereof.
  • the source of element Y is a source of silicon that may be selected from silicon oxide, silicon halide, colloidal silica, smoking silica, tetraalkyl ortho silicate, silicate, silicic acid, a previously synthesized crystalline material, a previously synthesized material amorphous and combinations thereof.
  • the source of Si may be selected from a previously synthesized crystalline material, a previously synthesized amorphous material and combinations thereof, and which may also contain other heteroatoms in their structure.
  • Some examples could be zeolites type faujasita (FAU), type L (LTL) and mesoporous materials ordered amorphous, such as MCM-41.
  • the trivalent element X may be selected from aluminum, boron, iron, indium, gallium and combinations thereof, preferably between Al, B and combinations thereof and, more preferably Al.
  • the trivalent element X is aluminum.
  • the aluminum source may be selected from at least any aluminum salt (eg aluminum nitrate), or any hydrated aluminum oxide.
  • the zeolite with MWW structure can be found in its aluminosilicate, metalaluminosilicate, borosilicate, aluminoborosilicate or purely siliceous form, being preferably selected from the zeolite MCM-22, ERB-1, SSZ-25, ITQ- 1, or any of its disorganized and / or pilareadas variants, as well as the MCM-56, MCM-49, ITQ-30 or SSZ-70 or any of its delaminated variants, such as ITQ-2, DS-ITQ-2 and / or MIT-1.
  • the zeolite with MWW structure is in its aluminosilicate form, and it is the MCM-22 zeolite.
  • the ADE01 may be selected from a quaternary ammonium monocyclic structure RiR2CicloN +, where the cycle group may be formed from 4-8 carbon atoms, and Ri and R2 groups can be strings linear alkyl between 1-4 and 3-6 carbon atoms, respectively.
  • Cycle refers to a linear alkyl chain of between 4-8 carbon atoms, optionally substituted by an alkyl of 1 to 3 carbon atoms, preferably a methyl, whose terminal carbons are attached to the N of the corresponding quaternary ammonium, so that said linear alkyl chain next to the N atom forms a heterocycle.
  • ADE01 may be selected from alkyl-pyrrolidiniums, alkyl-piperidiniums, alkyl-hexamethylene ammoniums, alkyl-heptamethylene ammoniums and combinations thereof, preferably may be an alkyl hexamethylene ammonium and more preferably it is / V-butyl-A / - methyl hexamethylene ammonium.
  • ADE02 may be selected from any amine or ammonium that directs the synthesis towards the crystallization of zeolite with MWW structure, and combinations thereof.
  • ADE02 may be selected from primary, secondary or tertiary amines, diamines or polyamines, or quaternary ammoniums, diamonds or polyammoniums, and combinations thereof.
  • ADE02 may be selected from pyrrolidines, piperidines, hexamethyleneimines, heptamethyleneimines, pyrrolidiniums, piperidiniums, hexamethylene ammoniums, heptamethylene ammonia, their alkylated derivatives, and combinations thereof.
  • ADE02 may be pyrrolidine, piperidine, hexamethyleneimine or combinations thereof and more preferably it is hexamethyleneimine.
  • the crystallization step described in ii) can preferably be carried out in an autoclave, under conditions that can be static or dynamic at a temperature selected between 80 and 200 ° C, preferably between 90 and 185 ° C and more preferably between 100 and 175 ° C and a crystallization time that can be between 6 hours and 50 days preferably between 1 and 35 days, and more preferably between 2 and 25 days. It should be borne in mind that the components of the synthesis mixture can come from different sources which can vary the crystallization conditions described.
  • MWW crystals to the synthesis mixture, which act as seeds favoring the described synthesis, in an amount of up to 25% by weight with respect to the total amount of the oxides corresponding to the sources of X and Y introduced in the synthesis medium. These crystals can be added before or during the crystallization process.
  • the resulting solid is separated from the mother liquor and recovered.
  • the recovery step iii) can be carried out by different separation techniques known as for example decantation, filtration, ultrafiltration, centrifugation or any other solid-liquid separation technique and combinations thereof.
  • the process of the present invention may further comprise the removal of the organic content contained within the material by any known removal / extraction technique.
  • the removal of the organic compound contained inside the material can be carried out by means of a heat treatment at temperatures above 25 ° C, preferably between 100 and 1000 ° C and for a period of time preferably between 2 minutes and 25 hours
  • the material produced according to the present invention can be pelletized using any known technique.
  • any cation present in the material can be exchanged by ion exchange for other cations using conventional techniques.
  • any cation present in the material can be exchanged, at least in part, by ion exchange.
  • Said cations may preferably be selected from metals, protons, proton precursors and mixtures thereof, and more preferably the exchange cation is a metal selected from rare earths, metals from the NA, NIA, VAT, VA, IB, II B groups. , II IB, IVB, VB, VIB, VIIB, VIII and combinations thereof.
  • the metal could be selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations thereof; preferably, they are selected from copper, iron, palladium, platinum, rhodium, and combinations thereof; and more preferably, between copper, iron, palladium and combinations thereof.
  • any metal selected from rare earths, metals of the groups NA, NIA, IVA, VA, IB, IIB, 111 B, IVB, VB, VIB, VIIB, VIII and combinations thereof, may be incorporated during the crystallization stage, or by any method of post-synthetic deposition, preferably by impregnation or physical mixing.
  • These metals can be introduced in their form cationic and / or from salts or other compounds that by decomposition generate the metal component or oxide in its appropriate catalytic form.
  • the metal incorporated during the crystallization stage or by any post-synthetic deposition method could be selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations of the same; preferably, they are selected from copper, iron, palladium, platinum, rhodium, and combinations thereof; and more preferably, between copper, iron, palladium and combinations thereof.
  • the present invention also relates to a zeolitic material with MWW structure obtained according to the process described above and which can have the following molar composition:
  • X is a trivalent element
  • A is an alkaline or alkaline earth cation
  • p is in the range of 0.01 to 1, preferably between 0.01 to 0.5; and more preferably between 0.05 to 0.2.
  • q is in the range of 0.01 to 2, preferably between 0.05 to 1; and more preferably between 0.1 to 0.6.
  • r is in the range of 0 to 2, preferably 0 to 1; and more preferably between 0 to 0.8.
  • z is in the range of 0 to 2, preferably 0 to 1; and more preferably between 0 to 0.8.
  • the material obtained according to the present invention can be calcined.
  • the zeolitic material with MWW structure can have the following molar composition after being calcined:
  • X is a trivalent element
  • A is an alkaline or alkaline earth cation
  • r is in the range of 0 to 2, preferably 0 to 1; and more preferably between 0 to 0.8.
  • the tetravalent element Y may be selected from silicon, tin, titanium, zirconium, germanium, and combinations thereof, preferably is Si, and the trivalent element X may be selected from aluminum, boron, iron, indium, gallium and combinations thereof, preferably between Al and B and, more preferably, Al.
  • any cation present in the material can be incorporated by ion exchange for other cations using conventional techniques.
  • any cation present in the material can be exchanged, at least in part, by ion exchange.
  • These exchange cations are preferably selected from metals, protons, proton precursors (such as ammonium ions) and mixtures thereof, more preferably said cation is a metal selected from rare earths, metals from the NA, NIA, VAT, VA groups , IB, IIB, 111 B, IVB, VB, VIB, VIIB, VIII and combinations thereof, and subsequently heat treated.
  • any metal selected from rare earths, metals of the groups NA, NIA, IVA, VA, IB, IIB, IIIB, IVB, VB, VIB, VIIB, VIII and combinations thereof can be incorporated during the crystallization stage, by exchange (if applicable), and / or by impregnation or by physical mixing.
  • These metals can be introduced in their cationic form and / or from salts or other compounds, such as organometallic complexes, which by decomposition generate the metal component or oxide in its appropriate catalytic form.
  • the incorporated metal could be selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations thereof; preferably, they are selected from copper, iron, palladium, platinum, rhodium, and combinations thereof; and more preferably, between copper, iron, palladium and combinations thereof.
  • the present invention also relates to the use of the materials described above and obtained according to the synthesis process of the present invention as catalysts for the conversion of feeds formed by organic compounds into products of higher added value, or as a molecular sieve for elimination. selective separation or adsorption of reactive stream components (eg gas mixtures) by contacting the feeds with the material obtained.
  • reactive stream components eg gas mixtures
  • the material obtained according to the present invention can be used as a catalyst in aromatic acylation processes, where the alkylatable aromatic compound can be selected from benzene, biphenyl, naphthalene, anthracene, phenanthrene, thiophene, benzothiophene, substituted derivatives of they and combinations thereof, and the alkylating agent is selected from defined, alcohols, polyalkylated aromatic compounds and combinations thereof.
  • the material obtained, containing or not containing hydrogenating-dehydrogenating components can be used in aromatic alkyl dealkylation processes, alkylaromatic transalkylation, aromatic alkyl isomerization, or in combined alkylaromatic dealkylation and transalkylation processes.
  • the material obtained according to the present invention can be used as a catalyst in oligomerization processes of light strips, such as propene, butene, or pentene, for the production of synthetic liquid fuels, within the range of gasoline or from diesel.
  • light strips such as propene, butene, or pentene
  • the material obtained according to the present invention can be used as a catalyst in linear hydrocarbon isomerization processes, such as in butene isomerization processes, in n-paraffin isomerization processes belonging to the naphtha fraction, or in isomerization processes of long-chain n-paraffins (dewaxing or isodewaxing processes).
  • the material obtained according to the present invention can be used as a catalyst in hydrocarbon cracking processes, or in processes of converting methanol to light olefins and / or hydrocarbons.
  • the material obtained in the present invention can be used as a catalyst in selective catalytic reduction (RCS) reactions of NOx (nitrogen oxide) in a gas stream.
  • RCS selective catalytic reduction
  • NOx nitrogen oxide
  • the NOx RCS will be performed in the presence of reducing agents, such as ammonium, urea and / or hydrocarbons. Materials to which copper atoms have been introduced according to any of the known techniques are especially useful for this use.
  • the material obtained in the present invention can be used as a passive adsorbent to treat the exhaust gases of an internal combustion engine, which comprises the adsorption of NOx at low temperatures, preferably less than 200 ° C, and its subsequent thermal desorption at temperatures higher than adsorption, the elimination of desorbed NOx being possible in a catalyst located after the passive adsorbent, preferably in an RCS catalyst.
  • Figure 1 Diffraction patterns of the materials obtained in Examples 2 and 3 of the present invention.
  • Figure 2 TEM images of the synthesized materials according to Examples 2 and 3 of the present invention.
  • the 1-bromobutane reagent (60.88 g; 0.445 mol) is added dropwise to a solution of hexamethyleneimine (44.14 g; 0.444 mol) in anhydrous dimethylformamide (250 ml) under an inert atmosphere, maintaining vigorous stirring. Subsequently, the mixture is heated to 70 ° C and allowed to react for 16 h. The mixture is then allowed to cool and a white crystalline solid corresponding to the / V-butylhexamethylene ammonium bromide salt is formed, which is filtered off under reduced pressure. The crystals are washed to remove dimethylformamide residues and dried under reduced pressure and heat.
  • the / V-butylhexamethyleneimine (21.84 g; 0.141 mol) is dissolved in 200 ml of chloroform, the solution obtained being cooled in an ice bath. Once the solution reaches 0 ° C, iodomethane (39.91 g; 0.281 mol) is added dropwise. When the system reaches room temperature, it is allowed to react for 72 h. After the reaction is over, the solvent is mostly evaporated and ethyl acetate is added to precipitate the compound. The / V-butyl-A / - methylhexamethylene ammonium (BMH) iodide is obtained as a white solid.
  • BMH methylhexamethylene ammonium
  • the organic matter occluded inside the pores of the MWW structure is removed by a calcination stage with air at 550 ° C for 8 hours.
  • the acid form of the material is obtained by cation exchange using a 1.0 M solution of NH4CI (1.0 g sample: 10 ml solution) at 80 ° C for 3 hours.
  • the sample is filtered and washed with distilled water and acetone, and calcined in air at 350 ° C for 4 hours.
  • the chemical composition of the final sample has an Si / Al ratio of 11.1.
  • the textural properties of the synthesized material according to Example 2 of the present invention have been calculated by adsorption / desorption of N2, obtaining 483 m 2 / g, 358 m 2 / g, and 125 m 2 / g, for the total BET area , micropore area and external area, respectively.
  • the material synthesized according to Example 2 has nanocrystals with average sizes around 50-90 nm in the crystallographic directions [100] and [010] (see Example 2 in Figure 2).
  • the final composition of the gel is: S1O 2 : 0.042 AI 2 O 3 : 0.15 Na 2 0: 0.5 HMI: 45 H 2 O.
  • the gel is introduced into a steel autoclave coated with a Teflon sheath, and kept at 150 ° C under rotation at 60 rpm for 7 days. After this period of time, the resulting solid is washed with plenty of distilled water and acetone, and dried at 90 ° C overnight.
  • X-ray diffraction confirms that the solid obtained has the characteristic peaks of the MCM-22 zeolite, MWW structure (see Example 3 in Figure 1).
  • the organic matter occluded inside the pores of the MWW structure is removed by a calcination stage with air at 550 ° C for 8 hours.
  • the acid form of the material is obtained by cation exchange using a 1.0 M solution of NH4CI (1.0 g sample: 10 ml solution) at 80 ° C for 3 hours.
  • the sample is filtered and washed with distilled water and acetone, and calcined in air at 350 ° C for 4 hours.
  • the chemical composition of the final sample has a Si / Al ratio of 10.6.
  • the textural properties of the synthesized material according to Example 3 of the present invention have been calculated by adsorption / desorption of N2, obtaining 457 m 2 / g, 374 m 2 / g, and 83 m 2 / g, for the total BET area , micropore area and external area, respectively.
  • the material synthesized according to Example 3 has flat crystals of hexagonal symmetry with average sizes around 250-300 nm in the crystallographic directions [100] and [010] (see TEM image in Figure 2).
  • the sample synthesized and calcined according to the method set forth in Example 2 is washed with 150 g of a 0.04 M aqueous solution of sodium nitrate (NaNCh, Fluka, 99% by weight) per gram of zeolite.
  • NaNCh sodium nitrate
  • Example 7 Catalytic test for the reaction of alkylation of benzene with propylene using the materials synthesized according to Examples 2 and 3.
  • the materials synthesized according to Examples 2 and 3 have been screened by selecting the particle size between 0.25 and 0.42 mm, to carry out the alkylation reaction of benzene with propylene.
  • the samples (0.050 g) are diluted with silicon carbide (0.59-0.84 mm) to a total catalytic bed volume of 3.6 ml.
  • the diluted catalysts are introduced into a 1 cm diameter steel tubular reactor, and activated at a nitrogen flow (100 ml / min) at 200 ° C for 2 hours.
  • the temperature is lowered to the reaction temperature of 125 ° C in N2 flow, the N2 flow is interrupted and a mixture of benzene: n-octane (15: 1 weight ratio) is fed until a pressure is achieved 3.5 MPa
  • n-octane is used as an internal standard and is inert in the experimental conditions used.
  • the reactor is isolated to feed a mixture of benzene: n-octane (655 ml / min) and propylene (165 ml / min), the benzene / propylene molar ratio being 3.5, by parallel conduction until a composition is achieved constant, at which time the feed is passed through the reactor again, and the reaction is considered to be the beginning.
  • WHSV Weight Hour Space Velocity
  • propylene 100 h 1
  • benzene is in the liquid phase.
  • the composition of the current at the outlet of the reactor has been analyzed by gas chromatography in a Varian 450 connected in line, equipped with a 5% phenyl-95% dimethylpolysiloxane capillary column and with a flame ionization detector (FID).
  • FID flame ionization detector
  • Example 2 Comparing the results of the materials presented in Table 1, it is concluded that the catalyst based on the nanocrystalline MWW zeolite obtained according to Example 2 of the present invention is much more active than the conventional MWW zeolite based catalyst used for comparative purposes (see Example 3).
  • the propylene conversions for catalysts based on the nanocrystalline MWW zeolite and conventional MWW zeolite are 96.3 and 57.5% at a reaction time (TOS, Time On Stream) of 27 and 21 min, respectively.
  • TOS Time On Stream
  • the catalyst based on the material obtained according to Example 2 produces higher yield to the alkylation product, isopropylbenzene (IPB).
  • Example 8 NOx Adsorption / Desorption using the materials synthesized according to Examples 4 and 5.
  • This adsorption step is followed by a desorption at a programmed temperature using a temperature ramp of 17 ° C / minute in the presence of the same gas stream, until a temperature of 450 ° C is reached.
  • Example 9 Catalytic test for the reaction of RCS of NOx using the material synthesized according to Example 6.
  • the catalytic activity of the Cu-nMWW sample synthesized according to Examples 6 of the present invention has been evaluated for the selective catalytic reduction (RCS) of NOx.
  • the synthesized material has been screened by selecting the particle size between 0.25 and 0.42 mm, 100 mg of said sample being diluted in silicon carbide (0.59-0.84 mm) to a total catalytic bed volume of 1.5 ml.
  • the diluted catalyst is introduced into a tubular steel reactor 1.2 cm in diameter and 20 cm long, and is activated in nitrogen flow (100 ml / min) at 550 ° C for 1 hour.
  • reaction mixture 300 ml / min, 500 ppm NO, 530 ppm NH 3 , 7% O2 and 5% H2O
  • reaction is evaluated in the temperature range between 350-550 ° C.
  • the NOx present at the outlet of the gases from the reactor is analyzed continuously by means of a chemiluminescent detector (Thermo 62C).

Abstract

The invention relates to a method for synthesising a material with an MWW zeolite structure in its nanocrystalline form, which comprises the following steps: i) preparing a mixture comprising a water source, at least one source of a tetravalent element Y, at least one source of a trivalent element X, at least one source of an alkaline cation or alkaline earth metal cation (A), and at least two organic molecules (ADE01 and ADE02), wherein ADE01 is a monocyclic quaternary ammonium in which one of the substituents is an alkyl chain of 3-6 carbon atoms, and ADE02 is selected from any amine or ammonium able to direct the formation of MWW; ii) crystallising the mixture obtained in step i) in a reactor; and iii) recovering the crystalline material obtained in step ii).

Description

PROCEDIMIENTO DE SÍNTESIS DEL MATERIAL MWW EN SU FORMA SYNTHESIS PROCEDURE OF THE MWW MATERIAL IN ITS FORM
NANOCRISTALINA Y SU USO EN APLICACIONES CATALÍTICAS NANOCRISTALINE AND ITS USE IN CATALYTIC APPLICATIONS
Campo de la Técnica Technical Field
La presente invención se refiere a un nuevo procedimiento de síntesis de la zeolita con estructura cristalina MWW en su forma nanocristalina, así como al uso como catalizador del material zeolítico sintetizado de acuerdo con el presente procedimiento de síntesis.  The present invention relates to a new method of synthesis of the zeolite with MWW crystalline structure in its nanocrystalline form, as well as the use as a catalyst of the zeolitic material synthesized according to the present synthesis procedure.
Antecedentes Background
Las zeolitas son materiales microporosos con estructuras cristalinas formadas por tetraedros T04 (T=Si, Al, P, Ti, Ge, Sn... ) interconectados por átomos de oxígeno, que se disponen formando poros y cavidades de dimensiones moleculares (3-15 Á) uniformes en tamaño y forma. La Asociación Internacional de Zeolitas (IZA) ha aceptado más de 230 zeolitas (http://www.iza-online.org) con distinta topología, zeolitas que se pueden clasificar en función del tamaño de sus poros, cuyas aperturas o ventanas están delimitadas por un número T de átomos. Así pues, las zeolitas de poro pequeño presentan ventanas delimitadas por 8 átomos T, las zeolitas de poro medio presentan ventanas delimitadas por 10 átomos T, las zeolitas de poro medio presentan ventanas delimitadas por 12 átomos T, y las zeolitas de poro extra-grande presentan ventanas delimitadas por más de 12 átomos T. De manera general, se puede indicar que las estructuras zeolíticas, dependiendo de su composición química (p.e. aluminosilicatos), son tradicionalmente aniónicas y, por tanto, pueden estar compensadas por cationes, como por ejemplo cationes alcalinos y/o alcalinotérreos (p.e. Na, K, Ca, Mg, entre otros), cationes amonio, protones, y también cualquier catión de naturaleza metálica, como por ejemplo (Cu, Pd, Pt, Rh, Au, entre otros). Zeolites are microporous materials with crystalline structures formed by tetrahedra T0 4 (T = Si, Al, P, Ti, Ge, Sn ...) interconnected by oxygen atoms, which are arranged forming pores and cavities of molecular dimensions (3- 15 Á) uniforms in size and shape. The International Association of Zeolites (IZA) has accepted more than 230 zeolites (http://www.iza-online.org) with different topology, zeolites that can be classified according to the size of their pores, whose openings or windows are delimited by a number T of atoms. Thus, small pore zeolites have windows delimited by 8 T atoms, medium pore zeolites have windows delimited by 10 T atoms, medium pore zeolites have windows delimited by 12 T atoms, and extra-large pore zeolites they have windows delimited by more than 12 T atoms. In general, it can be indicated that zeolitic structures, depending on their chemical composition (eg aluminosilicates), are traditionally anionic and, therefore, can be compensated by cations, such as cations alkaline and / or alkaline earth (eg Na, K, Ca, Mg, among others), ammonium cations, protons, and also any cation of a metallic nature, such as (Cu, Pd, Pt, Rh, Au, among others).
Gracias a esta gran variedad de estructuras y a la posibilidad de modificar la composición química de la mayoría de las zeolitas, estos materiales tienen numerosas aplicaciones en procesos de adsorción, intercambio iónico y como catalizadores heterogéneos en los campos de refino, petroquímica y medioambiente (Nature 2002, 417, 813; Coord. Chem. Rev. 2011, 255, 1558). Thanks to this great variety of structures and the possibility of modifying the chemical composition of most zeolites, these materials have numerous applications in adsorption processes, ion exchange and as heterogeneous catalysts in the refining, petrochemical and environmental fields (Nature 2002 , 417, 813; Coord. Chem. Rev. 2011, 255, 1558).
En su aplicación como catalizadores heterogéneos, la presencia de poros y cavidades de dimensiones moleculares confiere a las zeolitas la denominada selectividad de forma, ejercida por su estructura a los reactantes, estados de transición o productos involucrados en la reacción. Sin embargo, las dimensiones reducidas de estos sistemas de canales también pueden ocasionar problemas de difusión de moléculas más voluminosas, que tendrán consecuencias directas en su actividad, selectividad y velocidad de desactivación, y supondrán una infrautilización del material zeolítico. Por estos motivos puede ser conveniente disminuir la longitud de los poros de la zeolita y, por tanto, la longitud de los caminos difusionales. Existen distintas propuestas para reducir la longitud de los canales, como la generación de mesoporosidad intra- cristalina por síntesis directa mediante métodos de “hard templating” o mediante tratamientos de desmetalización post-síntesis (Chem. Soc. Rev. 2008, 37, 2530; Micropor. Mesopor. Mater. 2003, 65, 59). Otra alternativa para disminuir la longitud de los poros es reducir el tamaño de cristal de las zeolitas, de dimensiones microscópicas a dimensiones nanoscópicas, en particular, por debajo de los 100 nm (Chem. Soc. Rev. 2015, 44, 1201-1233). In its application as heterogeneous catalysts, the presence of pores and cavities of molecular dimensions gives zeolites the so-called shape selectivity, exerted by their structure to reactants, transition states or products involved in the reaction However, the reduced dimensions of these channel systems can also cause problems of diffusion of more bulky molecules, which will have direct consequences on their activity, selectivity and deactivation rate, and will lead to underutilization of the zeolitic material. For these reasons it may be convenient to decrease the length of the pores of the zeolite and, therefore, the length of the diffusion paths. There are different proposals to reduce the length of the channels, such as the generation of intracrystalline mesoporosity by direct synthesis by means of hard templating methods or by post-synthesis demetalization treatments (Chem. Soc. Rev. 2008, 37, 2530; Micropor, Mesopor, Mater. 2003, 65, 59). Another alternative to reduce the length of the pores is to reduce the crystal size of the zeolites, from microscopic dimensions to nanoscopic dimensions, in particular, below 100 nm (Chem. Soc. Rev. 2015, 44, 1201-1233) .
La estructura zeolítica MWW está compuesta por dos sistemas independientes de poros, uno de ellos está formado por grandes cavidades de -0.7x1.8 nm conectadas por aperturas delimitadas por anillos de 10 átomos T, y el otro está definido por un canal circular de 10 átomos T. La superficie externa de la estructura MWW expone la mitad de las grandes cavidades, generando una especie de“copas” superficiales. Diferentes grupos de investigación han descrito diversas metodologías de síntesis con el fin de controlar el tamaño de cristal de las zeolitas con estructura MWW en su escala nanométrica (menor a los 100 nm), al menos en alguna dimensión de los cristales con estructura MWW. Para ello, y de manera general, se requiere el uso de compuestos orgánicos voluminosos, tales como cationes de naturaleza surfactante (Nature, 1998, 396, 353; Chem. Sci., 2015, 6, 6320; Angew. Chem. Int. Ed., 2015, 54, 13724) o polímeros catiónicos (Cata!. Commun., 2014, 43,218). Estos ADEOs voluminosos descritos para estos procesos de síntesis suelen presentar cadenas alifáticas largas y/o requerir del uso de numerosas etapas de síntesis, lo cual puede encarecer la preparación de la estructura MWW. The MWW zeolitic structure is composed of two independent pore systems, one of which is formed by large cavities of -0.7x1.8 nm connected by openings delimited by rings of 10 T atoms, and the other is defined by a circular channel of 10 T atoms. The external surface of the MWW structure exposes half of the large cavities, generating a kind of superficial “cups”. Different research groups have described various synthesis methodologies in order to control the crystal size of zeolites with MWW structure in their nanometric scale (less than 100 nm), at least in some dimension of crystals with MWW structure. For this, and in general, the use of bulky organic compounds is required, such as cations of a surfactant nature (Nature, 1998, 396, 353; Chem. Sci., 2015, 6, 6320; Angew. Chem. Int. Ed ., 2015, 54, 13724) or cationic polymers (Cata !. Commun., 2014, 43,218). These bulky ADEs described for these synthesis processes usually have long aliphatic chains and / or require the use of numerous stages of synthesis, which may make the preparation of the MWW structure more expensive.
Es, además, importante destacar que los métodos que presentan el uso de moléculas orgánicas de naturaleza surfactante con largas cadenas alifáticas (> 12 carbonos) dirigen la cristalización del material MWW con tamaños menores a los 10 nm a lo largo del eje cristalográfico [001], pero, por el contrario, no permite reducir las dimensiones a lo largo de los ejes cristalográficos [100] y [010] por debajo de los 300 nm (Nature, 1998, 396, 353; Chem. Sci., 2015, 6, 6320; Angew. Chem. Int. Ed., 2015, 54, 13724). La reducción del tamaño del cristal de MWW por debajo de los 100 nm en los ejes [100] y [010] sería muy importante, ya que permitiría una mejor difusión a lo largo de los canales circulares de 10 átomos T, permitiendo a su vez una mejor accesibilidad a las grandes cavidades presentes en la estructura MWW. It is also important to note that the methods that present the use of organic molecules of a surfactant nature with long aliphatic chains (> 12 carbons) direct the crystallization of the MWW material with sizes smaller than 10 nm along the crystallographic axis [001] , but, on the contrary, it does not allow reducing the dimensions along the crystallographic axes [100] and [010] below 300 nm (Nature, 1998, 396, 353; Chem. Sci., 2015, 6, 6320; Angew. Chem. Int. Ed., 2015, 54, 13724). The reduction of the MWW crystal size below 100 nm in the [100] and [010] axes would be very important, since it would allow a better diffusion along the circular channels of 10 T atoms, allowing in turn better accessibility to the large cavities present in the MWW structure.
La preparación de la zeolita MWW con tamaños de cristal heterogéneos, con rangos comprendidos entre 10-900 nm ó 50-300 nm, se ha descrito recientemente utilizando cristales de MWW como siembra en el gel de síntesis (CN 104528757; Shiyou Huagong, 2012, 41 , 19-21 , respectivamente). The preparation of the MWW zeolite with heterogeneous crystal sizes, with ranges between 10-900 nm or 50-300 nm, has recently been described using MWW crystals as sowing in the synthesis gel (CN 104528757; Shiyou Huagong, 2012, 41, 19-21, respectively).
A pesar de los antecedentes encontrados en la bibliografía y descritos en los párrafos anteriores, existe una clara necesidad por parte de la industria química en mejorar la síntesis de la zeolita MWW en su forma nanocristalina y, en particular, en sintetizarla con morfologías en las que se reduzca el tamaño de cristal en las direcciones cristalográficas [100] y [010] utilizando moléculas orgánicas sencillas, para su posterior aplicación como catalizador y/o adsorbente en diversos procesos catalíticos, y de manera más particular, para su uso en procesos de alquilación de aromáticos con olefinas ligeras, la reducción catalítica selectiva (RCS) de NOx, o como adsorbente pasivo de NOx a bajas temperaturas. Despite the background found in the literature and described in the previous paragraphs, there is a clear need for the chemical industry to improve the synthesis of the MWW zeolite in its nanocrystalline form and, in particular, to synthesize it with morphologies in which reduce the crystal size in the crystallographic directions [100] and [010] using simple organic molecules, for later application as a catalyst and / or adsorbent in various catalytic processes, and more particularly, for use in alkylation processes of aromatics with light olefins, selective catalytic reduction (RCS) of NOx, or as a passive adsorbent of NOx at low temperatures.
Descripción de la Invención Description of the Invention
La presente invención se refiere a un nuevo procedimiento de síntesis de un material cristalino que presenta la estructura zeolítica MWW en su forma nanocristalina utilizando moléculas orgánicas sencillas, donde la dimensión de los cristales de dicho material zeolítico a lo largo de las direcciones cristalográficas [100] y [010] está comprendida en promedio en el intervalo de 10 a 100 nm, y a lo largo de la dirección cristalográfica [001] está comprendida en promedio en el intervalo de 2 a 50 nm. Los ejes [100] y [010] definen los canales circulares de 10 átomos T presentes en la estructura MWW, los cuales permiten mejorar la accesibilidad a las grandes cavidades presentes en la estructura MWW. La presente invención también se refiere al posterior uso de dicho material sintetizado como catalizador y/o adsorbente en diversos procesos catalíticos, preferentemente como catalizador en procesos de alquilación de aromáticos con olefinas ligeras, como catalizador para la reducción catalítica selectiva (RCS) de NOx, o como adsorbente pasivo de NOx a bajas temperaturas. Este nuevo procedimiento de síntesis de un material zeolítico con la estructura MWW en su forma nanocristalina puede comprender, al menos, los siguientes pasos: The present invention relates to a new method of synthesis of a crystalline material that presents the MWW zeolitic structure in its nanocrystalline form using simple organic molecules, where the size of the crystals of said zeolitic material along the crystallographic directions [100] and [010] is on average in the range of 10 to 100 nm, and along the crystallographic direction [001] is on average in the range of 2 to 50 nm. The axes [100] and [010] define the circular channels of 10 T atoms present in the MWW structure, which allow improving accessibility to the large cavities present in the MWW structure. The present invention also relates to the subsequent use of said synthesized material as a catalyst and / or adsorbent in various catalytic processes, preferably as a catalyst in aromatic alkylation processes with light olefins, as a catalyst for the selective catalytic reduction (RCS) of NOx, or as a passive NOx adsorbent at low temperatures. This new method of synthesis of a zeolitic material with the MWW structure in its nanocrystalline form can comprise at least the following steps:
i) Preparación de una mezcla que comprenda al menos una fuente de agua, al menos una fuente de un elemento tetravalente Y, al menos una fuente de un elemento trivalente X, al menos una fuente de un catión alcalino o alcalinotérreo (A), y al menos dos moléculas orgánicas (ADE01 y ADE02), donde ADE01 está seleccionado entre un amonio cuaternario monocíclico donde al menos uno de los sustituyentes es una cadena alquílica lineal formada por entre 3-6 átomos de carbono, y ADE02 está seleccionado entre cualquier amina o amonio capaz de dirigir la síntesis a la cristalización de una zeolita con estructura MWW. La composición molar de la mezcla es:  i) Preparation of a mixture comprising at least one source of water, at least one source of a tetravalent element Y, at least one source of a trivalent element X, at least one source of an alkaline or alkaline earth cation (A), and at least two organic molecules (ADE01 and ADE02), where ADE01 is selected from a monocyclic quaternary ammonium where at least one of the substituents is a linear alkyl chain consisting of 3-6 carbon atoms, and ADE02 is selected from any amine or ammonium capable of directing the synthesis to crystallization of a zeolite with MWW structure. The molar composition of the mixture is:
/ X203 : Y02 : m ADE01 : n ADE02: a A . y H20 donde / X 2 0 3 : Y0 2 : m ADE01: n ADE02: a A. and H 2 0 where
/ está comprendido en el intervalo de 0 a 0.5, preferentemente entre 0.003 a 0.1 ; y más preferentemente entre 0.01 a 0.075.  / is in the range of 0 to 0.5, preferably between 0.003 to 0.1; and more preferably between 0.01 to 0.075.
m está comprendido en el intervalo de 0.01 a 1 , preferentemente entre 0.01 a 0.5; y más preferentemente entre 0.05 a 0.2.  m is in the range of 0.01 to 1, preferably between 0.01 to 0.5; and more preferably between 0.05 to 0.2.
n está comprendido en el intervalo de 0.01 a 2, preferentemente entre 0.05 a 1 ; y más preferentemente entre 0.1 a 0.6.  n is in the range of 0.01 to 2, preferably between 0.05 to 1; and more preferably between 0.1 to 0.6.
a está comprendido en el intervalo de 0 a 2, preferentemente entre 0 a 1 ; y más preferentemente entre 0 a 0.8.  a is in the range of 0 to 2, preferably 0 to 1; and more preferably between 0 to 0.8.
y está comprendido en el intervalo de 2 a 200, preferentemente entre 5 a 150, y más preferentemente entre 7 a 75.  and is in the range of 2 to 200, preferably between 5 to 150, and more preferably between 7 to 75.
ii) Cristalización de la mezcla obtenida en i) en un reactor  ii) Crystallization of the mixture obtained in i) in a reactor
iii) Recuperación del material cristalino obtenido en ii)  iii) Recovery of the crystalline material obtained in ii)
Según una realización particular, la fuente del elemento tetravalente Y puede estar seleccionada entre silicio, estaño, titanio, zirconio, germanio, y combinaciones de los mismos. De manera preferente, la fuente del elemento Y es una fuente de silicio que puede estar seleccionada entre óxido de silicio, halogenuro de silicio, sílice coloidal, sílice fumante, tetraalquilortosilicato, silicato, ácido silícico, un material previamente sintetizado cristalino, un material previamente sintetizado amorfo y combinaciones de las mismas. According to a particular embodiment, the source of the tetravalent element Y may be selected from silicon, tin, titanium, zirconium, germanium, and combinations thereof. Preferably, the source of element Y is a source of silicon that may be selected from silicon oxide, silicon halide, colloidal silica, smoking silica, tetraalkyl ortho silicate, silicate, silicic acid, a previously synthesized crystalline material, a previously synthesized material amorphous and combinations thereof.
Según una realización particular, la fuente de Si puede estar seleccionada entre un material previamente sintetizado cristalino, un material previamente sintetizado amorfo y combinaciones de las mismas, y que puede contener, además, otros heteroátomos en su estructura. Algunos ejemplos podrían ser zeolitas tipo faujasita (FAU), tipo L (LTL) y materiales mesoporosos ordenados amorfos, como la MCM-41. According to a particular embodiment, the source of Si may be selected from a previously synthesized crystalline material, a previously synthesized amorphous material and combinations thereof, and which may also contain other heteroatoms in their structure. Some examples could be zeolites type faujasita (FAU), type L (LTL) and mesoporous materials ordered amorphous, such as MCM-41.
Según una realización preferente, el elemento trivalente X puede estar seleccionada entre aluminio, boro, hierro, indio, galio y combinaciones de los mismos, preferentemente entre Al, B y combinaciones de los mismos y, más preferente Al.  According to a preferred embodiment, the trivalent element X may be selected from aluminum, boron, iron, indium, gallium and combinations thereof, preferably between Al, B and combinations thereof and, more preferably Al.
Según una realización particular, el elemento trivalente X es aluminio. La fuente de aluminio puede estar seleccionada entre, al menos, cualquier sal de aluminio (por ejemplo nitrato de aluminio), o cualquier óxido de aluminio hidratado. According to a particular embodiment, the trivalent element X is aluminum. The aluminum source may be selected from at least any aluminum salt (eg aluminum nitrate), or any hydrated aluminum oxide.
Según una realización particular, la zeolita con estructura MWW se puede encontrar en su forma aluminosilicato, metalaluminosilicato, borosilicato, aluminoborosilicato o puramente silícea, pudiendo estar seleccionada de manera preferente entre la zeolita MCM-22, ERB-1 , SSZ-25, ITQ-1 , o cualquiera de sus variantes desorganizadas y/o pilareadas, así como la MCM-56, MCM-49, ITQ-30 o SSZ-70 o cualquiera de sus variantes deslaminadas, como ITQ-2, DS-ITQ-2 y/o MIT-1. According to a particular embodiment, the zeolite with MWW structure can be found in its aluminosilicate, metalaluminosilicate, borosilicate, aluminoborosilicate or purely siliceous form, being preferably selected from the zeolite MCM-22, ERB-1, SSZ-25, ITQ- 1, or any of its disorganized and / or pilareadas variants, as well as the MCM-56, MCM-49, ITQ-30 or SSZ-70 or any of its delaminated variants, such as ITQ-2, DS-ITQ-2 and / or MIT-1.
Según una realización particular, la zeolita con estructura MWW se encuentra en su forma aluminosilicato, y es la zeolita MCM-22. According to a particular embodiment, the zeolite with MWW structure is in its aluminosilicate form, and it is the MCM-22 zeolite.
Según una realización particular de la presente invención, el ADE01 puede estar seleccionado entre un amonio cuaternario monocíclico con la estructura RiR2CicloN+, donde el grupo Ciclo puede estar formado entre 4-8 átomos de carbono, y los grupos Ri y R2 pueden ser cadenas alquílicas lineales comprendidas entre 1-4 y 3-6 átomos de carbono, respectivamente. According to a particular embodiment of the present invention, the ADE01 may be selected from a quaternary ammonium monocyclic structure RiR2CicloN +, where the cycle group may be formed from 4-8 carbon atoms, and Ri and R2 groups can be strings linear alkyl between 1-4 and 3-6 carbon atoms, respectively.
En la presente invención, el término“Ciclo” se refiere a una cadena alquílica lineal de entre 4-8 átomos de carbono, opcionalmente sustituida por un alquilo de entre 1 a 3 átomos de carbono, preferentemente un metilo, cuyos carbonos terminales se unen al N del amonio cuaternario correspondiente, de manera que dicha cadena alquílica lineal junto al átomo de N conforman un heterociclo. In the present invention, the term "Cycle" refers to a linear alkyl chain of between 4-8 carbon atoms, optionally substituted by an alkyl of 1 to 3 carbon atoms, preferably a methyl, whose terminal carbons are attached to the N of the corresponding quaternary ammonium, so that said linear alkyl chain next to the N atom forms a heterocycle.
Según una realización particular de la presente invención, el ADE01 puede estar seleccionado entre alquil-pirrolidinios, alquil-piperidinios, alquil-hexametilenamonios, alquil-heptametilenamonios y combinaciones de los mismos, preferentemente puede ser un alquil-hexametilenamonio y más preferentemente es /V-butil-A/- metilhexametilenamonio. According to a particular embodiment of the present invention, ADE01 may be selected from alkyl-pyrrolidiniums, alkyl-piperidiniums, alkyl-hexamethylene ammoniums, alkyl-heptamethylene ammoniums and combinations thereof, preferably may be an alkyl hexamethylene ammonium and more preferably it is / V-butyl-A / - methyl hexamethylene ammonium.
Según una realización particular de la presente invención, el ADE02 puede estar seleccionada entre cualquier amina o amonio que dirija la síntesis hacia la cristalización de zeolita con estructura MWW, y combinaciones de los mismos.  According to a particular embodiment of the present invention, ADE02 may be selected from any amine or ammonium that directs the synthesis towards the crystallization of zeolite with MWW structure, and combinations thereof.
Según una realización particular de la presente invención, ADE02 puede estar seleccionado entre aminas, diaminas o poliaminas primarias, secundarias o terciarias, o amonios, diamonios o poliamonios cuaternarios, y combinaciones de los mismos. According to a particular embodiment of the present invention, ADE02 may be selected from primary, secondary or tertiary amines, diamines or polyamines, or quaternary ammoniums, diamonds or polyammoniums, and combinations thereof.
Según una realización particular de la presente invención, ADE02 puede estar seleccionado entre pirrolidinas, piperidinas, hexametileniminas, heptametileniminas, pirrolidinios, piperidinios, hexametilenamonios, heptametilenamonios, sus derivados alquilados, y combinaciones de los mismos. De manera preferente ADE02 puede ser pirrolidina, piperidina, hexametilenimina o combinaciones de los mismos y más preferentemente es hexametilenimina. According to a particular embodiment of the present invention, ADE02 may be selected from pyrrolidines, piperidines, hexamethyleneimines, heptamethyleneimines, pyrrolidiniums, piperidiniums, hexamethylene ammoniums, heptamethylene ammonia, their alkylated derivatives, and combinations thereof. Preferably ADE02 may be pyrrolidine, piperidine, hexamethyleneimine or combinations thereof and more preferably it is hexamethyleneimine.
Según la presente invención, el paso de cristalización descrito en ii) se puede llevar a cabo preferentemente en autoclave, en condiciones que pueden ser estáticas o dinámicas a una temperatura seleccionada entre 80 y 200°C, preferentemente entre 90 y 185°C y más preferentemente entre 100 y 175°C y un tiempo de cristalización que puede estar comprendido entre 6 horas y 50 días preferentemente entre 1 y 35 días, y más preferentemente entre 2 y 25 días. Hay que tener en cuenta que los componentes de la mezcla de síntesis pueden provenir de diferentes fuentes lo que puede hacer variar las condiciones de cristalización descritas. According to the present invention, the crystallization step described in ii) can preferably be carried out in an autoclave, under conditions that can be static or dynamic at a temperature selected between 80 and 200 ° C, preferably between 90 and 185 ° C and more preferably between 100 and 175 ° C and a crystallization time that can be between 6 hours and 50 days preferably between 1 and 35 days, and more preferably between 2 and 25 days. It should be borne in mind that the components of the synthesis mixture can come from different sources which can vary the crystallization conditions described.
Según una realización particular del proceso de la presente invención, es posible añadir cristales de MWW a la mezcla de síntesis, que actúan como semillas favoreciendo la síntesis descrita, en una cantidad de hasta el 25% en peso respecto a la cantidad total de los óxidos correspondientes a las fuentes de X e Y introducidas en el medio de síntesis. Estos cristales pueden añadirse antes o durante del proceso de cristalización. According to a particular embodiment of the process of the present invention, it is possible to add MWW crystals to the synthesis mixture, which act as seeds favoring the described synthesis, in an amount of up to 25% by weight with respect to the total amount of the oxides corresponding to the sources of X and Y introduced in the synthesis medium. These crystals can be added before or during the crystallization process.
Según el proceso descrito, después de la cristalización descrita en ii), el sólido resultante se separa de las aguas madre y se recupera. El paso de recuperación iii) se puede llevar a cabo por diferentes técnicas de separación conocidas como por ejemplo decantación, filtración, ultrafiltración, centrifugación o cualquier otra técnica de separación sólido-líquido y combinaciones de las mismas. According to the described process, after the crystallization described in ii), the resulting solid is separated from the mother liquor and recovered. The recovery step iii) can be carried out by different separation techniques known as for example decantation, filtration, ultrafiltration, centrifugation or any other solid-liquid separation technique and combinations thereof.
El procedimiento de la presente invención puede comprender, además, la eliminación del contenido orgánico recluido en el interior del material mediante cualquier técnica de eliminación/extracción conocida.  The process of the present invention may further comprise the removal of the organic content contained within the material by any known removal / extraction technique.
Según una realización particular, la eliminación del compuesto orgánico recluido en el interior del material se puede llevar a cabo mediante un tratamiento térmico a temperaturas superiores a 25°C, preferentemente entre 100 y 1000°C y durante un periodo de tiempo comprendido preferentemente entre 2 minutos y 25 horas. According to a particular embodiment, the removal of the organic compound contained inside the material can be carried out by means of a heat treatment at temperatures above 25 ° C, preferably between 100 and 1000 ° C and for a period of time preferably between 2 minutes and 25 hours
Según otra realización particular, el material producido según la presente invención puede ser peletizado utilizando cualquier técnica conocida. According to another particular embodiment, the material produced according to the present invention can be pelletized using any known technique.
Según una realización preferente, cualquier catión presente en el material puede ser intercambiado mediante intercambio iónico por otros cationes utilizando técnicas convencionales. Así pues, dependiendo de la relación molar X2O3/YO2 del material sintetizado, cualquier catión presente en el material puede ser intercambiado, por lo menos en parte, mediante intercambio iónico. Dichos cationes pueden estar seleccionados preferentemente entre metales, protones, precursores de protones y mezclas de ellos, y más preferentemente el catión de intercambio es un metal seleccionado entre tierras raras, metales de los grupos NA, NIA, IVA, VA, IB, II B, II IB, IVB, VB, VIB, VIIB, VIII y combinaciones de los mismos. According to a preferred embodiment, any cation present in the material can be exchanged by ion exchange for other cations using conventional techniques. Thus, depending on the X2O3 / YO2 molar ratio of the synthesized material, any cation present in the material can be exchanged, at least in part, by ion exchange. Said cations may preferably be selected from metals, protons, proton precursors and mixtures thereof, and more preferably the exchange cation is a metal selected from rare earths, metals from the NA, NIA, VAT, VA, IB, II B groups. , II IB, IVB, VB, VIB, VIIB, VIII and combinations thereof.
Según una realización particular, el metal podría estar seleccionado entre cobre, hierro, paladio, platino, rodio, oro, plata, iridio, rutenio, osmio, y combinaciones de los mismos; preferentemente, están seleccionados entre cobre, hierro, paladio, platino, rodio, y combinaciones de los mismos; y de manera más preferente, entre cobre, hierro, paladio y combinaciones de los mismos. According to a particular embodiment, the metal could be selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations thereof; preferably, they are selected from copper, iron, palladium, platinum, rhodium, and combinations thereof; and more preferably, between copper, iron, palladium and combinations thereof.
Según una realización preferente, cualquier metal seleccionado entre tierras raras, metales de los grupos NA, NIA, IVA, VA, IB, IIB, 111 B, IVB, VB, VIB, VIIB, VIII y combinaciones de los mismos, puede ser incorporado durante la etapa de cristalización, o por cualquier método de deposición post-sintética, preferentemente por impregnación o mezcla física. Estos metales pueden ser introducidos en su forma catiónica y/o a partir de sales u otros compuestos que por descomposición generen el componente metálico u óxido en su forma catalítica adecuada. According to a preferred embodiment, any metal selected from rare earths, metals of the groups NA, NIA, IVA, VA, IB, IIB, 111 B, IVB, VB, VIB, VIIB, VIII and combinations thereof, may be incorporated during the crystallization stage, or by any method of post-synthetic deposition, preferably by impregnation or physical mixing. These metals can be introduced in their form cationic and / or from salts or other compounds that by decomposition generate the metal component or oxide in its appropriate catalytic form.
Según una realización particular, el metal incorporado durante la etapa de cristalización o por cualquier método de deposición post-sintética, podría estar seleccionado entre cobre, hierro, paladio, platino, rodio, oro, plata, iridio, rutenio, osmio, y combinaciones de los mismos; preferentemente, están seleccionados entre cobre, hierro, paladio, platino, rodio, y combinaciones de los mismos; y de manera más preferente, entre cobre, hierro, paladio y combinaciones de los mismos. According to a particular embodiment, the metal incorporated during the crystallization stage or by any post-synthetic deposition method, could be selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations of the same; preferably, they are selected from copper, iron, palladium, platinum, rhodium, and combinations thereof; and more preferably, between copper, iron, palladium and combinations thereof.
La presente invención también se refiere a un material zeolítico con estructura MWW obtenido según el proceso descrito anteriormente y que puede tener la siguiente composición molar: The present invention also relates to a zeolitic material with MWW structure obtained according to the process described above and which can have the following molar composition:
o X203 : Y02 : p ADE01 : q ADE02 : r A : z H20 donde or X 2 0 3 : Y0 2 : p ADE01: q ADE02: r A: z H 2 0 where
X es un elemento trivalente;  X is a trivalent element;
Y es un elemento tetravalente;  And it is a tetravalent element;
A es un catión alcalino o alcalinotérreo;  A is an alkaline or alkaline earth cation;
o está comprendido en el intervalo de 0 a 0.5, preferentemente entre 0.003 a 0.1 ; y más preferentemente entre 0.01 a 0.075.  or is in the range of 0 to 0.5, preferably between 0.003 to 0.1; and more preferably between 0.01 to 0.075.
p está comprendido en el intervalo de 0.01 a 1 , preferentemente entre 0.01 a 0.5; y más preferentemente entre 0.05 a 0.2.  p is in the range of 0.01 to 1, preferably between 0.01 to 0.5; and more preferably between 0.05 to 0.2.
q está comprendido en el intervalo de 0.01 a 2, preferentemente entre 0.05 a 1 ; y más preferentemente entre 0.1 a 0.6.  q is in the range of 0.01 to 2, preferably between 0.05 to 1; and more preferably between 0.1 to 0.6.
r está comprendido en el intervalo de 0 a 2, preferentemente entre 0 a 1 ; y más preferentemente entre 0 a 0.8.  r is in the range of 0 to 2, preferably 0 to 1; and more preferably between 0 to 0.8.
z está comprendido en el intervalo de 0 a 2, preferentemente entre 0 a 1 ; y más preferentemente entre 0 a 0.8.  z is in the range of 0 to 2, preferably 0 to 1; and more preferably between 0 to 0.8.
Según una realización preferente, el material obtenido según la presente invención puede ser calcinado. Así, el material zeolítico con estructura MWW puede tener la siguiente composición molar después de ser calcinado: According to a preferred embodiment, the material obtained according to the present invention can be calcined. Thus, the zeolitic material with MWW structure can have the following molar composition after being calcined:
o X2O3 : Y02 : r A or X2O3: Y0 2 : r A
donde where
X es un elemento trivalente;  X is a trivalent element;
Y es un elemento tetravalente; A es un catión alcalino o alcalinotérreo; And it is a tetravalent element; A is an alkaline or alkaline earth cation;
o está comprendido en el intervalo 0 a 0.5, preferentemente entre 0.003 a 0.1 ; y más preferentemente entre 0.01 a 0.075.  or is in the range 0 to 0.5, preferably between 0.003 to 0.1; and more preferably between 0.01 to 0.075.
r está comprendido en el intervalo de 0 a 2, preferentemente entre 0 a 1 ; y más preferentemente entre 0 a 0.8.  r is in the range of 0 to 2, preferably 0 to 1; and more preferably between 0 to 0.8.
En el material zeolítico con estructura MWW descrito, el elemento tetravalente Y puede estar seleccionado entre silicio, estaño, titanio, zirconio, germanio, y combinaciones de los mismos, preferentemente es Si, y el elemento trivalente X puede estar seleccionado entre aluminio, boro, hierro, indio, galio y combinaciones de los mismos, preferentemente entre Al y B y, más preferentemente, Al. In the described MWW zeolitic material, the tetravalent element Y may be selected from silicon, tin, titanium, zirconium, germanium, and combinations thereof, preferably is Si, and the trivalent element X may be selected from aluminum, boron, iron, indium, gallium and combinations thereof, preferably between Al and B and, more preferably, Al.
En el material descrito anteriormente, cualquier catión presente en el material puede ser incorporado mediante intercambio iónico por otros cationes utilizando técnicas convencionales. Así pues, dependiendo de la relación molar X2O3/YO2 del material sintetizado, cualquier catión presente en el material puede ser intercambiado, por lo menos en parte, mediante intercambio iónico. Estos cationes de intercambio están preferentemente seleccionados entre metales, protones, precursores de protones (como por ejemplo iones amonio) y mezclas de ellos, más preferentemente dicho catión es un metal seleccionado entre tierras raras, metales de los grupos NA, NIA, IVA, VA, IB, IIB, 111 B, IVB, VB, VIB, VIIB, VIII y combinaciones de los mismos, y posteriormente tratado térmicamente. In the material described above, any cation present in the material can be incorporated by ion exchange for other cations using conventional techniques. Thus, depending on the X2O3 / YO2 molar ratio of the synthesized material, any cation present in the material can be exchanged, at least in part, by ion exchange. These exchange cations are preferably selected from metals, protons, proton precursors (such as ammonium ions) and mixtures thereof, more preferably said cation is a metal selected from rare earths, metals from the NA, NIA, VAT, VA groups , IB, IIB, 111 B, IVB, VB, VIB, VIIB, VIII and combinations thereof, and subsequently heat treated.
En el material descrito anteriormente, cualquier metal seleccionado entre tierras raras, metales de los grupos NA, NIA, IVA, VA, IB, IIB, IIIB, IVB, VB, VIB, VIIB, VIII y combinaciones de los mismos puede ser incorporado durante la etapa de cristalización, por intercambio (si ha lugar), y/o por impregnación o por mezcla física. Estos metales pueden ser introducidos en su forma catiónica y/o a partir de sales u otros compuestos, como por ejemplo complejos organometálicos, que por descomposición generen el componente metálico u óxido en su forma catalítica adecuada. In the material described above, any metal selected from rare earths, metals of the groups NA, NIA, IVA, VA, IB, IIB, IIIB, IVB, VB, VIB, VIIB, VIII and combinations thereof can be incorporated during the crystallization stage, by exchange (if applicable), and / or by impregnation or by physical mixing. These metals can be introduced in their cationic form and / or from salts or other compounds, such as organometallic complexes, which by decomposition generate the metal component or oxide in its appropriate catalytic form.
Según una realización particular, el metal incorporado podría estar seleccionado entre cobre, hierro, paladio, platino, rodio, oro, plata, iridio, rutenio, osmio, y combinaciones de los mismos; preferentemente, están seleccionados entre cobre, hierro, paladio, platino, rodio, y combinaciones de los mismos; y de manera más preferente, entre cobre, hierro, paladio y combinaciones de los mismos. According to a particular embodiment, the incorporated metal could be selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations thereof; preferably, they are selected from copper, iron, palladium, platinum, rhodium, and combinations thereof; and more preferably, between copper, iron, palladium and combinations thereof.
La presente invención también se refiere al uso de los materiales descritos anteriormente y obtenidos según el procedimiento de síntesis de la presente invención como catalizadores para la conversión de alimentaciones formadas por compuestos orgánicos en productos de mayor valor añadido, o como tamiz molecular para la eliminación/separación o adsorción selectiva de componentes de corrientes reactivas (por ejemplo mezclas de gases) poniendo en contacto las alimentaciones con el material obtenido. The present invention also relates to the use of the materials described above and obtained according to the synthesis process of the present invention as catalysts for the conversion of feeds formed by organic compounds into products of higher added value, or as a molecular sieve for elimination. selective separation or adsorption of reactive stream components (eg gas mixtures) by contacting the feeds with the material obtained.
Según una realización preferente, el material obtenido según la presente invención puede ser utilizado como catalizador en procesos de aquilación de aromáticos, donde el compuesto aromático alquilable puede estar seleccionado entre benceno, bifenilo, naftaleno, antraceno, fenantreno, tiofeno, benzotiofeno, derivados sustituidos de ellos y combinaciones de los mismos, y el agente alquilante está seleccionado entre definas, alcoholes, compuestos aromáticos polialquilados y combinaciones de los mismos. El material obtenido, conteniendo o no componentes hidrogenantes- deshidrogenantes, puede ser utilizado en procesos de dealquilación de alquil aromáticos, transalquilación de alquilarómaticos, isomerización de alquil aromáticos, o en procesos combinados de dealquilación y transalquilación de alquilaromáticos. According to a preferred embodiment, the material obtained according to the present invention can be used as a catalyst in aromatic acylation processes, where the alkylatable aromatic compound can be selected from benzene, biphenyl, naphthalene, anthracene, phenanthrene, thiophene, benzothiophene, substituted derivatives of they and combinations thereof, and the alkylating agent is selected from defined, alcohols, polyalkylated aromatic compounds and combinations thereof. The material obtained, containing or not containing hydrogenating-dehydrogenating components, can be used in aromatic alkyl dealkylation processes, alkylaromatic transalkylation, aromatic alkyl isomerization, or in combined alkylaromatic dealkylation and transalkylation processes.
Según una realización preferente, el material obtenido según la presente invención puede ser utilizado como catalizador en procesos de oligomerización de definas ligeras, como por ejemplo, propeno, buteno, o penteno, para la producción de combustibles líquidos sintéticos, dentro del rango de la gasolina o del diésel. According to a preferred embodiment, the material obtained according to the present invention can be used as a catalyst in oligomerization processes of light strips, such as propene, butene, or pentene, for the production of synthetic liquid fuels, within the range of gasoline or from diesel.
Según una realización preferente, el material obtenido según la presente invención puede ser utilizado como catalizador en procesos de isomerización de hidrocarburos lineales, como por ejemplo en procesos de isomerización de buteno, en procesos de isomerización de n-parafinas pertenecientes a la fracción de nafta, o en procesos de isomerización de n-parafinas de cadena larga (procesos de desparafinado o isodewaxing). Según una realización preferente, el material obtenido según la presente invención puede ser utilizado como catalizador en procesos de craqueo de hidrocarburos, o en procesos de conversión de metanol a olefinas ligeras y/o hidrocarburos. According to a preferred embodiment, the material obtained according to the present invention can be used as a catalyst in linear hydrocarbon isomerization processes, such as in butene isomerization processes, in n-paraffin isomerization processes belonging to the naphtha fraction, or in isomerization processes of long-chain n-paraffins (dewaxing or isodewaxing processes). According to a preferred embodiment, the material obtained according to the present invention can be used as a catalyst in hydrocarbon cracking processes, or in processes of converting methanol to light olefins and / or hydrocarbons.
Según otra realización preferente, el material obtenido en la presente invención puede ser utilizado como catalizador en reacciones de reducción catalítica selectiva (RCS) de NOx (óxido de nitrógenos) en una corriente de gas. De manera particular, la RCS de NOx se realizará en presencia de agentes reductores, tales como amonio, urea y/o hidrocarburos. Son especialmente útiles para este uso los materiales a los que se les han introducido átomos de cobre según cualquiera de las técnicas conocidas. According to another preferred embodiment, the material obtained in the present invention can be used as a catalyst in selective catalytic reduction (RCS) reactions of NOx (nitrogen oxide) in a gas stream. In particular, the NOx RCS will be performed in the presence of reducing agents, such as ammonium, urea and / or hydrocarbons. Materials to which copper atoms have been introduced according to any of the known techniques are especially useful for this use.
Según otra realización preferente, el material obtenido en la presente invención puede ser utilizado como adsorbente pasivo para tratar los gases de escape de un motor de combustión interna, que comprende la adsorción de NOx a temperaturas bajas, preferentemente menores de 200°C, y su posterior desorción térmica a temperaturas superiores a la de adsorción, siendo posible la eliminación del NOx desorbido en un catalizador situado después del adsorbente pasivo, preferentemente en un catalizador RCS. According to another preferred embodiment, the material obtained in the present invention can be used as a passive adsorbent to treat the exhaust gases of an internal combustion engine, which comprises the adsorption of NOx at low temperatures, preferably less than 200 ° C, and its subsequent thermal desorption at temperatures higher than adsorption, the elimination of desorbed NOx being possible in a catalyst located after the passive adsorbent, preferably in an RCS catalyst.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention.
La presente invención se ilustra mediante los siguientes ejemplos que no pretenden ser limitantes de la misma. The present invention is illustrated by the following examples that are not intended to be limiting thereof.
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Patrones de difracción de los materiales obtenidos en los Ejemplos 2 y 3 de la presente invención.  Figure 1: Diffraction patterns of the materials obtained in Examples 2 and 3 of the present invention.
Figura 2: Imágenes de TEM de los materiales sintetizados de acuerdo a los Ejemplos 2 y 3 de la presente invención.  Figure 2: TEM images of the synthesized materials according to Examples 2 and 3 of the present invention.
Figura 3: Adsorción-desorción de NOx utilizando el material sintetizado según los Ejemplos 4 y 5 de la presente invención. EJEMPLOS Figure 3: NOx adsorption-desorption using the material synthesized according to Examples 4 and 5 of the present invention. EXAMPLES
Ejemplo 1 : Síntesis del ADEO /V-butil-/V-metilhexametilenamonio (BMH)  Example 1: Synthesis of ADEO / V-butyl- / V-methylhexamethylene ammonium (BMH)
La síntesis del ioduro de A/-butil-A/-metilhexametilenarTionio (BMH) se describe a continuación.  The synthesis of the iodide of A / -butyl-A / -methylhexamethylene thionium (BMH) is described below.
El reactivo 1-bromobutano (60.88 g; 0.445 moles) se adiciona gota a gota a una disolución de hexametilenimina (44,14 g; 0.444 moles) en dimetilformamida anhidra (250 mi) bajo atmósfera inerte, manteniendo una agitación vigorosa. Posteriormente, se calienta la mezcla a 70°C y se deja reaccionar durante 16 h. A continuación, se deja enfriar la mezcla y se forma un sólido blanco cristalino correspondiente a la sal de bromuro de /V-butilhexametilenamonio, la cual se separa mediante filtración a presión reducida. Los cristales se lavan para eliminar restos de dimetilformamida y se secan a presión reducida y calor. Seguidamente, se disuelve dicha sal (50.39 g; 0.213 moles) en 400 mi de agua, se adiciona Na2CC>3 anhidro (22.61 g; 0.213 moles) y se deja reaccionar a temperatura ambiente bajo agitación fuerte. A medida que transcurre la reacción, se forma una mezcla bifásica. La mezcla resultante se trasvasa a un embudo de decantación, y se separan las fases, reservándose la fase orgánica. Dicha fase orgánica se lava con una disolución saturada de NaCI (100 mi) y, posteriormente, se seca con MgSCU anhidro y se filtra para separar la sal inorgánica. La N- butilhexametilenimina se obtiene como un líquido denso incoloro. The 1-bromobutane reagent (60.88 g; 0.445 mol) is added dropwise to a solution of hexamethyleneimine (44.14 g; 0.444 mol) in anhydrous dimethylformamide (250 ml) under an inert atmosphere, maintaining vigorous stirring. Subsequently, the mixture is heated to 70 ° C and allowed to react for 16 h. The mixture is then allowed to cool and a white crystalline solid corresponding to the / V-butylhexamethylene ammonium bromide salt is formed, which is filtered off under reduced pressure. The crystals are washed to remove dimethylformamide residues and dried under reduced pressure and heat. Then, said salt (50.39 g; 0.213 mol) is dissolved in 400 ml of water, anhydrous Na2CC> 3 (22.61 g; 0.213 mol) is added and allowed to react at room temperature under strong stirring. As the reaction proceeds, a biphasic mixture forms. The resulting mixture is transferred to a separatory funnel, and the phases are separated, the organic phase being reserved. Said organic phase is washed with a saturated NaCl solution (100 ml) and subsequently dried with anhydrous MgSCU and filtered to separate the inorganic salt. N-Butylhexamethyleneimine is obtained as a colorless dense liquid.
A continuación, se disuelve la /V-butilhexametilenimina (21.84 g; 0.141 moles) en 200 mi de cloroformo, enfriándose la disolución obtenida en un baño de hielo. Una vez que la disolución alcanza los 0°C, se adiciona gota a gota el iodometano (39.91 g; 0.281 moles). Cuando el sistema alcanza temperatura ambiente, se deja reaccionar durante 72 h. Finalizada la reacción, se evapora mayoritariamente el disolvente y se adiciona acetato de etilo para precipitar el compuesto. El ioduro de /V-butil-A/- metilhexametilenamonio (BMH) se obtiene como un sólido blanco. Then, the / V-butylhexamethyleneimine (21.84 g; 0.141 mol) is dissolved in 200 ml of chloroform, the solution obtained being cooled in an ice bath. Once the solution reaches 0 ° C, iodomethane (39.91 g; 0.281 mol) is added dropwise. When the system reaches room temperature, it is allowed to react for 72 h. After the reaction is over, the solvent is mostly evaporated and ethyl acetate is added to precipitate the compound. The / V-butyl-A / - methylhexamethylene ammonium (BMH) iodide is obtained as a white solid.
Ejemplo 2: Síntesis de la zeolita MCM-22 nanocristalina (nMVWV) Example 2: Synthesis of MCM-22 Nanocrystalline Zeolite (nMVWV)
En un primer paso, se disuelven 231 mg de aluminato sódico (NaAIC>2; 58.9% AI2O3, 38.7% Na20, 2.4% H2O, Cario Erba) en 1783 mg de una disolución acuosa de hidróxido sódico (NaOH, 20% en agua) y, posteriormente, se añaden 30.9 g de agua milliQ. Una vez la mezcla está homogénea, se añaden 1190 mg de BM H, cuya síntesis se ha descrito en el Ejemplo 1. A continuación, se añaden 1600 mg de hexametilenimina (HMI 99%, Sigma Aldrich), y la mezcla resultante se deja 15 minutos en agitación. Finalmente, se añaden 2400 mg de sílice ahumada (tamaño de partícula = 0.007 pm, Sigma Aldrich), y la mezcla se mantienen en agitación durante una hora para obtener un gel homogéneo. La composición final del gel es: S1O2 : 0.042 AI2O3 : 0.15 Na20 : 0.1 BMH : 0.4 HMI : 45 H2O. El gel se introduce en un autoclave de acero recubierto con una funda de teflón, y se mantiene a 150°C durante 7 días. Transcurrido dicho período de tiempo, el sólido resultante se lava con abundante agua destilada y acetona, y se seca a 90°C durante la noche. Mediante difracción de rayos X se confirma que el sólido obtenido presenta los picos característicos de la zeolita MCM-22, estructura MWW (ver Ejemplo 2 en la Figura 1). In a first step, 231 mg of sodium aluminate (NaAIC>2; 58.9% AI2O 3 , 38.7% Na 2 0, 2.4% H2O, Cario Erba) are dissolved in 1783 mg of an aqueous solution of sodium hydroxide (NaOH, 20% in water) and, subsequently, 30.9 g of milliQ water are added. Once the mixture is homogeneous, 1190 mg of BM H is added, the synthesis of which has been described in Example 1. Next, 1600 mg of hexamethyleneimine (99% HMI, Sigma Aldrich) is added, and the resulting mixture is left. minutes in agitation Finally, 2400 mg of smoked silica (particle size = 0.007 pm, Sigma Aldrich) is added, and the mixture is kept under stirring for one hour to obtain a homogeneous gel. The final composition of the gel is: S1O2: 0.042 AI2O3: 0.15 Na 2 0: 0.1 BMH: 0.4 HMI: 45 H2O. The gel is introduced into a steel autoclave coated with a Teflon sheath, and kept at 150 ° C for 7 days. After this period of time, the resulting solid is washed with plenty of distilled water and acetone, and dried at 90 ° C overnight. X-ray diffraction confirms that the solid obtained has the characteristic peaks of the MCM-22 zeolite, MWW structure (see Example 2 in Figure 1).
La materia orgánica ocluida en el interior de los poros de la estructura MWW se elimina mediante una etapa de calcinación con aire a 550°C durante 8 horas. La forma ácida del material se obtiene por intercambio catiónico utilizando una disolución 1.0 M de NH4CI (1.0 g muestra: 10 mi disolución) a 80°C durante 3 horas. La muestra se filtra y lava con agua destilada y acetona, y se calcina en aire a 350°C durante 4 horas.  The organic matter occluded inside the pores of the MWW structure is removed by a calcination stage with air at 550 ° C for 8 hours. The acid form of the material is obtained by cation exchange using a 1.0 M solution of NH4CI (1.0 g sample: 10 ml solution) at 80 ° C for 3 hours. The sample is filtered and washed with distilled water and acetone, and calcined in air at 350 ° C for 4 hours.
La composición química de la muestra final presenta una relación Si/Al de 11.1. Las propiedades texturales del material sintetizado de acuerdo al Ejemplo 2 de la presente invención se han calculado por adsorción/desorción de N2, obteniéndose 483 m2/g, 358 m2/g, y 125 m2/g, para el área total BET, área de microporo y área externa, respectivamente. El material sintetizado de acuerdo al Ejemplo 2 presenta nanocristales con tamaños promedio en torno a 50-90 nm en las direcciones cristalográficas [100] y [010] (ver Ejemplo 2 en Figura 2). The chemical composition of the final sample has an Si / Al ratio of 11.1. The textural properties of the synthesized material according to Example 2 of the present invention have been calculated by adsorption / desorption of N2, obtaining 483 m 2 / g, 358 m 2 / g, and 125 m 2 / g, for the total BET area , micropore area and external area, respectively. The material synthesized according to Example 2 has nanocrystals with average sizes around 50-90 nm in the crystallographic directions [100] and [010] (see Example 2 in Figure 2).
Ejemplo 3: Síntesis de la zeolita MCM-22 convencional (MWW) (ejemplo comparativo) Example 3: Synthesis of conventional MCM-22 zeolite (MWW) (comparative example)
Se disuelven 231 mg de aluminato sódico (NaAIC>2; 58.9% AI2O3, 38.7% Na20, 2.4% H2O, Cario Erba) en 1783 mg de una disolución acuosa de hidróxido sódico (NaOH, 20% en agua) y, posteriormente, se añaden 30.9 g de agua milliQ. A continuación, se añaden 2000 mg de hexametilenimina (HMI 99%, Sigma Aldrich) a la disolución anterior, y la mezcla resultante se deja 15 minutos en agitación. Finalmente, se añaden 2400 mg de sílice ahumada (tamaño de partícula = 0.007 pm, Sigma Aldrich), y la mezcla se mantienen en agitación durante una hora para obtener un gel homogéneo. La composición final del gel es: S1O2 : 0.042 AI2O3 : 0.15 Na20 : 0.5 HMI : 45 H2O. El gel se introduce en un autoclave de acero recubierto con una funda de teflón, y se mantiene a 150°C bajo rotación a 60 rpm durante 7 días. Transcurrido dicho período de tiempo, el sólido resultante se lava con abundante agua destilada y acetona, y se seca a 90°C durante la noche. Mediante difracción de rayos X se confirma que el sólido obtenido presenta los picos característicos de la zeolita MCM- 22, estructura MWW (ver Ejemplo 3 en la Figura 1). 231 mg of sodium aluminate (NaAIC>2; 58.9% AI 2 O 3 , 38.7% Na 2 0, 2.4% H2O, Cario Erba) are dissolved in 1783 mg of an aqueous solution of sodium hydroxide (NaOH, 20% in water) and, subsequently, 30.9 g of milliQ water are added. Next, 2000 mg of hexamethyleneimine (99% HMI, Sigma Aldrich) is added to the above solution, and the resulting mixture is left under stirring for 15 minutes. Finally, 2400 mg of smoked silica (particle size = 0.007 pm, Sigma Aldrich) is added, and the mixture is kept under stirring for one hour to obtain a homogeneous gel. The final composition of the gel is: S1O 2 : 0.042 AI 2 O 3 : 0.15 Na 2 0: 0.5 HMI: 45 H 2 O. The gel is introduced into a steel autoclave coated with a Teflon sheath, and kept at 150 ° C under rotation at 60 rpm for 7 days. After this period of time, the resulting solid is washed with plenty of distilled water and acetone, and dried at 90 ° C overnight. X-ray diffraction confirms that the solid obtained has the characteristic peaks of the MCM-22 zeolite, MWW structure (see Example 3 in Figure 1).
La materia orgánica ocluida en el interior de los poros de la estructura MWW se elimina mediante una etapa de calcinación con aire a 550°C durante 8 horas. La forma ácida del material se obtiene por intercambio catiónico utilizando una disolución 1.0 M de NH4CI (1.0 g muestra : 10 mi disolución) a 80°C durante 3 horas. La muestra se filtra y lava con agua destilada y acetona, y se calcina en aire a 350°C durante 4 horas. La composición química de la muestra final presenta una relación Si/Al de 10.6. Las propiedades texturales del material sintetizado de acuerdo al Ejemplo 3 de la presente invención se han calculado por adsorción/desorción de N2, obteniéndose 457 m2/g, 374 m2/g, y 83 m2/g, para el área total BET, área de microporo y área externa, respectivamente. El material sintetizado de acuerdo al Ejemplo 3 presenta cristales planos de simetría hexagonal con tamaños promedio en torno a 250-300 nm en las direcciones cristalográficas [100] y [010] (ver imagen de TEM en la Figura 2). The organic matter occluded inside the pores of the MWW structure is removed by a calcination stage with air at 550 ° C for 8 hours. The acid form of the material is obtained by cation exchange using a 1.0 M solution of NH4CI (1.0 g sample: 10 ml solution) at 80 ° C for 3 hours. The sample is filtered and washed with distilled water and acetone, and calcined in air at 350 ° C for 4 hours. The chemical composition of the final sample has a Si / Al ratio of 10.6. The textural properties of the synthesized material according to Example 3 of the present invention have been calculated by adsorption / desorption of N2, obtaining 457 m 2 / g, 374 m 2 / g, and 83 m 2 / g, for the total BET area , micropore area and external area, respectively. The material synthesized according to Example 3 has flat crystals of hexagonal symmetry with average sizes around 250-300 nm in the crystallographic directions [100] and [010] (see TEM image in Figure 2).
Ejemplo 4: Preparación del material Pd-nMWW mediante intercambio catiónicoExample 4: Preparation of Pd-nMWW material by cation exchange
Se disuelven 50 mg de cloruro de tetraaminopaladio(ll) monohidratado50 mg of tetraaminopaladium (ll) monohydrate chloride are dissolved
[(NH3)4PdCl2-H20, Sigma-Aldrich] en 100 mi de agua. Posteriormente, 2.0 g del material nMWW sintetizado de acuerdo al Ejemplo 2 de la presente invención se añaden a la anterior disolución, manteniendo en agitación la mezcla a temperatura ambiente durante 40 horas. Transcurrido dicho tiempo, el sólido se filtra y se lava con abundante agua y acetona, secándose a 60°C. Finalmente, el sólido se calcina a 550°C en aire durante 5 horas. [(NH 3 ) 4PdCl 2 -H 2 0, Sigma-Aldrich] in 100 ml of water. Subsequently, 2.0 g of the nMWW material synthesized according to Example 2 of the present invention is added to the previous solution, while stirring the mixture at room temperature for 40 hours. After this time, the solid is filtered and washed with plenty of water and acetone, drying at 60 ° C. Finally, the solid is calcined at 550 ° C in air for 5 hours.
Ejemplo 5: Preparación del material Pd-MWW mediante intercambio catiónico (ejemplo comparativo) Example 5: Preparation of Pd-MWW material by cation exchange (comparative example)
Se disuelven 50 mg de cloruro de tetraaminopaladio(ll) monohidratado 50 mg of tetraaminopaladium (ll) monohydrate chloride are dissolved
[(NH3)4PdCÍ2-H20, Sigma-Aldrich] en 100 mi de agua. Posteriormente, 2.0 g del material MWW sintetizado de acuerdo al Ejemplo 3 de la presente invención se añaden a la anterior disolución, manteniendo en agitación la mezcla a temperatura ambiente durante 40 horas. Transcurrido dicho tiempo, el sólido se filtra y se lava con abundante agua y acetona, secándose a 60°C. Finalmente, el sólido se calcina a 550°C en aire durante 5 horas. Ejemplo 6: Preparación del material Cu-nMWW mediante intercambio catiónico[(NH 3 ) 4 PdCÍ 2 -H 2 0, Sigma-Aldrich] in 100 ml of water. Subsequently, 2.0 g of the MWW material synthesized according to Example 3 of the present invention is added to the previous solution, while stirring the mixture at room temperature for 40 hours. After this time, the solid is filtered and washed with plenty of water and acetone, drying at 60 ° C. Finally, the solid is calcined at 550 ° C in air for 5 hours. Example 6: Preparation of Cu-nMWW material by cation exchange
La muestra sintetizada y calcinada de acuerdo al método expuesto en el Ejemplo 2, se lava con 150 g de una disolución acuosa de 0.04 M de nitrato de sodio (NaNCh, Fluka, 99% en peso) por gramo de zeolita. The sample synthesized and calcined according to the method set forth in Example 2, is washed with 150 g of a 0.04 M aqueous solution of sodium nitrate (NaNCh, Fluka, 99% by weight) per gram of zeolite.
A continuación, se disuelven 33.6 mg de acetato de cobre [(CFLCOO^Cu-F^O, Probus, 99%) en 30 g de agua, y se añaden 303 mg de la zeolita lavada previamente. La suspensión se mantiene en agitación durante 24 h. Transcurrido este tiempo el producto obtenido se recupera mediante filtración y se lava con abundante agua. Finalmente, el material se calcina en aire a 550°C durante 4h. Then, 33.6 mg of copper acetate [(CFLCOO ^ Cu-F ^ O, Probus, 99%) is dissolved in 30 g of water, and 303 mg of the previously washed zeolite are added. The suspension is kept under stirring for 24 h. After this time the product obtained is recovered by filtration and washed with plenty of water. Finally, the material is calcined in air at 550 ° C for 4h.
Ejemplo 7: Ensayo catalítico para la reacción de alquilación de benceno con propileno empleando los materiales sintetizados según los Ejemplos 2 y 3. Example 7: Catalytic test for the reaction of alkylation of benzene with propylene using the materials synthesized according to Examples 2 and 3.
Los materiales sintetizados según los Ejemplos 2 y 3 se han tamizado seleccionando el tamaño de partícula entre 0.25 y 0.42 mm, para llevar a cabo la reacción de alquilación de benceno con propileno. Las muestras (0.050 g) se diluyen con carburo de silicio (0.59-0.84 mm) hasta un volumen de lecho catalítico total de 3.6 mi. Los catalizadores diluidos se introducen en un reactor tubular de acero de 1 cm de diámetro, y se activan a en flujo de nitrógeno (100 ml/min) a 200°C durante 2 horas. A continuación, se baja la temperatura hasta la temperatura de reacción de 125°C en flujo de N2, se interrumpe el flujo de N2 y se alimenta una mezcla de benceno:n-octano (relación 15:1 en peso) hasta conseguir una presión de 3.5 MPa. El n-octano se utiliza como patrón interno y es inerte en las condiciones experimentales utilizadas. En este punto se aísla el reactor para alimentar una mezcla de benceno:n-octano (655 mI/min) y propileno (165 mI/min), siendo la relación molar benceno/propileno de 3.5, por una conducción paralela hasta conseguir una composición constante, momento en que la alimentación se pasa de nuevo a través del reactor, y que se considera el inicio de la reacción. En estas condiciones experimentales la velocidad espacial, WHSV (Weight Hour Space Velocity) referida al propileno, es de 100 h 1, y el benceno se encuentra en fase líquida. La composición de la corriente a la salida del reactor se ha analizado por cromatografía de gases en un Varían 450 conectado en línea, equipado con una columna capilar 5%fenil-95% dimetilpolisiloxano y con un detector de ionización de llama (FID). Los resultados catalíticos obtenidos con los materiales sintetizados según los Ejemplos 2 y 3 de la presente invención se muestran en la Tabla 1. The materials synthesized according to Examples 2 and 3 have been screened by selecting the particle size between 0.25 and 0.42 mm, to carry out the alkylation reaction of benzene with propylene. The samples (0.050 g) are diluted with silicon carbide (0.59-0.84 mm) to a total catalytic bed volume of 3.6 ml. The diluted catalysts are introduced into a 1 cm diameter steel tubular reactor, and activated at a nitrogen flow (100 ml / min) at 200 ° C for 2 hours. Then, the temperature is lowered to the reaction temperature of 125 ° C in N2 flow, the N2 flow is interrupted and a mixture of benzene: n-octane (15: 1 weight ratio) is fed until a pressure is achieved 3.5 MPa The n-octane is used as an internal standard and is inert in the experimental conditions used. At this point, the reactor is isolated to feed a mixture of benzene: n-octane (655 ml / min) and propylene (165 ml / min), the benzene / propylene molar ratio being 3.5, by parallel conduction until a composition is achieved constant, at which time the feed is passed through the reactor again, and the reaction is considered to be the beginning. Under these experimental conditions the space velocity, WHSV (Weight Hour Space Velocity) referred to propylene, is 100 h 1 , and benzene is in the liquid phase. The composition of the current at the outlet of the reactor has been analyzed by gas chromatography in a Varian 450 connected in line, equipped with a 5% phenyl-95% dimethylpolysiloxane capillary column and with a flame ionization detector (FID). The catalytic results obtained with the materials synthesized according to Examples 2 and 3 of the present invention are shown in Table 1.
Tabla 1. Conversión de propileno (X, %) y rendimiento a productos (isopropilbenceno, R|PB, diisopropilbenceno, RDipB,y triisopropilbenceno, RTIPB, % peso) obtenidos en la reacción de alquilación de benceno con propileno, utilizando como catalizador los materiales preparados según los catalizadores sintetizados en los Ejemplos 2 y 3 de la presente invención. Table 1. Conversion of propylene (X,%) and yield to products (isopropylbenzene, R | PB , diisopropylbenzene, R DipB , and triisopropylbenzene, RTIPB,% weight) obtained in the alkylation reaction of benzene with propylene, using as catalyst the materials prepared according to the catalysts synthesized in Examples 2 and 3 of the present invention.
Figure imgf000017_0001
Figure imgf000017_0001
Comparando los resultados de los materiales presentados en la Tabla 1 , se concluye que el catalizador basado en la zeolita MWW nanocristalina obtenida según el Ejemplo 2 de la presente invención es mucho más activo que el catalizador basado en zeolita MWW convencional utilizado a efectos comparativos (ver Ejemplo 3). Así, las conversiones de propileno para los catalizadores basados en la zeolita MWW nanocristalina y en la zeolita MWW convencional son de 96.3 y 57.5% a un tiempo de reacción (TOS, Time On Stream) de 27 y 21 min, respectivamente. Por otra parte, el catalizador basado en el material obtenido según el Ejemplo 2 produce mayor rendimiento al producto de alquilación, isopropilbenceno (IPB). Ejemplo 8: Adsorción/Desorción de NOx utilizando los materiales sintetizados según los Ejemplos 4 y 5. Comparing the results of the materials presented in Table 1, it is concluded that the catalyst based on the nanocrystalline MWW zeolite obtained according to Example 2 of the present invention is much more active than the conventional MWW zeolite based catalyst used for comparative purposes (see Example 3). Thus, the propylene conversions for catalysts based on the nanocrystalline MWW zeolite and conventional MWW zeolite are 96.3 and 57.5% at a reaction time (TOS, Time On Stream) of 27 and 21 min, respectively. On the other hand, the catalyst based on the material obtained according to Example 2 produces higher yield to the alkylation product, isopropylbenzene (IPB). Example 8: NOx Adsorption / Desorption using the materials synthesized according to Examples 4 and 5.
Se hace pasar una corriente gaseosa de 500 ml/min, formada por 60 ppm NO, 5%vol CO2, 10%vol O2, 5%vol H2O, y el resto N2, sobre 100 mg de los catalizadores Pd- nMWW y PdMWW preparados según los Ejemplos 4 y 5 de la presente invención, respectivamente, a la temperatura de adsorción seleccionada (100°C) durante 5 minutos. Esta etapa de adsorción es seguida por una desorción a temperatura programada utilizando una rampa de temperatura de 17°C/minuto en presencia de la misma corriente gaseosa, hasta alcanzar una temperatura de 450°C.  A gas stream of 500 ml / min, consisting of 60 ppm NO, 5% vol CO2, 10% vol O2, 5% vol H2O, and the remainder N2, is passed over 100 mg of the prepared Pd-nWW and PdMWW catalysts according to Examples 4 and 5 of the present invention, respectively, at the selected adsorption temperature (100 ° C) for 5 minutes. This adsorption step is followed by a desorption at a programmed temperature using a temperature ramp of 17 ° C / minute in the presence of the same gas stream, until a temperature of 450 ° C is reached.
Los resultados de adsorción/desorción de NOx utilizando los catalizadores Pd-nMWW y Pd-MWW en función de la temperatura están resumidos en la Figura 3. La cantidad total desorbida de NOx es de 44.1 y 26.6 pmol de NOx/gramo de catalizador para los materiales Pd-nMWW y Pd-MWW, respectivamente. Estos resultados permiten concluir que el material sintetizado de acuerdo al Ejemplo 4 de la presente invención presenta una mayor capacidad de adsorción/desorción de NOx que el material basado en una zeolita MWW convencional utilizado a efectos comparativos (ver Ejemplo 5). The NOx adsorption / desorption results using the Pd-nMWW and Pd-MWW catalysts as a function of temperature are summarized in Figure 3. The total amount of NOx exorbed is 44.1 and 26.6 pmol of NOx / gram of catalyst for Pd-nMWW and Pd-MWW materials, respectively. These results allow to conclude that the material synthesized according to Example 4 of the present invention has a higher adsorption / desorption capacity of NOx than the material based on a conventional MWW zeolite used for comparative purposes (see Example 5).
Ejemplo 9: Ensayo catalítico para la reacción de RCS de NOx utilizando el material sintetizados según el Ejemplo 6. Example 9: Catalytic test for the reaction of RCS of NOx using the material synthesized according to Example 6.
La actividad catalítica de la muestra Cu-nMWW sintetizada según el Ejemplos 6 de la presente invención se ha evaluado para la reducción catalítica selectiva (RCS) de NOx. El material sintetizado se ha tamizado seleccionando el tamaño de partícula entre 0.25 y 0.42 mm, diluyéndose 100 mg de dicha muestra en carburo de silicio (0.59-0.84 mm) hasta un volumen de lecho catalítico total de 1.5 mi. El catalizador diluido se introduce en un reactor tubular de acero de 1.2 cm de diámetro y 20 cm de largo, y se activa en flujo de nitrógeno (100 ml/min) a 550°C durante 1 hora. A continuación, se introduce la mezcla reactiva (300 ml/min, 500 ppm NO, 530 ppm NH3, 7% O2 y 5% H2O), y la reacción se evalúa en el intervalo de temperaturas entre 350- 550°C. El NOx presente a la salida de los gases del reactor se analiza de forma continua mediante un detector quimiluminiscente (Thermo 62C). The catalytic activity of the Cu-nMWW sample synthesized according to Examples 6 of the present invention has been evaluated for the selective catalytic reduction (RCS) of NOx. The synthesized material has been screened by selecting the particle size between 0.25 and 0.42 mm, 100 mg of said sample being diluted in silicon carbide (0.59-0.84 mm) to a total catalytic bed volume of 1.5 ml. The diluted catalyst is introduced into a tubular steel reactor 1.2 cm in diameter and 20 cm long, and is activated in nitrogen flow (100 ml / min) at 550 ° C for 1 hour. Then, the reaction mixture (300 ml / min, 500 ppm NO, 530 ppm NH 3 , 7% O2 and 5% H2O) is introduced, and the reaction is evaluated in the temperature range between 350-550 ° C. The NOx present at the outlet of the gases from the reactor is analyzed continuously by means of a chemiluminescent detector (Thermo 62C).
Los resultados catalíticos del catalizador preparado según el Ejemplo 6 de la presente invención se resumen en la Tabla 2. Tabla 2: Conversión (%) de NOx a diferentes temperaturas (350, 400, 450, 500°C) empleando el catalizador preparado según el Ejemplo 6 de la presente invención.
Figure imgf000019_0001
The catalytic results of the catalyst prepared according to Example 6 of the present invention are summarized in Table 2. Table 2: Conversion (%) of NOx at different temperatures (350, 400, 450, 500 ° C) using the catalyst prepared according to Example 6 of the present invention.
Figure imgf000019_0001

Claims

REIVINDICACIONES
1. Procedimiento de síntesis de un material zeolítico con la estructura MWW en su forma nanocristalina, caracterizado porque comprende, al menos, los siguientes pasos: 1. Method of synthesis of a zeolitic material with the MWW structure in its nanocrystalline form, characterized in that it comprises at least the following steps:
i) Preparación de una mezcla que comprenda al menos una fuente de agua, al menos una fuente de un elemento tetravalente Y, al menos una fuente de un elemento trivalente X, al menos una fuente de un catión alcalino o alcalinotérreo (A), y al menos dos moléculas orgánicas (ADE01 y ADE02),  i) Preparation of a mixture comprising at least one source of water, at least one source of a tetravalent element Y, at least one source of a trivalent element X, at least one source of an alkaline or alkaline earth cation (A), and at least two organic molecules (ADE01 and ADE02),
donde ADE01 está seleccionado entre un amonio cuaternario monocíclico donde al menos uno de los sustituyentes es una cadena alquílica lineal formada por entre 3-6 átomos de carbono, y ADE02 está seleccionado entre cualquier amina o amonio capaz de dirigir la síntesis a la cristalización de una zeolita con estructura MWW siendo la composición molar de la mezcla :  where ADE01 is selected from a monocyclic quaternary ammonium where at least one of the substituents is a linear alkyl chain consisting of 3-6 carbon atoms, and ADE02 is selected from any amine or ammonium capable of directing the synthesis to crystallization of a MWW zeolite with the molar composition of the mixture being:
/ X203 : Y02 : m ADE01 : n ADE02: a A . y H20 donde / X 2 0 3 : Y0 2 : m ADE01: n ADE02: a A. and H 2 0 where
/ está comprendido en el intervalo de 0 a 0.5  / is in the range of 0 to 0.5
m está comprendido en el intervalo de 0.01 a 1  m is in the range of 0.01 to 1
n está comprendido en el intervalo de 0.01 a 2  n is in the range of 0.01 to 2
a está comprendido en el intervalo de 0 a 2  a is in the range of 0 to 2
z está comprendido en el intervalo de 2 a 200  z is in the range of 2 to 200
ii) Cristalización de la mezcla obtenida en i) en un reactor  ii) Crystallization of the mixture obtained in i) in a reactor
iii) Recuperación del material cristalino obtenido en ii).  iii) Recovery of the crystalline material obtained in ii).
2. Procedimiento de síntesis según la reivindicación 1 , caracterizado porque la fuente del elemento tetravalente Y está seleccionada entre silicio, estaño, titanio, zirconio, germanio, y combinaciones de los mismos. 2. Synthesis method according to claim 1, characterized in that the source of the tetravalent element Y is selected from silicon, tin, titanium, zirconium, germanium, and combinations thereof.
3. Procedimiento de síntesis según la reivindicación 2, caracterizado porque la fuente del elemento tetravalente Y es una fuente de silicio seleccionada entre óxido de silicio, halogenuro de silicio, sílice coloidal, sílice ahumada, tetraalquilortosilicato, silicato, ácido silícico, un material previamente sintetizado cristalino, un material previamente sintetizado amorfo y combinaciones de las mismas. 3. Synthesis method according to claim 2, characterized in that the source of the tetravalent element Y is a source of silicon selected from silicon oxide, silicon halide, colloidal silica, smoked silica, tetraalkylortosilicate, silicate, silicic acid, a previously synthesized material crystalline, a previously synthesized amorphous material and combinations thereof.
4. Procedimiento de síntesis según la reivindicación 3, caracterizado porque la fuente de silicio está seleccionada entre un material previamente sintetizado cristalino, un material previamente sintetizado amorfo y combinaciones de las mismas. 4. Synthesis method according to claim 3, characterized in that the source of silicon is selected from a previously synthesized crystalline material, a previously synthesized amorphous material and combinations thereof.
5. Procedimiento de síntesis según la reivindicación 4, caracterizado porque los materiales previamente sintetizados contienen otros heteroátomos en su estructura. 5. Synthesis method according to claim 4, characterized in that the previously synthesized materials contain other heteroatoms in their structure.
6. Procedimiento de síntesis según la reivindicación 1 , caracterizado porque la fuente del elemento trivalente X está seleccionada entre aluminio, boro, hierro, indio, galio y combinaciones de los mismos. 6. Synthesis method according to claim 1, characterized in that the source of the trivalent element X is selected from aluminum, boron, iron, indium, gallium and combinations thereof.
7. Procedimiento de síntesis según cualquiera de las reivindicaciones 1 a 6, caracterizado porque el material zeolítico con estructura MWW está seleccionado entre materiales MCM-22, ERB-1 , SSZ-25, ITQ-1 , o cualquiera de sus variantes desorganizadas y/o pilareadas, cualquiera de sus variantes deslaminadas, y combinaciones de las mismas. 7. Synthesis method according to any of claims 1 to 6, characterized in that the zeolitic material with MWW structure is selected from materials MCM-22, ERB-1, SSZ-25, ITQ-1, or any of its disorganized variants and / or pilareadas, any of its delaminated variants, and combinations thereof.
8. Procedimiento de síntesis según la reivindicación 7, caracterizado porque el material zeolítico con estructura MWW es MCM-22. 8. Synthesis method according to claim 7, characterized in that the zeolitic material with MWW structure is MCM-22.
9. Procedimiento de síntesis según la reivindicación 1 , caracterizado porque el amonio cuaternario ADE01 está seleccionado entre un amonio cuaternario monocíclico con la estructura RiF CicloNT, donde el grupo Ciclo está formado entre 4-8 átomos de carbono, y los grupos Ri y R2 son cadenas alquílicas lineales comprendidas entre 1-4 y 3-6 átomos de carbono, respectivamente. 9. Synthesis method according to claim 1, characterized in that the ADE01 quaternary ammonium is selected from a monocyclic quaternary ammonium with the RiF CicloNT structure, wherein the Cycle group is formed between 4-8 carbon atoms, and the Ri and R 2 groups they are linear alkyl chains between 1-4 and 3-6 carbon atoms, respectively.
10. Procedimiento de síntesis según la reivindicación 9, caracterizado porque dicho ADE01 está seleccionado entre alquil-pirrolidinios, alquil-piperidinios, alquil- hexametilenamonios, alquil-heptametilenamonios y combinaciones de los mismos. 10. Synthesis process according to claim 9, characterized in that said ADE01 is selected from alkyl-pyrrolidiniums, alkyl-piperidiniums, alkyl-hexamethylene ammoniums, alkyl-heptamethylene ammoniums and combinations thereof.
11. Procedimiento de síntesis según la reivindicación 10, caracterizado porque dicho ADE01 es un alquil-hexametilenamonio. 11. Synthesis process according to claim 10, characterized in that said ADE01 is an alkyl hexamethylene ammonium.
12. Procedimiento de síntesis según la reivindicación 11 , caracterizado porque dicho ADE01 es /\/-butil-/\/-metilhexametilenamonio. 12. Synthesis method according to claim 11, characterized in that said ADE01 is / \ / - butyl - / \ / - methylhexamethylene ammonium.
13. Procedimiento de síntesis según la reivindicación 1 , caracterizado porque la molécula orgánica ADE02 está seleccionada entre aminas, diaminas o poliaminas primarias, secundarias o terciarias, o amonios, diamonios o poliamonios cuaternarios y combinaciones de los mismos. 13. Synthesis method according to claim 1, characterized in that the organic molecule ADE02 is selected from primary, secondary or tertiary amines, diamines or polyamines, or quaternary ammoniums, diamonds or polyammoniums and combinations thereof.
14. Procedimiento de síntesis según la reivindicación 13, caracterizado porque ADE02 está seleccionado entre pirrolidinas, piperidinas, hexametileniminas, heptametileniminas, pirrolidinios, piperidinios, hexametilenamonios, heptametilenamonios, sus derivados alquilados, y combinaciones de los mismos. 14. Synthesis method according to claim 13, characterized in that ADE02 is selected from pyrrolidines, piperidines, hexamethyleneimines, heptamethyleneimines, pyrrolidiniums, piperidiniums, hexamethylene ammoniums, heptamethylene ammoniums, their alkylated derivatives, and combinations thereof.
15. Procedimiento de síntesis según la reivindicación 14, caracterizado porque ADE02 es pirrolidina, piperidina, hexametilenimina y combinaciones de los mismos. 15. Synthesis method according to claim 14, characterized in that ADE02 is pyrrolidine, piperidine, hexamethyleneimine and combinations thereof.
16. Procedimiento de síntesis según la reivindicación 15, caracterizado porque ADE02 es hexametilenimina. 16. Synthesis method according to claim 15, characterized in that ADE02 is hexamethyleneimine.
17. Procedimiento de síntesis según cualquiera de las reivindicaciones anteriores, caracterizado porque el paso de cristalización descrito en ii) se lleva a cabo en autoclave, en condiciones estáticas o dinámicas. 17. Synthesis method according to any of the preceding claims, characterized in that the crystallization step described in ii) is carried out in an autoclave, under static or dynamic conditions.
18. Procedimiento de síntesis según cualquiera de las reivindicaciones anteriores, caracterizado porque el proceso de cristalización descrito en ii) se lleva a cabo a una temperatura entre 80 y 200°C. 18. Synthesis method according to any of the preceding claims, characterized in that the crystallization process described in ii) is carried out at a temperature between 80 and 200 ° C.
19. Procedimiento de síntesis según cualquiera de las reivindicaciones anteriores, caracterizado porque el tiempo de cristalización del proceso descrito en ii) está comprendido entre 6 horas y 50 días. 19. Synthesis method according to any of the preceding claims, characterized in that the crystallization time of the process described in ii) is between 6 hours and 50 days.
20. Procedimiento de síntesis según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende, además, añadir cristales de MWW como semillas a la mezcla de síntesis en una cantidad hasta el 25% en peso respecto a la cantidad total de óxidos. 20. Synthesis method according to any of the preceding claims, characterized in that it further comprises adding MWW crystals as seeds to the synthesis mixture in an amount up to 25% by weight with respect to the total amount of oxides.
21. Procedimiento de síntesis según la reivindicación 20, caracterizado porque los cristales de MWW se añaden antes del proceso de cristalización o durante el proceso de cristalización. 21. Synthesis method according to claim 20, characterized in that the MWW crystals are added before the crystallization process or during the crystallization process.
22. Procedimiento de síntesis según cualquiera de las reivindicaciones anteriores, caracterizado porque el paso de recuperación iii) se lleva a cabo con una técnica de separación seleccionada entre decantación, filtración, ultrafiltración, centrifugación y combinaciones de las mismas. 22. Synthesis method according to any of the preceding claims, characterized in that the recovery step iii) is carried out with a separation technique selected from decantation, filtration, ultrafiltration, centrifugation and combinations thereof.
23. Procedimiento de síntesis según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende, además, la eliminación del contenido orgánico recluido en el interior del material. 23. Synthesis method according to any of the preceding claims, characterized in that it further comprises the elimination of the organic content contained within the material.
24. Procedimiento de síntesis según la reivindicación 23, caracterizado porque el proceso de eliminación del contenido orgánico recluido en el interior del material se realiza mediante un tratamiento térmico a temperaturas entre 100 y 1000°C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas. 24. Synthesis process according to claim 23, characterized in that the process of eliminating the organic content contained inside the material is carried out by means of a heat treatment at temperatures between 100 and 1000 ° C for a period of time between 2 minutes and 25 hours.
25. Procedimiento de síntesis según cualquiera de las reivindicaciones anteriores, caracterizado porque el material obtenido es peletizado. 25. Synthesis method according to any of the preceding claims, characterized in that the material obtained is pelletized.
26. Procedimiento de síntesis según cualquiera de las reivindicaciones anteriores, caracterizado porque cualquier catión presente en el material puede ser intercambiado mediante intercambio iónico por otros cationes utilizando técnicas convencionales. 26. Synthesis method according to any of the preceding claims, characterized in that any cation present in the material can be exchanged by ion exchange for other cations using conventional techniques.
27. Procedimiento de síntesis según la reivindicación 26, caracterizado porque el catión de intercambio está seleccionado entre metales, protones, precursores de protones y mezclas de ellos. 27. Synthesis method according to claim 26, characterized in that the exchange cation is selected from metals, protons, proton precursors and mixtures thereof.
28. Procedimiento de síntesis según las reivindicaciones 26 y 27, caracterizado porque el catión de intercambio es un metal seleccionado entre tierras raras, metales de los grupos NA, NIA, IVA, VA, IB, IIB, II IB, IVB, VB, VIB, VIIB, VIII y combinaciones de los mismos. 28. Synthesis method according to claims 26 and 27, characterized in that the exchange cation is a metal selected from rare earths, metals of the NA, NIA, IVA, VA, IB, IIB, II IB, IVB, VB, VIB groups , VIIB, VIII and combinations thereof.
29. Procedimiento de síntesis según la reivindicación 28, caracterizado porque el catión de intercambio está seleccionado entre cobre, hierro, paladio, platino, rodio, oro, plata, iridio, rutenio, osmio, y combinaciones de los mismos. 29. Synthesis method according to claim 28, characterized in that the exchange cation is selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations thereof.
30. Procedimiento de síntesis según la reivindicación 29, caracterizado porque el catión de intercambio es cobre, hierro, paladio y combinaciones de los mismos. 30. Synthesis method according to claim 29, characterized in that the exchange cation is copper, iron, palladium and combinations thereof.
31. Procedimiento de síntesis según cualquiera de las reivindicaciones 1 a 25, caracterizado porque cualquier metal seleccionado entre tierras raras, metales de los grupos NA, NIA, IVA, VA, IB, IIB, II IB, IVB, VB, VIB, VIIB, VIII y combinaciones de los mismos, puede ser incorporado durante la etapa de cristalización, o por cualquier método de deposición post-sintética. 31. Synthesis method according to any of claims 1 to 25, characterized in that any metal selected from rare earths, metals of the groups NA, NIA, IVA, VA, IB, IIB, II IB, IVB, VB, VIB, VIIB, VIII and combinations thereof, can be incorporated during the crystallization stage, or by any method of post-synthetic deposition.
32. Procedimiento de síntesis según la reivindicación 31 , caracterizado porque el metal está seleccionado entre cobre, hierro, paladio, platino, rodio, oro, plata, iridio, rutenio, osmio, y combinaciones de los mismos. 32. Synthesis method according to claim 31, characterized in that the metal is selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations thereof.
33. Procedimiento de síntesis según la reivindicación 32, caracterizado porque el metal está seleccionado entre cobre, hierro, paladio y combinaciones de los mismos. 33. Synthesis method according to claim 32, characterized in that the metal is selected from copper, iron, palladium and combinations thereof.
34. Material zeolítico con estructura MWW obtenido según el procedimiento descrito en cualquiera de las reivindicaciones 1 a 33, caracterizado porque tiene la siguiente composición molar 34. Zeolitic material with MWW structure obtained according to the method described in any of claims 1 to 33, characterized in that it has the following molar composition
o X203 : Y02 : p ADE01 : q ADE02: r A : z H20 donde or X 2 0 3 : Y0 2 : p ADE01: q ADE02: r A: z H 2 0 where
X es un elemento trivalente;  X is a trivalent element;
Y es un elemento tetravalente;  And it is a tetravalent element;
A es un elemento alcalino o alcalinotérreo;  A is an alkaline or alkaline earth element;
o está comprendido en el intervalo de 0 a 0.5;  or is in the range of 0 to 0.5;
p está comprendido en el intervalo de 0.01 a 1 ;  p is in the range of 0.01 to 1;
q está comprendido en el intervalo de 0.01 a 2;  q is in the range of 0.01 to 2;
r está comprendido en el intervalo de 0 a 2;  r is in the range of 0 to 2;
z está comprendido en el intervalo de 0 a 2.  z is in the range of 0 to 2.
35. Material zeolítico con estructura MWW según la reivindicación 34, caracterizado porque comprende, además, un metal seleccionado entre tierras raras, metales de los grupos NA, NIA, IVA, VA, IB, IIB, II IB, IVB, VB, VIB, VIIB, VIII y combinaciones de los mismos. 35. Zeolitic material with MWW structure according to claim 34, characterized in that it further comprises a metal selected from rare earths, metals of the groups NA, NIA, IVA, VA, IB, IIB, II IB, IVB, VB, VIB, VIIB, VIII and combinations thereof.
36. Material zeolítico con estructura MWW según la reivindicación 35, caracterizado porque comprende, además, un metal seleccionado entre cobre, hierro, paladio, platino, rodio, oro, plata, iridio, rutenio, osmio, y combinaciones de los mismos. 36. Zeolitic material with MWW structure according to claim 35, characterized in that it further comprises a metal selected from copper, iron, palladium, platinum, rhodium, gold, silver, iridium, ruthenium, osmium, and combinations thereof.
37. Material zeolítico con estructura MWW según la reivindicación 36, caracterizado porque el metal está seleccionado entre cobre, hierro, paladio y combinaciones de los mismos. 37. Zeolitic material with MWW structure according to claim 36, characterized in that the metal is selected from copper, iron, palladium and combinations thereof.
38. Material zeolítico con estructura MWW según la reivindicación 34, caracterizado porque tiene la siguiente composición molar después de ser calcinado:  38. Zeolitic material with MWW structure according to claim 34, characterized in that it has the following molar composition after being calcined:
o X203 : Y02 : r A or X 2 0 3 : Y0 2 : r A
donde where
X es un elemento trivalente;  X is a trivalent element;
Y es un elemento tetravalente; y  And it is a tetravalent element; Y
A es un elemento alcalino o alcalinotérreo;  A is an alkaline or alkaline earth element;
o está comprendido en el intervalo 0 y 0.5;  or is in the range 0 and 0.5;
restá comprendido en el intervalo de 0 a 2.  rest is in the range of 0 to 2.
39. Material zeolítico con estructura MWW según cualquiera de las reivindicaciones 34 a 38, caracterizado porque el elemento tetravalente Y está seleccionado entre silicio, estaño, titanio, zirconio, germanio, y combinaciones de los mismos. 39. Zeolitic material with MWW structure according to any of claims 34 to 38, characterized in that the tetravalent element Y is selected from silicon, tin, titanium, zirconium, germanium, and combinations thereof.
40. Material zeolítico con estructura MWW según la reivindicación 39, caracterizado porque el elemento tetravalente Y es silicio. 40. Zeolitic material with MWW structure according to claim 39, characterized in that the tetravalent element Y is silicon.
41. Material zeolítico con estructura MWW según cualquiera de las reivindicaciones 34 a 38, caracterizado porque el elemento trivalente X está seleccionado entre aluminio, boro, hierro, indio, galio y combinaciones de los mismos. 41. Zeolitic material with MWW structure according to any of claims 34 to 38, characterized in that the trivalent element X is selected from aluminum, boron, iron, indium, gallium and combinations thereof.
42. Material zeolítico con estructura MWW según la reivindicación 41 , caracterizado porque el elemento trivalente X es aluminio. 42. Zeolitic material with MWW structure according to claim 41, characterized in that the trivalent element X is aluminum.
43. Material zeolítico con estructura MWW según cualquiera de las reivindicaciones anteriores, caracterizado porque la dimensión de los cristales de dicho material zeolítico a lo largo de las dirección cristalográficas [100] y [010] está comprendida en el intervalo de 10 a 100 nm, y a lo largo de la dirección cristalográfica [001] está comprendida en el intervalo de 2 a 50 nm. 43. Zeolitic material with MWW structure according to any of the preceding claims, characterized in that the size of the crystals of said zeolitic material along the crystallographic directions [100] and [010] is in the range of 10 to 100 nm, and along the crystallographic direction [001] is in the range of 2 to 50 nm.
44. Uso de un material zeolítico con estructura MWW descrito en cualquiera de las reivindicaciones 34 a 43 y obtenido según el procedimiento de síntesis descrito en cualquiera de las reivindicaciones 1 a 33 en procesos para la conversión de determinados componentes de alimentaciones formadas por compuestos orgánicos en productos de mayor valor añadido, o para su eliminación y/o adsorción selectiva de una corriente reactiva poniendo en contacto dicha alimentación con el material descrito. 44. Use of a zeolitic material with MWW structure described in any of claims 34 to 43 and obtained according to the synthesis procedure described in any of claims 1 to 33 in processes for the conversion of certain feed components formed by organic compounds into products of greater added value, or for their elimination and / or selective adsorption of a reactive current by contacting said feed with the described material.
45. Uso de un material zeolítico con estructura MWW según la reivindicación 44, para la revalorización de corrientes ricas en compuestos aromáticos mediante procesos de alquilación, dealquilación, transalquilación, isomerización y combinaciones de los mismos. 45. Use of a zeolitic material with MWW structure according to claim 44, for the revaluation of currents rich in aromatic compounds by processes of alkylation, dealkylation, transalkylation, isomerization and combinations thereof.
46. Uso de un material zeolítico con estructura MWW según la reivindicación 44, para la producción de combustibles líquidos sintéticos, dentro del rango de la gasolina o del diésel, tras poner en contacto dicho material con definas ligeras en determinadas condiciones de reacción. 46. Use of a zeolitic material with MWW structure according to claim 44, for the production of synthetic liquid fuels, within the range of gasoline or diesel, after contacting said material with light strips under certain reaction conditions.
47. Uso de un material zeolítico con estructura MWW según la reivindicación 44, para la revalorización de corrientes ricas en parafinas lineales mediante procesos de isomerización, hidroisomerización y combinaciones de los mismos. 47. Use of a zeolitic material with MWW structure according to claim 44, for the revaluation of streams rich in linear paraffins by isomerization, hydroisomerization processes and combinations thereof.
48. Uso de un material zeolítico con estructura MWW según la reivindicación 44, para la producción de definas ligeras mediante procesos de craqueo catalítico. 48. Use of a zeolitic material with MWW structure according to claim 44, for the production of light shafts by catalytic cracking processes.
49. Uso de un material zeolítico con estructura MWW según la reivindicación 44 para la conversión de metanol a definas ligeras y/o hidrocarburos. 49. Use of a zeolitic material with MWW structure according to claim 44 for the conversion of methanol to light weight and / or hydrocarbons.
50. Uso de un material zeolítico con estructura MWW según la reivindicación 44 para la reducción catalítica selectiva (RCS) de NOx (óxido de nitrógenos) en una corriente de gas. 50. Use of a zeolitic material with MWW structure according to claim 44 for the selective catalytic reduction (RCS) of NOx (nitrogen oxide) in a gas stream.
51. Uso de un material zeolítico con estructura MWW según la reivindicación 44 como adsorbente pasivo de NOx a temperaturas menores de 200°C, y, posteriormente, capaz de desorber dicho NOx a temperaturas superiores a 200°C. 51. Use of a zeolitic material with MWW structure according to claim 44 as a passive NOx adsorbent at temperatures below 200 ° C, and subsequently capable of desorbing said NOx at temperatures above 200 ° C.
PCT/ES2019/070537 2018-08-01 2019-07-29 Method for synthesising mww material in its nanocrystalline form and its use in catalytic applications WO2020025846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201830797 2018-08-01
ES201830797A ES2739646B2 (en) 2018-08-01 2018-08-01 PROCEDURE FOR THE SYNTHESIS OF MWW MATERIAL IN ITS NANOCRISTALINE FORM AND ITS USE IN CATALYTIC APPLICATIONS

Publications (1)

Publication Number Publication Date
WO2020025846A1 true WO2020025846A1 (en) 2020-02-06

Family

ID=69191535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070537 WO2020025846A1 (en) 2018-08-01 2019-07-29 Method for synthesising mww material in its nanocrystalline form and its use in catalytic applications

Country Status (2)

Country Link
ES (1) ES2739646B2 (en)
WO (1) WO2020025846A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158238A1 (en) * 2002-03-07 2005-07-21 Takashi Tatsumi Mww type zeolite substance, precursor substance therefor, and process for producing these substances
US20150078993A1 (en) * 2013-09-18 2015-03-19 Chevron U.S.A. Inc. Method for preparing mww-type molecular sieves
CN105293515A (en) * 2014-07-21 2016-02-03 中国石油化工股份有限公司 MWW-structure molecular sieve and synthetic method thereof
CN105439166A (en) * 2014-08-27 2016-03-30 中国石油化工股份有限公司 A method of synthesizing a MWW-structure molecular sieve
US20170001873A1 (en) * 2013-09-24 2017-01-05 China Petroleum & Chemical Corporation Molecular sieve, manufacturing method therefor, and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158238A1 (en) * 2002-03-07 2005-07-21 Takashi Tatsumi Mww type zeolite substance, precursor substance therefor, and process for producing these substances
US20150078993A1 (en) * 2013-09-18 2015-03-19 Chevron U.S.A. Inc. Method for preparing mww-type molecular sieves
US20170001873A1 (en) * 2013-09-24 2017-01-05 China Petroleum & Chemical Corporation Molecular sieve, manufacturing method therefor, and uses thereof
CN105293515A (en) * 2014-07-21 2016-02-03 中国石油化工股份有限公司 MWW-structure molecular sieve and synthetic method thereof
CN105439166A (en) * 2014-08-27 2016-03-30 中国石油化工股份有限公司 A method of synthesizing a MWW-structure molecular sieve

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 09922, Derwent World Patents Index; AN 2016-09922Y *
DATABASE WPI Week 2010220190416, Derwent World Patents Index; AN 2016-20102X *

Also Published As

Publication number Publication date
ES2739646B2 (en) 2021-01-18
ES2739646A1 (en) 2020-02-03

Similar Documents

Publication Publication Date Title
Martín et al. High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NO x
KR101539784B1 (en) Aromatization of alkanes using a germanium-zeolite catalyst
ES2589059B1 (en) DIRECT SYNTHESIS OF Cu-CHA THROUGH THE COMBINATION OF A CU AND TETRAETHYLAMM COMPLEX, AND APPLICATIONS IN CATALYSIS
ES2574500B1 (en) Synthesis of zeolite with the CHA crystalline structure, synthesis procedure and its use in catalytic applications
ZA200105984B (en) Synthetic porous crystalline MCM-68, its synthesis and use.
KR20140068078A (en) Emm-22 molecular sieve material, its synthesis and use
BRPI0418757B1 (en) MICROPOROSUS CRYSTALLINE ZEOLITE, E, PROCESS FOR CONVERSION OF HYDROCARBIDE
KR20000062388A (en) Zeolite SSZ-47
US20100056837A1 (en) Alkyl Aromatic Isomerization Process Using a Catalyst Comprising a UZM-8HS Composition
CN108473327B (en) Molecular sieve SSZ-106, its synthesis and use
DK152574B (en) SILICREATED MATERIAL, MANUFACTURING THIS MATERIAL AND MANUFACTURING HYDROCARBONES
WO2014074492A1 (en) Small crystal ferrierite and method of making the same
KR20000062389A (en) Zeolite SSZ-45
WO2010014402A1 (en) Hydroalkylation of aromatic compounds using emm-12
US20110077438A1 (en) Hydroalkylation of Aromatic Compounds Using EMM-13
ES2692859B2 (en) SYNTHESIS OF ZEOLITE MFI IN ITS NANOCRISTALINE FORM, SYNTHESIS PROCEDURE AND ITS USE IN CATALYTIC APPLICATIONS
ES2739646B2 (en) PROCEDURE FOR THE SYNTHESIS OF MWW MATERIAL IN ITS NANOCRISTALINE FORM AND ITS USE IN CATALYTIC APPLICATIONS
ES2302500T3 (en) PROCEDURE FOR PREPARATION OF A US STRUCTURAL TYPE ZEOLITE, OBTAINED ZEOLITE AND ITS USE AS A CATALYST IN A COMPOSITE ISOMERIZATION PROCEDURE.
ES2692818B2 (en) SYNTHESIS OF ZEOLITE BETA IN ITS NANOCRISTALINE FORM, SYNTHESIS PROCEDURE AND ITS USE IN CATALYTIC APPLICATIONS
ES2291484T3 (en) ZEOLITA SSZ-60.
BR112014026154B1 (en) itq-49 material, method for producing it and using it
ES2715008B2 (en) Zeolitic material with Ferrierite structure in its nanocrystalline form, procedure for its synthesis and use of said material
ES2296989T3 (en) ZEOLITA SSZ-58.
ES2698700B2 (en) SYNTHESIS OF ZEOLITE CHA IN ITS NANOCRISTALINE FORM, SYNTHESIS PROCEDURE AND ITS USE IN CATALYTIC APPLICATIONS
JP2005534605A (en) Molecular sieve SSZ-64

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844755

Country of ref document: EP

Kind code of ref document: A1