WO2020024879A1 - 用于凸度滚子滚动表面精加工的研磨盘套件、设备及方法 - Google Patents

用于凸度滚子滚动表面精加工的研磨盘套件、设备及方法 Download PDF

Info

Publication number
WO2020024879A1
WO2020024879A1 PCT/CN2019/097910 CN2019097910W WO2020024879A1 WO 2020024879 A1 WO2020024879 A1 WO 2020024879A1 CN 2019097910 W CN2019097910 W CN 2019097910W WO 2020024879 A1 WO2020024879 A1 WO 2020024879A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding disc
grinding
roller
processed
concave arc
Prior art date
Application number
PCT/CN2019/097910
Other languages
English (en)
French (fr)
Inventor
任成祖
张婧
刘伟峰
耿昆
陈洋
陈�光
杨影
张云辉
何庆顺
邓晓帆
李新
闫传滨
葛翔
靳新民
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810850277.1A external-priority patent/CN108673331B/zh
Priority claimed from CN201810850265.9A external-priority patent/CN108890516B/zh
Priority claimed from CN201810850346.9A external-priority patent/CN108705444B/zh
Priority claimed from CN201810850348.8A external-priority patent/CN108723981B/zh
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2020024879A1 publication Critical patent/WO2020024879A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/02Lapping machines or devices; Accessories designed for working surfaces of revolution

Definitions

  • the invention relates to a grinding disc kit, a grinding device and a grinding method for finishing the rolling surface of a convex roller, and belongs to the technical field of precision processing of bearing rolling bodies.
  • Roller bearings are widely used in various types of rotating machinery.
  • convex rollers convex cylindrical rollers and convex tapered rollers
  • shape accuracy and dimensional consistency of their rolling surfaces The performance of sub-bearings has a significant impact.
  • the known process flow of the rolling surface of the convex roller is: blank forming (turning or cold heading or rolling), rough machining (soft grinding of the rolling surface), heat treatment, semi-finishing (hard grinding of the rolling surface) and finishing machining.
  • the main process method for rolling surface finishing of known convex rollers is super finishing.
  • Ultra-finishing is a fine-grained finishing method that uses fine-grained whetstones as abrasive tools.
  • the whetstones apply low pressure to the workpiece processing surface and perform high-speed, micro-reciprocating vibration and low-speed feed motion along the workpiece processing surface. .
  • the processing part of the equipment is composed of a pair of obliquely positioned superfine guide rollers and one (or a group of) superfine heads with oilstones.
  • the convex cylindrical roller is supported and driven by the guide rollers.
  • a low-speed feed motion is performed along a trajectory corresponding to the prime surface of the convex cylindrical roller rolling surface, and the superfine head presses the oil stone against the convex cylindrical roller rolling surface with a lower pressure while the oil stone is convex along the convexity
  • the plain line of the rolling surface of the cylindrical roller is reciprocated at a high speed and a small amplitude, and the rolling surface of the convex cylindrical roller is finished.
  • the convex cylindrical rollers of the same batch pass through the processing area in sequence and undergo the superfinishing of the oil stone.
  • the processing part of the equipment consists of a pair of super-precision guide rollers arranged in parallel and one (or a group of) super-fine heads with oilstones.
  • the roller is supported and driven to make a rotational movement. While the superfine head presses the oil stone against the rolling surface of the convex cylindrical roller with a lower pressure, the oil stone works along a trajectory suitable for the prime line of the convex cylindrical roller rolling surface. Low-speed feed motion and high-speed micro-amplitude reciprocating vibration, finishing the rolling surface of the convex cylindrical roller.
  • the convex cylinder rollers of the same batch enter the processing area one by one and undergo the super-finishing of stone.
  • the ultra-finishing equipment only processes a single (or a few) convex cylindrical rollers at the same time, the material removal of the rolling surface of the processed convex cylindrical rollers is almost not affected by the same batch The influence of the diameter difference of the rolling surface of the convex cylindrical roller, so it is difficult to effectively improve the diameter dispersion of the rolling surface of the processed convex cylindrical roller by processing the rolling surface of the convex cylindrical roller by the ultra-finishing equipment.
  • the technical defects in the above two aspects have restricted the improvement of the shape accuracy and dimensional consistency of the rolling surface of the processed cylindrical roller.
  • the device (equipment) and method related to the finishing of the rolling surface of the convex cylindrical roller also include the following:
  • Cilek, Publication No. CN102476350A Discloses a cylindrical roller outer diameter centerless grinding processing device, which includes two cast iron grinding rollers with a large radius and a small radius. There is a space between the grinding rollers. A feed slot is installed above the space to feed the material. An upper pressing plate is arranged above the groove, and a pressing weight is added above the upper pressing plate. The contact surface between the upper pressing plate and the roller is arc-shaped. The linear velocity of the two grinding rollers is different, which causes relative sliding between the cylindrical roller and the grinding roller. Adjusting the angle of the small grinding roller in the vertical and horizontal directions can drive the roller to feed in the axial direction. The grinding roller drives the cylindrical roller and grinds the surface of the roller.
  • China Patent Gazette, Publication No. CN204736036U Disclosed is a processing device for grinding the outer surface of a precision cylindrical roller. It is characterized in that the processing device includes a cylinder, a support frame, a grinding tool bottom plate, a grinding tool, a driving roller and a base, two driving rollers are parallel to the symmetrical center plane of the processing device, and the left end of one driving roller is upturned in a vertical plane It intersects with the horizontal plane at 1 ⁇ 5 °, and the right end of the other driving roller intersects with the horizontal plane at 1 ⁇ 5 ° in the vertical plane; the surfaces of the two driving rollers are coated with a damping coating to increase the friction coefficient.
  • the grinding tool is fixed on the bottom plate of the grinding tool, and the processing pressure is applied by the air cylinder.
  • the air cylinder is installed on the support frame, and the support frame and the driving roller are installed on the base.
  • the cylindrical roller is placed on one end of the driving roller.
  • the tangential force generated by the two driving rollers rotates the cylindrical roller about the central axis, and the generated axial force causes the cylindrical roller to feed through the central axis.
  • the sub-cylindrical surface is machined.
  • the above two devices both use two driving rollers to support and drive the cylindrical roller to advance.
  • An abrasive tool is provided above the vertical direction of the cylindrical roller to process the cylindrical surface of the cylindrical roller. All the cylindrical rollers pass through the processing area in sequence during processing.
  • Such devices have the same technical shortcomings as the ultra-finishing equipment.
  • Chinese Patent Gazette, publication number CN104608046A discloses a method for ultra-precision machining of cylindrical surfaces of bearing cylindrical rollers, which is characterized in that the cylindrical cylindrical rollers to be processed are ground using a bi-planar cylindrical part ultra-precision machining equipment; Ultra-precision machining equipment for double-plane cylindrical parts including outer grinding discs, lower grinding discs, outer ring gears, eccentric gears and cages, where the rotating shafts of the upper grinding disc, lower grinding disc, outer gears and eccentric gears are all concentric.
  • the workpiece Before grinding, place the cylindrical roller in the slot of the holder, and apply downward pressure on the upper grinding disc; the workpiece is located between the upper grinding disc and the lower grinding disc and is in contact with the upper and lower grinding discs; the upper grinding disc and the lower are driven
  • the grinding disc, the outer ring gear and the eccentric rotate, and the workpiece makes a rolling movement under the driving of the upper and lower grinding discs, and also drives the upper grinding disc and the lower grinding disc in a cycloidal motion while being driven by the holder.
  • Chinese Patent Gazette, Publication No. CN103522166A Discloses a method for processing the outer circle of a cylindrical part based on the eccentric pressure of the upper disc, which is characterized in that the processing device of the processing method includes an upper grinding disc, a holder and a lower grinding disc.
  • the upper grinding disc is located above the lower grinding disc, and the holder is located between the upper and lower grinding discs.
  • the rotation axis of the holder and the rotation axis of the lower grinding disc are coaxially arranged.
  • the existence of the rotation axis of the upper grinding disc and the rotation axis of the holder is determined. Offset.
  • the loading device eccentrically acts on the cylindrical part through the upper grinding disc, and processes the outer circle of the cylindrical part through the plane of the upper grinding disc and the lower grinding disc in cooperation with the abrasive.
  • FIG. 1 A four-plane reciprocating cylindrical roller grinding method and device are disclosed.
  • the method is characterized in that: a rack is provided with a mounting frame driven by a power source, and the mounting frame is provided with a peripheral wall A plurality of mounting grooves for mounting cylindrical rollers; a grinding plate is provided on the rack corresponding to the mounting frame and slidingly cooperates with the cylindrical rollers.
  • the cylindrical roller is mounted on a mounting bracket, and a plurality of cylindrical rollers in the grinding plate are simultaneously polished by rotating the mounting bracket.
  • the above three devices can process multiple cylindrical parts at the same time.
  • the cylindrical surface of the larger diameter cylindrical part has a larger amount of material removal, which is conducive to the improvement of dimensional consistency.
  • equipment due to the closed nature of their processing equipment (equipment), such equipment (equipment) does not have the capacity for mass production.
  • Chinese Patent Gazette, publication numbers CN104493689A and CN104493684A Disclosed are a double-disc straight-groove grinding disc for cylindrical parts, a grinding apparatus and a grinding method.
  • the apparatus includes a workpiece pushing device, a workpiece conveying device, and a grinding disk device.
  • the grinding disc device includes first and second grinding discs. The two grinding discs rotate relative to each other.
  • the working surface of the first grinding disc is a flat surface.
  • a set of radial straight grooves is provided on the surface of the second grinding disc opposite the first grinding disc.
  • the two sides of the straight groove are the working surface of the second grinding disc.
  • the cross-sectional profile of the working surface of the second grinding disc is circular or V-shaped or V-shaped.
  • the angle between the normal point at the contact point of the groove or the midpoint of the contact arc and the reference plane of the straight groove ranges from 30 to 60 °;
  • One end of the center is a push inlet, and the other end of the straight groove is a discharge port.
  • the workpiece pushing device is disposed in the central through hole of the second grinding disc, and includes a main body and a plurality of push mechanisms and storage materials installed on the center. groove.
  • cylindrical rollers can be circulated inside and outside the grinding disc, with the ability to mass-produce; on the other hand, in the grinding processing area, the equipment can simultaneously perform a large number of cylindrical rollers. Comparative processing can achieve more removal of the cylindrical surface material of cylindrical rollers with larger diameters, which is conducive to improving the uniformity of the cylindrical surface dimensions of cylindrical rollers.
  • the above-mentioned double-disc straight-groove grinding disc, grinding equipment, and grinding method do not have the ability to finish the rolling surface of a convex cylindrical roller.
  • the processing part of the equipment is composed of a pair of ultra-fine spiral guide rollers with spiral raceways and one (or a group of) ultra-fine heads with oilstones.
  • the convexity tapered rollers are supported and driven by the guide rollers, which are in rotary motion.
  • the low-speed feed motion is performed along a trajectory that is suitable for the rolling surface of the convex tapered roller, while the superfine head presses the oil stone against the rolling surface of the convex tapered roller at a lower pressure while the oil stone moves along the convex surface.
  • the prime line of the rolling surface of the tapered roller makes high-speed reciprocating vibration at a slight amplitude, and the rolling surface of the convex tapered roller is finished.
  • the convexity tapered rollers of the same batch run through the processing area in sequence and undergo the superfinishing of oil stone.
  • the processing part of the equipment consists of a pair of super-precision guide rollers arranged in parallel and one (or a group) of super-fine heads with oilstones.
  • the roller is supported and driven for rotational movement. While the ultra-fine head presses the oil stone against the rolling surface of the convex tapered roller with a lower pressure, the oil stone follows a trajectory that is suitable for the prime line of the rolling surface of the convex tapered roller. Low-speed feed motion and high-speed micro-amplitude reciprocating vibration, finishing the rolling surface of the convex tapered roller.
  • the convexity of the same batch of tapered rollers enters the processing area one by one and undergoes super-finishing of stone.
  • the above two methods of superfinishing the rolling surface of the convex tapered roller have the following two technical defects:
  • the change of the wear state of the oil stone and the guide roller with time during the processing is not conducive to the accuracy and shape accuracy of the rolling surface of the convex tapered roller
  • the ultra-finishing equipment only processes a single (or a few) convexity tapered rollers at the same time, the material removal of the rolling surface of the processed convexity tapered rollers is hardly affected by the same batch
  • the influence of the diameter difference of the rolling surface of the convex tapered roller so it is difficult to effectively improve the diameter dispersion of the rolling surface of the processed convex tapered roller by processing the rolling surface of the convex tapered roller with ultra-finishing equipment.
  • the technical defects of the above two aspects have restricted the improvement of the shape accuracy and dimensional consistency of the rolling surface of the convexity tapered roller.
  • Chinese Patent Gazette, publication number CN1863642A discloses a method for processing tapered rollers, which is characterized in that the tapered rollers are used to finish the surface of the rollers by roller polishing or barrel polishing. There is uncertainty in the material removal of the roller surface during processing, and this method cannot improve the dimensional accuracy and diameter dispersion of the roller.
  • the present invention provides a grinding disc kit, grinding equipment and a grinding method for finishing the rolling surface of a convex roller.
  • the grinding equipment equipped with the grinding disc kit of the present invention has a large number of convex rollers.
  • Roller (cylindrical convex roller and conical convex roller) rolling surface finishing ability can achieve high roller material rolling surface removal of low-point material, low-point material removal, large diameter convex roller rolling
  • the material on the surface is more removed, and the material on the rolling surface of the convex roller with smaller diameter is less removed, which can improve the shape accuracy and dimensional consistency of the rolling surface of the convex cylindrical roller and the convex tapered roller, and can improve the convexity.
  • the processing efficiency of the rolling surface of the cylindrical roller and the convex tapered roller reduces the processing cost.
  • the present invention provides a grinding disc kit for finishing the rolling surface of a convex roller, which includes a pair of coaxial first grinding discs and a second grinding disc.
  • the front surface of the second grinding disk is oppositely arranged;
  • the front surface of the first grinding disk includes a set of radially-arranged concave grooves and a transition surface connecting adjacent concave grooves;
  • the front surface of the second grinding disk includes one Or a plurality of spiral grooves and a transition surface connecting adjacent spiral grooves; during the grinding process, each intersection of the spiral grooves corresponding to the second grinding disc and the concave arc grooves of the first grinding disc, at A concave convex roller is distributed along the concave arc groove in the concave arc groove of the first grinding disc;
  • the convex roller is a convex cylindrical roller or a convex cone roller Corresponding to each intersection, the area enclosed by the concave arc groove working surface of the first grinding disk and the spiral groove working surface of the second grinding disk is
  • the polishing disc kit wherein the concave arc groove working surface is a concave arc groove scanning surface, and the concave arc groove scanning surface is a constant-section scanning surface.
  • the scanning path of the scanning surface of the concave arc groove is a circular arc, and the generatrices of the scanning surface of the concave arc groove groove are within the concave arc groove method cross section;
  • the scanning path is a concave arc Groove baseline, all of the concave arc groove baselines are distributed on a concave arc turning surface,
  • the concave arc turning surface is a base surface of a first grinding disc,
  • the axis is the axis of the first grinding disc; in the axial section of the first grinding disc, the section line of the axial section of the base surface of the first grinding disc is a circular arc with a radius of curvature R 11 , and the section of the axial section of the base surface of the first grinding disc is The circle where the center of cur
  • the normal cross section profile of the concave arc groove scanning surface is a radius of curvature and the rolling surface of the processed convex cylindrical roller.
  • the first grinding disc axis section of the concave arc groove baseline is the central plane of the concave arc groove working surface; during grinding, the axis of the convex cylindrical roller being processed is in the concave arc In the center plane of the working surface of the line groove, the rolling surface of the processed convex cylindrical roller makes cross-line contact with the working surface of the concave arc groove, and the axis of the processed convex cylindrical roller and the concave arc
  • the normal cross section profile of the concave arc groove scanning surface is two symmetrical straight line segments between the two straight line segments.
  • the included angle is 2 ⁇ ;
  • the center plane of the concave arc groove working surface is the plane including the normal cross-section contour symmetry line of the concave arc groove scanning surface and the concave arc groove baseline;
  • the base line of the concave arc groove is in the cross section of the first grinding disc axis, the center plane of the working surface of the concave arc groove and the first grinding disc axis including the base line of the concave arc groove
  • the cross sections coincide;
  • the axis of the convexity tapered roller being processed is in the center plane of the concave arc groove working surface during grinding, and the rolling surface of the convexity tapered roller and the concave arc are processed.
  • the two symmetrical sides of the working surface of the groove are in line contact respectively; the baseline of the concave arc groove intersects with the axis of the processed convex tapered roller, and the intersection point is on the axis of the rolling surface of the processed convex tapered roller
  • the map's midpoint; the half cone angle of the processed convexity tapered roller is The included angle between the axis of the processed convexity tapered roller and the tangent of the concave arc groove baseline at the intersection is ⁇ , and:
  • the convexity curve of the rolling surface of the processed convexity tapered roller corresponding to the two symmetrical straight line segments constituting the normal cross-sectional profile of the concave arc groove scanning surface is approximately an arc;
  • the spiral groove working surface includes a working surface one and a working surface two;
  • the rolling surface of the processed convex cylindrical roller is brought into line contact with the working surface under the constraint of the concave arc groove working surface of the first grinding disc.
  • the rounded corners of one end face of the processing convex cylindrical roller are in line contact with the working surface two; during the grinding processing of the convex tapered roller, under the constraint of the concave arc groove working surface of the first grinding disc, As soon as the rolling surface of the processed convex tapered roller comes into line contact with the working surface, the large-end ball base surface or large-end rounded corner or small-end rounded corner of the processed convex tapered roller is in contact with the work. Line contact occurred on face two;
  • the working surface one and the working surface two are on the scanning surface one and the scanning surface two, respectively, and the scanning surface one and the scanning surface two are equal-section scanning surfaces;
  • the scanning paths of the scanning surface 1 and the scanning surface 2 are the mapping points on the axis of the processed maximum convex cylindrical roller rolling surface on the axis, and are distributed in a Convex arc spiral surface equiangular spiral line on the convex arc turning surface; for a convex tapered roller, the scanning paths of the scanning surface 1 and the scanning surface 2 both pass through the rolling of the processed convex tapered roller The middle point of the mapping of the surface on its axis and the arc spiral surface isosceles spiral line distributed on a convex arc circular revolution surface;
  • the equiangular spiral line of the arc turning surface is the baseline of the spiral groove
  • the convex arc turning surface is the base surface of the second grinding disc
  • the axis of the base surface of the second grinding disc is the axis of the second grinding disc
  • the generatrices of the scanning surface 1 and the scanning surface 2 are both in the axial section of the second grinding disc
  • the axial section cross-section of the base surface of the second grinding disk is a circular arc with a radius of curvature R 21 ;
  • the center of curvature of the axial cross-section section of the base surface of the second grinding disk is O 2
  • the base surface of the disc is a convex convex surface with a radius of curvature R 21 ;
  • the curvature radius R 21 of the axial cross section of the base surface of the second grinding disc is equal to the curvature radius R 11 of the axial cross section of the base surface of the first grinding disc, and the curvature radius R 22 of the base circle of the second grinding disc is equal to the first grinding disc.
  • the radius of curvature R 12 of the base circle; the axial cross section of the base surface of the first grinding disc and the axial cross section of the base surface of the second grinding disc and their respective centers of curvature are either on the axis of the first grinding disc and the first
  • the two grinding disc axes are on the same side, or both sides of the first grinding disc axis and the second grinding disc axis.
  • polishing disc kit is referred to as a non-magnetic polishing disc kit.
  • the polishing disc kit described in the present invention is used for processing the convexity roller of the ferromagnetic material, wherein the second polishing disc base may also be made of a magnetically conductive material, and the second polishing disc base is inside the second polishing disc base.
  • a ring-shaped magnetic structure is embedded, and a set of non-magnetic materials in the form of a ring band or a spiral band is embedded on the front surface of the second grinding disk; the magnetic material and the embedded ring of the base of the second grinding disk
  • a belt-shaped or spiral-shaped non-magnetic conductive material is closely connected on the front surface of the second grinding disc and collectively forms the front surface of the second grinding disc.
  • the above-mentioned polishing disc kit with a ring-shaped magnetic structure embedded therein is referred to as a magnetic polishing disc kit.
  • the invention also proposes a grinding device for finishing the rolling surface of a convex roller, which comprises a main body, a roller circulating disc outer system and the above-mentioned non-magnetic grinding disc kit;
  • the main body includes a base, a column, and a beam , Slide table, upper tray, lower tray, axial loading device and main shaft device; the base, upright and beam form the frame of the host;
  • a first grinding disc of the grinding disc kit is connected to the lower tray, and a second grinding disc of the grinding disc kit is connected to the upper tray;
  • the slide table is connected to the beam through the axial loading device, and the upright can also serve as a guide member to provide a guiding function for the slide table to move linearly along the axis of the second grinding disc; the slide table is in Driven by the axial loading device, linear movement is performed along the axis of the second grinding disc under the constraint of the upright or other guide members;
  • the spindle device is used for driving the first grinding disc or the second grinding disc to rotate around its axis;
  • the roller circulation outer plate system includes a roller collecting device, a roller conveying system, a roller finishing mechanism, and a roller feeding mechanism;
  • the roller collecting device is disposed at each of the concave arc groove groove exits of the first grinding disc, and is configured to collect from the concave arc groove groove exits from the concave arc groove working surface.
  • the convexity roller to be processed in the grinding processing area enclosed with the spiral groove working surface;
  • the roller conveying system is used for conveying the processed convexity roller from the roller collecting device to the roller feeding mechanism;
  • the roller finishing mechanism is arranged at the front end of the roller feeding mechanism; for a convex cylindrical roller, the roller finishing mechanism is used to adjust the axis of the processed cylindrical roller to the roller feeding The direction required by the feeding mechanism; for a convex tapered roller, the roller finishing mechanism is used to adjust the axis of the processed convex tapered roller to the direction required by the roller feeding mechanism, and will be processed
  • the orientation of the small end of the convexity tapered roller is adjusted to the orientation corresponding to the axial cross-sectional profile of the spiral groove scanning surface of the spiral groove working surface of the spiral groove of the second grinding disc to be entered;
  • the grinding disc kit there are two ways to rotate the grinding disc kit; the first way is that the first grinding disc rotates about its axis and the second grinding disc does not rotate; the second way, the first grinding disc does not rotate, The second grinding disc rotates around its axis;
  • the main mechanism type one is used for the grinding disc kit to rotate in the first way
  • the main mechanism type two is used for the grinding disc kit to rotate in the second way
  • the main mechanism type three is applicable to both The grinding disc kit is rotated in the first way, and it is also suitable for the grinding disc kit to be rotated in the second way;
  • the main shaft device is installed on the base, and the first grinding disc is driven to rotate around its axis by the lower tray connected thereto; the upper tray is connected to the slide table; grinding During processing, the first grinding disc rotates around its axis; the slide table is constrained by the upright or other guide members, along with an upper tray connected thereto, and a second grinding disc connected to the upper tray along the The axis of the second grinding disc approaches the first grinding disc, and applies working pressure to the processed convex rollers distributed in the concave arc grooves of the first grinding disc; the rollers
  • the feeding mechanisms are respectively installed at the entrances of the spiral grooves of the second grinding disc, and are used for converting one of the concave arc groove entrances of the first grinding disc and the spiral groove entrance into one The processing convexity roller is pushed into the concave arc groove entrance;
  • the main shaft device is mounted on the slide table, and the second grinding disc is driven to rotate about its axis by the upper tray connected to the main shaft device; the lower tray is mounted on the base; During the grinding process, the second grinding disc rotates around its axis; the slide table is constrained by the column or other guide members, together with the spindle device thereon, an upper tray connected to the spindle device, and The second grinding disc connected to the upper tray approaches the first grinding disc along the axis of the second grinding disc, and protrudes the processed protrusions distributed in the concave arc grooves of the first grinding disc.
  • roller feeding mechanisms are respectively installed at the entrances of the concave arc grooves of the first grinding disc, and are used for Pushing a processed convexity roller into the concave arc groove entrance when the concave arc groove entrance meets;
  • the main mechanism type three two sets of spindle devices are provided, one of which is mounted on the base, and the first grinding disc is driven to rotate around its axis by the lower tray connected to it, and the other set of spindles The device is installed on the slide table, and drives the second grinding disc to rotate around its axis through the upper tray connected to it; the two sets of spindle devices are provided with a locking mechanism, and only the first grinding is allowed at the same time One of the disc and the second grinding disc rotates, and the other grinding disc is locked in the circumferential direction; when the grinding disc set of the grinding equipment rotates in a manner to perform the grinding process, the relative movement of the first grinding disc and the second grinding disc
  • the installation position and function of the roller feeding mechanism are the same as the main mechanism type one; when the grinding disk set of the grinding equipment is rotated in the second way for grinding processing, the first The relative movement of the grinding disc and the second grinding disc is the same as that of the main mechanism type two; the installation position and
  • the grinding equipment for finishing the rolling surface of the convex roller in the present invention is used for processing the convex roller of the ferromagnetic material, wherein the grinding disk kit adopts the aforementioned magnetic grinding disk kit; the grinding equipment
  • the roller circulation disc outside system further includes a roller demagnetization device; the roller demagnetization device is provided in the roller conveying system in the path outside the roller circulation disc or before the roller conveying system is used for The processed convexity roller of the ferromagnetic material magnetized by the magnetic field of the ring-shaped magnetic structure inside the second grinding disc base is demagnetized.
  • the present invention also proposes a grinding method for finishing the rolling surface of a convex roller.
  • the grinding device according to the present invention is adopted.
  • the grinding disk set in the grinding device is a non-magnetic grinding disk set, and includes the following: step:
  • Step one each grinding process where the second grinding disc approaches the first grinding disc along its axis to the concave arc groove working surface of the first grinding disc and the spiral groove working surface of the second grinding disc
  • the space of the area can and can only accommodate one processed convexity roller
  • Step 2 Corresponding to rotation mode 1 of the grinding disc kit, the first grinding disc rotates at a low speed of 1 to 10 rpm relative to the second grinding disc; corresponding to rotation mode 2 of the grinding disc kit, the second grinding disc rotates relative to its axis. The first grinding disc rotates at a low speed of 1 to 10 rpm;
  • Step 3 Start the roller conveying system, roller finishing mechanism and roller feeding mechanism; adjust the feeding speed of the roller feeding mechanism to match the relative rotation speed of the first grinding disc and the second grinding disc; adjust The conveying speed of the roller conveying system and the finishing speed of the roller finishing mechanism are matched with the feeding speed of the roller feeding mechanism; thereby establishing the processed convexity roller between the first grinding disc and the second grinding disc
  • Step 4 Adjust the relative rotation speed of the first grinding disk and the second grinding disk to a relative working rotation speed of 5 to 60 rpm, and adjust the feeding speed of the roller feeding mechanism to the working feeding speed so that it matches the first grinding disk and the
  • the relative working rotation speed of the second grinding disc is matched, and the conveying speed of the roller conveying system and the finishing speed of the roller finishing mechanism are adjusted, so that the roller collecting device, roller conveying system, and roller in the above-mentioned system of the roller circulating disk
  • the stock of processed convexity rollers of the finishing mechanism and the roller feeding mechanism are matched, and the circulation is smooth and orderly;
  • Step five add grinding liquid to the grinding processing area
  • Step 6 Include:
  • the second grinding disc approaches the first grinding disc further along its axis, so that the rolling surface of the processed convex cylindrical roller in the grinding processing area is concave with the first grinding disc, respectively.
  • An arc groove working surface has a cross line contact with the working surface of the second grinding disc spiral groove, and a line contact with the working surface of the convex cylindrical roller is rounded to the working surface of the second grinding disc spiral groove.
  • Step 7 With the stable operation of the grinding process, gradually increase the working pressure to the normal working pressure of 2 to 50N for each processed convex roller distributed in the grinding processing area; the processed convex roller maintains the step 6 The contact relationship with the concave groove working surface of the first grinding disc and the spiral groove working surface of the second grinding disc, the continuous rotary motion around its own axis, and the arc feed motion along the baseline of the concave arc groove , Its rolling surface continues to undergo the grinding process of the concave arc groove working surface of the first grinding disc and the working surface of the spiral groove of the second grinding disc;
  • Step 8 After grinding for a period of time, perform spot inspection on the processed convex rollers; when the surface quality, shape accuracy, and dimensional consistency of the rolling surface of the processed convex rollers have not reached the technical requirements, Continue the grinding process of this step; when the surface quality, shape accuracy, and dimensional consistency of the rolling surface of the processed convexity rollers that have been spot-checked meet technical requirements, proceed to step nine;
  • Step Nine gradually reduce the working pressure and finally reach zero; stop the operation of the roller feeding mechanism, the roller conveying system and the roller finishing mechanism, adjust the relative rotation speed of the first grinding disc and the second grinding disc to zero; stop grinding
  • the machining area is filled with grinding fluid; the second grinding disc is retracted along its axis to a non-working position.
  • the grinding disk set in the grinding equipment used is the above magnetic grinding disk set, which is used for the finishing of the rolling surface of the convex roller of the ferromagnetic material, and the steps of the foregoing grinding method.
  • the difference is:
  • Step 3 Start the roller demagnetization device, the roller conveying system, the roller finishing mechanism and the roller feeding mechanism; adjust the feeding speed of the roller feeding mechanism to make it relatively rotate with the first grinding disc and the second grinding disc Match the speed; adjust the conveying speed of the roller conveying system and the finishing speed of the roller finishing mechanism to match the feeding speed of the roller feeding mechanism; so as to establish the processed convex rollers on the first grinding disc and the second grinding
  • Step 6 Include:
  • the rolling surfaces of the convex tapered rollers come into line contact with the two symmetrical sides of the concave arc groove working surface of the first grinding disc and the working surface of the spiral groove of the second grinding disc, respectively.
  • the base surface of the big-end ball or the rounded end of the big-end end or the rounded end of the small-end end makes line contact with the working surface of the spiral groove of the second grinding disc;
  • the processed convex roller makes a continuous rotary movement around its own axis; at the same time, the processed convex roller makes a circle along the concave arc line of the first grinding disc under the continuous pushing of the working surface of the spiral groove Arc feed motion; the rolling surface of the processed convex roller begins to undergo the grinding process of the concave arc groove working surface of the first grinding disc and the working surface of the spiral groove of the second grinding disc;
  • Step Nine gradually reduce the working pressure and finally reach zero; stop the operation of the roller feeding mechanism, the roller conveying system and the roller finishing mechanism, and adjust the relative rotation speed of the first grinding disc and the second grinding disc to zero;
  • the structure is switched to the non-working state, and the roller demagnetization device is stopped; the filling of the grinding processing area with the grinding fluid is stopped; the second grinding disc is retracted to the non-working position along its axis.
  • Scenario 1 When the processed convexity roller of ferromagnetic material is ground by a consolidated abrasive grain grinding method, a magnetic structure is set inside the second grinding disc, and the second grinding is performed by adjusting the magnetic field strength of the magnetic structure.
  • the spiral groove working face of the disc is driven by the sliding frictional torque generated when the processed convex roller of the ferromagnetic material rotates about its own axis is greater than the concave arc groove working face of the first grinding disc.
  • Case 2 When the processed convexity roller of a ferromagnetic material is ground by a free abrasive grain grinding method, the second grinding disc has a built-in magnetic structure to increase the spiral groove of the second grinding disc to face the iron The sliding friction driving torque generated when the processed convex roller of magnetic material rotates around its own axis, so that the processed convex roller of ferromagnetic material continuously rotates about its own axis without being affected by the indentation of the first grinding disc The matching between the material of the arc groove working surface and the material of the spiral groove working surface of the second grinding disc is restricted.
  • the concave convex arc groove working surface and The running surface of the spiral groove of the second grinding disc is run-in; the running-in method is the same as that of the processed convex roller; for step eight, the processed convex rollers involved in the running-in are spot-checked.
  • the running-in process proceeds to step nine; otherwise, step eight is continued.
  • the rolling surfaces of the convex rollers to be processed in each grinding processing area surrounded by the concave arc groove working surface of the first grinding disk and the spiral groove working surface of the second grinding disk It comes into contact with the concave arc groove working surface of the first grinding disc and the spiral groove working surface of the second grinding disc.
  • the convexity roller is processed around its axis under the frictional drive of the spiral groove working surface of the second grinding disc. Rotating, the rolling surface of the processed convex roller and the concave arc groove working surface of the first grinding disc relatively slide, thereby realizing the grinding processing of the rolling surface of the processed convex roller.
  • the material removal of the rolling surface is directly related to the contact stress between the rolling surface and the concave arc groove working surface.
  • the contact stress between the rolling surface and the concave arc groove working surface is large, and the material removal amount of the rolling surface at the contact is large;
  • the contact stress between the rolling surface and the concave arc groove working surface is small. Less material removal on the rolling surface.
  • the high-point material removal and the low-point material removal of the rolling surface of the convex roller can be realized, and the rolling surface of the large-diameter convex roller has more material removal and the smaller-diameter convex roller rolling surface can be removed. Less material is removed.
  • the recessed arc groove of the first grinding disc and the open design of the spiral groove of the second grinding disc are very suitable for the finishing of the rolling surface of a large number of convex rollers; on the other hand, the roller circulation
  • the order of the processed convexity rollers that was disrupted during the off-disk system makes the aforementioned features "the high-point material removal of the rolling surface of the convex roller, the low-point material removal of less, the larger diameter of the convex roller rolling
  • the removal of more material on the surface and less removal of the rolling surface of the convex roller with a smaller diameter can be spread to the entire processing batch, thereby improving the shape accuracy and size of the rolling surface of the convex roller of the entire batch.
  • the concave arc groove of the first grinding disc and the spiral groove of the second grinding disc have tens to hundreds of intersections, that is, there are tens to hundreds at the same time.
  • the processing of the convex roller participates in the grinding, thereby improving the processing efficiency of the rolling surface of the convex roller and reducing the processing cost.
  • the spiral groove working of the second grinding disc is introduced into the force balance system of the processed convex roller of the ferromagnetic material to face the processed convex roller of the ferromagnetic material.
  • the magnetic attraction force is independent of the working pressure applied to the processed convex roller of the ferromagnetic material by the relative approach of the first grinding disc and the second grinding disc during the grinding process, making the condition "second
  • the spiral groove working surface of the grinding disc is facing the ferromagnetic material, and the sliding friction driving torque generated by the rotation of the convex roller around its own axis is greater than the concave arc groove groove of the first grinding disc.
  • the sliding friction resistance moment generated by the material's processed convex roller rotating around its own axis is easier to achieve.
  • FIG. 1-1 is a schematic diagram of a polishing disc kit according to a first embodiment of the polishing disc kit
  • Figure 1-2 (a) is the schematic diagram of the concave arc groove structure of the first grinding disc in Example 1 of the grinding disc kit and the contact relationship between the rolling surface of the processed convex cylindrical roller and the working surface of the concave arc groove ;
  • Figure 1-2 (b) is a schematic diagram of the three-dimensional structure of the processed cylindrical roller
  • Figure 1-2 (c) is a schematic diagram of the two-dimensional structure of the processed cylindrical roller
  • FIG. 1-2 (d) is a first schematic view of a scanning profile of a scanning surface of a concave arc groove in a first grinding disc of the first embodiment of the grinding disc kit;
  • FIG. 1-2 (e) is a second schematic diagram of a scanning contour of a scanning surface of a concave arc groove in a first grinding disc in Embodiment 1 of the grinding disc kit;
  • 1-3 is a schematic diagram of a base surface of a first grinding disc of the first embodiment of the grinding disc kit
  • 1-4 (a) is a schematic view showing a structure of a spiral groove of a second grinding disc of the first embodiment of the grinding disc kit;
  • Figure 1-4 (b) is a schematic diagram of the contact relationship between the processed convex cylindrical roller and the spiral groove working surface in the first embodiment of the grinding disc kit;
  • FIG. 1-4 (c) is a characteristic diagram of the equiangular spiral line of the arc turning surface of the first embodiment of the polishing disc kit;
  • FIG. 1-5 (a) is a schematic diagram of the constraint and freedom of movement of the contact and movement freedom of the convex cylindrical roller and the grinding disc kit in the grinding processing state of the first embodiment of the grinding disc kit;
  • Figure 1-5 (b) is an enlarged view of part E in Figure 1-5 (a);
  • 1-6 is a schematic view of the contact between the processed convex cylindrical roller and the spiral groove working surface of the first embodiment of the grinding disc kit;
  • 1-7 is a schematic diagram of the distribution of the convex cylindrical rollers in the concave arc grooves and spiral grooves in the grinding processing state of the first embodiment of the grinding disc kit;
  • FIG. 1-10 (b) is a schematic view of a main mechanism type 1 processed cylindrical roller of the grinding machine entering the grinding processing area under the action of the spiral groove working surface at the entrance of the spiral groove;
  • FIG. 1-11 is a schematic diagram of the processed convex cylindrical roller of the main mechanism type 2 of the first embodiment of the grinding equipment entering the grinding processing area under the pushing effect of the spiral groove working surface at the entrance of the spiral groove;
  • FIG. 2-1 (a) is a schematic diagram of the magnetic structure of the second grinding disc and the magnetic field distribution near the front surface of the second grinding disc in the second embodiment of the grinding disc kit;
  • FIG. 2-1 (b) is an enlarged view of part F in FIG. 2-1 (a), and is a schematic view of a processed cylindrical roller whose magnetic field lines near the front surface of the second grinding disc preferably pass through a ferromagnetic material;
  • FIG. 2-2 (a) is a structural schematic diagram of a main mechanism type 1 of a grinding equipment according to a second embodiment of the grinding equipment;
  • FIG. 2-2 (a) is a structural schematic diagram of a main mechanism type 1 of a grinding equipment according to a second embodiment of the grinding equipment;
  • FIG. 2-2 (b) is a schematic structural diagram of the main mechanism type 2 of the grinding equipment of the second embodiment of the grinding equipment;
  • Figure 2-3 (a) is a schematic diagram of a processed convexity cylindrical roller of the main mechanism type 1 of the grinding equipment of the second embodiment of the grinding equipment;
  • FIG. 2-3 (b) is a schematic view showing a cycle of a processed convex cylindrical roller of the main mechanism type 2 of the grinding equipment of the second embodiment of the grinding equipment;
  • FIG. 2-3 (b) is a schematic view showing a cycle of a processed convex cylindrical roller of the main mechanism type 2 of the grinding equipment of the second embodiment of the grinding equipment;
  • 2-4 is a schematic diagram of the cycle of the main mechanism type one processed convex cylindrical roller inside and outside the magnetic grinding disc kit of the second embodiment of the grinding equipment;
  • 2-5 is a schematic diagram of the circulation of the main mechanism type two processed convex cylindrical rollers inside and outside the magnetic grinding disc kit of the second embodiment of the grinding equipment;
  • Figure 3-1 is a schematic diagram of a polishing disk kit of the third embodiment of the polishing disk kit
  • Figure 3-2 (a) is the schematic diagram of the concave arc groove structure of the first grinding disc in the third embodiment of the grinding disc kit and the contact relationship between the rolling surface of the processed convex tapered roller and the working surface of the concave arc groove ;
  • Figure 3-2 (b) is a three-dimensional structure diagram of the processed convex tapered roller
  • Figure 3-2 (c) is a schematic diagram of the two-dimensional structure of the processed convex tapered roller
  • FIG. 3-2 (d) is a schematic diagram of a scanning contour of a scanning surface of a concave arc groove in a first grinding disc of a third embodiment of a grinding disc kit;
  • FIG. 3-2 (d) is a schematic diagram of a scanning contour of a scanning surface of a concave arc groove in a first grinding disc of a third embodiment of a grinding disc kit;
  • 3-3 is a schematic diagram of a base surface of a first grinding disc in Embodiment 3 of the grinding disc kit;
  • FIG. 3-4 (a) is a schematic view of the structure of the spiral groove of the second grinding disc of the third embodiment of the grinding disc kit;
  • FIG. 3-4 (b) is a schematic diagram of the contact relationship between the processed convex tapered roller and the spiral groove working surface in the third embodiment of the polishing disc kit;
  • FIG. 3-4 (c) is a characteristic diagram of the equiangular spiral line of the arc turning surface of the third embodiment of the polishing disc kit;
  • FIG. 3-5 (a) is a schematic diagram of the constraint and freedom of movement of the contact between the convexity tapered roller and the grinding disc of the grinding disc kit in the grinding processing state of the third embodiment of the grinding disc kit;
  • Figure 3-5 (b) is an enlarged view of part E in Figure 3-5 (a);
  • 3-6 (a) is a first schematic view of the contact between the processed convex tapered roller and the spiral groove working surface in the third embodiment of the grinding disc kit;
  • 3-6 is the second schematic diagram of the contact between the processed convex tapered roller and the spiral groove working surface in the third embodiment of the grinding disc kit;
  • 3-6 (c) is the third schematic view of the contact between the processed convex tapered roller and the spiral groove working surface in the third embodiment of the grinding disc kit;
  • 3-7 is a schematic diagram of the distribution of the convexity tapered rollers in the concave arc grooves and spiral grooves in the grinding processing state of the third embodiment of the grinding disc kit;
  • 3-8 (a) is a schematic diagram of the structure of the main mechanism of the grinding equipment in the third embodiment of the grinding equipment;
  • FIG. 3-9 (a) is a schematic diagram of the main mechanism-type one processed convexity tapered roller and tapered roller cycle of the grinding equipment in the third embodiment of the grinding equipment;
  • FIG. 3-9 (a) is a schematic diagram of the main mechanism-type one processed convexity tapered roller and tapered roller cycle of the grinding equipment in the third embodiment of the grinding equipment;
  • FIG. 3-9 (b) is a schematic diagram of the main mechanism type two processed convexity tapered rollers and tapered rollers of the grinding equipment in the third embodiment of the grinding equipment;
  • FIG. 3-10 (a) is a schematic diagram of the circulation of the processed convexity tapered rollers of the main mechanism type 1 of the third embodiment of the grinding equipment inside and outside the grinding disc kit;
  • FIG. 3-10 (b) is a schematic diagram of the processed convexity tapered roller of the main mechanism type 1 of the third embodiment of the grinding equipment entering the grinding processing area under the action of the working surface of the spiral groove working surface at the entrance of the spiral groove;
  • 3-11 (a) is a schematic diagram of the circulation of the processed convexity tapered rollers of the main mechanism type 2 in the third embodiment of the grinding equipment inside and outside the grinding disc kit;
  • FIG. 4-1 (a) is a schematic diagram of the magnetic structure of the second grinding disc and the magnetic field distribution near the front surface of the second grinding disc in the fourth embodiment of the grinding disc kit;
  • FIG. 4-1 (b) is an enlarged view of part F in FIG. 4-1 (a), and is a schematic diagram of a processed convexity tapered roller in which the magnetic field lines near the front surface of the second grinding disc preferably pass through a ferromagnetic material.
  • 4-2 (a) is a structural schematic diagram of a main mechanism type of a grinding equipment of a fourth embodiment of the grinding equipment;
  • 4-2 (b) is a schematic structural diagram of a main mechanism type 2 of a grinding equipment according to a fourth embodiment of the grinding equipment;
  • FIG. 4-3 (a) is a schematic diagram of a processed convexity tapered roller cycle of the main mechanism type 1 of the grinding equipment of the fourth embodiment of the grinding equipment;
  • FIG. 4-3 (b) is a schematic diagram of the processed convexity tapered roller of the main mechanism of the grinding equipment of the fourth embodiment of the grinding equipment;
  • 4-4 is a schematic diagram of the circulation of the main mechanism-type processed convexity tapered roller inside and outside the magnetic grinding disc kit in the fourth embodiment of the grinding equipment;
  • 4-5 is a schematic diagram of the cycle of the main mechanism type two processed convexity tapered rollers inside and outside the magnetic grinding disc kit of the fourth embodiment of the grinding equipment;
  • A, B- The contour of the normal cross-section of the scanning surface of the concave arc groove at the distal points on both sides of the center plane;
  • R 11 the radius of curvature of the axial cross section of the base surface of the first grinding disc
  • R 12 the radius of curvature of the base circle of the first grinding disc
  • R 21 the radius of curvature of the axial cross section of the base surface of the second grinding disc
  • R 22 the radius of curvature of the base circle of the second grinding disc
  • Abrasive disc kit embodiment one: An abrasive disc kit for finishing the rolling surface of a convex cylindrical roller.
  • the grinding disc kit includes a pair of coaxial first grinding discs 21 and a second grinding disc 22, and the first grinding disc front surface 211 and the second grinding disc front surface 221 are arranged opposite each other, as shown in FIG. 1-1.
  • 213 is a first grinding disk axis
  • reference numeral 223 is a second grinding disk axis.
  • the first grinding disk mounting surface 212 and the second grinding disk mounting surface 222 face away from the first grinding disk front surface 211 and the second grinding disk front surface 221, respectively, and the first grinding disk 21 and the second grinding disk 22 pass through the respective surfaces.
  • the mounting surface is connected to the corresponding mounting base on the grinding equipment.
  • the front surface 211 of the first grinding disc includes a set (not less than 3) of radially inwardly concave arc grooves 2111 and a transition surface 2112 connecting adjacent concavely arc grooves.
  • the surface of the concave arc groove 2111 includes a concave arc groove working surface that comes into contact with the rolling surface 32 of the processed cylindrical roller 3 during grinding. 21111 and a non-working surface (not shown in the figure) that does not come into contact with the rolling surface 32 of the processed cylindrical roller.
  • Figures 1-2 (b) and 1-2 (c) show the three-dimensional structure and two-dimensional structure of the processed convex cylindrical roller 3, respectively.
  • the concave arc groove working surface 21111 is on a concave arc groove scanning surface 21113, and the concave arc groove scanning surface 21113 is an iso-section scan.
  • the scanning path of the concave arc groove scanning surface 21113 is a circular arc, and the generatrix (ie, the scanning profile) of the concave arc groove scanning surface 21113 is within the concave arc groove normal cross section 21114.
  • the recessed arc groove normal cross section 21114 is a plane that is perpendicular to a tangent to a scanning path (arc) of the recessed arc groove 21111 and passes through a corresponding tangent point.
  • the concave arc groove normal cross section 21114 As shown in FIGS. 1-2 (a), 1-2 (d), and 1-2 (e), within the concave arc groove normal cross section 21114, the concave arc groove is scanned
  • the normal section profile 211131 of the surface 21113 (the scanning profile in the concave arc groove normal section 21114) is a radius of curvature equal to the radius of curvature of the maximum diameter truncated circle 324 of the rolling surface 32 of the processed cylindrical roller
  • the scanning path of the concave arc groove scanning surface 21113 passes through the center of curvature of the normal cross-sectional profile 211131, and the scanning path (arc) is defined as the concave arc groove baseline 21116.
  • the specific meaning of the concave arc groove scanning surface 21113 as a scanning surface of equal cross section is: within the concave arc groove method cross section 21114 at different positions of the concave arc groove baseline 21116, the The normal cross-sectional profile 211131 of the concave arc groove scanning surface 21113 remains unchanged.
  • the scanning surface determines the shape, position and boundary of the working surface, the scanning surface is a continuous surface; the working surface has the same shape as the corresponding scanning surface, The position and the boundary can be discontinuous on the premise that the contact relationship between the convex cylindrical roller 3 and the working surface is not affected, and the grinding uniformity of the rolling surface 32 of the convex cylindrical roller is not affected.
  • the concave arc groove baselines 21116 are distributed on a concave arc turning surface, and the definition is: the concave arc turning surface is the first grinding disc base surface 214, so The axis of the first grinding disc base 214 is the first grinding disc axis 213.
  • the stub shaft sectional surface of the first disc substrate polishing 2141 a radius of curvature R 11 of the circular arc.
  • the circumference where the center of curvature O 1 of the axial section cross-section 2141 of the base surface of the first grinding disk is located and the circle center is on the first grinding disk axis 213 is the first grinding disk base circle 2140.
  • the radius of curvature of the grinding disc base circle 2140 is R 12 .
  • the concave arc groove base line 21116 is within the first grinding disc axis section 215, and it is defined that the first grinding disc shaft cross section 215 including the concave arc groove base line 21116 is the concave arc
  • the central plane 21112 of the trench working surface 21111 As shown in FIGS. 1-2 (d) and 1-2 (e), within the concave arc groove normal cross section 21114, the concave arc line where the concave arc groove working surface 21111 is located
  • the center angles ⁇ 1 of the normal cross-sectional profile 211131 of the groove scanning surface 21113 at the distal points A and B on both sides of the central plane 21112 are ⁇ 90 ° and ⁇ 2 ⁇ 90 °.
  • the axis 31 of the convex cylindrical roller to be processed is within the central plane 21112 of the concave arc groove working surface.
  • the axis 31 is tangent to the concave arc groove base line 21116 and is the mapping point Q 3 of the maximum diameter truncated circle 324 of the rolling surface 32 of the processed convex cylindrical roller on its axis 31.
  • the concave concave groove working surface 21111 is continuous at its central plane 21112.
  • the rolling surface 32 of the processed convex cylindrical roller and the concave arc groove working surface 21111 make cross-line contact (and tangent), cross-contact line 1 3211 and cross-contact line 2 3212 are located in the central plane 21112 and the concave arc groove method cross section 21114, respectively.
  • the concave concave groove working surface 21111 is discontinuous at the central plane 21112 thereof.
  • the rolling surface 32 of the processed convex cylindrical roller and the concave arc groove working surface 21111 are in double cross line contact (tangent), and one is located on the concave arc groove method cross section.
  • the cross-contact line 2 3212 in 21114 crosses two cross-contact lines 1 3211 on both sides of the central plane 21112.
  • the convexity curve of the rolling surface 32 of the processed convex cylindrical roller corresponding to the concave arc groove working surface 21111 is approximately an arc with a radius of curvature R c .
  • the processed convexity cylindrical roller 3 sequentially enters the concave arc groove 2111 from each concave arc groove entrance 21118 of the first grinding disc, and penetrates through the concave arc groove
  • the groove 2111 leaves the concave arc groove 2111 from the corresponding concave arc groove exit 21119, see FIGS. 1-10 (a) and 1-11 (a).
  • the concave arc groove inlets 21118 of the first grinding disc are provided on the outer edge of the first grinding disc 21, and the concave arc groove outlets 21119 of the first grinding disc are provided on the first grinding disc.
  • the inner edge of the first grinding disc 21 is described. Or each concave arc groove inlet 21118 of the first grinding disc is provided on the inner edge of the first grinding disc 21, and each concave arc groove outlet 21119 of the first grinding disc is provided on An outer edge of the first grinding disc 21. It is recommended that each concave arc groove inlet 21118 of the first grinding disc is provided on the outer edge of the first grinding disc 21, and each concave arc groove outlet 21119 of the first grinding disc is provided on The inner edges of the first grinding disc 21 are shown in FIGS. 1-10 (a) and 1-11 (a).
  • the front surface 221 of the second grinding disc includes one or more spiral grooves 2211 and a transition surface 2212 connecting adjacent spiral grooves.
  • Figs. 1-9 (a) and 1-9 (b) and Figure 1-10 (a) are two spiral grooves.
  • the surface of the spiral groove 2211 includes a spiral groove working surface 22111 that comes into contact with the processed cylindrical roller 3 during grinding and a surface that is not in contact with the processed cylindrical roller 3 The non-working surface where the contact occurred.
  • the spiral groove working surface 22111 includes a working surface 221111 that comes into contact with the rolling surface 32 of the processed cylindrical roller during grinding and a working surface that comes into contact with a rounded corner 331 of an end surface of the processed cylindrical roller.
  • the working surface 221111 and the working surface two 221112 are respectively on the scanning surface 221121 and the scanning surface two 221122, and the scanning surface 221121 and the scanning surface two 221122 are scanning surfaces with equal cross sections.
  • the rolling surface 32 and one end rounding corner 332 of the convex cylindrical roller which are processed are in phase with the working surface 221111 and the working surface 221112, respectively. cut.
  • the scanning paths of scanning surface 221121 and scanning surface two 221122 are the same, and they are the mapping points Q 3 on the axis 31 of the maximum diameter truncated circle 324 of the rolling surface 32 of the processed convex cylindrical roller, and An equiangular spiral line of the arc turning surface distributed on a convex arc turning surface.
  • the scanning path of the scanning surface 221121 and the scanning surface two 221122 where the working surface 221111 and the working surface two 221112 are located is the spiral groove baseline 22116 of the second grinding disc.
  • the convex arc-turn surface is a second grinding disk base surface 224, and the axis of the second grinding disk base surface 224 is a second grinding disk axis 223.
  • the characteristic of the equiangular spiral line of the arc turning surface 22116 is that as shown in FIG. 1-4 (c), a prime line 2242 on the convex arc turning surface 224 surrounds the convex arc turning surface.
  • the axis 223 of 224 makes a rotary motion, and a moving point P moves along the prime line 2242.
  • the locus of the moving point P is at a tangent line 22117 of the moving point P and a tangent line 22421 perpendicular to the prime line 2242 at the moving point P.
  • An included angle ⁇ of the convexly convex arc turning surface 224 at the tangent line 2243 of the moving point P is a fixed angle, and ⁇ ⁇ 0.
  • the trajectory of the moving point P is the equiangular spiral 22116 of the arc turning surface, and the included angle ⁇ is the spiral rising angle of the equiangular spiral 22116 of the arc turning surface.
  • the stub shaft sectional surface of the second grinding disc substrate 2241 is a radius of curvature R 21 of the circular arc.
  • R 21 The circumference where the center of curvature O 2 of the axial cross section 2241 of the base surface of the second grinding disc is located and the circle center is on the second grinding disc axis 223 is the second grinding disc base circle 2240.
  • the radius of curvature of the grinding disc base circle 2240 is R 22 .
  • the base surface 224 of the second grinding disk is a convex spherical surface with a radius of curvature R 21 .
  • the generatric lines (ie, the scanning contours) of the scanning surface 221121 and the scanning surface two 221122 are both in the axial section 225 of the second grinding disk.
  • the intersection of the spiral groove baseline 22116 of the second grinding disc and the second grinding disc axis section 225 is the base point Q 2 of the axial cross-sectional profile of the spiral groove scanning surface where the spiral groove working surface 22111 is located.
  • the base point Q 2 is on the axial cross section line 2241 of the base surface of the second polishing disc.
  • the base point Q 2 coincides with the mapping point Q 3 on the axis 31 of the maximum diameter truncated circle 324 of the rolling surface 32 of the processed cylindrical roller.
  • the scanning surface 221121 and the scanning surface two 221122 are both equal-section scanning surfaces. The specific meaning is: within the second grinding disk shaft section 225 at different positions of the spiral groove baseline 22116, the scanning surface 221121 Both the axial section profile 221131 and the scanning surface section 221122 of the axial section profile 221132 remain unchanged, and they are deflected synchronously with the normal vector 22411 of the axial section section line 2241 of the base surface of the second grinding disc at the base point Q 2 .
  • the radius of curvature R 21 of the axial cross section line 2241 of the base surface of the second grinding disc is equal to the radius of curvature R 11 of the axial cross section line 2141 of the base surface of the first grinding disc.
  • the curvature radius R 22 is equal to the curvature radius R 12 of the first grinding disk base circle 2140.
  • the axial section cross-section 2141 of the base surface of the first grinding disc and the axial section cross-section 2241 of the base surface of the second grinding disc and the respective curvature centers O 1 and O 2 are both on the first grinding disc axis 213 and the first
  • the two grinding disc axes 223 are on the same side, or both sides of the first grinding disc axis 213 and the second grinding disc axis 223.
  • FIGS. 1-5 (a) and 1-5 (b) Is an enlarged view of part E of FIG. 1-5 (a).
  • the rolling surface 32 of the processed convex cylindrical roller is in line contact (tangent) with the working surface 221111 of the spiral groove.
  • a rounded corner 331 of one end of the cylindrical roller is in line contact (tangency) with the working surface 2 221112 of the spiral groove.
  • the processed convex cylindrical roller 3 only has the freedom of rotation movement about its own axis 31.
  • reference numeral 322 is a contact line between the rolling surface 32 of the processed convex cylindrical roller and the working surface of the spiral groove 221111
  • reference numeral 3312 is the processed convex A line of contact between a rounded corner 331 of one end of the cylindrical roller and the working surface 2221112 of the spiral groove.
  • the scanning surface of the spiral groove where the working surface 221111 is located 221121 has an axial section profile 221131 (the scanning profile of the second grinding disc shaft section 225 within the scanning surface 221121 ) Is directly related to the linear contact relationship between the rolling surface 32 of the processed convex cylindrical roller and the working surface 221111 of the spiral groove, and the spiral groove baseline 22116.
  • the characteristics of the axial section profile 221132 of the scanning surface two 221122 where the working surface two 221112 of the spiral groove is located (the scanning profile of the scanning surface two 221122 within the second grinding disk axial section 225) and the processed convexity cylinder
  • the contact relationship between the end rounding corner 331 of the roller and the working surface 2 221112 of the spiral groove is directly related to the baseline 22116 of the spiral groove.
  • the axial cross-section profile 221131 of the scanning surface 221121 where the working surface 221111 of the spiral groove is located, and the second cross-section profile 221132 of the scanning surface 221122 where the working surface two 221112 is located can be respectively rolled according to the convexity of the processed cylindrical roller
  • the structural relationship between the scanning surface of the helical groove where the helical groove working surface 22111 corresponding to a given convex cylindrical roller 3 and the processed convex cylindrical roller 3 can be expressed as follows: Restriction relationship of the concave arc groove working surface 21111 of the first grinding disc to the given processed convex cylindrical roller 3, the structural relationship between the first grinding disc 21 and the second grinding disc 22, and The relative positional relationship during the grinding process determines the position and attitude of the axis 31 of the processed convex cylindrical roller relative to the second grinding disc base surface 224 and the spiral groove baseline 22116, that is, the position of the processed convex cylindrical roller
  • the axis 31 is in the second grinding disc shaft section 225, and is tangent to the maximum diameter truncated circle of the rolling surface 32 of the processed convex cylindrical roller, which is tangent to the axial section cut line 2241 of the base surface of the second grinding disc.
  • mapping point Q 3 is a mapping point Q 3 on its axis 31 and intersects with the spiral groove baseline 22116 of the second grinding disc at the maximum diameter of the rolling surface 32 of the processed convex cylindrical roller.
  • a truncated circle 324 is on its axis 31.
  • the convex cylindrical roller 3 to be processed is made to perform an equiangular spiral motion on a circular arc turning surface with respect to the second grinding disc 22 along the spiral groove base line 22116, and the entities on the front surface 221 of the second grinding disc are removed respectively.
  • the material that interferes with the rolling surface 32 of the processed convex cylindrical roller and an end rounded corner 331 is formed on the solid body at the front surface 221 of the second grinding disc, respectively, with the processed convex cylindrical roller.
  • the surfaces related to the rolling surface 32 and the rounded corner 331 of the sub-surface are the scanning surface 221121 and the scanning surface 221122 where the working surface 221111 and the working surface two 221112 of the spiral groove are located.
  • each concave arc groove inlet 21118 of the first grinding disc is provided at the outer edge of the first grinding disc 21
  • each concave arc groove outlet 21119 of the first grinding disc is provided at the first grinding disc 21
  • each spiral groove entrance 22118 of the second grinding disc is provided at the outer edge of the second grinding disc 22
  • each spiral groove exit 22119 of the second grinding disc is provided at The inner edge of the second polishing disc 22 is described.
  • each concave arc groove inlet 21118 of the first grinding disc is provided on the inner edge of the first grinding disc 21
  • each concave arc groove outlet 21119 of the first grinding disc is provided on the first grinding disc 21
  • each spiral groove entrance 22118 of the second grinding disc is provided at the inner edge of the second grinding disc 22
  • each spiral groove exit 22119 of the second grinding disc is provided at The outer edge of the second grinding disc 22 is described with reference to FIGS. 1-9 (a) and 1-9 (b).
  • the first grinding disk base surface 214 coincides with the second grinding disk base surface 224; the front surface 211 of the first grinding disk connects the transition surface 2112 of the adjacent concave arc groove and the A gap exists between the transition surfaces 2212 connected to adjacent spiral grooves on the front surface 221 of the second polishing disk.
  • each intersection G of the spiral groove 2211 corresponding to the second grinding disc and the concave arc groove 2111 of the first grinding disc is at the first
  • a concave cylindrical roller 3 to be processed is distributed in the concave arc groove 2111 of the grinding disc along the concave arc groove base line 21116.
  • the area surrounded by the concave arc groove working surface 21111 of the first grinding disk and the spiral groove working surface 22111 of the second grinding disk is a grinding processing area.
  • Embodiment 2 of a polishing disc kit A polishing disc kit for finishing the rolling surface of a convex cylindrical roller of a ferromagnetic material (such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.).
  • a ferromagnetic material such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.
  • the grinding disc kit includes a pair of coaxial first grinding discs 21 and a second grinding disc 22, which are different from the grinding disc kit described in the first embodiment of the grinding disc kit in that:
  • Figure 2-1 (b) is an enlarged view of part F of Figure 2-1 (a).
  • the second grinding disc base 220 is made of a magnetically permeable material.
  • a ring-shaped magnetic structure 226 is embedded in the inside of the second grinding disc base 220 to form a magnetic field 227 near the front surface 221 of the second grinding disc in the direction of the base line 2242 of the second grinding disc.
  • a set of non-magnetic material 228 in the shape of an annular band (or spiral band) is embedded on the front surface 221 of the second grinding disk to increase the surface area of the front surface of the second grinding disk 221 along the base surface of the second grinding disk. Magnetic resistance in the direction of line 2242.
  • the magnetically permeable material of the second grinding disc base 220 and the embedded non-magnetic material 228 in the shape of an annular band (or a spiral band) are closely connected on the front surface 221 of the second grinding disc and together form the second ⁇ front 221.
  • the thickness t, the embedding depth d, and the pitch (or pitch) s of the ring-shaped (or spiral-shaped) non-magnetic material 228 need to satisfy the structural strength and stiffness of the front surface 221 of the second grinding disc. Requirements; on the other hand, it should be ensured that the magnetic field 227 near the spiral groove working surface 22111 of the second grinding disc preferentially passes through the ferromagnetic material contacting the spiral groove working surface 22111 of the second grinding disc during grinding processing. Processing convex cylindrical roller 3.
  • the annular magnetic structure 226 inside the base of the second grinding disc may be an electromagnetic structure or an electrically controlled permanent magnet structure.
  • the magnetically conductive material is a soft magnetic material with high magnetic permeability, such as soft iron, low carbon steel, and soft magnetic alloy
  • the non-magnetically conductive material 228 is a non-ferromagnetic material such as non-ferrous metal, austenitic stainless steel, and the like.
  • Embodiment 3 of a grinding disc kit A grinding disc kit for finishing the rolling surface of a convex tapered roller.
  • the grinding disc kit includes a pair of coaxial first grinding discs 21 and a second grinding disc 22, and the first grinding disc front surface 211 and the second grinding disc front surface 221 are oppositely arranged, as shown in FIG. 3-1.
  • 213 is a first grinding disk axis
  • reference numeral 223 is a second grinding disk axis.
  • the first grinding disk mounting surface 212 and the second grinding disk mounting surface 222 face away from the first grinding disk front surface 211 and the second grinding disk front surface 221, respectively, and the first grinding disk 21 and the second grinding disk 22 pass through the respective surfaces.
  • the mounting surface is connected to the corresponding mounting base on the grinding equipment.
  • the front surface 211 of the first grinding disc includes a set (not less than 3) of radially inwardly concave arc grooves 2111 and a transition surface 2112 connecting adjacent concavely arc grooves.
  • the surface of the concave arc groove 2111 includes a concave arc groove working surface that comes into contact with the rolling surface 32 of the processed convex tapered roller 3 during grinding. 21111 and a non-working surface (not shown) that does not come into contact with the rolling surface 32 of the convexity tapered roller.
  • Figures 3-2 (b) and 3-2 (c) show the three-dimensional structure and two-dimensional structure of the processed convexity tapered roller 3, respectively.
  • the concave arc groove working surface 21111 is on a concave arc groove scanning surface 21113 that is symmetrical on both sides, and the concave arc groove scanning surface 21113 Is the scanning surface of constant cross-section;
  • the scanning path of the concave arc groove scanning surface 21113 is a circular arc, and the generatric line of the concave arc groove scanning surface 21113 (that is, the scanning profile) is a concave arc groove method Cross section 21114.
  • the recessed arc groove normal cross section 21114 is a plane that is perpendicular to a tangent to a scanning path (arc) of the recessed arc groove 21111 and passes through a corresponding tangent point.
  • the concave arc groove method cross section 21114 the concave arc groove is scanned
  • the normal section profile 211131 of the surface 21113 (that is, the scanning profile in the concave arc groove normal section 21114) is two symmetrical straight line segments, and the midpoint M of any one straight line segment is extended with the two straight line segments.
  • the distance between the intersections of the lines is l 1
  • the length of any one straight line segment is l 2
  • the angle between the two straight line segments is 2 ⁇ .
  • the convexity of the rolling surface 32 of the processed convexity tapered roller corresponding to the two symmetrical straight lines of the normal cross-sectional profile 211131 of the concave arc groove scanning surface 21113 where the concave arc groove working surface 21111 is located.
  • the degree form is the arc convexity, and the convexity value of the convexity curve is ⁇ .
  • Figure 3-2 (a) define: a circle passing through the intersection of the two straight line extension lines and the scanning path of the concave arc groove scanning surface 21113 on the same plane and having the same center of curvature
  • the arc is the groove bottom line 21117 of the concave arc line.
  • the central plane 21112 of the concave arc groove working surface 21111 is a line of symmetry line 211132 of the normal cross-section profile of the concave arc groove scanning surface 21113 and the concave arc groove scanning surface 21113.
  • the axis 31 of the processed convex tapered roller is in the center plane 21112 of the concave arc groove working surface 21111, and the rolling surface 32 of the processed convex tapered roller and the concave
  • the two symmetrical sides of the arc groove working surface 21111 are in line contact (tangency) respectively, and reference numeral 321 is a contact line in which line contact occurs.
  • the small end of the processed convex tapered roller is larger than the head end 34.
  • the scanning path of the concave arc groove scanning surface 21113 passes the midpoint Q 3 of the CD of the rolling surface 32 of the processed convex tapered roller on its axis 31, and it is defined that the scanning path is a concave arc
  • the line groove baseline 21116, the concave arc groove baseline 21116 and the concave arc groove bottom line 21117 have the same center of curvature. See Figure 3-3.
  • the specific meaning of the concave arc groove scanning surface 21113 as a scanning surface of equal cross section is: within the concave arc groove method cross section 21114 at different positions of the concave arc groove baseline 21116, the The normal cross-sectional profile 211131 of the concave arc groove scanning surface 21113 remains unchanged.
  • the scanning surface determines the shape, position and boundary of the working surface, the scanning surface is a continuous surface; the working surface has the same shape as the corresponding scanning surface, The position and boundary can be discontinuous on the premise that the contact relationship between the convex tapered roller 3 and the working surface is not affected, and the uniformity of the grinding of the convex tapered roller rolling surface 32 is not affected.
  • the concave arc groove baselines 21116 are distributed on a concave arc turning surface, and the definition is: the concave arc turning surface is the first grinding disc base surface 214, so The axis of the first grinding disc base 214 is the first grinding disc axis 213.
  • the stub shaft sectional surface of the first disc substrate polishing 2141 a radius of curvature R 11 of the circular arc.
  • the circle defining the center of curvature O 1 of the axial section cross-section 2141 of the base surface of the first grinding disk and the circle center on the first grinding disk axis 213 is the first grinding disk base circle 2140, and the first grinding The radius of curvature of the disc base circle 2140 is R 12 .
  • R 12 0, the base surface 214 of the first grinding disc is a concave concave surface with a radius of curvature R 11 .
  • the concave arc groove base line 21116 is within the first grinding disc shaft section 215, the central plane 21112 of the concave arc groove working surface 21111 and the base plane 21116 containing the concave arc groove base line 21116.
  • the first grinding disc shaft section 215 is coincident.
  • the half-taper angle of the processed convexity tapered roller 3 is For a given large end radius R, the axial length L of the rolling surface, and the taper angle
  • the curvature radii of the processed convexity tapered roller 3 and the convexity value ⁇ of the convexity curve of the rolling surface, and the corresponding concave arc groove base line 21116 and concave arc groove base line 21117 have curvature radii of R 11 respectively.
  • the concave arc groove baseline 21116 intersects with the axis 31 of the processed convex tapered roller, and the intersection point is located in the middle of the mapping CD of the rolling surface 32 of the processed convex tapered roller on its axis 31
  • the angle between the axis 31 of the processed convexity tapered roller 3 and the tangent line 211161 of the concave arc groove base line 21116 at its intersection Q 3 is ⁇ , and:
  • the two symmetrical straight line segments of the normal cross-sectional profile 211131 of the concave arc groove scanning surface where the concave arc groove working surface is located The distance l 1 between the midpoint M of any straight line segment and the intersection of the two straight line extension lines, the length l 2 of any straight line segment, and the concave arc groove baseline 21116 and the concave arc groove
  • the curvature radii R 11 and R b of the groove bottom line 21117 can be used according to the line contact (tangent) relationship between the rolling surface 32 of the convex tapered roller and the concave arc groove working surface 21111 during grinding processing. Analytical method or graphic method using 3D design software.
  • the material that interferes with the rolling surface 32 of the processed convex tapered roller is formed on the solid body at the front surface 211 of the first grinding disc and is related to the rolling surface 32 of the processed convex tapered roller
  • the two symmetrical surfaces of are the concave arc groove scanning surface 21113 where the concave arc groove working surface is located.
  • the convexity value ⁇ of the convexity curve of the rolling surface and the line-contact (tangent) relationship between the rolling surface 32 of the convexity tapered roller and the concave-convex groove working surface 21111 during grinding processing The normal cross-sectional profile 211131 of the concave arc groove scanning surface 21113 where the groove working surface 21111 is located, the curvature radius R 11 and R b of the concave arc groove baseline 21116 and the concave arc groove bottom line 21117, And the combination of the angle ⁇ of the axis 31 of the convexity tapered roller and the tangent line 211161 of the concave arc groove baseline at the intersection is not unique.
  • the convexity form of the rolling surface 32 of the convexity tapered roller being processed is not two symmetrical straight line segments of the normal cross-section profile 211131 of the concave-arc groove scanning surface 21113 where the concave-arc groove working surface 21111 is located
  • the normal cross-sectional profile 211131 of the concave arc groove scanning surface 21113 where the corresponding concave arc groove working surface 21111 is located must be processed according to the processed convexity tapered roller
  • the convexity curve of the rolling surface 32 is modified accordingly.
  • the normal section profile 211131 after the modification is two symmetrical curved sections that are slightly concaved into the solid of the first grinding disc 21.
  • the included angle between the two tangent lines of the two curved segments at their respective midpoints is 2 ⁇ , passing through the intersection of the tangent lines of the two curved segments at their respective midpoints and scanning with the concave arc groove
  • the arcs whose scanning paths of the surface 21113 are on the same plane and have the same center of curvature are the bottom lines 21117 of the concave arc groove 2111.
  • the processed convexity tapered roller 3 sequentially enters the concave arc groove 2111 from each concave arc groove entrance 21118 of the first grinding disc, and passes through the concave arc groove 2111.
  • the groove 2111 leaves the concave arc groove 2111 from the corresponding concave arc groove exit 21119, see FIGS. 3-10 (a) and 3-11 (a).
  • the concave arc groove inlets 21118 of the first grinding disc are provided on the outer edge of the first grinding disc 21, and the concave arc groove outlets 21119 of the first grinding disc are provided on the first grinding disc.
  • the inner edge of the first grinding disc 21 is described. Or each concave arc groove inlet 21118 of the first grinding disc is provided on the inner edge of the first grinding disc 21, and each concave arc groove outlet 21119 of the first grinding disc is provided on An outer edge of the first grinding disc 21. It is recommended that each concave arc groove inlet 21118 of the first grinding disc is provided on the outer edge of the first grinding disc 21, and each concave arc groove outlet 21119 of the first grinding disc is provided on For the inner edge of the first grinding disc 21, see FIGS. 3-10 (a) and 3-11 (a).
  • the front surface 221 of the second grinding disc includes one or more spiral grooves 2211 and a transition surface 2212 connecting adjacent spiral grooves.
  • Figs. 3-9 (a) and 3-9 ( b) and Figure 3-10 (a) are two spiral grooves.
  • the surface of the spiral groove 2211 includes a spiral groove working surface 22111 that comes into contact with the processed convex tapered roller 3 during grinding and a surface that is not in contact with the processed convex tapered roller 3.
  • the non-working surface where the contact occurred is not in contact with the processed convex tapered roller 3.
  • the spiral groove working surface 22111 includes a working surface 221111 which comes into contact with the rolling surface 32 of the convexity tapered roller during grinding processing, and a ball end surface 342 (or large end) of the large end tapered roller being processed.
  • the rounded surface 341 or the small end rounded surface 331) is in contact with the working surface 221112.
  • the working surface 221111 and the working surface two 221112 are respectively on the scanning surface 221121 and the scanning surface two 221122, and the scanning surface 221121 and the scanning surface two 221122 are scanning surfaces with equal cross sections.
  • the rolling surface 32 of the convex tapered roller and the large-end ball base surface 342 (or the large-end rounded corner 341 or the small-end inverted The fillet 331) is tangent to the working surface 221111 and the working surface two 221112, respectively.
  • a scan path 221,121 and 221,122 of the same surface of said two scanning planes are through the rolling surface of the roller cone 32 working crown mapped CD on its axis 31 in the midpoint Q 3, and is located in a An equiangular spiral line of the arc turning surface of the convex arc turning surface.
  • the scanning path of the scanning surface 1221121 and the scanning surface 2221122 where the working surface 221111 and the working surface 2 221112 are located is the spiral groove baseline 22116 of the second grinding disc.
  • the convex arc-turn surface is a second grinding disk base surface 224, and the axis of the second grinding disk base surface 224 is a second grinding disk axis 223.
  • the characteristic of the equiangular spiral line of the arc turning surface 22116 is that, as shown in FIG. 3-4 (c), a prime line 2242 on the arc turning surface 224 surrounds the axis 223 of the arc turning surface 224.
  • a moving point P moves in a circular arc along the prime line 2242.
  • the trajectory of the moving point P is at the tangent line 22117 of the moving point P and the circle of the tangent line 22421 perpendicular to the prime line 2242.
  • the included angle ⁇ of the arc turning surface 224 at the tangent 2243 of the moving point P is a fixed angle, and ⁇ ⁇ 0.
  • the trajectory of the moving point P is the equiangular spiral 22116 of the arc turning surface, and the included angle ⁇ is the spiral rising angle of the equiangular spiral 22116 of the arc turning surface.
  • the circle defining the center of curvature O 2 of the axial section cross-section 2241 of the base surface of the second grinding disc and the center of the circle located on the axis 223 of the second grinding disc is the second grinding disc base circle 2240.
  • the radius of curvature of the disc base circle 2240 is R 22 .
  • R 22 0, the base surface 224 of the second grinding disk is a convex spherical surface with a radius of curvature R 21 .
  • the generatric lines (ie, the scanning contours) of the scanning surface 221121 and the scanning surface two 221122 are both in the axial section 225 of the second grinding disk.
  • the intersection of the spiral groove baseline 22116 of the second grinding disc and the second grinding disc axis section 225 is the base point Q 2 of the axial cross-sectional profile of the spiral groove scanning surface where the spiral groove working surface 22111 is located.
  • the base point Q 2 is on the axial cross section line 2241 of the base surface of the second polishing disc.
  • the base point Q 2 coincides with the midpoint Q 3 of the mapping CD on the axis 31 of the rolling surface 32 of the convexity tapered roller to be processed.
  • the scanning surface 221121 and the scanning surface two 221122 are both equal-section scanning surfaces.
  • the specific meaning is: within the second grinding disk shaft section 225 at different positions of the spiral groove baseline 22116, the scanning surface 221121 221131 sectional profile axis and the scanning surface of the shaft a cross-sectional profile of two dicarboxylic 221 132 221 122 remain unchanged, and the 22411-section synchronized with the shaft stub of the second grinding disc base surface 2241 of the normal vector at the point Q 2 deflection.
  • the radius of curvature R 21 of the axial cross section line 2241 of the base surface of the second grinding disc is equal to the radius of curvature R 11 of the axial cross section line 2141 of the base surface of the first grinding disc.
  • the curvature radius R 22 is equal to the curvature radius R 12 of the first grinding disk base circle 2140.
  • the axial section cross-section 2141 of the base surface of the first grinding disc and the axial section cross-section 2241 of the base surface of the second grinding disc and the respective curvature centers O 1 and O 2 are both on the first grinding disc axis 213 and the first
  • the two grinding disc axes 223 are on the same side, or both sides of the first grinding disc axis 213 and the second grinding disc axis 223.
  • FIGS. 3-5 (a) and 3-5 (b), and FIG. 3-5 (b) Is an enlarged view of part E in FIG. 3-5 (a).
  • the rolling surface 32 of the processed convexity tapered roller is in line contact (tangent) with the working surface 221111 of the spiral groove.
  • the large-end spherical base surface 342 (or large-end rounded corner 341 or small-end rounded corner 331) of the tapered roller is in line contact (tangent) with the working surface 2 221112 of the spiral groove.
  • the convexity tapered roller 3 to be processed only has a degree of freedom of rotation movement about its own axis 31.
  • the processed convexity tapered rollers 3 in different concave concave arc grooves 2111 of the first grinding disc are distributed in the same spiral groove 2211 of the second grinding disc, they are on the first grinding disc.
  • the small head ends in different concave arc grooves 2111 have the same orientation. The orientation of the small head end depends on the normal cross-sectional profile 22113 of the spiral groove scanning surface 22112 where the spiral groove working surface 22111 where the processed convex tapered roller 3 is located, or both point to the inside of the first grinding disc.
  • the concave arc groove exit 21119, or the concave arc groove entrance 21118 of the first grinding disc is both pointed to.
  • the processed convexity tapered rollers 3 in the same concave arc groove 2111 of the first grinding disc are distributed in different spiral grooves 2211 of the second grinding disc, they are concave in the same concave arc of the first grinding disc.
  • the orientation of the small head end in the wire groove 2111 may be different.
  • reference numeral 322 is the rolling surface 32 of the processed convex tapered roller and the spiral groove. Contact line one of working surface 221111.
  • the scanning surface of the spiral groove 221111 is located on the scanning surface 221121 of the axial section profile 221131 (the scanning profile of the scanning surface of the second grinding disc shaft section 225 is 221121 ) Is directly related to the linear contact relationship between the rolling surface 32 of the processed convex tapered roller and the working surface 221111 of the spiral groove, and the spiral groove baseline 22116.
  • the characteristics of the axial section profile 221132 of the scanning surface two 221122 where the working surface two 331112 of the spiral groove is located (the scanning profile of the scanning surface two 221122 within the second grinding disc axial section 225) and the processed convexity cone
  • the large-end ball base surface 342 (or the large-end rounded corner 341 or the small-end rounded corner 331) of the roller is directly related to the line contact relationship of the working surface 2221112 of the spiral groove and the spiral groove baseline 22116.
  • the axial cross-section profile 221131 of the scanning surface 221111 where the working surface 221111 of the spiral groove is located and the second cross-section profile 221132 of the scanning surface 221122 where the working surface two 221112 is located can be respectively rolled according to the processed convexity tapered roller
  • the linear contact relationship between the surface 32 and the working surface of the spiral groove 221111, the large-end spherical base surface 342 (or the large-end rounded corner 341 or the small-end rounded corner 331) of the processed convex tapered roller and the The linear contact relationship of the working surface 2 221112 of the spiral groove and the baseline 22116 of the spiral groove are determined by an analytical method or a graphical method by using a three-dimensional design software.
  • the structural relationship between the spiral groove scanning surface of the spiral groove working surface 22111 corresponding to the given convexity tapered roller 3 and the processed convexity tapered roller 3 can be expressed as follows: Restriction relationship of the concave arc groove working surface 21111 of the first grinding disc to the given processed convexity tapered roller 3, and the structural relationship between the first grinding disc 21 and the second grinding disc 22 And its relative positional relationship during grinding, determine the position and attitude of the axis 31 of the convex crowned tapered roller being processed relative to the second grinding disk base surface 224 and the spiral groove baseline 22116, that is, the convex crowned tapered roller being processed.
  • the axis 31 of the element is within the second grinding disc shaft section 225, intersects with the second cross section of the second grinding disc base plane, and the rolling surface 32 of the processed convex tapered roller is at its axis 31
  • the rolling surface 32 of the processed convex tapered roller is on its axis Midpoint on the map CD 31 Q 3. Combining the orientation of the small end of the processed convex tapered roller 3 in the concave arc groove 2111 of the first grinding disc, the processed convex tapered roller 3 is opposed to the second grinding disc 22 A circular arc turning surface is made to perform an equiangular spiral motion along the spiral groove base line 22116.
  • the small end of the processed convexity tapered roller 3 in the concave arc groove 2111 of the first grinding disc points to the concave arc groove exit 21119, the second grinding is removed respectively.
  • a material that physically interferes with the rolling surface 32 and the large-end ball base surface 342 (or large-end rounded corner 341) of the processed convex tapered roller at the front surface of the disc 221 is on the front surface of the second grinding disc.
  • the surfaces formed on the solid body at 221 that are related to the rolling surface 32 and the large-end ball base surface 342 (or large-end rounded corner 341) of the processed convexity tapered roller are the work of the spiral groove.
  • the processed convexity tapered roller 3 is suitable.
  • the small end of the processed convexity tapered roller 3 in the concave arc groove 2111 of the first grinding disc points to the concave arc groove entrance 21118, the second grinding is removed, respectively.
  • Materials that physically interfere with the rolling surface 32 and the small-end rounded corner 331 of the processed convex tapered roller at the solid body at the front surface 221 are formed on the solid body at the front surface 221 of the second grinding disc, respectively.
  • the surfaces related to the rolling surface 32 and the small end rounding corner 331 of the processed convex tapered roller are the scanning surface 221111 and the scanning surface where the working surface 221111 and the working surface 221112 of the spiral groove are located.
  • Second, 221122, the axial cross-sectional profile of the helical groove scanning surface 22112 where the helical groove working surface 22111 is located is adapted to the processed convexity tapered roller 3 whose small end points to the concave groove entrance 21118.
  • each concave arc groove inlet 21118 of the first grinding disc is provided at the outer edge of the first grinding disc 21
  • each concave arc groove outlet 21119 of the first grinding disc is provided at the first grinding disc 21
  • each spiral groove entrance 22118 of the second grinding disc is provided at the outer edge of the second grinding disc 22
  • each spiral groove exit 22119 of the second grinding disc is provided at The inner edge of the second polishing disc 22 is described.
  • each concave arc groove inlet 21118 of the first grinding disc is provided on the inner edge of the first grinding disc 21
  • each concave arc groove outlet 21119 of the first grinding disc is provided on the first grinding disc 21
  • each spiral groove entrance 22118 of the second grinding disc is provided at the inner edge of the second grinding disc 22
  • each spiral groove exit 22119 of the second grinding disc is provided at The outer edge of the second grinding disc 22 is described in FIGS. 3-9 (a) and 3-9 (b).
  • the first grinding disk base surface 214 coincides with the second grinding disk base surface 224; the front surface 211 of the first grinding disk connects the transition surface 2112 of the adjacent concave arc groove and the A gap exists between the transition surfaces 2212 connected to adjacent spiral grooves on the front surface 221 of the second polishing disk.
  • each intersection G of the spiral groove 2211 corresponding to the second grinding disc and the concave arc groove 2111 of the first grinding disc is at the first A normal cross section of the spiral groove scanning surface 22112 of the concave arc groove 2111 of the grinding disc distributed along the concave arc groove 2111 pointing to the spiral groove working surface 22111 passing through the intersection G
  • the area surrounded by the concave arc groove working surface 21111 of the first grinding disk and the spiral groove working surface 22111 of the second grinding disk is a grinding processing area.
  • Embodiment 4 of a polishing disk kit A polishing disk kit for finishing the rolling surface of a convex tapered roller of a ferromagnetic material (such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.).
  • a ferromagnetic material such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.
  • the grinding disc kit includes a pair of coaxial first grinding discs 21 and a second grinding disc 22, which are different from the grinding disc kit described in the third embodiment of the grinding disc kit in that:
  • Figure 2-1 (b) is an enlarged view of part F of Figure 2-1 (a).
  • the second grinding disc base 220 is made of a magnetically permeable material.
  • a ring-shaped magnetic structure 226 is embedded in the inside of the second grinding disc base 220 to form a magnetic field 227 near the front surface 221 of the second grinding disc in the direction of the base line 2242 of the second grinding disc.
  • a set of non-magnetic material 228 in the shape of an annular band (or spiral band) is embedded on the front surface 221 of the second grinding disk to increase the surface area of the front surface of the second grinding disk 221 along the base surface of the second grinding disk. Magnetic resistance in the direction of line 2242.
  • the magnetically permeable material of the second grinding disc base 220 and the embedded non-magnetic material 228 in the shape of an annular band (or a spiral band) are closely connected on the front surface 221 of the second grinding disc and together form the second ⁇ front 221.
  • the thickness t, the embedding depth d, and the pitch (or pitch) s of the ring-shaped (or spiral-shaped) non-magnetic material 228 need to satisfy the structural strength and stiffness of the front surface 221 of the second grinding disc. Requirements; on the other hand, it should be ensured that the magnetic field 227 near the spiral groove working surface 22111 of the second grinding disc preferentially passes through the ferromagnetic material contacting the spiral groove working surface 22111 of the second grinding disc during grinding processing. Processing convex tapered roller 3.
  • the annular magnetic structure 226 inside the base of the second grinding disc may be an electromagnetic structure or an electrically controlled permanent magnet structure.
  • the magnetically conductive material is a soft magnetic material with high magnetic permeability, such as soft iron, low carbon steel, and soft magnetic alloy
  • the non-magnetically conductive material 228 is a non-ferromagnetic material such as non-ferrous metal, austenitic stainless steel, and the like.
  • Embodiment 1 of a grinding device A grinding device for finishing the rolling surface of a convex cylindrical roller.
  • the grinding equipment includes a main body, a roller circulation disc outer system 4 and a grinding disc kit according to the first embodiment of the grinding disc kit, as shown in FIGS. 1-8 (a) and 1-8 (b).
  • the host includes a base 11, a column 12, a cross beam 13, a slide table 14, an upper tray 15, a lower tray 16, an axial loading device 17, and a spindle device 18.
  • the base 11, the pillar 12 and the cross beam 13 constitute a frame of the host.
  • the first grinding disc 21 of the grinding disc set 2 is connected to the lower tray 16, and the second grinding disc 22 of the grinding disc set 2 is connected to the upper tray 15.
  • the slide table 14 is connected to the cross beam 13 through the axial loading device 17, and the upright column 12 can also serve as a guide member to provide a guiding function for the slide table 14 to move linearly along the axis 223 of the second grinding disc. .
  • the slide table 14 moves linearly along the axis 223 of the second grinding disc under the constraint of the upright 12 or other guide members.
  • the spindle device 18 is used to drive the first grinding disc 21 or the second grinding disc 22 to rotate around its axis.
  • the roller circulation disc outer system 4 includes a roller collecting device 41, a roller conveying system 43, a roller finishing mechanism 44 and a roller feed ⁇ ⁇ 45 ⁇ Entering agency 45.
  • the roller collecting device 41 is disposed at each of the concave arc groove outlets 21119 of the first grinding disc, and is configured to collect the processed protrusions leaving the grinding processing area from the concave arc groove outlets 21119 of the first grinding disc.
  • the roller conveying system 43 is used to convey the processed convex cylindrical roller 3 from the roller collecting device 41 to the roller feeding mechanism 45.
  • the roller finishing mechanism 44 is disposed at the front end of the roller feeding mechanism 45 and is used to adjust the axis 31 of the cylindrical roller to be processed to the direction required by the roller feeding mechanism 45.
  • the main mechanism type 1 is used for the grinding disc kit 2 to rotate in the first way
  • the main mechanism type 2 is used for the grinding disc kit 2 to rotate in the second way
  • the main mechanism type 3 is applicable to both
  • the grinding disc set 2 is rotated in the first way, and is suitable for the grinding disc set 2 to be rotated in the second way.
  • the main shaft device 18 is mounted on the base 11, and the first grinding disc 21 is driven by the lower tray 16 connected to it Its axis is rotated; the upper tray 15 is connected to the slide table 14, and the second grinding disc 22 and the upper tray 15 are not rotated.
  • the first grinding disc 21 is rotated relative to the second grinding disc 22 about its axis.
  • the rotation direction of the first grinding disc 21 needs to be determined according to the rotation direction of the spiral groove 2211 of the second grinding disc and the positions of the spiral groove inlet 22118 and the spiral groove outlet 22119, so as to ensure that the processed convex cylindrical roller 3 can
  • the concave arc groove 2111 enters the concave arc groove 2111 from each concave arc groove entrance 21118 of the first grinding disc and leaves the concave arc groove 2111 from the corresponding concave arc groove outlet 21119.
  • the slide table 14 is constrained by the column 12 or other guide members, along with the upper tray 15 connected to the slide table 14 and the second grinding disc 22 connected to the upper tray.
  • the first grinding disc 21 approaches, and applies working pressure to the processed convex cylindrical rollers 3 distributed in the concave arc grooves 2111 of the first grinding disc 21.
  • each of the spiral grooves 2211 of the second grinding disc is provided with the roller feeding mechanism 45, and the roller feeding mechanism 45 are respectively installed at the spiral groove inlets 22118 of the second grinding disk, and are used to connect one of the concave arc groove inlets 21118 and the spiral groove inlet 22118 of the first grinding disk
  • the processed convex cylindrical roller 3 is pushed into the concave arc groove entrance 21118.
  • the roller feeding mechanism 45 is provided with a roller feeding channel 451 and a section of abutting spiral groove.
  • the working surface of the abutting spiral groove is the spiral groove working surface 22111 of the second grinding disc in the roller feeding mechanism 45.
  • the abutting helical groove working surface includes abutting helical groove working surfaces that come into contact with the rolling surface 32 and the end rounding corner 331 of the processed convex cylindrical roller 3 during the feeding of the processed convex cylindrical roller 3, respectively.
  • a 45211 and abutting spiral groove working surface two 45212, the abutting spiral groove working surface one 45211 and abutting spiral groove working surface two 45212 are continuations of the working surface 1 22111 and the working surface 2 22112 of the second grinding disk spiral groove, respectively
  • the roller feed channel 451 intersects the abutting spiral groove.
  • the axis 31 of the processed convex cylindrical roller 3 enters with the restriction of the roller feed channel 451.
  • the axis 31 of the concave arc groove 2111 at the entrance 21118 remains parallel, or transitions from near parallel to parallel.
  • the abutting spiral groove in the roller feeding mechanism 45 at the spiral groove inlet 22118 meets any of the concave arc groove inlets 21118 of the first grinding disc
  • a processed convex cylindrical roller 3 along its own radial direction, with its rolling surface 32 toward the concave arc of the first grinding disc In a manner that the groove working surface 21111 approaches, enter the concave arc groove entrance 21118.
  • FIG. 1 shows that the groove working surface 21111 approaches, enter the concave arc groove entrance 21118.
  • the processed convex cylindrical roller 3 entering the concave arc groove entrance 21118 rotates with the first grinding disc 21 relative to the second grinding disc 22, and then The roller feeding mechanism 45 at the spiral groove entrance 22118 enters the grinding processing area under the pushing action of the abutting spiral groove working surface.
  • the processed convex cylindrical roller 3 is continuously rotated around its own axis 31 under the driving of the sliding friction driving torque of the spiral groove working surface 22111 of the second grinding disc; on the other hand, as shown in Figure 1-9 (a ), As shown in FIGS. 1-10 (a) and 1-10 (b), the convexity of the processed cylindrical roller 3 which has entered the grinding processing area on the spiral groove working surface 22111 of the second grinding disc Under continuous pushing, a circular arc feed motion is performed along the base line 21116 of the concave arc groove of the first grinding disc, passes through the groove 2111 of the concave arc groove, and passes from each of the second grinding disc.
  • the processed convexity cylindrical roller 3 leaving the grinding and processing area passes through the roller collecting device 41, the roller conveying system 43 and the roller finishing mechanism 44. After the original order is disturbed, it is fed into the roller again. Under the action of the mechanism 45, the grinding processing area is sequentially entered from the entrances of the spiral groove inlets 22118 of the second grinding disk and the entrances of the concave arc groove inlets 21118 of the first grinding disk. The entire grinding process is repeated cyclically until the surface quality, shape accuracy, and dimensional consistency of the rolling surface 32 of the convex cylindrical roller to be processed reach the technical requirements, and the finishing process ends.
  • the spindle device 18 is mounted on the slide table 14, and the second grinding disc 22 is driven by the upper tray 15 connected to the spindle device Its axis is rotated; the lower tray 16 is mounted on the base 11, and the first grinding disc 21 and the lower tray 16 are not rotated.
  • the second grinding disc 22 is rotated relative to the second grinding disc 21 about its axis.
  • the rotation direction of the second grinding disc 22 needs to be determined according to the rotation direction of the spiral groove 2211 of the second grinding disc and the positions of the spiral groove inlet 22118 and the spiral groove outlet 22119 to ensure that the processed cylindrical roller 3 can be processed.
  • the concave arc groove 2111 enters the concave arc groove 2111 from each concave arc groove entrance 21118 of the first grinding disc and leaves the concave arc groove 2111 from the corresponding concave arc groove outlet 21119. .
  • the slide table 14 is constrained by the upright 12 or other guide members, together with the spindle device 18 thereon, the upper tray 15 connected to the spindle device 18, and the second grinding wheel connected to the upper tray 15
  • the disk 22 approaches the first grinding disk 21 along the axis of the second grinding disk 223, and rolls the processed convexity cylinders distributed in the concave arc grooves 2111 of the first grinding disk 21 Sub 3 applies working pressure.
  • each concave arc groove 2111 of the first grinding disc is provided with the roller feeding mechanism 45, and the roller The sub-feeding mechanism 45 is installed at each of the concave arc groove inlets 21118 of the first grinding disc, and is used to enter any of the spiral groove entrances 22118 of the second grinding disc and the concave arc groove.
  • the groove entrance 21118 meets, a machined convex cylindrical roller 3 is pushed into the concave arc groove entrance 21118.
  • the roller feed mechanism 45 is provided with a roller feed channel 451, and at any one of the concave arc groove entrances 21118, the roller feed channel positioning surface 4511 is the concave arc groove Continuation of the working surface 21111 in the roller feeding mechanism 45.
  • the axis of the processed convex cylindrical roller 3 is supported by the positioning support of the roller feed channel positioning surface 4511.
  • 31 is the mapping point Q of the maximum diameter truncated circle 324 of the concave surface groove 2111 on the axis 31 of the center plane 21112 of the concave arc groove 2111, which is tangent to the concave arc groove base line 21116 3 .
  • the concave arc groove entrance 21118 As shown in Fig.
  • the processed convex cylindrical roller 3 is continuously rotated around its own axis 31 under the driving of the sliding friction driving torque of the spiral groove working surface 22111 of the second grinding disc; on the other hand, as shown in Figure 1-9 (b ), As shown in FIGS. 1-11 (a) and 1-11 (b), the processed convex cylindrical rollers 3 that have entered the grinding processing area are on the spiral groove working surface 22111 of the second grinding disc. Under continuous pushing, a circular arc feed motion is performed along the base line 21116 of the concave arc groove of the first grinding disc, passes through the groove 2111 of the concave arc groove, and passes from each of the second grinding disc.
  • the processed convexity cylindrical roller 3 leaving the grinding and processing area passes through the roller collecting device 41, the roller conveying system 43 and the roller finishing mechanism 44. After the original order is disturbed, it is fed into the roller again. Under the action of the mechanism 45, the grinding processing area is sequentially entered from the entrances of the spiral groove inlets 22118 of the second grinding disk and the entrances of the concave arc groove inlets 21118 of the first grinding disk. The entire grinding process is repeated cyclically until the surface quality, shape accuracy, and dimensional consistency of the rolling surface 32 of the convex cylindrical roller to be processed reach the technical requirements, and the finishing process ends.
  • two sets of spindle devices 18 are provided, one of which is mounted on the base 11, and the first grinding disc 21 is driven around its axis by the lower tray 16 connected thereto Rotating, another set of spindle device 18 is mounted on the slide table 14, and the second grinding disc 22 is driven to rotate around its axis through the upper tray 15 connected to it; the two sets of spindle device 18 are provided with locks Dead mechanism, only one of the first grinding disc 21 and the second grinding disc 22 is allowed to rotate at the same time, while the other grinding disc is in a locked state in the circumferential direction.
  • the relative movement of the first grinding disc 21 and the second grinding disc 22 is the same as that of the main mechanism type one; the roller feeding mechanism 45
  • the structure, installation position and function are the same as those of the main mechanism type one; the circulation path and the grinding process of the processed convex cylindrical roller 3 are the same as those of the main mechanism type one.
  • the relative movement of the first grinding disk 21 and the second grinding disk 22 is the same as that of the main mechanism type two; the roller feeding mechanism 45
  • the structure, installation position and function are the same as those of the main mechanism type 2; the circulation path and grinding process of the processed convex cylindrical roller 3 are the same as those of the main mechanism type 2.
  • the processed convex cylindrical roller 3 enters the grinding from the concave arc groove entrance 21118 of the first grinding disc.
  • the processing area leaves the grinding processing area from the concave arc groove outlets 21119 of the first grinding disc, and then passes from the concave arc groove outlet 21119 of the first grinding disc in sequence through the rollers.
  • the roller collecting device 41, the roller conveying system 43, the roller finishing mechanism 44 and the roller feeding mechanism 45 enter the concave arc groove inlets 21118 of the first grinding disc to form a cylindrical roller to be processed.
  • the path of the circulation outside the grinding disc set 2 is from the concave arc groove outlets 21119 of the first grinding disc, through the roller collecting device 41, the roller conveying system 43, The roller finishing mechanism 44 and the roller feeding mechanism 45 enter the concave arc groove inlets 21118 of the first grinding disc, and define the path as the path outside the roller circulation disc.
  • the material of the concave arc groove working surface 21111 of the first grinding disc and the material of the spiral groove working surface 22111 of the second grinding disc can be selected separately, so that the grinding process In this case, the frictional pair composed of the material of the spiral groove working surface 22111 of the second grinding disc and the material of the processed convex cylindrical roller 3 slides against the processed convex cylindrical roller 3 about its own axis 31.
  • the friction pair consisting of the material of the concave arc groove working surface 21111 of the first grinding disc and the material of the processed convex cylindrical roller 3 rotates the processed convex cylindrical roller 3 about its own axis 31
  • the generated frictional moment of frictional resistance drives the processed cylindrical roller 3 to continuously rotate about its own axis 31.
  • the processed convex cylindrical rollers 3 made of GCr15, G20CrNi2MoA, Cr4Mo4V and the like are continuously rotated around their own axis 31.
  • Embodiment two of the grinding equipment A grinding equipment for finishing the rolling surface of a convex cylindrical roller of a ferromagnetic material (such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.).
  • a ferromagnetic material such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.
  • the grinding equipment includes a host machine, a grinding disk kit and a roller circulating disk outer system 4.
  • the difference from the grinding equipment described in the first embodiment of the grinding equipment is that the grinding disk kit adopts the grinding disk kit as described in the second embodiment of the grinding disk kit.
  • the roller circulation system 4 includes a roller collecting device 41, a roller demagnetizing device 42, a roller conveying system 43, and a roller.
  • the roller demagnetization device 42 is disposed in the path outside the roller circulation disc.
  • the roller conveying system 43 or before the roller conveying system 43 is used to demagnetize the processed convex cylindrical roller 3 of ferromagnetic material that is magnetized by the magnetic field of the annular magnetic structure 226 inside the second grinding disc base to Avoiding agglomeration of the processed convex cylindrical rollers 3 of the ferromagnetic material when passing through the roller conveying system 43 or the roller finishing mechanism 44.
  • the magnetic field of the annular magnetic structure 226 is adjusted by adjusting Strength to form a sufficiently strong magnetic field 227 near the front surface 221 of the second grinding disc, and cause the spiral groove working surface 22111 of the second grinding disc to produce the processed cylindrical roller 3 of the ferromagnetic material A sufficiently strong magnetic attraction force, so that the sliding frictional driving torque generated by the spiral groove working surface 22111 of the second grinding disc to the processed convex cylindrical roller 3 of the ferromagnetic material around its own axis 31 is greater than the The sliding frictional resistance moment of the concave arc groove working surface 21111 of the first grinding disc to the processed convexity cylindrical roller 3 of the ferromagnetic material is rotated around its own axis 31, thereby driving the processed convexity The cylindrical roller 3 rotates continuously around its own axis 31.
  • the main body has three configurations, corresponding to the main mechanism type 2. As shown in FIG. 2-2 (b), the main shaft device 18 is mounted on the slide table 14 through the upper tray 15 connected thereto. The second grinding disc 22 is driven to rotate around its axis; the lower tray 16 is mounted on the base 11, and the first grinding disc 21 and the lower tray 16 are not rotated. A conductive slip ring is mounted on the main shaft of the main shaft device 18 for driving the second grinding disk 22 to rotate, and is used to provide power to the annular magnetic structure 226 inside the second grinding disk base body in a rotating state.
  • a free abrasive grain grinding method or a consolidated abrasive grain grinding method may be adopted.
  • the concave arc groove working surface 21111 of the first grinding disc is made of a consolidated abrasive grain material.
  • the magnetic field strength of the annular magnetic structure 226 is adjusted so that the spiral groove working surface 22111 of the second grinding disk faces
  • the ferromagnetic material processed convex cylindrical roller 3 generates a strong magnetic attraction force, so that the spiral groove working surface 22111 of the second grinding disc is wound around the ferromagnetic material processed convex cylindrical roller 3
  • the sliding friction driving torque generated by the rotation of the own axis 31 is greater than the concave arc groove working surface 21111 of the first grinding disc generated by the processed convex cylindrical roller 3 of the ferromagnetic material rotating around the own axis 31
  • the frictional moment of sliding friction resistance drives the processed convex cylindrical roller 3 of the ferromagnetic material to continuously rotate about its own axis 31.
  • the magnetic field strength of the annular magnetic structure 226 is adjusted to increase the working surface 22111 of the spiral groove of the second grinding disc.
  • the processed convex cylindrical roller 3 of the ferromagnetic material continuously rotates about its own axis 31, and is not affected by the material of the concave arc groove working surface 21111 of the first grinding disc and the material of the second grinding disc.
  • the material of the spiral groove working surface 22111 is restricted.
  • Embodiment three of the grinding equipment A grinding equipment for finishing the rolling surface of a convex tapered roller.
  • the grinding equipment includes a host machine, a roller circulating disk outer system 4 and a grinding disk kit as described in Embodiment 3 of the grinding disk kit, as shown in FIGS. 3-8 (a) and 3-8 (b).
  • the host includes a base 11, a column 12, a cross beam 13, a slide table 14, an upper tray 15, a lower tray 16, an axial loading device 17, and a spindle device 18.
  • the base 11, the pillar 12 and the cross beam 13 constitute a frame of the host.
  • the first grinding disc 21 of the grinding disc set 2 is connected to the lower tray 16, and the second grinding disc 22 of the grinding disc set 2 is connected to the upper tray 15.
  • the slide table 14 is connected to the cross beam 13 through the axial loading device 17, and the upright column 12 can also serve as a guide member to provide a guiding function for the slide table 14 to move linearly along the axis 223 of the second grinding disc. .
  • the slide table 14 moves linearly along the axis 223 of the second grinding disc under the constraint of the upright 12 or other guide members.
  • the spindle device 18 is used to drive the first grinding disc 21 or the second grinding disc 22 to rotate around its axis.
  • the roller circulation disc outer system 4 includes a roller collecting device 41, a roller conveying system 43, a roller finishing mechanism 44 and a roller feed ⁇ ⁇ 45 ⁇ Entering agency 45.
  • the roller collecting device 41 is disposed at each of the concave arc groove outlets 21119 of the first grinding disc, and is configured to collect the processed protrusions leaving the grinding processing area from the concave arc groove outlets 21119 of the first grinding disc. Degree tapered roller 3.
  • the roller conveying system 43 is used to convey the processed convexity tapered roller 3 from the roller collecting device 41 to the roller feeding mechanism 45.
  • the roller finishing mechanism 44 is disposed at the front end of the roller feeding mechanism 45, and is used to adjust the axis 31 of the processed convex tapered roller to the direction required by the roller feeding mechanism 45, and The orientation of the small end 33 of the processed convexity tapered roller 3 is adjusted to a direction corresponding to the axial cross-sectional profile of the spiral groove scanning surface 22112 of the spiral groove working surface 22111 of the spiral groove of the second grinding disc to be entered.
  • the main mechanism type 1 is used for the grinding disc kit 2 to rotate in the first way
  • the main mechanism type 2 is used for the grinding disc kit 2 to rotate in the second way
  • the main mechanism type 3 is applicable to both
  • the grinding disc set 2 is rotated in the first way, and is suitable for the grinding disc set 2 to be rotated in the second way.
  • the main shaft device 18 is mounted on the base 11, and the first grinding disc 21 is driven by the lower tray 16 connected to the main shaft Its axis is rotated; the upper tray 15 is connected to the slide table 14, and the second grinding disc 22 and the upper tray 15 are not rotated.
  • the first grinding disc 21 is rotated relative to the second grinding disc 22 about its axis.
  • the rotation direction of the first grinding disc 21 needs to be determined according to the rotation direction of the spiral groove 2211 of the second grinding disc and the positions of the spiral groove inlet 22118 and the spiral groove outlet 22119, so as to ensure that the processed convexity tapered roller 3 can
  • the concave arc groove 2111 enters the concave arc groove 2111 from each concave arc groove entrance 21118 of the first grinding disc and leaves the concave arc groove 2111 from the corresponding concave arc groove outlet 21119.
  • the slide table 14 is constrained by the column 12 or other guide members, along with the upper tray 15 connected to the slide table 14 and the second grinding disc 22 connected to the upper tray.
  • the first grinding disc 21 approaches and applies working pressure to the processed convexity tapered rollers 3 distributed in the concave arc grooves 2111 of the first grinding disc 21.
  • each of the spiral grooves 2211 of the second grinding disc is provided with the roller feeding mechanism 45, and the roller feeding mechanism 45 are respectively installed at the spiral groove inlets 22118 of the second grinding disk, and are used to connect one of the concave arc groove inlets 21118 and the spiral groove inlet 22118 of the first grinding disk
  • the processed convexity tapered roller 3 is pushed into the concave arc groove entrance 21118.
  • the roller feeding mechanism 45 is provided with a roller feeding channel 451 and a section of abutting spiral groove.
  • the working surface of the abutting spiral groove is the spiral groove working surface 22111 of the second grinding disc in the roller feeding mechanism 45.
  • the abutting spiral groove working surface includes the rolling surface 32 of the processed convex tapered roller 3 and the large-end ball base surface 342 (or large-end rounded corner 341) during the feeding of the processed convex tapered roller 3 Or small-end rounded corner 331) the mating spiral groove working surface 4511 and the mating spiral groove working surface 4512, respectively, the mating spiral groove working surface 45121 and the mating spiral groove working surface two 45212 are the second Continuation of working surface one 221111 and working surface two 221112 of the spiral groove of the grinding disc, the roller feeding channel 451 intersects with the butt spiral groove.
  • the axis 31 of the processed convex tapered roller 3 enters with the restriction of the roller feed channel 451.
  • the axis 31 of the concave arc groove 2111 at the entrance 21118 remains parallel, or transitions from near parallel to parallel.
  • the abutting spiral grooves in the roller feeding mechanism 45 at each spiral groove inlet 22118 of the second grinding disc are respectively sequentially with the first grinding disc.
  • Each concave arc groove entrance 21118 of the disc intersects.
  • the abutting spiral groove in the roller feeding mechanism 45 at the spiral groove inlet 22118 meets any of the concave arc groove inlets 21118 of the first grinding disc.
  • the tapered roller 3 enters the concave arc groove inlet 21118 in a manner that its rolling surface 32 approaches the concave arc groove working surface 21111 of the first grinding disc in its radial direction.
  • the processed convexity tapered roller 3 entering the concave arc groove entrance 21118 rotates with the first grinding disc 21 relative to the second grinding disc 22, and then the roller at the spiral groove entrance 22118
  • the abutting spiral groove working surface in the feeding mechanism 45 enters the grinding processing area under the pushing action.
  • the processed convexity tapered roller 3 is continuously rotated around its own axis 31 under the driving of the sliding friction driving torque of the spiral groove working surface 22111 of the second grinding disc; on the other hand, as shown in FIG. 3-9 (a ), As shown in FIGS. 3-10 (a) and 3-10 (b), the convexity of the processed tapered roller 3 that has entered the grinding processing area is on the spiral groove working surface 22111 of the second grinding disc. Under continuous pushing, a circular arc feed motion is performed along the base line 21116 of the concave arc groove of the first grinding disc, passes through the groove 2111 of the concave arc groove, and passes from each of the second grinding disc.
  • the processed convexity tapered rollers 3 leaving the grinding processing area pass through the roller collecting device 41, the roller conveying system 43 and the roller finishing mechanism 44. After the original order is disrupted, the rollers are fed into the rollers again. Under the action of the mechanism 45, the grinding processing area is sequentially entered from the entrances of the spiral groove inlets 22118 of the second grinding disk and the entrances of the concave arc groove inlets 21118 of the first grinding disk. The entire grinding process is repeated continuously until the surface quality, shape accuracy and dimensional consistency of the rolling surface 32 of the convexity tapered roller reach the technical requirements, and the finishing process ends.
  • the spindle device 18 is mounted on the slide table 14 and the second grinding disc 22 is driven by the upper tray 15 connected to the spindle table 18 Its axis is rotated; the lower tray 16 is mounted on the base 11, and the first grinding disc 21 and the lower tray 16 are not rotated.
  • the second grinding disc 22 is rotated relative to the second grinding disc 21 about its axis.
  • the rotation direction of the second grinding disc 22 needs to be determined according to the rotation direction of the spiral groove 2211 of the second grinding disc and the positions of the spiral groove inlet 22118 and the spiral groove outlet 22119, so as to ensure that the processed convexity tapered roller 3 can
  • the concave arc groove 2111 enters the concave arc groove 2111 from each concave arc groove entrance 21118 of the first grinding disc and leaves the concave arc groove 2111 from the corresponding concave arc groove outlet 21119.
  • the slide table 14 is constrained by the upright 12 or other guide members, together with the spindle device 18 thereon, the upper tray 15 connected to the spindle device 18, and the second grinding wheel connected to the upper tray 15
  • the disk 22 approaches the first grinding disk 21 along the axis of the second grinding disk, and the processed convexity tapered rollers distributed in the concave arc grooves 2111 of the first grinding disk 21 3 Apply working pressure.
  • each concave arc groove 2111 of the first grinding disc is provided with the roller feeding mechanism 45, and the roller The sub-feeding mechanism 45 is installed at each of the concave arc groove inlets 21118 of the first grinding disc, and is used to enter any of the spiral groove entrances 22118 of the second grinding disc and the concave arc groove.
  • a processed convexity tapered roller 3 is pushed into the concave arc groove entrance 21118.
  • the roller feed mechanism 45 is provided with a roller feed channel 451, and at any one of the concave arc groove entrances 21118, the roller feed channel positioning surface 4511 is the concave arc groove Continuation of the working surface 21111 in the roller feeding mechanism 45.
  • the roller feed channel positioning surface 4511 is the concave arc groove Continuation of the working surface 21111 in the roller feeding mechanism 45.
  • the processed convexity tapered roller 3 slides on the concave arc groove working surface 21111 in such a manner that its rolling surface 32 enters the first grinding disc along the concave arc groove baseline 21116. Recessed arc groove entrance 21118.
  • the processed convexity tapered roller 3 that enters the concave arc groove entrance 21118 is pushed into by the spiral groove working surface 22111 at the spiral groove entrance 22118 of the second grinding disc that is subsequently rotated.
  • the grinding process area is described.
  • the processed convexity tapered roller 3 is continuously rotated about its own axis 31 under the driving of the sliding friction driving torque of the spiral groove working surface 22111 of the second grinding disc; on the other hand, as shown in FIG. 3-9 (b ), FIG. 3-11 (a) and FIG.
  • the processed convexity tapered roller 3 which has entered the grinding processing area is continuously pushed on the spiral groove working surface 22111 of the second grinding disc Under the action of squeezing, a circular arc feed motion is performed along the base line 21116 of the concave arc groove of the first grinding disc, passes through the groove 2111 of the concave arc groove, and passes from each spiral groove of the second grinding disc
  • the intersection of the exit 22119 and the exit of each of the concave arc groove outlets 21119 of the first grinding disc leaves the grinding processing area to complete a grinding process.
  • the processed convexity tapered rollers 3 leaving the grinding processing area pass through the roller collecting device 41, the roller conveying system 43 and the roller finishing mechanism 44.
  • the rollers are fed into the rollers again.
  • the grinding processing area is sequentially entered from the entrances of the spiral groove inlets 22118 of the second grinding disk and the entrances of the concave arc groove inlets 21118 of the first grinding disk.
  • the entire grinding process is repeated continuously until the surface quality, shape accuracy and dimensional consistency of the rolling surface 32 of the convexity tapered roller reach the technical requirements, and the finishing process ends.
  • two sets of spindle devices 18 are provided, one of which is mounted on the base 11, and the first grinding disc 21 is driven around its axis by the lower tray 16 connected thereto Rotating, another set of spindle device 18 is mounted on the slide table 14, and the second grinding disc 22 is driven to rotate around its axis through the upper tray 15 connected to it; the two sets of spindle device 18 are provided with locks Dead mechanism, only one of the first grinding disc 21 and the second grinding disc 22 is allowed to rotate at the same time, while the other grinding disc is in a locked state in the circumferential direction.
  • the relative movement of the first grinding disc 21 and the second grinding disc 22 is the same as that of the main mechanism type one; the roller feeding mechanism 45
  • the structure, installation position and function are the same as those of the main mechanism type one; the circulation path and grinding process of the processed convexity tapered roller 3 are the same as those of the main mechanism type one.
  • the relative movement of the first grinding disk 21 and the second grinding disk 22 is the same as that of the main mechanism type two; the roller feeding mechanism 45
  • the structure, installation position and function are the same as those of the main mechanism type 2; the circulation path and the grinding process of the processed convexity tapered roller 3 are the same as those of the main mechanism type 2.
  • the processed convexity tapered roller 3 enters the grinding from the concave arc groove inlet 21118 of the first grinding disc
  • the processing area leaves the grinding processing area from the concave arc groove outlets 21119 of the first grinding disc, and then passes from the concave arc groove outlet 21119 of the first grinding disc in sequence through the rollers.
  • the roller collecting device 41, the roller conveying system 43, the roller finishing mechanism 44 and the roller feeding mechanism 45 enter the concave arc groove inlets 21118 of the first grinding disc to form a processed convex tapered roller 3
  • the path of the circulation outside the grinding disc set 2 is from the concave arc groove outlets 21119 of the first grinding disc, through the roller collecting device 41, the roller conveying system 43,
  • the roller finishing mechanism 44 and the roller feeding mechanism 45 enter the concave arc groove inlets 21118 of the first grinding disc, and define the path as the path outside the roller circulation disc.
  • the material of the concave arc groove working surface 21111 of the first grinding disc and the material of the spiral groove working surface 22111 of the second grinding disc can be selected respectively, so that the grinding process can be performed.
  • the frictional driving torque is greater than that of the concave arc groove working surface 21111 of the first grinding disc and the material of the convexity tapered roller 3 to be processed.
  • the sliding frictional moment generated by the rotation drives the processed convexity tapered roller 3 to continuously rotate about its own axis 31.
  • the processed convexity tapered rollers 3 made of GCr15, G20CrNi2MoA, Cr4Mo4V and other materials continuously rotate around their own axis 31.
  • Embodiment 4 of grinding equipment A grinding equipment for finishing the rolling surface of a convex tapered roller of a ferromagnetic material (such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.).
  • a ferromagnetic material such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.
  • the grinding equipment includes a host machine, a grinding disc kit and a roller circulation disc outer system 4.
  • the difference from the grinding apparatus described in the third embodiment of the grinding equipment is that the grinding disc kit is as described in the fourth embodiment of the grinding disc kit.
  • the roller circulating disc system 4 includes a roller collecting device 41, a roller demagnetizing device 42, a roller conveying system 43, and a roller.
  • the roller demagnetization device 42 is disposed in the path outside the roller circulation disc.
  • the roller conveying system 43 or before the roller conveying system 43 is used to demagnetize the processed convexity tapered roller 3 of the ferromagnetic material magnetized by the magnetic field of the annular magnetic structure 226 inside the second grinding disc base to Avoiding agglomeration of the processed convexity tapered rollers 3 of the ferromagnetic material when passing through the roller conveying system 43 or the roller finishing mechanism 44.
  • the magnetic field of the annular magnetic structure 226 is adjusted by adjusting Strength to form a sufficiently strong magnetic field 227 near the front surface 221 of the second grinding disc, and cause the spiral groove working surface 22111 of the second grinding disc to produce the processed convexity tapered roller 3 of the ferromagnetic material
  • a sufficiently strong magnetic attraction force so that the sliding frictional driving torque generated by the spiral groove working surface 22111 of the second grinding disc to the processed convexity tapered roller 3 of the ferromagnetic material around its own axis 31 is greater than the The sliding friction resistance moment generated by the concave arc groove working surface 21111 of the first grinding disc on the processed convexity tapered roller 3 of the ferromagnetic material around its own axis 31, thereby driving the processed convexity
  • the tapered roller 3 continuously rotates about its own axis 31.
  • the magnetic field 227 near the front surface 221 of the second grinding disc disappears or weakens, and the spiral groove working surface 22111 of the second grinding disc faces The magnetic attraction force generated by the processed convexity tapered roller 3 of the ferromagnetic material disappears or weakens.
  • the spindle device 18 is mounted on the slide table 14 through the upper tray 15 connected thereto.
  • the second grinding disc 22 is driven to rotate around its axis; the lower tray 16 is mounted on the base 11, and the first grinding disc 21 and the lower tray 16 are not rotated.
  • a conductive slip ring is mounted on the main shaft of the main shaft device 18 for driving the second grinding disk 22 to rotate, and is used to provide power to the annular magnetic structure 226 inside the second grinding disk base body in a rotating state.
  • a free abrasive grain grinding method or a consolidated abrasive grain grinding method can be adopted.
  • the concave arc groove working surface 21111 of the first grinding disc is made of a consolidated abrasive grain material.
  • the magnetic field strength of the annular magnetic structure 226 is adjusted so that the spiral groove working surface 22111 of the second grinding disk faces
  • the processed convexity tapered roller 3 of the ferromagnetic material generates a strong magnetic attraction force, so that the spiral groove working surface 22111 of the second grinding disc surrounds the processed convexity tapered roller 3 of the ferromagnetic material.
  • the sliding friction driving torque generated by the rotation of the own axis 31 is greater than that of the concave arc groove working surface 21111 of the first grinding disc generated by the processed convexity tapered roller 3 of the ferromagnetic material around its own axis 31
  • the frictional moment of sliding friction resistance drives the processed convexity tapered roller 3 of the ferromagnetic material to continuously rotate about its own axis 31.
  • the magnetic field strength of the annular magnetic structure 226 is adjusted to increase the working surface 22111 of the spiral groove of the second grinding disc.
  • the processed convexity tapered roller 3 of the ferromagnetic material is continuously rotated around its own axis 31, and is not affected by the material of the concave arc groove working surface 21111 of the first grinding disc and the material of the second grinding disc.
  • the material of the spiral groove working surface 22111 is restricted.
  • Embodiment 1 of a grinding method A grinding method for finishing the rolling surface of a convex cylindrical roller.
  • the grinding method uses the grinding equipment described in the first embodiment of the grinding equipment.
  • the grinding method of this embodiment is described in detail below with reference to FIGS. 1-1 to 1-11 (b).
  • the grinding method includes the following steps:
  • Step 1 The second grinding disc 22 approaches the first grinding disc 21 along its axis, and the transition surface 2112 connecting the adjacent concave arc groove on the front surface of the first grinding disc is connected to the front surface of the second grinding disc.
  • the transition surface 2212 of the spiral groove is as close as possible, but the processed convex cylindrical roller 3 in the grinding processing area has not yet made cross-line contact with the concave arc groove working surface 21111 of the first grinding disc and the second There is a line contact between the working surface 221111 and the working surface two 221112 of the spiral groove of the grinding disc, that is, each of the recessed arc groove working surface 21111 of the first grinding disc and the spiral groove working surface 22111 of the second grinding disc.
  • the space of the grinding process area can and can only accommodate one processed cylindrical roller 3.
  • Step 2 Corresponding to the rotation mode 1 of the grinding disc kit 2, the first grinding disc 21 is driven to rotate around its axis at a low speed relative to the second grinding disc 22; corresponding to the rotation mode 2 of the grinding disc kit 2, the second grinding disc 22 is wound.
  • the axis thereof rotates at a low speed with respect to the first grinding disc 21.
  • the rotation speed is 1 to 10 rpm.
  • the rotation direction of the first grinding disc 21 and the second grinding disc 22 needs to be based on the rotation direction of the spiral groove 2211 of the second grinding disc.
  • Step 3 Start the roller conveying system 43, the roller finishing mechanism 44 and the roller feeding mechanism 45; adjust the feeding speed of the roller feeding mechanism 45 so that it is opposite to the first grinding disc 21 and the second grinding disc 22
  • the rotation speeds are matched to ensure that when the spiral groove inlets 22118 of the second grinding disc and the concave arc groove inlets 21118 of the first grinding disc intersect, the roller feeding mechanism 45 will have A processed convex cylindrical roller 3 enters each intersection of the spiral groove inlet 22118 and the concave arc groove inlet 21118; the conveying speed of the roller conveying system 43 and the finishing speed of the roller finishing mechanism 44 are adjusted to make it Match the feeding speed of the roller feeding mechanism 45, so that the processed convex cylindrical roller 3 enters the entrances in time through the roller feeding system 43 and the roller finishing mechanism 44 under the action of the roller feeding mechanism 45 Intersection; the processed convex cylindrical roller 3 entering the entrance intersection is subsequently rotated by the spiral groove working surface 22111 at the spiral groove entrance 22118 of the second grinding disk due to the relative rotation of the
  • Step 4 Adjust the relative rotation speed of the first grinding disk 21 and the second grinding disk 22 to the relative working rotation speed.
  • the relative working rotation speed is 5 to 60 rpm.
  • the finishing speed of the finishing mechanism 44 enables the processed convexity cylindrical rollers of the roller collecting device 41, the roller conveying system 43, the roller finishing mechanism 44 and the roller feeding mechanism 45 in the above-mentioned roller circulating outer disk system 4.
  • the stock of Child 3 matches and the circulation is smooth and orderly.
  • Step 5 Fill the grinding processing area with grinding liquid.
  • Step 6 The second grinding disc 22 approaches the first grinding disc 21 further along its axis, so that the rolling surface 32 of the convex cylindrical roller to be processed in the grinding processing area and the concave arc groove of the first grinding disc are respectively.
  • the groove working surface 21111 is in cross-line contact with the working surface of the second grinding disk spiral groove. 221111
  • the line is in contact with the machining surface of the convex cylindrical roller. Line contact occurs, and an initial working pressure is applied to each of the processed convex cylindrical rollers 3 distributed in the grinding process area.
  • the initial working pressure is 0.5 to 2N on average according to the diameter size of the processed convex cylindrical rollers 3.
  • the sliding friction driving torque generated by the spiral groove working surface 22111 of the second grinding disc on the processed convexity cylindrical roller 3 around its own axis 31 is greater than the concave arc groove working surface 21111 of the first grinding disc.
  • the sliding frictional moment generated by the rotation of the cylindrical roller 3 around its own axis 31 causes the processed cylindrical roller 3 to make a continuous rotational movement around its own axis 31; at the same time, the processed cylindrical roller 3 Under the continuous pushing action of the spiral groove working surface 22111 of the grinding disc, an arc feed motion is performed along the concave arc groove base line 21116 of the first grinding disc.
  • the processed convex cylindrical roller rolling surface 32 begins to undergo the grinding processing of the concave arc groove working surface 21111 of the first grinding disc and the working surface 221111 of the spiral groove of the second grinding disc.
  • Step 7 With the stable operation of the grinding process, gradually increase the working pressure to the normal working pressure of each processed cylindrical roller 3 distributed in the grinding processing area, according to the diameter of the processed cylindrical roller 3 Normal working pressure is 2 ⁇ 50N on average.
  • the processed convex cylindrical roller 3 maintains the contact relationship with the concave arc groove working surface 21111 of the first grinding disc and the spiral groove working surface 22111 of the second grinding disc in step 6 and the continuous rotation movement around its own axis 31 And the arc feed motion along the concave arc groove base line 21116 of the first grinding disc, its rolling surface 32 continues to undergo the concave arc groove working surface 21111 of the first grinding disc and the spiral groove of the second grinding disc Grinding of working surface 221111.
  • Step 8 After a period of grinding processing, perform spot inspection on the processed convex cylindrical rollers 3; when the surface quality, shape accuracy and dimensional consistency of the rolling surface 32 of the processed convex cylindrical rollers have not been reached When the technical requirements are met, continue the grinding process of this step; when the surface quality, shape accuracy, and dimensional consistency of the rolling surface 32 of the processed convex cylindrical rollers that have been spot-checked meet the technical requirements, proceed to step IX.
  • Step 9 Gradually reduce the working pressure and finally reach zero; stop the operation of the roller feeding mechanism 45, the roller conveying system 43 and the roller finishing mechanism 44, and adjust the relative rotational speeds of the first grinding disc 21 and the second grinding disc 22 to Zero; stop filling the grinding processing area with the grinding fluid; drive the second grinding disc 22 back to its non-working position along its axis.
  • the convexity cylindrical rollers 3 to be processed are collected in various places in the cycle, and thus the grinding process is finished.
  • the processed convex cylindrical roller 3 of the same geometric parameter to concave the arc of the first grinding disc.
  • the wire groove working surface 21111 and the spiral groove working surface 22111 of the second grinding disc are run-in.
  • the running-in method is the same as the grinding method of the processed convex cylindrical roller 3; for step eight, a random inspection is performed on the processed convex cylindrical roller 3 participating in the running-in.
  • the rolling surface 32 of the processed convex cylindrical roller is sampled
  • the running-in process proceeds to step nine; otherwise, step eight is continued.
  • the grinding method of this embodiment is not limited to the finishing of the rolling surface of a convex cylindrical roller, and can also be used for the outer diameter of a rotating body part that has the characteristic of a circular arc line of a convex cylindrical roller or a similarity to a circular arc line. Surface finishing does not exceed the scope of the present invention.
  • Embodiment 2 of the grinding method A grinding method for finishing the rolling surface of a convex cylindrical roller of a ferromagnetic material (such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.).
  • a ferromagnetic material such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.
  • the grinding method adopts the grinding equipment as described in the second embodiment of the grinding equipment.
  • the second grinding disk 22 of the grinding disk set in the grinding equipment is provided with a ring-shaped magnetic structure 226 inside.
  • 4 also includes a roller demagnetization device 42, which is provided in the roller conveying system 43 in the outer circulation path of the roller disk or before the roller conveying system 43 is used for
  • the processed convex cylindrical roller of ferromagnetic material magnetized by the magnetic field of the magnetic structure 226 is demagnetized to prevent the processed convex cylindrical roller of ferromagnetic material from agglomerating through the roller conveying system 43 or the roller finishing mechanism 44.
  • the difference from the grinding process described in the first embodiment of the grinding method lies in:
  • step three the roller demagnetization device 42 is activated at the same time.
  • Step 6 is: the annular magnetic structure 226 inside the second grinding disc base enters the working state; the second grinding disc 22 moves closer to the first grinding disc 21 along its axis, so that the processed convexity cylinder in the grinding processing area rolls
  • the rolling surface 32 of the roller is in cross-line contact with the recessed arc groove working surface 21111 of the first grinding disk, and is in line contact with the working surface of the second grinding disk spiral groove 221111, and the processed convexity cylindrical roller
  • One of the rounded end faces of the second grinding disc is in line contact with the working surface 2 221112 of the spiral groove of the second grinding disc, and an initial working pressure is applied to each of the processed convexity cylindrical rollers 3 distributed in the grinding processing area.
  • the initial working pressure of the diameter dimension of the cylindrical roller 3 is 0.5 to 2N on average.
  • the magnetic field strength of the annular magnetic structure 226 is adjusted so that the sliding friction driving torque generated by the spiral groove working surface 22111 of the second grinding disc to the processed convex cylindrical roller 3 of the ferromagnetic material around its own axis 31 is greater than that of the first grinding
  • the indented arc groove working surface 21111 of the disc produces a sliding frictional moment generated by the ferromagnetic material processed convex cylindrical roller 3 rotating about its own axis 31, thereby driving the processed ferromagnetic material processed convex cylindrical roller 3 makes a continuous rotary movement about its own axis 31; at the same time, the convexity of the processed cylindrical roller 3 is along the concave groove of the first grinding disc under the continuous pushing action of the spiral groove working surface 22111 of the second grinding disc
  • the groove base line 21116 performs an arc feed motion.
  • the rolling surface 32 of the processed convex cylindrical roller begins to undergo the grinding process of
  • Step nine is: gradually reduce the working pressure and finally reach zero; stop the operation of the roller feeding mechanism 45, the roller conveying system 43 and the roller finishing mechanism 44 and adjust the relative rotation speeds of the first grinding disc 21 and the second grinding disc 22 To zero; the ring-shaped magnetic structure 226 is switched to the non-working state, stopping the operation of the roller demagnetizing device 42; stopping the filling of the grinding fluid to the grinding processing area; and driving the second grinding disk 22 to return to the non-working position along its axis.
  • the convexity cylindrical rollers 3 to be processed are collected in various places in the cycle, and thus the grinding process is finished.
  • the grinding method of this embodiment is not limited to the finishing of the rolling surface of a convex cylindrical roller made of ferromagnetic material. Finishing the outer diameter surface of the rotating body part made of material is within the scope of the present invention.
  • Embodiment 3 of the grinding method A grinding method for finishing the rolling surface of a convex tapered roller.
  • the grinding method uses the grinding equipment described in Embodiment 3 of the grinding equipment.
  • the grinding method of this embodiment is described in detail below with reference to FIGS. 3-1 to 3-11 (b).
  • the grinding method includes the following steps:
  • Step 1 The second grinding disc 22 approaches the first grinding disc 21 along its axis, and the transition surface 2112 connecting the adjacent concave arc groove on the front surface of the first grinding disc is connected to the front surface of the second grinding disc.
  • the transition surface 2212 of the spiral groove is as close as possible, but the convexity of the processed tapered roller 3 in the grinding processing area has not yet coincided with the two symmetrical sides of the concave arc groove working surface 21111 of the first grinding disk and the second grinding disk.
  • the spiral groove working surface 221111 and the working surface two 221112 are in line contact, that is, each grinding processing area formed by the concave arc groove working surface 21111 of the first grinding disk and the spiral groove working surface of the second grinding disk.
  • the space can and can only accommodate one processed convex tapered roller 3.
  • Step 2 Corresponding to the rotation mode 1 of the grinding disc kit 2, the first grinding disc 21 is driven to rotate around its axis at a low speed relative to the second grinding disc 22; The axis 223 rotates at a low speed with respect to the first grinding disc 21. According to the outer diameter dimensions of the first grinding disc 21 and the second grinding disc 22, the rotation speed is 1 to 10 rpm. The rotation direction of the first grinding disc 21 and the second grinding disc 22 needs to be based on the rotation direction of the spiral groove 2211 of the second grinding disc.
  • Step 3 Start the roller conveying system 43, the roller finishing mechanism 44 and the roller feeding mechanism 45; adjust the feeding speed of the roller feeding mechanism 45 so that it is opposite to the first grinding disc 21 and the second grinding disc 22
  • the rotation speeds are matched to ensure that when the spiral groove inlets 22118 of the second grinding disc and the concave arc groove inlets 21118 of the first grinding disc intersect, the roller feeding mechanism 45 will have A processed convexity tapered roller 3 enters each intersection of the spiral groove inlet 22118 and the concave arc groove inlet 21118; the conveying speed of the roller conveying system 43 and the finishing speed of the roller finishing mechanism 44 are adjusted to make it Match the feeding speed of the roller feeding mechanism 45, so that the processed convexity tapered roller 3 enters the entrances in time by the roller feeding system 45 and the roller finishing mechanism 44 under the action of the roller feeding mechanism 45 The intersection; the processed convexity tapered roller 3 entering the entrance intersection is subsequently caused by the relative rotation of the first grinding disc 21 and the second grinding disc 22 at the spiral groove working surface
  • the processed convexity tapered roller 3 entering the grinding processing area is continuously arced along the concave arc line groove baseline 21116 of the first grinding disk under the continuous pushing of the spiral groove working surface 22111 of the second grinding disk
  • To move pass through the concave arc groove 2111, and leave the grinding processing area from the intersection of the spiral groove outlet 22119 of the second grinding disc and the concave arc groove outlet 21119 of the first grinding disc;
  • the processed convexity tapered roller 3 in the grinding processing area passes the roller collecting device 41, the roller conveying system 43 and the roller finishing mechanism 44. After the original order is disturbed, it is again affected by the roller feeding mechanism 45.
  • Step 4 Adjust the relative rotation speed of the first grinding disk 21 and the second grinding disk 22 to the relative working rotation speed.
  • the relative working rotation speed is 5 to 60 rpm.
  • the finishing speed of the finishing mechanism 44 enables the processed convexity conical rollers of the roller collecting device 41, the roller conveying system 43, the roller finishing mechanism 44 and the roller feeding mechanism 45 in the above-mentioned roller circulating off-board system 4.
  • the stock of Child 3 matches and the circulation is smooth and orderly.
  • Step 5 Fill the grinding processing area with grinding liquid.
  • Step 6 The second grinding disc 22 approaches the first grinding disc 21 further along its axis, so that the rolling surface 32 of the processed convex tapered roller in the grinding processing area and the concave arc groove of the first grinding disc are respectively.
  • the two symmetrical sides of the groove working surface 21111 and the working surface 221111 of the spiral groove of the second grinding disc are in line contact with each other, and the large-end ball base surface 342 (or large-end rounded corner 341 or small-end) of the convex tapered roller is processed.
  • the fillet 331) is in line contact with the working surface 2 221112 of the spiral groove of the second grinding disc, and an initial working pressure is applied to each of the processed convexity tapered rollers 3 distributed in the grinding processing area.
  • the initial working pressure of the diameter dimension of the tapered roller 3 is 0.5 to 2N on average.
  • the sliding frictional driving torque generated by the spiral groove working surface 22111 of the second grinding disc on the processed convexity tapered roller 3 around its own axis 31 is greater than the concave arc groove working surface 21111 of the first grinding disc.
  • the processed convex tapered roller 3 makes a continuous rotational movement around its own axis 31; at the same time, the processed convex tapered roller 3 is at the second Under the continuous pushing action of the spiral groove working surface 22111 of the grinding disc, an arc feed motion is performed along the concave arc groove base line 21116 of the first grinding disc.
  • the rolling surface 32 of the processed convex tapered roller starts to undergo the grinding process of the concave arc groove working surface 21111 of the first grinding disc and the working surface 221111 of the spiral groove of the second grinding disc.
  • Step 7 With the stable operation of the grinding process, gradually increase the working pressure to the normal working pressure of each processed convexity tapered roller 3 distributed in the grinding processing area, according to the diameter size of the processed convexity tapered roller 3 Normal working pressure is 2 ⁇ 50N on average.
  • the processed convexity tapered roller 3 maintains the line contact relationship with the concave arc groove working surface 21111 of the first grinding disc and the spiral groove working surface 22111 of the second grinding disc in step 6 and continuous rotation around its own axis 31 Movement and arc feed motion along the concave arc groove base line 21116 of the first grinding disc, its rolling surface 32 continues to undergo the concave arc groove working surface 21111 of the first grinding disc and the spiral groove of the second grinding disc Grinding of the working surface of a 221111.
  • Step 8 After a period of grinding, spot check the processed convexity tapered rollers 3; when the surface quality, shape accuracy and dimensional consistency of the rolling surface 32 of the processed convexity tapered rollers have not been reached When the technical requirements are met, continue the grinding process of this step; when the surface quality, shape accuracy, and dimensional consistency of the rolling surface 32 of the processed convexity tapered rollers that have been spot-checked meet the technical requirements, proceed to step nine.
  • Step 9 Gradually reduce the working pressure and finally reach zero; stop the operation of the roller feeding mechanism 45, the roller conveying system 43 and the roller finishing mechanism 44, and adjust the relative rotational speeds of the first grinding disc 21 and the second grinding disc 22 to Zero; stop filling the grinding processing area with the grinding fluid; drive the second grinding disc 22 back to its non-working position along its axis.
  • the processed convexity tapered rollers 3 are collected at various points in the cycle, and the grinding process is now completed.
  • the processed convexity tapered roller 3 of the same geometric parameter to concave the arc of the first grinding disc.
  • the wire groove working surface 21111 and the spiral groove working surface 22111 of the second grinding disc are run-in.
  • the running-in method is the same as the grinding method of the processed convex tapered roller 3; for step eight, a random inspection is performed on the processed convex tapered roller 3 participating in the running-in.
  • the rolling surface 32 of the processed convex tapered roller is sampled
  • the running-in process proceeds to step nine; otherwise, step eight is continued.
  • Embodiment 4 of a grinding method A grinding method for finishing the rolling surface of a convex tapered roller of a ferromagnetic material (such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.).
  • a ferromagnetic material such as GCr15, G20CrNi2MoA, Cr4Mo4V, etc.
  • the grinding method adopts the grinding equipment as described in the fourth embodiment of the grinding equipment.
  • the second grinding disk 22 of the grinding disk set in the grinding equipment is provided with a ring-shaped magnetic structure 226 inside.
  • 4 also includes a roller demagnetization device 42, which is provided in the roller conveying system 43 in the outer circulation path of the roller disk or before the roller conveying system 43 is used for
  • the processed convexity tapered roller of the ferromagnetic material magnetized by the magnetic field of the magnetic structure 226 is demagnetized to prevent the processed convexity tapered roller of the ferromagnetic material from agglomerating through the roller conveying system 43 or the roller finishing mechanism 44.
  • the difference from the grinding process described in the third embodiment of the grinding method lies in:
  • step three the roller demagnetization device 42 is activated at the same time.
  • Step 6 is: the ring-shaped magnetic structure 226 inside the second grinding disc substrate enters the working state; the second grinding disc 22 approaches the first grinding disc 21 further along its axis, so that the processed convexity cone rolls in the grinding processing area
  • the rolling surface 32 of the roller is in cross-line contact with the recessed arc groove working surface 21111 of the first grinding disk, and is in line contact with the working surface of the second grinding disk spiral groove 221111.
  • the processed convexity tapered roller One of the rounded corners of the end face is in line contact with the working surface 2 221112 of the spiral groove of the second grinding disc, and an initial working pressure is applied to each of the processed convexity tapered rollers 3 distributed in the grinding processing area, according to the processed convexity
  • the initial working pressure of the diameter dimension of the tapered roller 3 is 0.5 to 2N on average.
  • the indented arc groove working surface 21111 of the disc produces a sliding frictional moment generated by the ferromagnetic processed convex tapered roller 3 rotating around its own axis 31, thereby driving the processed ferrous magnetic processed convex tapered roller 3 makes a continuous rotary movement around its own axis 31; at the same time, the convexity of the processed tapered roller 3 is continuously pushed along the concave arc groove of the first grinding disc under the continuous pushing action of the spiral groove working surface 22111 of the second grinding disc
  • the groove base line 21116 performs an arc feed motion.
  • the rolling surface 32 of the processed convex tapered roller starts to undergo the grinding process of the concave arc groove working surface 21111 of the first grinding disc and the working surface 221111 of the spiral groove of
  • Step nine is: gradually reduce the working pressure and finally reach zero; stop the operation of the roller feeding mechanism 45, the roller conveying system 43 and the roller finishing mechanism 44 and adjust the relative rotation speeds of the first grinding disc 21 and the second grinding disc 22 To zero; the ring-shaped magnetic structure 226 is switched to the non-working state, stopping the operation of the roller demagnetizing device 42; stopping the filling of the grinding fluid to the grinding processing area; and driving the second grinding disk 22 to return to the non-working position along its axis.
  • the processed convexity tapered rollers 3 are collected at various points in the cycle, and the grinding process is now completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种用于凸度滚子的滚动表面精加工的研磨盘套件,包括一对同轴的第一、二研磨盘(21/22),第一、二研磨盘正面(211/221)相对布置;第一研磨盘正面(211)包括一组放射状分布的内凹弧线沟槽(2111);第二研磨盘正面(221)包括一条或多条螺旋槽(2211);研磨加工时,对应螺旋槽(2211)与内凹弧线沟槽(2111)的每一交会处,分布一个被加工凸度滚子,其滚动表面分别与内凹弧线沟槽和螺旋槽工作面(21111/22111)发生接触;在螺旋槽工作面(22111)的作用下,被加工凸度滚子在绕自身轴线旋转的同时沿内凹弧线沟槽移动。研磨盘套件可提高凸度滚子滚动表面的形状精度和尺寸一致性,提高加工效率,降低加工成本。还提供了一种研磨设备以及一种研磨方法。

Description

用于凸度滚子滚动表面精加工的研磨盘套件、设备及方法 技术领域
本发明涉及一种用于凸度滚子滚动表面精加工的研磨盘套件、研磨设备及研磨方法,属于轴承滚动体精密加工技术领域。
背景技术
滚子轴承(圆柱滚子轴承和圆锥滚子轴承)广泛应用于各类旋转机械。作为滚子轴承(圆柱滚子轴承和圆锥滚子轴承)重要零件之一的凸度滚子(凸度圆柱滚子和凸度圆锥滚子),其滚动表面的形状精度和尺寸一致性对滚子轴承的性能具有重要影响。现阶段,公知的凸度滚子滚动表面的加工工艺流程为:毛坯成型(车削或冷镦或扎制)、粗加工(软磨滚动表面)、热处理、半精加工(硬磨滚动表面)和精加工。公知的凸度滚子滚动表面精加工的主要工艺方法是超精加工。
超精加工是一种利用细粒度油石作为磨具,油石对工件加工表面施加较低的压力并沿工件加工表面作高速微幅往复振动和低速进给运动,从而实现微量切削的光整加工方法。
目前,凸度圆柱滚子滚动表面的精加工多采用无心贯穿式超精加工方法。其设备的加工部分由一对异向斜置的超精导辊和一个(或一组)装有油石的超精头组成,凸度圆柱滚子由导辊支撑并驱动,在作旋转运动的同时又沿一与凸度圆柱滚子滚动表面素线相适应的轨迹作低速进给运动,在超精头以较低的压力将油石压向凸度圆柱滚子滚动表面的同时油石沿凸度圆柱滚子滚动表面的素线作高速微幅往复振动,对凸度圆柱滚子的滚动表面实施精加工。在无心贯穿式超精加工过程中,同一批次的凸度圆柱滚子依次贯穿通过加工区域并经受油石超精加工。
此外还有一种无心切入式超精加工方法,其设备的加工部分由一对平行布置的超精导辊和一个(或一组)装有油石的超精头组成,凸度圆柱滚子在导辊的支撑并驱动下作旋转运动,在超精头以较低的压力将油石压向凸度圆柱滚子滚动表面的同时油石沿一与凸度圆柱滚子滚动表面素线相适应的轨迹作低速进给运动和高速微幅往复振动,对凸度圆柱滚子的滚动表面实施精加工。在无心切入式超精加工过程中,同一批次的凸度圆柱滚子逐个进入加工区域并经受油石超精加工。
上述两种凸度圆柱滚子滚动表面超精加工方法存在以下两方面技术缺陷:一方面,加工过程中油石和导辊磨损状态随时间的变化不利于凸度圆柱滚子滚动表面形状精度和尺寸精度的提高;另一方面,由于超精加工设备同一时刻只对单个(或少数几个)凸度圆柱滚子进行加工,被加工凸度圆柱滚子滚动表面的材料去除量几乎不受同批次凸度圆柱滚子滚动表面直径差异的影响,因此用超精加工设备加工凸度圆柱滚子滚动表面很难有效改善被加工凸度圆柱滚子滚动表面的直径分散性。上述两方面的技术缺陷导致被加工凸度圆柱滚子滚动表面的形状精度和尺寸一致性提升受到制约。
现阶段,涉及凸度圆柱滚子滚动表面精加工的装置(设备)和方法还包括以下几种:
中国专利公报,公布号CN102476350A:公开了一种圆柱滚子外径无心研磨加工装置,包括两个半径一大一小的铸铁研磨辊,研磨辊之间有间隔,间隔上方安装有送料槽,送料槽上方设置有上压板,上压板上方加装有加压重锤,上压板与滚子的接触面为圆弧形。两 研磨辊的线速度不同,使得圆柱滚子与研磨辊之间产生相对滑动。调整小研磨辊在垂直和水平方向的角度可驱动滚子沿轴线方向进给。研磨辊在驱动圆柱滚子的同时,也对滚子表面进行研磨加工。
中国专利公报,公布号CN204736036U:公开了一种用于精密圆柱滚子外圆面研磨的加工装置。其特征在于:加工装置包括气缸、支撑架、磨具底板、磨具、驱动辊和底座,两个驱动辊与加工装置的对称中心平面平行,一个驱动辊的左边端在铅垂面内上翘与水平面相交成1~5°,另一个驱动辊的右边端在铅垂面内下翘与水平面相交成1~5°;两驱动辊表面涂覆有阻尼涂层以增大磨擦系数。磨具固定在磨具底板上,通过气缸施加加工压力,气缸安装在支撑架上,支撑架和驱动辊安装在底座上。加工时将圆柱滚子置于驱动辊一端,两个驱动辊产生的切向力使圆柱滚子绕中心轴旋转,产生的轴向力使圆柱滚子沿中心轴贯穿进给,磨具对滚子圆柱表面进行加工。
上述两种装置均采用两驱动辊支撑并驱动圆柱滚子前进,与圆柱滚子前进方向垂直的上方设有磨具对圆柱滚子圆柱表面进行加工,加工时所有圆柱滚子依次通过加工区域。此类装置具有与超精加工设备相同的两方面技术缺陷。
中国专利公报,公布号CN104608046A:公开了一种轴承圆柱滚子圆柱面超精密加工方法,其特征在于:采用双平面式圆柱零件外圆超精密加工设备对待加工圆柱滚子进行研磨;所采用的双平面式圆柱零件外圆超精密加工设备包括:上研磨盘、下研磨盘、外齿圈、偏心轮和保持架,其中上研磨盘、下研磨盘、外齿圈和偏心轮的转轴均同心放置,各自独立驱动;圆盘形保持架的盘面上开有多个工件夹持槽孔,槽孔呈放射状分布;保持架的旋转轴与偏心轮的中心同心设置,而保持架的中心与偏心轮的轴心存在偏距;保持架与外齿圈的齿轮配合,保持架由外齿圈和偏心轮同时驱动。研磨前将圆柱滚子置于保持架的槽孔中,对上研磨盘施加下压力;工件位于上研磨盘和下研磨盘之间,并与上、下研磨盘接触;驱动上研磨盘、下研磨盘、外齿圈和偏心轮旋转,工件在上、下研磨盘的驱动下作滚动运动的同时,也在保持架的驱动下绕上研磨盘和下研磨盘作摆线运动。
中国专利公报,公布号CN103522166A:公开了一种基于上盘偏心加压的圆柱形零件外圆加工方法,其特征在于:该加工方法的加工装置包括上研磨盘、保持架和下研磨盘。上研磨盘位于下研磨盘的上方,保持架位于上研磨盘与下研磨盘之间,保持架的转轴和下研磨盘的转轴呈同轴设置,上研磨盘的转轴与保持架的转轴存在确定偏距。加工时,加载装置通过上研磨盘偏心作用于圆柱形零件,通过上研磨盘和下研磨盘平面配合磨料对圆柱形零件外圆进行加工。
中国专利公报,公布号CN105798765A:公开了一种四平面往复式圆柱滚子研磨方法与装置,其特征在于:机架内设有由动力源带动转动的安装架,安装架周向外壁上设有若干用于安装圆柱滚子的安装槽;机架上与安装架对应设有与圆柱滚子滑动配合的研磨板。使用的时候将圆柱滚子安装在安装架上,通过转动安装架对研磨板中的多个圆柱滚子同时进行研磨。
上述的三种装置(设备)均可同时对多个圆柱形零件进行加工,直径较大的圆柱形零件圆柱表面材料去除量较大,有利于尺寸一致性的提高。但是,由于其加工装置(设备)的封闭特征,此类装置(设备)不具备大批量生产能力。
中国专利公报,公布号CN104493689A和CN104493684A:公开了一种圆柱形零件双 盘直槽研磨盘、研磨设备与研磨方法,所述设备包括工件推进装置、工件输送装置和研磨盘装置。所述研磨盘装置包括第一、第二研磨盘,两研磨盘相对转动,第一研磨盘的工作面为平面,第二研磨盘与第一研磨盘相对的表面上设有一组放射状的直沟槽,直沟槽的两侧面为第二研磨盘的工作面,第二研磨盘的工作面的横断面轮廓呈圆弧形或V字形或具有圆弧的V字形,所述待加工件与直沟槽的接触点或接触圆弧的中点处的法平面与所述直沟槽的基准面的夹角的取值范围为30~60°;所述直沟槽的近第二研磨盘的中心一端为推进口,所述直沟槽的另一端为出料口,所述工件推进装置设置在第二研磨盘中心通孔内,包括主体及其上安装的多个推料机构和储料槽。
利用该设备研磨圆柱滚子圆柱表面时,一方面,圆柱滚子可在研磨盘内外循环,具备大批量生产的能力;另一方面,在研磨加工区域,该设备可同时对大量圆柱滚子进行比较式加工,实现对直径较大的圆柱滚子的圆柱表面材料多去除,有利于圆柱滚子圆柱表面尺寸一致性的提高。
但是因研磨盘结构和加工原理的限制,上述双盘直槽研磨盘、研磨设备与研磨方法不具备对凸度圆柱滚子的滚动表面进行精加工的能力。
目前,凸度圆锥滚子滚动表面的精加工多采用无心贯穿式超精加工方法。其设备的加工部分由一对带螺旋滚道的超精螺旋导辊和一个(或一组)装有油石的超精头组成,凸度圆锥滚子由导辊支撑并驱动,在作旋转运动的同时又沿一与凸度圆锥滚子滚动表面素线相适应的轨迹作低速进给运动,在超精头以较低的压力将油石压向凸度圆锥滚子滚动表面的同时油石沿凸度圆锥滚子滚动表面的素线作高速微幅往复振动,对凸度圆锥滚子的滚动表面实施精加工。在无心贯穿式超精加工过程中,同一批次的凸度圆锥滚子依次贯穿通过加工区域并经受油石超精加工。
此外还有一种无心切入式超精加工方法,其设备的加工部分由一对平行布置的超精导辊和一个(或一组)装有油石的超精头组成,凸度圆锥滚子在导辊的支撑并驱动下作旋转运动,在超精头以较低的压力将油石压向凸度圆锥滚子滚动表面的同时油石沿一与凸度圆锥滚子滚动表面素线相适应的轨迹作低速进给运动和高速微幅往复振动,对凸度圆锥滚子的滚动表面实施精加工。在无心切入式超精加工过程中,同一批次的凸度圆锥滚子逐个进入加工区域并经受油石超精加工。
上述两种凸度圆锥滚子滚动表面超精加工方法存在以下两方面技术缺陷:一方面,加工过程中油石和导辊磨损状态随时间的变化不利于凸度圆锥滚子滚动表面形状精度和尺寸精度的提高;另一方面,由于超精加工设备同一时刻只对单个(或少数几个)凸度圆锥滚子进行加工,被加工凸度圆锥滚子滚动表面的材料去除量几乎不受同批次凸度圆锥滚子滚动表面直径差异的影响,因此用超精加工设备加工凸度圆锥滚子滚动表面很难有效改善被加工凸度圆锥滚子滚动表面的直径分散性。上述两方面的技术缺陷导致被加工凸度圆锥滚子滚动表面的形状精度和尺寸一致性提升受到制约。
中国专利公报,公布号CN1863642A公开了一种加工圆锥滚子的方法,其特征在于:所述圆锥滚子通过滚筒抛光或者滚桶抛光的方法精加工滚子表面。加工过程中滚子表面材料去除具有不确定性,该方法不能改善滚子的尺寸精度和直径分散性。
发明内容
针对现有技术存在的问题,本发明提供一种用于凸度滚子滚动表面精加工的研磨盘套件、研磨设备及研磨方法,安装有本发明研磨盘套件的研磨设备具有大批量凸度滚子(圆柱凸度滚子和圆锥凸度滚子)滚动表面的精加工能力,可实现凸度滚子滚动表面高点材料多去除、低点材料少去除,直径较大的凸度滚子滚动表面的材料多去除、直径较小的凸度滚子滚动表面的材料少去除,从而可提高凸度圆柱滚子和凸度圆锥滚子的滚动表面的形状精度和尺寸一致性,可以提高凸度圆柱滚子和凸度圆锥滚子的滚动表面的加工效率,降低加工成本。
为了解决上述技术问题,本发明提出的一种用于凸度滚子的滚动表面精加工的研磨盘套件,包括一对同轴的第一研磨盘和第二研磨盘,第一研磨盘正面与第二研磨盘正面相对布置;所述第一研磨盘正面包括一组放射状分布的内凹弧线沟槽和连接相邻内凹弧线沟槽的过渡面;所述第二研磨盘正面包括一条或多条螺旋槽和连接相邻螺旋槽的过渡面;研磨加工时,对应所述第二研磨盘的螺旋槽与所述第一研磨盘的内凹弧线沟槽的每一交会处,在所述第一研磨盘的内凹弧线沟槽内沿所述内凹弧线沟槽分布一个被加工凸度滚子;所述凸度滚子是凸度圆柱滚子或是凸度圆锥滚子;对应每一交会处,所述第一研磨盘的内凹弧线沟槽工作面与第二研磨盘的螺旋槽工作面合围而成的区域为研磨加工区域;被加工凸度滚子的滚动表面分别与所述内凹弧线沟槽工作面和螺旋槽工作面发生接触;在所述螺旋槽工作面的摩擦驱动和推挤作用下,被加工凸度滚子在绕自身轴线旋转的同时沿所述内凹弧线沟槽移动,被加工凸度滚子的滚动表面与所述内凹弧线沟槽工作面发生相对滑动,从而实现对被加工凸度滚子的滚动表面的研磨加工。
进一步地,本发明所述的研磨盘套件,其中,所述内凹弧线沟槽工作面在内凹弧线沟槽扫描面上,所述内凹弧线沟槽扫描面为等截面扫描面;所述内凹弧线沟槽扫描面的扫描路径为圆弧,所述内凹弧线沟槽扫描面的母线在内凹弧线沟槽法截面内;所述扫描路径为内凹弧线沟槽基线,所有所述内凹弧线沟槽基线分布于一内凹圆弧回转面上,所述内凹圆弧回转面为第一研磨盘基面,所述第一研磨盘基面的轴线为第一研磨盘轴线;在第一研磨盘轴截面内,第一研磨盘基面的轴截面截线为曲率半径为R 11的圆弧,所述第一研磨盘基面的轴截面截线的曲率中心O 1所在的、圆心位于所述第一研磨盘轴线上的圆周为第一研磨盘基圆,所述第一研磨盘基圆的曲率半径为R 12;当R 12=0时,所述第一研磨盘基面为一曲率半径为R 11的内凹球面;
对于凸度圆柱滚子,在所述内凹弧线沟槽法截面内,所述内凹弧线沟槽扫描面的法截面轮廓为一曲率半径与被加工凸度圆柱滚子的滚动表面的最大直径截圆的曲率半径相等的圆弧;所述内凹弧线沟槽基线过所述法截面轮廓的曲率中心;所述内凹弧线沟槽基线在第一研磨盘轴截面内,包含所述内凹弧线沟槽基线的第一研磨盘轴截面为所述内凹弧线沟槽工作面的中心平面;研磨加工时,被加工凸度圆柱滚子的轴线在所述内凹弧线沟槽工作面的中心平面内,被加工凸度圆柱滚子滚动表面与所述内凹弧线沟槽工作面发生十字交叉线接触,被加工凸度圆柱滚子轴线与所述内凹弧线沟槽的基线相切于所述被加工凸度圆柱滚子滚动表面的最大直径截圆在其轴线上的映射点;当所述内凹弧线沟槽工作面在其中心平面处连续时,所述内凹弧线沟槽工作面所对应的被加工凸度圆柱滚子的滚动表面的凸度曲线为曲率半径为R c的圆弧,R c=R 11+R 0,其中R 0为所述被加工凸度圆柱滚子的滚动表面的最大直径截圆的曲率半径;
对于凸度圆锥滚子,在所述内凹弧线沟槽法截面内,所述内凹弧线沟槽扫描面的法截面轮廓为两条对称的直线段,所述两条直线段之间的夹角为2θ;所述内凹弧线沟槽工作面的中心平面为包含所述内凹弧线沟槽扫描面的法截面轮廓对称线和所述内凹弧线沟槽基线的平面;所述内凹弧线沟槽基线在第一研磨盘轴截面内,所述内凹弧线沟槽工作面的中心平面与包含所述内凹弧线沟槽基线的所述第一研磨盘轴截面重合;研磨加工时被加工凸度圆锥滚子的轴线在所述内凹弧线沟槽工作面的中心平面内,所述被加工凸度圆锥滚子的滚动表面与所述内凹弧线沟槽工作面的两对称侧面分别发生线接触;所述内凹弧线沟槽基线与被加工凸度圆锥滚子的轴线相交,交点位于被加工凸度圆锥滚子的滚动表面在其轴线上的映射的中点;所述被加工凸度圆锥滚子的半锥角为
Figure PCTCN2019097910-appb-000001
所述被加工凸度圆锥滚子的轴线与所述内凹弧线沟槽基线在所述交点的切线的夹角为γ,且:
Figure PCTCN2019097910-appb-000002
组成所述内凹弧线沟槽扫描面的法截面轮廓的两条对称直线段所对应的被加工凸度圆锥滚子的滚动表面的凸度曲线近似为圆弧;
所述螺旋槽工作面包括工作面一和工作面二;
凸度圆柱滚子研磨加工时,在所述第一研磨盘的内凹弧线沟槽工作面的约束下,被加工凸度圆柱滚子的滚动表面与所述工作面一发生线接触,被加工凸度圆柱滚子的一端面倒圆角与所述工作面二发生线接触;凸度圆锥滚子研磨加工时,在所述第一研磨盘的内凹弧线沟槽工作面的约束下,被加工凸度圆锥滚子的滚动表面与所述工作面一发生线接触,被加工凸度圆锥滚子的大头端球基面或大头端倒圆角或小头端倒圆角与所述工作面二发生线接触;
所述工作面一和工作面二分别在扫描面一和扫描面二上,所述扫描面一和扫描面二均为等截面扫描面;
对于凸度圆柱滚子,所述扫描面一和扫描面二的扫描路径均为过所述被加工凸度圆柱滚子滚动表面的最大直径截圆在其轴线上的映射点、且分布于一外凸圆弧回转面上的圆弧回转面等角螺旋线;对于凸度圆锥滚子,所述扫描面一和扫描面二的扫描路径均为过所述被加工凸度圆锥滚子的滚动表面在其轴线上的映射的中点、且分布于一外凸圆弧回转面上的圆弧回转面等角螺旋线;
所述圆弧回转面等角螺旋线为螺旋槽基线,所述外凸圆弧回转面为第二研磨盘基面,所述第二研磨盘基面的轴线为第二研磨盘轴线;所述扫描面一和扫描面二的母线均在第二研磨盘轴截面内;
在所述第二研磨盘轴截面内,第二研磨盘基面的轴截面截线为曲率半径为R 21的圆弧;所述第二研磨盘基面的轴截面截线的曲率中心O 2所在的、圆心位于所述第二研磨盘轴线上的圆周为第二研磨盘基圆,所述第二研磨盘基圆的曲率半径为R 22;当R 22=0时,所述第二研磨盘基面为一曲率半径为R 21的外凸球面;
第二研磨盘基面的轴截面截线的曲率半径R 21等于第一研磨盘基面的轴截面截线的曲率半径R 11,第二研磨盘基圆的曲率半径R 22等于第一研磨盘基圆的曲率半径R 12;所述第一研磨盘基面的轴截面截线和第二研磨盘基面的轴截面截线与各自的曲率中心或者均在所述第一研磨盘轴线和第二研磨盘轴线的同侧,或者均在所述第一研磨盘轴线和第二研磨盘轴线的两侧。
为了后续叙述方便将上述研磨盘套件记为非磁性研磨盘套件。
进一步地,将本发明中所述的研磨盘套件用于加工铁磁性材质的凸度滚子,其中,第二研磨盘基体还可以由导磁材料制造,在所述第二研磨盘基体的内部嵌装有环状磁性结构,在所述第二研磨盘正面上嵌入有一组圆环带状或螺旋带状的非导磁材料;所述第二研磨盘基体的导磁材料和嵌入的圆环带状或螺旋带状的非导磁材料在所述第二研磨盘正面上紧密相连并共同组成所述第二研磨盘正面。
同理,为了后续叙述方便,将上述内部嵌装有环状磁性结构的研磨盘套件记为磁性研磨盘套件。
本发明同时提出了一种用于凸度滚子的滚动表面精加工的研磨设备,包括主机、滚子循环盘外系统和上述的非磁性研磨盘套件;所述主机包括基座、立柱、横梁、滑台、上托盘、下托盘、轴向加载装置和主轴装置;所述基座、立柱和横梁组成所述主机的框架;
所述研磨盘套件的第一研磨盘与所述下托盘连接,所述研磨盘套件的第二研磨盘与所述上托盘连接;
所述滑台通过所述轴向加载装置与所述横梁连接,所述立柱还可以作为导向部件为所述滑台沿所述第二研磨盘轴线作直线运动提供导向作用;所述滑台在所述轴向加载装置的驱动下,在所述立柱或其他导向部件的约束下,沿所述第二研磨盘轴线作直线运动;
所述主轴装置用于驱动所述第一研磨盘或第二研磨盘绕其轴线回转;
所述滚子循环盘外系统包括滚子收集装置、滚子输送系统、滚子整理机构和滚子送进机构;
所述滚子收集装置设置在所述第一研磨盘的各内凹弧线沟槽出口处,用于收集从所述各内凹弧线沟槽出口离开由所述内凹弧线沟工作面与螺旋槽工作面合围而成的研磨加工区域的被加工凸度滚子;
所述滚子输送系统用于将被加工凸度滚子从所述滚子收集装置处输送至所述滚子送进机构处;
所述滚子整理机构设置在所述滚子送进机构的前端;对于凸度圆柱滚子,所述滚子整理机构用于将被加工凸度圆柱滚子的轴线调整到所述滚子送进机构所要求的方向;对于凸度圆锥滚子,所述滚子整理机构用于将被加工凸度圆锥滚子的轴线调整到所述滚子送进机构所要求的方向,并将被加工凸度圆锥滚子的小头端的指向调整为与其将要进入的第二研磨盘螺旋槽的螺旋槽工作面所在的螺旋槽扫描面的轴截面轮廓相适应的指向;
研磨加工时,所述研磨盘套件的回转存在两种方式;方式一、所述第一研磨盘绕其轴线回转,所述第二研磨盘不回转;方式二、所述第一研磨盘不回转,所述第二研磨盘绕其轴线回转;
所述主机存在三种构型:主机构型一用于所述研磨盘套件以方式一回转;主机构型二用于所述研磨盘套件以方式二回转;主机构型三既适用于所述研磨盘套件以方式一回转,又适用于所述研磨盘套件以方式二回转;
对应于主机构型一:所述主轴装置安装在所述基座上,通过与其连接的所述下托盘驱动所述第一研磨盘绕其轴线回转;所述上托盘与所述滑台连接;研磨加工时,所述第一研磨盘绕其轴线回转;所述滑台在所述立柱或其他导向部件的约束下,连同与其连接的上托盘、以及与所述上托盘连接的第二研磨盘沿所述第二研磨盘轴线向所述第一研磨盘趋近,并对分布于所述第一研磨盘的各内凹弧线沟槽内的被加工凸度滚子施加工作压力;所述滚 子送进机构分别安装在所述第二研磨盘的各螺旋槽入口处,用于在所述第一研磨盘的任一内凹弧线沟槽入口与所述螺旋槽入口发生交会时将一个被加工凸度滚子推送进入所述内凹弧线沟槽入口;
对应于主机构型二:所述主轴装置安装在所述滑台上,通过与其连接的所述上托盘驱动所述第二研磨盘绕其轴线回转;所述下托盘安装在所述基座上;研磨加工时,所述第二研磨盘绕其轴线回转;所述滑台在所述立柱或其他导向部件的约束下,连同其上的主轴装置、与所述主轴装置相连的上托盘、以及与所述上托盘相连的第二研磨盘沿所述第二研磨盘轴线向所述第一研磨盘趋近,并对分布于所述第一研磨盘的各内凹弧线沟槽内的被加工凸度滚子施加工作压力;所述滚子送进机构分别安装在所述第一研磨盘的各内凹弧线沟槽入口处,用于在所述第二研磨盘的任一螺旋槽入口与所述内凹弧线沟槽入口发生交会时将一个被加工凸度滚子推送进入所述内凹弧线沟槽入口;
对应于主机构型三:设置有两套主轴装置,其中一套主轴装置安装在所述基座上,通过与其连接的所述下托盘驱动所述第一研磨盘绕其轴线回转,另一套主轴装置安装在所述滑台上,通过与其连接的所述上托盘驱动所述第二研磨盘绕其轴线回转;所述两套主轴装置均设置有锁死机构,同一时间只允许所述第一研磨盘和第二研磨盘之一回转,而另一研磨盘处于周向锁死状态;当研磨设备的研磨盘套件以方式一回转进行研磨加工时,所述第一研磨盘与第二研磨盘的相对运动与所述主机构型一相同;所述滚子送进机构的安装位置和作用与所述主机构型一相同;当研磨设备的研磨盘套件以方式二回转进行研磨加工时,所述第一研磨盘与第二研磨盘的相对运动与所述主机构型二相同;所述滚子送进机构的安装位置和作用与所述主机构型二相同。
进一步地,本发明中的用于凸度滚子的滚动表面精加工的研磨设备,用于加工铁磁性材质的凸度滚子,其中的研磨盘套件采用前述的磁性研磨盘套件;该研磨设备中的滚子循环盘外系统还包括滚子退磁装置;所述滚子退磁装置设置在滚子循环盘外路径中的所述滚子输送系统中或滚子输送系统之前用于对被所述第二研磨盘基体内部的环状磁性结构的磁场磁化的铁磁性材质的被加工凸度滚子消磁。
本发明同时还提出了一种用于凸度滚子的滚动表面精加工的研磨方法,采用本发明所述的研磨设备,该研磨设备中的研磨盘套件为非磁性研磨盘套件,并包括以下步骤:
步骤一、第二研磨盘沿其轴线向第一研磨盘趋近,至第一研磨盘的内凹弧线沟槽工作面与第二研磨盘的螺旋槽工作面合围而成的每一个研磨加工区域的空间能够且仅能够容纳一个被加工凸度滚子;
步骤二、对应于研磨盘套件的回转方式一,第一研磨盘绕其轴线相对于第二研磨盘以1~10rpm低速回转;对应于研磨盘套件的回转方式二,第二研磨盘绕其轴线相对于第一研磨盘以1~10rpm低速回转;
步骤三、启动滚子输送系统、滚子整理机构和滚子送进机构;调整滚子送进机构的送进速度使之与第一研磨盘和第二研磨盘的相对回转速度相匹配;调整滚子输送系统的输送速度和滚子整理机构的整理速度使之与滚子送进机构的送进速度相匹配;从而建立被加工凸度滚子在第一研磨盘和第二研磨盘之间沿内凹弧线沟槽基线的圆弧进给与经由滚子循环盘外系统的收集、输送、整理、送进的循环;
步骤四、调整第一研磨盘与第二研磨盘的相对回转速度至5~60rpm的相对工作回转 速度,调整滚子送进机构的送进速度至工作送进速度使之与第一研磨盘和第二研磨盘的相对工作回转速度相匹配,调整滚子输送系统的输送速度和滚子整理机构的整理速度,使得上述滚子循环盘外系统中滚子收集装置、滚子输送系统、滚子整理机构和滚子送进机构各处的被加工凸度滚子的存量匹配、循环顺畅有序;
步骤五、对研磨加工区域加注研磨液;
步骤六、包括:
1)对于凸度圆柱滚子,第二研磨盘沿其轴线向第一研磨盘进一步趋近,使得研磨加工区域内的被加工凸度圆柱滚子的滚动表面分别与第一研磨盘的内凹弧线沟槽工作面发生十字交叉线接触和与第二研磨盘螺旋槽的工作面一发生线接触、被加工凸度圆柱滚子的一端面倒圆角与第二研磨盘螺旋槽的工作面二发生线接触;对于凸度圆锥滚子,第二研磨盘沿其轴线向第一研磨盘进一步趋近,使得研磨加工区域内的被加工凸度圆锥滚子的滚动表面分别与第一研磨盘的内凹弧线沟槽工作面的两对称侧面和第二研磨盘螺旋槽的工作面一发生线接触、被加工凸度圆锥滚子的大头端球基面或大头端倒圆角或小头端倒圆角与第二研磨盘螺旋槽的工作面二发生线接触;
2)对分布于研磨加工区域内的每个被加工凸度滚子平均施加0.5~2N的初始工作压力;被加工凸度滚子在第二研磨盘的螺旋槽工作面的摩擦驱动下绕自身轴线作连续旋转运动;与此同时,被加工凸度滚子在螺旋槽工作面的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线作圆弧进给运动;被加工凸度滚子的滚动表面开始经受第一研磨盘的内凹弧线沟槽工作面和第二研磨盘螺旋槽的工作面一的研磨加工;
步骤七、随着研磨加工过程稳定运行,对分布于研磨加工区域内的每个被加工凸度滚子逐渐增加工作压力至2~50N的正常工作压力;被加工凸度滚子保持步骤六的与第一研磨盘的内凹弧线沟槽工作面和第二研磨盘的螺旋槽工作面的接触关系、绕自身轴线的连续旋转运动以及沿内凹弧线沟槽基线的圆弧进给运动,其滚动表面继续经受第一研磨盘的内凹弧线沟槽工作面和第二研磨盘螺旋槽的工作面一的研磨加工;
步骤八、经过一段时间的研磨加工后,对被加工凸度滚子进行抽检;当被抽检的被加工凸度滚子的滚动表面的表面质量、形状精度和尺寸一致性尚未达到技术要求时,继续本步骤的研磨加工;当被抽检的被加工凸度滚子的滚动表面的表面质量、形状精度和尺寸一致性达到技术要求时,进入步骤九;
步骤九、逐渐减小工作压力并最终至零;停止滚子送进机构、滚子输送系统和滚子整理机构运行,调整第一研磨盘与第二研磨盘的相对转速至零;停止对研磨加工区域加注研磨液;第二研磨盘沿其轴线退回到非工作位置。
进一步地,本发明所述的研磨方法,采用的研磨设备中的研磨盘套件为上述磁性研磨盘套件,用于铁磁性材质的凸度滚子滚动表面的精加工,与前述研磨方法的步骤的不同之处在于:
步骤三、启动滚子退磁装置、滚子输送系统、滚子整理机构和滚子送进机构;调整滚子送进机构的送进速度使之与第一研磨盘和第二研磨盘的相对回转速度相匹配;调整滚子输送系统的输送速度和滚子整理机构的整理速度与滚子送进机构的送进速度相匹配;从而建立被加工凸度滚子在第一研磨盘和第二研磨盘之间沿内凹弧线沟槽基线的圆弧进给与经由滚子循环盘外系统的收集、输送、整理、送进的循环;
步骤六、包括:
1)第二研磨盘基体内部的环状磁性结构进入工作状态;对于凸度圆柱滚子,第二研磨盘沿其轴线向第一研磨盘进一步趋近,使得研磨加工区域内的被加工凸度圆柱滚子的滚动表面分别与第一研磨盘的内凹弧线沟槽工作面发生十字交叉线接触和与第二研磨盘螺旋槽的工作面一发生线接触、被加工凸度圆柱滚子的一端面倒圆角与第二研磨盘螺旋槽的工作面二发生线接触;对于凸度圆锥滚子,第二研磨盘沿其轴线向第一研磨盘进一步趋近,使得研磨加工区域内的被加工凸度圆锥滚子的滚动表面分别与第一研磨盘的内凹弧线沟槽工作面的两对称侧面和第二研磨盘螺旋槽的工作面一发生线接触、被加工凸度圆锥滚子的大头端球基面或大头端倒圆角或小头端倒圆角与第二研磨盘螺旋槽的工作面二发生线接触;
2)对分布于研磨加工区域内的每个被加工凸度滚子平均施加0.5~2N的初始工作压力;调整环状磁性结构的磁场强度,使得第二研磨盘的螺旋槽工作面对被加工凸度滚子绕自身轴线旋转所产生的滑动摩擦驱动力矩大于第一研磨盘的内凹弧线沟槽工作面对被加工凸度滚子绕自身轴线旋转所产生的滑动摩擦阻力矩,从而驱动被加工凸度滚子绕自身轴线作连续旋转运动;与此同时,被加工凸度滚子在螺旋槽工作面的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线作圆弧进给运动;被加工凸度滚子的滚动表面开始经受第一研磨盘的内凹弧线沟槽工作面和第二研磨盘螺旋槽的工作面一的研磨加工;
步骤九、逐渐减小工作压力并最终至零;停止滚子送进机构、滚子输送系统和滚子整理机构运行,调整第一研磨盘与第二研磨盘的相对转速至零;环状磁性结构切换至非工作状态,停止滚子退磁装置运行;停止对研磨加工区域加注研磨液;第二研磨盘沿其轴线退回到非工作位置。
本发明的研磨方法,其中,所用研磨设备中的研磨盘套件的第二研磨盘内部设置磁性结构的情况,有下述两种情形之一:
情形一、采用固结磨粒研磨方式研磨铁磁性材质的被加工凸度滚子时,在第二研磨盘的内部设置磁性结构,通过调整所述磁性结构的磁场强度,使得所述第二研磨盘的螺旋槽工作面对所述铁磁性材质的被加工凸度滚子绕自身轴线旋转所产生的滑动摩擦驱动力矩大于所述第一研磨盘的内凹弧线沟槽工作面对所述铁磁性材质的被加工凸度滚子绕自身轴线旋转所产生的滑动摩擦阻力矩,从而驱动所述铁磁性材质的被加工凸度滚子绕自身轴线连续旋转;
情形二、采用游离磨粒研磨方式研磨铁磁性材质的被加工凸度滚子时,所述第二研磨盘内置磁性结构,以增大所述第二研磨盘的螺旋槽工作面对所述铁磁性材质的被加工凸度滚子绕自身轴线旋转所产生的滑动摩擦驱动力矩,使得所述铁磁性材质的被加工凸度滚子绕自身轴线连续旋转不受所述第一研磨盘的内凹弧线沟槽工作面的材料与所述第二研磨盘的螺旋槽工作面的材料的匹配制约。
本发明的研磨方法,在所述第一研磨盘和第二研磨盘首次使用前,利用相同几何参数的被加工凸度滚子对所述第一研磨盘的内凹弧线沟槽工作面和第二研磨盘的螺旋槽工作面进行磨合;磨合方法与被加工凸度滚子的研磨方法相同;对于步骤八,对参与磨合的被加工凸度滚子进行抽检,当被抽检的被加工凸度滚子的滚动表面的表面质量、形状精度和尺寸一致性达到技术要求时,磨合过程进入步骤九;否则,继续步骤八。
与现有技术相比,本发明的有益效果是:
研磨加工过程中,在第一研磨盘的内凹弧线沟槽工作面与第二研磨盘的螺旋槽工作面合围而成的每一个研磨加工区域内,被加工凸度滚子的滚动表面分别与第一研磨盘的内凹弧线沟槽工作面和第二研磨盘的螺旋槽工作面发生接触,在第二研磨盘的螺旋槽工作面的摩擦驱动下被加工凸度滚子绕自身轴线旋转,被加工凸度滚子的滚动表面与第一研磨盘的内凹弧线沟槽工作面发生相对滑动,从而实现对被加工凸度滚子的滚动表面的研磨加工。
滚动表面的材料去除与滚动表面与内凹弧线沟槽工作面的接触应力直接相关,当较大直径的被加工凸度滚子的滚动表面或被加工凸度滚子的滚动表面的高点与内凹弧线沟槽工作面接触时,滚动表面与内凹弧线沟槽工作面的接触应力较大,接触处的滚动表面的材料去除量较大;当较小直径的被加工凸度滚子的滚动表面或被加工凸度滚子的滚动表面的低点与内凹弧线沟槽工作面接触时,滚动表面与内凹弧线沟槽工作面的接触应力较小,接触处的滚动表面的材料去除量较小。从而可实现凸度滚子的滚动表面的高点材料多去除、低点材料少去除,直径较大的凸度滚子的滚动表面的材料多去除、直径较小的凸度滚子的滚动表面的材料少去除。
由于第一研磨盘的内凹弧线沟槽和第二研磨盘的螺旋槽的开放性设计,研磨加工中存在被加工凸度滚子在第一研磨盘和第二研磨盘之间沿内凹弧线沟槽基线的圆弧进给与经由滚子循环盘外系统的收集、输送、整理、送进的循环,且经由滚子循环盘外系统时被加工凸度滚子原有的次序会被打乱。
一方面,第一研磨盘的内凹弧线沟槽和第二研磨盘的螺旋槽的开放性设计非常适应于大批量凸度滚子的滚动表面的精加工;另一方面,经由滚子循环盘外系统时被打乱的被加工凸度滚子的次序使得前述特征“凸度滚子的滚动表面的高点材料多去除、低点材料少去除,直径较大的凸度滚子的滚动表面的材料多去除、直径较小的凸度滚子的滚动表面的材料少去除”可以扩散至整个加工批次,从而可提高整个批次的凸度滚子的滚动表面的形状精度和尺寸一致性;再一方面,第一研磨盘的内凹弧线沟槽与第二研磨盘的螺旋槽有数十个至数百个之多的交会处,即同时有数十个至数百个被加工凸度滚子参与研磨,从而可以提高凸度滚子的滚动表面的加工效率,降低加工成本。
而且,由于第二研磨盘内部磁性结构的设置,在铁磁性材质的被加工凸度滚子的力平衡体系中引入了第二研磨盘的螺旋槽工作面对铁磁性材质的被加工凸度滚子的磁吸力,而所述磁吸力独立于研磨加工时通过第一研磨盘和第二研磨盘的相对趋近施加于铁磁性材质的被加工凸度滚子的工作压力,使得条件“第二研磨盘的螺旋槽工作面对所述铁磁性材质的被加工凸度滚子绕自身轴线旋转所产生的滑动摩擦驱动力矩大于第一研磨盘的内凹弧线沟槽工作面对所述铁磁性材质的被加工凸度滚子绕自身轴线旋转所产生的滑动摩擦阻力矩”更容易实现。
附图说明
图1-1是研磨盘套件实施例一的研磨盘套件示意图;
图1-2(a)是研磨盘套件实施例一的第一研磨盘内凹弧线沟槽结构示意及被加工凸度圆柱滚子滚动表面与内凹弧线沟槽工作面的接触关系示意图;
图1-2(b)是被加工凸度圆柱滚子的三维结构示意图;
图1-2(c)是被加工凸度圆柱滚子的二维结构示意图;
图1-2(d)是研磨盘套件实施例一的第一研磨盘内凹弧线沟槽扫描面的扫描轮廓示意图一;
图1-2(e)是研磨盘套件实施例一的第一研磨盘内凹弧线沟槽扫描面的扫描轮廓示意图二;
图1-3是研磨盘套件实施例一的第一研磨盘基面示意图;
图1-4(a)是研磨盘套件实施例一的第二研磨盘螺旋槽结构示意图;
图1-4(b)是研磨盘套件实施例一的被加工凸度圆柱滚子与螺旋槽工作面的接触关系示意图;
图1-4(c)是研磨盘套件实施例一的圆弧回转面等角螺旋线的特征示意图;
图1-5(a)是研磨盘套件实施例一的研磨加工状态下被加工凸度圆柱滚子与研磨盘套件的接触和运动自由度受约束示意图;
图1-5(b)是图1-5(a)中的E部放大图;
图1-6是研磨盘套件实施例一的被加工凸度圆柱滚子与螺旋槽工作面接触示意图;
图1-7是研磨盘套件实施例一的研磨加工状态下被加工凸度圆柱滚子在内凹弧线沟槽和螺旋槽内的分布示意图;
图1-8(a)是研磨设备实施例一研磨设备的主机构型一结构示意图;
图1-8(b)是研磨设备实施例一研磨设备的主机构型二结构示意图;
图1-9(a)是研磨设备实施例一研磨设备主机构型一的被加工凸度圆柱滚子循环示意图;
图1-9(b)是研磨设备实施例一研磨设备的主机构型二的被加工凸度圆柱滚子循环示意图;
图1-10(a)是研磨设备实施例一主机构型一的被加工凸度圆柱滚子在研磨盘套件内外的循环示意图;
图1-10(b)是研磨设备实施例一主机构型一的被加工凸度圆柱滚子在螺旋槽入口处的螺旋槽工作面的推挤作用下进入研磨加工区域示意图;
图1-11(a)是研磨设备实施例一主机构型二的被加工凸度圆柱滚子在研磨盘套件内外的循环示意图;
图1-11(b)是研磨设备实施例一主机构型二的被加工凸度圆柱滚子在螺旋槽入口处的螺旋槽工作面的推挤作用下进入研磨加工区域示意图;
图2-1(a)是研磨盘套件实施例二的第二研磨盘磁性结构示意与第二研磨盘正面附近的磁场分布示意图;
图2-1(b)是图2-1(a)中的F部放大图,是第二研磨盘正面附近磁力线优选通过铁磁性材质的被加工凸度圆柱滚子的示意图;
图2-2(a)是研磨设备实施例二的研磨设备主机构型一结构示意图;
图2-2(b)是研磨设备实施例二的研磨设备主机构型二结构示意图;
图2-3(a)是研磨设备实施例二的研磨设备主机构型一的被加工凸度圆柱滚子循环示意图;
图2-3(b)是研磨设备实施例二的研磨设备主机构型二的被加工凸度圆柱滚子循环示 意图;
图2-4是研磨设备实施例二的主机构型一被加工凸度圆柱滚子在磁性研磨盘套件内外的循环示意图;
图2-5是研磨设备实施例二的主机构型二被加工凸度圆柱滚子在磁性研磨盘套件内外的循环示意图;
图3-1是研磨盘套件实施例三的研磨盘套件示意图;
图3-2(a)是研磨盘套件实施例三的第一研磨盘内凹弧线沟槽结构示意及被加工凸度圆锥滚子滚动表面与内凹弧线沟槽工作面的接触关系示意图;
图3-2(b)是被加工凸度圆锥滚子的三维结构示意图;
图3-2(c)是被加工凸度圆锥滚子的二维结构示意图;
图3-2(d)是研磨盘套件实施例三的第一研磨盘内凹弧线沟槽扫描面的扫描轮廓示意图;
图3-3是研磨盘套件实施例三的第一研磨盘基面示意图;
图3-4(a)是研磨盘套件实施例三的第二研磨盘螺旋槽结构示意图;
图3-4(b)是研磨盘套件实施例三的被加工凸度圆锥滚子与螺旋槽工作面的接触关系示意图;
图3-4(c)是研磨盘套件实施例三的圆弧回转面等角螺旋线的特征示意图;
图3-5(a)是研磨盘套件实施例三的研磨加工状态下被加工凸度圆锥滚子与研磨盘套件研磨盘的接触和运动自由度受约束示意图;
图3-5(b)是图3-5(a)中的E部放大图;
图3-6(a)是研磨盘套件实施例三的被加工凸度圆锥滚子与螺旋槽工作面接触示意图一;
图3-6(b)是研磨盘套件实施例三的被加工凸度圆锥滚子与螺旋槽工作面接触示意图二;
图3-6(c)是研磨盘套件实施例三的被加工凸度圆锥滚子与螺旋槽工作面接触示意图三;
图3-7是研磨盘套件实施例三的研磨加工状态下被加工凸度圆锥滚子在内凹弧线沟槽和螺旋槽内的分布示意图;
图3-8(a)是研磨设备实施例三研磨设备的主机构型一结构示意图;
图3-8(b)是研磨设备实施例三研磨设备的主机构型二结构示意图;
图3-9(a)是研磨设备实施例三研磨设备的主机构型一被加工凸度圆锥滚子圆锥滚子循环示意图;
图3-9(b)是研磨设备实施例三研磨设备的主机构型二被加工凸度圆锥滚子圆锥滚子循环示意图;
图3-10(a)是研磨设备实施例三主机构型一的被加工凸度圆锥滚子在研磨盘套件内外的循环示意图;
图3-10(b)是研磨设备实施例三主机构型一的被加工凸度圆锥滚子在螺旋槽入口处的螺旋槽工作面工作面的推挤作用下进入研磨加工区域示意图;
图3-11(a)是研磨设备实施例三主机构型二的被加工凸度圆锥滚子在研磨盘套件内外 的循环示意图;
图3-11(b)是研磨设备实施例三主机构型二的被加工凸度圆锥滚子在螺旋槽入口处的螺旋槽工作面工作面的推挤作用下进入研磨加工区域示意图;
图4-1(a)是研磨盘套件实施例四的第二研磨盘磁性结构示意与第二研磨盘正面附近的磁场分布示意图;
图4-1(b)是图4-1(a)中的F部放大图,是第二研磨盘正面附近磁力线优选通过铁磁性材质的被加工凸度圆锥滚子的示意图。
图4-2(a)是研磨设备实施例四的研磨设备主机构型一结构示意图;
图4-2(b)是研磨设备实施例四的研磨设备主机构型二结构示意图;
图4-3(a)是研磨设备实施例四的研磨设备主机构型一的被加工凸度圆锥滚子循环示意图;
图4-3(b)是研磨设备实施例四的研磨设备主机构型二的被加工凸度圆锥滚子循环示意图;
图4-4是研磨设备实施例四的主机构型一被加工凸度圆锥滚子在磁性研磨盘套件内外的循环示意图;
图4-5是研磨设备实施例四的主机构型二被加工凸度圆锥滚子在磁性研磨盘套件内外的循环示意图;
图中:
11-基座;
12-立柱;
13-横梁;
14-滑台;
15-上托盘;
16-下托盘;
17-轴向加载装置;
18-主轴装置;
2-研磨盘套件;
21-第一研磨盘;
211-第一研磨盘正面;
2111-内凹弧线沟槽;
21111-内凹弧线沟槽工作面;
21112-中心平面;
21113-内凹弧线沟槽扫描面;
211131-法截面轮廓;
211132-法截面轮廓对称线;
21114-内凹弧线沟槽法截面;
21116-内凹弧线沟槽基线(内凹弧线沟槽扫描面的扫描路径,圆弧);
211161-内凹弧线沟槽基线的切线;
21117-内凹弧线沟槽底线;
21118-内凹弧线沟槽入口;
21119-内凹弧线沟槽出口;
2112-连接相邻内凹弧线沟槽的过渡面;
212-第一研磨盘安装面;
213-第一研磨盘轴线;
214-第一研磨盘基面;
2140-第一研磨盘基圆;
2141-第一研磨盘基面的轴截面截线;
215-第一研磨盘轴截面;
22-第二研磨盘;
220-第二研磨盘基体;
221-第二研磨盘正面;
2211-螺旋槽;
22111-螺旋槽工作面;
221111-工作面一;
221112-工作面二;
221121-扫描面一;
221122-扫描面二;
221131-轴截面轮廓一;
221132-轴截面轮廓二;
22116-螺旋槽基线(螺旋槽工作面所在的扫描面的扫描路径,圆弧回转面等角螺旋线);
22117-圆弧回转面等角螺旋线的切线;
22118-螺旋槽入口;
22119-螺旋槽出口;
2212-连接相邻螺旋槽的过渡面;
222-第二研磨盘安装面;
223-第二研磨盘轴线;
224-第二研磨盘基面;
2240-第二研磨盘基圆;
2241-第二研磨盘基面的轴截面截线;
22411-法矢;
22412-第二研磨盘基面的轴截面截线的切线;
2242-第二研磨盘基面素线;
22421-第二研磨盘基面素线的切线;
2243-第二研磨盘基面切线;
225-第二研磨盘轴截面;
226-环状磁性结构;
227-磁场(磁力线);
228-非导磁材料;
3-被加工凸度滚子(凸度圆柱滚子或凸度圆锥滚子);
31-轴线;
32-滚动表面;
321-接触线;
3211-十字交叉接触线一;
3212-十字交叉接触线二;
322-接触线一;
324-最大直径截圆;
331-小头端倒圆角;
3312-接触线二;
332-端面倒圆角;
34-大头端;
341大头端倒圆角;
3412-接触线三;
342-大头端球基面;
3422-接触线四;
4-滚子循环盘外系统;
41-滚子收集装置;
42-滚子退磁装置;
43-滚子输送系统;
44-滚子整理机构;
45-滚子送进机构;
451-滚子送进通道;
4511-滚子送进通道定位面;
45211-对接螺旋槽工作面一;
45212-对接螺旋槽工作面二;
A、B-内凹弧线沟槽扫描面的法截面轮廓在中心平面两侧的远端点;
C、D-被加工凸度圆锥滚子的滚动表面在其轴线上映射的两端点;
G-研磨加工时,第一研磨盘的内凹弧线沟槽与第二研磨盘的螺旋槽的交会处;
M-组成内凹弧线沟槽扫描面的法截面轮廓的任一直线段的中点;
O 1-第一研磨盘基面的轴截面截线的曲率中心;
O 2-第二研磨盘基面的轴截面截线的曲率中心;
P-第二研磨盘基面素线上的动点;
Q 2-螺旋槽扫描面的轴截面轮廓的基点;
Q 3-被加工凸度圆柱滚子的滚动表面的最大直径截圆在其轴线上的映射点或被加工凸度圆锥滚子的滚动表面在其轴线上的映射的中点;
γ-被加工凸度圆锥滚子的轴线与与交点处内凹弧线沟槽基线的切线的夹角;
θ 1、θ 2-内凹弧线沟槽扫描面的法截面轮廓在中心平面两侧的远端点的圆心角;
2θ-组成内凹弧线沟槽扫描面的法截面轮廓的两条直线段的夹角;
Figure PCTCN2019097910-appb-000003
-被加工凸度圆锥滚子的锥角;
λ-螺旋升角;
Δ-凸度值;
h-内凹弧线沟槽基线与内凹弧线沟槽底线的距离;
l 1-组成内凹弧线沟槽扫描面的法截面轮廓的任一直线段的中点到两条直线段延长线的交点的距离;
l 2-组成内凹弧线沟槽扫描面的法截面轮廓的任一直线段的长度;
L-被加工圆锥滚子的滚动表面的轴向长度;
R-被加工圆锥滚子的大头端半径;
R 0-最大直径截圆的曲率半径;
R 11-第一研磨盘基面的轴截面截线的曲率半径;
R 12-第一研磨盘基圆的曲率半径;
R 21-第二研磨盘基面的轴截面截线的曲率半径;
R 22-第二研磨盘基圆的曲率半径;
R b-内凹弧线沟槽底线的曲率半径;
R c-凸度曲线的曲率半径;
SR-被加工凸度圆锥滚子的大头端球基面半径
d-非导磁材料的嵌入深度;
s-非导磁材料的嵌入间距或螺距;
t-非导磁材料的厚度。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。另外,以下实施方式中记载的构成零件的尺寸、材质、形状及其相对配置等,如无特别的特定记载,并未将本发明的范围仅限于此。
研磨盘套件实施例一:一种用于凸度圆柱滚子滚动表面精加工的研磨盘套件。
该研磨盘套件,包括一对同轴的第一研磨盘21和第二研磨盘22,第一研磨盘正面211与第二研磨盘正面221相对布置,如图1-1所示,附图标记213是第一研磨盘轴线,附图标记223是第二研磨盘轴线。
第一研磨盘安装面212和第二研磨盘安装面222分别背对所述第一研磨盘正面211和第二研磨盘正面221,所述第一研磨盘21和第二研磨盘22分别通过各自的安装面与研磨设备上对应的安装基础相连接。
所述第一研磨盘正面211包括一组(不少于3条的)放射状分布的内凹弧线沟槽2111和连接相邻内凹弧线沟槽的过渡面2112。
如图1-2(a)所示,所述内凹弧线沟槽2111的表面包括研磨加工时与被加工凸度圆柱滚子3的滚动表面32发生接触的内凹弧线沟槽工作面21111和与被加工凸度圆柱滚子滚动表面32不发生接触的非工作面(图中未画出)。图1-2(b)和图1-2(c)所示分别为被加工 凸度圆柱滚子3的三维结构和二维结构。
如图1-2(a)所示,所述内凹弧线沟槽工作面21111在一内凹弧线沟槽扫描面21113上,所述内凹弧线沟槽扫描面21113为等截面扫描面;所述内凹弧线沟槽扫描面21113的扫描路径为圆弧,所述内凹弧线沟槽扫描面21113的母线(即扫描轮廓)在内凹弧线沟槽法截面21114内。所述内凹弧线沟槽法截面21114是垂直于所述内凹弧线沟槽21111的扫描路径(圆弧)的切线并过相应切点的平面。
如图1-2(a)、图1-2(d)和图1-2(e)所示,在所述内凹弧线沟槽法截面21114内,所述内凹弧线沟槽扫描面21113的法截面轮廓211131(所述内凹弧线沟槽法截面21114内的扫描轮廓)为一曲率半径与被加工凸度圆柱滚子的滚动表面32的最大直径截圆324的曲率半径相等的圆弧,所述内凹弧线沟槽扫描面21113的扫描路径过所述法截面轮廓211131的曲率中心,定义:所述扫描路径(圆弧)为内凹弧线沟槽基线21116。
所述内凹弧线沟槽扫描面21113为等截面扫描面的具体含义为:在所述内凹弧线沟槽基线21116的不同位置处的内凹弧线沟槽法截面21114内,所述内凹弧线沟槽扫描面21113的法截面轮廓211131保持不变。
可以理解到,本发明所述的扫描面与其上的工作面的关系为:扫描面确定工作面的形状、位置和边界,扫描面是连续表面;工作面与对应的扫描面具有相同的形状、位置和边界,在不影响凸度圆柱滚子3与工作面的接触关系、不影响凸度圆柱滚子滚动表面32的研磨均匀性的前提下工作面是可以不连续的。
如图1-3所示,所有所述内凹弧线沟槽基线21116分布于一内凹圆弧回转面上,定义:所述内凹圆弧回转面为第一研磨盘基面214,所述第一研磨盘基面214的轴线为第一研磨盘轴线213。在第一研磨盘轴截面215内,第一研磨盘基面的轴截面截线2141为曲率半径为R 11的圆弧。定义:所述第一研磨盘基面的轴截面截线2141的曲率中心O 1所在的、圆心位于所述第一研磨盘轴线213上的圆周为第一研磨盘基圆2140,所述第一研磨盘基圆2140的曲率半径为R 12。当R 12=0时,所述第一研磨盘基面214为一曲率半径为R 11的内凹球面。
所述内凹弧线沟槽基线21116在所述第一研磨盘轴截面215内,定义:包含所述内凹弧线沟槽基线21116的第一研磨盘轴截面215为所述内凹弧线沟槽工作面21111的中心平面21112。如图1-2(d)和图1-2(e)所示,在所述内凹弧线沟槽法截面21114内,所述内凹弧线沟槽工作面21111所在的内凹弧线沟槽扫描面21113的法截面轮廓211131在所述中心平面21112两侧的远端点A和B的圆心角θ 1≤90°、θ 2≤90°。
如图1-2(a)所示,研磨加工时,被加工凸度圆柱滚子的轴线31在所述内凹弧线沟槽工作面的中心平面21112内,被加工凸度圆柱滚子的轴线31与所述内凹弧线沟槽基线21116相切于所述被加工凸度圆柱滚子的滚动表面32的最大直径截圆324在其轴线31上的映射点Q 3
如图1-2(a)和图1-2(d)所示,所述内凹弧线沟槽工作面21111在其中心平面21112处连续。研磨加工时,被加工凸度圆柱滚子的滚动表面32与所述内凹弧线沟槽工作面21111发生十字交叉线接触(并相切),十字交叉接触线一3211和十字交叉接触线二3212分别位于所述中心平面21112和内凹弧线沟槽法截面21114内。所述内凹弧线沟槽工作面21111所对应的被加工凸度圆柱滚子的滚动表面32的凸度曲线为曲率半径为R c的圆弧, R c=R 11+R,其中R为被加工凸度圆柱滚子的滚动表面32的最大直径截圆324的曲率半径。
图1-2(e)所示,所述内凹弧线沟槽工作面21111在其中心平面21112处不连续。研磨加工时,被加工凸度圆柱滚子的滚动表面32与所述内凹弧线沟槽工作面21111发生双十字交叉线接触(相切),一条位于所述内凹弧线沟槽法截面21114内的十字交叉接触线二3212分别与两条位于所述中心平面21112两侧的十字交叉接触线一3211发生十字交叉。所述内凹弧线沟槽工作面21111所对应的被加工凸度圆柱滚子的滚动表面32的凸度曲线近似为曲率半径为R c的圆弧。
研磨加工时,被加工凸度圆柱滚子3依次自所述第一研磨盘的各内凹弧线沟槽入口21118进入所述内凹弧线沟槽2111,贯穿通过所述内凹弧线沟槽2111并从对应的各内凹弧线沟槽出口21119离开所述内凹弧线沟槽2111,参见图1-10(a)和图1-11(a)。
所述第一研磨盘的各内凹弧线沟槽入口21118均设在所述第一研磨盘21的外缘,所述第一研磨盘的各内凹弧线沟槽出口21119均设在所述第一研磨盘21的内缘。或者所述第一研磨盘的各内凹弧线沟槽入口21118均设在所述第一研磨盘21的内缘,所述第一研磨盘的各内凹弧线沟槽出口21119均设在所述第一研磨盘21的外缘。推荐所述第一研磨盘的各内凹弧线沟槽入口21118均设在所述第一研磨盘21的外缘,所述第一研磨盘的各内凹弧线沟槽出口21119均设在所述第一研磨盘21的内缘,参见图1-10(a)和图1-11(a)。
推荐所有所述内凹弧线沟槽2111绕所述第一研磨盘轴线213均布。
如图1-4(a)所示,所述第二研磨盘正面221包括一条或多条螺旋槽2211和连接相邻螺旋槽的过渡面2212,图1-9(a)、图1-9(b)和图1-10(a)所示均为两条螺旋槽。
如图1-4(b)所示,所述螺旋槽2211的表面包括研磨加工时与被加工凸度圆柱滚子3发生接触的螺旋槽工作面22111和与被加工凸度圆柱滚子3不发生接触的非工作面。
所述螺旋槽工作面22111包括研磨加工时与被加工凸度圆柱滚子的滚动表面32发生接触的工作面一221111和与被加工凸度圆柱滚子的一端面倒圆角331发生接触的工作面二221112。
所述工作面一221111和工作面二221112分别在扫描面一221121和扫描面二221122上,所述扫描面一221121和扫描面二221122均为等截面扫描面。在所述第一研磨盘内凹弧线沟槽工作面21111的约束下被加工凸度圆柱滚子的滚动表面32和一端面倒圆角332分别与所述工作面一221111和工作面二221112相切。所述扫描面一221121和扫描面二221122的扫描路径相同,均为过所述被加工凸度圆柱滚子的滚动表面32的最大直径截圆324在其轴线31上的映射点Q 3、且分布于一外凸圆弧回转面上的圆弧回转面等角螺旋线。
如图1-4(c)所示,定义:所述工作面一221111和工作面二221112所在扫描面一221121和扫描面二221122的扫描路径为第二研磨盘的螺旋槽基线22116,所述外凸圆弧回转面为第二研磨盘基面224,所述第二研磨盘基面224的轴线为第二研磨盘轴线223。
所述圆弧回转面等角螺旋线22116的特征为:如图1-4(c)所示,所述外凸圆弧回转面224上的一条素线2242绕所述外凸圆弧回转面224的轴线223作回转运动,一动点P沿所述素线2242移动,所述动点P的轨迹在动点P的切线22117与垂直于所述素线2242在动点P的切线22421的、所述外凸圆弧回转面224在动点P的切线2243的夹角λ为定角,且λ≠0。所述动点P的轨迹即为所述圆弧回转面等角螺旋线22116,所述夹角λ为所 述圆弧回转面等角螺旋线22116的螺旋升角。
如图1-4(a)所示,在第二研磨盘轴截面225内,第二研磨盘基面的轴截面截线2241为曲率半径为R 21的圆弧。定义:所述第二研磨盘基面的轴截面截线2241的曲率中心O 2所在的、圆心位于所述第二研磨盘轴线223上的圆周为第二研磨盘基圆2240,所述第二研磨盘基圆2240的曲率半径为R 22。当R 22=0时,所述第二研磨盘基面224为一曲率半径为R 21的外凸球面。
所述扫描面一221121和扫描面二221122的母线(即扫描轮廓)均在所述第二研磨盘轴截面225内。
定义:所述第二研磨盘的螺旋槽基线22116与所述第二研磨盘轴截面225的交点为所述螺旋槽工作面22111所在的螺旋槽扫描面的轴截面轮廓的基点Q 2,所述基点Q 2在所述第二研磨盘基面的轴截面截线2241上。研磨加工时,所述基点Q 2与被加工凸度圆柱滚子的滚动表面32的最大直径截圆324在其轴线31上的映射点Q 3重合。
所述扫描面一221121和扫描面二221122均为等截面扫描面的具体含义为:在所述螺旋槽基线22116的不同位置处的第二研磨盘轴截面225内,所述扫描面一221121的轴截面轮廓一221131和扫描面二221122的轴截面轮廓二221132均保持不变,并与第二研磨盘基面的轴截面截线2241在所述基点Q 2处的法矢22411保持同步偏转。
所述第二研磨盘基面的轴截面截线2241的曲率半径R 21等于所述第一研磨盘基面的轴截面截线2141的曲率半径R 11,所述第二研磨盘基圆2240的曲率半径R 22等于所述第一研磨盘基圆2140的曲率半径R 12。所述第一研磨盘基面的轴截面截线2141和第二研磨盘基面的轴截面截线2241与各自的曲率中心O 1、O 2或者均在所述第一研磨盘轴线213和第二研磨盘轴线223的同侧,或者均在所述第一研磨盘轴213和第二研磨盘轴线223的两侧。
研磨加工时,在所述第一研磨盘的内凹弧线沟槽工作面21111的约束下,如图1-5(a)和图1-5(b)所示,图1-5(b)为图1-5(a)的E部放大,所述被加工凸度圆柱滚子的滚动表面32与所述螺旋槽的工作面一221111发生线接触(相切),所述被加工凸度圆柱滚子的一端面倒圆角331与所述螺旋槽的工作面二221112发生线接触(相切)。所述被加工凸度圆柱滚子3仅具有绕自身轴线31的回转运动自由度。
如图1-6所示,附图标记322为所述被加工凸度圆柱滚子的滚动表面32与所述螺旋槽的工作面一221111的接触线,附图标记3312为所述被加工凸度圆柱滚子的一端面倒圆角331与所述螺旋槽的工作面二221112的接触线。
如图1-4(b)所示,所述螺旋槽的工作面一221111所在的扫描面一221121的轴截面轮廓一221131(所述第二研磨盘轴截面225内扫描面一221121的扫描轮廓)的特征与所述被加工凸度圆柱滚子的滚动表面32与所述螺旋槽的工作面一221111的线接触关系以及所述螺旋槽基线22116直接相关。
所述螺旋槽的工作面二221112所在的扫描面二221122的轴截面轮廓二221132(所述第二研磨盘轴截面225内扫描面二221122的扫描轮廓)的特征与所述被加工凸度圆柱滚子的端面倒圆角331与所述螺旋槽的工作面二221112的接触关系以及所述螺旋槽基线22116直接相关。
所述螺旋槽的工作面一221111所在的扫描面一221121的轴截面轮廓一221131和工 作面二221112所在的扫描面二221122的轴截面轮廓二221132可分别根据被加工凸度圆柱滚子的滚动表面32与所述螺旋槽的工作面一221111的线接触关系、被加工凸度圆柱滚子的端面倒圆角331与所述螺旋槽的工作面二221112的线接触关系以及所述螺旋槽基线22116,利用解析法或借助三维设计软件用图解法确定。
与给定的被加工凸度圆柱滚子3相适应的螺旋槽工作面22111所在的螺旋槽扫描面与所述被加工凸度圆柱滚子3的结构关系可以表述为:根据研磨加工时所述第一研磨盘的内凹弧线沟槽工作面21111对所述给定的被加工凸度圆柱滚子3的约束关系、所述第一研磨盘21和第二研磨盘22的结构关系及其研磨加工时的相对位置关系,确定被加工凸度圆柱滚子的轴线31相对所述第二研磨盘基面224及螺旋槽基线22116的位置和姿态,即所述被加工凸度圆柱滚子的轴线31在所述第二研磨盘轴截面225内,与所述第二研磨盘基面的轴截面截线2241相切于所述被加工凸度圆柱滚子的滚动表面32的最大直径截圆324在其轴线31上的映射点Q 3,且与所述第二研磨盘的螺旋槽基线22116相交于所述被加工凸度圆柱滚子的滚动表面32的最大直径截圆324在其轴线31上的映射点Q 3。将所述被加工凸度圆柱滚子3相对所述第二研磨盘22沿所述螺旋槽基线22116作圆弧回转面等角螺旋运动,分别去除所述第二研磨盘正面221处的实体上与所述被加工凸度圆柱滚子的滚动表面32和一端面倒圆角331发生干涉的材料,在所述第二研磨盘正面221处的实体上分别形成的与所述被加工凸度圆柱滚子的滚动表面32和端面倒圆角331相关的表面即为所述螺旋槽的工作面一221111和工作面二221112所在的扫描面一221121和扫描面二221122。
当所述第一研磨盘的各内凹弧线沟槽入口21118设在所述第一研磨盘21的外缘、所述第一研磨盘的各内凹弧线沟槽出口21119设在所述第一研磨盘21的内缘时,所述第二研磨盘的各螺旋槽入口22118设在所述第二研磨盘22的外缘、所述第二研磨盘的各螺旋槽出口22119设在所述第二研磨盘22的内缘。当所述第一研磨盘的各内凹弧线沟槽入口21118设在所述第一研磨盘21的内缘、所述第一研磨盘的各内凹弧线沟槽出口21119设在所述第一研磨盘21的外缘时,所述第二研磨盘的各螺旋槽入口22118设在所述第二研磨盘22的内缘、所述第二研磨盘的各螺旋槽出口22119设在所述第二研磨盘22的外缘,参见图1-9(a)和图1-9(b)。
推荐所有所述螺旋槽2211绕所述第二研磨盘轴线223均布。
研磨加工时,所述第一研磨盘基面214与所述第二研磨盘基面224重合;所述第一研磨盘正面211上连接相邻内凹弧线沟槽的过渡面2112与所述第二研磨盘正面221上连接相邻螺旋槽的过渡面2212间存有间隙。
如图1-7所示,研磨加工时,对应所述第二研磨盘的螺旋槽2211与所述第一研磨盘的内凹弧线沟槽2111的每一交会处G,在所述第一研磨盘的内凹弧线沟槽2111内沿所述内凹弧线沟槽基线21116分布一个被加工凸度圆柱滚子3。定义:对应所述每一交会处G,所述第一研磨盘的内凹弧线沟槽工作面21111与所述第二研磨盘的螺旋槽工作面22111合围而成的区域为研磨加工区域。
研磨盘套件实施例二:一种用于铁磁性材质(如GCr15、G20CrNi2MoA、Cr4Mo4V等)的凸度圆柱滚子滚动表面精加工的研磨盘套件。
该研磨盘套件包括一对同轴的第一研磨盘21和第二研磨盘22,与研磨盘套件实施例 一所述的研磨盘套件的不同之处在于:
如图2-1(a)和图2-1(b)所示,图2-1(b)为图2-1(a)的F部放大,第二研磨盘基体220由导磁材料制造,在所述第二研磨盘基体220的内部嵌装有环状磁性结构226,以在所述第二研磨盘正面221附近沿所述第二研磨盘基面素线2242方向形成磁场227。在所述第二研磨盘正面221上嵌入有一组圆环带状(或螺旋带状)的非导磁材料228,以增加所述第二研磨盘正面221沿所述第二研磨盘基面素线2242方向的磁阻。所述第二研磨盘基体220的导磁材料和嵌入的圆环带状(或螺旋带状)的非导磁材料228在所述第二研磨盘正面221上紧密相连并共同组成所述第二研磨盘正面221。所述圆环带状(或螺旋带状)的非导磁材料228的厚度t、嵌入深度d和间距(或螺距)s一方面需满足所述第二研磨盘正面221对结构强度和刚度的要求;另一方面,应保证研磨加工时所述第二研磨盘的螺旋槽工作面22111附近的磁场227优先通过与所述第二研磨盘的螺旋槽工作面22111发生接触的铁磁性材质的被加工凸度圆柱滚子3。
所述第二研磨盘基体内部的环状磁性结构226可为电磁结构或电控永磁结构。
所述导磁材料采用导磁率较高的软磁材料如软铁、低碳钢以及软磁合金等,所述非导磁材料228采用非铁磁材料如有色金属、奥氏体不锈钢等。
研磨盘套件实施例三:一种用于凸度圆锥滚子滚动表面精加工的研磨盘套件。
该研磨盘套件,包括一对同轴的第一研磨盘21和第二研磨盘22,第一研磨盘正面211与第二研磨盘正面221相对布置,如图3-1所示,附图标记213是第一研磨盘轴线,附图标记223是第二研磨盘轴线。
第一研磨盘安装面212和第二研磨盘安装面222分别背对所述第一研磨盘正面211和第二研磨盘正面221,所述第一研磨盘21和第二研磨盘22分别通过各自的安装面与研磨设备上对应的安装基础相连接。
所述第一研磨盘正面211包括一组(不少于3条的)放射状分布的内凹弧线沟槽2111和连接相邻内凹弧线沟槽的过渡面2112。
如图3-2(a)所示,所述内凹弧线沟槽2111的表面包括研磨加工时与被加工凸度圆锥滚子3的滚动表面32发生接触的内凹弧线沟槽工作面21111和与被加工凸度圆锥滚子滚动表面32不发生接触的非工作面(图中未画出)。图3-2(b)和图3-2(c)所示分别为被加工凸度圆锥滚子3的三维结构和二维结构。
如图3-2(a)所示,所述内凹弧线沟槽工作面21111在一两侧对称的内凹弧线沟槽扫描面21113上,所述内凹弧线沟槽扫描面21113为等截面扫描面;所述内凹弧线沟槽扫描面21113的扫描路径为圆弧,所述内凹弧线沟槽扫描面21113的母线(即扫描轮廓)在内凹弧线沟槽法截面21114内。所述内凹弧线沟槽法截面21114是垂直于所述内凹弧线沟槽21111的扫描路径(圆弧)的切线并过相应切点的平面。
如图3-2(a)、图3-2(c)和图3-2(d)所示,在所述内凹弧线沟槽法截面21114内,所述内凹弧线沟槽扫描面21113的法截面轮廓211131(即所述内凹弧线沟槽法截面21114内的扫描轮廓)为两条对称的直线段,所述任一直线段的中点M与所述两条直线段延长线的交点的距离为l 1,所述任一直线段的长度为l 2,所述两条直线段之间的夹角为2θ。组成所述内凹弧线沟槽工作面21111所在的内凹弧线沟槽扫描面21113的法截面轮廓211131的两条对称直线段所对应的被加工凸度圆锥滚子的滚动表面32的凸度形式为圆弧凸度, 凸度曲线的凸度值为Δ。
如图3-2(a)所示,定义:过所述两条直线段延长线的交点、与所述内凹弧线沟槽扫描面21113的扫描路径在同一平面且具有同一曲率中心的圆弧为内凹弧线沟槽底线21117。
所述内凹弧线沟槽工作面21111的中心平面21112为包含所述内凹弧线沟槽扫描面21113的法截面轮廓对称线对称线211132和所述内凹弧线沟槽扫描面21113的扫描路径的平面。研磨加工时,被加工凸度圆锥滚子的轴线31在所述内凹弧线沟槽工作面21111的中心平面21112内,所述被加工凸度圆锥滚子的滚动表面32与所述内凹弧线沟槽工作面21111的两对称侧面分别发生线接触(相切),附图标记321为发生线接触的接触线,所述被加工凸度圆锥滚子的小头端较大头端34更接近所述内凹弧线沟槽底线21117。所述内凹弧线沟槽扫描面21113的扫描路径过被加工凸度圆锥滚子的滚动表面32在其轴线31上的映射CD的中点Q 3,定义:所述扫描路径为内凹弧线沟槽基线21116,所述内凹弧线沟槽基线21116与所述内凹弧线沟槽底线21117具有相同的曲率中心。参见图3-3。
所述内凹弧线沟槽扫描面21113为等截面扫描面的具体含义为:在所述内凹弧线沟槽基线21116的不同位置处的内凹弧线沟槽法截面21114内,所述内凹弧线沟槽扫描面21113的法截面轮廓211131保持不变。
可以理解到,本发明所述的扫描面与其上的工作面的关系为:扫描面确定工作面的形状、位置和边界,扫描面是连续表面;工作面与对应的扫描面具有相同的形状、位置和边界,在不影响凸度圆锥滚子3与工作面的接触关系、不影响凸度圆锥滚子滚动表面32的研磨均匀性的前提下工作面是可以不连续的。
如图3-3所示,所有所述内凹弧线沟槽基线21116分布于一内凹圆弧回转面上,定义:所述内凹圆弧回转面为第一研磨盘基面214,所述第一研磨盘基面214的轴线为第一研磨盘轴线213。在第一研磨盘轴截面215内,第一研磨盘基面的轴截面截线2141为曲率半径为R 11的圆弧。定义所述第一研磨盘基面的轴截面截线2141的曲率中心O 1所在的、圆心位于所述第一研磨盘轴线213上的圆周为第一研磨盘基圆2140,所述第一研磨盘基圆2140的曲率半径为R 12。当R 12=0时,所述第一研磨盘基面214为一曲率半径为R 11的内凹球面。
所述内凹弧线沟槽基线21116在所述第一研磨盘轴截面215内,所述内凹弧线沟槽工作面21111的中心平面21112与包含所述内凹弧线沟槽基线21116的所述第一研磨盘轴截面215重合。
如图3-2(a)和图3-2(c)所示,所述被加工凸度圆锥滚子3的半锥角为
Figure PCTCN2019097910-appb-000004
对于给定大头端半径R、滚动表面的轴向长度L、锥角
Figure PCTCN2019097910-appb-000005
和滚动表面凸度曲线的凸度值Δ的被加工凸度圆锥滚子3,与之相适应的内凹弧线沟槽基线21116和内凹弧线沟槽底线21117的曲率半径分别为R 11和R b,所述内凹弧线沟槽基线21116与被加工凸度圆锥滚子的轴线31相交,交点位于被加工凸度圆锥滚子的滚动表面32在其轴线31上的映射CD的中点Q 3,所述被加工凸度圆锥滚子3的轴线31与所述内凹弧线沟槽基线21116在其交点Q 3的切线211161的夹角为γ,且:
Figure PCTCN2019097910-appb-000006
与所述给定的被加工凸度圆锥滚子3相适应的,组成内凹弧线沟槽工作面所在的内凹弧线沟槽扫描面的法截面轮廓211131的两条对称直线段中的任一直线段的中点M与所述 两条直线段延长线的交点的距离l 1、所述任一直线段的长度l 2、以及所述内凹弧线沟槽基线21116和内凹弧线沟槽底线21117的曲率半径R 11和R b,可根据研磨加工时被加工凸度圆锥滚子的滚动表面32与所述内凹弧线沟槽工作面21111的线接触(相切)关系,利用解析法或借助三维设计软件用图解法确定。
与所述给定的被加工凸度圆锥滚子3相适应的内凹弧线沟槽工作面所在的内凹弧线沟槽扫描面21113与所述被加工凸度圆锥滚子3的结构关系可以表述为:根据研磨加工时所述第一研磨盘的内凹弧线沟槽工作面21111对所述给定的被加工凸度圆锥滚子3的约束关系,在所述内凹弧线沟槽工作面的中心平面21112内确定所述被加工凸度圆锥滚子的轴线31相对所述第一研磨盘的内凹弧线沟槽基线21116的相对位置和姿态,即所述被加工凸度圆锥滚子的轴线31与所述内凹弧线沟槽基线21116相交于所述被加工凸度圆锥滚子的滚动表面32在其轴线31上的映射CD的中点Q 3且所述被加工凸度圆锥滚子3的轴线31与交点处内凹弧线沟槽基线的切线211161的夹角为γ,将所述被加工凸度圆锥滚子3相对所述第一研磨盘21沿所述内凹弧线沟槽基线21116作圆弧运动,去除所述第一研磨盘正面211处的实体上与所述被加工凸度圆锥滚子的滚动表面32发生干涉的材料,在所述第一研磨盘正面211处的实体上形成的与所述被加工凸度圆锥滚子的滚动表面32相关的两对称表面即为所述内凹弧线沟槽工作面所在的内凹弧线沟槽扫描面21113。
满足给定的被加工凸度圆锥滚子的大头端半径R、滚动表面的轴向长度L、锥角
Figure PCTCN2019097910-appb-000007
滚动表面凸度曲线的凸度值Δ以及研磨加工时被加工凸度圆锥滚子的滚动表面32与内凹弧线沟槽工作面21111的线接触(相切)关系的所述内凹弧线沟槽工作面21111所在的内凹弧线沟槽扫描面21113的法截面轮廓211131、所述内凹弧线沟槽基线21116和内凹弧线沟槽底线21117的曲率半径R 11和R b、以及被加工凸度圆锥滚子的轴线31与其交点处内凹弧线沟槽基线的切线211161的夹角γ的组合不是唯一的。
当被加工凸度圆锥滚子的滚动表面32的凸度形式不是所述内凹弧线沟槽工作面21111所在的内凹弧线沟槽扫描面21113的法截面轮廓211131的两条对称直线段所对应的圆弧凸度时,与之相适应的内凹弧线沟槽工作面21111所在的内凹弧线沟槽扫描面21113的法截面轮廓211131须根据所述被加工凸度圆锥滚子的滚动表面32的凸度曲线进行相应的修形。修形之后的法截面轮廓211131为两条对称的且向第一研磨盘21的实体内微凹的曲线段。所述两条曲线段在其各自中点处的切线之间的夹角为2θ,过所述两条曲线段在其各自中点处的切线的交点、与所述内凹弧线沟槽扫描面21113的扫描路径在同一平面且具有同一曲率中心的圆弧为所述内凹弧线沟槽2111的底线21117。
研磨加工时,被加工凸度圆锥滚子3依次自所述第一研磨盘的各内凹弧线沟槽入口21118进入所述内凹弧线沟槽2111,贯穿通过所述内凹弧线沟槽2111并从对应的各内凹弧线沟槽出口21119离开所述内凹弧线沟槽2111,参见图3-10(a)和图3-11(a)。
所述第一研磨盘的各内凹弧线沟槽入口21118均设在所述第一研磨盘21的外缘,所述第一研磨盘的各内凹弧线沟槽出口21119均设在所述第一研磨盘21的内缘。或者所述第一研磨盘的各内凹弧线沟槽入口21118均设在所述第一研磨盘21的内缘,所述第一研磨盘的各内凹弧线沟槽出口21119均设在所述第一研磨盘21的外缘。推荐所述第一研磨盘的各内凹弧线沟槽入口21118均设在所述第一研磨盘21的外缘,所述第一研磨盘的各内凹弧线沟槽出口21119均设在所述第一研磨盘21的内缘,参见图3-10(a)和图3-11(a)。
推荐所有所述内凹弧线沟槽2111绕所述第一研磨盘轴线213均布。
如图3-4(a)所示,所述第二研磨盘正面221包括一条或多条螺旋槽2211和连接相邻螺旋槽过渡面2212,图3-9(a)、图3-9(b)和图3-10(a)所示均为两条螺旋槽。
如图3-4(b)所示,所述螺旋槽2211的表面包括研磨加工时与被加工凸度圆锥滚子3发生接触的螺旋槽工作面22111和与被加工凸度圆锥滚子3不发生接触的非工作面。
所述螺旋槽工作面22111包括研磨加工时与被加工凸度圆锥滚子的滚动表面32发生接触的工作面一221111和与被加工凸度圆锥滚子的大头端球基面342(或大头端倒圆角341或小头端倒圆角331)发生接触的工作面二221112。
所述工作面一221111和工作面二221112分别在扫描面一221121和扫描面二221122上,所述扫描面一221121和扫描面二221122均为等截面扫描面。在所述第一研磨盘内凹弧线沟槽工作面21111的约束下被加工凸度圆锥滚子的滚动表面32和大头端球基面342(或大头端倒圆角341或小头端倒圆角331)分别与所述工作面一221111和工作面二221112相切。所述扫描面一221121和扫描面二221122的扫描路径相同,均为过所述被加工凸度圆锥滚子的滚动表面32在其轴线31上的映射CD的中点Q 3、且分布于一外凸圆弧回转面上的圆弧回转面等角螺旋线。
如图3-4(c)所示,定义:所述工作面一221111和工作面二221112所在扫描面一221121和扫描面二221122的扫描路径为第二研磨盘的螺旋槽基线22116,所述外凸圆弧回转面为第二研磨盘基面224,所述第二研磨盘基面224的轴线为第二研磨盘轴线223。
所述圆弧回转面等角螺旋线22116的特征为:如图3-4(c)所示,所述圆弧回转面224上的一条素线2242绕所述圆弧回转面224的轴线223作回转运动,一动点P沿所述素线2242作圆弧趋进运动,所述动点P的轨迹在动点P的切线22117与垂直于所述素线2242的切线22421的、所述圆弧回转面224在动点P的切线2243的夹角λ为定角,且λ≠0。所述动点P的轨迹即为所述圆弧回转面等角螺旋线22116,所述夹角λ为所述圆弧回转面等角螺旋线22116的螺旋升角。
如图3-4(a)所示,在所述第二研磨盘轴截面225内,第二研磨盘基面的轴截面截线2241为曲率半径为R 21的圆弧。定义所述第二研磨盘基面的轴截面截线2241的曲率中心O 2所在的、圆心位于所述第二研磨盘轴线223上的圆周为第二研磨盘基圆2240,所述第二研磨盘基圆2240的曲率半径为R 22。当R 22=0时,所述第二研磨盘基面224为一曲率半径为R 21的外凸球面。
所述扫描面一221121和扫描面二221122的母线(即扫描轮廓)均在所述第二研磨盘轴截面225内。
定义:所述第二研磨盘的螺旋槽基线22116与所述第二研磨盘轴截面225的交点为所述螺旋槽工作面22111所在的螺旋槽扫描面的轴截面轮廓的基点Q 2,所述基点Q 2在所述第二研磨盘基面的轴截面截线2241上。研磨加工时,所述基点Q 2与被加工凸度圆锥滚子的滚动表面32在其轴线31上的映射CD的中点Q 3重合。
所述扫描面一221121和扫描面二221122均为等截面扫描面的具体含义为:在所述螺旋槽基线22116的不同位置处的第二研磨盘轴截面225内,所述扫描面一221121的轴截面轮廓一221131和扫描面二221122的轴截面轮廓二221132均保持不变,并与所述第二研磨盘基面的轴截面截线2241在所述基点Q 2处的法矢22411保持同步偏转。
所述第二研磨盘基面的轴截面截线2241的曲率半径R 21等于所述第一研磨盘基面的轴截面截线2141的曲率半径R 11,所述第二研磨盘基圆2240的曲率半径R 22等于所述第一研磨盘基圆2140的曲率半径R 12。所述第一研磨盘基面的轴截面截线2141和第二研磨盘基面的轴截面截线2241与各自的曲率中心O 1和O 2或者均在所述第一研磨盘轴线213和第二研磨盘轴线223的同侧,或者均在所述第一研磨盘轴213和第二研磨盘轴线223的两侧。
研磨加工时,在所述第一研磨盘的内凹弧线沟槽工作面21111的约束下,如图3-5(a)和图3-5(b)所示,图3-5(b)为图3-5(a)的E部放大,所述被加工凸度圆锥滚子的滚动表面32与所述螺旋槽的工作面一221111发生线接触(相切),所述被加工凸度圆锥滚子的大头端球基面342(或大头端倒圆角341或小头端倒圆角331)与所述螺旋槽的工作面二221112发生线接触(相切)。所述被加工凸度圆锥滚子3仅具有绕自身轴线31的回转运动自由度。
研磨加工时,所述第一研磨盘不同内凹弧线沟槽2111内的被加工凸度圆锥滚子3分布于所述第二研磨盘同一螺旋槽2211时,其在所述第一研磨盘不同内凹弧线沟槽2111内的小头端的指向相同。所述小头端的指向取决于所述被加工凸度圆锥滚子3所处的螺旋槽工作面22111所在的螺旋槽扫描面22112的法截面轮廓22113,或者均指向所述第一研磨盘的内凹弧线沟槽出口21119,或者均指向所述第一研磨盘的内凹弧线沟槽入口21118。所述第一研磨盘同一内凹弧线沟槽2111内的被加工凸度圆锥滚子3分布于所述第二研磨盘不同螺旋槽2211时,其在所述第一研磨盘同一内凹弧线沟槽2111内的小头端的指向可以不同。
如图3-6(a)所示,当在所述第一研磨盘的内凹弧线沟槽2111内的被加工凸度圆锥滚子3的小头端指向所述内凹弧线沟槽出口21119时,所述被加工凸度圆锥滚子的大头端球基面342与所述螺旋槽的工作面二221112发生线接触,附图标记3422为发生线接触的接触线四。
如图3-6(b)所示,当在所述第一研磨盘的内凹弧线沟槽2111内的被加工凸度圆锥滚子3的小头端指向所述内凹弧线沟槽出口21119、且所述螺旋槽基线22116的螺旋升角λ大于一定值或所述被加工凸度圆锥滚子的大头端球基面342的半径SR大于一定值时,所述被加工凸度圆锥滚子的大头端倒圆角341与所述螺旋槽的工作面二221112发生线接触,附图标记3412为发生线接触的接触线三。
如图3-6(c)所示,当在所述第一研磨盘的内凹弧线沟槽2111内的被加工凸度圆锥滚子3的小头端指向所述内凹弧线沟槽入口21118时,所述被加工凸度圆锥滚子的小头端倒圆角331与所述螺旋槽的工作面二221112发生线接触,附图标记3312为发生线接触的接触线二。
如图3-6(a)、图63-(b)和图3-6(c)所示,附图标记322为所述被加工凸度圆锥滚子的滚动表面32与所述螺旋槽的工作面一221111的接触线一。
如图3-4(b)所示,所述螺旋槽的工作面一221111所在的扫描面一221121的轴截面轮廓一221131(所述第二研磨盘轴截面225内扫描面一221121的扫描轮廓)的特征与所述被加工凸度圆锥滚子的滚动表面32与所述螺旋槽的工作面一221111的线接触关系以及所述螺旋槽基线22116直接相关。
所述螺旋槽的工作面二331112所在的扫描面二221122的轴截面轮廓二221132(所述第二研磨盘轴截面225内扫描面二221122的扫描轮廓)的特征与所述被加工凸度圆锥滚子的大头端球基面342(或大头端倒圆角341或小头端倒圆角331)与所述螺旋槽的工作面二221112的线接触关系以及所述螺旋槽基线22116直接相关。
所述螺旋槽的工作面一221111所在的扫描面一221121的轴截面轮廓一221131和工作面二221112所在的扫描面二221122的轴截面轮廓二221132可分别根据被加工凸度圆锥滚子的滚动表面32与所述螺旋槽的工作面一221111的线接触关系、被加工凸度圆锥滚子的大头端球基面342(或大头端倒圆角341或小头端倒圆角331)与所述螺旋槽的工作面二221112的线接触关系以及所述螺旋槽基线22116,利用解析法或借助三维设计软件用图解法确定。
与所述给定的被加工凸度圆锥滚子3相适应的螺旋槽工作面22111所在的螺旋槽扫描面与所述被加工凸度圆锥滚子3的结构关系可以表述为:根据研磨加工时所述第一研磨盘的内凹弧线沟槽工作面21111对所述给定的被加工凸度圆锥滚子3的约束关系、所述第一研磨盘21和第二研磨盘22的结构关系及其研磨加工时的相对位置关系,确定被加工凸度圆锥滚子的轴线31相对所述第二研磨盘基面224及螺旋槽基线22116的位置和姿态,即所述被加工凸度圆锥滚子的轴线31在所述第二研磨盘轴截面225内,与所述第二研磨盘基面的轴截面截线2241相交于所述被加工凸度圆锥滚子的滚动表面32在其轴线31上的映射CD的中点Q 3,且与交点处所述第二研磨盘基面的轴截面截线的切线22412的夹角为γ,且与所述第二研磨盘的螺旋槽基线22116相交于所述被加工凸度圆锥滚子的滚动表面32在其轴线31上的映射CD的中点Q 3。结合被加工凸度圆锥滚子3小头端在所述第一研磨盘的内凹弧线沟槽2111内的指向,将所述被加工凸度圆锥滚子3相对所述第二研磨盘22沿所述螺旋槽基线22116作圆弧回转面等角螺旋运动。当在所述第一研磨盘的内凹弧线沟槽2111内的被加工凸度圆锥滚子3的小头端指向所述内凹弧线沟槽出口21119时,分别去除所述第二研磨盘正面221处的实体上与所述被加工凸度圆锥滚子的滚动表面32和大头端球基面342(或大头端倒圆角341)发生干涉的材料,在所述第二研磨盘正面221处的实体上分别形成的与所述被加工凸度圆锥滚子的滚动表面32和大头端球基面342(或大头端倒圆角341)相关的表面即为所述的螺旋槽的工作面一和工作面二所在的扫描面一221121和扫描面二221122,所述螺旋槽工作面22111所在的螺旋槽扫描面的轴截面轮廓与小头端指向所述内凹弧线沟槽出口21119的被加工凸度圆锥滚子3相适应。当在所述第一研磨盘的内凹弧线沟槽2111内的被加工凸度圆锥滚子3的小头端指向所述内凹弧线沟槽入口21118时,分别去除所述第二研磨盘正面221处的实体上与所述被加工凸度圆锥滚子的滚动表面32和小头端倒圆角331发生干涉的材料,在所述第二研磨盘正面221处的实体上分别形成的与所述被加工凸度圆锥滚子的滚动表面32和小头端倒圆角331相关的表面即为所述螺旋槽的工作面一221111和工作面二221112所在的扫描面一221121和扫描面二221122,所述螺旋槽工作面22111所在的螺旋槽扫描面22112的轴截面轮廓与小头端指向所述内凹弧线沟槽入口21118的被加工凸度圆锥滚子3相适应。
当所述第一研磨盘的各内凹弧线沟槽入口21118设在所述第一研磨盘21的外缘、所述第一研磨盘的各内凹弧线沟槽出口21119设在所述第一研磨盘21的内缘时,所述第二研磨盘的各螺旋槽入口22118设在所述第二研磨盘22的外缘、所述第二研磨盘的各螺旋 槽出口22119设在所述第二研磨盘22的内缘。当所述第一研磨盘的各内凹弧线沟槽入口21118设在所述第一研磨盘21的内缘、所述第一研磨盘的各内凹弧线沟槽出口21119设在所述第一研磨盘21的外缘时,所述第二研磨盘的各螺旋槽入口22118设在所述第二研磨盘22的内缘、所述第二研磨盘的各螺旋槽出口22119设在所述第二研磨盘22的外缘,参见图3-9(a)和图3-9(b)。
推荐所有所述螺旋槽2211绕所述第二研磨盘轴线223均布。
研磨加工时,所述第一研磨盘基面214与所述第二研磨盘基面224重合;所述第一研磨盘正面211上连接相邻内凹弧线沟槽的过渡面2112与所述第二研磨盘正面221上连接相邻螺旋槽的过渡面2212间存有间隙。
如图3-7所示,研磨加工时,对应所述第二研磨盘的螺旋槽2211与所述第一研磨盘的内凹弧线沟槽2111的每一交会处G,在所述第一研磨盘的内凹弧线沟槽2111内沿所述内凹弧线沟槽2111分布一个小头端的指向与经过所述交会处G的螺旋槽工作面22111所在的螺旋槽扫描面22112的法截面轮廓22113相适应的被加工凸度圆锥滚子3。定义:对应所述每一交会处G,所述第一研磨盘的内凹弧线沟槽工作面21111与所述第二研磨盘的螺旋槽工作面22111合围而成的区域为研磨加工区域。
研磨盘套件实施例四:一种用于铁磁性材质(如GCr15、G20CrNi2MoA、Cr4Mo4V等)的凸度圆锥滚子滚动表面精加工的研磨盘套件。
该研磨盘套件包括一对同轴的第一研磨盘21和第二研磨盘22,与研磨盘套件实施例三所述的研磨盘套件的不同之处在于:
如图2-1(a)和图2-1(b)所示,图2-1(b)为图2-1(a)的F部放大,第二研磨盘基体220由导磁材料制造,在所述第二研磨盘基体220的内部嵌装有环状磁性结构226,以在所述第二研磨盘正面221附近沿所述第二研磨盘基面素线2242方向形成磁场227。在所述第二研磨盘正面221上嵌入有一组圆环带状(或螺旋带状)的非导磁材料228,以增加所述第二研磨盘正面221沿所述第二研磨盘基面素线2242方向的磁阻。所述第二研磨盘基体220的导磁材料和嵌入的圆环带状(或螺旋带状)的非导磁材料228在所述第二研磨盘正面221上紧密相连并共同组成所述第二研磨盘正面221。所述圆环带状(或螺旋带状)的非导磁材料228的厚度t、嵌入深度d和间距(或螺距)s一方面需满足所述第二研磨盘正面221对结构强度和刚度的要求;另一方面,应保证研磨加工时所述第二研磨盘的螺旋槽工作面22111附近的磁场227优先通过与所述第二研磨盘的螺旋槽工作面22111发生接触的铁磁性材质的被加工凸度圆锥滚子3。
所述第二研磨盘基体内部的环状磁性结构226可为电磁结构或电控永磁结构。
所述导磁材料采用导磁率较高的软磁材料如软铁、低碳钢以及软磁合金等,所述非导磁材料228采用非铁磁材料如有色金属、奥氏体不锈钢等。
研磨设备实施例一:一种用于凸度圆柱滚子滚动表面精加工的研磨设备。
该研磨设备,包括主机、滚子循环盘外系统4和如研磨盘套件实施例一所述的研磨盘套件,如图1-8(a)和图1-8(b)所示。
所述主机包括基座11、立柱12、横梁13、滑台14、上托盘15、下托盘16、轴向加载装置17和主轴装置18。
所述基座11、立柱12和横梁13组成所述主机的框架。
所述研磨盘套件2的第一研磨盘21与所述下托盘16连接,所述研磨盘套件2的第二研磨盘22与所述上托盘15连接。
所述滑台14通过所述轴向加载装置17与所述横梁13连接,所述立柱12还可以作为导向部件为所述滑台14沿所述第二研磨盘轴线223作直线运动提供导向作用。所述滑台14在所述轴向加载装置17的驱动下,在所述立柱12或其他导向部件的约束下,沿所述第二研磨盘轴线223作直线运动。
所述主轴装置18用于驱动所述第一研磨盘21或第二研磨盘22绕其轴线回转。
如图1-9(a)和图1-9(b)所示,所述滚子循环盘外系统4包括滚子收集装置41、滚子输送系统43、滚子整理机构44和滚子送进机构45。
所述滚子收集装置41设置在所述第一研磨盘的各内凹弧线沟槽出口21119处,用于收集从所述各内凹弧线沟槽出口21119离开研磨加工区域的被加工凸度圆柱滚子3。
所述滚子输送系统43用于将被加工凸度圆柱滚子3从所述滚子收集装置41处输送至所述滚子送进机构45处。
所述滚子整理机构44设置在所述滚子送进机构45的前端,用于将被加工凸度圆柱滚子的轴线31调整到所述滚子送进机构45所要求的方向。
研磨加工时,所述研磨盘套件2的回转存在两种方式;方式一、所述第一研磨盘21绕其轴线回转,所述第二研磨盘22不回转;方式二、所述第一研磨盘21不回转,所述第二研磨盘22绕其轴线回转。
所述主机存在三种构型:主机构型一用于所述研磨盘套件2以方式一回转;主机构型二用于所述研磨盘套件2以方式二回转;主机构型三既适用于所述研磨盘套件2以方式一回转,又适用于所述研磨盘套件2以方式二回转。
对应于主机构型一,如图1-8(a)所示,所述主轴装置18安装在所述基座11上,通过与其连接的所述下托盘16驱动所述第一研磨盘21绕其轴线回转;所述上托盘15与所述滑台14连接,所述第二研磨盘22和上托盘15不回转。
研磨加工时,所述第一研磨盘21绕其轴线相对于所述第二研磨盘22回转。所述第一研磨盘21的回转方向需根据所述第二研磨盘的螺旋槽2211的旋向及螺旋槽入口22118、螺旋槽出口22119的位置确定,以保证被加工凸度圆柱滚子3可以自所述第一研磨盘的各内凹弧线沟槽入口21118进入所述内凹弧线沟槽2111和自对应的各内凹弧线沟槽出口21119离开所述内凹弧线沟槽2111。所述滑台14在所述立柱12或其他导向部件的约束下,连同与其连接的上托盘15、以及与所述上托盘连接的第二研磨盘22沿所述第二研磨盘轴线223向所述第一研磨盘21趋近,并对分布于所述第一研磨盘21的各内凹弧线沟槽2111内的被加工凸度圆柱滚子3施加工作压力。
如图1-10(a)和图1-10(b)所示,所述第二研磨盘的每个螺旋槽2211均配置有一所述滚子送进机构45,所述滚子送进机构45分别安装在所述第二研磨盘的各螺旋槽入口22118处,用于在所述第一研磨盘的任一内凹弧线沟槽入口21118与所述螺旋槽入口22118发生交会时将一个被加工凸度圆柱滚子3推送进入所述内凹弧线沟槽入口21118。
所述滚子送进机构45内设置有滚子送进通道451和一段对接螺旋槽,对接螺旋槽工作面是第二研磨盘的螺旋槽工作面22111在所述滚子送进机构45内的延续,所述对接螺旋槽工作面包括在被加工凸度圆柱滚子3送进过程中与被加工凸度圆柱滚子的滚动表面 32和端面倒圆角331分别发生接触的对接螺旋槽工作面一45211和对接螺旋槽工作面二45212,所述对接螺旋槽工作面一45211和对接螺旋槽工作面二45212分别是第二研磨盘螺旋槽的工作面一221111和工作面二221112的延续,所述滚子送进通道451与所述对接螺旋槽相交。在被加工凸度圆柱滚子3进入所述内凹弧线沟槽入口21118的过程中,在所述滚子送进通道451的约束下,被加工凸度圆柱滚子3的轴线31与其进入所述入口21118处的内凹弧线沟槽2111时的轴线31保持平行,或者由接近平行过渡到平行。
研磨加工时,在所述第一研磨盘21的回转过程中,所述第二研磨盘的各螺旋槽入口22118处的滚子送进机构45内的对接螺旋槽分别依次与所述第一研磨盘的各内凹弧线沟槽入口21118交会。在任一所述螺旋槽入口22118处,在所述螺旋槽入口22118处的滚子送进机构45内的对接螺旋槽与所述第一研磨盘的任一内凹弧线沟槽入口21118发生交会时,在重力或所述滚子送进机构45的推送作用下,一个被加工凸度圆柱滚子3沿自身的径向,以其滚动表面32向所述第一研磨盘的内凹弧线沟槽工作面21111接近的方式,进入所述内凹弧线沟槽入口21118。如图1-10(b)所示,进入所述内凹弧线沟槽入口21118的被加工凸度圆柱滚子3随所述第一研磨盘21相对所述第二研磨盘22回转,随后在所述螺旋槽入口22118处的滚子送进机构45内的对接螺旋槽工作面的推挤作用下进入所述研磨加工区域。
一方面,被加工凸度圆柱滚子3在所述第二研磨盘的螺旋槽工作面22111的滑动摩擦驱动力矩的驱动下绕自身轴线31连续旋转;另一方面,如图1-9(a)、图1-10(a)和图1-10(b)所示,已经进入所述研磨加工区域的被加工凸度圆柱滚子3在所述第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿所述第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动,贯穿通过所述内凹弧线沟槽2111,并从所述第二研磨盘的各螺旋槽出口22119与所述第一研磨盘的各内凹弧线沟槽出口21119的出口交会处离开所述研磨加工区域,完成一次研磨加工。离开所述研磨加工区域的被加工凸度圆柱滚子3经由滚子收集装置41、滚子输送系统43和滚子整理机构44,原有的次序被打乱后再次在所述滚子送进机构45的作用下从所述第二研磨盘的各螺旋槽入口22118与所述第一研磨盘的各内凹弧线沟槽入口21118的入口交会处依次进入所述研磨加工区域。整个研磨过程不断循环重复,直至被加工凸度圆柱滚子的滚动表面32的表面质量、形状精度和尺寸一致性达到技术要求,精加工工序结束。
对应于主机构型二,如图1-8(b)所示,所述主轴装置18安装在所述滑台14上,通过与其连接的所述上托盘15驱动所述第二研磨盘22绕其轴线回转;所述下托盘16安装在所述基座11上,所述第一研磨盘21和下托盘16不回转。
研磨加工时,所述第二研磨盘22绕其轴线相对于所述第二研磨盘21回转。所述第二研磨盘22的回转方向需根据所述第二研磨盘的螺旋槽2211的旋向及螺旋槽入口22118、螺旋槽出口22119的位置确定,以保证被加工凸度圆柱滚子3可以自所述第一研磨盘的各内凹弧线沟槽入口21118进入所述内凹弧线沟槽2111和自对应的各内凹弧线沟槽出口21119离开所述内凹弧线沟槽2111。所述滑台14在所述立柱12或其他导向部件的约束下,连同其上的主轴装置18、与所述主轴装置18相连的上托盘15、以及与所述上托盘15相连的第二研磨盘22沿所述第二研磨盘轴线223向所述第一研磨盘21趋近,并对分布于所述第一研磨盘21的各内凹弧线沟槽2111内的被加工凸度圆柱滚子3施加工作压力。
如图1-11(a)和图1-11(b)所示,所述第一研磨盘的每个内凹弧线沟槽2111均配置有一所述滚子送进机构45,所述滚子送进机构45分别安装在所述第一研磨盘的各内凹弧线沟槽入口21118处,用于在所述第二研磨盘的任一螺旋槽入口22118与所述内凹弧线沟槽入口21118发生交会时将一个被加工凸度圆柱滚子3推送进入所述内凹弧线沟槽入口21118。
所述滚子送进机构45内设置有滚子送进通道451,在所述任一内凹弧线沟槽入口21118处,滚子送进通道定位面4511是所述内凹弧线沟槽工作面21111在所述滚子送进机构45内的延续。在被加工凸度圆柱滚子3进入所述内凹弧线沟槽入口21118的过程中,在所述滚子送进通道定位面4511的定位支撑下,被加工凸度圆柱滚子3的轴线31在所述内凹弧线沟槽2111的中心平面21112内,与所述内凹弧线沟槽基线21116相切于其滚动表面32的最大直径截圆324在其轴线31上的映射点Q 3
研磨加工时,在所述第二研磨盘22的回转过程中,所述第二研磨盘的各螺旋槽入口22118分别依次与所述第一研磨盘的各内凹弧线沟槽入口21118交会。在任一所述内凹弧线沟槽入口21118处,在所述内凹弧线沟槽入口21118与所述第二研磨盘的任一螺旋槽入口22118发生交会时,在所述滚子送进机构45的推送作用下,一个被加工凸度圆柱滚子3以其滚动表面32在所述内凹弧线沟槽工作面21111上滑动的方式,沿所述内凹弧线沟槽基线21116进入所述内凹弧线沟槽入口21118。如图1-11(b)所示,进入所述内凹弧线沟槽入口21118的被加工凸度圆柱滚子3在随后转过的所述第二研磨盘的螺旋槽入口22118处的螺旋槽工作面22111的推挤作用下进入所述研磨加工区域。
一方面,被加工凸度圆柱滚子3在所述第二研磨盘的螺旋槽工作面22111的滑动摩擦驱动力矩的驱动下绕自身轴线31连续旋转;另一方面,如图1-9(b)、图1-11(a)和图1-11(b)所示,已经进入所述研磨加工区域的被加工凸度圆柱滚子3在所述第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿所述第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动,贯穿通过所述内凹弧线沟槽2111,并从所述第二研磨盘的各螺旋槽出口22119与所述第一研磨盘的各内凹弧线沟槽出口21119的出口交会处离开所述研磨加工区域,完成一次研磨加工。离开所述研磨加工区域的被加工凸度圆柱滚子3经由滚子收集装置41、滚子输送系统43和滚子整理机构44,原有的次序被打乱后再次在所述滚子送进机构45的作用下从所述第二研磨盘的各螺旋槽入口22118与所述第一研磨盘的各内凹弧线沟槽入口21118的入口交会处依次进入所述研磨加工区域。整个研磨过程不断循环重复,直至被加工凸度圆柱滚子的滚动表面32的表面质量、形状精度和尺寸一致性达到技术要求,精加工工序结束。
对应于主机构型三,设置有两套主轴装置18,其中一套主轴装置18安装在所述基座11上,通过与其连接的所述下托盘16驱动所述第一研磨盘21绕其轴线回转,另一套主轴装置18安装在所述滑台14上,通过与其连接的所述上托盘15驱动所述第二研磨盘22绕其轴线回转;所述两套主轴装置18均设置有锁死机构,同一时间只允许所述第一研磨盘21和第二研磨盘22之一回转,而另一研磨盘处于周向锁死状态。
当研磨设备的研磨盘套件2以方式一回转进行研磨加工时,所述第一研磨盘21与第二研磨盘22的相对运动与所述主机构型一相同;所述滚子送进机构45的结构、安装位置和作用与所述主机构型一相同;被加工凸度圆柱滚子3的循环路径和研磨过程与所述主机构型一相同。
当研磨设备的研磨盘套件2以方式二回转进行研磨加工时,所述第一研磨盘21与第二研磨盘22的相对运动与所述主机构型二相同;所述滚子送进机构45的结构、安装位置和作用与所述主机构型二相同;被加工凸度圆柱滚子3的循环路径和研磨过程与所述主机构型二相同。
如图1-10(a)和图1-11(a)所示,研磨加工时,被加工凸度圆柱滚子3从所述第一研磨盘的各内凹弧线沟槽入口21118进入研磨加工区域,从所述第一研磨盘的各内凹弧线沟槽出口21119离开研磨加工区域,再从所述第一研磨盘的各内凹弧线沟槽出口21119,顺次经由所述滚子收集装置41、滚子输送系统43、滚子整理机构44和滚子送进机构45,进入所述第一研磨盘的各内凹弧线沟槽入口21118,形成被加工凸度圆柱滚子3在第一研磨盘21和第二研磨盘22之间沿所述内凹弧线沟槽基线21116的圆弧进给与经由滚子循环盘外系统4的收集、输送、整理、送进的循环。所述循环在所述研磨盘套件2之外的路径为从所述第一研磨盘的各内凹弧线沟槽出口21119,顺次经由所述滚子收集装置41、滚子输送系统43、滚子整理机构44和滚子送进机构45,进入所述第一研磨盘的各内凹弧线沟槽入口21118,定义所述路径为滚子循环盘外路径。
采用游离磨粒研磨方式时,可分别选择所述第一研磨盘的内凹弧线沟槽工作面21111的材料和所述第二研磨盘的螺旋槽工作面22111的材料,使得在研磨加工工况下所述第二研磨盘的螺旋槽工作面22111的材料与被加工凸度圆柱滚子3的材料组成的摩擦副对被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于所述第一研磨盘的内凹弧线沟槽工作面21111的材料与被加工凸度圆柱滚子3的材料组成的摩擦副对被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,从而驱动被加工凸度圆柱滚子3绕自身轴线31连续旋转。
当所述第一研磨盘的内凹弧线沟槽工作面21111的材料选择聚四氟乙烯、所述第二研磨盘的螺旋槽工作面22111的材料选择聚甲基丙烯酸甲酯时,可实现GCr15、G20CrNi2MoA、Cr4Mo4V等材质的被加工凸度圆柱滚子3绕自身轴线31连续旋转。
研磨设备实施例二:一种用于铁磁性材质(如GCr15、G20CrNi2MoA、Cr4Mo4V等)的凸度圆柱滚子滚动表面精加工的研磨设备。
该研磨设备包括主机、研磨盘套件和滚子循环盘外系统4,与研磨设备实施例一所述的研磨设备的不同之处在于:其中的研磨盘套件采用如研磨盘套件实施例二所述的研磨盘套件,并且在所述的滚子循环盘外系统4中还包括有滚子退磁装置42。
如图2-3(a)和图2-3(b)所示,所述滚子循环盘外系统4,包括滚子收集装置41、滚子退磁装置42、滚子输送系统43、滚子整理机构44和滚子送进机构45。
如图2-3(a)、图2-3(b)、图2-4和图2-5所示,所述滚子退磁装置42设置在所述滚子循环盘外路径中的所述滚子输送系统43中或滚子输送系统43之前用于对被所述第二研磨盘基体内部的环状磁性结构226的磁场磁化的铁磁性材质的被加工凸度圆柱滚子3消磁,以避免所述铁磁性材质的被加工凸度圆柱滚子3在通过滚子输送系统43或滚子整理机构44时发生团聚。
如图2-1(a)、图2-1(b)、图2-2(a)和图2-2(b)所示,研磨加工时,通过调整所述环状磁性结构226的磁场强度,以在所述第二研磨盘正面221附近形成足够强的磁场227,并使所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆柱滚子3产生足 够强的磁吸力,以使所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于所述第一研磨盘的内凹弧线沟槽工作面21111对所述铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,从而驱动所述被加工凸度圆柱滚子3绕自身轴线31连续旋转。
所述第二研磨盘基体内部的环状磁性结构226处于非工作状态时,所述第二研磨盘正面221附近的磁场227消失或减弱,所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆柱滚子3产生的磁吸力消失或减弱。
所述主机存在三种构型,对应于主机构型二,如图2-2(b)所示,所述主轴装置18安装在所述滑台14上,通过与其连接的所述上托盘15驱动所述第二研磨盘22绕其轴线回转;所述下托盘16安装在所述基座11上,所述第一研磨盘21和下托盘16不回转。用于驱动所述第二研磨盘22回转的主轴装置18的主轴上安装有导电滑环,用于给处于回转状态的所述第二研磨盘基体内部的环状磁性结构226提供电力。
本实施例实施时,可采用游离磨粒研磨方式或固结磨粒研磨方式。
当采用固结磨粒研磨时,所述第一研磨盘的内凹弧线沟槽工作面21111由固结磨粒材料制成。
采用固结磨粒研磨方式研磨铁磁性材质的被加工凸度圆柱滚子3时,通过调整所述环状磁性结构226的磁场强度,使所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆柱滚子3产生足够强的磁吸力,以使所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于所述第一研磨盘的内凹弧线沟槽工作面21111对所述铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,从而驱动所述铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31连续旋转。
采用游离磨粒研磨方式研磨铁磁性材质的被加工凸度圆柱滚子3时,调整所述环状磁性结构226的磁场强度,以增大所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩。此时所述铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31连续旋转可不受所述第一研磨盘的内凹弧线沟槽工作面21111的材料与所述第二研磨盘的螺旋槽工作面22111的材料的匹配制约。
研磨设备实施例三:一种用于凸度圆锥滚子滚动表面精加工的研磨设备。
该研磨设备包括主机、滚子循环盘外系统4和如研磨盘套件实施例三所述的研磨盘套件,如图3-8(a)和图3-8(b)所示。
所述主机包括基座11、立柱12、横梁13、滑台14、上托盘15、下托盘16、轴向加载装置17和主轴装置18。
所述基座11、立柱12和横梁13组成所述主机的框架。
所述研磨盘套件2的第一研磨盘21与所述下托盘16连接,所述研磨盘套件2的第二研磨盘22与所述上托盘15连接。
所述滑台14通过所述轴向加载装置17与所述横梁13连接,所述立柱12还可以作为导向部件为所述滑台14沿所述第二研磨盘轴线223作直线运动提供导向作用。所述滑台14在所述轴向加载装置17的驱动下,在所述立柱12或其他导向部件的约束下,沿所述第二研磨盘轴线223作直线运动。
所述主轴装置18用于驱动所述第一研磨盘21或第二研磨盘22绕其轴线回转。
如图3-9(a)和图3-9(b)所示,所述滚子循环盘外系统4包括滚子收集装置41、滚子输送系统43、滚子整理机构44和滚子送进机构45。
所述滚子收集装置41设置在所述第一研磨盘的各内凹弧线沟槽出口21119处,用于收集从所述各内凹弧线沟槽出口21119离开研磨加工区域的被加工凸度圆锥滚子3。
所述滚子输送系统43用于将被加工凸度圆锥滚子3从所述滚子收集装置41处输送至所述滚子送进机构45处。
所述滚子整理机构44设置在所述滚子送进机构45的前端,用于将被加工凸度圆锥滚子的轴线31调整到所述滚子送进机构45所要求的方向,并将被加工凸度圆锥滚子3的小头端33的指向调整为与其将要进入的第二研磨盘螺旋槽的螺旋槽工作面22111所在的螺旋槽扫描面22112的轴截面轮廓相适应的指向。
研磨加工时,所述研磨盘套件2的回转存在两种方式;方式一、所述第一研磨盘21绕其轴线回转,所述第二研磨盘22不回转;方式二、所述第一研磨盘21不回转,所述第二研磨盘22绕其轴线回转。
所述主机存在三种构型:主机构型一用于所述研磨盘套件2以方式一回转;主机构型二用于所述研磨盘套件2以方式二回转;主机构型三既适用于所述研磨盘套件2以方式一回转,又适用于所述研磨盘套件2以方式二回转。
对应于主机构型一,如图3-8(a)所示,所述主轴装置18安装在所述基座11上,通过与其连接的所述下托盘16驱动所述第一研磨盘21绕其轴线回转;所述上托盘15与所述滑台14连接,所述第二研磨盘22和上托盘15不回转。
研磨加工时,所述第一研磨盘21绕其轴线相对于所述第二研磨盘22回转。所述第一研磨盘21的回转方向需根据所述第二研磨盘的螺旋槽2211的旋向及螺旋槽入口22118、螺旋槽出口22119的位置确定,以保证被加工凸度圆锥滚子3可以自所述第一研磨盘的各内凹弧线沟槽入口21118进入所述内凹弧线沟槽2111和自对应的各内凹弧线沟槽出口21119离开所述内凹弧线沟槽2111。所述滑台14在所述立柱12或其他导向部件的约束下,连同与其连接的上托盘15、以及与所述上托盘连接的第二研磨盘22沿所述第二研磨盘轴线223向所述第一研磨盘21趋近,并对分布于所述第一研磨盘21的各内凹弧线沟槽2111内的被加工凸度圆锥滚子3施加工作压力。
如图3-10(a)和图3-10(b)所示,所述第二研磨盘的每个螺旋槽2211均配置有一所述滚子送进机构45,所述滚子送进机构45分别安装在所述第二研磨盘的各螺旋槽入口22118处,用于在所述第一研磨盘的任一内凹弧线沟槽入口21118与所述螺旋槽入口22118发生交会时将一个被加工凸度圆锥滚子3推送进入所述内凹弧线沟槽入口21118。
所述滚子送进机构45内设置有滚子送进通道451和一段对接螺旋槽,对接螺旋槽工作面是第二研磨盘的螺旋槽工作面22111在所述滚子送进机构45内的延续,所述对接螺旋槽工作面包括在被加工凸度圆锥滚子3送进过程中与被加工凸度圆锥滚子的滚动表面32和大头端球基面342(或大头端倒圆角341或小头端倒圆角331)分别发生接触的对接螺旋槽工作面一45211和对接螺旋槽工作面二45212,所述对接螺旋槽工作面一45211和对接螺旋槽工作面二45212分别是第二研磨盘螺旋槽的工作面一221111和工作面二221112的延续,所述滚子送进通道451与所述对接螺旋槽相交。在被加工凸度圆锥滚子3 进入所述内凹弧线沟槽入口21118的过程中,在所述滚子送进通道451的约束下,被加工凸度圆锥滚子3的轴线31与其进入所述入口21118处的内凹弧线沟槽2111时的轴线31保持平行,或者由接近平行过渡到平行。
研磨加工时,在所述第一研磨盘21的回转过程中,所述第二研磨盘的各螺旋槽入口22118处的滚子送进机构45内的对接螺旋槽分别依次与所述第一研磨盘的各内凹弧线沟槽入口21118交会。在任一所述螺旋槽入口22118处,在所述螺旋槽入口22118处的滚子送进机构45内的对接螺旋槽与所述第一研磨盘的任一内凹弧线沟槽入口21118发生交会时,在重力或所述滚子送进机构45的推送作用下,一个小头端的指向与所述螺旋槽工作面22111所在的螺旋槽扫描面22112的轴截面轮廓22113相适应的被加工凸度圆锥滚子3沿自身的径向,以其滚动表面32向所述第一研磨盘的内凹弧线沟槽工作面21111接近的方式,进入所述内凹弧线沟槽入口21118。进入所述内凹弧线沟槽入口21118的被加工凸度圆锥滚子3随所述第一研磨盘21相对所述第二研磨盘22回转,随后在所述螺旋槽入口22118处的滚子送进机构45内的对接螺旋槽工作面的推挤作用下进入所述研磨加工区域。
一方面,被加工凸度圆锥滚子3在所述第二研磨盘的螺旋槽工作面22111的滑动摩擦驱动力矩的驱动下绕自身轴线31连续旋转;另一方面,如图3-9(a)、图3-10(a)和图3-10(b)所示,已经进入所述研磨加工区域的被加工凸度圆锥滚子3在所述第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿所述第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动,贯穿通过所述内凹弧线沟槽2111,并从所述第二研磨盘的各螺旋槽出口22119与所述第一研磨盘的各内凹弧线沟槽出口21119的出口交会处离开所述研磨加工区域,完成一次研磨加工。离开所述研磨加工区域的被加工凸度圆锥滚子3经由滚子收集装置41、滚子输送系统43和滚子整理机构44,原有的次序被打乱后再次在所述滚子送进机构45的作用下从所述第二研磨盘的各螺旋槽入口22118与所述第一研磨盘的各内凹弧线沟槽入口21118的入口交会处依次进入所述研磨加工区域。整个研磨过程不断循环重复,直至被加工凸度圆锥滚子的滚动表面32的表面质量、形状精度和尺寸一致性达到技术要求,精加工工序结束。
对应于主机构型二,如图3-8(b)所示,所述主轴装置18安装在所述滑台14上,通过与其连接的所述上托盘15驱动所述第二研磨盘22绕其轴线回转;所述下托盘16安装在所述基座11上,所述第一研磨盘21和下托盘16不回转。
研磨加工时,所述第二研磨盘22绕其轴线相对于所述第二研磨盘21回转。所述第二研磨盘22的回转方向需根据所述第二研磨盘的螺旋槽2211的旋向及螺旋槽入口22118、螺旋槽出口22119的位置确定,以保证被加工凸度圆锥滚子3可以自所述第一研磨盘的各内凹弧线沟槽入口21118进入所述内凹弧线沟槽2111和自对应的各内凹弧线沟槽出口21119离开所述内凹弧线沟槽2111。所述滑台14在所述立柱12或其他导向部件的约束下,连同其上的主轴装置18、与所述主轴装置18相连的上托盘15、以及与所述上托盘15相连的第二研磨盘22沿所述第二研磨盘轴线向所述第一研磨盘21趋近,并对分布于所述第一研磨盘21的各内凹弧线沟槽2111内的被加工凸度圆锥滚子3施加工作压力。
如图3-11(a)和图3-11(b)所示,所述第一研磨盘的每个内凹弧线沟槽2111均配置有一所述滚子送进机构45,所述滚子送进机构45分别安装在所述第一研磨盘的各内凹弧线沟槽入口21118处,用于在所述第二研磨盘的任一螺旋槽入口22118与所述内凹弧线沟槽入 口21118发生交会时将一个被加工凸度圆锥滚子3推送进入所述内凹弧线沟槽入口21118。
所述滚子送进机构45内设置有滚子送进通道451,在所述任一内凹弧线沟槽入口21118处,滚子送进通道定位面4511是所述内凹弧线沟槽工作面21111在所述滚子送进机构45内的延续。在被加工凸度圆锥滚子3进入所述内凹弧线沟槽入口21118的过程中,在所述滚子送进通道定位面4511的定位支撑下,被加工凸度圆锥滚子3的轴线31在所述内凹弧线沟槽2111的中心平面21112内,并与所述内凹弧线沟槽基线21116相交于所述被加工凸度圆锥滚子的滚动表面32在其轴线31上的映射CD的中点Q 3,且与所述内凹弧线沟槽的基线21116在所述交点Q 3的切线211161的夹角为γ。
研磨加工时,在所述第二研磨盘22的回转过程中,所述第二研磨盘的各螺旋槽入口22118分别依次与所述第一研磨盘的各内凹弧线沟槽入口21118交会。在任一所述内凹弧线沟槽入口21118处,在所述内凹弧线沟槽入口21118与所述第二研磨盘的任一螺旋槽入口22118发生交会时,在所述滚子送进机构45的推送作用下,一个小头端的指向与在入口交会处与所述内凹弧线沟槽入口21118发生交会的螺旋槽工作面22111所在的螺旋槽扫描面22112的轴截面轮廓22113相适应的被加工凸度圆锥滚子3以其滚动表面32在所述内凹弧线沟槽工作面21111上滑动的方式,沿所述内凹弧线沟槽基线21116进入所述第一研磨盘的内凹弧线沟槽入口21118。进入所述内凹弧线沟槽入口21118的被加工凸度圆锥滚子3在随后转过的所述第二研磨盘的螺旋槽入口22118处的螺旋槽工作面22111的推挤作用下进入所述研磨加工区域。
一方面,被加工凸度圆锥滚子3在所述第二研磨盘的螺旋槽工作面22111的滑动摩擦驱动力矩的驱动下绕自身轴线31连续旋转;另一方面,如图3-9(b)、图3-11(a)和图3-11(b),已经进入所述研磨加工区域的被加工凸度圆锥滚子3在所述第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿所述第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动,贯穿通过所述内凹弧线沟槽2111,并从所述第二研磨盘的各螺旋槽出口22119与所述第一研磨盘的各内凹弧线沟槽出口21119的出口交会处离开所述研磨加工区域,完成一次研磨加工。离开所述研磨加工区域的被加工凸度圆锥滚子3经由滚子收集装置41、滚子输送系统43和滚子整理机构44,原有的次序被打乱后再次在所述滚子送进机构45的作用下从所述第二研磨盘的各螺旋槽入口22118与所述第一研磨盘的各内凹弧线沟槽入口21118的入口交会处依次进入所述研磨加工区域。整个研磨过程不断循环重复,直至被加工凸度圆锥滚子的滚动表面32的表面质量、形状精度和尺寸一致性达到技术要求,精加工工序结束。
对应于主机构型三,设置有两套主轴装置18,其中一套主轴装置18安装在所述基座11上,通过与其连接的所述下托盘16驱动所述第一研磨盘21绕其轴线回转,另一套主轴装置18安装在所述滑台14上,通过与其连接的所述上托盘15驱动所述第二研磨盘22绕其轴线回转;所述两套主轴装置18均设置有锁死机构,同一时间只允许所述第一研磨盘21和第二研磨盘22之一回转,而另一研磨盘处于周向锁死状态。
当研磨设备的研磨盘套件2以方式一回转进行研磨加工时,所述第一研磨盘21与第二研磨盘22的相对运动与所述主机构型一相同;所述滚子送进机构45的结构、安装位置和作用与所述主机构型一相同;被加工凸度圆锥滚子3的循环路径和研磨过程与所述主机构型一相同。
当研磨设备的研磨盘套件2以方式二回转进行研磨加工时,所述第一研磨盘21与第二研磨盘22的相对运动与所述主机构型二相同;所述滚子送进机构45的结构、安装位置和作用与所述主机构型二相同;被加工凸度圆锥滚子3的循环路径和研磨过程与所述主机构型二相同。
如图3-10(a)和图3-11(a)所示,研磨加工时,被加工凸度圆锥滚子3从所述第一研磨盘的各内凹弧线沟槽入口21118进入研磨加工区域,从所述第一研磨盘的各内凹弧线沟槽出口21119离开研磨加工区域,再从所述第一研磨盘的各内凹弧线沟槽出口21119,顺次经由所述滚子收集装置41、滚子输送系统43、滚子整理机构44和滚子送进机构45,进入所述第一研磨盘的各内凹弧线沟槽入口21118,形成被加工凸度圆锥滚子3在所述第一研磨盘21和第二研磨盘22之间沿所述内凹弧线沟槽基线21116的圆弧进给与经由所述滚子循环盘外系统4的收集、输送、整理、送进的循环。所述循环在所述研磨盘套件2之外的路径为从所述第一研磨盘的各内凹弧线沟槽出口21119,顺次经由所述滚子收集装置41、滚子输送系统43、滚子整理机构44和滚子送进机构45,进入所述第一研磨盘的各内凹弧线沟槽入口21118,定义所述路径为滚子循环盘外路径。
采用游离磨粒研磨方式时,可通过分别选择所述第一研磨盘的内凹弧线沟槽工作面21111的材料和所述第二研磨盘的螺旋槽工作面22111的材料,使得在研磨加工工况下所述第二研磨盘的螺旋槽工作面22111的材料与被加工凸度圆锥滚子3的材料组成的摩擦副对被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于所述第一研磨盘的内凹弧线沟槽工作面21111的材料与被加工凸度圆锥滚子3的材料组成的摩擦副对被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,从而驱动被加工凸度圆锥滚子3绕自身轴线31连续旋转。
当所述第一研磨盘的内凹弧线沟槽工作面21111的材料选择聚四氟乙烯、所述第二研磨盘的螺旋槽工作面22111的材料选择聚甲基丙烯酸甲酯时,可实现GCr15、G20CrNi2MoA、Cr4Mo4V等材质的被加工凸度圆锥滚子3绕自身轴线31连续旋转。
研磨设备实施例四:一种用于铁磁性材质(如GCr15、G20CrNi2MoA、Cr4Mo4V等)的凸度圆锥滚子滚动表面精加工的研磨设备。
该研磨设备包括主机、研磨盘套件和滚子循环盘外系统4,与研磨设备实施例三所述的研磨设备的不同之处在于:其中的研磨盘套件采用如研磨盘套件实施例四所述的研磨盘套件,并且在所述的滚子循环盘外系统4中还包括有滚子退磁装置42。
如图4-3(a)和图4-3(b)所示,所述滚子循环盘外系统4,包括滚子收集装置41、滚子退磁装置42、滚子输送系统43、滚子整理机构44和滚子送进机构45。
如图4-3(a)、图4-3(b)、图4-4和图4-5所示,所述滚子退磁装置42设置在所述滚子循环盘外路径中的所述滚子输送系统43中或滚子输送系统43之前用于对被所述第二研磨盘基体内部的环状磁性结构226的磁场磁化的铁磁性材质的被加工凸度圆锥滚子3消磁,以避免所述铁磁性材质的被加工凸度圆锥滚子3在通过滚子输送系统43或滚子整理机构44时发生团聚。
如图4-1(a)、图4-1(b)、图4-2(a)和图4-2(b)所示,研磨加工时,通过调整所述环状磁性结构226的磁场强度,以在所述第二研磨盘正面221附近形成足够强的磁场227,并使所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆锥滚子3产生足 够强的磁吸力,以使所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于所述第一研磨盘的内凹弧线沟槽工作面21111对所述铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,从而驱动所述被加工凸度圆锥滚子3绕自身轴线31连续旋转。
所述第二研磨盘基体内部的环状磁性结构226处于非工作状态时,所述第二研磨盘正面221附近的磁场227消失或减弱,所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆锥滚子3产生的磁吸力消失或减弱。
所述主机存在三种构型,对应于主机构型二,如图4-2(b)所示,所述主轴装置18安装在所述滑台14上,通过与其连接的所述上托盘15驱动所述第二研磨盘22绕其轴线回转;所述下托盘16安装在所述基座11上,所述第一研磨盘21和下托盘16不回转。用于驱动所述第二研磨盘22回转的主轴装置18的主轴上安装有导电滑环,用于给处于回转状态的所述第二研磨盘基体内部的环状磁性结构226提供电力。
本发明实施时,可采用游离磨粒研磨方式或固结磨粒研磨方式。
当采用固结磨粒研磨时,所述第一研磨盘的内凹弧线沟槽工作面21111由固结磨粒材料制成。
采用固结磨粒研磨方式研磨铁磁性材质的被加工凸度圆锥滚子3时,通过调整所述环状磁性结构226的磁场强度,使所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆锥滚子3产生足够强的磁吸力,以使所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于所述第一研磨盘的内凹弧线沟槽工作面21111对所述铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,从而驱动所述铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31连续旋转。
采用游离磨粒研磨方式研磨铁磁性材质的被加工凸度圆锥滚子3时,调整所述环状磁性结构226的磁场强度,以增大所述第二研磨盘的螺旋槽工作面22111对所述铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩。此时所述铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31连续旋转可不受所述第一研磨盘的内凹弧线沟槽工作面21111的材料与所述第二研磨盘的螺旋槽工作面22111的材料的匹配制约。
研磨方法实施例一:一种用于凸度圆柱滚子滚动表面精加工的研磨方法。
该研磨方法采用如研磨设备实施例一所述的研磨设备,下面结合附图1-1至图1-11(b)对本实施例研磨方法进行详细描述,该研磨方法包括以下步骤:
步骤一、第二研磨盘22沿其轴线向第一研磨盘21趋近,至第一研磨盘正面上连接相邻内凹弧线沟槽的过渡面2112与第二研磨盘正面上连接相邻螺旋槽的过渡面2212尽可能接近、但研磨加工区域内的被加工凸度圆柱滚子3尚未同时与第一研磨盘的内凹弧线沟槽工作面21111发生十字交叉线接触和与第二研磨盘螺旋槽的工作面一221111和工作面二221112发生线接触,即第一研磨盘的内凹弧线沟槽工作面21111与第二研磨盘的螺旋槽工作面22111合围而成的每一个研磨加工区域的空间能够且仅能够容纳一个被加工凸度圆柱滚子3。
步骤二、对应于研磨盘套件2的回转方式一,驱动第一研磨盘21绕其轴线相对于第二研磨盘22低速回转;对应于研磨盘套件2的回转方式二,第二研磨盘22绕其轴线相对 于第一研磨盘21低速回转。根据第一研磨盘21和第二研磨盘22的外径尺寸回转速度为1~10rpm,第一研磨盘21和第二研磨盘22的回转方向需根据第二研磨盘的螺旋槽2211的旋向及螺旋槽入口22118、螺旋槽出口22119的位置确定,以保证被加工凸度圆柱滚子3可以自第一研磨盘的各内凹弧线沟槽入口21118进入内凹弧线沟槽2111和自对应的各内凹弧线沟槽出口的21119离开内凹弧线沟槽2111。
步骤三、启动滚子输送系统43、滚子整理机构44和滚子送进机构45;调整滚子送进机构45的送进速度使之与第一研磨盘21和第二研磨盘22的相对回转速度相匹配,以保证当第二研磨盘的各螺旋槽入口22118与第一研磨盘的各内凹弧线沟槽入口21118发生交会时,在滚子送进机构45的作用下将分别有一个被加工凸度圆柱滚子3进入螺旋槽入口22118与内凹弧线沟槽入口21118的每一入口交会处;调整滚子输送系统43的输送速度和滚子整理机构44的整理速度使之与滚子送进机构45的送进速度相匹配,使被加工凸度圆柱滚子3经由滚子输送系统43和滚子整理机构44,在滚子送进机构45的作用下及时进入各入口交会处;进入入口交会处的被加工凸度圆柱滚子3随后因第一研磨盘21和第二研磨盘22的相对回转在第二研磨盘的螺旋槽入口22118处的螺旋槽工作面22111的推挤作用下进入研磨加工区域;进入研磨加工区域的被加工凸度圆柱滚子3在第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动,贯穿通过内凹弧线沟槽2111,并从第二研磨盘的各螺旋槽出口22119与第一研磨盘的各内凹弧线沟槽出口21119的出口交会处离开研磨加工区域;离开研磨加工区域的被加工凸度圆柱滚子3经由滚子收集装置41、滚子输送系统43和滚子整理机构44,原有的次序被打乱后再次在滚子送进机构45的作用下依次进入入口交会处;从而建立被加工凸度圆柱滚子3在第一研磨盘21和第二研磨盘22之间沿内凹弧线沟槽基线21116的圆弧进给与经由滚子循环盘外系统4的收集、输送、整理、送进的循环。
步骤四、调整第一研磨盘21与第二研磨盘22的相对回转速度至相对工作回转速度,根据第一研磨盘21和第二研磨盘22的外径尺寸相对工作回转速度为5~60rpm,调整滚子送进机构45的送进速度至工作送进速度使之与第一研磨盘21和第二研磨盘22的相对工作回转速度相匹配,调整滚子输送系统43的输送速度和滚子整理机构44的整理速度,使得上述滚子循环盘外系统4中滚子收集装置41、滚子输送系统43、滚子整理机构44和滚子送进机构45各处的被加工凸度圆柱滚子3的存量匹配、循环顺畅有序。
步骤五、对研磨加工区域加注研磨液。
步骤六、第二研磨盘22沿其轴线向第一研磨盘21进一步趋近,使得研磨加工区域内的被加工凸度圆柱滚子的滚动表面32分别与第一研磨盘的内凹弧线沟槽工作面21111发生十字交叉线接触和与第二研磨盘螺旋槽的工作面一221111发生线接触、被加工凸度圆柱滚子的一端面倒圆角与第二研磨盘螺旋槽的工作面二221112发生线接触,并对分布于研磨加工区域内的每个被加工凸度圆柱滚子3施加初始工作压力,根据被加工凸度圆柱滚子3的直径尺寸初始工作压力平均为0.5~2N。第二研磨盘的螺旋槽工作面22111对被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于第一研磨盘的内凹弧线沟槽工作面21111对被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,被加工凸度圆柱滚子3绕自身轴线31作连续旋转运动;与此同时,被加工凸度圆柱滚子3在第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿第一研磨盘的内凹弧线 沟槽基线21116作圆弧进给运动。被加工凸度圆柱滚子滚动表面32开始经受第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘螺旋槽的工作面一221111的研磨加工。
步骤七、随着研磨加工过程稳定运行,对分布于研磨加工区域内的每个被加工凸度圆柱滚子3逐渐增加工作压力至正常工作压力,根据被加工凸度圆柱滚子3的直径尺寸正常工作压力平均为2~50N。被加工凸度圆柱滚子3保持步骤六的与第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘的螺旋槽工作面22111的接触关系、绕自身轴线31的连续旋转运动以及沿第一研磨盘的内凹弧线沟槽基线21116的圆弧进给运动,其滚动表面32继续经受第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘螺旋槽的工作面一221111的研磨加工。
步骤八、经过一段时间的研磨加工后,对被加工凸度圆柱滚子3进行抽检;当被抽检的被加工凸度圆柱滚子的滚动表面32的表面质量、形状精度和尺寸一致性尚未达到技术要求时,继续本步骤的研磨加工;当被抽检的被加工凸度圆柱滚子的滚动表面32的表面质量、形状精度和尺寸一致性达到技术要求时,进入步骤九。
步骤九、逐渐减小工作压力并最终至零;停止滚子送进机构45、滚子输送系统43和滚子整理机构44运行,调整第一研磨盘21与第二研磨盘22的相对转速至零;停止对研磨加工区域加注研磨液;驱动第二研磨盘22沿其轴线退回到非工作位置。收集循环中各处的被加工凸度圆柱滚子3,至此,研磨加工过程结束。
可以理解到,上述的步骤及顺序不仅可以进行如实例所述的组合,而且可以进行其它的组合使用,这不超出本发明的范围。
由于针对特定被加工凸度圆柱滚子3的参数设计加工的所述第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘的螺旋槽工作面22111不可避免地存在制造误差,且所述第一研磨盘21和第二研磨盘22在研磨设备上安装时也会存在安装误差。这些制造误差和安装误差可能会导致研磨加工时被加工凸度圆柱滚子3与所述第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘的螺旋槽工作面22111的接触状态与理想情况存在差异。
为了减小此种差异,在所述第一研磨盘21和第二研磨盘22首次使用前,推荐利用相同几何参数的被加工凸度圆柱滚子3对所述第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘的螺旋槽工作面22111进行磨合。磨合方法与被加工凸度圆柱滚子3的研磨方法相同;对于步骤八,对参与磨合的被加工凸度圆柱滚子3进行抽检,当被抽检的被加工凸度圆柱滚子的滚动表面32的表面质量、形状精度和尺寸一致性达到技术要求时,磨合过程进入步骤九;否则,继续步骤八。
本实施例研磨方法不限用于凸度圆柱滚子滚动表面精加工,还可用于球面滚子等具有凸度圆柱滚子圆弧素线或近似圆弧素线特征的回转体零件的外径表面精加工,这不超出本发明的范围。
研磨方法实施例二:一种用于铁磁性材质(如GCr15、G20CrNi2MoA、Cr4Mo4V等)的凸度圆柱滚子滚动表面精加工的研磨方法。
该研磨方法采用如研磨设备实施例二所述的研磨设备,该研磨设备中的研磨盘套件的第二研磨盘22内部设置有环状磁性结构226,该研磨设备中的滚子循环盘外系统4还包括有滚子退磁装置42,滚子退磁装置42设置在滚子盘外循环路径中的滚子输送系统43中或滚子输送系统43之前用于对被第二研磨盘内置的环状磁性结构226的磁场磁化的铁 磁性材质的被加工凸度圆柱滚子消磁,以避免铁磁性材质的被加工凸度圆柱滚子在通过滚子输送系统43或滚子整理机构44时发生团聚,与研磨方法实施例一所述的研磨过程的不同之处在于:
步骤三中同时启动滚子退磁装置42。
步骤六为:第二研磨盘基体内部的环状磁性结构226进入工作状态;第二研磨盘22沿其轴线向第一研磨盘21进一步趋近,使得研磨加工区域内的被加工凸度圆柱滚子的滚动表面32分别与第一研磨盘的内凹弧线沟槽工作面21111发生十字交叉线接触和与第二研磨盘螺旋槽的工作面一221111发生线接触、被加工凸度圆柱滚子的一端面倒圆角与第二研磨盘螺旋槽的工作面二221112发生线接触,并对分布于研磨加工区域内的每个被加工凸度圆柱滚子3施加初始工作压力,根据被加工凸度圆柱滚子3的直径尺寸初始工作压力平均为0.5~2N。调整环状磁性结构226的磁场强度,使得第二研磨盘的螺旋槽工作面22111对铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于第一研磨盘的内凹弧线沟槽工作面21111对铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,从而驱动铁磁性材质的被加工凸度圆柱滚子3绕自身轴线31作连续旋转运动;与此同时,被加工凸度圆柱滚子3在第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动。被加工凸度圆柱滚子的滚动表面32开始经受第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘螺旋槽的工作面一221111的研磨加工。
步骤九为:逐渐减小工作压力并最终至零;停止滚子送进机构45、滚子输送系统43和滚子整理机构44运行,调整第一研磨盘21与第二研磨盘22的相对转速至零;环状磁性结构226切换至非工作状态,停止滚子退磁装置42运行;停止对研磨加工区域加注研磨液;驱动第二研磨盘22沿其轴线退回到非工作位置。收集循环中各处的被加工凸度圆柱滚子3,至此,研磨加工过程结束。
本实施例研磨方法不限用于铁磁性材质的凸度圆柱滚子滚动表面精加工,还可用于球面滚子等具有凸度圆柱滚子圆弧素线或近似圆弧素线特征的铁磁性材质的回转体零件的外径表面精加工,这不超出本发明的范围。
研磨方法实施例三:一种用于凸度圆锥滚子滚动表面精加工的研磨方法。
该研磨方法采用如研磨设备实施例三所述的研磨设备,下面结合附图3-1至图3-11(b)对本实施例研磨方法进行详细描述,该研磨方法包括以下步骤:
步骤一、第二研磨盘22沿其轴线向第一研磨盘21趋近,至第一研磨盘正面上连接相邻内凹弧线沟槽的过渡面2112与第二研磨盘正面上连接相邻螺旋槽的过渡面2212尽可能接近、但研磨加工区域内的被加工凸度圆锥滚子3尚未同时与第一研磨盘的内凹弧线沟槽工作面21111的两对称侧面、第二研磨盘螺旋槽的工作面一221111和工作面二221112发生线接触,即第一研磨盘的内凹弧线沟槽工作面21111与第二研磨盘的螺旋槽工作面合围而成的每一个研磨加工区域的空间能够且仅能够容纳一个被加工凸度圆锥滚子3。
步骤二、对应于研磨盘套件2的回转方式一,驱动第一研磨盘21绕其轴线相对于第二研磨盘22低速回转;对应于研磨盘套件2的回转方式二,第二研磨盘22绕其轴线223相对于第一研磨盘21低速回转。根据第一研磨盘21和第二研磨盘22的外径尺寸回转速度为1~10rpm,第一研磨盘21和第二研磨盘22的回转方向需根据第二研磨盘的螺旋槽 2211的旋向及螺旋槽入口22118、螺旋槽出口22119的位置确定,以保证被加工凸度圆锥滚子3可以自第一研磨盘的各内凹弧线沟槽入口21118进入内凹弧线沟槽2111和自对应的各内凹弧线沟槽出口21119离开内凹弧线沟槽2111。
步骤三、启动滚子输送系统43、滚子整理机构44和滚子送进机构45;调整滚子送进机构45的送进速度使之与第一研磨盘21和第二研磨盘22的相对回转速度相匹配,以保证当第二研磨盘的各螺旋槽入口22118与第一研磨盘的各内凹弧线沟槽入口21118发生交会时,在滚子送进机构45的作用下将分别有一个被加工凸度圆锥滚子3进入螺旋槽入口22118与内凹弧线沟槽入口21118的每一入口交会处;调整滚子输送系统43的输送速度和滚子整理机构44的整理速度使之与滚子送进机构45的送进速度相匹配,使被加工凸度圆锥滚子3经由滚子输送系统43和滚子整理机构44,在滚子送进机构45的作用下及时进入各入口交会处;进入入口交会处的被加工凸度圆锥滚子3随后因第一研磨盘21和第二研磨盘22的相对回转在第二研磨盘的螺旋槽入口22118处的螺旋槽工作面22111的推挤作用下进入研磨加工区域;进入研磨加工区域的被加工凸度圆锥滚子3在第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动,贯穿通过内凹弧线沟槽2111,并从第二研磨盘的各螺旋槽出口22119与第一研磨盘的各内凹弧线沟槽出口21119的出口交会处离开研磨加工区域;离开研磨加工区域的被加工凸度圆锥滚子3经由滚子收集装置41、滚子输送系统43和滚子整理机构44,原有的次序被打乱后再次在滚子送进机构45的作用下依次进入入口交会处;从而建立被加工凸度圆锥滚子3在第一研磨盘21和第二研磨盘22之间沿内凹弧线沟槽基线21116的圆弧进给经由滚子循环盘外系统4的收集、输送、整理、送进的循环。
步骤四、调整第一研磨盘21与第二研磨盘22的相对回转速度至相对工作回转速度,根据第一研磨盘21和第二研磨盘22的外径尺寸相对工作回转速度为5~60rpm,调整滚子送进机构45的送进速度至工作送进速度使之与第一研磨盘21和第二研磨盘22的相对工作回转速度相匹配,调整滚子输送系统43的输送速度和滚子整理机构44的整理速度,使得上述滚子循环盘外系统4中滚子收集装置41、滚子输送系统43、滚子整理机构44和滚子送进机构45各处的被加工凸度圆锥滚子3的存量匹配、循环顺畅有序。
步骤五、对研磨加工区域加注研磨液。
步骤六、第二研磨盘22沿其轴线向第一研磨盘21进一步趋近,使得研磨加工区域内的被加工凸度圆锥滚子的滚动表面32分别与第一研磨盘的内凹弧线沟槽工作面21111的两对称侧面和第二研磨盘螺旋槽的工作面一221111发生线接触、被加工凸度圆锥滚子的大头端球基面342(或大头端倒圆角341或小头端倒圆角331)与第二研磨盘螺旋槽的工作面二221112发生线接触,并对分布于研磨加工区域内的每个被加工凸度圆锥滚子3施加初始工作压力,根据被加工凸度圆锥滚子3的直径尺寸初始工作压力平均为0.5~2N。第二研磨盘的螺旋槽工作面22111对被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于第一研磨盘的内凹弧线沟槽工作面21111对被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,被加工凸度圆锥滚子3绕自身轴线31作连续旋转运动;与此同时,被加工凸度圆锥滚子3在第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动。被加工凸度圆锥滚子的滚动表面32开始经受第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘螺旋 槽的工作面一221111的研磨加工。
步骤七、随着研磨加工过程稳定运行,对分布于研磨加工区域内的每个被加工凸度圆锥滚子3逐渐增加工作压力至正常工作压力,根据被加工凸度圆锥滚子3的直径尺寸正常工作压力平均为2~50N。被加工凸度圆锥滚子3保持步骤六的与第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘的螺旋槽工作面22111的线接触关系、绕自身轴线31的连续旋转运动以及沿第一研磨盘的内凹弧线沟槽基线21116的圆弧进给运动,其滚动表面32继续经受第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘螺旋槽的工作面一221111的研磨加工。
步骤八、经过一段时间的研磨加工后,对被加工凸度圆锥滚子3进行抽检;当被抽检的被加工凸度圆锥滚子的滚动表面32的表面质量、形状精度和尺寸一致性尚未达到技术要求时,继续本步骤的研磨加工;当被抽检的被加工凸度圆锥滚子的滚动表面32的表面质量、形状精度和尺寸一致性达到技术要求时,进入步骤九。
步骤九、逐渐减小工作压力并最终至零;停止滚子送进机构45、滚子输送系统43和滚子整理机构44运行,调整第一研磨盘21与第二研磨盘22的相对转速至零;停止对研磨加工区域加注研磨液;驱动第二研磨盘22沿其轴线退回到非工作位置。收集循环中各处的被加工凸度圆锥滚子3,至此,研磨加工过程结束。
可以理解到,上述的步骤及顺序不仅可以进行如实例所述的组合,而且可以进行其它的组合使用,这不超出本发明的范围。
由于针对特定被加工凸度圆锥滚子3的参数设计加工的所述第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘的螺旋槽工作面22111不可避免地存在制造误差,且所述第一研磨盘21和第二研磨盘22在研磨设备上安装时也会存在安装误差。这些制造误差和安装误差可能会导致研磨加工时被加工凸度圆锥滚子3与所述第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘的螺旋槽工作面22111的接触状态与理想情况存在差异。
为了减小此种差异,在所述第一研磨盘21和第二研磨盘22首次使用前,推荐利用相同几何参数的被加工凸度圆锥滚子3对所述第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘的螺旋槽工作面22111进行磨合。磨合方法与被加工凸度圆锥滚子3的研磨方法相同;对于步骤八,对参与磨合的被加工凸度圆锥滚子3进行抽检,当被抽检的被加工凸度圆锥滚子的滚动表面32的表面质量、形状精度和尺寸一致性达到技术要求时,磨合过程进入步骤九;否则,继续步骤八。
研磨方法实施例四:一种用于铁磁性材质(如GCr15、G20CrNi2MoA、Cr4Mo4V等)的凸度圆锥滚子滚动表面精加工的研磨方法。
该研磨方法采用如研磨设备实施例四所述的研磨设备,该研磨设备中的研磨盘套件的第二研磨盘22内部设置有环状磁性结构226,该研磨设备中的滚子循环盘外系统4还包括有滚子退磁装置42,滚子退磁装置42设置在滚子盘外循环路径中的滚子输送系统43中或滚子输送系统43之前用于对被第二研磨盘内置的环状磁性结构226的磁场磁化的铁磁性材质的被加工凸度圆锥滚子消磁,以避免铁磁性材质的被加工凸度圆锥滚子在通过滚子输送系统43或滚子整理机构44时发生团聚,与研磨方法实施例三所述的研磨过程的不同之处在于:
步骤三中同时启动滚子退磁装置42。
步骤六为:第二研磨盘基体内部的环状磁性结构226进入工作状态;第二研磨盘22沿其轴线向第一研磨盘21进一步趋近,使得研磨加工区域内的被加工凸度圆锥滚子的滚动表面32分别与第一研磨盘的内凹弧线沟槽工作面21111发生十字交叉线接触和与第二研磨盘螺旋槽的工作面一221111发生线接触、被加工凸度圆锥滚子的一端面倒圆角与第二研磨盘螺旋槽的工作面二221112发生线接触,并对分布于研磨加工区域内的每个被加工凸度圆锥滚子3施加初始工作压力,根据被加工凸度圆锥滚子3的直径尺寸初始工作压力平均为0.5~2N。调整环状磁性结构226的磁场强度,使得第二研磨盘的螺旋槽工作面22111对铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦驱动力矩大于第一研磨盘的内凹弧线沟槽工作面21111对铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31旋转所产生的滑动摩擦阻力矩,从而驱动铁磁性材质的被加工凸度圆锥滚子3绕自身轴线31作连续旋转运动;与此同时,被加工凸度圆锥滚子3在第二研磨盘的螺旋槽工作面22111的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线21116作圆弧进给运动。被加工凸度圆锥滚子的滚动表面32开始经受第一研磨盘的内凹弧线沟槽工作面21111和第二研磨盘螺旋槽的工作面一221111的研磨加工。
步骤九为:逐渐减小工作压力并最终至零;停止滚子送进机构45、滚子输送系统43和滚子整理机构44运行,调整第一研磨盘21与第二研磨盘22的相对转速至零;环状磁性结构226切换至非工作状态,停止滚子退磁装置42运行;停止对研磨加工区域加注研磨液;驱动第二研磨盘22沿其轴线退回到非工作位置。收集循环中各处的被加工凸度圆锥滚子3,至此,研磨加工过程结束。

Claims (9)

  1. 一种用于凸度滚子的滚动表面精加工的研磨盘套件,其特征在于,包括一对同轴的第一研磨盘(21)和第二研磨盘(22),第一研磨盘正面(211)与第二研磨盘正面(221)相对布置;
    所述第一研磨盘正面(211)包括一组放射状分布的内凹弧线沟槽(2111)和连接相邻内凹弧线沟槽的过渡面(2112);所述第二研磨盘正面(221)包括一条或多条螺旋槽(2211)和连接相邻螺旋槽的过渡面(2212);
    研磨加工时,对应所述第二研磨盘的螺旋槽(2211)与所述第一研磨盘的内凹弧线沟槽(2111)的每一交会处,在所述第一研磨盘的内凹弧线沟槽(2111)内沿所述内凹弧线沟槽分布一个被加工的凸度滚子(3);所述凸度滚子(3)是凸度圆柱滚子或是凸度圆锥滚子;对应每一交会处,所述第一研磨盘的内凹弧线沟槽工作面(21111)与第二研磨盘的螺旋槽工作面(22111)合围而成的区域为研磨加工区域;被加工凸度滚子(3)的滚动表面(32)分别与所述内凹弧线沟槽工作面(21111)和螺旋槽工作面(22111)发生接触;在所述螺旋槽工作面(22111)的摩擦驱动和推挤作用下,被加工凸度滚子(3)在绕自身轴线(31)旋转的同时沿所述内凹弧线沟槽(2111)移动,被加工凸度滚子的滚动表面(32)与所述内凹弧线沟槽工作面(21111)发生相对滑动,从而实现对被加工凸度滚子的滚动表面(32)的研磨加工。
  2. 根据权利要求1所述的研磨盘套件,其特征在于,所述内凹弧线沟槽工作面(21111)在内凹弧线沟槽扫描面(21113)上,所述内凹弧线沟槽扫描面(21113)为等截面扫描面;所述内凹弧线沟槽扫描面(21113)的扫描路径为圆弧,所述内凹弧线沟槽扫描面(21113)的母线在内凹弧线沟槽法截面(21114)内;所述扫描路径为内凹弧线沟槽基线(21116),所有所述内凹弧线沟槽基线(21116)分布于一内凹圆弧回转面上,所述内凹圆弧回转面为第一研磨盘基面(214),所述第一研磨盘基面(214)的轴线为第一研磨盘轴线(213);在第一研磨盘轴截面(215)内,第一研磨盘基面的轴截面截线(2141)为曲率半径为R 11的圆弧,所述第一研磨盘基面的轴截面截线(2141)的曲率中心O 1所在的、圆心位于所述第一研磨盘轴线(213)上的圆周为第一研磨盘基圆(2140),所述第一研磨盘基圆(2140)的曲率半径为R 12;当R 12=0时,所述第一研磨盘基面(214)为一曲率半径为R 11的内凹球面;
    对于凸度圆柱滚子,在所述内凹弧线沟槽法截面(21114)内,所述内凹弧线沟槽扫描面(21113)的法截面轮廓(211131)为一曲率半径与被加工凸度圆柱滚子的滚动表面(32)的最大直径截圆(324)的曲率半径相等的圆弧;所述内凹弧线沟槽基线(21116)过所述法截面轮廓(211131)的曲率中心;所述内凹弧线沟槽基线(21116)在第一研磨盘轴截面(215)内,包含所述内凹弧线沟槽基线(21116)的第一研磨盘轴截面(215)为所述内凹弧线沟槽工作面(21111)的中心平面(21112);研磨加工时,被加工凸度圆柱滚子的轴线(31)在所述内凹弧线沟槽工作面的中心平面(21112)内,被加工凸度圆柱滚子滚动表面(32)与所述内凹弧线沟槽工作面(21111)发生十字交叉线接触,被加工凸度圆柱滚子轴线(31)与所述内凹弧线沟槽的基线(21116)相切于所述被加工凸度圆柱滚子滚动表面(32)的最大直径截圆(324)在其轴线(31)上的映射点(Q 3);当所述内凹弧线沟槽工作面(21111)在其中心平面(21112)处连续时,所述内凹弧线沟槽工作面(21111)所对应的被加工凸度圆柱滚子的滚动表面(32)的凸度曲线为曲率半径为R c的圆弧,R c=R 11+R 0,其中R 0为所述被加工凸度圆柱滚子 的滚动表面(32)的最大直径截圆(324)的曲率半径;
    对于凸度圆锥滚子,在所述内凹弧线沟槽法截面(21114)内,所述内凹弧线沟槽扫描面(21113)的法截面轮廓(211131)为两条对称的直线段,所述两条直线段之间的夹角为2θ;所述内凹弧线沟槽工作面(21111)的中心平面(21112)为包含所述内凹弧线沟槽扫描面(21113)的法截面轮廓对称线(211132)和所述内凹弧线沟槽基线(21116)的平面;所述内凹弧线沟槽基线(21116)在第一研磨盘轴截面(215)内,所述内凹弧线沟槽工作面(21111)的中心平面(21112)与包含所述内凹弧线沟槽基线(21116)的所述第一研磨盘轴截面(215)重合;研磨加工时被加工凸度圆锥滚子的轴线(31)在所述内凹弧线沟槽工作面(21111)的中心平面(21112)内,所述被加工凸度圆锥滚子的滚动表面(32)与所述内凹弧线沟槽工作面(21111)的两对称侧面分别发生线接触;所述内凹弧线沟槽基线(21116)与被加工凸度圆锥滚子的轴线(31)相交,交点位于被加工凸度圆锥滚子的滚动表面(32)在其轴线(31)上的映射(CD)的中点(Q 3);所述被加工凸度圆锥滚子(3)的半锥角为
    Figure PCTCN2019097910-appb-100001
    所述被加工凸度圆锥滚子(3)的轴线(31)与所述内凹弧线沟槽基线(21116)在所述交点(Q 3)的切线(211161)的夹角为γ,且:
    Figure PCTCN2019097910-appb-100002
    组成所述内凹弧线沟槽扫描面的法截面轮廓(211131)的两条对称直线段所对应的被加工凸度圆锥滚子的滚动表面(32)的凸度曲线近似为圆弧;
    所述螺旋槽工作面(22111)包括工作面一(221111)和工作面二(221112);
    凸度圆柱滚子研磨加工时,在所述第一研磨盘的内凹弧线沟槽工作面(21111)的约束下,被加工凸度圆柱滚子的滚动表面(32)与所述工作面一(221111)发生线接触,被加工凸度圆柱滚子的一端面倒圆角(332)与所述工作面二(221112)发生线接触;凸度圆锥滚子研磨加工时,在所述第一研磨盘的内凹弧线沟槽工作面(21111)的约束下,被加工凸度圆锥滚子的滚动表面(32)与所述工作面一(221111)发生线接触,被加工凸度圆锥滚子的大头端球基面(342)或大头端倒圆角(341)或小头端倒圆角(331)与所述工作面二(221112)发生线接触;
    所述工作面一(221111)和工作面二(221112)分别在扫描面一(221121)和扫描面二(221122)上,所述扫描面一(221121)和扫描面二(221122)均为等截面扫描面;
    对于凸度圆柱滚子,所述扫描面一(221121)和扫描面二(221122)的扫描路径均为过所述被加工凸度圆柱滚子滚动表面(32)的最大直径截圆(324)在其轴线(31)上的映射点(Q 3)、且分布于一外凸圆弧回转面上的圆弧回转面等角螺旋线;对于凸度圆锥滚子,所述扫描面一(221121)和扫描面二(221122)的扫描路径均为过所述被加工凸度圆锥滚子的滚动表面(32)在其轴线(31)上的映射(CD)的中点(Q 3)、且分布于一外凸圆弧回转面上的圆弧回转面等角螺旋线;
    所述圆弧回转面等角螺旋线为螺旋槽基线(22116),所述外凸圆弧回转面为第二研磨盘基面(224),所述第二研磨盘基面(224)的轴线为第二研磨盘轴线(223);所述扫描面一(221121)和扫描面二(221122)的母线均在第二研磨盘轴截面(225)内;
    在所述第二研磨盘轴截面(225)内,第二研磨盘基面的轴截面截线(2241)为曲率半径为R 21的圆弧;所述第二研磨盘基面的轴截面截线(2241)的曲率中心O 2所在的、圆心位于所述第二研磨盘轴线(223)上的圆周为第二研磨盘基圆(2240),所述第二研磨盘基圆(2240)的曲率半径为R 22;当R 22=0时,所述第二研磨盘基面(224)为一曲率半径为R 21的外凸球面;
    第二研磨盘基面的轴截面截线(2241)的曲率半径R 21等于第一研磨盘基面的轴截面截线(2141)的曲率半径R 11,第二研磨盘基圆(2240)的曲率半径R 22等于第一研磨盘基圆(2140)的曲率半径R 12;所述第一研磨盘基面的轴截面截线(2141)和第二研磨盘基面的轴截面截线(2241)与各自的曲率中心或者均在所述第一研磨盘轴线(213)和第二研磨盘轴线(223)的同侧,或者均在所述第一研磨盘轴线(213)和第二研磨盘轴线(223)的两侧。
  3. 根据权利要求2所述的研磨盘套件,第二研磨盘基体(220)由导磁材料制造,在所述第二研磨盘基体(220)的内部嵌装有环状磁性结构(226),在所述第二研磨盘正面(221)上嵌入有一组圆环带状或螺旋带状的非导磁材料(228);所述第二研磨盘基体(220)的导磁材料和嵌入的圆环带状或螺旋带状的非导磁材料(228)在所述第二研磨盘正面(221)上紧密相连并共同组成所述第二研磨盘正面(221)。
  4. 一种用于凸度滚子的滚动表面精加工的研磨设备,其特征在于,包括主机、滚子循环盘外系统(4)和如权利要求2所述的研磨盘套件(2);
    所述主机包括基座(11)、立柱(12)、横梁(13)、滑台(14)、上托盘(15)、下托盘(16)、轴向加载装置(17)和主轴装置(18);
    所述基座(11)、立柱(12)和横梁(13)组成所述主机的框架;
    所述研磨盘套件(2)的第一研磨盘(21)与所述下托盘(16)连接,所述研磨盘套件(2)的第二研磨盘(22)与所述上托盘(15)连接;
    所述滑台(14)通过所述轴向加载装置(17)与所述横梁(13)连接,所述立柱(12)还可以作为导向部件为所述滑台(14)沿所述第二研磨盘轴线(223)作直线运动提供导向作用;所述滑台(14)在所述轴向加载装置(17)的驱动下,在所述立柱(12)或其他导向部件的约束下,沿所述第二研磨盘轴线(223)作直线运动;
    所述主轴装置(18)用于驱动所述第一研磨盘(21)或第二研磨盘(22)绕其轴线回转;
    所述滚子循环盘外系统(4)包括滚子收集装置(41)、滚子输送系统(43)、滚子整理机构(44)和滚子送进机构(45);
    所述滚子收集装置(41)设置在所述第一研磨盘的各内凹弧线沟槽出口(21119)处,用于收集从所述各内凹弧线沟槽出口(21119)离开由所述内凹弧线沟工作面(21111)与螺旋槽工作面(22111)合围而成的研磨加工区域的被加工凸度滚子(3);
    所述滚子输送系统(43)用于将被加工凸度滚子(3)从所述滚子收集装置(41)处输送至所述滚子送进机构(45)处;
    所述滚子整理机构(44)设置在所述滚子送进机构(45)的前端;对于凸度圆柱滚子,所述滚子整理机构(44)用于将被加工凸度圆柱滚子的轴线(31)调整到所述滚子送进机构(45)所要求的方向;对于凸度圆锥滚子,所述滚子整理机构(44)用于将被加工凸度圆锥滚子的轴线(31)调整到所述滚子送进机构(45)所要求的方向,并将被加工凸度圆锥滚子的小头端的指向调整为与其将要进入的第二研磨盘螺旋槽的螺旋槽工作面(22111)所在的螺旋槽扫描面(22112)的轴截面轮廓相适应的指向;
    研磨加工时,所述研磨盘套件(2)的回转存在两种方式;方式一、所述第一研磨盘(21)绕其轴线回转,所述第二研磨盘(22)不回转;方式二、所述第一研磨盘(21)不回转,所述第二研磨盘(22)绕其轴线回转;
    所述主机存在三种构型:主机构型一用于所述研磨盘套件(2)以方式一回转;主机构型二用于所述研磨盘套件(2)以方式二回转;主机构型三既适用于所述研磨盘套件(2)以方式一回转,又适用于所述研磨盘套件(2)以方式二回转;
    对应于主机构型一:
    所述主轴装置(18)安装在所述基座(11)上,通过与其连接的所述下托盘(16)驱动所述第一研磨盘(21)绕其轴线回转;所述上托盘(15)与所述滑台(14)连接;
    研磨加工时,所述第一研磨盘(21)绕其轴线回转;所述滑台(14)在所述立柱(12)或其他导向部件的约束下,连同与其连接的上托盘(15)、以及与所述上托盘连接的第二研磨盘(22)沿所述第二研磨盘轴线(223)向所述第一研磨盘(21)趋近,并对分布于所述第一研磨盘(21)的各内凹弧线沟槽(2111)内的被加工凸度滚子(3)施加工作压力;
    所述滚子送进机构(45)分别安装在所述第二研磨盘的各螺旋槽入口(22118)处,用于在所述第一研磨盘的任一内凹弧线沟槽入口(21118)与所述螺旋槽入口(22118)发生交会时将一个被加工凸度滚子(3)推送进入所述内凹弧线沟槽入口(21118);
    对应于主机构型二:
    所述主轴装置(18)安装在所述滑台(14)上,通过与其连接的所述上托盘(15)驱动所述第二研磨盘(22)绕其轴线回转;所述下托盘(16)安装在所述基座(11)上;
    研磨加工时,所述第二研磨盘(22)绕其轴线回转;所述滑台(14)在所述立柱(12)或其他导向部件的约束下,连同其上的主轴装置(18)、与所述主轴装置(18)相连的上托盘(15)、以及与所述上托盘(15)相连的第二研磨盘(22)沿所述第二研磨盘轴线(223)向所述第一研磨盘(21)趋近,并对分布于所述第一研磨盘(21)的各内凹弧线沟槽(2111)内的被加工凸度滚子(3)施加工作压力;
    所述滚子送进机构(45)分别安装在所述第一研磨盘的各内凹弧线沟槽入口(21118)处,用于在所述第二研磨盘的任一螺旋槽入口(22118)与所述内凹弧线沟槽入口(21118)发生交会时将一个被加工凸度滚子(3)推送进入所述内凹弧线沟槽入口(21118);
    对应于主机构型三:
    设置有两套主轴装置(18),其中一套主轴装置(18)安装在所述基座(11)上,通过与其连接的所述下托盘(16)驱动所述第一研磨盘(21)绕其轴线回转,另一套主轴装置(18)安装在所述滑台(14)上,通过与其连接的所述上托盘(15)驱动所述第二研磨盘(22)绕其轴线回转;所述两套主轴装置(18)均设置有锁死机构,同一时间只允许所述第一研磨盘(21)和第二研磨盘(22)之一回转,而另一研磨盘处于周向锁死状态;
    当研磨设备的研磨盘套件(2)以方式一回转进行研磨加工时,所述第一研磨盘(21)与第二研磨盘(22)的相对运动与所述主机构型一相同;所述滚子送进机构(45)的安装位置和作用与所述主机构型一相同;
    当研磨设备的研磨盘套件(2)以方式二回转进行研磨加工时,所述第一研磨盘(21)与第二研磨盘(22)的相对运动与所述主机构型二相同;所述滚子送进机构(45)的安装位置和作用与所述主机构型二相同。
  5. 根据权利要求4所述的研磨设备,其特征在于,与权利要求4所述的研磨设备的不同之处为:
    其中的研磨盘套件采用如权利要求3所述的研磨盘套件;
    所述滚子循环盘外系统还包括滚子退磁装置(42);所述滚子退磁装置(42)设置在滚子循环盘外路径中的所述滚子输送系统(43)中或滚子输送系统(43)之前用于对被所述第二研磨盘基体内部的环状磁性结构(226)的磁场磁化的铁磁性材质的被加工凸度滚子(3)消磁。
  6. 一种用于凸度滚子的滚动表面精加工的研磨方法,其特征在于,采用如权利要求4所述的研磨设备,并包括以下步骤:
    步骤一、第二研磨盘(22)沿其轴线向第一研磨盘(21)趋近,至第一研磨盘的内凹弧线沟槽工作面(21111)与第二研磨盘的螺旋槽工作面(22111)合围而成的每一个研磨加工区域的空间能够且仅能够容纳一个被加工凸度滚子(3);
    步骤二、对应于研磨盘套件的回转方式一,第一研磨盘(21)绕其轴线相对于第二研磨盘(22)以1~10rpm低速回转;对应于研磨盘套件的回转方式二,第二研磨盘(22)绕其轴线相对于第一研磨盘(21)以1~10rpm低速回转;
    步骤三、启动滚子输送系统(43)、滚子整理机构(44)和滚子送进机构(45);调整滚子送进机构(45)的送进速度使之与第一研磨盘(21)和第二研磨盘(22)的相对回转速度相匹配;调整滚子输送系统(43)的输送速度和滚子整理机构(44)的整理速度使之与滚子送进机构(45)的送进速度相匹配;从而建立被加工凸度滚子(3)在第一研磨盘(21)和第二研磨盘(22)之间沿内凹弧线沟槽基线(21116)的圆弧进给与经由滚子循环盘外系统(4)的收集、输送、整理、送进的循环;
    步骤四、调整第一研磨盘(21)与第二研磨盘(22)的相对回转速度至5~60rpm的相对工作回转速度,调整滚子送进机构(45)的送进速度至工作送进速度使之与第一研磨盘(21)和第二研磨盘(22)的相对工作回转速度相匹配,调整滚子输送系统(43)的输送速度和滚子整理机构(44)的整理速度,使得上述滚子循环盘外系统(4)中滚子收集装置(41)、滚子输送系统(43)、滚子整理机构(44)和滚子送进机构(45)各处的被加工凸度滚子(3)的存量匹配、循环顺畅有序;
    步骤五、对研磨加工区域加注研磨液;
    步骤六、包括:
    1)对于凸度圆柱滚子,第二研磨盘(22)沿其轴线向第一研磨盘(21)进一步趋近,使得研磨加工区域内的被加工凸度圆柱滚子的滚动表面(32)分别与第一研磨盘的内凹弧线沟槽工作面(21111)发生十字交叉线接触和与第二研磨盘螺旋槽的工作面一(221111)发生线接触、被加工凸度圆柱滚子的一端面倒圆角(332)与第二研磨盘螺旋槽的工作面二(221112)发生线接触;对于凸度圆锥滚子,第二研磨盘(22)沿其轴线向第一研磨盘(21)进一步趋近,使得研磨加工区域内的被加工凸度圆锥滚子的滚动表面(32)分别与第一研磨盘的内凹弧线沟槽工作面(21111)的两对称侧面和第二研磨盘螺旋槽的工作面一(221111)发生线接触、被加工凸度圆锥滚子的大头端球基面(342)或大头端倒圆 角(341)或小头端倒圆角(331)与第二研磨盘螺旋槽的工作面二(221112)发生线接触;
    2)对分布于研磨加工区域内的每个被加工凸度滚子(3)平均施加0.5~2N的初始工作压力;被加工凸度滚子(3)在第二研磨盘的螺旋槽工作面(22111)的摩擦驱动下绕自身轴线(31)作连续旋转运动;与此同时,被加工凸度滚子(3)在螺旋槽工作面(22111)的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线(21116)作圆弧进给运动;被加工凸度滚子的滚动表面(32)开始经受第一研磨盘的内凹弧线沟槽工作面(21111)和第二研磨盘螺旋槽的工作面一(221111)的研磨加工;
    步骤七、随着研磨加工过程稳定运行,对分布于研磨加工区域内的每个被加工凸度滚子(3)逐渐增加工作压力至2~50N的正常工作压力;被加工凸度滚子(3)保持步骤六的与第一研磨盘的内凹弧线沟槽工作面(21111)和第二研磨盘的螺旋槽工作面(22111)的接触关系、绕自身轴线(31)的连续旋转运动以及沿内凹弧线沟槽基线(21116)的圆弧进给运动,其滚动表面(32)继续经受第一研磨盘的内凹弧线沟槽工作面(21111)和第二研磨盘螺旋槽的工作面一(221111)的研磨加工;
    步骤八、经过一段时间的研磨加工后,对被加工凸度滚子(3)进行抽检;当被抽检的被加工凸度滚子的滚动表面(32)的表面质量、形状精度和尺寸一致性尚未达到技术要求时,继续本步骤的研磨加工;当被抽检的被加工凸度滚子的滚动表面(32)的表面质量、形状精度和尺寸一致性达到技术要求时,进入步骤九;
    步骤九、逐渐减小工作压力并最终至零;停止滚子送进机构(45)、滚子输送系统(43)和滚子整理机构(44)运行,调整第一研磨盘(21)与第二研磨盘(22)的相对转速至零;停止对研磨加工区域加注研磨液;第二研磨盘(22)沿其轴线退回到非工作位置。
  7. 根据权利要求6所述的研磨方法,其特征在于,与权利要求6所述的研磨方法的不同之处为:
    其中的研磨设备采用如权利要求5所述的研磨设备;并且,其中的:
    步骤三为:启动滚子退磁装置(42)、滚子输送系统(43)、滚子整理机构(44)和滚子送进机构(45);调整滚子送进机构(45)的送进速度使之与第一研磨盘(21)和第二研磨盘(22)的相对回转速度相匹配;调整滚子输送系统(43)的输送速度和滚子整理机构(44)的整理速度与滚子送进机构(45)的送进速度相匹配;从而建立被加工凸度滚子(3)在第一研磨盘(21)和第二研磨盘(22)之间沿内凹弧线沟槽基线(21116)的圆弧进给与经由滚子循环盘外系统(4)的收集、输送、整理、送进的循环;
    步骤六为:包括:
    1)第二研磨盘基体内部的环状磁性结构(226)进入工作状态;对于凸度圆柱滚子,第二研磨盘(22)沿其轴线向第一研磨盘(21)进一步趋近,使得研磨加工区域内的被加工凸度圆柱滚子的滚动表面(32)分别与第一研磨盘的内凹弧线沟槽工作面(21111)发生十字交叉线接触和与第二研磨盘螺旋槽的工作面一(221111)发生线接触、被加工凸度圆柱滚子的一端面倒圆角(332)与第二研磨盘螺旋槽的工作面二(221112)发生线接触;对于凸度圆锥滚子,第二研磨盘(22)沿其轴线向第一研磨盘(21)进一步趋近,使得研磨加工区域内的被加工凸度圆锥滚子的滚动表面(32)分别与第一研磨盘的内凹弧线沟槽工作面(21111)的两对称侧面和第二研磨盘螺旋槽的工作面一(221111)发生线接触、被加工凸度圆锥滚子的大头端球基面(342)或大头端倒圆角(341)或小头端倒圆角(331)与第 二研磨盘螺旋槽的工作面二(221112)发生线接触;
    2)对分布于研磨加工区域内的每个被加工凸度滚子(3)平均施加0.5~2N的初始工作压力;调整环状磁性结构(226)的磁场强度,使得第二研磨盘的螺旋槽工作面(22111)对被加工凸度滚子(3)绕自身轴线(31)旋转所产生的滑动摩擦驱动力矩大于第一研磨盘的内凹弧线沟槽工作面(21111)对被加工凸度滚子(3)绕自身轴线(31)旋转所产生的滑动摩擦阻力矩,从而驱动被加工凸度滚子(3)绕自身轴线(31)作连续旋转运动;与此同时,被加工凸度滚子(3)在螺旋槽工作面(22111)的持续推挤作用下沿第一研磨盘的内凹弧线沟槽基线(21116)作圆弧进给运动;被加工凸度滚子的滚动表面(32)开始经受第一研磨盘的内凹弧线沟槽工作面(21111)和第二研磨盘螺旋槽的工作面一(221111)的研磨加工;
    步骤九为:逐渐减小工作压力并最终至零;停止滚子送进机构(45)、滚子输送系统(43)和滚子整理机构(44)运行,调整第一研磨盘(21)与第二研磨盘(22)的相对转速至零;环状磁性结构(226)切换至非工作状态,停止滚子退磁装置(42)运行;停止对研磨加工区域加注研磨液;第二研磨盘(22)沿其轴线退回到非工作位置。
  8. 根据权利要求7所述的研磨方法,其特征在于,所用研磨设备中的研磨盘套件(2)的第二研磨盘(22)内部设置磁性结构的情况,有下述两种情形之一:
    情形一、采用固结磨粒研磨方式研磨铁磁性材质的被加工凸度滚子(3)时,在第二研磨盘(22)的内部设置磁性结构,通过调整所述磁性结构的磁场强度,使得所述第二研磨盘的螺旋槽工作面(22111)对所述铁磁性材质的被加工凸度滚子(3)绕自身轴线(31)旋转所产生的滑动摩擦驱动力矩大于所述第一研磨盘的内凹弧线沟槽工作面(21111)对所述铁磁性材质的被加工凸度滚子(3)绕自身轴线(31)旋转所产生的滑动摩擦阻力矩,从而驱动所述铁磁性材质的被加工凸度滚子(3)绕自身轴线(31)连续旋转;
    情形二、采用游离磨粒研磨方式研磨铁磁性材质的被加工凸度滚子(3)时,所述第二研磨盘(22)内置磁性结构,以增大所述第二研磨盘的螺旋槽工作面(22111)对所述铁磁性材质的被加工凸度滚子(3)绕自身轴线(31)旋转所产生的滑动摩擦驱动力矩,使得所述铁磁性材质的被加工凸度滚子(3)绕自身轴线(31)连续旋转不受所述第一研磨盘的内凹弧线沟槽工作面(21111)的材料与所述第二研磨盘的螺旋槽工作面(22111)的材料的匹配制约。
  9. 根据权利要求6或7所述的研磨方法,其特征在于,在所述第一研磨盘(21)和第二研磨盘(22)首次使用前,利用相同几何参数的被加工凸度滚子(3)对所述第一研磨盘的内凹弧线沟槽工作面(21111)和第二研磨盘的螺旋槽工作面(22111)进行磨合;磨合方法与被加工凸度滚子(3)的研磨方法相同;对于步骤八,对参与磨合的被加工凸度滚子(3)进行抽检,当被抽检的被加工凸度滚子的滚动表面(32)的表面质量、形状精度和尺寸一致性达到技术要求时,磨合过程进入步骤九;否则,继续步骤八。
PCT/CN2019/097910 2018-07-28 2019-07-26 用于凸度滚子滚动表面精加工的研磨盘套件、设备及方法 WO2020024879A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201810850277.1 2018-07-28
CN201810850277.1A CN108673331B (zh) 2018-07-28 2018-07-28 一种用于凸圆锥滚子滚动面精加工的研磨盘、设备及方法
CN201810850265.9 2018-07-28
CN201810850348.8 2018-07-28
CN201810850265.9A CN108890516B (zh) 2018-07-28 2018-07-28 一种用于凸圆柱滚子滚动面精加工的研磨盘、设备及方法
CN201810850346.9 2018-07-28
CN201810850346.9A CN108705444B (zh) 2018-07-28 2018-07-28 用于凸圆柱滚子滚动面精加工的磁性研磨盘、设备及方法
CN201810850348.8A CN108723981B (zh) 2018-07-28 2018-07-28 用于凸圆锥滚子滚动面精加工的磁性研磨盘、设备及方法

Publications (1)

Publication Number Publication Date
WO2020024879A1 true WO2020024879A1 (zh) 2020-02-06

Family

ID=69230782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097910 WO2020024879A1 (zh) 2018-07-28 2019-07-26 用于凸度滚子滚动表面精加工的研磨盘套件、设备及方法

Country Status (1)

Country Link
WO (1) WO2020024879A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3867008B1 (de) * 2018-10-18 2024-04-03 Schaeffler Technologies AG & Co. KG Vorrichtung und verfahren zur fertigung mindestens eines wälzkörpers und verfahren zur bearbeitung mindestens einer regelscheibe der vorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094306A (ja) * 1998-09-29 2000-04-04 Toshio Miki 円筒体外径面の加工方法及び円筒体
CN104493689A (zh) * 2014-12-16 2015-04-08 天津大学 双盘直槽圆柱形零件表面研磨盘
CN104608046A (zh) * 2015-01-27 2015-05-13 清华大学 轴承圆柱滚子圆柱面的超精加工方法
CN108673331A (zh) * 2018-07-28 2018-10-19 天津大学 一种用于凸圆锥滚子滚动面精加工的研磨盘、设备及方法
CN108705444A (zh) * 2018-07-28 2018-10-26 天津大学 用于凸圆柱滚子滚动面精加工的磁性研磨盘、设备及方法
CN108723981A (zh) * 2018-07-28 2018-11-02 天津大学 用于凸圆锥滚子滚动面精加工的磁性研磨盘、设备及方法
CN108890516A (zh) * 2018-07-28 2018-11-27 天津大学 一种用于凸圆柱滚子滚动面精加工的研磨盘、设备及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094306A (ja) * 1998-09-29 2000-04-04 Toshio Miki 円筒体外径面の加工方法及び円筒体
CN104493689A (zh) * 2014-12-16 2015-04-08 天津大学 双盘直槽圆柱形零件表面研磨盘
CN104608046A (zh) * 2015-01-27 2015-05-13 清华大学 轴承圆柱滚子圆柱面的超精加工方法
CN108673331A (zh) * 2018-07-28 2018-10-19 天津大学 一种用于凸圆锥滚子滚动面精加工的研磨盘、设备及方法
CN108705444A (zh) * 2018-07-28 2018-10-26 天津大学 用于凸圆柱滚子滚动面精加工的磁性研磨盘、设备及方法
CN108723981A (zh) * 2018-07-28 2018-11-02 天津大学 用于凸圆锥滚子滚动面精加工的磁性研磨盘、设备及方法
CN108890516A (zh) * 2018-07-28 2018-11-27 天津大学 一种用于凸圆柱滚子滚动面精加工的研磨盘、设备及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3867008B1 (de) * 2018-10-18 2024-04-03 Schaeffler Technologies AG & Co. KG Vorrichtung und verfahren zur fertigung mindestens eines wälzkörpers und verfahren zur bearbeitung mindestens einer regelscheibe der vorrichtung
US11980996B2 (en) 2018-10-18 2024-05-14 Schaeffler Technologies AG & Co. KG Device and method for producing a curved lateral surface on a rolling element

Similar Documents

Publication Publication Date Title
WO2020024878A1 (zh) 用于轴承滚子滚动表面精加工的研磨盘套件、设备及方法
CN108723982B (zh) 用于圆锥滚子滚动表面精加工的磁性研磨盘、设备及方法
CN108581647B (zh) 用于圆柱滚子滚动面精加工的磁性研磨盘、设备及方法
CN108673331B (zh) 一种用于凸圆锥滚子滚动面精加工的研磨盘、设备及方法
CN113524014B (zh) 用于球面滚子的滚动表面精加工的研具套件、设备及方法
WO2020024879A1 (zh) 用于凸度滚子滚动表面精加工的研磨盘套件、设备及方法
He et al. Advances in ultra-precision machining of bearing rolling elements
CN108890516B (zh) 一种用于凸圆柱滚子滚动面精加工的研磨盘、设备及方法
CN108723979B (zh) 一种用于圆锥滚子滚动表面精加工的研磨盘套件、设备及方法
CN108908094B (zh) 一种用于圆柱滚子滚动面精加工的研磨盘、设备及方法
US20230182255A1 (en) Grinding tool kit, apparatus and method for finish machining of rolling surface of bearing roller
CN108723981B (zh) 用于凸圆锥滚子滚动面精加工的磁性研磨盘、设备及方法
CN103600285B (zh) 上盘偏心加压式圆柱形零件外圆加工装置
CN113601277B (zh) 用于圆锥滚子的滚动表面精加工的研具套件、设备及方法
CN108890403B (zh) 用于圆柱滚子滚动表面精加工的磁性研磨盘、设备及方法
CN113524018B (zh) 用于圆柱滚子的滚动表面精加工的研具套件、设备及方法
CN108705444B (zh) 用于凸圆柱滚子滚动面精加工的磁性研磨盘、设备及方法
CN113601391A (zh) 用于滚珠的滚动表面精加工的研具套件、设备及方法
CN209394483U (zh) 用于圆柱滚子滚动表面精加工的磁性研磨盘及设备
CN209394481U (zh) 用于凸圆锥滚子滚动面精加工的磁性研磨盘及设备
CN209394482U (zh) 用于圆锥滚子滚动表面精加工的磁性研磨盘及设备
CN209394479U (zh) 用于凸圆柱滚子滚动面精加工的磁性研磨盘及设备
CN209394477U (zh) 一种用于凸圆锥滚子滚动面精加工的研磨盘及设备
CN209394480U (zh) 一种用于圆柱滚子滚动面精加工的研磨盘及设备
CN209394485U (zh) 一种用于凸圆柱滚子滚动面精加工的研磨盘及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19844993

Country of ref document: EP

Kind code of ref document: A1