WO2020024658A1 - 验证煤层气微波开采可行性的实验方法 - Google Patents

验证煤层气微波开采可行性的实验方法 Download PDF

Info

Publication number
WO2020024658A1
WO2020024658A1 PCT/CN2019/087478 CN2019087478W WO2020024658A1 WO 2020024658 A1 WO2020024658 A1 WO 2020024658A1 CN 2019087478 W CN2019087478 W CN 2019087478W WO 2020024658 A1 WO2020024658 A1 WO 2020024658A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
test coal
microwave radiation
coal
microwave
Prior art date
Application number
PCT/CN2019/087478
Other languages
English (en)
French (fr)
Inventor
杨兆中
朱静怡
李小刚
贾敏
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810873668.5A external-priority patent/CN109115659A/zh
Priority claimed from CN201810876216.2A external-priority patent/CN109025910A/zh
Priority claimed from CN201810874263.3A external-priority patent/CN108915642A/zh
Application filed by 西南石油大学 filed Critical 西南石油大学
Publication of WO2020024658A1 publication Critical patent/WO2020024658A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives

Definitions

  • the present application belongs to the field of energy technology, and specifically relates to an experimental method for verifying the feasibility of microwave exploitation of coalbed methane.
  • Coalbed methane is a hydrocarbon gas that is stored in coalbeds and contains methane as the main component, mainly adsorbed on the surface of coal matrix particles, partially free of coal pores or dissolved in coalbed water, and is an associated mineral resource of coal. It is unconventional Natural gas is a clean, high-quality energy and chemical raw material that has risen internationally in the past one or two decades.
  • the current mining technology of coalbed methane is mainly gas recovery after drainage and pressure reduction. However, for low-water coalbed methane, methane cannot be effectively desorbed. Therefore, when the drainage pressure reduction mining technology is used for coalbed gas extraction, the mining effect is not ideal. In view of the above, it is imperative to develop new mining processes.
  • Microwave heating technology is a mining method that directly heats the coal seam and desorbs the coal seam gas. It has the advantages of fast action speed, simple equipment, high flexibility and no pollution to the reservoir.
  • the technology for in situ mining of coalbed methane by microwave heating is not yet fully mature, and more theoretical guidance is needed to verify its feasibility. In view of this, this application is hereby submitted.
  • the purpose of this application includes, for example, providing an experimental method for verifying the feasibility of microwave exploitation of coalbed methane to effectively improve the above problems.
  • an experimental method for verifying the feasibility of microwave exploitation of coalbed methane includes: providing multiple test coal powders, and testing parameters of each test coal powder before and after microwave radiation under different test conditions, The first parameter in the original state and the second parameter after microwave radiation are obtained, wherein the first parameter and the second parameter both include the pore diameter and specific surface area of the test coal powder; the verification results are obtained based on the first parameter and the second parameter.
  • the parameters of each of the test coal powders before and after microwave radiation are tested separately to obtain a first parameter in the original state and a second parameter after microwave radiation, including: testing each test coal powder in the microwave separately.
  • the parameters in the original state before the irradiation to obtain the first parameters of each test pulverized coal; microwave irradiation of each test pulverized coal; test the parameters of each test pulverized coal after microwave radiation separately to obtain The second parameter for each test pulverized coal.
  • the microwave power of microwave radiation for each test coal powder is 1000-2000W, and the time of a single radiation is 10-50s.
  • the temperature of microwave irradiation of the test coal powder is not higher than 200 ° C.
  • the microwave radiation of the test coal powder is: each test coal powder is irradiated for a fixed time under different microwave power.
  • the method for performing microwave radiation on the test coal powder is: multiple test coal powders are irradiated at different times under the same microwave power.
  • the experimental method for verifying the feasibility of microwave exploitation of coalbed methane includes: providing multiple test coal powders, and testing parameters of each test coal powder before and after microwave radiation under different test conditions to obtain the original state
  • the first parameter and the second parameter after microwave radiation wherein the first parameter and the second parameter both include the pore diameter and specific surface area of the test coal powder; a verification result is obtained based on the first parameter and the second parameter.
  • the first parameter and the second parameter are obtained, and then the first parameter and the second parameter are compared and analyzed to obtain the test coal under different test conditions.
  • the change in the pore diameter and specific surface area of the powder proves the feasibility of microwave radiation for coalbed methane and provides theoretical guidance for the process.
  • an experimental method for verifying the feasibility of microwave exploitation of coalbed methane includes: providing at least one test coal plate, and testing each test of the at least one test coal plate separately under the same test conditions.
  • the parameters of the coal slab in the original state and the microwave radiation state are obtained as a first conductivity value in the original state and a second conductivity value in the microwave radiation state; based on the first conductivity value and A verification result is obtained for the second diversion capability value.
  • the experimental method for verifying the feasibility of microwave mining of coalbed methane includes: providing at least one test coal plate, and under the same test conditions, testing each of the at least one test coal plate in the original Parameters in the state and the microwave radiation state to obtain the first conductivity value in the original state and the second conductivity value in the microwave state; based on the first conductivity value and the second The results of the diversion capacity were verified.
  • the first and second conductance values are obtained, and then the first and second conductance values are obtained by By comparison and analysis, the change of the conductivity of coal slabs tested under microwave radiation is obtained, which proves the feasibility of mining coalbed methane with microwave radiation, and provides theoretical guidance for the process.
  • an experimental method for verifying the feasibility of microwave exploitation of coalbed methane includes: providing multiple test coal rocks, and testing each of the multiple test coal rocks under different test conditions, respectively.
  • the parameters of coal and rock before and after microwave radiation are obtained as a first parameter in an original state and a second parameter in a microwave radiation state, wherein the first parameter and the second parameter both include porosity and permeability;
  • a verification result is obtained based on the first parameter and the second parameter.
  • the experimental method for verifying the feasibility of microwave mining of coalbed methane includes: providing a plurality of test coal rocks, and respectively testing each of the plurality of test coal rocks in a microwave under different test conditions.
  • the parameters before and after the radiation to obtain the first parameter in the original state and the second parameter in the microwave radiation state, wherein the first parameter and the second parameter both include porosity and permeability; based on the first A parameter and the second parameter obtain a verification result.
  • the first parameter and the second parameter are obtained by testing the parameters of each of the test coal rocks in the original state and the microwave radiation state, and then by comparing and analyzing the first parameter and the second parameter, The changes of porosity and permeability of coal rock under different test conditions are proved, which proves the feasibility of microwave radiation mining coalbed methane and provides theoretical guidance for the process.
  • FIG. 1 shows a flowchart of an experimental method for verifying the feasibility of microwave exploitation of coalbed methane provided by the present application
  • FIG. 2 shows a flowchart of step S102 in FIG. 1 provided by the present application
  • FIG. 3 shows a flowchart of another experimental method for verifying the feasibility of microwave exploitation of coalbed methane provided by the present application
  • FIG. 4 shows a flowchart of step S302 in FIG. 3 provided by the present application
  • FIG. 5 shows a flowchart of step S402 in FIG. 4 provided by the present application
  • FIG. 6 shows a flowchart of step S404 in FIG. 4 provided by the present application
  • FIG. 8 shows a flowchart of step S702 in FIG. 7 provided by the present application.
  • FIG. 9 shows a flowchart of step S802 in FIG. 8 provided by the present application.
  • This embodiment provides an experimental method for verifying the feasibility of microwave exploitation of coalbed methane.
  • test coal powder is used.
  • the method includes the following steps:
  • step S102 a plurality of test coal powders are provided, and parameters of each test coal powder before and after microwave radiation are tested under different test conditions to obtain a first parameter in an original state and a second parameter after microwave radiation.
  • the first parameter and the second parameter both include the pore diameter and specific surface area of the test coal powder.
  • each test pulverized coal can be tested with a specific surface area and pore size analyzer.
  • test conditions for each test coal powder are different, for example, the test conditions for test coal powder A and the test conditions for test coal powder B are different.
  • each of the plurality of test coal powders is a plurality of test coal powders obtained by dividing the same batch of coal powder. This can reduce the effect of the structural differences between the test coal powders on the test results.
  • test conditions before and after the microwave radiation of each test coal powder are the same, so as to ensure the reliability of the data and avoid the situation where there is an error in the test results generated by different test conditions.
  • test conditions for testing coal powder A before and after irradiation are the same.
  • step S104 a verification result is obtained based on the first parameter and the second parameter.
  • step S102 may be implemented in combination with the steps shown in FIG. 2.
  • step S202 parameters of each test pulverized coal under the original state before microwave radiation are tested separately to obtain a first parameter of each test pulverized coal.
  • step S204 microwave radiation is performed on each test coal powder.
  • the microwave power for microwave radiation of each test coal powder may be 1000-2000W, and the duration of a single radiation may be 10-50s.
  • the temperature of microwave irradiation of the test coal powder is not higher than 200 ° C. This can prevent the test coal from burning and decomposing.
  • the method for performing microwave radiation on each test coal powder includes: using microwaves of the same power to separately perform microwave radiation on each of the plurality of test coal powders with different durations. For example, select microwaves with a power between 1000W and 2000W, such as 1000W, 1200W, 1400W, 1600W, 1800W, 2000W, etc., to perform microwaves with different durations on each of the multiple test coals. radiation. Preferably, a microwave with a power of 1600 W is used to separately perform microwave radiation of different durations on each of the multiple test coals. Preferably, the duration of the microwave radiation is 10s, 20s, or 30s.
  • test coal powder A there are 4 test coal powders, namely test coal powder A, test coal powder B, test coal powder C, and test coal powder D
  • test coal powder D there are 4 test coal powders, namely test coal powder A, test coal powder B, test coal powder C, and test coal powder D
  • the above process can be expressed as: using a power of 1600W microwave test Pulverized coal A was subjected to microwave radiation with a duration of 10s.
  • Microwave radiation with a power of 1600W was used to test microwave coal with a duration of 15s.
  • Microwave power with a power of 1600W was used to conduct microwave radiation with a duration of 20s to a test coal.
  • 1600W microwave is used to test the coal powder D for 30s.
  • the method for microwave radiating a plurality of test coal powders includes: using microwaves of different powers to respectively perform microwave radiation for the same duration on each of the plurality of test coal powders.
  • select microwaves with multiple values of power between 1000W and 2000W, such as 1000W, 1200W, 1400W, 1600W, 1800W, 2000W, etc. and respectively perform microwaves of the same duration on each of the test coals in the test coals.
  • Radiation preferably, the duration of the microwave radiation is 10s, 20s, or 30s; more preferably, the duration of the microwave radiation is 30s.
  • test coal powder A there are 4 test coal powders, namely test coal powder A, test coal powder B, test coal powder C, and test coal powder D
  • test coal powder D there are 4 test coal powders, namely test coal powder A, test coal powder B, test coal powder C, and test coal powder D
  • the above process can be expressed as follows: selecting a microwave power of 1000W for the test Pulverized coal A is subjected to microwave radiation with a duration of 30s.
  • Microwave power with a power of 1200W is used to test microwave powder with a duration of 30s.
  • Microwave power with a power of 1400W is used to conduct microwave radiation with a test time of 30s. 1600W microwave is used to test the coal powder D for 30s.
  • the above-mentioned illustrated powers such as 1000W, 1200W, 1400W, 1600W, 1800W, 2000W, etc.
  • the microwave power selected for it may be any value between 1000W and 2000W Any value is acceptable.
  • the durations indicated above, such as 10s, 15s, 20s, 30s, etc. are not to be construed as limitations on this application, and they should be included in the scope of protection of this application as long as they are within a reasonable range.
  • step S206 the parameters of each of the test coal powders after the microwave radiation are tested separately from the plurality of test coal powders after the microwave radiation to obtain the second parameters of each test coal powder.
  • the second parameter includes the pore diameter and specific surface area of the test coal powder.
  • parameter changes before and after microwave radiation of different durations using microwave radiation of different powers can be tested separately. It is also possible to test parameter changes of multiple pulverized coals before and after microwave radiation of different durations using microwave radiation of the same power.
  • test data As shown in Table 1 below, the number of test groups 1, 2, 3, and 4 constitutes a group of different microwave heating powers and the same microwave heating duration (30s ) Test coal powder, the number of test groups 4, 5, 6 constitute a group of test coal powder with the same microwave heating power (1600W), different microwave heating time.
  • the first parameter in the original state and the second parameter after microwave radiation are obtained, where the first parameter and the second parameter are both Including testing the pore diameter and specific surface area of pulverized coal; based on the first parameter and the second parameter, the changes of pore diameter and specific surface area of pulverized coal under different test conditions are obtained, which proves the feasibility of microwave radiation for coalbed methane, This process provides theoretical guidance.
  • the present application also provides an experimental method for verifying the feasibility of microwave exploitation of coalbed methane, in which test coal plates are used. See FIG. 3 for a flowchart of an experimental method for verifying the feasibility of microwave exploitation of coalbed methane. The method includes the following steps:
  • step S302 at least one test coal slab is provided, and under the same test conditions, parameters of each test coal slab in the at least one test coal slab in the original state and in the microwave radiation state are separately tested to obtain the A first conductivity value, and a second conductivity value in a microwave radiation state.
  • test module to test the parameters of each test coal plate in the original state and the microwave radiation state under the same test conditions to obtain the first conductivity value and microwave radiation of each test coal plate in the original state.
  • the test module may be a proppant filling layer conductivity tester.
  • the original state refers to a state where microwave radiation is not performed, that is, a state before microwave radiation is performed.
  • test conditions of each test coal plate are the same, thereby excluding the occurrence of accidental factors in the test structure.
  • the test conditions for testing coal plate A are the same as those for testing coal plate B.
  • each of the at least one test coal slab is a plurality of test coal slabs obtained by dividing the same coal slab. This can reduce the effect of the structural differences between the test coal plates on the test results.
  • test conditions before and after the microwave radiation of each test coal plate are the same, so as to ensure the reliability of the data and avoid the situation that there is an error in the test results generated by different test conditions.
  • test conditions of the test coal plate A before and after irradiation are the same.
  • step S304 a verification result is obtained based on the first diversion capability value and the second diversion capability value.
  • the first conductance value and the second conductance value are then compared by Through analysis, the change of the conductivity of the coal slab tested under microwave radiation is obtained, which proves the feasibility of mining coalbed methane with microwave radiation, and provides theoretical guidance for the process.
  • step S302 may be implemented in combination with the steps shown in FIG. 4.
  • step S402 under the first test condition, parameters of each test coal slab in the original state are tested separately in the at least one test coal slab to obtain a first diversion capacity value of each test coal slab.
  • parameters of each of the at least one test coal slab in an original state before performing microwave radiation are separately tested to obtain a first conductivity value of each test coal slab.
  • step S402 may be described with reference to the steps shown in FIG. 5.
  • step S502 a first pressure is applied to each of the at least one test coal slab.
  • each of the at least one test coal plate is subjected to the first pressure by using a proppant filling layer conductivity tester.
  • the closing pressure of the proppant filling layer conductivity tester is adjusted below 120 MPa, for example, between 100 and 120 MPa; and then nitrogen gas is introduced.
  • the proppant filling layer conductivity tester can test the fracture conductivity of fractures under two different flow conditions: gas measurement and liquid measurement.
  • the test fluid medium used in this application uses nitrogen that has similar flow properties to natural gas development in order to better reflect the formation flow environment.
  • step S504 parameters of each test coal plate in the at least one test coal plate in the first pressure process are tested separately.
  • the parameters of each of the at least one test coal plate in the first pressure application process are tested separately, that is, the ability of the test nitrogen to pass through each test coal plate Or test the flow of nitrogen in each test coal plate, so as to obtain the first conductivity value of each test coal plate in the original state.
  • step S404 microwave radiation is performed on each of the at least one test coal plate.
  • Microwave radiation is performed on each of the at least one test coal plate described above. Among them, as an optional implementation manner, this process can be described in conjunction with the steps shown in FIG. 6.
  • step S602 each test coal slab in the at least one test coal slab is heated separately, so that the water saturation of each test coal slab is maintained within a preset interval.
  • Each of the at least one test coal slab is heated separately, so that the water saturation of each test coal slab is maintained within a preset interval.
  • each test coal slab in at least one test coal slab is heated at a temperature not higher than 200 ° C., so that the water saturation of each test coal slab is maintained within the range of 0.5% to 1.5%.
  • the water saturation of each test coal slab is maintained at about 1%.
  • step S604 microwave radiation is performed on each of the at least one test coal plate after heating.
  • the radiation time and the radiated power of the microwave may be different; for example, the radiation time of the test coal plate A is 20s, the radiated power during the radiation is 1000W, and the radiation time of the test coal plate B is 15s.
  • the radiant power when radiating is 1200W.
  • the radiation time and the radiation power of the microwave can also be the same.
  • the radiation time of the test coal plate A is 30s
  • the radiation power during the radiation is 1600W
  • the radiation time of the test coal plate B is 30s.
  • the radiant power when radiating is 1600W.
  • the radiation time and the radiated power of the microwave can also be partly the same.
  • the radiation time of the test coal plate A is 30s, the radiation power during the radiation is 1400W, and the radiation time of the test coal plate B is 30s, the radiant power when radiating is 1600W; or, the radiant time of the test coal plate A is 20s, the radiant power is 1600W, the radiant time of the test coal plate B is 30s, and the radiant power is 1600W.
  • microwaves with a power between 600 W and 2400 W are used to irradiate each of the at least one test coal slab after the microwave is heated.
  • a microwave with a power of 1600 W is used to irradiate each of the at least one test coal slab after the heating with a microwave duration of 30 s.
  • Step S406 Under the first test condition, test parameters of each test coal plate in the microwave radiation state of at least one test coal plate after microwave radiation, and obtain a second conductivity value of each test coal plate. .
  • parameters of each of the at least one test coal slab under the microwave radiation state after being irradiated are tested separately to obtain a second conductivity value of each test coal slab.
  • the test process is the same as the test process under the microwave radiation state, that is, the second pressure is applied to each of the at least one test coal slab after the microwave radiation; and then the at least one The parameters of each test coal plate during the second pressure process are tested to obtain the second conductivity value of each test coal plate under the microwave radiation state.
  • the closing pressure of the proppant filling layer conductivity tester is adjusted below 40 MPa, for example, between 5 and 35 MPa; then, nitrogen is passed in to test that nitrogen passes The ability of each test coal plate, or the flow of nitrogen in each test coal plate, to obtain the second conductivity value of each test coal plate under the microwave radiation state.
  • the parameters of each of the at least one test coal slab under the same test conditions in the original state and in the microwave radiation state are respectively tested to obtain the first conductivity value in the original state.
  • the second diversion capacity value under the state of microwave radiation based on the first diversion capacity value and the second diversion capacity value, the change of the diversion capacity of the test coal plate under microwave radiation is obtained, which proves the microwave radiation mining The feasibility of coalbed methane and provide theoretical guidance for the process.
  • an experimental method for verifying the feasibility of microwave exploitation of coalbed methane is also provided, in which test coal is used. See FIG. 7 for a flowchart of an experimental method for verifying the feasibility of microwave exploitation of coalbed methane. The method includes the following steps:
  • step S702 multiple test coal rocks are provided. Under different test conditions, parameters of each test coal rock in the multiple test coal rocks before and after microwave radiation are tested to obtain the first parameters in the original state and the microwave radiation. The second parameter in the state.
  • test coal rocks Under different test conditions, test the parameters of each test coal rock before and after microwave radiation, and obtain the first test coal rock in the original state before microwave radiation. A parameter, and a second parameter in a microwave radiation state after the microwave radiation is performed.
  • the first parameter and the second parameter both include porosity and permeability.
  • porosity and permeability For the method of measuring the porosity and permeability, refer to the related prior art, and details are not repeated here.
  • test conditions for each test coal rock are different, for example, the test conditions for test coal rock A and the test conditions for test coal rock B are different.
  • each of the plurality of test coal rocks is a plurality of test coal rocks obtained by segmenting the same coal rock. This can reduce the impact of structural differences between the test coal and rock on the test results.
  • test conditions before and after the microwave radiation of each test coal rock are the same, so as to ensure the reliability of the data, and to avoid the situation where the test results produced by different test conditions are in error.
  • the test conditions for testing coal rock A before and after radiation are the same.
  • step S704 a verification result is obtained based on the first parameter and the second parameter.
  • test coal under different test conditions After obtaining the first parameter of each test coal rock in the original state and the second derivative parameter under the microwave radiation state, by comparing and analyzing the first parameter and the second parameter, the test coal under different test conditions is obtained.
  • the changes in porosity and permeability of rocks have proven the feasibility of microwave radiation for coalbed methane and provided theoretical guidance for the process.
  • step S702 may be implemented in combination with the steps shown in FIG. 8.
  • step S802 parameters of each of the test coal rocks in the original state before microwave radiation are tested separately to obtain a first parameter of each test coal rock.
  • step S902 each test coal rock in the plurality of test coal rocks is heated to make the water saturation of each test coal rock the same.
  • Each test coal rock in a plurality of test coal rocks is heated separately so that the water saturation of each test coal rock is the same, for example, the water saturation of each test coal rock is kept within 0.5% to 2.5%. A certain value, such as keeping the water saturation of each test coal rock at about 1%.
  • step S904 parameters of each of the plurality of test coal rocks after heating are tested in an original state before microwave radiation.
  • the parameters of each test coal rock in the original state before microwave radiation are tested separately, for example, multiple test coal rocks with a water saturation of 1% are selected for testing.
  • each test coal rock in the plurality of test coal rocks is heated separately, so that the water saturation of each test coal rock is different, for example, the water content of each test coal rock is saturated.
  • the degree is maintained at a value within a range of 0% to 2.5%, for example, 0%, 0.5%, 1%, 1.5%, 2%, 2.5%, and the like. Then, under the premise of ensuring that the water saturation is different, the parameters of each test coal rock in the original state before microwave radiation are tested separately.
  • the heating temperature is not higher than 200 ° C, that is, each test coal rock of the plurality of test coal rocks is heated no higher than 200 ° C heating.
  • step S804 microwave radiation is performed on each of the plurality of test coal rocks.
  • the process includes: using a microwave of the same power to separately test each of the plurality of test coal rocks.
  • Rocks undergo microwave radiation of varying durations. For example, microwaves with a value between 600 W and 2400 W are selected to perform microwave radiation of different durations on each of the plurality of test coal rocks. For example, a microwave with a power of 1600W is used to perform microwave radiation of different durations on each of the multiple test coals.
  • test coal rocks with the same water saturation for example, the water saturation is 1%
  • test coal rock A is selected for a duration of 10 s with microwave power of 1600 W
  • the microwave power of the test coal rock B is selected for a duration of 15 s with microwave power of 1600 W
  • the power at 1600 W is selected
  • the test coal rock C is subjected to microwave radiation with a duration of 20 s
  • the power of the test coal rock D is subjected to microwave radiation with a duration of 30 s.
  • the process includes: using microwaves of different powers to separately perform a test of the same duration on each test coal of the plurality of test coal rocks.
  • Microwave radiation For example, microwaves with multiple values between 600 W and 2400 W are selected to perform microwave radiation of the same duration on each of the test coal rocks among the plurality of test coal rocks.
  • test coal rocks with the same water saturation for example, the water saturation is 1%
  • test coal rock A test coal rock B, test coal rock C, and test coal rock, respectively.
  • the above process can be expressed as follows: the microwave power of the test coal rock A is selected for a microwave power of 1000 W for a duration of 30 s, and the microwave power of the test coal rock B for a duration of 30 s is selected for a microwave power of 1200 W, and the power is selected for 1400 W
  • the microwave irradiates the test coal rock C for a period of 30 s, and the microwave power of 1600 W is used for the test coal rock D for a period of 30 s.
  • the process includes: using microwaves of the same power to separately test each of the plurality of test coal rocks.
  • Coal rocks undergo microwave radiation for the same duration.
  • microwaves with a power between 600W and 2400W are selected to perform microwave radiation of the same duration on each of the test coals in the multiple test coals.
  • test coal rocks with different water saturations namely test coal rock A (for example, water saturation is 0%) and test coal rock B (for example, water saturation is 1%). If the test coal rock C (for example, the water saturation is 2%) and the test coal rock D (for example, the water saturation is 2.5%), then the above process can be expressed as follows: using a microwave with a power of 1600W for the duration of the test coal rock A The microwave radiation is 30s, and the power of 1600W microwave is used for the test coal rock B for 30s. The microwave power of 1600W is used for the test coal rock C for 30s. The power is 1600W for the test coal. Rock D performs microwave radiation for a duration of 30s.
  • the above-mentioned illustrated powers such as 1000W, 1200W, 1400W, 1600W, etc.
  • the microwave power selected may be any value between 600W and 2400W
  • the durations indicated above such as 10s, 15s, 20s, 30s, etc., are not to be construed as limitations on this application, and they should be included in the scope of protection of this application as long as they are within a reasonable range.
  • step S806 the parameters of each test coal rock in the plurality of test coal rocks after microwave radiation are tested separately to obtain the second parameters of each test coal rock.
  • the parameters of each test coal rock in the multiple test coal rocks after the microwave radiation are separately tested to obtain the second parameter of each test coal rock.
  • the second parameter includes the porosity and permeability of the test coal rock.
  • multiple coal rocks with the same water saturation can be tested for parameter changes before and after microwave radiation of the same duration is used for microwave radiation of different powers. It is also possible to test parameter changes before and after microwave radiation of different durations for multiple coal rocks with the same water saturation using microwave radiation of the same power. It is also possible to test parameter changes before and after microwave radiation of the same duration for multiple coal rocks with different water saturations using microwave radiation of the same power.
  • the embodiment of the present application provides an exemplary test data.
  • Table 2 the number of test groups 1, 2, 3, and 4 constitutes a group of different microwave heating powers, the same microwave heating duration, and the same Test coal powder for coal water content saturation.
  • the number of test groups 4, 5, and 6 constitute a group of coal powder for the same microwave heating power, different microwave heating duration, and the same coal rock water saturation.
  • the number of test groups 7, 8, 9 And 10 constitute a group of test coal powders with the same microwave heating power, the same microwave heating duration, and different water and rock water saturations.
  • the first parameter in the original state and the first parameter in the microwave radiation state are obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种验证煤层气微波开采可行性的实验方法,属于能源技术领域。该方法中,通过提供多个测试煤粉或至少一个测试煤板或多个测试煤岩,分别测试每个测试煤粉或至少一个测试煤板中的每个测试煤板或多个测试煤岩中的每个测试煤岩在微波辐射前后的参数,然后通过对微波辐射前后的参数进行比对分析,得出在不同测试条件下测试煤粉的孔径和比表面积的变化,或者在微波辐射下测试煤板的导流能力的变化,或者在不同测试条件下测试煤岩的孔隙度、渗透率等的变化,从而证明微波辐射开采煤层气的可行性,并提供理论指导。

Description

验证煤层气微波开采可行性的实验方法
相关申请的交叉引用
本申请要求于2018年08月02日提交中国专利局的申请号为2018108736685、名称为“一种验证煤层气微波开采可行性的实验方法”的中国专利申请的优先权;要求于2018年08月02日提交中国专利局的申请号为2018108742633,名称为“一种利用煤板验证煤层气微波开采的方法”的中国专利申请的优先权;要求于2018年08月02日提交中国专利局的申请号为2018108762162,名称为“一种利用煤岩验证煤层气微波开采的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于能源技术领域,具体涉及一种验证煤层气微波开采可行性的实验方法。
背景技术
煤层气是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。煤层气目前的开采工艺主要为排水降压后采气,但是对于少水的煤层气,无法有效使甲烷解吸,因此,采用排水降压的开采工艺进行煤层气开采时,开采效果不是很理想。针对上述情况,开发新的开采工艺势在必行。
微波加热技术是一种直接对煤层加热,使煤层气解吸的开采方式,其具备作用速度快、设备简单、灵活性高、不对储层造成任何污染的优势。但微波加热原位开采煤层气的技术目前尚未完全成熟,还需要更多的理论指导来验证其可行性,鉴于此,特提出本申请。
申请内容
鉴于此,本申请的目的例如包括提供一种验证煤层气微波开采可行性的实验方法,以有效地改善上述问题。
本申请的实施例是这样实现的:
第一方面,本申请提供的一种验证煤层气微波开采可行性的实验方法,包括:提供多 个测试煤粉,在不同测试条件下,分别测试每个测试煤粉在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射之后的第二参数,其中,第一参数和第二参数均包括测试煤粉的孔径和比表面积;基于第一参数以及第二参数得到验证结果。
可选地,分别测试每个所述测试煤粉在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射之后的第二参数,包括:分别测试每个测试煤粉在微波辐射前的原始状态下的参数,得到每个测试煤粉的第一参数;分别对每个测试煤粉进行微波辐射;分别测试微波辐射后的每个测试煤粉在微波辐射之后的参数,得到每个测试煤粉的第二参数。
可选地,对每个测试煤粉进行微波辐射的微波功率为1000~2000W,单次辐射的时间为10~50s。
可选地,对测试煤粉进行微波辐射的温度不高于200℃。
可选地,对测试煤粉进行微波辐射的方式为:每个测试煤粉分别在不同的微波功率下辐射固定的时间。
可选地,对测试煤粉进行微波辐射的方式为:多个测试煤粉在相同的微波功率下辐射不同的时间。
本申请实施例的有益效果例如包括:
本申请实施例提供的验证煤层气微波开采可行性的实验方法,包括:提供多个测试煤粉,在不同测试条件下,分别测试每个测试煤粉在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射之后的第二参数,其中,第一参数和第二参数均包括测试煤粉的孔径和比表面积;基于第一参数以及第二参数得到验证结果。通过测试各个测试煤粉在原始状态下以及微波辐射之后的参数,得到第一参数和第二参数,然后通过对第一参数和第二参数进行比对分析,得出在不同测试条件下测试煤粉的孔径和比表面积的变化,证明微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
第二方面,本申请提供的一种验证煤层气微波开采可行性的实验方法,包括:提供至少一个测试煤板,在相同测试条件下,分别测试所述至少一个测试煤板中的每个测试煤板在原始状态下以及微波辐射状态下的参数,得到在原始状态下的第一导流能力值,以及微波辐射状态下的第二导流能力值;基于所述第一导流能力值以及所述第二导流能力值得到验证结果。
本申请实施例的有益效果例如包括:
本申请实施例提供的验证煤层气微波开采可行性的实验方法,包括:提供至少一个测试煤板,在相同测试条件下,分别测试所述至少一个测试煤板中的每个测试煤板在原始状态下以及微波辐射状态下的参数,得到在原始状态下的第一导流能力值,以及微波辐射状 态下的第二导流能力值;基于所述第一导流能力值以及所述第二导流能力值得到验证结果。通过测试同一测试煤板在原始状态下以及微波辐射状态下的参数,得到第一导流能力值和第二导流能力值,然后通过对第一导流能力值和第二导流能力值进行比对分析,得出在微波辐射下测试煤板的导流能力的变化,证明微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
第三方面,本申请提供的一种验证煤层气微波开采可行性的实验方法,包括:提供多个测试煤岩,在不同测试条件下,分别测试所述多个测试煤岩中的每个测试煤岩在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射状态下的第二参数,其中,所述第一参数和所述第二参数均包括孔隙度以及渗透率;基于所述第一参数以及所述第二参数得到验证结果。
本申请实施例的有益效果例如包括:
本申请实施例提供的验证煤层气微波开采可行性的实验方法,包括:提供多个测试煤岩,在不同测试条件下,分别测试所述多个测试煤岩中的每个测试煤岩在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射状态下的第二参数,其中,所述第一参数和所述第二参数均包括孔隙度以及渗透率;基于所述第一参数以及所述第二参数得到验证结果。通过测试多个测试煤岩中的各个测试煤岩在原始状态下以及微波辐射状态下的参数,得到第一参数和第二参数,然后通过对第一参数和第二参数进行比对分析,得出在不同测试条件下测试煤岩的孔隙度、渗透率等的变化,证明微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
本申请的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请提供的一种验证煤层气微波开采可行性的实验方法的流程图;
图2示出了本申请提供的图1中的步骤S102的流程图;
图3示出了本申请提供的另一种验证煤层气微波开采可行性的实验方法的流程图;
图4示出了本申请提供的图3中的步骤S302的流程图;
图5示出了本申请提供的图4中的步骤S402的流程图;
图6示出了本申请提供的图4中的步骤S404的流程图;
图7示出了本申请提供的另一种验证煤层气微波开采可行性的实验方法的流程图;
图8示出了本申请提供的图7中的步骤S702的流程图;
图9示出了本申请提供的图8中的步骤S802的流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本申请实施例的一种验证煤层气微波开采可行性的实验方法进行具体说明。
本申请研究人在研究本申请的过程中发现,目前的煤层气的开采工艺主要为排水降压后采气,但是对于少水的煤层气,无法有效使得甲烷解吸,采用排水降压的开采工艺效果不是很理想。因此,需要开展弱含水煤层的开采工艺。
针对以上方案所存在的缺陷,均是申请人在经过实践并仔细研究后得出的结果,因此,上述问题的发现过程以及下文中本申请实施例针对上述问题所提出的解决方案,都应该是申请人在本申请过程中对本申请做出的贡献。
本实施例提供了一种验证煤层气微波开采可行性的实验方法,该方法中利用了测试煤粉。参见图1所示的一种验证煤层气微波开采可行性的实验方法的流程图,该方法包括以下步骤:
步骤S102,提供多个测试煤粉,在不同测试条件下,分别测试每个测试煤粉在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射之后的第二参数。
提供多个测试煤粉,在不同测试条件下,分别测试每个测试煤粉在微波辐射前后的参数,得到各个测试煤粉在进行微波辐射前的原始状态下的第一参数,以及在进行微波辐射后的微波辐射之后的第二参数。
其中,第一参数和第二参数均包括测试煤粉的孔径和比表面积。例如,可以通过比表面积和孔径测定仪对各个测试煤粉进行测试。
本实施例中,各个测试煤粉的测试条件不同,例如,测试煤粉A的测试条件与测试煤粉B的测试条件不同。
可选地,多个测试煤粉中的各个测试煤粉为同一批次煤粉进行分割后得到的多个测试煤粉。这样可以降低测试煤粉之间的结构差异对测试结果的影响。
可选地,每个测试煤粉的微波辐射前后的测试条件相同,这样保证了数据的可靠性,避免了不同测试条件所产生的测试结果存在误差的情况。例如,测试煤粉A在辐射前后的测试条件相同。
步骤S104,基于上述第一参数以及第二参数得到验证结果。
在得到各个测试煤粉在原始状态下的第一参数,以及微波辐射之后的第二导参数后,通过对第一参数和第二参数进行比对分析,得出在不同测试条件下测试煤粉的孔径和比表面积的变化,证明微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
可选地,可以结合图2所示的步骤实现上述步骤S102的过程。
步骤S202,分别测试每个测试煤粉在微波辐射前的原始状态下的参数,得到每个测试煤粉的第一参数。
步骤S204,分别对每个测试煤粉进行微波辐射。
可选地,对每个测试煤粉进行微波辐射的微波功率可以为1000~2000W,单次辐射的时长可以为10~50s。
可选地,对测试煤粉进行微波辐射的温度不高于200℃。这样可以避免测试煤粉燃烧分解。
作为一种可选的实施方式,对每个测试煤粉进行微波辐射的方法包括:利用相同功率的微波分别对多个测试煤粉中的每个测试煤粉进行不同时长的微波辐射。例如,选用功率为1000W至2000W之间的某一数值的微波,诸如1000W、1200W、1400W、1600W、1800W、2000W等,分别对多个测试煤粉中的每个测试煤粉进行不同时长的微波辐射。优选地,选用功率为1600W微波分别对多个测试煤粉中的每个测试煤粉进行不同时长的微波辐射,优选地,微波辐射的时长为10s、20s或30s。
其中,为了便于理解,假设有4个测试煤粉,分别为测试煤粉A、测试煤粉B、测试煤粉C、测试煤粉D,则上述过程可以表示为:选用功率为1600W微波对测试煤粉A进行时长为10s的微波辐射,选用功率为1600W微波对测试煤粉B进行时长为15s的微波辐射,选用功率为1600W微波对测试煤粉C进行时长为20s的微波辐射,选用功率为1600W微波对测试煤粉D进行时长为30s的微波辐射等。
可选地,对多个测试煤粉进行微波辐射的方法包括:利用不同功率的微波分别对多个测试煤粉中的每个测试煤粉进行相同时长的微波辐射。例如,选用功率为1000W至2000W之间的多个数值的微波,诸如1000W、1200W、1400W、1600W、1800W、2000W等,分别对多个测试煤粉中的每个测试煤粉进行相同时长的微波辐射,优选地,微波辐射的时长为10s、20s或30s;更为优选地,微波辐射的时长为30s。
其中,为了便于理解,假设有4个测试煤粉,分别为测试煤粉A、测试煤粉B、测试煤粉C、测试煤粉D,则上述过程可以表示为:选用功率为1000W微波对测试煤粉A进行时长为30s的微波辐射,选用功率为1200W微波对测试煤粉B进行时长为30s的微波辐射,选用功率为1400W微波对测试煤粉C进行时长为30s的微波辐射,选用功率为1600W微波对测试煤粉D进行时长为30s的微波辐射等。
其中,需要特别说明的是,上述示意的功率如,1000W、1200W、1400W、1600W、1800W、2000W等并不能理解成是对本申请的限制,其选用的微波功率只要在1000W至2000W之间的任一数值均可。同理,上述示意的时长,如10s、15s、20s、30s等并不能理解成是对本申请的限制,其只要在合理范围内,均应包含在本申请所要保护的范围内。
步骤S206,分别测试微波辐射后的多个测试煤粉中的每个测试煤粉在微波辐射之后的参数,得到每个测试煤粉的第二参数。
其中,第二参数包括测试煤粉的孔径和比表面积。
其中,需要说明的是,本实施例中,可以分别测试多个煤粉利用不同功率的微波辐射进行相同时长的微波辐射前后的参数变化。也可以测试多个煤粉利用相同功率的微波辐射进行不同时长的微波辐射前后的参数变化。
为了便于理解上述过程,本申请实施例提供了一种示例性的测试数据,如下表1所示,测试组数1、2、3、4构成一组不同微波加热功率、相同微波加热时长(30s)的测试煤粉,测试组数4、5、6构成一组相同微波加热功率(1600W)、不同微波加热时长的测试煤粉。
表1
测试组数 微波加热功率(W) 微波加热时长(S)
1 1000 30
2 1200 30
3 1400 30
4 1600 30
5 1600 20
6 1600 10
通过在不同测试条件下,分别测试每个测试煤粉在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射之后的第二参数,其中,第一参数和第二参数均包括测试煤粉的孔径和比表面积;基于第一参数以及第二参数,得出在不同测试条件下测试煤粉的孔径和比表面积的变化,证明了微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
另外,本申请还提供了一种验证煤层气微波开采可行性的实验方法,该方法中利用了测试煤板。参见图3所示的一种验证煤层气微波开采可行性的实验方法的流程图,该方法包括如下步骤:
步骤S302,提供至少一个测试煤板,在相同测试条件下,分别测试所述至少一个测试煤板中的每个测试煤板在原始状态下以及微波辐射状态下的参数,得到在原始状态下的第一导流能力值,以及微波辐射状态下的第二导流能力值。
提供至少一个测试模块,在相同测试条件下,分别测试各个测试煤板在原始状态下以及微波辐射状态下的参数,得到各个测试煤板在原始状态下的第一导流能力值,以及微波辐射状态下的第二导流能力值。可选地,测试模块可以为支撑剂充填层导流能力测试仪。
其中,原始状态下,指的是没有进行微波辐射的状态,也即进行微波辐射前的状态。
这里,各个测试煤板的测试条件相同,从而排除了测试结构出现偶然性因素的情况。例如,测试煤板A的测试条件与测试煤板B的测试条件相同。
可选地,上述至少一个测试煤板中的各个测试煤板为同一个煤板进行分割后得到的多个测试煤板。这样可以降低测试煤板之间的结构差异对测试结果的影响。
可选地,各个测试煤板的微波辐射前后的测试条件相同,这样保证了数据的可靠性,避免了不同测试条件所产生的测试结果存在误差的情况。例如,测试煤板A在辐射前后的测试条件相同。
步骤S304,基于上述第一导流能力值以及第二导流能力值得到验证结果。
在得到各个测试煤板在原始状态下的第一导流能力值,以及微波辐射状态下的第二导流能力值后,后通过对第一导流能力值和第二导流能力值进行比对分析,得出在微波辐射下测试煤板的导流能力的变化,证明微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
可选地,可以结合图4所示的步骤实现上述步骤S302的过程。
步骤S402,在第一测试条件下,分别测试至少一个测试煤板中的每个测试煤板在原始 状态下的参数,得到每个测试煤板的第一导流能力值。
在第一测试条件下,分别测试上述至少一个测试煤板中的每个测试煤板在进行微波辐射前的原始状态下的参数,得到每个测试煤板的第一导流能力值。
其中,作为一种可选的实施方式,可以参阅图5所示的步骤对上述步骤S402进行说明。
步骤S502,分别对至少一个测试煤板中的每个测试煤板进行第一次施压。
可选地,利用支撑剂充填层导流能力测试仪分别对上述至少一个测试煤板中的每个测试煤板进行第一次施压。进一步可选地,先将支撑剂充填层导流能力测试仪的闭合压力调整到120MPa以下,例如,调整到100~120MPa之间;然后通入氮气。
其中,支撑剂充填层导流能力测试仪可以测试在气测和液测两种不同流动情况下压裂裂缝的导流能力。本申请中测试流体介质采用了与天然气开发中流动性质相近的氮气,以便更好反映地层流动环境。
步骤S504,分别测试上述至少一个测试煤板中的每个测试煤板在第一次施压过程中的参数。
可选地,当施压过程中通入氮气时,分别测试上述至少一个测试煤板中的每个测试煤板在第一次施压过程中的参数,即测试氮气通过各个测试煤板的能力,或者是测试氮气在各个测试煤板中的流动情况,从而得到各个测试煤板在原始状态下的第一导流能力值。
步骤S404,分别对上述至少一个测试煤板中的每个测试煤板进行微波辐射。
分别对上述至少一个测试煤板中的每个测试煤板进行微波辐射。其中,作为一种可选的实施方式,可以结合图6所示的步骤对这一过程进行说明。
步骤S602,分别对上述至少一个测试煤板中的每个测试煤板进行加热,使每个测试煤板的含水饱和度保持在预设区间内。
分别对上述至少一个测试煤板中的每个测试煤板进行加热,使每个测试煤板的含水饱和度保持在预设区间内。例如,分别对至少一个测试煤板中的每个测试煤板进行不高于200℃的加热,使每个测试煤板的含水饱和度保持在0.5%~1.5%范围内。例如,使每个测试煤板的含水饱和度保持在1%左右。
步骤S604,分别对加热后的至少一个测试煤板中的每个测试煤板进行微波辐射。
各个测试煤板在进行微波辐射时,辐射时长以及微波的辐射功率可以不同;例如,测试煤板A的辐射时长为20s,辐射时的辐射功率为1000W,测试煤板B的辐射时长为15s,辐射时的辐射功率为1200W。各个测试煤板在进行微波辐射时,辐射时长以及微波的辐射功率还可以相同,例如,测试煤板A的辐射时长为30s,辐射时的辐射功率为1600W,测 试煤板B的辐射时长为30s,辐射时的辐射功率为1600W。各个测试煤板在进行微波辐射时,辐射时长以及微波的辐射功率还可以部分相同,例如,测试煤板A的辐射时长为30s,辐射时的辐射功率为1400W,测试煤板B的辐射时长为30s,辐射时的辐射功率为1600W;或者,测试煤板A的辐射时长为20s,辐射时的辐射功率为1600W,测试煤板B的辐射时长为30s,辐射时的辐射功率为1600W。
作为一种可选的实施方式,利用功率为600W~2400W之间的微波分别对加热后的至少一个测试煤板中的每个测试煤板进行微波辐射。例如,利用功率为1600W的微波分别对加热后的至少一个测试煤板中的每个测试煤板进行辐射时长为30s的微波辐射。
步骤S406,在上述第一测试条件下,分别测试微波辐射后的至少一个测试煤板中的每个测试煤板在微波辐射状态下的参数,得到每个测试煤板的第二导流能力值。
在第一测试条件下,分别测试至少一个测试煤板中的每个测试煤板在进行辐射后的微波辐射状态下的参数,得到每个测试煤板的第二导流能力值。
其中,该测试过程与微波辐射状态下的测试过程相同,即分别对微波辐射后的至少一个测试煤板中的每个测试煤板进行第二次施压;然后分别测试微波辐射后的至少一个测试煤板中的每个测试煤板在第二次施压过程中的参数,得到各个测试煤板在微波辐射状态下的第二导流能力值。
可选地,在进行第二次施压时,先将支撑剂充填层导流能力测试仪的闭合压力调整到40MPa以下,例如,调整到5~35MPa之间;然后通入氮气,测试氮气通过各个测试煤板的能力,或者测试氮气在各个测试煤板中的流动情况,得到各个测试煤板在微波辐射状态下的第二导流能力值。
在本申请中,通过在相同测试条件下,分别测试至少一个测试煤板中的每个测试煤板在原始状态下以及微波辐射状态下的参数,得到在原始状态下的第一导流能力值,以及微波辐射状态下的第二导流能力值;基于第一导流能力值以及第二导流能力值,得出在微波辐射下测试煤板的导流能力的变化,证明了微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
根据本申请,还提供了一种验证煤层气微波开采可行性的实验方法,该方法中利用了测试煤岩。参见图7所示的一种验证煤层气微波开采可行性的实验方法的流程图,该方法包括如下步骤:
步骤S702,提供多个测试煤岩,在不同测试条件下,分别测试多个测试煤岩中的每个 测试煤岩在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射状态下的第二参数。
提供多个测试煤岩,在不同测试条件下,分别测试多个测试煤岩中的每个测试煤岩在微波辐射前后的参数,得到各个测试煤岩在进行微波辐射前的原始状态下的第一参数,以及在进行微波辐射后的微波辐射状态下的第二参数。
其中,上述第一参数和第二参数均包括孔隙度以及渗透率。孔隙度以及渗透率的测量方法可以参照相关现有技术,这里不再赘述。
本实施例中,各个测试煤岩的测试条件不同,例如,测试煤岩A的测试条件与测试煤岩B的测试条件不同。
可选地,上述多个测试煤岩中的各个测试煤岩为同一个煤岩进行分割后得到的多个测试煤岩。这样可以降低测试煤岩之间的结构差异对测试结果的影响。
可选地,各个测试煤岩的微波辐射前后的测试条件相同,这样保证了数据的可靠性,避免了不同测试条件所产生的测试结果存在误差的情况。例如,测试煤岩A在辐射前后的测试条件相同。
步骤S704,基于上述第一参数以及第二参数得到验证结果。
在得到各个测试煤岩在原始状态下的第一参数,以及微波辐射状态下的第二导参数后,通过对第一参数和第二参数进行比对分析,得出在不同测试条件下测试煤岩的孔隙度、渗透率等的变化,证明微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
可选地,可以结合图8所示的步骤实现上述步骤S702的过程。
步骤S802,分别测试多个测试煤岩中的每个测试煤岩在微波辐射前的原始状态下的参数,得到每个测试煤岩的第一参数。
作为一种可选的实施方式,可以结合图9所示的步骤对该过程进行说明。
步骤S902,分别对多个测试煤岩中的每个测试煤岩进行加热,使每个测试煤岩的含水饱和度相同。
分别对多个测试煤岩中的每个测试煤岩进行加热,使每个测试煤岩的含水饱和度相同,例如,使每个测试煤岩的含水饱和度保持在0.5%~2.5%内的某一数值左右,诸如,使每个测试煤岩的含水饱和度保持在1%左右。
步骤S904,分别测试加热后的多个测试煤岩中的每个测试煤岩在微波辐射前的原始状态下的参数。
在保证相同含水饱和度的前提下,分别测试每个测试煤岩在微波辐射前的原始状态下的参数,例如,选用含水饱和度为1%的多个测试煤岩进行测试。
作为另一种可选的实施方式,分别对多个测试煤岩中的每个测试煤岩进行加热,使每个测试煤岩的含水饱和度不同,例如,使每个测试煤岩的含水饱和度保持在0%~2.5%范围内的某个数值左右,例如,0%、0.5%、1%、1.5%、2%、2.5%等。然后在保证含水饱和度不同的前提下,分别测试每个测试煤岩在微波辐射前的原始状态下的参数。
可选地,分别对多个测试煤岩中的每个测试煤岩进行加热时,其加热温度不高于200℃,即分别对多个测试煤岩中的每个测试煤岩进行不高于200℃的加热。
其中,需要说明的是,作为一种替代的方式,也可以是直接选用含水饱和度相同或不同的测试煤岩来进行测试,无需通过加热的方式,使每个测试煤岩的含水饱和度不同或相同。
步骤S804,分别对多个测试煤岩中的每个测试煤岩进行微波辐射。
作为一种可选的实施方式,多个测试煤岩中的每个测试煤岩的含水饱和度相同时,该过程包括:利用相同功率的微波分别对多个测试煤岩中的每个测试煤岩进行不同时长的微波辐射。例如,选用功率为600W~2400W之间的某一数值的微波分别对所述多个测试煤岩中的每个测试煤岩进行不同时长的微波辐射。例如,选用功率为1600W微波分别对多个测试煤岩中的每个测试煤岩进行不同时长的微波辐射。
其中,为了便于理解,假设有4个含水饱和度相同的测试煤岩(例如,含水饱和度均为1%),分别为测试煤岩A、测试煤岩B、测试煤岩C、测试煤岩D,则上述过程可以表示为:选用功率为1600W微波对测试煤岩A进行时长为10s的微波辐射,选用功率为1600W微波对测试煤岩B进行时长为15s的微波辐射,选用功率为1600W微波对测试煤岩C进行时长为20s的微波辐射,选用功率为1600W微波对测试煤岩D进行时长为30s的微波辐射等。
可选地,多个测试煤岩中的每个测试煤岩的含水饱和度相同时,该过程包括:利用不同功率的微波分别对多个测试煤岩中的每个测试煤岩进行相同时长的微波辐射。例如,选用功率为600W~2400W之间的多个数值的微波分别对多个测试煤岩中的每个测试煤岩进行相同时长的微波辐射。
其中,为了便于理解,假设有4个含水饱和度相同的测试煤岩(例如,含水饱和度均为1%),分别为测试煤岩A、测试煤岩B、测试煤岩C、测试煤岩D,则上述过程可以表示为:选用功率为1000W微波对测试煤岩A进行时长为30s的微波辐射,选用功率为1200 W微波对测试煤岩B进行时长为30s的微波辐射,选用功率为1400W微波对测试煤岩C进行时长为30s的微波辐射,选用功率为1600W微波对测试煤岩D进行时长为30s的微波辐射等。
作为另一种可选的实施方式,多个测试煤岩中的每个测试煤岩的含水饱和度不同时,该过程包括:利用相同功率的微波分别对多个测试煤岩中的每个测试煤岩进行相同时长的微波辐射。例如,选用功率为600W~2400W之间的某一数值的微波分别对多个测试煤岩中的每个测试煤岩进行相同时长的微波辐射。
其中,为了便于理解,假设有4个含水饱和度不同的测试煤岩,分别为测试煤岩A(例如,含水饱和度为0%)、测试煤岩B(例如,含水饱和度为1%)、测试煤岩C(例如,含水饱和度为2%)、测试煤岩D(例如,含水饱和度为2.5%),则上述过程可以表示为:选用功率为1600W微波对测试煤岩A进行时长为30s的微波辐射,选用功率为1600W微波对测试煤岩B进行时长为30s的微波辐射,选用功率为1600W微波对测试煤岩C进行时长为30s的微波辐射,选用功率为1600W微波对测试煤岩D进行时长为30s的微波辐射等。
其中,需要特别说明的是,上述示意的功率如,1000W、1200W、1400W、1600W等并不能理解成是对本申请的限制,其选用的微波功率只要在600W~2400W之间的任一数值均可。同理,上述示意的时长,如10s、15s、20s、30s等并不能理解成是对本申请的限制,其只要在合理范围内,均应包含在本申请所要保护的范围内。
步骤S806,分别测试微波辐射后的多个测试煤岩中的每个测试煤岩在微波辐射状态下的参数,得到每个测试煤岩的第二参数。
微波辐射完成后,分别测试微波辐射后的多个测试煤岩中的每个测试煤岩在微波辐射状态下的参数,得到每个测试煤岩的第二参数。
其中,上述第二参数包括测试煤岩的孔隙度以及渗透率。
其中,需要说明的是,本实施例中,可以分别测试含水饱和度相同的多个煤岩利用不同功率的微波辐射进行相同时长的微波辐射前后的参数变化。也可以测试含水饱和度相同的多个煤岩利用相同功率的微波辐射进行不同时长的微波辐射前后的参数变化。还可以测试含水饱和度不同的多个煤岩利用相同功率的微波辐射进行相同时长的微波辐射前后的参数变化。
为了便于理解上述过程,本申请实施例提供了一种示例性的测试数据,如下表2所示,测试组数1、2、3、4构成一组不同微波加热功率、相同微波加热时长、相同煤岩含水饱和 度的测试煤粉,测试组数4、5、6构成一组相同微波加热功率、不同微波加热时长、相同煤岩含水饱和度的测试煤粉,测试组数7、8、9、10构成一组相同微波加热功率、相同微波加热时长、不同煤岩含水饱和度的测试煤粉。
表2
测试组数 微波加热功率(W) 微波加热时长(s) 煤岩含水饱和度(%)
1 1000 30 1
2 1200 30 1
3 1400 30 1
4 1600 30 1
5 1600 20 1
6 1600 10 1
7 1600 30 0
8 1600 30 1
9 1600 30 2
10 1600 30 2.5
本实施例中,通过在不同测试条件下,分别测试多个测试煤岩中的每个测试煤岩在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射状态下的第二参数,其中,第一参数和第二参数均包括孔隙度以及渗透率;基于第一参数以及第二参数,得出在不同测试条件下测试煤岩的孔隙度、渗透率等的变化,证明了微波辐射开采煤层气的可行性,并为该工艺提供理论指导。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
在本申请所提供的几个实施例中,应该理解到,所揭露方法,也可以通过其它的方式实现。以上所描述的方法实施例仅仅是示意性的,例如,附图中的流程图显示了根据本申请的多个实施例的方法的可能实现的体系架构、功能和操作。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖 非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性:
通过应用本申请的技术方案,能够证明微波辐射开采煤层气的可行性,并为该工艺提供理论指导。

Claims (20)

  1. 一种验证煤层气微波开采可行性的实验方法,其特征在于,包括:
    提供多个测试煤粉,在不同测试条件下,分别测试每个所述测试煤粉在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射之后的第二参数,其中,所述第一参数和所述第二参数均包括所述测试煤粉的孔径和比表面积;
    基于所述第一参数以及所述第二参数得到验证结果。
  2. 根据权利要求1所述的实验方法,其特征在于,分别测试每个所述测试煤粉在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射之后的第二参数,包括:
    分别测试每个所述测试煤粉在微波辐射前的原始状态下的参数,得到每个所述测试煤粉的所述第一参数;
    分别对每个所述测试煤粉进行微波辐射;
    分别测试微波辐射后的每个所述测试煤粉在微波辐射之后的参数,得到每个所述测试煤粉的所述第二参数。
  3. 根据权利要求2所述的实验方法,其特征在于,对每个所述测试煤粉进行微波辐射的微波功率为1000~2000W,单次辐射的时长为10~50s。
  4. 根据权利要求2或3所述的实验方法,其特征在于,对所述测试煤粉进行微波辐射的温度不高于200℃。
  5. 根据权利要求2-4中任一项所述的实验方法,其特征在于,对所述测试煤粉进行微波辐射的方式为:每个所述测试煤粉分别在不同的微波功率下辐射固定的时长。
  6. 根据权利要求2-4中任一项所述的实验方法,其特征在于,对所述测试煤粉进行微波辐射的方式为:多个所述测试煤粉在相同的微波功率下辐射不同的时长。
  7. 一种验证煤层气微波开采可行性的实验方法,其特征在于,包括:
    提供至少一个测试煤板,在相同测试条件下,分别测试所述至少一个测试煤板中的每个测试煤板在原始状态下以及微波辐射状态下的参数,得到在原始状态下的第一导流能力值,以及微波辐射状态下的第二导流能力值;
    基于所述第一导流能力值以及所述第二导流能力值得到验证结果。
  8. 根据权利要求7所述的方法,其特征在于,分别测试所述至少一个测试煤板中的每个测试煤板在原始状态下以及微波辐射状态下的参数,得到在原始状态下的第一导流能力值,以及微波辐射状态下的第二导流能力值,包括:
    在第一测试条件下,分别测试所述至少一个测试煤板中的每个测试煤板在原始状态下 的参数,得到每个测试煤板的第一导流能力值;
    分别对所述至少一个测试煤板中的每个测试煤板进行微波辐射;
    在所述第一测试条件下,分别测试微波辐射后的所述至少一个测试煤板中的每个测试煤板在微波辐射状态下的参数,得到每个测试煤板的第二导流能力值。
  9. 根据权利要求8所述的方法,其特征在于,分别测试所述至少一个测试煤板中的每个测试煤板在原始状态下的参数,包括:
    分别对所述至少一个测试煤板中的每个测试煤板进行第一次施压;
    分别测试所述至少一个测试煤板中的每个测试煤板在第一次施压过程中的参数。
  10. 根据权利要求9所述的方法,其特征在于,分别对所述至少一个测试煤板中的每个测试煤板进行第一次施压之后,所述方法还包括:
    在对所述至少一个测试煤板中的每个测试煤板进行第一次施压的过程中,通入氮气;
    分别测试所述至少一个测试煤板中的每个测试煤板在第一次施压过程中的参数,包括:
    分别测试所述至少一个测试煤板中的每个测试煤板在通入氮气过程中的参数。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,分别对所述至少一个测试煤板中的每个测试煤板进行微波辐射,包括:
    分别对所述至少一个测试煤板中的每个测试煤板进行加热,使每个测试煤板的含水饱和度保持在预设区间内;
    分别对加热后的所述至少一个测试煤板中的每个测试煤板进行微波辐射。
  12. 根据权利要求8-11中任一项所述的方法,其特征在于,分别测试微波辐射后的所述至少一个测试煤板中的每个测试煤板在微波辐射状态下的参数,包括:
    分别对微波辐射后的所述至少一个测试煤板中的每个测试煤板进行第二次施压;
    分别测试微波辐射后的所述至少一个测试煤板中的每个测试煤板在第二次施压过程中的参数。
  13. 根据权利要求12所述的方法,其特征在于,分别对微波辐射后的所述至少一个测试煤板中的每个测试煤板进行第二次施压之后,所述方法还包括:
    在对微波辐射后的所述至少一个测试煤板中的每个测试煤板进行第二次施压的过程中,通入氮气;
    分别测试微波辐射后的所述至少一个测试煤板中的每个测试煤板在第二次施压过程中的参数,包括:
    分别测试所述氮气通过微波辐射后的所述至少一个测试煤板中的每个测试煤板的参数。
  14. 一种验证煤层气微波开采可行性的实验方法,其特征在于,包括:
    提供多个测试煤岩,在不同测试条件下,分别测试所述多个测试煤岩中的每个测试煤岩在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射状态下的第二参数,其中,所述第一参数和所述第二参数均包括孔隙度以及渗透率;
    基于所述第一参数以及所述第二参数得到验证结果。
  15. 根据权利要求14所述的方法,其特征在于,分别测试所述多个测试煤岩中的每个测试煤岩在微波辐射前后的参数,得到在原始状态下的第一参数,以及微波辐射状态下的第二参数,包括:
    分别测试所述多个测试煤岩中的每个测试煤岩在微波辐射前的原始状态下的参数,得到每个测试煤岩的第一参数;
    分别对所述多个测试煤岩中的每个测试煤岩进行微波辐射;
    分别测试微波辐射后的所述多个测试煤岩中的每个测试煤岩在微波辐射状态下的参数,得到每个测试煤岩的第二参数。
  16. 根据权利要求15所述的方法,其特征在于,分别测试所述多个测试煤岩中的每个测试煤岩在微波辐射前的原始状态下的参数,包括:
    分别对所述多个测试煤岩中的每个测试煤岩进行加热,使每个测试煤岩的含水饱和度相同;
    分别测试加热后的所述多个测试煤岩中的每个测试煤岩在微波辐射前的原始状态下的参数。
  17. 根据权利要求15所述的方法,其特征在于,分别测试所述多个测试煤岩中的每个测试煤岩在微波辐射前的原始状态下的参数,包括:
    分别对所述多个测试煤岩中的每个测试煤岩进行加热,使每个测试煤岩的含水饱和度不同;
    分别测试加热后的所述多个测试煤岩中的每个测试煤岩在微波辐射前的原始状态下的参数。
  18. 根据权利要求15或16所述的方法,其特征在于,所述多个测试煤岩中的每个测试煤岩的含水饱和度相同时,分别对所述多个测试煤岩中的每个测试煤岩进行微波辐射,包括:
    利用相同功率的微波分别对所述多个测试煤岩中的每个测试煤岩进行不同时长的微波辐射。
  19. 根据权利要求15或16所述的方法,其特征在于,所述多个测试煤岩中的每个测 试煤岩的含水饱和度相同时,分别对所述多个测试煤岩中的每个测试煤岩进行微波辐射,包括:
    利用不同功率的微波分别对所述多个测试煤岩中的每个测试煤岩进行相同时长的微波辐射。
  20. 根据权利要求15或17所述的方法,其特征在于,所述多个测试煤岩中的每个测试煤岩的含水饱和度不同时,分别对所述多个测试煤岩中的每个测试煤岩进行微波辐射,包括:
    利用相同功率的微波分别对所述多个测试煤岩中的每个测试煤岩进行相同时长的微波辐射。
PCT/CN2019/087478 2018-08-02 2019-05-17 验证煤层气微波开采可行性的实验方法 WO2020024658A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810873668.5A CN109115659A (zh) 2018-08-02 2018-08-02 一种验证煤层气微波开采可行性的实验方法
CN201810874263.3 2018-08-02
CN201810876216.2A CN109025910A (zh) 2018-08-02 2018-08-02 一种利用煤岩验证煤层气微波开采的方法
CN201810876216.2 2018-08-02
CN201810873668.5 2018-08-02
CN201810874263.3A CN108915642A (zh) 2018-08-02 2018-08-02 一种利用煤板验证煤层气微波开采的方法

Publications (1)

Publication Number Publication Date
WO2020024658A1 true WO2020024658A1 (zh) 2020-02-06

Family

ID=69230994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087478 WO2020024658A1 (zh) 2018-08-02 2019-05-17 验证煤层气微波开采可行性的实验方法

Country Status (1)

Country Link
WO (1) WO2020024658A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2059769A1 (en) * 1992-01-21 1993-07-22 Anoosh Kiamanesh In-situ tuned microwave oil extraction process
CN102261238A (zh) * 2011-08-12 2011-11-30 中国石油天然气股份有限公司 微波加热地下油页岩开采油气的方法及其模拟实验系统
CN103696746A (zh) * 2013-12-25 2014-04-02 辽宁工程技术大学 一种微波激励煤层气解吸渗流实验装置
CN108915642A (zh) * 2018-08-02 2018-11-30 西南石油大学 一种利用煤板验证煤层气微波开采的方法
CN109025910A (zh) * 2018-08-02 2018-12-18 西南石油大学 一种利用煤岩验证煤层气微波开采的方法
CN109115659A (zh) * 2018-08-02 2019-01-01 西南石油大学 一种验证煤层气微波开采可行性的实验方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2059769A1 (en) * 1992-01-21 1993-07-22 Anoosh Kiamanesh In-situ tuned microwave oil extraction process
CN102261238A (zh) * 2011-08-12 2011-11-30 中国石油天然气股份有限公司 微波加热地下油页岩开采油气的方法及其模拟实验系统
CN103696746A (zh) * 2013-12-25 2014-04-02 辽宁工程技术大学 一种微波激励煤层气解吸渗流实验装置
CN108915642A (zh) * 2018-08-02 2018-11-30 西南石油大学 一种利用煤板验证煤层气微波开采的方法
CN109025910A (zh) * 2018-08-02 2018-12-18 西南石油大学 一种利用煤岩验证煤层气微波开采的方法
CN109115659A (zh) * 2018-08-02 2019-01-01 西南石油大学 一种验证煤层气微波开采可行性的实验方法

Similar Documents

Publication Publication Date Title
Huang et al. Improving coal permeability using microwave heating technology—A review
Kwon et al. Surface-erosion behaviour of biopolymer-treated soils assessed by EFA
Gamadi et al. An experimental study of cyclic CO2 injection to improve shale oil recovery
Kang et al. Temporary sealing technology to control formation damage induced by drill-in fluid loss in fractured tight gas reservoir
Hu et al. Experimental investigation on variation of physical properties of coal samples subjected to microwave irradiation
Liu et al. Experimental evaluation of ultrasound treatment induced pore structure and gas desorption behavior alterations of coal
Sharma et al. A practical method to calculate polymer viscosity accurately in numerical reservoir simulators
Mou et al. Experimental investigation on tool-free multi-stage acid fracturing of open-hole horizontal wells by using diversion agents
Hascakir et al. Experimental and numerical modeling of heavy-oil recovery by electrical heating
Wang et al. Numerical simulation of preformed particle gel flooding for enhancing oil recovery
Wang et al. Microwave irradiation’s effect on promoting coalbed methane desorption and analysis of desorption kinetics
Yu et al. Enhanced oil recovery ability of branched preformed particle gel in heterogeneous reservoirs
Abedi et al. Experimental study of polymer flooding in fractured systems using five-spot glass micromodel: the role of fracture geometrical properties
Sarapardeh et al. Application of fast-SAGD in naturally fractured heavy oil reservoirs: A case study
WO2020024658A1 (zh) 验证煤层气微波开采可行性的实验方法
Wang et al. A novel high-temperature gel to control the steam channeling in heavy oil reservoir
Zhang et al. Breakage features of coal treated by cyclic single pulse electrical disintegration
Li et al. Investigation on the thermal cracking of shale under different cooling modes
CN105784965A (zh) 基于模拟实验的地史演化测试方法和系统
Wang et al. Laboratory measurements of methane desorption behavior on coal under different modes of real-time microwave loading
Kolchanov et al. Effective Zonal Isolation in Horizontal Wells: Mitigating Negative Impact of Mud Channels
Longinos et al. Cryofracturing effectiveness using liquid nitrogen on granite: Fracture toughness and Brazilian tests following freezing-thawing cycle
Wu et al. An Innovative EOR Theory For the Target of 70% Recovery Factor—Synchronous Diversion-flooding Technology Mechanism and Verification by Physical Modeling and Pilot Test
Nguyen et al. Development of structure-property relationships for steam foam additives for heavy oil recovery
Abu-Shiekah et al. Conformance control treatments for water and chemical flooding: opportunity and risk evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844433

Country of ref document: EP

Kind code of ref document: A1