WO2020022594A1 - Visible-light-active catalyst powder - Google Patents

Visible-light-active catalyst powder Download PDF

Info

Publication number
WO2020022594A1
WO2020022594A1 PCT/KR2019/000493 KR2019000493W WO2020022594A1 WO 2020022594 A1 WO2020022594 A1 WO 2020022594A1 KR 2019000493 W KR2019000493 W KR 2019000493W WO 2020022594 A1 WO2020022594 A1 WO 2020022594A1
Authority
WO
WIPO (PCT)
Prior art keywords
visible light
normal distribution
active catalyst
catalyst powder
light active
Prior art date
Application number
PCT/KR2019/000493
Other languages
French (fr)
Korean (ko)
Inventor
이엽
김효중
이동일
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180157234A external-priority patent/KR102395008B1/en
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to JP2021504468A priority Critical patent/JP7101863B2/en
Priority to CN201980049778.2A priority patent/CN112512684A/en
Publication of WO2020022594A1 publication Critical patent/WO2020022594A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation

Definitions

  • a visible light active catalyst powder is provided.
  • Representative photocatalyst material TiO 2 has the advantages of excellent durability and wear resistance, a safe and nontoxic material, and low price. On the other hand, because the bandgap energy is large and can absorb only the light below the ultraviolet light, it must be used together with a separate ultraviolet supply device or used outdoors in the ultraviolet-rich environment, and there is a limit to the application indoors or under the LED.
  • One embodiment of the present invention provides a visible light active catalyst powder having improved visible light responsiveness and having improved photocatalytic performance.
  • the visible light active catalyst powder including the composite particles, the composite particles are platinum particles; Tungsten oxide particles, wherein the tungsten oxide particles carry the platinum particles, and the XPS spectrum for 4f 7/2 of Pt measured for the visible light active catalyst powder is at least one through the Voit function.
  • the normal distribution of is extracted, and one normal distribution extracted through the Void function is the first normal distribution having a first peak at binding energies 70.8 eV to 71.2 eV, and integrates the XPS spectrum with respect to 4f 7/2 of Pt.
  • a visible light active catalyst powder having a ratio of an integrated area of the first normal distribution to an area of 85% or more.
  • the XPS spectrum for 7/2 has a first peak having at least one normal distribution extracted through the Voit function, and one normal distribution extracted through the Void function having a first peak at binding energies 70.8 eV to 71.2 eV.
  • a normal distribution wherein the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum with respect to 4f 7/2 of Pt is 85% or more.
  • the visible light active catalyst powder can further improve visible light responsiveness, excellent photocatalytic efficiency, and economic efficiency in a manufacturing process.
  • FIG. 1 is a schematic diagram of visible light active catalyst particles according to an embodiment of the present invention.
  • FIG. 2 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder from Example 1.
  • FIG. 3 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder from Example 2.
  • FIG. 4 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder obtained in Comparative Example 1.
  • FIG. 4 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder obtained in Comparative Example 1.
  • FIG. 5 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder obtained in Comparative Example 2.
  • a visible light active catalyst powder comprising the composite particles.
  • the composite particles are platinum particles; And tungsten oxide particles, wherein the tungsten oxide particles carry the platinum particles.
  • the visible light active catalyst powder may be formed as an aggregate of the composite particles.
  • the XPS spectrum of 4f 7/2 of Pt measured for the visible light active catalyst powder has at least one normal distribution extracted through a Voit function, and one normal distribution extracted through the Void function is 70.8 to A first normal distribution having a first peak at 71.2, and the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum with respect to 4f 7/2 of Pt may be 85% or more.
  • the XPS spectrum for 4f 7/2 of Pt may match the first normal distribution, in which case the first normal to the integral area of the XPS spectrum for 4f 7/2 of Pt The percentage of integrated areas of the distribution is 100%.
  • a second normal distribution with a second peak at 71.8 to 72.2 can be extracted from the XPS spectrum for 4f 7/2 of the Pt through the Void function,
  • the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum with respect to 4f 7/2 of Pt may be 85% or more and less than 100%.
  • X-ray photoelectron spectroscopy (XPS) spectra for 4f 7/2 of Pt may be used as an XPS measuring apparatus of ESCA manufactured by Sigma Probe.
  • the first normal distribution and the second normal distribution are obtained by extracting through a Voit function from the XPS spectrum for 4f 7/2 of Pt, measured for the visible light active catalyst powder, for example, Voigt amplitude It can be obtained by using the R 2 value to be 0.999 or more.
  • the composite particles are formed in a form in which nanoparticles of platinum particles are supported on a surface of the tungsten oxide particles.
  • the platinum particles are reduced and formed from a platinum precursor in accordance with the production method described below.
  • the platinum precursor is H 2 PtCl 6
  • the oxidation number of Pt is +4
  • Pt 4+ ions are reduced to form platinum particles in the composite particles.
  • Platinum particles in the composite particles can be effectively reduced to the visible light activity when the oxidation number is zero.
  • Platinum particles having an oxidation number of zero mean that they are supported in a metal state rather than an ion.
  • platinum particles of the composite particles also occur when the oxidation number is +2.
  • Platinum particles in an ionic state such as Pt 2+ , produced by incomplete reduction of platinum in the manufacturing process, do not function as cocatalysts during the photocatalytic reaction of the composite particles, but rather interfere with photocatalytic reactions such as harmful gas removal Lowers the overall efficiency. That is, the platinum particles supported in the ionic state may cause a decrease in performance because they inhibit the photocatalytic reaction of the composite particles as the visible light active catalyst.
  • the content of the platinum particles supported in the ionic state increases, it can be seen that the expensive platinum precursor was wasted.
  • FIG. 1 is a cross-sectional view schematically showing a composite particle 10 according to an embodiment of the present invention.
  • the composite particle 10 includes tungsten oxide particles 1 and platinum particles 2.
  • the platinum particles 2 are not distinguished according to the oxidation number, but the platinum particles when the oxidation number is not 0 or when the oxidation number is +2 are mixed with the platinum particles having the oxidation number 0.
  • the platinum particles are not distinguished according to the oxidation number, but the platinum particles when the oxidation number is not 0 or when the oxidation number is +2 are mixed with the platinum particles having the oxidation number 0.
  • the composite particle 10 is a material capable of purifying air, deodorizing, and antibacterial by generating surface active oxygen such as superoxide anion or hydroxy radicals generated from energy obtained by absorbing light.
  • surface active oxygen such as superoxide anion or hydroxy radicals generated from energy obtained by absorbing light.
  • the superoxide anion or hydroxy radicals generated by the photoactive action of the multiparticulates can decompose harmful substances such as acetaldehyde, ammonia, formaldehyde, acetic acid, TVOC, and the like, such as Escherichia coli and Staphylococcus aureus. Antibacterial action is possible against bacteria.
  • the composite particle 10 may be activated not only by ultraviolet light but also by visible light, it may show excellent efficiency even in an indoor light source, and thus may not require a separate ultraviolet light supply device.
  • the composite particles have excellent visible light activity because of the high content of platinum particles having zero oxidation number in the total platinum particles.
  • the visible light active catalyst powder increases the economics in the manufacturing process and reduces the waste of precursors.
  • the composite particles may have an advantage of improving the photocatalyst performance as the content of platinum particles having zero oxidation number is increased and increasing the complete decomposition probability of the reaction intermediate when decomposing harmful gases.
  • the harmful gas is decomposed by the visible light active catalyst powder, the probability that the reaction intermediate is completely decomposed into water and CO 2 increases.
  • the XPS spectrum of 4f 7/2 of Pt is measured with respect to the binding energy of electrons belonging to the 4f electron shell of platinum particles contained in the visible light active catalyst powder. Since the first normal distribution has a peak at about 70.8 eV to 71.2 eV, specifically about 71.0 eV, the first normal distribution is associated with platinum particles having an oxidation number of 0, and the second normal distribution is a binding energy. Has a second peak at around 71.8 eV to 72.2 eV, specifically around 72.0 eV, and thus relates to platinum particles having an oxidation number of +2.
  • a mass ratio of platinum particles having an oxidation number of 0 and platinum particles having an oxidation number of +2 is obtained in comparison with the integration area of the first normal distribution and the integration area of the second normal distribution.
  • the ratio of the integral area of the first normal distribution is 85% or more, specifically, 90% to 100% in the sum of the integral areas of the first normal distribution and the integral area of the second normal distribution.
  • platinum particles in the visible light active catalyst powder are formed of platinum particles having an oxidation number of 0, and the XPS spectrum of 4f 7/2 of Pt may itself be the first normal distribution, in which case, the The ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum with respect to 4f 7/2 of Pt is 100% (see the case of Example 1 described later).
  • a normal distribution of platinum having another oxidation number may be further extracted from the normal distribution extracted from the XPS spectrum of the 4f 7/2 of Pt through the Voit function.
  • the higher the content of platinum particles having zero oxidation number the better the photocatalytic performance, and therefore, there is no normal distribution for platinum particles having different oxidation numbers, or the integral area thereof is relatively small.
  • the first normal distribution and the second normal distribution are obtained with an R 2 value of 0.999 or more, and have excellent accuracy of normal fitting.
  • the tungsten oxide particles 1 may be formed as spherical, plate or needle shaped particles by, for example, a sol-gel method or a hydrothermal method as a carrier, but the shape thereof is not limited.
  • the tungsten oxide particles 1 are excellent in visible light activity performance.
  • the platinum particles 2 may be supported on the porous metal oxide by photodeposition, but are not limited thereto.
  • the platinum particles 2 act as cocatalysts to facilitate separation of electrons and holes from energy obtained by absorbing light.
  • the average diameter of the tungsten oxide particles 1 used in the production of the composite particles 10 may be calculated by electron microscopic measurements such as SEM image analysis, for example, the average diameter is about 30 nanometers (nm) to It may be used that is about 500 nanometers (nm). If the average diameter of the tungsten oxide particles (1) is too large exceeding the above range, it is impossible to form a stable coating liquid when the visible light active catalyst powder is dispersed in a solvent, and at the time of manufacturing a filter using the visible light active catalyst powder It may not be suitable for the process of coating the visible light active catalyst powder. If the diameter of the tungsten oxide particles 1 is too small below the range, the platinum particles 2 may be difficult to be stably supported.
  • the average particle diameter of the composite particle 10 is about 1 micrometer ( ⁇ m) or less, specifically, about 0.2 micrometers to about 1 micrometer, for example, about 0.4 micrometers to about 0.5 micrometers.
  • the average particle diameter of the composite particle 10 may be obtained by measuring a water dispersion of about 4 wt% of a visible light active catalyst using a particle size analyzer (Beckman, LS 13 320).
  • the maximum particle diameter of the visible light active catalyst particles 10 is about 10 micrometers or less.
  • the visible light active catalyst particles 10 may include about 100 parts by weight of the tungsten oxide particles 1 and about 0.01 to about 5 parts by weight of the platinum particles 2. By adjusting their content in the weight ratio within the above range, while the tungsten oxide particles 1 sufficiently generate electrons and holes by visible light, the platinum particles 2 sufficiently prevent the recombination of the electrons and holes generated by the photocatalyst activity. The efficiency can be improved effectively.
  • the content of the tungsten oxide particles (1) exceeds the content range can easily recombine electrons and electrons generated by the visible light, it is difficult to separate them does not exhibit sufficient photocatalytic activity, less than the content range In this case, the number of electrons transferred from the tungsten oxide particles 1 may not be sufficiently secured, and thus the photocatalytic activity may be reduced, and the exposure area of the tungsten oxide particles 1 to light may be reduced, thereby degrading the photocatalytic performance. .
  • the specific surface area of the tungsten oxide particles 1 may be about 50 m 2 / g to about 500 m 2 / g.
  • the method for preparing the visible light active catalyst powder is performed by sequentially performing the following steps (a) to (c).
  • a tungsten oxide powder is mixed with a platinum precursor solution to prepare a slurry solution, and then the slurry solution is irradiated with light to undergo a first photoreaction.
  • tungsten oxide powder is prepared by grinding to a level of micro units or less in order to maximize the reaction area.
  • the platinum precursor compound for preparing the platinum precursor solution may be a material that can be reduced to platinum by electrons excited by light irradiation, and salt compounds dissolved in an aqueous solution may be used without limitation.
  • the concentration of the platinum precursor solution may be adjusted by the relative content with respect to the tungsten oxide powder so that the content of platinum to 100 parts by weight of tungsten oxide particles is about 0.01 parts by weight to about 5 parts by weight.
  • Platinum ions separated from the platinum precursor during the first photoreaction of step (a) are attached to the surface of the tungsten oxide particles, and platinum ions attached to the surface of the tungsten oxide particle during the secondary photoreaction of step (b) It is understood that the reaction to be reduced occurs mainly.
  • the visible light active catalyst powder of the present invention can be obtained by adjusting various process conditions.
  • specific process conditions for synthesizing the above-described visible light active catalyst powder of the present invention will be described.
  • the ratio of the time for performing the first photoreaction (first photoreaction time) and the time for proceeding the second photoreaction (secondary photoreaction time) may be adjusted.
  • the secondary photoreaction does not significantly affect the final formation rate of the platinum particles of the oxidation number 0 because the second photoreaction proceeds at a very high speed. Good adhesion will affect the final formation rate of the platinum particles with zero oxidation number.
  • the first photoreaction may be performed for 4 hours to 24 hours.
  • the secondary photoreaction may be performed for 2 hours to 6 hours.
  • the first photoreaction time is longer than the second photoreaction time, specifically, the ratio of the first photoreaction time to the second photoreaction time may be 2: 1 to 12: 1.
  • step (a) and (b) it is important to sufficiently stir the slurry solution when performing each photoreaction of step (a) and (b) by the light irradiation.
  • an inert gas such as nitrogen may be injected into the slurry solution to allow the slurry solution to be stirred during the photoreaction.
  • the flow rate of the inert gas injected into the slurry solution may be 5 L / min to 30 L / min.
  • nitrogen may be used as the inert gas.
  • the stirring solution is superior to mechanical stirring, and the secondary effect of removing oxygen in the slurry solution may be obtained.
  • the concentration of tungsten oxide powder when preparing the slurry solution, may be 1 to 10 wt%.
  • the addition ratio of the alcohol may be 1 to 30 wt% of the slurry solution.
  • the viscosity of the slurry solution may be about 5.0 cP to about 8.0 cP at 25 ° C.
  • the viscosity of the slurry solution can be measured using a Brookfield viscometer (Spindle No. 61, speed: 200 rpm, measurement time: 30 seconds).
  • the intensity of light irradiation may be about 5,000 lux to about 100,000 lux, and the intensity of light irradiation in the second photoreaction may be higher than the intensity of light in the primary photoreaction. .
  • the intensity of the secondary light irradiation may be 1 to 10 times higher, specifically 3 to 5 times higher than the intensity of the primary light irradiation.
  • the catalyst recovery and drying step are optionally performed by centrifugation or the like.
  • a solution in which 7 wt% of tungsten oxide powder was dispersed in 93 wt% of water was prepared.
  • An average particle diameter of 1 ⁇ m tungsten oxide powder dispersion solution was mixed with a supported raw material of 10 wt% aqueous solution of platinum chloride (H 2 PtCl 6 ) to prepare a slurry solution such that the amount of platinum was 1 part by weight based on 100 parts by weight of tungsten oxide powder.
  • the viscosity of the slurry solution was 6.2 cP at 25 ° C. using a Brookfield viscometer (Spindle No. 61, speed: 200 rpm, measurement time: 30 seconds).
  • the slurry solution is introduced into a photoreactor, a gas generator is installed to be connected to the photoreactor, and during the subsequent first and second light irradiation, nitrogen generated from the gas generator is supplied to the slurry solution.
  • the slurry solution was allowed to stir directly into the interior of the mixture by nitrogen.
  • the introduced nitrogen had a purity of 98.00% and a flow rate of 10 L / min.
  • the primary light reaction was performed for 6 hours by irradiating visible light energy of 400 nm to 700 nm to the slurry solution in the photoreactor using a visible light irradiation device. Subsequently, the visible light irradiation was blocked for about 2 minutes and the proportion of methanol was added to 5 wt% in the slurry solution, and then the visible light energy was transferred to the slurry in the photoreactor using the same irradiation apparatus as the first photoreaction.
  • the platinum particles were supported on the tungsten oxide particles by irradiating the solution for 2 hours to carry out the secondary photoreaction to prepare a visible light active photocatalyst powder.
  • a visible light active photocatalyst powder was prepared in the same manner as in Example 1 except that the first photoreaction was performed for 4 hours and the second photoreaction was performed for 2 hours.
  • a visible light active photocatalyst powder was prepared in the same manner as in Example 1 except that the first photoreaction was performed for 2 hours and the second photoreaction was performed for 3 hours.
  • the first photoreaction is carried out for 4 hours
  • the second photoreaction is carried out for 2 hours
  • nitrogen is not injected directly into the slurry solution, but is introduced into the top of the slurry solution in the photoreactor and the slurry solution is mechanically stirred Except for the reference point, a visible light active photocatalyst powder was prepared.
  • XPS spectra of 4t 7/2 of Pt were obtained using X-ray Photoelectron Spectroscopy (ESCA, Sigma Probe) on the visible light active catalyst powders obtained in Example 1 and Comparative Examples 1-2.
  • the XPS spectrum of 4f 7/2 of Pt obtained above was fitted by Voigt amplitude to extract a normal distribution.
  • curve A is the XPS spectrum for 4f 7/2 of Pt
  • curve B corresponds to the first normal distribution having a peak at about 70.9
  • curve C corresponds to the second normal distribution.
  • R 2 of the normal distribution extracted in FIG. 3 is 0.99993.
  • a vessel containing 0.5 g of the visible light active catalyst powder was put in a gas bag, sealed, the remaining gas was drained, and 3 L of acetaldehyde 3 ppm gas was injected.
  • the illuminance of the light source was 25,000 lux.
  • Gas before injection and 30 minutes after injection are collected in a DNPH (2,4-dinitrophenylhydrazine) cartridge to obtain acetaldehyde concentration by high performance liquid chromatography (HPLC). By analyzing, acetaldehyde removal performance of each sample was calculated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

Provided is visible-light-active catalyst powder comprising composite particles, wherein the composite particles comprise: platinum particles; and tungsten oxide particles, wherein the tungsten oxide particles support the platinum particles, and the XPS spectrum of Pt 4f7/2, which is measured from the visible-light-active catalyst powder, has at least one normal distribution which is extracted through a Voigt function, wherein one normal distribution extracted through the Voigt function is a first normal distribution having a first peak at a binding energy of 70.8 eV to 71.2 eV, and the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum of Pt 4f7/2 is 85% or greater.

Description

가시광 활성 촉매 분말Visible light active catalyst powder
가시광 활성 촉매 분말에 관한 것이다.A visible light active catalyst powder.
대표적인 광촉매 물질인 TiO2는 내구성, 내마모성이 우수하고, 안전하고 무독한 물질이며, 가격이 저렴하다는 장점을 갖는다. 반면, 밴드갭 에너지가 커서 자외선 이하의 빛만을 흡수할 수 있어, 별도의 자외선 공급장치와 함께 사용하거나 자외선이 풍부한 실외에서 사용하여야 하고, 실내 또는 LED 하에서 적용하는 데에 한계가 있다. Representative photocatalyst material TiO 2 has the advantages of excellent durability and wear resistance, a safe and nontoxic material, and low price. On the other hand, because the bandgap energy is large and can absorb only the light below the ultraviolet light, it must be used together with a separate ultraviolet supply device or used outdoors in the ultraviolet-rich environment, and there is a limit to the application indoors or under the LED.
이러한 측면에서 실내 적용을 목적으로 가시광선을 흡수할 수 있는 가시광선에 광활성을 갖는 촉매 및 그의 제조 방법에 대한 연구가 많이 진행되어 왔다. 하지만, 수많은 연구사례에서 일관된 경향을 찾기 어렵고, 특히 실제 거주 조건에서 성능이 검증된 결과를 찾기 어렵다.In view of this, many studies have been conducted on a catalyst having photoactivity to visible light capable of absorbing visible light and a method of preparing the same for indoor application. However, it is difficult to find consistent trends in many case studies, particularly in the case of proven performance in real residential conditions.
본 발명의 일 구현예는 가시광 응답성이 향상되고, 보다 향상된 광촉매 성능을 갖는 가시광 활성 촉매 분말을 제공한다.One embodiment of the present invention provides a visible light active catalyst powder having improved visible light responsiveness and having improved photocatalytic performance.
본 발명의 일 구현예에서, 복합입자를 포함하는 가시광 활성 촉매 분말이고, 상기 복합입자는 백금 입자; 텅스텐 산화물 입자;를 포함하고, 상기 텅스텐 산화물 입자는 상기 백금 입자를 담지하고, 상기 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 스펙트럼은 보이트(Voigt) 함수를 통해 적어도 하나의 정규분포가 추출되고, 보이트 함수를 통해 추출된 하나의 정규분포가 결합 에너지 70.8 eV 내지 71.2 eV 에서 제1 피크를 갖는 제1 정규분포이고, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 상기 제1 정규분포의 적분 면적의 비율이 85% 이상인 가시광 활성 촉매 분말를 제공한다.In one embodiment of the present invention, the visible light active catalyst powder including the composite particles, the composite particles are platinum particles; Tungsten oxide particles, wherein the tungsten oxide particles carry the platinum particles, and the XPS spectrum for 4f 7/2 of Pt measured for the visible light active catalyst powder is at least one through the Voit function. The normal distribution of is extracted, and one normal distribution extracted through the Void function is the first normal distribution having a first peak at binding energies 70.8 eV to 71.2 eV, and integrates the XPS spectrum with respect to 4f 7/2 of Pt. Provided is a visible light active catalyst powder having a ratio of an integrated area of the first normal distribution to an area of 85% or more.
본 발명의 일 구현예에서, (a) 텅스텐 산화물 분말을 백금 전구체 용액에 혼합하여 슬러리 용액을 준비한 뒤, 상기 슬러리 용액을 광조사하여 1차 광반응을 진행하는 단계; 및 (b) 상기 슬러리 용액에 알코올을 첨가한 후, 광조사하여 2차 광반응을 진행하는 단계를 포함하는 가시광 활성 촉매 분말의 제조 방법이고, 상기 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 스펙트럼은 보이트(Voigt) 함수를 통해 적어도 하나의 정규분포가 추출되고, 보이트 함수를 통해 추출된 하나의 정규분포가 결합 에너지 70.8 eV 내지 71.2 eV 에서 제1 피크를 갖는 제1 정규분포이고, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 상기 제1 정규분포의 적분 면적의 비율이 85% 이상인 가시광 활성 촉매 분말의 제조 방법을 제공한다.In one embodiment of the present invention, (a) preparing a slurry solution by mixing the tungsten oxide powder in the platinum precursor solution, and then irradiating the slurry solution to the first photoreaction; And (b) adding alcohol to the slurry solution, followed by light irradiation to proceed with the secondary photoreaction, and measuring 4f of Pt as measured for the visible light active catalyst powder. The XPS spectrum for 7/2 has a first peak having at least one normal distribution extracted through the Voit function, and one normal distribution extracted through the Void function having a first peak at binding energies 70.8 eV to 71.2 eV. Provided is a normal distribution, wherein the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum with respect to 4f 7/2 of Pt is 85% or more.
상기 가시광 활성 촉매 분말은 가시광 응답성이 더욱 향상되고, 광촉매 효율이 우수하며, 제조 공정상 경제성을 확보할 수 있다.The visible light active catalyst powder can further improve visible light responsiveness, excellent photocatalytic efficiency, and economic efficiency in a manufacturing process.
도 1은 본 발명의 일 구현예에 따른 가시광 활성 촉매 입자의 모식도이다.1 is a schematic diagram of visible light active catalyst particles according to an embodiment of the present invention.
도 2는 실시예 1로부터 얻은 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 분석 그래프이다.2 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder from Example 1. FIG.
도 3은 실시예 2로부터 얻은 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 분석 그래프이다.FIG. 3 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder from Example 2.
도 4는 비교예 1로부터 얻은 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 분석 그래프이다.4 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder obtained in Comparative Example 1. FIG.
도 5는 비교예 2로부터 얻은 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 분석 그래프이다.5 is an XPS analysis graph of 4f 7/2 of Pt measured for the visible light active catalyst powder obtained in Comparative Example 2. FIG.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명의 일 구현예에서, 복합입자를 포함하는 가시광 활성 촉매 분말을 제공한다. 상기 복합입자는 백금 입자; 텅스텐 산화물 입자;를 포함하고, 상기 텅스텐 산화물 입자는 상기 백금 입자를 담지한다.In one embodiment of the present invention, there is provided a visible light active catalyst powder comprising the composite particles. The composite particles are platinum particles; And tungsten oxide particles, wherein the tungsten oxide particles carry the platinum particles.
상기 가시광 활성 촉매 분말은 상기 복합입자의 집합체로서 형성될 수 있다.The visible light active catalyst powder may be formed as an aggregate of the composite particles.
상기 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 스펙트럼은 보이트(Voigt) 함수를 통해 적어도 하나의 정규분포가 추출되고, 보이트 함수를 통해 추출된 하나의 정규분포가 70.8 내지 71.2에서 제1 피크를 갖는 제1 정규분포이고, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 상기 제1 정규분포의 적분 면적의 비율이 85% 이상일 수 있다.The XPS spectrum of 4f 7/2 of Pt measured for the visible light active catalyst powder has at least one normal distribution extracted through a Voit function, and one normal distribution extracted through the Void function is 70.8 to A first normal distribution having a first peak at 71.2, and the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum with respect to 4f 7/2 of Pt may be 85% or more.
일 구현예에서, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼은 상기 제1 정규분포와 일치할 수 있고, 이 경우, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 상기 제1 정규분포의 적분 면적의 비율이 100%가 된다.In one embodiment, the XPS spectrum for 4f 7/2 of Pt may match the first normal distribution, in which case the first normal to the integral area of the XPS spectrum for 4f 7/2 of Pt The percentage of integrated areas of the distribution is 100%.
일 구현예에서, 상기 제1 정규분포와 함께, 71.8 내지 72.2에서 제2 피크를 갖는 제2 정규분포가 상기 Pt의 4f7/2에 대한 XPS 스펙트럼으로부터 상기 보이트 함수를 통해 추출될 수 있고, 이 경우, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 상기 제1 정규분포의 적분 면적의 비율이 85% 이상 내지 100% 미만일 수 있다.In one embodiment, with the first normal distribution, a second normal distribution with a second peak at 71.8 to 72.2 can be extracted from the XPS spectrum for 4f 7/2 of the Pt through the Void function, In this case, the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum with respect to 4f 7/2 of Pt may be 85% or more and less than 100%.
상기 Pt의 4f7/2에 대한 XPS 스펙트럼으로부터 보이트 함수를 통해 추출된 정규분포로서, 상기 제1 정규분포 및 상기 제2 정규분포 이외에 추가적으로 다른 정규분포가 존재할 수 있다.As a normal distribution extracted through a Void function from the XPS spectrum of 4f 7/2 of Pt, there may be another normal distribution in addition to the first normal distribution and the second normal distribution.
상기 Pt의 4f7/2에 대한 XPS(X-ray Photoelectron Spectroscopy) 스펙트럼은 Sigma Probe 社 제조의 ESCA의 XPS 측정 장치를 사용할 수 있다.X-ray photoelectron spectroscopy (XPS) spectra for 4f 7/2 of Pt may be used as an XPS measuring apparatus of ESCA manufactured by Sigma Probe.
상기 제1 정규분포와 상기 제2 정규분포는 상기 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 스펙트럼으로부터 보이트(Voigt) 함수를 통해 추출하여 얻고, 예를 들어, Voigt amplitude 를 이용하고, R2 값 0.999 이상이 되도록 하여 얻어질 수 있다.The first normal distribution and the second normal distribution are obtained by extracting through a Voit function from the XPS spectrum for 4f 7/2 of Pt, measured for the visible light active catalyst powder, for example, Voigt amplitude It can be obtained by using the R 2 value to be 0.999 or more.
상기 복합입자는 상기 텅스텐 산화물 입자의 표면에 나노 크기의 백금 입자가 담지된 형태로 형성된다. The composite particles are formed in a form in which nanoparticles of platinum particles are supported on a surface of the tungsten oxide particles.
상기 백금 입자는 후술되는 제조 방법에 의하는 경우 백금 전구체로부터 환원되어 형성된다. 예를 들어, 상기 백금 전구체가 H2PtCl6인 경우 Pt의 산화수는 +4이고, 이러한 Pt4+ 이온이 환원되어 상기 복합입자 중 백금 입자로 형성된다. 상기 복합입자 중 백금 입자는 환원되어 산화수가 0이 되어야 효과적으로 가시광 활성 작용을 할 수 있다. 산화수가 0인 백금 입자는 이온이 아닌 금속 상태로 담지된 것을 의미한다. The platinum particles are reduced and formed from a platinum precursor in accordance with the production method described below. For example, when the platinum precursor is H 2 PtCl 6 , the oxidation number of Pt is +4, and such Pt 4+ ions are reduced to form platinum particles in the composite particles. Platinum particles in the composite particles can be effectively reduced to the visible light activity when the oxidation number is zero. Platinum particles having an oxidation number of zero mean that they are supported in a metal state rather than an ion.
그러나, 상기 복합입자 중 일부 백금 입자는 산화수가 +2 인 경우도 발생한다. 제조 공정 중에서 백금의 환원이 불완전하게 이루어져 생성되는 Pt2+와 같은 이온 상태의 백금 입자는, 상기 복합입자의 광촉매 반응시 조촉매로 제대로 작동하지 않고 오히려 유해가스 제거 반응과 같은 광촉매 반응을 방해하여 전체 효율을 저하시킨다. 즉, 이온 상태로 담지된 백금 입자는 복합입자의 가시광 활성 촉매로서의 광촉매 반응을 방해하기 때문에 성능의 저하를 유발할 수 있다. 또한, 이러한 이온 상태로 담지된 백금 입자의 함량이 높아지게 되면, 값 비싼 백금 전구체를 낭비한 것으로도 볼 수 있다.However, some platinum particles of the composite particles also occur when the oxidation number is +2. Platinum particles in an ionic state, such as Pt 2+ , produced by incomplete reduction of platinum in the manufacturing process, do not function as cocatalysts during the photocatalytic reaction of the composite particles, but rather interfere with photocatalytic reactions such as harmful gas removal Lowers the overall efficiency. That is, the platinum particles supported in the ionic state may cause a decrease in performance because they inhibit the photocatalytic reaction of the composite particles as the visible light active catalyst. In addition, when the content of the platinum particles supported in the ionic state increases, it can be seen that the expensive platinum precursor was wasted.
도 1은 본 발명의 일 구현예에 따른 복합입자(10)를 모식적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing a composite particle 10 according to an embodiment of the present invention.
도 1에서, 상기 복합입자(10)는 텅스텐 산화물 입자(1) 및 백금 입자(2)를 포함한다. 편의상, 도 1에서, 상기 백금 입자(2)는 산화수에 따라 구별하여 표시하지 않았으나, 산화수가 0이 아닌 경우, 또는 산화수가 +2인 경우의 백금 입자가 산화수가 0인 백금 입자와 혼재한다.In FIG. 1, the composite particle 10 includes tungsten oxide particles 1 and platinum particles 2. For convenience, in FIG. 1, the platinum particles 2 are not distinguished according to the oxidation number, but the platinum particles when the oxidation number is not 0 or when the oxidation number is +2 are mixed with the platinum particles having the oxidation number 0. In FIG.
상기 복합입자(10)는 광을 흡수하여 얻은 에너지로부터 생성된 전자와 정공이 수퍼옥사이드 음이온 또는 하이드록시 라디칼 등과 같은 표면 활성 산소를 생성함으로써 공기청정, 탈취, 항균 작용을 할 수 있는 물질이다. 예를 들어, 상기 복합입자의 광활성 작용에 의해 생성된 수퍼옥사이드 음이온 또는 하이드록시 라디칼은 아세트알데히드, 암모니아, 포름알데히드, 아세트산, TVOC 등과 같은 유해 물질을 분해할 수 있고, 대장균, 황색포도상구균 등의 세균에 대한 항균 작용이 가능하다. The composite particle 10 is a material capable of purifying air, deodorizing, and antibacterial by generating surface active oxygen such as superoxide anion or hydroxy radicals generated from energy obtained by absorbing light. For example, the superoxide anion or hydroxy radicals generated by the photoactive action of the multiparticulates can decompose harmful substances such as acetaldehyde, ammonia, formaldehyde, acetic acid, TVOC, and the like, such as Escherichia coli and Staphylococcus aureus. Antibacterial action is possible against bacteria.
상기 복합입자(10)는 자외선뿐만 아니라 가시광선에 의해서도 활성이 될 수 있으므로 실내 광원에서도 우수한 효율을 보일 수 있기 때문에, 별도의 자외선 공급 장치를 요하지 않을 수 있다.Since the composite particle 10 may be activated not only by ultraviolet light but also by visible light, it may show excellent efficiency even in an indoor light source, and thus may not require a separate ultraviolet light supply device.
상기 복합입자는 전체 백금 입자 중에서 산화수가 0인 백금 입자의 함량이 높기 때문에 우수한 가시광 활성 작용을 한다. 따라서, 상기 가시광 활성 촉매 분말은 제조 공정 상의 경제성을 높이고, 전구체의 낭비를 줄여준다.The composite particles have excellent visible light activity because of the high content of platinum particles having zero oxidation number in the total platinum particles. Thus, the visible light active catalyst powder increases the economics in the manufacturing process and reduces the waste of precursors.
한편, 상기 복합입자는 산화수가 0인 백금 입자의 함량이 높아짐에 따라 광촉매 성능의 향상되고, 유해 가스 분해시, 반응 중간체의 완전 분해 확률을 높이는 장점을 가질 수 있다. 즉, 상기 가시광 활성 촉매 분말에 의해 유해 가스를 분해할 때, 반응 중간체가 물과 CO2로 완전 분해될 확률이 높아진다. On the other hand, the composite particles may have an advantage of improving the photocatalyst performance as the content of platinum particles having zero oxidation number is increased and increasing the complete decomposition probability of the reaction intermediate when decomposing harmful gases. In other words, when the harmful gas is decomposed by the visible light active catalyst powder, the probability that the reaction intermediate is completely decomposed into water and CO 2 increases.
상기 Pt의 4f7/2에 대한 XPS 스펙트럼은 상기 가시광 활성 촉매 분말 중 포함된 백금 입자의 4f 전자 껍질에 속한 전자들의 결합 에너지(binding energy)에 대하여 측정된 것이다. 상기 제1 정규분포는 결합 에너지)가 70.8 eV 내지 71.2 eV 에서, 구체적으로 약 71.0 eV 전후에서 피크를 가지므로, 산화수가 0인 백금 입자과 관련되고, 상기 제2 정규분포는 결합 에너지 (Binding Energy)가 71.8 eV 내지 72.2 eV 에서, 구체적으로 약 72.0 eV 전후에서 제2 피크를 가지므로, 산화수가 +2인 백금 입자와 관련된다. The XPS spectrum of 4f 7/2 of Pt is measured with respect to the binding energy of electrons belonging to the 4f electron shell of platinum particles contained in the visible light active catalyst powder. Since the first normal distribution has a peak at about 70.8 eV to 71.2 eV, specifically about 71.0 eV, the first normal distribution is associated with platinum particles having an oxidation number of 0, and the second normal distribution is a binding energy. Has a second peak at around 71.8 eV to 72.2 eV, specifically around 72.0 eV, and thus relates to platinum particles having an oxidation number of +2.
즉, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼은 산화수가 0인 백금 입자뿐만 아니라, 다른 산화수를 가지는 백금 입자를 모두 포함한 결과로 나타나기 때문에, 상기 제1 정규분포와 상기 제2 정규분포로 추출하여 산화수가 0인 백금 입자와 산화수가 +2인 백금 입자의 함량비를 알 수 있다. That is, since the XPS spectrum of 4t 7/2 of Pt is shown as a result of including not only platinum particles having zero oxidation number but also platinum particles having different oxidation numbers, the first normal distribution and the second normal distribution are extracted. Thus, the content ratio of platinum particles having an oxidation number of 0 and platinum particles having an oxidation number of +2 can be known.
상기 제1 정규분포의 적분 면적 및 상기 제2 정규분포의 적분 면적을 대비하여 산화수가 0인 백금 입자와 산화수가 +2인 백금 입자의 질량비가 얻어진다. 상기 가시광 활성 촉매 분말에서, 상기 제1 정규분포의 적분 면적 및 상기 제2 정규분포의 적분 면적의 총 합에서 상기 제1 정규분포의 적분 면적의 비율이 85% 이상, 구체적으로 90% 내지 100%가 될 수 있다.A mass ratio of platinum particles having an oxidation number of 0 and platinum particles having an oxidation number of +2 is obtained in comparison with the integration area of the first normal distribution and the integration area of the second normal distribution. In the visible light active catalyst powder, the ratio of the integral area of the first normal distribution is 85% or more, specifically, 90% to 100% in the sum of the integral areas of the first normal distribution and the integral area of the second normal distribution. Can be
상기 가시광 활성 촉매 분말에서 백금 입자가 거의 모두 산화수가 0인 백금 입자로 형성되며, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼은 그 자체로서 상기 제1 정규분포가 될 수 있고, 이 경우, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 상기 제1 정규분포의 적분 면적의 비율은 100%이다 (후술되는 실시예 1의 경우 참조).Almost all platinum particles in the visible light active catalyst powder are formed of platinum particles having an oxidation number of 0, and the XPS spectrum of 4f 7/2 of Pt may itself be the first normal distribution, in which case, the The ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum with respect to 4f 7/2 of Pt is 100% (see the case of Example 1 described later).
상기 Pt의 4f7/2에 대한 XPS 스펙트럼으로부터 보이트(Voigt) 함수를 통해 추출된 정규분포에는 제1 정규분포와 제2 정규분포 이외에도, 다른 산화수를 가지는 백금에 대한 정규분포가 더 추출될 수 있다. 그러나, 산화수가 0인 백금 입자의 함량이 높아질수록 광촉매 성능이 우수하게 되므로, 다른 산화수를 가지는 백금 입자에 대한 정규분포 또한 존재하지 않거나, 그 적분 면적이 상대적으로 작은 것이 바람직하다. In addition to the first normal distribution and the second normal distribution, a normal distribution of platinum having another oxidation number may be further extracted from the normal distribution extracted from the XPS spectrum of the 4f 7/2 of Pt through the Voit function. . However, the higher the content of platinum particles having zero oxidation number, the better the photocatalytic performance, and therefore, there is no normal distribution for platinum particles having different oxidation numbers, or the integral area thereof is relatively small.
상기 제1 정규분포 및 상기 제2 정규분포는 R2 값 0.999 이상으로 얻어진 것으로서 정규분포 피팅의 정확도가 우수하다.The first normal distribution and the second normal distribution are obtained with an R 2 value of 0.999 or more, and have excellent accuracy of normal fitting.
상기 텅스텐 산화물 입자(1)는 담지체로서 예를 들어, 졸겔법이나, 수열합성법 (hydrothermal method)에 의해 구형, 판형 또는 침형의 입자로 형성될 수 있으나, 그 형상에 제한이 없다. The tungsten oxide particles 1 may be formed as spherical, plate or needle shaped particles by, for example, a sol-gel method or a hydrothermal method as a carrier, but the shape thereof is not limited.
상기 텅스텐 산화물 입자(1)는 가시광 활성 성능이 우수하다. The tungsten oxide particles 1 are excellent in visible light activity performance.
상기 백금 입자(2)가 상기 다공성의 금속 산화물에 광증착법에 의해 담지될 수 있으나, 이에 제한되지 않는다.The platinum particles 2 may be supported on the porous metal oxide by photodeposition, but are not limited thereto.
상기 백금 입자(2)는 조촉매로서 작용하여 광을 흡수하여 얻은 에너지로부터 전자와 정공의 분리를 용이하게 한다.The platinum particles 2 act as cocatalysts to facilitate separation of electrons and holes from energy obtained by absorbing light.
상기 복합입자(10)의 제조시 사용되는 텅스텐 산화물 입자(1)의 평균 직경은 SEM 이미지 분석과 같은 전자현미경 측정으로 계산될 수 있고, 예를 들어, 평균 직경이 약 30 나노미터(nm) 내지 약 500 나노미터(nm) 인 것을 사용할 수 있다. 상기 텅스텐 산화물 입자(1)의 평균 직경이 상기 범위를 초과하여 너무 크다면, 상기 가시광 활성 촉매 분말을 용매에 분산시켰을 때 안정한 코팅액을 형성하는 것이 불가능하여, 상기 가시광 활성 촉매 분말을 이용하는 필터 제조시, 상기 가시광 활성 촉매 분말을 코팅하는 공정에 적합하지 않을 수 있다. 상기 텅스텐 산화물 입자(1)의 직경이 상기 범위 미만으로 너무 작다면, 상기 백금 입자(2)가 안정적으로 담지되기 어려울 수 있다.The average diameter of the tungsten oxide particles 1 used in the production of the composite particles 10 may be calculated by electron microscopic measurements such as SEM image analysis, for example, the average diameter is about 30 nanometers (nm) to It may be used that is about 500 nanometers (nm). If the average diameter of the tungsten oxide particles (1) is too large exceeding the above range, it is impossible to form a stable coating liquid when the visible light active catalyst powder is dispersed in a solvent, and at the time of manufacturing a filter using the visible light active catalyst powder It may not be suitable for the process of coating the visible light active catalyst powder. If the diameter of the tungsten oxide particles 1 is too small below the range, the platinum particles 2 may be difficult to be stably supported.
상기 복합입자(10)의 평균 입경 (particle diameter)은 약 1 마이크로미터(㎛) 이하이고, 구체적으로, 약 0.2 마이크로미터 내지 약 1 마이크로미터일 수 있고, 예를 들어, 약 0.4 마이크로미터 내지 약 0.5 마이크로미터일 수 있다. 상기 복합입자(10)의 평균 입경은 입도분석기(Beckman, LS 13 320)로 가시광 활성 촉매 약 4wt% 수분산액에 대한 측정으로 얻어질 수 있다. 또한, 상기 가시광 활성 촉매 입자(10)의 최대 입경은 약 10 마이크로미터 이하가 되도록 한다.The average particle diameter of the composite particle 10 is about 1 micrometer (μm) or less, specifically, about 0.2 micrometers to about 1 micrometer, for example, about 0.4 micrometers to about 0.5 micrometers. The average particle diameter of the composite particle 10 may be obtained by measuring a water dispersion of about 4 wt% of a visible light active catalyst using a particle size analyzer (Beckman, LS 13 320). In addition, the maximum particle diameter of the visible light active catalyst particles 10 is about 10 micrometers or less.
상기 가시광 활성 촉매 입자(10)는 상기 텅스텐 산화물 입자(1) 100 중량부 및 상기 백금 입자(2) 약 0.01 내지 약 5 중량부를 포함할 수 있다. 상기 범위 내의 중량비로 이들의 함량을 조절함으로써 상기 텅스텐 산화물 입자(1)가 가시광선에 의해 전자와 정공을 충분히 생성하면서도 상기 백금 입자(2)가 생성된 전자와 정공의 재결합을 충분히 방지하여 광촉매 활성 효율을 효과적으로 향상시킬 수 있다.The visible light active catalyst particles 10 may include about 100 parts by weight of the tungsten oxide particles 1 and about 0.01 to about 5 parts by weight of the platinum particles 2. By adjusting their content in the weight ratio within the above range, while the tungsten oxide particles 1 sufficiently generate electrons and holes by visible light, the platinum particles 2 sufficiently prevent the recombination of the electrons and holes generated by the photocatalyst activity. The efficiency can be improved effectively.
상기 텅스텐 산화물 입자(1)의 함량이 상기 함량 범위를 초과하게 되면 가시광선에 의해 생성된 전자와 전공이 쉽게 재결합할 수 있고, 이들의 분리가 어려워 충분한 광촉매 활성을 나타내지 못하고, 상기 함량 범위 미만인 경우에는 상기 텅스텐 산화물 입자(1)에서 전이되는 전자의 수가 충분히 확보되지 못하여 광촉매 활성이 저하될 우려가 있고, 상기 텅스텐 산화물 입자(1)의 광에 대한 노출 면적이 감소하여 광촉매 성능이 저하될 수 있다.When the content of the tungsten oxide particles (1) exceeds the content range can easily recombine electrons and electrons generated by the visible light, it is difficult to separate them does not exhibit sufficient photocatalytic activity, less than the content range In this case, the number of electrons transferred from the tungsten oxide particles 1 may not be sufficiently secured, and thus the photocatalytic activity may be reduced, and the exposure area of the tungsten oxide particles 1 to light may be reduced, thereby degrading the photocatalytic performance. .
상기 텅스텐 산화물 입자(1)의 비표면적이 약 50㎡/g 내지 약 500㎡/g일 수 있다. 상기 범위 내의 높은 수준의 비표면적을 가짐으로써 가시광선 등의 광원에 효과적으로 노출될 수 있으면서 기공률을 적절한 수준으로 형성하여 상기 백금 입자(2)를 충분히 담지할 수 있다.The specific surface area of the tungsten oxide particles 1 may be about 50 m 2 / g to about 500 m 2 / g. By having a high specific surface area within the above range can be effectively exposed to a light source such as visible light while forming a porosity at an appropriate level to sufficiently support the platinum particles (2).
이하, 본 발명의 일 구현에 따른 가시광 활성 촉매 분말을 제조하는 방법을 구체적으로 설명한다.Hereinafter, a method of preparing visible light active catalyst powder according to one embodiment of the present invention will be described in detail.
상기 가시광 활성 촉매 분말을 제조하는 방법은 하기 (a) 내지 (c) 단계를 순차적으로 수행하여 진행된다.The method for preparing the visible light active catalyst powder is performed by sequentially performing the following steps (a) to (c).
(a) 텅스텐 산화물 분말을 백금 전구체 용액에 혼합하여 슬러리 용액을 준비한 뒤, 상기 슬러리 용액을 광조사하여 1차 광반응을 진행한다.(a) A tungsten oxide powder is mixed with a platinum precursor solution to prepare a slurry solution, and then the slurry solution is irradiated with light to undergo a first photoreaction.
(b) 상기 슬러리 용액에 알코올을 첨가한 후, 광조사하여 2차 광반응을 진행한다.(b) After alcohol is added to the slurry solution, light irradiation is carried out to proceed with the secondary photoreaction.
상기 (a) 단계에서, 텅스텐 산화물 분말은 반응 면적을 최대화 하기 위해 마이크로 단위 이하의 수준이 되도록 분쇄하여 준비한다. In the step (a), tungsten oxide powder is prepared by grinding to a level of micro units or less in order to maximize the reaction area.
상기 백금 전구체 용액을 제조하기 위한 백금 전구체 화합물은 광조사로 여기된 전자에 의해 백금으로 환원될 수 있는 물질을 사용할 수 있고, 수용액에 용해되는 염 화합물이 제한 없이 사용될 있으며, 구체적으로는, PtCl2, PtCl4, PtBr2, H2PtCl6, K2(PtCl4), Pt(NH3)4Cl2, Pt(NH3)4(OH)2, Pt(NH3)4(NO3)2, Pt(NH3)2(NO2)2, H2Pt(OH)6, Na2Pt(OH)6, K2Pt(OH)6 등의 예를 들 수 있다.The platinum precursor compound for preparing the platinum precursor solution may be a material that can be reduced to platinum by electrons excited by light irradiation, and salt compounds dissolved in an aqueous solution may be used without limitation. Specifically, PtCl 2 , PtCl 4 , PtBr 2 , H 2 PtCl 6 , K 2 (PtCl 4 ), Pt (NH 3 ) 4 Cl 2 , Pt (NH 3 ) 4 (OH) 2 , Pt (NH 3 ) 4 (NO 3 ) 2 And Pt (NH 3 ) 2 (NO 2 ) 2 , H 2 Pt (OH) 6 , Na 2 Pt (OH) 6 , and K 2 Pt (OH) 6 .
예를 들어, 상기 백금 전구체 용액의 농도는 산화 텅스텐 입자 100 중량부 대비 백금의 함량이 약 0.01 중량부 내지 약 5 중량부가 되도록 상기 텅스텐 산화물 분말에 대한 상대 함량으로써 조절할 수 있다.For example, the concentration of the platinum precursor solution may be adjusted by the relative content with respect to the tungsten oxide powder so that the content of platinum to 100 parts by weight of tungsten oxide particles is about 0.01 parts by weight to about 5 parts by weight.
상기 (a) 단계의 1차 광반응 동안 백금 전구체로부터 분리된 백금 이온이 텅스텐 산화물 입자의 표면에 부착되고, 상기 (b) 단계의 2차 광반응 동안 상기 텅스텐 산화물 입자 표면에 부착된 백금 이온이 환원되는 반응이 주로 일어나게 되는 것으로 이해된다.Platinum ions separated from the platinum precursor during the first photoreaction of step (a) are attached to the surface of the tungsten oxide particles, and platinum ions attached to the surface of the tungsten oxide particle during the secondary photoreaction of step (b) It is understood that the reaction to be reduced occurs mainly.
최종 얻어지는 가시광 활성 촉매 분말이 전술한 Pt의 4f7/2에 대한 XPS 분석 결과를 나타내도록 하기 위해서는 산화수를 가지는 백금 입자에 비하여 산화수 0으로 완전히 환원된 백금 입자의 비율이 더욱 높아지게 형성하여야만 한다. In order for the final visible light active catalyst powder to show the XPS analysis results for 4f 7/2 of Pt described above, the proportion of platinum particles completely reduced to zero oxidation number is higher than that of platinum particles having oxidation number.
이를 위해서, 여러 가지 공정 조건을 조절함으로써 전술한 본 발명의 가시광 활성 촉매 분말을 얻을 수 있게 된다. 이하, 전술한 본 발명의 가시광 활성 촉매 분말을 합성할 수 있는 구체적인 공정 조건을 예시적으로 설명한다.To this end, the visible light active catalyst powder of the present invention can be obtained by adjusting various process conditions. Hereinafter, specific process conditions for synthesizing the above-described visible light active catalyst powder of the present invention will be described.
먼저, 상기 1차 광반응을 진행하는 시간 (1차 광반응 시간)과 상기 2차 광반응을 진행하는 시간 (2차 광반응 시간)의 비율을 조절할 수 있다.First, the ratio of the time for performing the first photoreaction (first photoreaction time) and the time for proceeding the second photoreaction (secondary photoreaction time) may be adjusted.
상기 2차 광반응은 매우 빠른 속도로 진행되기 때문에 산화수 0의 백금 입자의 최종 형성 비율에 크게 영향을 주지 못하는 것으로 이해되고, 오히려, 상기 1차 광반응시 백금 이온을 텅스텐 산화물 입자의 표면에 고르게 잘 부착시키는 것이 산화수 0의 백금 입자의 최종 형성 비율에 영향을 주게 된다.It is understood that the secondary photoreaction does not significantly affect the final formation rate of the platinum particles of the oxidation number 0 because the second photoreaction proceeds at a very high speed. Good adhesion will affect the final formation rate of the platinum particles with zero oxidation number.
따라서, 상기 1차 광반응을 충분한 시간 동안 진행하여, 반응이 충분히 진행될 수 있도록 하는 것이 중요하다.Therefore, it is important to proceed with the primary photoreaction for a sufficient time so that the reaction can proceed sufficiently.
예를 들어, 상기 1차 광반응은 4시간 내지 24시간 동안 수행할 수 있다.For example, the first photoreaction may be performed for 4 hours to 24 hours.
예를 들어, 상기 2차 광반응은 2시간 내지 6시간 동안 수행할 수 있다.For example, the secondary photoreaction may be performed for 2 hours to 6 hours.
일 구현예에서, 상기 1차 광반응 시간이 상기 2차 광반응 시간보다 길고, 구체적으로, 상기 1차 광반응 시간 대 상기 2차 광반응 시간의 비가 2:1 내지 12:1 일 수 있다.In one embodiment, the first photoreaction time is longer than the second photoreaction time, specifically, the ratio of the first photoreaction time to the second photoreaction time may be 2: 1 to 12: 1.
또한, 상기 광조사에 의한 (a) 단계 및 (b) 단계의 각 광반응 수행시, 상기 슬러리 용액을 충분히 교반하는 것이 중요하다.In addition, it is important to sufficiently stir the slurry solution when performing each photoreaction of step (a) and (b) by the light irradiation.
예를 들어, 상기 슬러리 용액의 내부에 질소와 같은 불활성 기체를 주입하여 광반응을 진행하는 동안 상기 슬러리 용액이 교반될 수 있게 할 수 있다. For example, an inert gas such as nitrogen may be injected into the slurry solution to allow the slurry solution to be stirred during the photoreaction.
상기 불활성 기체의 주입 유량과 주입 방법 및 위치에 따라 광반응이 잘 진행되도록 도와줄 수 있다. 예를 들어, 상기 슬러리 용액의 내부로 주입되는 불활성 기체의 유량은 5 L/min 내지 30 L/min일 수 있다.Depending on the injection flow rate and the injection method and location of the inert gas may help to progress the photoreaction well. For example, the flow rate of the inert gas injected into the slurry solution may be 5 L / min to 30 L / min.
일 구현예에서, 상기 불활성 기체로서 질소를 사용할 수 있다. 질소 기체를 활용하여 상기 슬러리 용액을 교반하면, 기계적 교반에 비하여 교반 효율이 뛰어나고, 상기 슬러리 용액 내 산소를 제거하는 부차적인 효과까지 얻을 수 있는 이점이 있다.In one embodiment, nitrogen may be used as the inert gas. When the slurry solution is agitated by using nitrogen gas, the stirring solution is superior to mechanical stirring, and the secondary effect of removing oxygen in the slurry solution may be obtained.
상기 (a) 단계에서, 상기 슬러리 용액을 준비할 때, 텅스텐 산화물 분말의 농도가 1 내지 10 wt%가 되게 할 수 있다.In the step (a), when preparing the slurry solution, the concentration of tungsten oxide powder may be 1 to 10 wt%.
상기 (b) 단계에서, 상기 알코올의 첨가 비율은 상기 슬러리 용액 중 1 내지 30 wt%가 되게 할 수 있다.In the step (b), the addition ratio of the alcohol may be 1 to 30 wt% of the slurry solution.
예시적으로, 상기 슬러리 용액의 점도는 25℃에서, 약 5.0cP 내지 약 8.0cP일 수 있다. 상기 슬러리 용액의 점도는 Brookfield 점도계 (Spindle No.: 61번, 속도: 200rpm, 측정 시간: 30초)를 이용하여 측정할 수 있다. In exemplary embodiments, the viscosity of the slurry solution may be about 5.0 cP to about 8.0 cP at 25 ° C. The viscosity of the slurry solution can be measured using a Brookfield viscometer (Spindle No. 61, speed: 200 rpm, measurement time: 30 seconds).
예를 들어, 1차 광반응시, 상기 광조사의 세기는 약 5,000 lux 내지 약 100,000 lux 일 수 있고, 2차 광반응시 광조사의 세기를 상기 1차 광반응의 광조사 세기 보다 높일 수 있다. 구체적으로, 상기 2차 광조사의 세기는 상기 1차 광조사의 세기 대비하여 1배 내지 10배, 구체적으로 3 내지 5배 높을 수 있다.For example, in the first photoreaction, the intensity of light irradiation may be about 5,000 lux to about 100,000 lux, and the intensity of light irradiation in the second photoreaction may be higher than the intensity of light in the primary photoreaction. . Specifically, the intensity of the secondary light irradiation may be 1 to 10 times higher, specifically 3 to 5 times higher than the intensity of the primary light irradiation.
2차 광조사 이후, 선택적으로 원심분리 등에 의한 촉매 회수, 건조 단계를 수행한다.After the secondary light irradiation, the catalyst recovery and drying step are optionally performed by centrifugation or the like.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐이고 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, examples and comparative examples of the present invention are described. Such following examples are merely examples of the present invention and the present invention is not limited to the following examples.
(실시예) (Example)
실시예 1Example 1
물 93wt%에 산화 텅스텐 분말 7wt%가 분산된 용액을 제조하였다. 평균 입경 1 ㎛ 산화 텅스텐 분말 분산 용액에 염화 백금산(H2PtCl6) 10wt% 수용액인 담지 원료를 혼합하여, 산화 텅스텐 분말 100 중량부 대비 백금의 함량이 1 중량부가 되도록 슬러리 용액을 제조하였다.A solution in which 7 wt% of tungsten oxide powder was dispersed in 93 wt% of water was prepared. An average particle diameter of 1 μm tungsten oxide powder dispersion solution was mixed with a supported raw material of 10 wt% aqueous solution of platinum chloride (H 2 PtCl 6 ) to prepare a slurry solution such that the amount of platinum was 1 part by weight based on 100 parts by weight of tungsten oxide powder.
상기 슬러리 용액에 대하여 Brookfield 점도계 (Spindle No.: 61번, 속도: 200rpm, 측정 시간: 30초)를 이용하여 측정한 점도가 25℃에서 6.2 cP 이었다.The viscosity of the slurry solution was 6.2 cP at 25 ° C. using a Brookfield viscometer (Spindle No. 61, speed: 200 rpm, measurement time: 30 seconds).
이어서, 상기 슬러리 용액을 광반응기에 투입하고, 기체발생기를 광반응기에 연결되도록 설치한 뒤, 이어지는 상기 1차 광조사 및 2차 광조사를 하는 동안, 상기 기체발생기로부터 발생된 질소가 상기 슬러리 용액의 내부로 직접 주입되도록 하여, 질소에 의해 상기 슬러리 용액이 교반되도록 하였다. 투입되는 질소의 순도는 98.00%, 유량은 10L/min 이었다.Subsequently, the slurry solution is introduced into a photoreactor, a gas generator is installed to be connected to the photoreactor, and during the subsequent first and second light irradiation, nitrogen generated from the gas generator is supplied to the slurry solution. The slurry solution was allowed to stir directly into the interior of the mixture by nitrogen. The introduced nitrogen had a purity of 98.00% and a flow rate of 10 L / min.
가시광 조사 장치를 이용하여 400㎚~700㎚의 가시광선 광에너지를 상기 광반응기 내 상기 슬러리 용액에 조사하여 1차 광반응을 6 시간 동안 수행하였다. 이어서, 2분 가량 가시광 조사를 차단하고 메탄올의 비율이 상기 슬러리 용액 중 5 wt%가 되도록 첨가한 뒤, 상기 1차 광반응과 동일한 조사 장치를 이용하여 가시광선 광에너지를 상기 광반응기 내 상기 슬러리 용액에 2 시간 동안 조사하여 2차 광반응을 수행함으로써 백금 입자를 산화텅스텐 입자에 담지시켜 가시광 활성 광촉매 분말을 제조하였다.The primary light reaction was performed for 6 hours by irradiating visible light energy of 400 nm to 700 nm to the slurry solution in the photoreactor using a visible light irradiation device. Subsequently, the visible light irradiation was blocked for about 2 minutes and the proportion of methanol was added to 5 wt% in the slurry solution, and then the visible light energy was transferred to the slurry in the photoreactor using the same irradiation apparatus as the first photoreaction. The platinum particles were supported on the tungsten oxide particles by irradiating the solution for 2 hours to carry out the secondary photoreaction to prepare a visible light active photocatalyst powder.
실시예 2Example 2
1차 광반응을 4 시간 동안 수행하고, 2차 광반응을 2 시간 동안 수행한 점을 제외하고, 실시예 1과 동일한 방법으로 가시광 활성 광촉매 분말을 제조하였다.A visible light active photocatalyst powder was prepared in the same manner as in Example 1 except that the first photoreaction was performed for 4 hours and the second photoreaction was performed for 2 hours.
비교예 1Comparative Example 1
1차 광반응을 2 시간 동안 수행하고, 2차 광반응을 3 시간 동안 수행한 점을 제외하고, 실시예 1과 동일한 방법으로 가시광 활성 광촉매 분말을 제조하였다.A visible light active photocatalyst powder was prepared in the same manner as in Example 1 except that the first photoreaction was performed for 2 hours and the second photoreaction was performed for 3 hours.
비교예 2Comparative Example 2
1차 광반응을 4 시간 동안 수행하고, 2차 광반응을 2 시간 동안 수행하고, 질소가 슬러리 용액 내에 직접 주입되지 않고, 광반응기 내 상기 슬러리 용액의 상부로 투입되고 슬러리 용액을 기계적으로 교반시켜 준 점을 제외하고, 가시광 활성 광촉매 분말을 제조하였다.The first photoreaction is carried out for 4 hours, the second photoreaction is carried out for 2 hours, nitrogen is not injected directly into the slurry solution, but is introduced into the top of the slurry solution in the photoreactor and the slurry solution is mechanically stirred Except for the reference point, a visible light active photocatalyst powder was prepared.
평가evaluation
실험예 1: XPS 분석Experimental Example 1: XPS Analysis
실시예 1 및 비교예 1-2에서 얻은 가시광 활성 촉매 분말에 대하여 X-ray Photoelectron Spectroscopy (Sigma Probe 社 ESCA)를 이용하여 Pt의 4f7/2에 대한 XPS 스펙트럼을 얻었다. 상기 얻어진 Pt의 4f7/2에 대한 XPS 스펙트럼에 대하여, Voigt amplitude 에 의해 피팅하여 정규분포를 추출하였다.XPS spectra of 4t 7/2 of Pt were obtained using X-ray Photoelectron Spectroscopy (ESCA, Sigma Probe) on the visible light active catalyst powders obtained in Example 1 and Comparative Examples 1-2. The XPS spectrum of 4f 7/2 of Pt obtained above was fitted by Voigt amplitude to extract a normal distribution.
도 2는 실시예 1의 결과로서, 곡선 A는 Pt의 4f7/2에 대한 XPS 스펙트럼이고, 곡선 B는 약 70.9에서 피크를 갖는 제1 정규분포에 해당한다. 도 2에서 추출된 정규분포의 R2는 0.99997이다. 도 2에서 곡선 A와 곡선 B가 거의 일치하고 있다.2 is the result of Example 1, where curve A is the XPS spectrum for 4f 7/2 of Pt and curve B corresponds to the first normal distribution with peaks at about 70.9. R 2 of the normal distribution extracted in FIG. 2 is 0.99997. 2, curve A and curve B almost coincide.
도 3은 실험예 2의 결과로서, 곡선 A는 Pt의 4f7/2에 대한 XPS 스펙트럼이고, 곡선 B는 약 70.9에서 피크를 갖는 제1 정규분포에 해당하고, 곡선 C는 약 72.0에서 피크를 갖는 제2 정규분포에 해당한다. 도 3에서 추출된 정규분포의 R2는 0.99993이다.3 is the result of Experimental Example 2, curve A is the XPS spectrum for 4f 7/2 of Pt, curve B corresponds to the first normal distribution having a peak at about 70.9, and curve C at peaks at about 72.0. Corresponds to the second normal distribution. R 2 of the normal distribution extracted in FIG. 3 is 0.99993.
도 4는 비교예 1의 결과로서, 곡선 A는 Pt의 4f7/2에 대한 XPS 스펙트럼이고, 곡선 B는 약 70.9에서 피크를 갖는 제1 정규분포에 해당하고, 곡선 C는 약 72.0에서 피크를 갖는 제2 정규분포에 해당한다. 도 4에서 추출된 정규분포의 R2는 0.99991이다.4 is the result of Comparative Example 1, where curve A is the XPS spectrum for 4f 7/2 of Pt, curve B corresponds to a first normal distribution with a peak at about 70.9, and curve C at peaks at about 72.0 Corresponds to the second normal distribution. R 2 of the normal distribution extracted in FIG. 4 is 0.99991.
도 5는 비교예 2의 결과로서, 곡선 A는 Pt의 4f7/2에 대한 XPS 스펙트럼이고, 곡선 B는 약 70.9에서 피크를 갖는 제1 정규분포에 해당하고, 곡선 C는 약 72.0에서 피크를 갖는 제2 정규분포에 해당한다. 도 5에서 추출된 정규분포의 R2는 0.99994이다.5 is the result of Comparative Example 2, where curve A is the XPS spectrum for 4f 7/2 of Pt, curve B corresponds to the first normal distribution with peaks at about 70.9, and curve C at peaks at about 72.0. Corresponds to the second normal distribution. R 2 of the normal distribution extracted in FIG. 5 is 0.99994.
도 2 내지 도 5에서 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 제1 정규분포의 적분 면적의 비율을 계산하여 하기 표 1에 나타내었다.2 to 5, the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum for 4f 7/2 of Pt is calculated and shown in Table 1 below.
구분division 제1 정규분포의 적분 면적의 비율 (%)% Of integral area of first normal distribution 제2 정규분포의 적분 면적의 비율 (%)% Of integral area of the second normal distribution
실시예 1Example 1 100100 --
실시예 2Example 2 8989 1111
비교예 1Comparative Example 1 6767 3333
비교예 2Comparative Example 2 8181 1919
실험예 2Experimental Example 2
실시예 1-2 및 비교예 1-2에서 제작된 가시광 활성 촉매 분말의 성능 평가는 이하 설명되는 가스백 평가로 진행하였다. Performance evaluation of the visible light active catalyst powders prepared in Examples 1-2 and Comparative Examples 1-2 proceeded to the gas bag evaluation described below.
가스백에 가시광 활성 촉매 분말 0.5g을 담은 용기를 넣고, 밀봉한 후, 남아있는 기체를 빼주고, 아세트알데히드 3ppm 가스를 3L 주입하였다. 광원의 조도는 25,000 lux로 하였다. 주입 전 가스와 주입 후 30분 후의 가스를 DNPH (2,4-디니트로페닐하이드라진, 2,4-dinitrophenylhydrazine) 카트리지에 포집하여, 고성능 액체 크로마토그래피 (HPLC, high performance liquid chromatography)로 아세트알데히드 농도를 분석하여, 각 샘플 별 아세트알데히드 제거 성능을 계산하였다. A vessel containing 0.5 g of the visible light active catalyst powder was put in a gas bag, sealed, the remaining gas was drained, and 3 L of acetaldehyde 3 ppm gas was injected. The illuminance of the light source was 25,000 lux. Gas before injection and 30 minutes after injection are collected in a DNPH (2,4-dinitrophenylhydrazine) cartridge to obtain acetaldehyde concentration by high performance liquid chromatography (HPLC). By analyzing, acetaldehyde removal performance of each sample was calculated.
평가 결과를 하기 표 2에 나타내었다.The evaluation results are shown in Table 2 below.
구분division 아세트알데히드 제거성능(%)Acetaldehyde removal performance (%)
실시예 1Example 1 9292
실시예 2Example 2 8484
비교예 1Comparative Example 1 6565
비교예 2Comparative Example 2 7777
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of the invention.
<부호의 설명><Code description>
1: 텅스텐 산화물 입자1: tungsten oxide particles
2: 백금 입자2: platinum particles
10: 복합입자10: composite particles

Claims (10)

  1. 복합입자를 포함하는 가시광 활성 촉매 분말이고,It is a visible light active catalyst powder containing a composite particle,
    상기 복합입자는 백금 입자; 텅스텐 산화물 입자;를 포함하고,The composite particles are platinum particles; Tungsten oxide particles;
    상기 텅스텐 산화물 입자는 상기 백금 입자를 담지하고,The tungsten oxide particles carry the platinum particles,
    상기 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 스펙트럼은 보이트(Voigt) 함수를 통해 적어도 하나의 정규분포가 추출되고, 보이트 함수를 통해 추출된 하나의 정규분포가 결합 에너지 70.8 eV 내지 71.2 eV 에서 제1 피크를 갖는 제1 정규분포이고, The XPS spectrum of 4f 7/2 of Pt measured for the visible light active catalyst powder is obtained by extracting at least one normal distribution through a Voit function, and one normal distribution extracted through the Void function is bound energy. A first normal distribution with a first peak at 70.8 eV to 71.2 eV,
    상기 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 상기 제1 정규분포의 적분 면적의 비율이 85% 이상인The ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum for 4f 7/2 of Pt is 85% or more.
    가시광 활성 촉매 분말.Visible light active catalyst powder.
  2. 제1항에 있어서, The method of claim 1,
    상기 Pt의 4f7/2에 대한 XPS 스펙트럼은 상기 제1 정규분포와 일치하거나, 또는,The XPS spectrum for 4f 7/2 of Pt matches the first normal distribution, or
    상기 제1 정규분포와 함께, 결합 에너지 71.8 eV 내지 72.2 eV에서 제2 피크를 갖는 제2 정규분포가 상기 Pt의 4f7/2에 대한 XPS 스펙트럼으로부터 상기 보이트 함수를 통해 추출되는Along with the first normal distribution, a second normal distribution having a second peak at a binding energy of 71.8 eV to 72.2 eV is extracted through the Void function from the XPS spectrum for 4f 7/2 of the Pt.
    가시광 활성 촉매 분말.Visible light active catalyst powder.
  3. 제1항에 있어서, The method of claim 1,
    상기 보이트(Voigt) 함수를 통해 정규분포 추출시 R2 값 0.999 이상인The R 2 value is 0.999 or more when the normal distribution is extracted through the Voit function.
    가시광 활성 촉매 분말.Visible light active catalyst powder.
  4. 제1항에 있어서, The method of claim 1,
    상기 복합입자의 직경이 1 마이크로미터 이하인The composite particles have a diameter of 1 micrometer or less
    가시광 활성 촉매 분말.Visible light active catalyst powder.
  5. 제1항에 있어서, The method of claim 1,
    상기 백금 입자의 직경이 1 나노미터 내지 10 나노미터 인The platinum particles have a diameter of 1 nanometer to 10 nanometers
    가시광 활성 촉매 분말.Visible light active catalyst powder.
  6. 제1항에 있어서, The method of claim 1,
    상기 산화 텅스텐 입자 100 중량부 대비 상기 백금 입자의 함량이 0.01 중량부 내지 5 중량부인 The amount of the platinum particles is 0.01 to 5 parts by weight based on 100 parts by weight of the tungsten oxide particles.
    가시광 활성 촉매 분말.Visible light active catalyst powder.
  7. (a) 텅스텐 산화물 분말을 백금 전구체 용액에 혼합하여 슬러리 용액을 준비한 뒤, 상기 슬러리 용액을 광조사하여 1차 광반응을 진행하는 단계; 및(a) mixing a tungsten oxide powder with a platinum precursor solution to prepare a slurry solution, and then irradiating the slurry solution with light to perform a first photoreaction; And
    (b) 상기 슬러리 용액에 알코올을 첨가한 후, 광조사하여 2차 광반응을 진행하는 단계를 포함하는(b) adding alcohol to the slurry solution, and then irradiating the light with a second photoreaction.
    가시광 활성 촉매 분말의 제조 방법이고,It is a manufacturing method of visible light active catalyst powder,
    상기 가시광 활성 촉매 분말에 대하여 측정된, Pt의 4f7/2에 대한 XPS 스펙트럼은 보이트(Voigt) 함수를 통해 적어도 하나의 정규분포가 추출되고, 보이트 함수를 통해 추출된 하나의 정규분포가 결합 에어지 70.8 eV 내지 71.2 eV에서 제1 피크를 갖는 제1 정규분포이고, 상기 Pt의 4f7/2에 대한 XPS 스펙트럼의 적분 면적 대비 상기 제1 정규분포의 적분 면적의 비율이 85% 이상인The XPS spectrum of 4f 7/2 of Pt measured for the visible light active catalyst powder is obtained by extracting at least one normal distribution through the Voit function, and one normal distribution extracted through the Void function. The first normal distribution has a first peak at 70.8 eV to 71.2 eV, and the ratio of the integral area of the first normal distribution to the integral area of the XPS spectrum for 4f 7/2 of the Pt is 85% or more.
    가시광 활성 촉매 분말의 제조 방법.Method for producing visible light active catalyst powder.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 1차 광반응은 4시간 내지 24시간 동안 수행하는The first photoreaction is performed for 4 hours to 24 hours
    가시광 활성 촉매 분말의 제조 방법.Method for producing visible light active catalyst powder.
  9. 제7항에 있어서, The method of claim 7, wherein
    상기 1차 광반응을 진행하는 시간 대 상기 2차 광반응을 진행하는 시간의 비가 2:1 내지 12:1인The ratio of the time for performing the first photoreaction to the time for conducting the second photoreaction is 2: 1 to 12: 1.
    가시광 활성 촉매 분말의 제조 방법.Method for producing visible light active catalyst powder.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 1차 광반응 및 상기 2차 광반응은 상기 슬러리 용액의 내부에 불활성 기체를 주입하여 교반하면서 진행하는The first photoreaction and the second photoreaction is carried out while stirring by injecting an inert gas into the slurry solution
    가시광 활성 촉매 분말의 제조 방법.Method for producing visible light active catalyst powder.
PCT/KR2019/000493 2018-07-26 2019-01-11 Visible-light-active catalyst powder WO2020022594A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021504468A JP7101863B2 (en) 2018-07-26 2019-01-11 Visible light active catalyst powder
CN201980049778.2A CN112512684A (en) 2018-07-26 2019-01-11 Visible light active catalyst powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180087199 2018-07-26
KR10-2018-0087199 2018-07-26
KR1020180157234A KR102395008B1 (en) 2018-07-26 2018-12-07 Visible light active photocatalyst powder
KR10-2018-0157234 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020022594A1 true WO2020022594A1 (en) 2020-01-30

Family

ID=69180464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000493 WO2020022594A1 (en) 2018-07-26 2019-01-11 Visible-light-active catalyst powder

Country Status (1)

Country Link
WO (1) WO2020022594A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089235A (en) * 2007-03-30 2008-10-06 국립대학법인 홋가이도 다이가쿠 Tungsten oxide photocatalyst
JP2010188240A (en) * 2009-02-16 2010-09-02 Hokkaido Univ Photocatalyst
WO2015146830A1 (en) * 2014-03-26 2015-10-01 新日鉄住金化学株式会社 Photocatalyst and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089235A (en) * 2007-03-30 2008-10-06 국립대학법인 홋가이도 다이가쿠 Tungsten oxide photocatalyst
JP2010188240A (en) * 2009-02-16 2010-09-02 Hokkaido Univ Photocatalyst
WO2015146830A1 (en) * 2014-03-26 2015-10-01 新日鉄住金化学株式会社 Photocatalyst and method for producing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QAMAR, M. ET AL.: "Removal of Rhodamine 6G induced by laser and catalyzed by Pt/ WO 3 nanocomposite", CATALYSIS COMMUNICATIONS, vol. 11, 2010, pages 768 - 772, XP026969541 *
QAMAR, M. ET AL.: "Synthesis and comparative photocatalytic activity of Pt/ WO 3 and Au/ WO 3 nanocomposites under sunlight-type excitation", SOLID STATE SCIENCES, vol. 13, 2011, pages 1748 - 1754, XP028273898 *

Similar Documents

Publication Publication Date Title
WO2010077011A2 (en) Method for producing a composite carbon nanofiber having a photocatalytic activity, composite carbon nanofiber having a photocatalytic activity produced by the method, filter comprising the composite carbon nanofiber, and thermally stable photocatalyst sol solution used in the production method
CN111001439A (en) Perylene bisimide and composite photocatalytic material thereof, preparation method and application thereof in removing organic pollutants in water body
CN113262808B (en) Water-soluble graphite-phase carbon nitride nanosheet catalyst for efficiently removing formaldehyde at room temperature and preparation method thereof
WO2013176369A1 (en) Photocatalyst, preparation method thereof, and photocatalyst apparatus
Abdelhameed et al. Silver chromate doped Ti-based metal organic framework: synthesis, characterization, and electrochemical and selective photocatalytic reduction properties
Khasevani et al. Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst
CN112607832A (en) Nano zero-valent iron-carbon material and preparation method and application thereof
CN111974404A (en) Photo-assisted BiFe1-xCuxO3Method for treating residual ciprofloxacin in water body by activated peroxymonosulfate
WO2020022594A1 (en) Visible-light-active catalyst powder
CN112604703A (en) Graphitized carbon loaded nano zero-valent iron material and preparation method and application thereof
CN114700093A (en) Photocatalytic material for degrading tetracycline in wastewater and preparation method thereof
Zhang et al. Improved heterogeneous photo-Fenton-like degradation of ofloxacin through polyvinylpyrrolidone modified CuFeO2 catalyst: Performance, DFT calculation and mechanism
Adawiah et al. Photocatalytic degradation of methylene blue and methyl orange by Y-PTC metal-organic framework
CN2656867Y (en) High-adsorptivity multifunctional air purifier
WO2022102809A1 (en) Air-cleaning device and air-cleaning method
WO2017052222A1 (en) Carrier-nanoparticle complex, preparation method therefor, and membrane electrode assembly including same
CN111617760A (en) Mn-TiO2Composite photocatalytic material and preparation method and application thereof
CN1609523A (en) Multifunctional air purifier with high adsorbability
Liu et al. Application of 3D printing technology for green synthesis of Fe 2 O 3 using ABS/TPU/chlorella skeletons for methyl orange removal
CN114392759B (en) Z-type photocatalyst and preparation method and application thereof
KR20200012680A (en) Visible light active photocatalyst powder
Herath et al. One-pot synthesis of highly dye impregnated TiO2 nanoparticles for improved white light photo-degradation
KR20110085656A (en) The method for preparation of tio2 photocatalyst filter using irradiation of radioactive ray and tio2 photocatalyst filter thereby
WO2020251202A1 (en) Highly dispersible zinc phthalocyanine-silica nanotubes and preparation method therefor
WO2023128493A1 (en) Method for producing graphitic carbon nitride by using hard template method for decomposition of organic contaminants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2021).

122 Ep: pct application non-entry in european phase

Ref document number: 19841865

Country of ref document: EP

Kind code of ref document: A1