WO2020022532A1 - Method for manufacturing high-strength nanocellulose long fiber through steam treatment and extrusion - Google Patents
Method for manufacturing high-strength nanocellulose long fiber through steam treatment and extrusion Download PDFInfo
- Publication number
- WO2020022532A1 WO2020022532A1 PCT/KR2018/008437 KR2018008437W WO2020022532A1 WO 2020022532 A1 WO2020022532 A1 WO 2020022532A1 KR 2018008437 W KR2018008437 W KR 2018008437W WO 2020022532 A1 WO2020022532 A1 WO 2020022532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanocellulose
- cellulose
- long fibers
- temperature
- long fiber
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F2/00—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/063—Load-responsive characteristics high strength
Definitions
- the present invention relates to a method for producing high strength nanocellulose long fibers using steam treatment and extrusion molding, and more particularly, after supplying an ointment mixture in which ultrapure water is mixed with nanocellulose to a steam chamber, for a predetermined time at a constant pressure and temperature.
- the present invention relates to a method for producing high strength nanocellulose long fibers by injecting extruded homogeneously aged and swollen nanocellulose ointment mixture in a chamber by adding saturated steam to an extruder maintained at a constant temperature.
- Eco-friendly high-strength fiber is used as an eco-friendly structural composite material because it strengthens the mechanical characteristics of the composite material and has almost no environmental pollution.
- Cellulose fibers consist of cellulose nanocrystals (CNCs) and nanocelluloses called cellulose nanofibers (CNF). Nanocelluloses generally have a width of 5 to 100 nm and a length of several um. The elastic modulus of the nanocellulose has a high mechanical property of about 150 GPa in the longitudinal direction and about 18 to 50 GPa in the vertical direction.
- Korean Patent No. 1767286 discloses a cellulose dispersion liquid capable of controlling the particle size peak of fine cellulose obtained even by applying mechanical treatment to oxidized cellulose, and sufficient flexibility and gas barrier properties formed using the same.
- the molded article which has is described.
- the volume-based particle size distribution of the micro-oxidized cellulose in the cellulose dispersion containing at least micro-oxidized cellulose is in the range of the volume-based particle size of 0.01 ⁇ m or more and 100 ⁇ m or less, and has a particle size peak of 2 or more.
- a molded object is formed using such a cellulose dispersion liquid.
- Korean Patent No. 0149282 relates to a method for producing cellulose fibers characterized by spinning a cellulose solution using an organic solvent by a wet and dry spinning method. More specifically, a high degree of polymerization of cellulose components obtained from wood pulp Manufacturing method of spinning molding cellulose fibers by using a cellulose solution prepared by dissolving a mixture of N-methylmorpholine N-oxide (hereinafter referred to as “NMMO”) which is an amine oxide as a non-solvent as a spinning solution It describes.
- NMMO N-methylmorpholine N-oxide
- Korean Patent No. 0486811 relates to a method for producing cellulose fibers prepared from a homogeneous cellulose solution even at low temperature. After dissolving a small amount of cellulose powder in a liquid concentrated N-methylmorpholine N-oxide (NMMO), the solution and cellulose The powder is fed to an extruder, mixed, swelled, and dissolved in an extruder to produce a homogeneous cellulose solution at low temperature, which is then extruded and spun through a spinning nozzle, passes through an air layer to reach a coagulation bath, and then solidifies, washes, It relates to a method for producing a cellulose fiber comprising the step of winding by drying and emulsion treatment.
- NMMO N-methylmorpholine N-oxide
- an object of the present invention is to provide a manufacturing method capable of extruding high-strength nanocellulose long fibers having extrusion stability so that the nanocellulose is uniformly dissolved and bonded to the extruded long fibers without adding a separate chemical. It is done.
- the present invention homogeneously mixes nanocellulose with ultrapure water to produce a nanocellulose ointment phase of a certain concentration.
- Raw materials of nanocellulose include conifers, hardwoods, cotton, herbaceous plants, bamboo, bacterial cellulose and red algae.
- the present invention supplies a nano-cellulose ointment material having a certain concentration prepared by the above method into a steam chamber capable of applying a constant temperature and saturated steam pressure, and then applying a saturated steam pressure and temperature for a predetermined time, and then It provides a manufacturing method comprising the step of injecting into a temperature-maintaining extruder and extruding high strength nanocellulose long fibers through an extrusion nozzle.
- the present invention it is possible to prepare nanocellulose long fibers having excellent flexibility and strength as well as homogeneous and extrusion stability using steam pressure without adding a separate chemical.
- the high-strength nanocellulose filament according to the present invention is light in weight to produce a low weight high strength composite material.
- FIG. 3 is a graph showing tensile test results of nanocellulose long fibers prepared by performing a steam pressure process and nanocellulose long fibers prepared without performing a steam pressure process
- Figure 4 is a graph of FTIR comparison results of nanocellulose long fibers prepared by performing the steam pressure process and nanocellulose long fibers prepared without performing the steam pressure process.
- (C) characterized in that it comprises the step of supplying the nanocellulose ointment mixture to an extruder maintained at a constant temperature, extrusion spinning through an extrusion nozzle having a variety of diameters, followed by drying at room temperature to obtain nanocellulose long fibers.
- the size of the nanocellulose administered in the step (A) is 5 ⁇ 200 nm in diameter, the length is preferably a size of several nm ⁇ several um.
- the concentration of the nanocellulose ointment prepared in step (A) is preferably 2 to 50% by weight.
- the temperature in the chamber in the step (B) is preferably maintained at a temperature of 100 to 150 °C.
- the pressure in the chamber in the step (B) is preferably maintained at 1 to 3 atm.
- the time for applying the vapor pressure to the nanocellulose ointment is preferably 20 minutes to 5 hours.
- the extruder in the step (C) is preferably maintained at 80 to 160 °C is supplied a nanocellulose ointment phase.
- the diameter of the extrusion nozzle used in the step (C) is preferably 30 um to 500 um.
- the nanocellulose powder in step (A) may be used by mixing with a crosslinking agent such as polyvinyl alcohol.
- Figure 1 is a schematic view of the process of the present invention to prepare a nanocellulose ointment material and supply it to the steam pressure chamber to give a steam pressure for a certain time, and then schematically shows the process sequence for producing long fibers.
- the nanocellulose powder used in FIG. 1 is cellulose nanocrystals (CNC) or cellulose nanofibers (CNF).
- nanocellulose ointment materials are prepared by mixing using a mixer for uniform mixing.
- the cellulose nanocrystal masses aggregated in the visible phase without being mixed for a sufficient time are present in the nanocellulose ointment phase, it may cause defects in the long fibers extruded through the steps (B) and (C).
- the nanocellulose concentration of the prepared nanocellulose ointment material is less than 2% by weight, the content of nanocellulose in the ointment is too low, the strength of the long fiber may be reduced, if the concentration of the ointment phase exceeds 50% by weight nano The solubility of cellulose may be inferior, and viscosity is too high and extrusion stability falls.
- the nanocellulose ointment material is supplied to the vapor pressure chamber with ultrapure water and maintained for 20 minutes to 5 hours at a temperature of 100 to 150 ° C. and a pressure of 1 to 3 atmospheres. Applying the saturated steam and a certain temperature to the nanocellulose ointment material for a certain time may increase the covalent bond between the nanocellulose through the steam, which helps to strengthen the long fiber. In addition, it dissolves the insoluble nanocellulose and adds the effect of swelling to form a homogeneous nanocellulose ointment phase.
- the prepared nanocellulose ointment material is fed to an extruder.
- the extruder is equipped with a temperature-controlled heater and is equipped with a nozzle adapter that can be extruded by replacing extrusion nozzles of various diameters.
- the temperature of the extruder is preferably maintained at a temperature of 80 to 160 °C.
- the powdered cellulose nanocrystals were mixed homogeneously with ultrapure water using a mixer to prepare nanocellulose ointment materials.
- the prepared cellulose ointment phase was prepared at a concentration of 35% by weight.
- the nanocellulose ointment material was supplied to the vapor pressure chamber to stay at 120 ° C. and 2 atm for 3 hours to promote covalent bonds between the cellulose nanocrystals due to the vapor pressure.
- the mixture was allowed to mix homogeneously and swell.
- the concentration of the nanocellulose ointment which passed the above step was about 32.7% by weight, and was in a homogeneous state containing no ultrapure water and insoluble cellulose nanocrystal particles.
- the nanocellulose ointment phase subjected to the vapor pressure step is fed to an extruder and extruded into nanocellulose long fibers.
- the extruder was maintained at 160 °C
- the extrusion nozzle was used having a diameter of 340, 360, 180, 100um.
- the extruded nanocellulose long fibers are dried at room temperature in the air layer.
- the diameter of the extruded long fibers decreases as the diameter of the extrusion nozzle decreases as shown in FIG. 2.
- the nanocellulose long fiber was prepared by performing only steps (A) and (C) except step (B). And the used extrusion nozzle used the nozzle of 100um diameter.
- the Young's modulus is 4.03 GPa for the long fibers subjected to the steam pressure process extruded from 100 um diameter. And in the case of the long fiber prepared through Comparative Example 1, not subjected to the steam pressure process, the Young's modulus is 2.85 GPa. This shows that the Young's modulus of the long fibers produced through the steaming process is further increased.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Artificial Filaments (AREA)
Abstract
The present invention can provide a high-strength nanocellulose long fiber, which has extrusion stability such that the nanocellulose long fiber is extruded in a state in which nanocellulose is homogeneously dissolved and combined with an extruded long fiber even without addition of a separate chemical substance, through an inter-nanocellulose covalent bond increasing effect obtained due to saturated steam and a predetermined pressure and temperature by steaming a nanocellulose ointment material in which a nanocellulose powder is mixed with ultrapure water.
Description
본 발명은 증기 처리 및 압출성형을 이용한 고강도 나노셀룰로오스 장섬유 제조방법에 관한 것으로, 보다 상세하게는 나노셀룰로오스에 초순수가 혼합된 연고상 혼합물을 증기 챔버에 공급 후, 일정압력 및 온도에서 일정 시간동안 포화된 증기를 가하여 챔버 내에서 균질하게 숙성, 팽윤된 나노셀룰로오스 연고상 혼합물을 일정 온도가 유지되는 압출기에 주입하여 압출함으로서 고강도 나노셀룰로오스 장섬유를 제조하는 방법에 관한 것이다. The present invention relates to a method for producing high strength nanocellulose long fibers using steam treatment and extrusion molding, and more particularly, after supplying an ointment mixture in which ultrapure water is mixed with nanocellulose to a steam chamber, for a predetermined time at a constant pressure and temperature. The present invention relates to a method for producing high strength nanocellulose long fibers by injecting extruded homogeneously aged and swollen nanocellulose ointment mixture in a chamber by adding saturated steam to an extruder maintained at a constant temperature.
최근 친환경 소재를 이용한 섬유강화 복합재에 대한 요구가 증대되는 바, 복합재의 기계적 특성을 결정하는 친환경 고강도 섬유의 제조법은 매우 중요하다. 친환경 고강도 섬유는 복합재의 기계적 특징을 강화하면서도 환경오염이 거의 없어 친환경 구조복합재의 소재로 사용된다.Recently, the demand for fiber-reinforced composites using environmentally friendly materials is increasing, and the method of producing environmentally friendly high strength fibers to determine the mechanical properties of the composites is very important. Eco-friendly high-strength fiber is used as an eco-friendly structural composite material because it strengthens the mechanical characteristics of the composite material and has almost no environmental pollution.
재생가능하고 생분해가 가능하며 열적 안정성이 뛰어난 셀룰로오스는 싼 가격과 낮은 하중 등 다양한 장점을 갖는다. 최근에는 약품, 코팅제, 직물, 적층 소재, 센서, 액추에이터, 유연전자, 유연 디스플레이 등 많은 분야에 폭넓은 영향을 주어 큰 관심을 받고 있다. 셀룰로오스 섬유는 셀룰로오스 나노결정 (Cellulose nanocrystal, CNC), 셀룰로오스 나노섬유 (Cellulose nanofiber, CNF)로 불리는 나노셀룰로오스로 구성되어 있다. 나노셀룰로오스는 일반적으로 5 ~ 100 nm의 너비와 수 um의 길이를 갖는다. 나노셀룰로오스의 탄성 계수는 길이방향으로 150 GPa 가량이며 수직 방향으로 18 ~ 50 GPa 가량으로 높은 기계적 특성을 지니고 있다.Renewable, biodegradable and thermally stable cellulose has many advantages such as low cost and low load. Recently, chemicals, coatings, fabrics, laminated materials, sensors, actuators, flexible electronics, flexible displays have a wide range of influences, such as a wide range of interest has received great attention. Cellulose fibers consist of cellulose nanocrystals (CNCs) and nanocelluloses called cellulose nanofibers (CNF). Nanocelluloses generally have a width of 5 to 100 nm and a length of several um. The elastic modulus of the nanocellulose has a high mechanical property of about 150 GPa in the longitudinal direction and about 18 to 50 GPa in the vertical direction.
종래에는 균질한 고강도 셀룰로오스 장섬유의 제조를 위하여 화학물질을 첨가하거나 필터링을 통해 불순물을 제거하는 등 다양한 시도들을 하였으나, 셀룰로오스의 미용해분에 의한 섬유의 물성이 저하, 불순물 제거를 위한 필터의 교체횟수로 인한 원가 상승의 문제, 복잡한 제조공정, 낮은 압출 안정성 등 여러 한계점들을 지니고 있다.Conventionally, various attempts have been made for the production of homogeneous high-strength cellulose long fibers by adding chemicals or removing impurities through filtering. However, the physical properties of the fibers are degraded due to undissolved cellulose, and the filter is replaced to remove impurities. It has several limitations such as cost increase due to frequency, complicated manufacturing process and low extrusion stability.
따라서 복잡한 공정과 별도의 화학물질을 쓰지 않고도 균질하며, 강도가 향상된 나노셀룰로오스 장섬유의 개발이 필요하다.Therefore, there is a need for the development of nanocellulose long fibers that are homogeneous and have improved strength without using complicated processes and separate chemicals.
셀룰로오스에 관련한 기술로서 국내특허제1767286호는 산화한 셀룰로오스에 대하여 기계적인 처리를 가하여도, 얻어지는 미세한 셀룰로오스의 입경 피크를 제어하는 것이 가능한 셀룰로오스 분산액, 및 그것을 이용하여 형성한 충분한 유연성 및 가스 배리어성을 갖는 성형체를 기술하고 있다. 적어도 미세 산화 셀룰로오스를 포함하는 셀룰로오스 분산액의 미세 산화 셀룰로오스의 부피 기준 입도 분포가 0.01 ㎛ 이상 100 ㎛ 이하의 부피 기준 입경의 범위에 있고, 2 이상의 입경 피크를 갖는다. 또한, 이러한 셀룰로오스 분산액을 이용하여 성형체를 형성한다.As a technique related to cellulose, Korean Patent No. 1767286 discloses a cellulose dispersion liquid capable of controlling the particle size peak of fine cellulose obtained even by applying mechanical treatment to oxidized cellulose, and sufficient flexibility and gas barrier properties formed using the same. The molded article which has is described. The volume-based particle size distribution of the micro-oxidized cellulose in the cellulose dispersion containing at least micro-oxidized cellulose is in the range of the volume-based particle size of 0.01 µm or more and 100 µm or less, and has a particle size peak of 2 or more. Moreover, a molded object is formed using such a cellulose dispersion liquid.
국내특허제0149282호는 유기용매를 이용한 셀룰로오스 용액을 건습식 방사법으로 방사함을 특징으로 하는 셀룰로오스 섬유의 제조방법에 관한 것으로, 좀 더 구체적으로는 목재 펄프로부터 얻어진 고중합도의 셀룰로오스 성분을 제3급 아민옥사이드인 N-메틸모르폴린 N-옥사이드(N-methylmorpholine N-oxide, 이하 “NMMO”로 칭함)와 비용매의 혼합물에 용해하여 만든 셀룰로오스 용액을 방사액으로 하여 셀룰로오스 섬유를 방사 성형하는 제조방법을 기술하고 있다.Korean Patent No. 0149282 relates to a method for producing cellulose fibers characterized by spinning a cellulose solution using an organic solvent by a wet and dry spinning method. More specifically, a high degree of polymerization of cellulose components obtained from wood pulp Manufacturing method of spinning molding cellulose fibers by using a cellulose solution prepared by dissolving a mixture of N-methylmorpholine N-oxide (hereinafter referred to as “NMMO”) which is an amine oxide as a non-solvent as a spinning solution It describes.
국내특허제0486811호는 저온에서도 균질한 셀룰로오스 용액으로부터 제조한 셀룰로오스 섬유의 제조방법에 관한 것으로, 액상 농축 N-메틸모폴린 N-옥사이드(NMMO)에 셀룰로오스 분말을 소량 용해시킨 다음, 상기 용액과 셀룰로오스 분말을 압출기로 공급하여 압출기 내에서 혼합, 팽윤 및 용해 시켜 저온에서 균질한 셀룰로오스 용액제조한 후, 이를 방사노즐을 통해 압출 방사한 후, 공기층을 통과하여 응고욕에 도달한 후 이를 응고, 수세, 건조 및 유제 처리하여 권취하는 단계를 포함하는 셀룰로오스 섬유의 제조방법에 관한 것이다.Korean Patent No. 0486811 relates to a method for producing cellulose fibers prepared from a homogeneous cellulose solution even at low temperature. After dissolving a small amount of cellulose powder in a liquid concentrated N-methylmorpholine N-oxide (NMMO), the solution and cellulose The powder is fed to an extruder, mixed, swelled, and dissolved in an extruder to produce a homogeneous cellulose solution at low temperature, which is then extruded and spun through a spinning nozzle, passes through an air layer to reach a coagulation bath, and then solidifies, washes, It relates to a method for producing a cellulose fiber comprising the step of winding by drying and emulsion treatment.
이는 액상 농축NMMO에 소량의 펄프를 용해시켜 NMMO의 융점을 낮아지게하는 효과로 인하여, 비교적 낮은 온도에서 NMMO 용액을 압출기에 공급할 수 있다. 상기 설명한 이유로 인하여 넓은 공정 온도범위가 가능할 뿐만 아니라 또한 낮은 온도에서 셀룰로오스 분말과 NMMO 용액을 원활히 팽윤시킬 수 있어 고온의 NMMO에의한 순간적인 용해로 셀룰로오스 분말 표면에 피막이 생성되는 것을 방지할 수 있어 최종적으로는 저온에서도 균질한 셀룰로오스 용액을 제조할 수 있으며, 또한 압출기내에서 고온의 팽윤 용해과정에서 발생되는 셀룰로오스 분해를 억제시켜 유연성과 강도가 우수한 셀룰로오스섬유를 제공할 수 있다.This can supply the NMMO solution to the extruder at a relatively low temperature due to the effect of dissolving a small amount of pulp in the liquid concentrated NMMO to lower the melting point of the NMMO. Due to the above-described reasons, not only a wide process temperature range is possible, but also swelling of cellulose powder and NMMO solution at low temperature can be prevented from forming film on the surface of cellulose powder by instant dissolution by high temperature NMMO. It is possible to produce a homogeneous cellulose solution even at low temperature, and also to suppress cellulose decomposition generated during the high temperature swelling dissolution process in the extruder, thereby providing cellulose fibers with excellent flexibility and strength.
본 발명은 상기한 바와 같이 종래기술의 문제점을 해결하고자, 나노셀룰로오스와 초순수가 혼합된 연고상 물질에 증기 처리를 함으로써, 포화된 증기와 일정 압력 및 온도로 인해 나노셀룰로오스간의 공유결합을 증가시키는 효과로 인하여, 별도의 화학물질을 첨가하지 않고도 압출된 장섬유에 나노셀룰로오스가 균질하게 용해 및 결합된 상태로 압출되도록 압출 안정성을 가지는 고강도 나노셀룰로오스 장섬유를 압출할 수 있는 제조방법을 제공하는 것을 목적으로 한다. The present invention is to solve the problems of the prior art as described above, by steam treatment in the ointment material mixed with nanocellulose and ultrapure water, the effect of increasing the covalent bond between the nanocellulose due to the saturated steam and a certain pressure and temperature Due to this, an object of the present invention is to provide a manufacturing method capable of extruding high-strength nanocellulose long fibers having extrusion stability so that the nanocellulose is uniformly dissolved and bonded to the extruded long fibers without adding a separate chemical. It is done.
상기한 목적을 달성하기 위해서, 본 발명은 나노셀룰로오스를 초순수와 균질하게 혼합하여 일정 농도의 나노셀룰로오스 연고상을 제조한다. 나노셀룰로오스의 원료는 침엽수, 활엽수, 목화, 초본식물, 대나무, 박테리아 셀룰로오스, 홍조류를 포함한다. In order to achieve the above object, the present invention homogeneously mixes nanocellulose with ultrapure water to produce a nanocellulose ointment phase of a certain concentration. Raw materials of nanocellulose include conifers, hardwoods, cotton, herbaceous plants, bamboo, bacterial cellulose and red algae.
본 발명은 상기한 방법으로 제조된 일정 농도를 가지는 나노셀룰로오스 연고상 물질을 일정 온도와 포화된 증기압력을 가해줄 수 있는 증기 챔버 내에 공급하여 일정 시간동안 포화된 증기압력과 온도를 가한 뒤, 일정 온도가 유지되는 압출기에 주입하고 압출 노즐을 통해 고강도 나노셀룰로오스 장섬유가 압출되는 단계를 포함하는 제조방법을 제공한다.The present invention supplies a nano-cellulose ointment material having a certain concentration prepared by the above method into a steam chamber capable of applying a constant temperature and saturated steam pressure, and then applying a saturated steam pressure and temperature for a predetermined time, and then It provides a manufacturing method comprising the step of injecting into a temperature-maintaining extruder and extruding high strength nanocellulose long fibers through an extrusion nozzle.
본 발명에 따라 별도의 화학물질을 첨가하지 않고도 증기압력을 이용하여 균질하고 압출 안정성을 가질 뿐만 아니라 유연하고 강도가 우수한 나노셀룰로오스 장섬유를 제조할 수 있다. 또한, 본 발명에 따른 고강도 나노셀룰로오스 장섬유는 무게가 가벼워 저중량 고강도 복합재를 제조할 수 있다. According to the present invention, it is possible to prepare nanocellulose long fibers having excellent flexibility and strength as well as homogeneous and extrusion stability using steam pressure without adding a separate chemical. In addition, the high-strength nanocellulose filament according to the present invention is light in weight to produce a low weight high strength composite material.
도 1은 본 발명의 고강도 나노셀룰로오스 장섬유를 제조하는 공정 개략도,1 is a process schematic diagram for producing a high strength nanocellulose long fiber of the present invention,
도 2는 나노셀룰로오스 장섬유의 SEM 결과 그래프,2 is a SEM result of the nanocellulose long fiber,
도 3은 증기압력 과정을 수행하여 제조된 나노셀룰로오스 장섬유와 증기압력 과정을 수행하지 않고 제조된 나노셀룰로오스 장섬유의 인장시험 결과 그래프, 및3 is a graph showing tensile test results of nanocellulose long fibers prepared by performing a steam pressure process and nanocellulose long fibers prepared without performing a steam pressure process, and
도 4는 증기압력 과정을 수행하여 제조된 나노셀룰로오스 장섬유와 증기압력 과정을 수행하지 않고 제조된 나노셀룰로오스 장섬유의 FTIR 비교 결과 그래프이다.Figure 4 is a graph of FTIR comparison results of nanocellulose long fibers prepared by performing the steam pressure process and nanocellulose long fibers prepared without performing the steam pressure process.
이하, 첨부도면을 참조하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명은,The present invention,
(A) 초순수에 나노셀룰로오스를 용해 및 혼합하여 일정 농도의 나노셀룰로오스 연고상을 제조하는 단계;(A) dissolving and mixing nanocellulose in ultrapure water to produce a nanocellulose ointment phase of a certain concentration;
(B) 상기 일정 농도의 나노셀룰로오스 연고상을 초순수와 함께 증기압력 챔버로 공급하여 챔버 내에서 일정 시간 및 온도로 포화된 초순수 증기를 나노셀룰로오스 연고상에 가하여 나노셀룰로오스간의 공유결합을 증진시키는 단계;(B) supplying the nanocellulose ointment phase having a predetermined concentration with ultrapure water to a vapor pressure chamber to add co-saturated nanocellulose by adding ultrapure steam saturated at a predetermined time and temperature in the chamber to the nanocellulose ointment;
(C) 상기 나노셀룰로오스 연고상 혼합물을 일정 온도가 유지되는 압출기로 공급하여 다양한 직경을 가지는 압출 노즐을 통해 압출 방사한 후, 상온 건조하여 나노셀룰로오스 장섬유를 얻는 단계를 포함하는 것을 특징으로 한다. (C) characterized in that it comprises the step of supplying the nanocellulose ointment mixture to an extruder maintained at a constant temperature, extrusion spinning through an extrusion nozzle having a variety of diameters, followed by drying at room temperature to obtain nanocellulose long fibers.
또한, 상기 (A) 단계에서 투여되는 나노셀룰로오스의 크기는 직경이 5~200 nm, 길이는 수 nm ~ 수 um의 크기가 바람직하다.In addition, the size of the nanocellulose administered in the step (A) is 5 ~ 200 nm in diameter, the length is preferably a size of several nm ~ several um.
또한, 상기 (A) 단계에서 제조되는 나노셀룰로오스 연고상의 농도는 2 내지 50 중량%가 바람직하다.In addition, the concentration of the nanocellulose ointment prepared in step (A) is preferably 2 to 50% by weight.
또한, 상기 (B) 단계에서 챔버 내 온도는 100 내지 150℃ 온도로 유지되는 것이 바람직하다.In addition, the temperature in the chamber in the step (B) is preferably maintained at a temperature of 100 to 150 ℃.
또한, 상기 (B) 단계에서 챔버 내 압력은 1 내지 3 기압으로 유지되는 것이 바람직하다.In addition, the pressure in the chamber in the step (B) is preferably maintained at 1 to 3 atm.
또한, 상기 (B) 단계에서 증기압력을 나노셀룰로오스 연고상에 가하는 시간은 20분 내지 5시간이 바람직하다.In addition, in the step (B), the time for applying the vapor pressure to the nanocellulose ointment is preferably 20 minutes to 5 hours.
또한, 상기 (C) 단계에서 압출기는 80 내지 160℃로 유지되어 나노셀룰로오스 연고상이 공급되는 것이 바람직하다.In addition, the extruder in the step (C) is preferably maintained at 80 to 160 ℃ is supplied a nanocellulose ointment phase.
또한, 상기 (C) 단계에서 사용하는 압출 노즐의 직경은 30 um 내지 500 um가 바람직하다.In addition, the diameter of the extrusion nozzle used in the step (C) is preferably 30 um to 500 um.
또한, 상기 (A) 단계에서 나노셀룰로오스 분말은 polyvinyl alcohol와 같은 가교제와 혼합하여 사용할 수 있다.In addition, the nanocellulose powder in step (A) may be used by mixing with a crosslinking agent such as polyvinyl alcohol.
도 1은 본 발명의 공정 개략도로서 나노셀룰로오스 연고상 물질을 제조하고 이를 증기압력 챔버에 공급하여 증기압력을 일정시간 가한 뒤, 압출하여 장섬유를 제조하는 공정순서를 개략적으로 나타낸 것이다. Figure 1 is a schematic view of the process of the present invention to prepare a nanocellulose ointment material and supply it to the steam pressure chamber to give a steam pressure for a certain time, and then schematically shows the process sequence for producing long fibers.
도 1에서 사용한 나노셀룰로오스 분말은 셀룰로오스 나노결정(CNC) 또는 셀룰로오스 나노파이버 (CNF)이다. The nanocellulose powder used in FIG. 1 is cellulose nanocrystals (CNC) or cellulose nanofibers (CNF).
셀룰로오스 나노결정과 초순수를 혼합할 때, 균일한 혼합을 위해 믹서를 사용하여 혼합시켜 나노셀룰로오스 연고상 물질을 제조한다. 이때, 충분한 시간동안 혼합시켜주지 않아 눈으로 보기에도 뭉쳐진 셀룰로오스 나노결정 덩어리가 나노셀룰로오스 연고상 내에 존재한다면 상기 (B)와 (C) 단계를 거쳐 압출된 장섬유에 결함을 일으킬 수 있다.When cellulose nanocrystals and ultrapure water are mixed, nanocellulose ointment materials are prepared by mixing using a mixer for uniform mixing. In this case, if the cellulose nanocrystal masses aggregated in the visible phase without being mixed for a sufficient time are present in the nanocellulose ointment phase, it may cause defects in the long fibers extruded through the steps (B) and (C).
또한, 제조된 나노셀룰로오스 연고상 물질의 나노셀룰로오스 농도가 2 중량% 미만이라면 연고상 내 나노셀룰로오스의 함량이 너무 낮아 장섬유의 강도가 저하될 수 있으며, 연고상의 농도가 50 중량%를 초과한다면 나노셀룰로오스의 용해성이 떨어질 수 있고, 점도가 너무 높아 압출안정성이 저하된다.In addition, if the nanocellulose concentration of the prepared nanocellulose ointment material is less than 2% by weight, the content of nanocellulose in the ointment is too low, the strength of the long fiber may be reduced, if the concentration of the ointment phase exceeds 50% by weight nano The solubility of cellulose may be inferior, and viscosity is too high and extrusion stability falls.
상기 나노셀룰로오스 연고상 물질은 초순수와 함께 증기압력 챔버로 공급되고 100 내지 150℃의 온도와 1 내지 3기압의 압력으로 20분 내지 5시간동안 유지된다. 이렇게 포화된 증기와 일정 온도를 일정 시간동안 나노셀룰로오스 연고상 물질에 가해주면 증기를 통한 나노셀룰로오스 간의 공유결합이 증가될 수 있으며, 이는 장섬유의 고강도화에 도움을 준다. 또한, 미처 용해되지 못한 나노셀룰로오스를 용해시켜주며 팽윤시키는 효과를 더해주어 균질한 나노셀룰로오스 연고상을 형성하게 한다.The nanocellulose ointment material is supplied to the vapor pressure chamber with ultrapure water and maintained for 20 minutes to 5 hours at a temperature of 100 to 150 ° C. and a pressure of 1 to 3 atmospheres. Applying the saturated steam and a certain temperature to the nanocellulose ointment material for a certain time may increase the covalent bond between the nanocellulose through the steam, which helps to strengthen the long fiber. In addition, it dissolves the insoluble nanocellulose and adds the effect of swelling to form a homogeneous nanocellulose ointment phase.
상기 제조된 나노셀룰로오스 연고상 물질은 압출기로 공급된다. 압출기는 온도를 조절할 수 있는 히터를 구비하고 있으며, 다양한 직경의 압출 노즐을 교체하여 압출할 수 있는 노즐 어댑터가 설치되어 있다. 이때, 압출기의 온도는 80 내지 160℃의 온도로 유지되는 것이 바람직하다.The prepared nanocellulose ointment material is fed to an extruder. The extruder is equipped with a temperature-controlled heater and is equipped with a nozzle adapter that can be extruded by replacing extrusion nozzles of various diameters. At this time, the temperature of the extruder is preferably maintained at a temperature of 80 to 160 ℃.
실시예 1Example 1
분말화된 셀룰로오스 나노결정을 초순수와 함께 믹서를 사용하여 균질하게 혼합하여 나노셀룰로오스 연고상 물질을 제조하였다. 이때 상기 제조된 나노셀룰로오스 연고상은 35 중량%의 농도로 제조되었다.The powdered cellulose nanocrystals were mixed homogeneously with ultrapure water using a mixer to prepare nanocellulose ointment materials. At this time, the prepared cellulose ointment phase was prepared at a concentration of 35% by weight.
상기 나노셀룰로오스 연고상 물질을 증기압력 챔버에 공급하여 120℃, 2기압에서 3시간동안 체류시키며 증기압력으로 인한 셀룰로오스 나노결정 간 공유결합을 증진시켰고, 나노셀룰로오스 연고상 내에서 셀룰로오스 나노결정이 초순수와 균질하게 혼합되고 팽윤되도록 하였다. 상기의 단계를 거친 나노셀룰로오스 연고상의 농도는 약 32.7 중량%였으며, 초순수와 미처 용해되지 않은 셀룰로오스 나노결정 입자가 함유되지 않은 균질한 상태였다.The nanocellulose ointment material was supplied to the vapor pressure chamber to stay at 120 ° C. and 2 atm for 3 hours to promote covalent bonds between the cellulose nanocrystals due to the vapor pressure. The mixture was allowed to mix homogeneously and swell. The concentration of the nanocellulose ointment which passed the above step was about 32.7% by weight, and was in a homogeneous state containing no ultrapure water and insoluble cellulose nanocrystal particles.
상기 증기압력 단계를 거친 나노셀룰로오스 연고상은 압출기로 공급되어 나노셀룰로오스 장섬유로 압출된다. 이때 압출기는 160℃로 유지되고, 압출 노즐은 340, 360, 180, 100 um의 직경을 가지는 것을 사용하였다. 압출되어 제조된 나노셀룰로오스 장섬유는 공기층에서 상온 건조되어진다. The nanocellulose ointment phase subjected to the vapor pressure step is fed to an extruder and extruded into nanocellulose long fibers. At this time, the extruder was maintained at 160 ℃, the extrusion nozzle was used having a diameter of 340, 360, 180, 100um. The extruded nanocellulose long fibers are dried at room temperature in the air layer.
압출된 장섬유의 직경은 도 2와 같이 압출 노즐의 직경이 감소함에 따라 감소한다. The diameter of the extruded long fibers decreases as the diameter of the extrusion nozzle decreases as shown in FIG. 2.
비교예 1Comparative Example 1
증기처리 과정을 수행한 장섬유와 수행하지 않은 장섬유의 특성 비교를 위해 상기 (B) 단계를 제외한 (A), (C) 단계만 수행하여 나노셀룰로오스 장섬유를 제조하였다. 그리고 사용한 압출 노즐은 100 um 직경의 노즐을 사용하였다.In order to compare the characteristics of the long fiber and the long fiber that was not subjected to the steaming process, the nanocellulose long fiber was prepared by performing only steps (A) and (C) except step (B). And the used extrusion nozzle used the nozzle of 100um diameter.
도 3에 나타난 것처럼 100 um 직경으로부터 압출된 증기압력 과정을 거친 장섬유의 경우, 영률은 4.03 GPa 이다. 그리고 증기압력 과정을 거치지 않은, 비교예 1을 통해 제조된 장섬유의 경우, 영률은 2.85 GPa이다. 이는 증기처리 과정을 거쳐 제조된 장섬유의 영률이 더 증가함을 보여준다.As shown in FIG. 3, the Young's modulus is 4.03 GPa for the long fibers subjected to the steam pressure process extruded from 100 um diameter. And in the case of the long fiber prepared through Comparative Example 1, not subjected to the steam pressure process, the Young's modulus is 2.85 GPa. This shows that the Young's modulus of the long fibers produced through the steaming process is further increased.
또한, 도 4를 통해 증기처리 과정을 수행한 장섬유와 수행하지 않은 장섬유의 FTIR 비교결과를 나타내었다. 그 결과, 증기처리 과정을 수행하지 않은 장섬유 그래프의 경우, C-O-C 공유결합의 위치인 1028 cm-1 피크가 나타나지 않았으나, 증기압력 과정을 수행한 장섬유의 그래프의 경우, C-O-C 공유결합의 위치인 1028 cm-1 피크가 나타났다. 이는 증기압력 과정을 수행했을 경우, 장섬유 내 나노셀룰로오스 간 공유결합이 증가함을 의미한다. In addition, the FTIR comparison results of the long fiber and the long fiber that did not perform the steam treatment process is shown in FIG. As a result, in the long fiber graph without the steam treatment, the peak of 1028 cm -1 , which is the position of the COC covalent bond, did not appear. 1028 cm -1 peak appeared. This means that when the steam pressure process is performed, covalent bonds between the nanocellulose in the long fibers are increased.
Claims (9)
- (A) 분말화된 나노셀룰로오스에 초순수를 혼합하여 제조된 2 내지 50 중량%의 나노셀룰로오를 포함하는 연고상 물질을 제조하는 단계;(A) preparing an ointment material comprising 2 to 50% by weight of nanocellulose prepared by mixing ultrapure water with the powdered nanocellulose;(B) 상기 나노셀룰로오스 연고상 물질을 초순수와 함께 증기압력 챔버로 공급하여 챔버 내에서 일정 시간및 일정 온도에서 포화된 초순수 증기를 나노셀룰로오스 연고상 물질에 가하는 단계; 및 (B) supplying the nanocellulose ointment material with ultrapure water to the vapor pressure chamber to add ultrapure water saturated at a certain time and temperature to the nanocellulose ointment material in the chamber; And(C) 상기 나노셀룰로오스 연고상 물질을 일정 온도가 유지되는 압출기로 공급하여 다양한 직경을 가지는 압출 노즐을 통해 압출 방사한 후, 공기층에 도달하고 상온 건조하여 나노셀룰로오스 장섬유를 제조하는 단계를 포함하는 나노셀룰로오스 장섬유의 제조방법.(C) supplying the nanocellulose ointment material to an extruder maintained at a constant temperature and extruding through an extrusion nozzle having various diameters, and then reaching the air layer and drying at room temperature to produce nanocellulose long fibers. Method for producing nanocellulose long fibers.
- 제 1항에 있어서,The method of claim 1,상기 (A) 단계의 분말화된 나노셀룰로오스는 분말화된 셀룰로오스 나노섬유 (Cellulose Nanofiber, CNF) 또는 분말화된 셀룰로오스 나노결정 (Cellulose Nanocrystal, CNC)을 포함하며, 상기 분말화된 나노셀룰로오스 직경은 5 내지 200 nm, 길이는 수 nm 내지 수 um를 갖는 나노셀룰로오스 장섬유의 제조방법.The powdered nanocellulose of step (A) comprises powdered cellulose nanofibers (Cellulose Nanofiber, CNF) or powdered cellulose nanocrystals (Cellulose Nanocrystal, CNC), the powdered nanocellulose diameter is 5 To 200 nm, the length of the nanocellulose long fiber having a number of nm to several um.
- 제 1항에 있어서,The method of claim 1,상기 (B) 단계의 증기압력 챔버 내에서 챔버 내 온도는 100 내지 150℃ 온도인 나노셀룰로오스 장섬유의 제조방법. The temperature in the chamber in the vapor pressure chamber of the step (B) is 100 to 150 ℃ temperature manufacturing method of nanocellulose long fibers.
- 제 1항에 있어서,The method of claim 1,상기 (B) 단계의 증기압력 챔버 내에서 압력은 1 내지 3 기압인 나노셀룰로오스 장섬유의 제조방법. The pressure in the vapor pressure chamber of the step (B) is a method for producing nanocellulose long fibers of 1 to 3 atm.
- 제 1항에 있어서,The method of claim 1,상기 (B) 단계의 증기압력 챔버 내에서 증기압력을 나노셀룰로오스 연고상 물질에 가하는 시간은 20분 내지 5시간인 나노셀룰로오스 장섬유의 제조방법.The method for producing nanocellulose long fibers in the steam pressure chamber of step (B) is 20 minutes to 5 hours.
- 제 1항에 있어서,The method of claim 1,상기 (C) 단계에서 압출기는 80 내지 160℃로 유지되어 나노셀룰로오스 연고상 물질을 공급하는 나노셀룰로오스 장섬유의 제조방법.The extruder in the step (C) is maintained at 80 to 160 ℃ manufacturing method of nanocellulose long fibers for supplying nanocellulose ointment material.
- 제 1항에 있어서,The method of claim 1,상기 (C) 단계에서 사용하는 압출 노즐의 직경은 30 um 내지 500 um인 나노셀룰로오스 장섬유의 제조방법.The diameter of the extrusion nozzle used in the step (C) is 30 um to 500 um method of producing a nanocellulose long fiber.
- 제 1항에 있어서,The method of claim 1,상기 (A) 단계에서 나노셀룰로오스 분말은 가교제 고분자 물질과 혼합하여 사용하는 나노셀룰로오스 장섬유의 제조방법.In the step (A), the nanocellulose powder is used for mixing with the crosslinking agent polymer material.
- 제 1항 내지 8항 중 어느 한 항의 제조방법에 따라 제조된 장섬유 강화 고강도 복합재.A long fiber reinforced high strength composite prepared according to the method of any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0085692 | 2018-07-24 | ||
KR1020180085692A KR20200011071A (en) | 2018-07-24 | 2018-07-24 | A Method for Manufacturing of High Strength Nanocellulose Longfiber by using Steam Treatment and Extrusion |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020022532A1 true WO2020022532A1 (en) | 2020-01-30 |
Family
ID=69181777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/008437 WO2020022532A1 (en) | 2018-07-24 | 2018-07-25 | Method for manufacturing high-strength nanocellulose long fiber through steam treatment and extrusion |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20200011071A (en) |
WO (1) | WO2020022532A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002530541A (en) * | 1998-11-12 | 2002-09-17 | ペーパー テクノロジー ファウンデーション インク. | Method for achieving simultaneous impregnation and drying of lignocellulosic material using exogenous steam |
JP2014141772A (en) * | 2012-12-28 | 2014-08-07 | Kao Corp | Method of producing oxidized cellulose fiber |
KR101472098B1 (en) * | 2013-12-31 | 2014-12-16 | 주식회사 효성 | Manufacturing method of cellulose fiber using ionic liquid |
JP2017128717A (en) * | 2016-01-14 | 2017-07-27 | 王子ホールディングス株式会社 | Fine cellulose fiber-containing resin composition and method for producing the same |
KR101856501B1 (en) * | 2017-07-07 | 2018-05-11 | 광성기업 주식회사 | Fibrillated cellulose filament preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100486811B1 (en) | 2003-06-30 | 2005-04-29 | 주식회사 효성 | A process for preparing cellulose fiber by using a highly homogeneous cellulose solution |
CN102791790B (en) | 2010-03-18 | 2014-12-03 | 凸版印刷株式会社 | Liquid cellulose dispersion, method for producing same and molded body using same |
-
2018
- 2018-07-24 KR KR1020180085692A patent/KR20200011071A/en not_active Application Discontinuation
- 2018-07-25 WO PCT/KR2018/008437 patent/WO2020022532A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002530541A (en) * | 1998-11-12 | 2002-09-17 | ペーパー テクノロジー ファウンデーション インク. | Method for achieving simultaneous impregnation and drying of lignocellulosic material using exogenous steam |
JP2014141772A (en) * | 2012-12-28 | 2014-08-07 | Kao Corp | Method of producing oxidized cellulose fiber |
KR101472098B1 (en) * | 2013-12-31 | 2014-12-16 | 주식회사 효성 | Manufacturing method of cellulose fiber using ionic liquid |
JP2017128717A (en) * | 2016-01-14 | 2017-07-27 | 王子ホールディングス株式会社 | Fine cellulose fiber-containing resin composition and method for producing the same |
KR101856501B1 (en) * | 2017-07-07 | 2018-05-11 | 광성기업 주식회사 | Fibrillated cellulose filament preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20200011071A (en) | 2020-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oksman et al. | Review of the recent developments in cellulose nanocomposite processing | |
KR100297308B1 (en) | Cellulose solution for molding and molding method using the same | |
KR101891367B1 (en) | Method for the production of lignin-containing precursor fibres and also carbon fibres | |
EP0436966B1 (en) | Methods for manufacture of porous resin mouldings, ultrafine fibres and ultrafine fibre nonwoven fabrics | |
KR20080059878A (en) | Method for production of cross-linked composite fiber of cellulose-polyvinylalcohol and the cross-linked composite fiber | |
TWI827733B (en) | Method for preparing a functional fiber | |
KR100611890B1 (en) | A process for preparing a highly homogeneous cellulose solution | |
Zhu et al. | Effect of fibre spinning conditions on the electrical properties of cellulose and carbon nanotube composite fibres spun using ionic liquid as a benign solvent. | |
JP2001502012A (en) | Composition comprising fine solid particles | |
Bierhalz | Cellulose nanomaterials in textile applications | |
AT402739B (en) | METHOD FOR PRODUCING A CELLULOSIC MOLDED BODY | |
DE10059111A1 (en) | Shaped protein body and process for its production by the NMMO process | |
EP0777767A1 (en) | Process for making cellulose extrudates | |
WO2020022532A1 (en) | Method for manufacturing high-strength nanocellulose long fiber through steam treatment and extrusion | |
JPH11501071A (en) | Composition containing fine solid particles | |
KR101472098B1 (en) | Manufacturing method of cellulose fiber using ionic liquid | |
CN114456686A (en) | Powder coating and preparation method thereof | |
JPH11505888A (en) | Molded articles with cellulose coating, impregnation or cover | |
El-Aassar et al. | Chemical crosslinking of poly (vinyl alcohol)/poly ethylene glycol with glutaraldehyde nanofibers | |
KR101472097B1 (en) | Manufacturing method of cellulose fiber using ionic liquid | |
KR102037217B1 (en) | Method for producing aramid nano fiber dispersion | |
CN113463270A (en) | Polypropylene melt-blown non-woven fabric based on composite antibacterial electret master batch and preparation method | |
CN111876851A (en) | Chitin-chitosan nano composite fiber and preparation method and application thereof | |
KR100499221B1 (en) | Cellulose/Polyvinyl alcohol conjugated fiber | |
KR100545858B1 (en) | Method for producing a high homogeneous cellulose solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18927929 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18927929 Country of ref document: EP Kind code of ref document: A1 |