WO2020022476A1 - System for highly efficient modification of target sequences - Google Patents

System for highly efficient modification of target sequences Download PDF

Info

Publication number
WO2020022476A1
WO2020022476A1 PCT/JP2019/029381 JP2019029381W WO2020022476A1 WO 2020022476 A1 WO2020022476 A1 WO 2020022476A1 JP 2019029381 W JP2019029381 W JP 2019029381W WO 2020022476 A1 WO2020022476 A1 WO 2020022476A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cells
sequence
vector
cas9
Prior art date
Application number
PCT/JP2019/029381
Other languages
French (fr)
Japanese (ja)
Inventor
好司 草野
孝行 木藤古
亜峰 朱
豊隆 森
Original Assignee
株式会社Idファーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Idファーマ filed Critical 株式会社Idファーマ
Publication of WO2020022476A1 publication Critical patent/WO2020022476A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors

Definitions

  • the present invention relates to a molecular genetic technique for easily and quickly modifying a gene sequence for the purpose of gene function analysis, gene therapy, breed improvement, biotechnological creation, and the like.
  • a recombination reaction occurs immediately after the cleavage as an intracellular function, and a change to an inserted / deleted / mutated sequence called indel may occur. Therefore, these intracellular functions are often used for gene disruption technology.
  • the frequency of genetic modification to a design sequence is significantly lower than the frequency of gene disruption, and therefore, the following method is generally employed to carry out the modification.
  • One of the typical methods is a donor consisting of a base sequence after exon modification and a sequence in which a drug-resistant gene inserted between site-specific recombinase recognition sequences (LoxP, FRT) is inserted in the immediate vicinity of an intron. DNA is introduced and cut within the corresponding exon-intron region on the genome. From the intron drug resistance marker gene to the exon-modified base sequence, after isolating a cell clone that has been replaced with the sequence of the donor DNA over a long chain, in order to remove the drug resistance marker gene, Introduction of site-specific recombinase (Cre, Flp) gene to obtain cells with only drug resistance markers missing (Li, H. L.et al., Stem Cell Reports 4, 143-154 (2015) ).
  • Cre site-specific recombinase
  • a donor DNA consisting of a drug resistance gene sandwiched between a transposase recognition sequence (PiggyBac (PB) IRE) is introduced into the exon-modified base sequence and the immediately adjacent intron, and the exon-intron region is cleaved.
  • PB transposase recognition sequence
  • intron drug resistance marker gene From the intron drug resistance marker gene to the exon-modified nucleotide sequence, after isolating a cell clone that has been replaced with the sequence of the donor DNA over a long chain (1 kb or more), for the cell clone, transposase (PiggyBac transposase)
  • the gene is introduced to obtain cells from which the drug resistance marker and the recognition sequence (PiggyBac IRE) have been lost (Yusa, K. et al., Nature 478, 391-394 (2012)).
  • An object of the present invention is to provide a method for efficiently modifying a genomic sequence, and a vector and the like used in the method.
  • cleavage at the design sequence which is an off-target similar sequence on the donor DNA, would prevent genetic modification. Even if the gene is modified according to the design sequence, if the sequence is similar before and after the genetic modification, re-cutting may occur after the modification. Such off-target similar sequence cleavage may result in residual target sequence DNA and unintended sequence abnormalities, making it difficult to select designed genetically modified cells.
  • a long chain (1 kb or more) region in the donor DNA sequence is introduced into the target cleavage site.
  • the method not only the cleavage of the target sequence on the chromosomal locus but also the cleavage of the target sequence on the donor DNA suppresses the recombination reaction of the long chain region.
  • the donor DNA was designed with an unnecessary loss to remove the cleavage sequence, the donor DNA sequence was copied to the target site. In a sequence-modified cell, unnecessary loss is a final product, and therefore, there is a problem that it cannot be applied to genetic modification other than gene disruption.
  • an additional step of selecting a cell into which the donor DNA has been introduced and then introducing a site-specific recombination enzyme, a vector expressing the transposase, etc. into the cell is added.
  • the procedure is complicated, for example, it is necessary to confirm that the marker gene has been removed from the genome as expected, and to select cells from which the introduced vector has been removed.
  • Negative-strand RNA virus vectors such as Sendai virus vectors
  • Sendai virus vectors are expressed in the cytoplasm and have no DNA phase in the expression process, so there is no risk that the viral genome is integrated into the host chromosome.
  • it shows high infectivity to a wide range of cells, and has excellent abilities such as being able to highly express a loaded gene.
  • the viral genomic RNA replicates in the cytoplasm in order to express the loaded gene.
  • the present inventors have found that it is difficult to control the expression of a minus-strand RNA virus vector in this way, and when expressing a nuclease such as Cas9 using this vector, the expression period must be long, It was thought that it caused repeated cleavage and binding by nucleases in the cells, which promoted the production of indel. Then, they thought that if the timing at which the nuclease can function could be more strictly controlled and the repetition of cleavage and binding could be suppressed, the generation of indel could be suppressed.
  • nucleases such as Cas9 exert their functions in a guide RNA-dependent manner.
  • the function is not exhibited even if the nuclease is expressed under conditions where guide RNAs necessary for expressing the activity of the nuclease are not available.
  • a nuclease gene is loaded on the minus-strand RNA virus vector, and a guide RNA (for example, a set of tracrRNA and crRNA) required for the activity of the nuclease is not loaded, or even if it is loaded, a guide RNA required for the activity of the nuclease Is designed not to encode all, the nuclease protein (only nuclease protein or only nuclease protein and some guide RNA) is highly expressed from the minus-strand RNA virus vector, but is required for nuclease activity. The nuclease function is not exhibited because all the guide RNAs are not available.
  • a guide RNA for example, a set of tracrRNA and crRNA
  • the present inventors first introduced a minus-strand RNA viral vector into cells, allowed only high expression of nuclease proteins and the like to accumulate in the cells, and then lacked guide RNA due to the expression of nuclease activity. Is supplied to the cells, a functional nuclease is generated at a stretch by combining the guide RNA separately supplied with a nuclease that is highly expressed in advance and the like, and the function is exhibited. We thought that it would be possible to overcome the drawback of the expression lag of the minus-strand RNA virus vector while enjoying the advantages of high expression.
  • a temperature-sensitive minus-strand RNA virus vector as a minus-strand RNA virus vector, culture at an allowable temperature when expressing a nuclease gene, etc., and then raise the temperature to a non-permissible temperature before and after the supply of guide RNA.
  • the vector can be quickly inactivated. This avoids unnecessary generation of nuclease after the supply of the guide RNA, so that it was thought that the timing at which the functional nuclease could exert its activity in cells could be more sharply controlled.
  • a nuclease gene is loaded into a temperature-sensitive negative-strand RNA virus vector, introduced into TG98 cells, and expressed at a permissive temperature.Then, donor DNA and guide RNAs dedicated to HPRT TG98 mutation are introduced into the cells, and non-permissive.
  • donor DNA and guide RNAs dedicated to HPRT TG98 mutation are introduced into the cells, and non-permissive.
  • the cells were cultured at a temperature, it was found that cells whose genetic readings were changed and the reading frame was restored could be obtained at a surprisingly high frequency of 2.6 ⁇ 10 ⁇ 3 to 3.6 ⁇ 10 ⁇ 3 (see Experiments 2-1 and 2-2). .
  • the present inventors have developed a minus-strand RNA viral vector that carries only a nuclease gene and does not carry a guide RNA gene (or carries a nuclease gene and encodes some guide RNAs, but has a low nuclease activity).
  • a minus-strand RNA virus vector that does not encode all necessary guide RNA is first introduced into cells, and after nucleases and the like are accumulated, the supply of insufficient guide RNA to the cells suppresses indel production.
  • the present inventors have found that high-frequency and high-quality genetic modification that could not be achieved by the method described above can be performed, and completed the present invention.
  • the present invention provides a highly efficient gene modification technique using a minus-strand RNA virus vector, and more specifically includes the inventions described in the claims. It should be noted that an invention comprising any combination of two or more of the inventions described in the claims citing the same claim is also an invention intended in the present specification. That is, the present invention includes the following inventions.
  • a method for producing a genetically modified cell using a guide RNA-dependent DNA nuclease (A) a temperature-sensitive minus-strand RNA virus vector that carries the nuclease gene and does not encode at least one guide RNA required for the activity of the nuclease is introduced into cells, and the vector is expressed at a permissive temperature; Accumulating the nuclease in cells in the absence of the guide RNA, (B) supplying the missing guide RNA to the cells after step (a); (C) raising the culture temperature to a non-permissible temperature before or after or simultaneously with step (b), and culturing in a state where the guide RNA is present in the cells.
  • [2] The method of [1], further comprising: (d) recovering a cell in which the gene has been modified. [3] The method according to [1] or [2], wherein the guide RNA is introduced into the cells in the step (b). [4] The method according to any one of [1] to [3], wherein the culture temperature is raised to a non-permissible temperature at the time of carrying out the step (b) or at the latest at least 24 hours after that.
  • the vector according to [11] which is a temperature-sensitive Sendai virus vector.
  • Attenuation of cleavage at off-target analogous sequences Inaccurate recombination occurs after repeated cleavage and binding of target DNA. If repetition of cutting can be suppressed, it is considered that incorrect recombination can also be suppressed.
  • the present invention can suppress repetitive cleavage of the target genome and suppress incorrect recombination by enhancing and shortening the expression of the cleavage enzyme. This makes it possible, for example, to suppress indels in off-target sequences during gene disruption, and to reduce the number of unintended sequence-abnormality-bearing cells in the target during gene modification to similar designed sequences. It can be expected to facilitate the selection of cells modified according to the sequence.
  • a guide RNA having a low cleavage efficiency is prepared by increasing the amount of RNA separately introduced in order to increase the cleavage efficiency. In order to suppress this, the frequency of gene modification can be adjusted by reducing the amount of introduced RNA.
  • the fundamental solution to the problem of wasting time and labor in two-stage selection is considered to be improved genetic modification efficiency.
  • the guide RNA-dependent nuclease gene is mounted on a minus-strand RNA virus vector that is a high-frequency infection / high expression vector, and the guide RNA is separately supplied, whereby the method of the present invention for shortening the action time of the nuclease enables gene modification.
  • genetic modification occurs at a high frequency due to the improvement of the genetic modification efficiency
  • genetically modified cells into which the modified sequence has been introduced can be selected under non-selective conditions, thus eliminating the need for a selective marker / site-specific recombination system.
  • the problem of the site-specific recombination sequence remaining can be avoided.
  • the recombination reaction is completed within a short chain ( ⁇ 20 bp or less) region containing only the sequence after modification. Genetic modification by such a short chain region recombination reaction, even if the target homologous sequence (separable sequence) is present on the donor plasmid, was found not to be reduced. Neither the removal of the target homologous sequence nor the synonymous conversion sequence is required, and thus no information on the target cleavage sequence and no synonymous conversion are involved.
  • two points are 1) expression of a cleavage enzyme gene from a minus-strand RNA virus vector; and 2) optimization of the amount of RNA introduced by transfection.
  • the cleavage enzyme can be brought into a highly active state for a short period of time. It is possible to carry out a high-frequency genetic modification method attributable to the cleavage ability.
  • the frequency of the gene modification method of the present invention is increased by the expression and introduction of a sufficient amount of a guide RNA-dependent nuclease using a minus-strand RNA virus vector. This can be further enhanced by quantitative optimization of the guide RNA (gRNA) molecule.
  • gRNA guide RNA
  • FIG. 7 is a diagram showing the outline of a conventional genome editing technique.
  • the donor DNA contains a positive selection marker gene (Hyg) flanked by site-specific recombinase recognition sequences (loxP) adjacent to the target site, and a negative selection marker gene (TK )It is included.
  • the target DNA of the cells is cleaved by CRISPR / Cas9, and the cells into which the donor DNA has been integrated are selected by hygromycin and ganciclovir (first step). Thereafter, the positive selectable marker gene (Hyg) is removed by the action of the site-specific recombination enzyme Cre (second stage). In addition to the need for a two-step selection, the loxP sequence cannot be finally removed.
  • the minus-strand RNA virus vector does not carry the guide RNA gene, but carries only the nuclease protein gene. In the case of a replication-defective virus vector, the infectious virus is not released extracellularly (thick bar A in the figure).
  • the nuclease protein expressed in the absence of guide RNA accumulates in the nucleus in large amounts (scissors A in the figure). Then, when the donor DNA and guide RNA are introduced into cells, the nuclease functions and recombination occurs at high frequency, so there is no need to select a drug, and it is possible to obtain the desired genetically modified product in one step (B in the figure).
  • HPRT gene fragments were used as donor DNA, and HPRT - cells were used as target cells.
  • Cells are infected with a temperature-sensitive SeV vector carrying the Cas9 gene, and cultured at a permissive temperature (35 ° C.) to strongly express Cas9. Thereafter, guide RNA (tracrRNA, crRNA) and donor DNA are introduced and cultured at a non-permissive temperature (37 ° C.).
  • Gene modification (reversion) reaction induced by targeted cleavage of the genomic DNA of the cell occurs at a high frequency, and the target cell is obtained by analyzing a limited number of colonies. It is a figure which shows the appearance frequency etc.
  • FIG. 2 is a diagram showing the frequency of appearance of gene-disrupted clones by a purified SeV-Cas9 sample and the like.
  • the frequency of 6-thioguanine-resistant cells (HPRT - cells) in living cells was significantly increased in the method of the present invention using Cas9-expressing SeV. .
  • FIG. 1 is a diagram showing the frequency of appearance of gene-disrupted clones by a purified SeV-Cas9 sample and the like.
  • FIG. 10 is a diagram showing the frequency of appearance of gene-reverted clones by a purified SeV-Cas9 sample in second evaluation cells having different target sequences.
  • the frequency of appearance of HAT-resistant cells (HPRT + cells) in living cells was significantly increased in the method of the present invention using Cas9-expressing SeV.
  • region of the HAT resistant clone obtained from the 2nd evaluation cell is shown. Neither the conventional method nor the method of the present invention observed any accompanying or unintended adjacent insertion of the target sequence DNA.
  • the present invention provides a new gene modification method using a minus-strand RNA virus vector.
  • the method uses a minus-strand RNA virus vector and does not express a guide RNA (or expresses some guide RNAs, but does not express all guide RNAs necessary for expression of nuclease activity).
  • a guide RNA-dependent DNA nuclease is expressed from the vector.
  • the deficient guide RNA (the guide RNA missing for the expression of the activity of the nuclease) is separately supplied to cells after the expression of the nuclease from the minus-strand RNA virus vector. That is, for example, they are separately introduced into cells or transcribed by a vector that can express more rapidly than, for example, a minus-strand RNA viral vector.
  • examples of the gene modification method of the present invention include the following methods.
  • the genetic modification includes desired gene editing, and includes, for example, gene conversion, gene repair, gene replacement, gene reversion, and gene disruption.
  • a genetic modification method using a guide RNA-dependent DNA nuclease (A) carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nuclease into cells, and expressing the vector; Accumulating the nuclease in a cell in the absence of the at least one guide RNA; (B) a step of, after step (a), supplying a deficient guide RNA to the cells.
  • Negative-strand RNA virus vectors are highly infectious to a wide range of cells and have the ability to express on-board genes at extremely high levels, but it takes a certain amount of time from infection to high expression. Therefore, it is necessary to culture the vector for a certain period after infection, and during that time, the expression product of the loaded gene gradually accumulates in the cell. , Will continue to work in the cell.
  • nuclease by intentionally expressing only a nuclease (or only a nuclease and some guide RNA) from a minus-strand RNA virus vector, and preventing the expression of all guide RNAs necessary for the expression of nuclease activity, It is characterized in that it is designed so that active nuclease cannot act on the cell while the nuclease gene carried by introducing the vector into the cell is expressed and accumulated in the cell.
  • Some guide RNA-dependent DNA nucleases require only one guide RNA, while others require multiple guide RNAs.
  • two RNAs, crRNA and tracrRNA form a complex with a nuclease, thereby exhibiting nuclease activity. Therefore, the nuclease cannot function without either of them.
  • Cpf1 does not require tracrRNA because the crRNA functions as a guide RNA to the target site.
  • the minus-strand RNA virus vector of the present invention does not encode at least one (or all) of the guide RNAs required for the activity of the encoded guide RNA-dependent DNA nuclease. Cannot act on cells.
  • the minus-strand RNA viral vector of the present invention does not encode either crRNA or tracrRNA, or both.
  • the minus-strand RNA viral vector of the present invention does not encode the guide RNA.
  • "encoding" a gene such as a guide RNA means that the gene is expressed so that it can be expressed, and that the gene is mounted so that it can be expressed.
  • the minus strand RNA virus vector used in the present invention is not particularly limited.
  • a paramyxovirus vector can be suitably used.
  • Paramyxovirus refers to a virus belonging to Paramyxoviridae (Paramyxoviridae) or a derivative thereof.
  • the Paramyxoviridae family includes Paramyxovirinae (including the genus Respirovirus (also referred to as Paramyxovirus), the genus Rubravirus, and the genus Mobilivirus) and the subfamily Pneumovirinae (Pneumovirinae) Genus and metapneumovirus genus).
  • Sendai virus Sendai virus
  • Newcastle disease virus Newcastle disease virus
  • mumps virus Mumps virus
  • measles virus Measles virus
  • RS virus Respiratory syncytial virus
  • rinderpest virus distemper virus
  • simian parainfluenza virus SV5
  • human parainfluenza virus 1, 2, 3 and the like.
  • Sendai virus SeV
  • human parainfluenza virus-1 HPIV-1
  • human parainfluenza virus-3 HPIV-3
  • phocine distemper virus PDV
  • canine distemper virus CDV
  • dolphin molbillivirus DMV
  • peste-des-petits-ruminants virus PDPR
  • measures virus MeV
  • rinderpest virus RCV
  • Hendra virus Hendra
  • Nipah virus Nipah virus
  • human parainfluenza virus-2 HPIV-2)
  • Simian parainfluenza virus 5 SV5
  • human parainfluenza virus 4a HPIV-4a
  • human parainfluenza virus 4b HPIV-4b
  • mumps virus Mumps
  • Newcastle disease virus NDV
  • Rhabdoviruses include vesicular stomatitis virus (Resbbviridae), rabies virus (Rabies virus), and the like.
  • the genomic RNA of a minus-strand RNA virus is a minus strand (negative strand).
  • a protein or RNA When encoding a protein or RNA, it is encoded as an antisense sequence on the genomic RNA. In the present invention, such a case is also referred to as “encoding” a protein or RNA.
  • a protein or RNA when encoded as an antisense sequence in a minus-strand RNA genome, it is also referred to as a gene of the protein or RNA being carried on the genome.
  • the plus-strand (positive-strand) RNA genome also called antigenome
  • the minus-strand RNA genome and the plus-strand RNA genome are collectively referred to as “genome”.
  • the viral vector of the present invention is preferably a virus belonging to the subfamily Paramyxoviridae (including the genera Respirovirus, Rubravirus, and Morbillivirus) or a derivative thereof, and more preferably the gene of Respirovirus (genus). Respirovirus (also referred to as Paramyxovirus) or a derivative thereof.
  • Respirovirus also referred to as Paramyxovirus
  • respiroviruses to which the present invention can be applied include human parainfluenza virus type 1 (HPIV-1), human parainfluenza virus type 3 (HPIV-3), and bovine parainfluenza virus type 3 (BPIV-3).
  • Sendai virus also called mouse parainfluenza virus type 1
  • measles virus measles virus
  • simian parainfluenza virus SV5
  • SPIV-10 simian parainfluenza virus type 10
  • the paramyxovirus is most preferably a Sendai virus.
  • Paramyxovirus generally contains a complex composed of RNA and protein (ribonucleoprotein; RNP) inside the envelope.
  • the RNA contained in the RNP is a single-stranded (-) strand (negative strand), which is the genome of the negative-strand RNA virus, and this single-stranded RNA binds to the NP protein, P protein, and L protein, Forming RNP.
  • the RNA contained in this RNP serves as a template for transcription and replication of the viral genome (Lamb, RA, and D. Kolakofsky, 1996, myParamyxoviridae: The viruses and their replication. Pp.1177-1204. In Fields Virology, 3rd edn. Fields, B. N., D. M. Knipe, and P. M. Howley et al. (ed.), Raven Press, New York, N. Y.).
  • accession number of the database of the nucleotide sequence of each gene of Sendai virus is NPM29343, 30M30202, M30203, 30M30204, M51331, M55565, M69046, X17218 for the NP gene, M30202, M30203, M30204, M55565, M69046 for the P gene.
  • the viral genes encoded by other viruses for the NP gene (also called N gene), CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025 ; Mapuera, X85128; sMumps, D86172; MV, K01711; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; and Tupaia, ; DMV, Z47758; HPIV-l, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; -4Mumps, D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311 , 30M30202; SV5,
  • the Sendai virus vector of the present invention has 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identity with the coding sequence of any of the above viral genes. Includes base sequences with
  • the Sendai virus vector of the present invention comprises, for example, an amino acid sequence encoded by the coding sequence of any of the above-mentioned virus genes and 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, Or a nucleotide sequence encoding an amino acid sequence having 99% or more identity.
  • the Sendai virus vector of the present invention for example, in the amino acid sequence encoded by the coding sequence of any of the above viral genes, within 10, preferably within 9, within 8, within 7, within 6, It includes a nucleotide sequence encoding an amino acid sequence in which no more than 5, no more than 4, no more than 3, no more than 2, or 1 amino acid has been substituted, inserted, deleted, and / or added.
  • sequence referred to in the database accession number such as the base sequence and the amino acid sequence described in the present specification refers to, for example, the sequence on the filing date or priority date of the present application, and the filing date and priority date of the present application.
  • the sequence at each time point can be specified by referring to the revision history of the database.
  • a virus whose envelope contains a protein different from the original envelope protein of the virus may be used.
  • a virus containing the same can be produced by expressing a desired exogenous envelope protein in a virus-producing cell.
  • proteins are not particularly limited, and proteins such as desired adhesive factors, ligands, and receptors that impart infectivity to mammalian cells can be used.
  • Specific examples include the G protein (VSV-G) of vesicular stomatitis virus (VSV).
  • VSV-G protein may be derived from any VSV strain.
  • VSV-G protein derived from Indiana serotype strain J. Virology 39: 519-528 (1981)
  • a Sendai virus vector can contain any combination of envelope proteins from other viruses.
  • the minus-strand RNA virus vector used in the present invention may be a derivative, and the derivative may be a virus whose virus gene has been modified, a virus which has been chemically modified, or the like so as not to impair the gene transfer ability of the virus. included.
  • the negative-strand RNA virus may be derived from a natural strain, a wild strain, a mutant strain, a laboratory passage strain, an artificially constructed strain, or the like.
  • the Sendai virus includes Z strain, but is not limited thereto (Medical ⁇ Journal ⁇ of ⁇ Osaka ⁇ University ⁇ Vol.6, ⁇ No.1, ⁇ March ⁇ 1955 ⁇ p1-15).
  • any of the genes of the wild-type virus may be mutated or defective.
  • a transmissibility-defective virus having a mutation such as a stop codon mutation that is deficient or suppresses the expression of at least one gene encoding the envelope protein or coat protein of the virus can be suitably used.
  • Viruses that do not express such envelope proteins are, for example, viruses that can replicate the genome in infected cells but cannot form infectious virions.
  • a transmissibility-defective virus is particularly suitable as a highly safe vector.
  • a gene that does not encode the F or HN envelope protein (spike protein) gene or the F and HN genes in the genome can be used (WO00 / 70055 and WO00 / 70070; Li, H.-O). . Et al., J. Virol. 74 (14) 6564-6569 (2000)).
  • the virus can amplify the genome in infected cells if it encodes at least proteins necessary for genome replication (eg, ⁇ N, P, and L proteins) in genomic RNA.
  • an infectious virus particle that is deficient in an envelope protein for example, a defective gene product or a protein that can complement it is supplied exogenously in a virus-producing cell (WO00 / 70055 ⁇ and ⁇ WO00 / 70070; Li, H.-O. et al., J. Virol. 74 (14) 6564-6569 (2000)).
  • non-infectious virus particles can be recovered by not complementing the defective viral protein at all (WO00 / 70070).
  • a virus vector carrying a mutant virus protein gene For example, a number of mutations are known in envelope proteins and coat proteins, including attenuating mutations and temperature-sensitive mutations. Viruses having these mutant protein genes can be suitably used in the present invention.
  • a vector having reduced cytotoxicity may be used. Cytotoxicity can be measured, for example, by quantifying the release of lactate dehydrogenase (LDH) from the cells. For example, a vector whose cytotoxicity is significantly reduced as compared with the wild type can be used.
  • LDH lactate dehydrogenase
  • the degree of attenuated cytotoxicity can be determined, for example, by culturing human HeLa cells (ATCC CCL-2) or monkey CV-1 cells (ATCC CCL 70) at an MOI of 3 and incubating for 3 days.
  • a vector in which the amount of released LDH in the liquid is significantly reduced as compared with the wild type for example, a vector in which the amount of released LDH is reduced by 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 50% or more can be used.
  • Mutations that reduce cytotoxicity also include temperature-sensitive mutations.
  • the minus-strand RNA viral vector used in the present invention is not particularly limited, but preferably has at least one, more preferably at least 2, 3, 4, 5, or more viral genes having a deletion or mutation. May be. Deletions and mutations may be introduced in any combination for each gene.
  • the mutation may be a function-lowering mutation or a temperature-sensitive mutation, and is preferably at least at 37 ° C. compared to a wild-type or a virus not having the mutation at a particle-forming ability (non-propagating type) of the virus.
  • NTVLP non-transmissible virus-like particle formation
  • growth rate and / or loading Is preferably a mutation that reduces the expression level of the gene to 1/2 or less, more preferably 1/3 or less, more preferably 1/5 or less, more preferably 1/10 or less, more preferably 1/20 or less.
  • a minus-strand RNA viral vector suitably used in the present invention has at least two viral genes deleted or mutated. Such viruses include those in which at least two viral genes have been deleted, those in which at least two viral genes have been mutated, and those in which at least one viral gene has been mutated and at least one viral gene has been deleted. Includes what you are doing.
  • the at least two mutated or deleted viral genes are preferably genes encoding an envelope constituent protein.
  • a vector in which the F gene is deleted and the M and / or HN gene is further deleted, or the M and / or HN gene further has a mutation is It is suitably used in the invention.
  • a vector in which, for example, the F gene is deleted, the M or HN gene is further deleted, and the remaining M and / or HN gene further has a mutation is also disclosed in It is suitably used in the invention.
  • the vector used in the present invention has at least three viral genes (preferably, at least three genes encoding an envelope-constituting protein; F, ⁇ HN, ⁇ , and M) deleted or mutated.
  • viral vectors have at least three gene deletions, at least three gene mutations, at least one gene mutation and at least two gene deletions And at least two genes are mutated and at least one gene is deleted.
  • a vector in which the F gene is deleted, the M and HN genes are further deleted, or the M and HN genes further have a mutation (eg, an NTVLP formation-suppressing mutation and / or a temperature-sensitive mutation) Is suitably used in the present invention.
  • a vector in which the F gene is deleted, the M or HN gene is further deleted, and the remaining M or HN gene further has a mutation is preferable in the present invention.
  • a mutation eg, an NTVLP formation inhibitory mutation and / or a temperature-sensitive mutation
  • Used for Such a mutant virus can be produced according to a known method.
  • NP, ⁇ M viral structural proteins
  • P, ⁇ L RNA synthases
  • preferred mutations in the Sendai virus M gene include amino acids at sites arbitrarily selected from the group consisting of positions 69 (G69), 116 (T116), and 183 (A183) in the M protein. Substitution (Inoue, M. et al., J. Virol. 2003, 77: 3238-3246).
  • the M protein of Sendai virus has a genome encoding a mutant M protein in which any of the above three sites, preferably a combination of any two sites, and more preferably all three sites are substituted with other amino acids Viruses are suitably used in the present invention.
  • Amino acid mutation is preferably substitution to another amino acid having a different side chain chemical property, for example, BLOSUM62 matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) is substituted with an amino acid having a value of 3 or less, preferably 2 or less, more preferably 1 or less, and more preferably 0.
  • G69, T116, and A183 of the Sendai virus M protein can be replaced with Glu (E), Ala (A), and Ser (S), respectively.
  • the mutation may be introduced, for example, using an oligonucleotide or the like according to a known mutation introduction method.
  • Preferred mutations in the HN gene include, for example, amino acid substitution at a site arbitrarily selected from the group consisting of positions 262 (A262), 264 (G264), and 461 (K461) of the Sendai virus HN protein.
  • substitution of an amino acid is preferably substitution with another amino acid having a different side chain chemical property.
  • Sendai virus ⁇ A262, G264, and K461 of the HN protein are replaced with Thr (T), Arg (R), and Gly (G) ⁇ , respectively.
  • mutation can be introduced into the 464th and 468th amino acids of the HN protein (Wright, K. E. et al., Virus Res. 2000: 67 ; 49-57).
  • the Sendai virus may have a mutation in the P gene and / or L gene.
  • mutations include a mutation at Glu (E86) at position 86 of the SeV P protein and a substitution of another amino acid at Leu (L511) at position 511 of the SeV P protein.
  • substitution of an amino acid is preferably substitution with another amino acid having a different side chain chemical property.
  • Specific examples include substitution of the 86th amino acid with Lys, substitution of the 511th amino acid with Phe, and the like.
  • substitution of Asn at position 1197 (N1197) and / or Lys at position 1795 (K1795) of the SeV L protein with other amino acids is mentioned.
  • Is preferably substituted with another amino acid having a different chemical property are preferably substituted with another amino acid having a different chemical property.
  • Specific examples include substitution of the amino acid at position 1197 with Ser, substitution of the amino acid at position 1795 with Glu, and the like.
  • Mutations in the P and L genes can significantly enhance the effects of persistent infectivity, suppression of secondary particle release, or suppression of cytotoxicity. Furthermore, these effects can be dramatically increased by combining mutation and / or deletion of the envelope protein gene.
  • the L gene includes substitution of Tyr (Y1214) at position 1214 and / or Met (M1602) at position 1602 of the SeV L protein with other amino acids. Substitution with another amino acid having a different chemical property is preferred.
  • Specific examples include substitution of the amino acid at position 1214 with Phe, substitution of the amino acid at position 1602 with Leu, and the like.
  • the mutations exemplified above can be arbitrarily combined.
  • the F gene is deleted, the M protein has G69E, T116A, and A183S mutations, the HN protein has A262T, G264R, and K461G mutations, the P protein has L511F mutation, and the L protein has N1197S and A Sendai virus vector containing a K1795E mutation in its genome can be suitably used in the present invention.
  • a combination of the deletion of the F gene and these mutations is referred to as “TS ⁇ F”.
  • a minus-strand RNA virus vector carrying a guide RNA-dependent DNA nuclease gene into cells may be carried out according to a well-known method as appropriate.
  • the MOI multipleplicity of infection
  • the MOI may be, for example, on the order of 0.1 to 50, preferably 0.5 to 30, 1 to 20, 2 to 10, or 3 to 5, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, , Or 10.
  • the target cells into which the vector is introduced there is no particular limitation on the target cells into which the vector is introduced, and any desired cells that can be infected with the minus-strand RNA virus can be used.
  • the organism from which the cell is derived is not particularly limited, and may be, for example, a desired eukaryotic cell. More specifically, the target cell is, for example, an animal cell or a plant cell, preferably an animal cell, more preferably a mammalian cell, such as a primate cell, specifically, a mouse, rat, monkey, and human Cells.
  • the type of cells is not particularly limited, and cells of a desired tissue can be used.
  • the genome is modified by introducing a donor polynucleotide into differentiated cells, undifferentiated cells, precursor cells, progenitor cells, and the like. be able to. Further, it can also be introduced into embryonic stem cells, pluripotent stem cells (for example, induced pluripotent stem cells (iPS cells)) and the like.
  • a donor polynucleotide into differentiated cells, undifferentiated cells, precursor cells, progenitor cells, and the like. be able to. Further, it can also be introduced into embryonic stem cells, pluripotent stem cells (for example, induced pluripotent stem cells (iPS cells)) and the like.
  • iPS cells induced pluripotent stem cells
  • the nuclease expressed from the vector is cultured until it reaches at least the amount required to cause recombination.
  • the period in the embodiment is 48 hours, the period may be appropriately adjusted. For example, 12 hours or more, 24 hours or more, 36 hours or more, or 48 hours or more.
  • expression can be carried out for 1 day or more, 2 days or more, 3 days or more, or 4 days or more.
  • the upper limit of the culture period in step (a) is not particularly limited, but may proceed to the next step as long as nuclease is sufficiently accumulated.
  • the period of step (a) is, for example, within 10 days, within 9 days, within 8 days, within 7 days, within 6 days, within 5 days, within 4 days, or within 3 days.
  • step (b) guide RNA that is insufficient for nuclease to exert its activity is supplied to the cells (step (b)).
  • the guide RNA may be introduced into a cell, or a vector that expresses the guide RNA may be introduced into the cell and expressed from the vector.
  • a vector that can start expression more rapidly than the minus-strand RNA virus vector used in step (a) is used as the vector.
  • Such vectors include, but are not limited to, non-viral vectors such as, for example, plasmid vectors.
  • the promoter for transcribing RNA from the vector is not particularly limited, and a Pol I promoter, a Pol II promoter, a Pol III promoter, or a desired bacteriophage promoter can be used.
  • RNA polymerase and promoter of T4 phage and T7 phage can be exemplified.
  • polymerase II (PolII) promoter examples include, for example, a CMV promoter and a ⁇ -globin promoter.
  • a polymerase III (Pol III) promoter which can provide a higher expression level than Pol II.
  • the Pol III promoter include U6 promoter, H1 promoter, tRNA promoter, 7SK promoter, 7SL promoter, Y3 promoter, 5S rRNA promoter, Ad2 VAI and VAII promoter, and the like (Das, G. et al., 1988). , EMBO J. 7: 503-512; Hernandez, N., 1992, pp. 281-313, In S.
  • the class III promoters include the promoters of the U6, 7SK, hY1 and hY3, H1, and MRP / Th RNA genes (Hernandez, N., 1992, pp. 281-313, In Transcriptional regulation.Monograph 22 (ed. . S. McKnight and KR Yamamoto), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).
  • the guide RNA itself is introduced into the cell instead of expressing the guide RNA via an expression vector.
  • RNA may be introduced into cells by transfection or the like.
  • RNA nucleic acids
  • the calcium phosphate method (Graham FL et al., 1973, Virology 52 (2): 456-467; Chen Cet et al., 1987, Mol. Cell Biol. 7 (8): 2745-2752)
  • lipofection method (Felgner) PL et al., 1987, Proc Natl Acad Sci USA 84 (21): 7413-7417)
  • DEAE dextran method (Vaheri A et al., 9651965, Virology 27 (3): 434-436; McCutchan JH et al., 1968, J. Natl. Cancer Inst.
  • the guide RNA may be prepared by a desired method, and may be a synthetic RNA or an RNA expressed from a vector or the like. Further, it may be composed of a natural base or may contain a modified base. The guide RNA may be appropriately modified as long as the activity is maintained. For example, one or a plurality of guide RNAs may be introduced in step (b).
  • RNAs CRISPR RNA
  • tracrRNA trans-activated CRISPR RNA
  • the ends can be joined into one guide RNA (single guide RNA; sgRNA) (Mali, P. et a l., 2013, Science) 339 (6121): 823-826).
  • sgRNA single guide RNA
  • a mutation can be appropriately introduced into the sequence of the guide RNA as long as the activity is maintained (Sander, JD et al., 2014, Nature Biotechnology, 32: 347-355).
  • the elements required for target cleavage are Cas9 protein, tracrRNA, and crRNA, but the common elements used wherever the target site is are Cas9 protein and tracrRNA.
  • the cr9 alone can also be transfected by simultaneously loading the Cas9 gene and the tracrRNA gene in a strand RNA virus vector.
  • the amount of RNA to be introduced can be appropriately adjusted.
  • the concentration of each guide RNA is 0.1 ng / ml to 2 mg / ml, more specifically, 0.2 ng / ml to 1 mg / ml, 0.4 ng / ml to 500 ⁇ g / ml, 1 ng / ml to 250 ⁇ g Cells are suspended in a solution containing 2 ng / ml, 2 ng / ml to 100 ⁇ g / ml, 5 ng / ml to 50 ⁇ g / ml, 10 ng / ml to 20 ⁇ g / ml, 20 ng / ml to 10 ⁇ g / ml, or 10 ng / ml to 5 ⁇ g / ml.
  • the RNA can be introduced in a turbid manner, but is not limited thereto.
  • the number of cells may be appropriately adjusted, for example, 1 ⁇ 10 3 to 1 ⁇ 10 7 / ml, specifically, 2 ⁇ 10 3 to 8 ⁇ 10 6 / ml, 5 ⁇ 10 3 to 4 ⁇ 10 6 / ml RNA can be introduced at a cell count of 1 ⁇ 10 4 to 2 ⁇ 10 6 / ml, but is not limited thereto.
  • RNA is introduced under conditions that only cells are present by limiting dilution of cells. May be.
  • tracrRNA was used in an amount of 0.27 to 2.16 ⁇ g / well (6-well plate; 500 ⁇ l / well) (that is, 0.54 to 4.32 ⁇ g / ml), and crRNA 0.15 to 1.2 ⁇ g / well ( 6-well plate; 500 ⁇ l / well) (that is, 0.30 to 2.4 ⁇ g / ml), and the cell volume at that time was approximately 1 to 3 ⁇ 10 6 cells per well, but no significant change in efficiency was observed. It can be performed with a wide range of RNA amounts.
  • a temperature-sensitive minus-strand RNA virus vector can be suitably used as the minus-strand RNA virus vector used in step (a).
  • the vector can be rapidly inactivated by raising the culture temperature, so that the expression period of the active nuclease is more strictly controlled. It is possible to do.
  • a temperature-sensitive minus-strand RNA virus vector is a minus-strand RNA virus vector whose expression at 37 ° C is significantly reduced as compared to expression from a vector at a low temperature (eg, 32 ° C to 35 ° C, more specifically, 35 ° C, for example).
  • the temperature-sensitive negative-strand RNA virus vector used in the present invention has an expression at 37 ° C. of ⁇ or less, preferably 1/3 or less, more preferably 1/3 or less, as compared to expression from a vector at a low temperature (eg, 35 ° C.). 1/4 or less, 1/5 or less, 1/6 or less, 1/7 or less, 1/8 or less, 1/9 or less, 1/10 or less, 1/20 or less, 1/30 or less, 1/40 or less, Decrease to 1/50 or less, or 1/100 or less.
  • the expression level can be determined, for example, by measuring the fluorescence intensity using a fluorescent-labeled antibody against the expressed protein, or by expressing the GFP protein or the like and measuring the fluorescence intensity.
  • a permissive temperature refers to a temperature at which expression of a temperature-sensitive vector is not significantly suppressed
  • a non-permissive temperature refers to a temperature at which expression of a temperature-sensitive vector is suppressed.
  • the permissible temperature is determined, for example, by the expression level of the temperature-sensitive vector at the optimal temperature (the maximum temperature at which the expression level per 24 hours is maximum) and the non-optimum temperature of the temperature-sensitive vector (the expression level per 24 hours).
  • the minimum temperature eg, the lowest temperature at 37-39 ° C
  • the permissible temperature is, for example, a temperature of less than 36.5 ° C, for example, 36 ° C or less, or 35.5 ° C or less, or a temperature of 35 ° C or less
  • the non-permissible temperature is, for example, a temperature of 36.6 ° C or more, for example, 36.8 ° C or more, or 37 ° C.
  • the above temperature may be used.
  • the method of the present invention using a temperature-sensitive negative-strand RNA virus vector includes, for example, the following method.
  • a genetic modification method using a guide RNA-dependent DNA nuclease (A) a temperature-sensitive minus-strand RNA viral vector carrying the nuclease gene and not encoding at least one of the guide RNAs required for the expression of the nuclease activity is introduced into cells, and the vector is expressed at a permissive temperature. Allowing the nuclease to accumulate in a cell in the absence of the at least one guide RNA, (B) supplying the missing guide RNA to the cells after step (a); (C) raising the culture temperature to a non-permissible temperature before or after or simultaneously with step (b), and culturing in a state where the guide RNA is present in the cells.
  • step (D) recovering a cell in which the gene has been modified.
  • Step (c) of culturing in a state where the guide RNA supplied in step (1) is present in the cells. This inactivates the minus-strand RNA virus vector in a state where the functional guide RNA is present in the cell.
  • the culturing temperature in step (a) may be appropriately selected depending on the vector to be used, so long as expression from the vector is not inhibited, for example, in the range of 30 ° C to 36 ° C, for example, 32 ° C to 35 ° C, for example, about 32 ° C. ° C, about 33 ° C, about 34 ° C, about 35 ° C or about 36 ° C.
  • the timing of raising the culture temperature to the non-permissible temperature may be simultaneous with the execution of step (b) or before or after step (b).
  • the culture temperature has risen to a non-permissible temperature at the time of carrying out the step (b) or at the latest after 24 hours.
  • the culturing temperature can be increased immediately before, immediately after, or immediately after the step (b) is performed. In the examples, the temperature was raised to the non-permissible temperature simultaneously with the start of lipofection.
  • the culture temperature is set to a non-permissible temperature (eg, 37 to 38 ° C, 37 to 37.5 ° C, Or about 37 ° C).
  • a non-permissible temperature eg, 37 to 38 ° C, 37 to 37.5 ° C, Or about 37 ° C.
  • the temperature-sensitive negative-strand RNA virus vector to be used is not particularly limited, and a vector into which a desired temperature-sensitive mutation or another mutation is introduced can be used.
  • mutations in the L protein include amino acids at sites arbitrarily selected from positions 942 (Y942), 1361 (L1361), and 1558 (L1558) of the SeV L protein.
  • substitution of an amino acid is preferably substitution with another amino acid having a different side chain chemical property.
  • Specific examples include substitution of the 942th amino acid with His, substitution of the 1361th amino acid with Cys, substitution of the 1558th amino acid with Ile, and the like.
  • an L protein in which at least the position 942 or 1558 is substituted can be suitably used.
  • a mutant L protein in which position 1361 is substituted with another amino acid is also suitable.
  • a mutant L protein in which positions 1558 and / or 1361 in addition to position 942 are substituted with other amino acids is also suitable.
  • mutations in the P protein include substitution of an amino acid at a site arbitrarily selected from positions 433 (D433), 434 (R434), and 437 (K437) of the SeV ⁇ P protein with another amino acid.
  • substitution of an amino acid is preferably substitution with another amino acid having a different side chain chemical property.
  • Specific examples include substitution of the 433rd amino acid with Ala ⁇ (A) ⁇ , substitution of the 434th amino acid with Ala ⁇ (A) ⁇ , substitution of the 437th amino acid with Ala ⁇ (A) ⁇ , and the like.
  • a P protein in which all three sites are substituted can be suitably used. These mutations can increase the P protein's temperature sensitivity.
  • a Sendai virus vector deficient or deficient in the F gene which encodes a mutated L protein (preferably a mutated L protein in which L at least at position 1361 is also substituted with another amino acid), and which has cytotoxicity similar to or less than this.
  • a Sendai virus vector deficient or deficient in the following and / or F gene having the same or higher temperature sensitivity is also suitably used in the present invention.
  • Each viral protein may have mutations in other amino acids (eg, within 10, 5, 5, 4, 3, 2, or 1 amino acid) in addition to the mutations exemplified herein.
  • the vector having the mutation shown above has a high temperature sensitivity, the cells are kept at normal temperature (for example, about 37 ° C., specifically 36.5 to 37.5 ° C., preferably 36.6 to 37.4 ° C., more preferably 36.7 to 37.3 ° C.). ), The vector can be easily removed. In removing the vector, the cells may be cultured at a slightly elevated temperature (eg, 37.5 to 39 ° C., preferably 38 to 39 ° C., or 38.5 to 39 ° C.).
  • the F gene is deleted, the M protein has G69E, T116A, and A183S mutations, the HN protein has A262T, G264R, and K461G mutations, the P protein has L511F mutation, and L A Sendai virus vector containing N1197S and K1795E mutations in the genome of the protein can be used.
  • F gene deletion, G69E, T116A, and A183S mutations in the M protein, A262T, G264R, and K461G mutations in the HN protein, L511F mutation in the P protein, and N1197S and A Sendai virus vector containing a K1795E mutation in the genome further including the following mutations (i) and / or (ii) in the genome: (I) Mutation of D433A, R434A, and K437A of P protein (ii) Mutation of Y942H, L1361C and / or L1558I of L protein
  • the F gene is deleted, the G protein has a mutation of G69E, T116A, and A183S, the HN protein has a mutation of A262T, G264R, and K461G, the P protein has a mutation of L511F, and the L protein has a mutation.
  • a Sendai virus vector which contains mutations of N1197S and K1795E in its genome and further contains any of the following mutations (i) to (iv) in its genome: (I) Mutations of D433A, R434A, and K437A of P protein, and mutations of L1361C and L1558I of L protein (TS15) (Ii) Mutations in D433A, R434A, and K437A of the P protein (TS12) (Iii) Mutations of L942Y, L1361C, and L1558I of L protein (TS7) (Iv) P protein mutations D433A, R434A, and K437A, and L protein L1558I mutation (TS13) (V) Mutations in D433A, R434A, and K437A of the P protein, and mutations in L1361C of the L protein (TS14)
  • the nuclease gene If the nuclease gene is to be carried on a vector, the nuclease gene must be immediately before (3 'side of the genome) or immediately after (5' side of the genome) any of the viral genes (NP, P, M, F, HN, or L) Can be inserted. For example, it can be integrated immediately after the Sendai virus P gene, that is, immediately downstream of the P gene (immediately 5 ′ to the minus-strand RNA genome), but is not limited thereto.
  • NTVLP nontransmissible virus-like particles
  • the cytotoxicity of the vector can be measured, for example, by quantifying the release of lactate dehydrogenase (LDH) from the cells. Specifically, for example, the amount of LDH release in a culture solution obtained by infecting HeLa (ATCC CCL-2) or monkey CV-1 (ATCC CCL 70) with MOI 3 and culturing for 3 days is measured. The lower the LDH release, the lower the cytotoxicity.
  • LDH lactate dehydrogenase
  • the temperature sensitivity can be determined by measuring the growth rate of the virus or the expression level of the carried gene at the normal temperature of the virus host (for example, 37 ° C. to 38 ° C.). If the growth rate of the virus and / or the expression level of the carried gene are lower than those without the mutation, the mutation is determined to be a temperature-sensitive mutation, and the lower the growth rate and / or the expression level, Temperature sensitivity is determined to be high.
  • production of a minus-strand RNA virus can be carried out using the following known method (WO97 / 16539; WO97 / 16538; WO00 / 70055; WO00 / 70070; WO01 / 18223; WO03 / 025570; WO2005) / 071092; WO2006 / 137517; WO2007 / 083644; WO2008 / 007581; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997, Kato, A. et al., 1997, EMBO J. 16: 578-587 and Yu, D.
  • RNA-dependent nuclease gene there is no particular limitation on the guide RNA-dependent nuclease gene to be mounted on the vector of the present invention, and a desired guide RNA-dependent DNA endonuclease gene that can be used for genome editing can be mounted.
  • examples include nucleases of the CRISPR-Cas system, especially class 2 nucleases of the CRISPR-Cas system, such as type II, type V and type VI nucleases.
  • Cas9 Jinek M. et al. (2012) Science. 337 (6096): 816-821
  • Cpf1 Accession No.
  • NZ_CP010070.1 Zetsche B et al., Cell (2015) 163 ( 3): 759-71
  • C2c1 Yang H et al., Cell. (2016) 167 (7): 1814-1828
  • the present invention also relates to a method for producing a genetically modified cell or a cell population containing the genetically modified cell by the genetic modification method using the guide RNA-dependent DNA nuclease of the present invention.
  • the method includes, for example, the following method.
  • a method for genetic modification using a guide RNA-dependent DNA nuclease or a method for producing the cell or a cell population containing the cell, (A) carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nuclease into cells, and expressing the vector; Accumulating the nuclease in a cell in the absence of the at least one guide RNA; (B) a step of, after step (a), supplying a deficient guide RNA to the cells.
  • step (b) a step of collecting the obtained cell population, May be further included.
  • step (b) or (c) a step of collecting cells in which the gene has been modified, May be further included.
  • the present invention includes, for example, the following method.
  • a method for genetic modification using a guide RNA-dependent DNA nuclease or a method for producing the cell or a cell population containing the cell, (A) a temperature-sensitive minus-strand RNA viral vector carrying the nuclease gene and not encoding at least one of the guide RNAs required for the expression of the nuclease activity is introduced into cells, and the vector is expressed at a permissive temperature.
  • Allowing the nuclease to accumulate in a cell in the absence of the at least one guide RNA (B) supplying the missing guide RNA to the cells after step (a); (C) raising the culture temperature to a non-permissible temperature before or after or simultaneously with step (b), and culturing in a state where the guide RNA is present in the cells.
  • step (D) recovering the obtained cell population, May be further included.
  • step (D ′) recovering a cell in which the gene has been modified, May be further included.
  • the present invention also provides a minus-strand RNA virus vector encoding a guide RNA-dependent nuclease as described above and not encoding at least one guide RNA required for the expression of the activity of the nuclease, using the method of the present invention to obtain a genome. Uses for making modifications and for producing genomically modified cells or producing cell populations comprising such cells using the methods of the invention are provided.
  • the present invention also provides a reagent (genome modifying agent) for carrying out genomic modification using the method of the present invention, comprising the minus-strand RNA virus vector.
  • the present invention also provides a composition comprising the minus-strand RNA virus vector for performing genomic modification using the method of the present invention.
  • the negative-strand RNA viral vectors and compositions can be used for medical and non-medical applications, and are useful in medical and non-medical embodiments.
  • the present invention can be used for therapeutic, surgical, and / or diagnostic, or non-therapeutic, non-surgical, and / or non-diagnostic purposes.
  • the methods of the invention are practiced, for example, ex vivo (eg, in vitro or ex vivo).
  • implementation in vitro includes implementation in ex vivo.
  • the invention is also useful for in vivo implementations that do not include ex vivo embodiments.
  • a composition comprising a minus-strand RNA viral vector that encodes the guide RNA-dependent nuclease of the present invention and does not encode at least one of the guide RNAs required for the expression of the activity of the nuclease may be suitably a pharmaceutically acceptable carrier. Or it may contain a medium.
  • the composition of the present invention is used as a pharmaceutical composition, for example, a pharmaceutical composition for genome repair of a genetic disease.
  • the carrier and the medium are not particularly limited, but include, for example, water (eg, sterile water), physiological saline (eg, phosphate buffered saline), glycol, ethanol, glycerol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar,
  • physiological saline eg, phosphate buffered saline
  • glycol eg, phosphate buffered saline
  • ethanol e.glycerol
  • lactose sucrose
  • calcium phosphate phosphate
  • gelatin e.glycerol
  • lactose sucrose
  • calcium phosphate phosphate
  • gelatin e.glycerol
  • dextran e.glycerol
  • examples include oils such as pectin, olive oil, peanut oil, sesame oil and the like, and also include buffers, diluents, preservatives, stabilizers, excipients and the
  • the present invention also provides a kit comprising the minus-strand RNA virus vector of the present invention, which carries a guide RNA-dependent nuclease gene and does not encode at least one guide RNA required for expression of the activity of the nuclease.
  • the composition and the kit are useful for genome editing using a guide RNA-dependent nuclease, that is, gene modification including gene disruption, gene conversion, and gene repair.
  • the composition of the present invention can be appropriately combined with a guide RNA.
  • the kit of the present invention can include a composition containing a minus-strand RNA viral vector and a reagent containing guide RNA.
  • a kit containing a combination of the minus-strand RNA virus vector of the present invention and tracrRNA corresponding to the nuclease encoded by the vector is useful in the present invention.
  • crRNA may be contained in addition to tracrRNA, and crRNA and tracrRNA may be mixed, or may be fused to form a single strand as described above.
  • the compositions and kits of the present invention may further include donor DNA.
  • an instruction manual can be appropriately attached to the composition and the kit.
  • the compositions and kits of the present invention are useful for genome editing and genetic modification using the method of the present invention.
  • a target genome site can be efficiently destroyed.
  • the method of the present invention was able to destroy the target gene more frequently than the conventional method using a plasmid vector carrying the Cas9 gene. Nevertheless, from Examples 5 and 12, it can be expected that the frequency of occurrence of unintended sequence abnormalities and residual target sequence DNA is low. Therefore, the method of the present invention is considered to be useful as a method for destroying only the target site of interest while minimizing the risk of sequence abnormality at sites other than the target site.
  • the donor DNA includes a DNA having a high homology with the sequence of the genomic DNA of the target cell, and the donor DNA may be double-stranded or any single-stranded DNA.
  • the donor DNA may further include other sequences as long as it contains DNA having high homology with the genomic sequence of the target cell.
  • the donor DNA may be prepared as a desired vector, for example, a plasmid vector, a phage vector, a cosmid vector, a virus vector, an artificial chromosome vector (for example, including a yeast artificial chromosome vector (YAC) and a bacterial artificial chromosome vector (BAC)). And the like.
  • the donor DNA has a vector backbone and functions as a vector
  • the donor DNA (donor DNA) of the present invention is also referred to as a donor vector (donor vector).
  • the donor DNA of the present invention is also referred to as a donor plasmid (donor plasmid).
  • the donor DNA that functions as a vector can be maintained in a suitable host (cell or E. coli). If the vector has replication ability, the donor DNA can be replicated in the host.
  • the donor DNA of the present invention preferably has autonomous replication ability in a suitable host (for example, E. coli).
  • the length of the genomic fragment contained in the donor DNA may be a desired length including, for example, a range from oligo length (for example, tens of bases to tens of bases) to chromosome length (several hundred Mb or more).
  • the donor DNA of the present invention may include such a long genomic fragment.
  • the sequence of the donor sequence (genomic fragment or the like) contained in the donor DNA is usually 90% or more, preferably 95% or more, 96% or more, 97% or more of the sequence of the corresponding fragment of the genome of the target cell. , 98% or more, 99% or more, or 99.9% or more.
  • the present invention is a gene modification method using a guide RNA-dependent DNA nuclease, (A) carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nuclease into cells, and expressing the vector; Accumulating the nuclease in a cell in the absence of the at least one guide RNA; (B) after step (a), supplying the missing guide RNA and donor DNA to the cells.
  • step (c) selecting a cell in which the gene has been modified May be further included.
  • This step may be a “step of selecting a cell into which the sequence in the donor DNA has been integrated”.
  • a temperature-sensitive negative-strand RNA virus vector can be used as described above. That is, the present invention is a gene modification method using a guide RNA-dependent DNA nuclease, (A) a temperature-sensitive minus-strand RNA viral vector carrying the nuclease gene and not encoding at least one of the guide RNAs required for the expression of the nuclease activity is introduced into cells, and the vector is expressed at a permissive temperature.
  • Allowing the nuclease to accumulate in the cell in the absence of the at least one guide RNA (B) after step (a), supplying the missing guide RNA and donor DNA to the cells; (C) raising the culture temperature to a non-permissive temperature before or after or simultaneously with the step (b), and culturing the cells in a state where the guide RNA and the donor DNA are present in the cells.
  • this step may be a “step of selecting a cell into which the sequence in the donor DNA has been integrated”.
  • the guide RNA and the donor DNA may be introduced into cells together or separately into cells, but it is convenient and preferable to introduce them together.
  • the method of introducing the donor DNA into the cells and the donor DNA can be introduced by a desired method such as lipofection, electroporation, microinjection, or the particle gun method, similarly to the above guide RNA.
  • the amount of the donor DNA to be introduced is not particularly limited, and may be appropriately determined.
  • the concentration was 2.5 ⁇ g / well (6-well plate; 500 ⁇ l), and the cell amount at that time was approximately 2 to 2.5 ⁇ 10 6 cells per well.
  • the present invention is not limited thereto, and can be applied with a wide range of donor DNA amounts.
  • the donor DNA may or may not contain the positive selectable marker gene and / or the negative selectable marker gene.
  • the positive selectable marker gene is a gene that encodes a marker used to select cells that carry the marker (and / or remove cells that do not have the marker gene), Refers to a gene encoding a marker that is used to remove cells that carry the marker (and / or select cells that do not have the marker gene).
  • the positive selectable marker gene and the negative selectable marker gene can be appropriately selected.
  • examples of the positive selectable marker gene include various drug resistance genes such as Hyg (hygromycin resistance gene), Puro (puromycin resistance gene), and ⁇ -geo (fusion gene of ⁇ galactosidase and neomycin resistance gene).
  • Negative selectable marker genes include, for example, genes that directly or indirectly induce inhibition of cell growth or survival, and specifically, herpes simplex virus-derived thymidine kinase (TK) gene, diphtheria toxin A fragment (DT -A) gene, cytosine deaminase (CD) gene and the like, but are not limited thereto.
  • TK herpes simplex virus-derived thymidine kinase
  • DT -A diphtheria toxin A fragment
  • CD cytosine deaminase
  • the positive selectable marker gene When using a positive selectable marker, the positive selectable marker gene is inserted into a fragment (eg, in an intron) of the donor DNA that is introduced into the genome of the target cell.
  • the positive selectable marker gene may be inserted between site-specific recombinase recognition sequences (LoxP, ⁇ FRT, etc.) so that it can be removed later.
  • a negative selection marker When a negative selection marker is used, it is inserted into a portion of the donor DNA other than the fragment to be introduced into the genome of the target cell (in the case of using a plasmid vector, in the backbone of the plasmid).
  • the donor sequence contained in the donor DNA can be composed of only the sequence that is ultimately to be introduced into the target cell.
  • the donor sequence can be composed of only the sequence of the normal gene.
  • the present invention provides a gene modification method using the minus-strand RNA virus vector of the present invention and a donor DNA having no positive selection marker gene.
  • the cell in the above-mentioned “step of selecting a cell in which a gene has been modified” (or “step of selecting a cell into which a sequence in a donor DNA has been integrated”), the cell is selected without relying on a selection marker. Testing to select for cells that have incorporated the donor sequence in the donor DNA.
  • cells that have undergone the desired recombination can be obtained, for example, in 1 ⁇ 10 ⁇ 4 or more, for example, 2 ⁇ 10 -4 or more, 3 ⁇ 10 -4 or more, 4 ⁇ 10 -4 or more, 5 ⁇ 10 -4 or more, 6 ⁇ 10 -4 or more, 7 ⁇ 10 -4 or more, 8 ⁇ 10 ⁇ 4 or more, 9 ⁇ 10 -4 or more, 1 ⁇ 10 -3 or more, 2 ⁇ 10 -3 or more, 3 ⁇ 10 -3 or more, 4 ⁇ 10 -3 or more, 5 ⁇ 10 -3 or more, 6 ⁇ 10 -3 Above, 7 ⁇ 10 ⁇ 3 or more, 8 ⁇ 10 ⁇ 3 or more, 9 ⁇ 10 ⁇ 3 or more, 1 ⁇ 10 ⁇ 2 or more, or 2 ⁇ 10 ⁇ 2 or more.
  • cells having the desired recombination were observed in a ratio of 9.7 ⁇ 10 ⁇ 3 to 2.4 ⁇ 10 ⁇ 2 of all living cells. (Experiments 1-1 and 2-2). Therefore, it is expected that a target recombinant cell can be obtained by examining a limited number of cells without relying on a selection marker.
  • the upper limit of the ratio is not particularly limited, but may be, for example, less than 1, for example, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, or 0.3 or less.
  • step of selecting cells in which the gene is modified (or “step of selecting cells in which the sequence in the donor DNA is integrated”), for example, less than 5000
  • step of selecting cells into which the sequence of the donor DNA has been incorporated preferably less than 3000 cells, more preferably less than 2000, less than 1000, less than 800, less than 600, 500 cells Less than 400, less than 300, less than 200, less than 100, or less than 50 cells and selecting a cell into which the sequence of the donor DNA has been integrated.
  • the above numerical value may be an average value, an approximate value, an expected value, or the like.
  • Whether or not the target modification is present can be determined by, for example, directly or indirectly detecting a sequence specific to the target modification site.
  • the base sequence is confirmed by amplifying the target site by PCR.
  • PCR can be performed by using a primer specific to the mutation site or the like, and the presence or absence of the PCR product, the length of the amplified fragment, and the like can be confirmed.
  • the gene modification method using the vector of the present invention has a very high efficiency of obtaining a modified product modified according to the sequence of the donor DNA, and has a low incidence of unintended sequence abnormality due to the residual target sequence DNA due to the genetic modification. .
  • There is no particular limitation on the cells for which the frequency of genetic modification is measured, but in the case of comparison, it is preferably measured using a cell line derived from the same cells.
  • a cell line derived from the same cells For example, fibrosarcoma-derived cells, specifically, cell lines derived from HT-1080 cells (ATCC @ CCL-121) can be suitably used.
  • the present invention also relates to the following method for producing a genetically modified cell or a cell population containing the cell. That is, the present invention is a method for producing a genetically modified cell using a guide RNA-dependent DNA nuclease, or a method for producing a cell population containing the cell, (A) carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nuclease into cells, and expressing the vector; Accumulating the nuclease in a cell in the absence of the at least one guide RNA; (B) supplying, after the step (a), the insufficient guide RNA and donor DNA to the cells.
  • A carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nu
  • step (b) a step of collecting the obtained cell population
  • step (b) or (c) a step of selecting cells in which the gene has been modified
  • step (C ′) a step of selecting cells in which the gene has been modified, May be further included. This step may be a “step of selecting a cell into which the sequence in the donor DNA has been integrated”.
  • a temperature sensitive minus strand RNA virus vector can be used as the minus strand RNA virus vector. That is, the present invention is a method for gene modification using a guide RNA-dependent DNA nuclease, or a method for producing a genetically modified cell using a guide RNA-dependent DNA nuclease or a cell population containing the cell, (A) a temperature-sensitive minus-strand RNA viral vector carrying the nuclease gene and not encoding at least one of the guide RNAs required for the expression of the nuclease activity is introduced into cells, and the vector is expressed at a permissive temperature.
  • Allowing the nuclease to accumulate in a cell in the absence of the at least one guide RNA (B) after step (a), supplying the missing guide RNA and donor DNA to the cells; (C) raising the culture temperature to a non-permissive temperature before or after or simultaneously with the step (b), and culturing the cells in a state where the guide RNA and the donor DNA are present in the cells.
  • step (c) recovering the obtained cell population
  • step (c) or (d) selecting cells in which the gene has been modified, May be further included.
  • This step may be a “step of selecting a cell into which the sequence in the donor DNA has been integrated”.
  • the cell population produced by the method of the present invention frequently contains cells in which the target site of the genome has been modified as desired.
  • the target site is accurately modified in each cell, and the generation of indel at the external position of the target is suppressed.
  • the ratio of cells containing the donor sequence derived from the donor DNA at the target site is 1 ⁇ 10 -4 or more in all living cells, for example, 2 ⁇ 10 -4 or more, 3 ⁇ 10 -4 or more, 4 ⁇ 10 -4 or more, 5 ⁇ 10 -4 or more, 6 ⁇ 10 -4 or more, 7 ⁇ 10 -4 or more, 8 ⁇ 10 -4 or more, 9 ⁇ 10 ⁇ 4 or more, 1 ⁇ 10 -3 or more, 2 ⁇ 10 -3 or more, 3 ⁇ 10 -3 or more, 4 ⁇ 10 -3 or more, 5 ⁇ 10 -3 or more, 6 ⁇ 10 -3 or more, 7 ⁇ 10 -3
  • the above is 8 ⁇ 10 ⁇ 3 or more, 9 ⁇ 10 ⁇ 3 or more, 1 ⁇ 10 ⁇ 2 or more, or 2 ⁇ 10 ⁇ 2 or more.
  • the upper limit of the ratio is not particularly limited, but may be, for example, less than 1, for example, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, or 0.3 or less.
  • the cell population obtained by the method of the present invention contains cells that do not carry the selection marker gene at a high frequency. May be.
  • the cell population of the present invention contains, for example, 0.3 or more, for example, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, or 0.9 or more cells that do not have a selection marker gene (for example, a drug resistance gene). Good.
  • a selection marker gene for example, a drug resistance gene.
  • not all cells need to carry the selectable marker gene.
  • the cell population produced by the method of the present invention includes cells containing a donor sequence derived from a donor DNA at a target site in the genome (ie, cells in which the target site in the genome has been modified as desired, and base cells in the target site in the genome).
  • a donor sequence derived from a donor DNA at a target site in the genome ie, cells in which the target site in the genome has been modified as desired, and base cells in the target site in the genome.
  • the percentage of cells containing unintended modifications involving insertion and / or deletion of bases at target sites in the genome is, for example, 0.5 or less, preferably 0.4 or less, 0.3 or less, 0.2 or less, or 0.1 or less (for example, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less).
  • FIG. 2 shows a genetic modification scheme according to one embodiment of the present invention.
  • A shows infection of the Send9 virus vector carrying Cas9, amplification of the template by replication, transcription of Cas9 mRNA from the template, non-reinfection of this vector, and a large amount of Cas9 nuclease that translocated to the nucleus after translation.
  • B the vector backbone of the donor plasmid is indicated by a thin line
  • the sequence after modification of the donor plasmid is indicated by a thick line
  • the sequence homologous to the altered gene is indicated by a thick line
  • the locus to be altered is indicated by a long thick line below.
  • the donor DNA is a DNA sequence homologous to the modified gene, a 5488 bp fragment spanning intron 1, exon 2, intron 2, exon 3, and intron 3 of the human HPRT gene having the modified sequence (represented by a vertical line).
  • a donor plasmid having an origin of E. coli DNA replication can be used, but it is considered that only a homologous DNA fragment of the modified gene may be used. It has an array (star).)
  • FIG. 3 shows the procedure of a demonstration experiment of high-frequency gene modification using the SeV-Cas9 technology.
  • AB shows the same genetic modification scheme as FIG.
  • the target of the HPRT locus of the test cell (TG98) has a two base-insertion frameshift mutation ( HPRTTG98 ).
  • HPRTTG98 the frequency of gene modification is quantified as the frequency of gene reversion from HPRT TG98 to HPRT +. Since TG98 cells cannot proliferate in HAT medium and only HPRT + revertant cells can proliferate in HAT medium among the cell population, the frequency of appearance of HAT-resistant colonies is measured.
  • the donor plasmid has a SmaI molecular marker (ACCCGGG) obtained by synonymously converting the SexAI site (ACCAGGT) on exon 2, sequence modification of the gene coordinate region can be confirmed by a change from the SexAI site to the SmaI site. It is also conceivable that this donor plasmid is not used as a template for the gene modification reaction, but returns to the HPRT + sequence from the double-base insertion mutation. CD indicates the operating procedure along the reaction of AB. After infection of Cas9-loaded temperature-sensitive Sendai virus vector and strong expression of Cas9 under low temperature conditions, RNA molecules and donor DNA are simultaneously introduced under high temperature conditions to attenuate Cas9 expression, and seeded on a non-selective medium. Five days later, selection is performed in a HAT medium, the frequency of appearance of clones reverting to HAT-resistant HPRT + is measured, and the frequency of gene reversion is accurately quantified.
  • SmaI molecular marker ACCCG
  • FIG. 4 shows the results of the gene reversion test using the supernatant sample of SeV-Cas9 and the procedure for confirming the structure of the gene revertant in the candidate revertant clone (HAT-resistant colony).
  • A shows a comparison between the expression system of Cas9 sgRNA from a plasmid, the expression system of Cas9 from SeV, and the introduction system of RNAs in the frequency of appearance of HAT-resistant colonies in living cells in Experiments 1 and 2. In each of the two conditions, the total number of cells, the total number of living cells, the cell viability, the total number of HAT-resistant colonies, and the frequency of appearance of HAT-resistant colonies in living cells are shown.
  • the frequency of appearance of HAT resistant colonies was about 0.003% in the Cas9 sgRNA co-expression system from the plasmid, whereas it was about 1-2% in the Cas9 expression from RNA and the RNAs introduction system in the plasmid. Under the conditions of the present invention, the frequency is significantly higher than that under general plasmid conditions.
  • B shows the structure of the gene variant and the position of the PCR primer. PCR analysis of the 5488 bp fragment of the homologous locus region with the 5 'outer primer GT68 and the 3' outer primer GT69 confirms that insertion of the backbone portion of the donor plasmid has not occurred by obtaining a fragment corresponding to 9367 bp.
  • a fragment corresponding to 525 bp is obtained from the PCR using primers GT19 / GT22 to amplify the region of exon 2 where the molecular marker sequence is located, and the sequence is determined.
  • C shows the results of PCR-based structural analysis of the HAT resistant clone isolated from Experiment 1. Since a PCR product equivalent to 9367 bp was confirmed by the primer GT68 / GT69, it indicates that insertion of the backbone portion of the donor plasmid has not occurred.
  • a PCR product equivalent to 525 bp was obtained by the primer GT19 / GT22 which amplifies the region of exon 2 where the molecular marker sequence was located, and thus sequence analysis was performed.
  • PCR products larger than 525 bp were obtained. This suggests that there is an insertion of about 100100 bp (see D).
  • the second row shows the results of sequence analysis of 17 and 12 HAT-resistant clones derived from the Cas9 sgRNA co-expression system from plasmids in Experiment 1-1 and Experiment 1-2, respectively.
  • the third column shows the results of Cas9 expression from SeV and sequence analysis of 12 and 24 HAT-resistant clones derived from the RNAs transfection system in Experiment 1-1 and Experiment 1-2, respectively. All of the 12 HAT resistant clones from Experiment 1-1 had their reading frames restored. The reading frame was restored in all 24 HAT resistant clones from Experiment 1-2. No unintended sequence abnormality was observed in the expression of Cas9 from SeV or the RNAs transfection system.
  • FIG. 5 shows a gene reversion test using a purified sample of SeV-Cas9 on TG98 evaluation cells.
  • Experiments 2-1 and 2-2 show that the frequency of appearance of HAT-resistant colonies in living cells was higher than that of Cas9 sgRNA co-expression system from plasmid.
  • 2 shows a comparison between Cas9 expression from SeV and an RNAs transfection system. In each of the two conditions, the total number of cells, the total number of living cells, the cell viability, the total number of HAT-resistant colonies, and the frequency of appearance of HAT-resistant colonies in living cells are shown.
  • the appearance frequency of HAT-resistant colonies is about 0.004% in the Cas9 sgRNA co-expression system from the plasmid, whereas it is about 0.3% in the Cas9 expression from RNA and the RNAs introduction system. It shows a remarkable increase in frequency more than the simple plasmid condition.
  • the cell viability was 1-2% in Experiments 1-1 and 1-2 using the supernatant sample of SeV-Cas9, Experiment 2-1 using the purified sample of SeV-Cas9, In 2-2, it can be seen that it was improved to 10-13%. Based on the results obtained from the improved experimental conditions, it is considered that in the gene reversion of the HPRT TG98 mutation, the expression of Cas9 from SeV and the frequency of gene reversion in living cells by the RNAs transfection system are about 0.3%.
  • FIG. 6 shows a gene disruption test using a purified sample of SeV-Cas9.
  • Experiments 3-1 and 3-2 show that the frequency of appearance of 6-thioguanine-resistant (6TG R ) colonies in living cells indicates that the Cas9 sgRNA co-expression system from plasmid was used 7 shows a comparison between Cas9 expression from RNA and SeV, and an RNAs transfection system.
  • the total cell number, the total number of viable cells, cell viability, total 6TG R resistant colony number represents the frequency of occurrence of 6TG R resistant colonies of viable cells.
  • RNAs introduction system Frequency of 6TG R resistant colonies, whereas there about 0.17% in Cas9 sgRNA coexpression system from plasmid, Cas9 expression from SeV, the RNAs introduction system is about 0.3-0.5%, in the present invention conditions, The frequency is significantly higher than that of general plasmid conditions. It was confirmed that Cas9 expression and RNA introduction system can be used for gene disruption purpose. In addition, a dose-response relationship between the amount of introduced RNA and the frequency of gene disruption was observed.
  • FIG. 7-1 shows a gene reversion test using a purified sample of SeV-Cas9 on TG439-1 evaluation cells
  • experiments 4-1, 4-2, and 4-3 show plasmids in the frequency of appearance of HAT-resistant colonies in living cells.
  • 2 shows a comparison between a Cas9 sgRNA co-expression system from Escherichia coli and a Cas9 expression from SeV and RNAs transfection system. In each of the two conditions, the total number of cells, the total number of living cells, the cell viability, the total number of HAT-resistant colonies, and the frequency of appearance of HAT-resistant colonies in living cells are shown.
  • the frequency of appearance of HAT-resistant colonies is about 0.003% in the Cas9 sgRNA co-expression system from the plasmid, whereas it is about 0.1% in the Cas9 expression from SeV and RNAs introduction system. It shows a remarkable increase in frequency more than the simple plasmid condition.
  • the results of sequence analysis of five and three HAT-resistant clones derived from the Cas9 sgRNA co-expression system from plasmids in Experiment 4-1 and Experiment 4-2 are shown on the left side of FIG. 7-2. 1) There was no accompanying residual target sequence DNA; 2) No unintended sequence insertion in adjacent introns. The right side of FIG.
  • FIG. 1 illustrates a typical scheme of a conventional gene modification method.
  • FIG. 2 illustrates a scheme of the present invention (a novel gene modification method) that solves the conventional problem.
  • the table below shows the problems of the conventional method and the solution by the present invention. That is, since the minus-strand RNA virus vector used in the present invention does not have a DNA phase, there is no danger of unintended insertion into the chromosome of a cell (at the top of the table).
  • the present invention is capable of regulating the frequency of genetic modification, suppressing the occurrence of unintended sequence abnormalities associated with genetic modification, introducing a desired modification into the genome of cells at a high rate, or repairing mutations in the genome.
  • it is useful as a molecular genetics system for highly efficiently modifying a gene sequence for the purpose of gene function analysis, gene therapy, breed improvement, and biotechnological creation.
  • the present invention can be used to convert a disease-causing sequence into a normal sequence in a causative gene of a hereditary disease.
  • Example 1 Construction of pBS-HPRTEx2SMAI plasmid A subplasmid construction method for producing a donor plasmid used in the present invention is described below.
  • pBS indicates pBluescript SK +.
  • pBS-HPRTEx2 subplasmid was performed as follows. Using genomic DNA of HT-1080 cells derived from Fibrosarcoma as a template, using 5'- AGCCTGGGCAACATAGCGAGACTTC -3 '(GT28) (SEQ ID NO: 1) and 5'- TCTGGTCCCTACAGAGTCCCACTATACC -3' (GT22) (SEQ ID NO: 2), Perform PCR reaction with KOD-PLUS-DNA polymerase (TOYOBO) (94 cycles of 94 ° C for 2 minutes ⁇ 94 ° C for 15 seconds, 60 ° C for 30 seconds, 68 ° C for 3 minutes and 30 seconds for 40 cycles ⁇ 68 ° C for 7 minutes) As a result, a PCR product of about 2800 base was obtained.
  • TOYOBO KOD-PLUS-DNA polymerase
  • the 2500-bp PCR product, the 2900-bp PCR product, and pBluescript SK + digested with NotI were ligated with an In-Fusion kit (TOYOBO) to obtain pBS-HPRTEx2ISCEI (21-1). Thereafter, this plasmid was used as a replacement plasmid for a fragment having a modified sequence obtained from site-directed mutagenesis.
  • TOYOBO In-Fusion kit
  • pBS-HPRTEx2SMAI Construction of the pBS-HPRTEx2SMAI plasmid was performed as follows. Using the plasmid pBS-HPRTEx2 (18-7) of the first term as a template, 5′-GG G TATGACCTTGATTTATTTTGCATACC-3 ′ (GT42) (SEQ ID NO: 10) and 5′- G GGTTCATCATCACTAATCTG-3 containing the modified sequence SMAI (underlined) Using '(GT43) (SEQ ID NO: 11), pBS-HPRTEx2SMAI (P1) was obtained by using KOD-PLUS-Inverse PCR mutagenesis kit (TOYOBO) as one of the site-directed mutagenesis methods. The pBS-HPRTEx2SMAI (P1) plasmid DNA was digested with BglII and SphI. The donor plasmid pBS-HPRTEx2SMAI (P1-6) was obtained.
  • Example 2 Preparation of evaluation cells (TG98 cells) for gene reversion test
  • target cells for gene reversion using SeV-Cas9 was performed as follows.
  • a target sequence was set as Protospacer Adjacent Motif (PAM) at 5'-CCA-3 'of the SexAI site (5'-ACCAGGT-3') in exon 2 of the HPRT gene of Fibrosarcoma-derived HT-1080 cells,
  • PAM Protospacer Adjacent Motif
  • CAG-hspCas9-H1-gRNA linearized SmartNuclease vector DNA System Biosciences Catalog No. CAS920A-1
  • the medium was replaced with a medium containing 7.5 ⁇ g / mL 6-thioguanine (Wako Cat. No. 203-03771) to obtain two 6-thioguanine resistant colonies from 1 ⁇ 10 6 HT-1080 cells.
  • both clones were found to have mutations in the target sequence. In one of them, as shown in the upper row of the table in FIG. 4D, a frame shift occurred due to insertion of two bases (GGTTATGACCTTGATTTATT (SEQ ID NO: 44) ⁇ GGT TA TATGACCTTGATTTATT (SEQ ID NO: 45) underlined). This mutation is designated as HPRT TG98 , and this clone is designated as TG98 cells.
  • a TG98 cell line was obtained as one of the HPRT gene mutants of Fibrosarcoma-derived HT-1080 cells, and was used as an evaluation cell in a gene reversion test using a Cas9-loaded Sendai virus vector or plasmid (control).
  • Example 4 Preparation of Send9 virus vector SeV-Cas9 carrying Cas9
  • a Sendai virus vector SeV-Cas9 carrying Cas9 was performed as follows. First PCR product in which the Cas9 nuclease sequence was divided into 10 by the first PCR in order to load the Cas9 nuclease sequence derived from the Cas9 SmartNuclease All-in-one Vector (System Biosciences Catalog No. CAS920A-1) into the Sendai virus vector SeV
  • the second PCR when the four first PCR products on the 5 ′ side are used as templates, when the three first PCR products near the center are used as templates, the three first PCR products on the 3 ′ side are used as templates.
  • the second PCR product was obtained from each case, and in the third PCR, using the three second PCR products as templates, a third PCR product over the entire length of the Cas9 nuclease sequence was obtained, and this was mounted on the Sendai virus vector. .
  • the reason that the Cas9 nuclease sequence is divided into 10 in the first PCR is that nine A rich sequences (5A or 6A) are scattered in the Cas9 nuclease sequence, but the Sendai virus vector This is to avoid such an error phenomenon because an error due to the RNA-dependent RNA polymerase of Sendai virus tends to occur during the production process.
  • PCR primers were set so that the A rich sequence site became a joint of the split PCR, and each primer sequence was replaced from A / T to G / C under the restriction of synonymous codons.
  • Not1_CAS9_N (SEQ ID NO: 16): ATATGCGGCCGCTCGCCACCATGGCTAGTATGCAGAAACTG CAS9_A96G_C (SEQ ID NO: 17): CCGATACTATACTTCTTGTCGGCAGCGGGC CAS9_A96G_N (SEQ ID NO: 18): GCCCGCTGCCGACAAGAAGTATAGTATCGG CAS9_A222G_C (SEQ ID NO: 19): GGCTCCAATCAGATTCTTCTTGATACTGTG CAS9_A222G_N (SEQ ID NO: 20): CACAGTATCAAGAAGAATCTGATTGGAGCC CAS9_A789G_C (SEQ ID NO: 21): CCAAACAGGCCGTTCTTCTTTTCGCCTGG CAS9_A789G_N (SEQ ID NO: 22): CCAGGCGAAAAGAAGAACGGCCTGTTTGG CAS9_A789G_C
  • PCR reaction (94 ° C for 2 minutes ⁇ 98 ° C for 10 seconds, 55 ° C for 55 minutes) using KOD-PLUS-Ver. 2-DNA polymerase (TOYOBO Co., code number KOD-211) 30 cycles of 68 ° C. for 1 minute and 30 cycles of 68 ° C. for 17 minutes) were performed to obtain respective PCR products. After confirming the size of the PCR product by electrophoresis, the product was purified by NucleoSpin TM Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250 / U0609C).
  • PCR reaction (94 ° C for 2 minutes ⁇ 98 ° C for 10 seconds, 55 ° C for 55 minutes) using KOD-PLUS-Ver. 2-DNA polymerase (TOYOBO Co., code number KOD-211) 30 cycles of 68 seconds at 68 ° C. for 30 seconds ⁇ 68 minutes at 68 ° C.) were performed to obtain respective PCR products. After confirming the product size by electrophoresis, the product was purified by NucleoSpin TM Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250 / U0609C).
  • PCR reaction (94 ° C for 2 minutes ⁇ 98 ° C for 10 seconds, from 65 ° C) using KOD-PLUS-Ver. 2-DNA polymerase (TOYOBO Co., code number KOD-211) Step down to 55 ° C-30 seconds, 68 ° C-4 minutes 30 seconds, 10 cycles each) ⁇ (98 ° C-10 seconds, 55 ° C-30 seconds, 68 ° C-4 minutes 30 seconds, 30 cycles ⁇ 68 ° C-17) Min) to obtain a full-length PCR product. After confirming the product size by electrophoresis, the product was purified by NucleoSpin TM Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No.
  • NotI-digested and gel-extracted full-length Cas9 fragment was digested with NotI and BAP-treated plasmid pSeV (PM) TS15 / ⁇ F DNA (F gene deleted, M (G69E / T116A / A183S), HN (A262T / G264 / K461G), P (D433A / R434A / K437A / L511F), DNA encoding the genome of Sendai virus vector (WO2003 / 025570, WO2010 / 008054) having mutation of L (L1361C / L1558I / N1197S / K1795E).
  • a plasmid carrying the full-length Cas9 gene (VCas9) optimized for SeV after confirming the cloned CAS9 nucleotide sequence pSeV (PM) CAS9TS15 / ⁇ F was obtained.
  • Sendai virus was reconstituted using this plasmid DNA as a template to obtain a Send9 virus vector SeV (PM) CAS9TS15 / ⁇ F carrying Cas9.
  • Example 5 Gene reversion test using SeV-Cas9 to TG98 cells Gene reversion using HPV gene exon 2 double mutation (HPRT TG98 ) (Example 2) in TG98 cells using SeV-Cas9
  • the donor plasmid pBS-HPRTEx2SMAI (P1-6) (Example 1)
  • Two types of RNA that are lipofected simultaneously with DNA 1) crRNA 5'-UAAAUCAAGGUCAUA UA ACC-3 '(acting as target RNA) ( GT79) (SEQ ID NO: 36), 2)
  • a tracrRNA (Fasmac catalog number GE002) serving as a scaffold RNA for Cas9 enzyme was prepared.
  • UA in the crRNA (5-4th from the 3 'end of GT79 (underlined)) indicates a site corresponding to a two-base insertion mutation.
  • the gene reversion test (FIG. 2) was performed as follows. On the day before the infection with SeV-Cas9, 5 ⁇ 10 5 TG98 cells / 2-mL DMEM medium (including 6-thioguanine) / well was applied to a 6-well plate and adherent culture was performed. After approximately 24 hours, the medium was removed and 2 mL Opti While adding -MEM and keeping at 37 ° C, the number of cells in one well was measured to calculate the total number of cells to be infected, and the Send9 virus vector SeV (PM) CAS9TS15 / ⁇ F carrying Cas9 corresponding to a multiplicity of infection of 3 was calculated.
  • PM Send9 virus vector SeV
  • Example 4 (Example 4) was collected, adjusted to 0.5 mL SeV-Cas9 solution / well by diluting with Opti-MEM, removing the previously added Opti-MEM, and adding 0.5 mL SeV-Cas9 solution / well. Then, adsorption infection was started at 32 ° C. and 5% CO 2 , and the mixing operation was performed every 15 minutes. After 2 hours, the SeV-Cas9 solution was removed, 2 mL Opti-MEM / well was added, and 2-mL was added. The medium was replaced with a DMEM medium (containing 6-thioguanine) / well and cultured at 32 ° C. under 5% CO 2 . After about 24 hours, the medium was replaced with a new DMEM medium, transferred to 35 ° C. and 5% CO 2 , and cultured for about 24 hours.
  • DMEM medium containing 6-thioguanine
  • X-tremeGene HP DNA Transfection Reagent Version 08 (Roche Catalog No. 06 366 236 001) was used to introduce crRNA GT79 and tracrRNA (Fasmac catalog number GE002) and donor plasmid DNA by the lipofection method.
  • RNA concentration of 0.42 ⁇ g / 0.5 mL / well is expressed as 1 ⁇ RNAs.
  • a lipofection solution was prepared using the plasmid pCas9-sgHPRT1m (Example 3) at 5 ⁇ g / 0.5 ⁇ mL / well instead of SeV-Cas9 / tracrRNA / crRNA.
  • This lipofection solution was added to a 6-well plate at 0.5 mL / well and incubated at 37 ° C., 5% CO 2 -17 hours.
  • To apply lipofection cells replace the lipofection solution in each well with 2 mL PBS / well, remove, add 0.25% trypsin / 1 mM EDTA solution at 0.5 mL / well, incubate at 37 ° C for 1 minute, and add 0.5 mL
  • the procedure of gene revertant isolation and structural analysis was performed as follows. For each HAT resistant colony, 200 ⁇ L of P1000 Pipetman was removed under a microscope to remove the cells, suspended in one well of a 6-well plate supplemented with 2 mL of HAT supplemented medium, and assigned a HAT clone number. Then, selective culture was performed under the conditions of 37 ° C. and 5% CO 2 , and the culture was continued to near confluence.
  • Peel and suspend cells by P1000 pipetting collect cells in one 1.5-mL Eppendorf tube, remove the supernatant by centrifugation at 2,500 rpm for 3 minutes, add 100 ⁇ L PBS, suspend cells by pipetting, suspend 40 ⁇ L each Dispense into 2 cryotubes, add Cell Banker 1 Plus in a 500 ⁇ L / cryotube, store at -80 ° C, centrifuge the remaining 20 ⁇ L PBS cell suspension at 2,500 rpm for 3 minutes, remove the supernatant, and remove the cell pellet. Stored frozen at -80 ° C.
  • the frozen cell pellet was thawed in ice, and genomic DNA was extracted using a GeneElute Mammalian Genomic DNA miniprep Kit (SIGMA-ALDRICH, catalog number G1N350), and stored at 4 ° C as a 100 ⁇ L sample.
  • SIGMA-ALDRICH GeneElute Mammalian Genomic DNA miniprep Kit
  • the cell viability was 11% under the plasmid pCas9-sgHPRT1m introduction condition and 2.0% under the SeV-Cas9 infection / crRNA GT79 / tracrRNA introduction condition (FIG. 4A, Experiment 1-1).
  • the cell viability was 1.4% under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA introduction, compared to 12% under the conditions of plasmid pCas9-sgHPRT1m introduction (FIG. 4A, Experiment 1-2).
  • CellV viability was significantly reduced by SeV-Cas9 infection.
  • SeV-Cas9 sample is a supernatant sample before ultrafiltration / column purification.
  • a similar experiment was performed using the purified sample after purification, and the degree of frequency increase under the conditions of the present invention with respect to the plasmid pCas9-sgHPRT1m introduction conditions was determined.
  • Example 6 Gene reversion to TG98 cells using SeV-Cas9 Using a purified sample of SeV-Cas9, the gene reversion test of Example 5 was further performed twice as Experiment 2-1 and Experiment 2-2. .
  • the cell viability was 11% to 17% under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA, whereas the cell viability was 15% under the conditions of plasmid pCas9-sgHPRT1m ( Figure 5 Experiment 2).
  • Experiment 2-2 the cell viability was 11% to 15% under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA, compared to 14% under the conditions of plasmid pCas9-sgHPRT1m (FIG. 5).
  • Experiment 2-2 no decrease in cell viability due to SeV-Cas9 infection was observed.
  • Experiment 2-1 the appearance rate of HAT-resistant clones in living cells was 3.9e-5 under the plasmid pCas9-sgHPRT1m transfection condition, but 2.6e under the SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA transfection condition.
  • Experiment 1-1 and Experiment 1-2 a reverted HAT clone was isolated and subjected to structural analysis by the procedure described in Example 5.
  • the PCR analysis of the 5488 bp fragment of the target region with the 5 ′ outer primer GT68 and the 3 ′ outer primer GT69 revealed that a fragment corresponding to 9367 bp was obtained. (Fig. 4C, upper left), it was confirmed that insertion of the backbone portion of the donor plasmid had not occurred.
  • the target sequence site was restored in all of the 12 HAT-resistant clones (middle column, 3D in FIG. 4D), and insertions in adjacent introns and mutations at two-base insertions were observed. No incidental phenomenon of sequence fragments remaining on the genome was observed.
  • the target sequence site was restored, and insertion into adjacent introns was prevented. No incidental phenomenon of the 2-base insertion mutant sequence fragment remaining on the genome was observed.
  • Example 7 Gene disruption test using SeV-Cas9 for HT-1080 cells
  • a SexAI site in exon 2 of the HPRT gene of Fibrosarcoma-derived HT-1080 cells 5'-CCAGGT-3 ') 5'-CCA-3' is set as a target sequence with Protospacer Adjacent Motif (PAM), and two types of RNA to be lipofected, 1) crRNA 5'-AAUAAAUCAAGGUCAUAACC-3 ' (crHPRT1R (GT78)) (SEQ ID NO: 39), 2) tracrRNA (Fasmac catalog number GE002) was prepared.
  • PAM Protospacer Adjacent Motif
  • the gene disruption test was performed as follows. On the day before the infection with SeV-Cas9, 5x10 5 HT-1080 cells / 2-mL DMEM medium / well was applied to a 6-well plate and adherent culture was performed. After approximately 24 hours, the medium was removed and 2 mL Opti-MEM was added.
  • the number of cells in one well was measured by counting the number of cells to be infected, and the Send9 virus vector SeV (PM) CAS9TS15 / ⁇ F with Cas9 corresponding to a multiplicity of infection of 3 (Example 4) ) was collected, adjusted to 0.5 mL SeV-Cas9 solution / well by diluting with Opti-MEM, removing the previously added Opti-MEM, adding 0.5 mL SeV-Cas9 solution / well, and adding Adsorption infection was started under 5% CO 2 conditions, mixing operation was performed every 15 minutes, and after 2 hours, SeV-Cas9 solution was removed, 2 mL Opti-MEM / well was added, and 2-mL DMEM medium / well was added. And the cells were cultured under the conditions of 32 ° C. and 5% CO 2 . After about 24 hours, the medium was replaced with a new DMEM medium, transferred to 35 ° C. and 5% CO 2 .
  • RNAs 0.15 ⁇ g of crHPRT1R (GT78), 0.27 ⁇ g of tracrRNA, adjust to 1 ⁇ g RNA / 100 ⁇ L with Opti-MEM, add 1 ⁇ L of X-tremeGene HP DNA Transfection Reagent per 1 ⁇ g RNA, and add 25 ° C-15 ° C.
  • a DNA / RNA / liposome complex was formed in a minute, and the volume was adjusted to a total volume of 0.5 ⁇ mL / well with Opti-MEM. This RNA amount of 0.42 ⁇ g / 0.5 ⁇ mL / well is expressed as 1 ⁇ RNAs.
  • a lipofection solution was prepared using 5 ⁇ g / 0.5 ⁇ mL / well of plasmid pCas9-sgHPRT1 (Example 2) instead of SeV-Cas9 / tracrRNA / crRNA. In this test, no donor plasmid was introduced.
  • This lipofection solution was added to a 6-well plate at 0.5 mL / well and incubated at 37 ° C., 5% CO 2 -17 hours.
  • To apply lipofection cells replace the lipofection solution in each well with 2 mL PBS / well, remove, add 0.25% trypsin / 1 mM EDTA solution at 0.5 mL / well, incubate at 37 ° C for 1 minute, and add 0.5 mL
  • Example 8 Gene disruption of HT-1080 cells using SeV-Cas9 Using a purified sample of SeV-Cas9, the gene disruption test of Example 7 was performed twice as experiments 3-1 and 3-2. .
  • the frequency of 6-thioguanine-resistant (6TG R ) clones in living cells was 1.8 e-3 under the plasmid pCas9-sgHPRT1 transfection condition, compared to the SeV-Cas9 infection / crHPRT1R (GT78) / tracrRNA transfection condition. in a 3.5e-3 ⁇ 5.3e-3 (Fig.
  • experiment 3-1) in experiment 3-2, the 6TG R clone frequencies in living cells, to 1.6e-3 with plasmid pCas9-sgHPRT1 delivery conditions
  • the ratio was 3.6e-3 to 5.3e-3 (Experiment 3-2 in FIG. 6). A threefold increase in frequency was observed.
  • the SeV-Cas9 infection / crHPRT1R (GT78) / tracrRNA transfection system was significantly higher than the plasmid pCas9-sgHPRT1 transfection system, so the former was considered to have a higher frequency of cleavage per cell than the latter.
  • Example 9 Additional Production of evaluation Cells for Gene Reversion Test Additional production of evaluation cells for gene reversion using SeV-Cas9 was performed as follows. In order to obtain a new mutation of HT-1080 as an additional evaluation cell in a gene reversion test, a gene disruption experiment using SeV-Cas9 was performed again as in Example 8.
  • RNA amount of 0.42 ⁇ g / well is expressed as 1 ⁇ RNAs.
  • SeV-Cas9 is previously infected, in HT1080 cells 1 well worth, was lipofection 8XRNAs, 6-thioguanine resistant (6TG R) clones frequency of viable cells, SeV-Cas9 infection / 8x crHPRT1R ( Under GT7) / 8x tracrRNA introduction conditions, it was 7.0e-3. From the frequency, it is expected that gene-disrupted clones will be present in 137 non-selective colonies generated on the two dishes applied for viable cell counting. When 6 thioguanine was introduced and culture was continued at 18, most of the colonies were detached on Day 25, but only two colonies continued to grow.
  • 6TG R 6-thioguanine resistant
  • CAS920A-1 5'- A double-stranded oligonucleotide consisting of AAAC GGTTGTATGACCTTGATTTA GTGGTCTCA-3 ′ (GT205) (SEQ ID NO: 41) was ligated to obtain a plasmid pCas9-sgHPRT1m3, which was used as a control in a gene reversion experiment.
  • the CA at the 5-4th position from the 3 ′ end of GT204 and the TG at the 8-9th position from the 5 ′ end of GT205 indicate the positions of the 2-base insertion mutation.
  • Example 11 Gene reversion test using SeV-Cas9 for TG439-1 cells SeV-Cas9 was used for a two-base insertion mutation (HPRT TG439 ) of HPRT gene exon 2 of TG439-1 cells (Example 9).
  • the donor plasmid pBS-HPRTEx2SMAI (P1-6) (Example 1), two types of RNA that are lipofected simultaneously with DNA, 1) crRNA 5'-UAAAUCAAGGUCAUA CA ACC- which functions as a targeting RNA 3 ′ (crHPRT1m3R (GT206)) (SEQ ID NO: 42), 2) A tracrRNA (Fasmac catalog number GE002) serving as a scaffold RNA for Cas9 enzyme was prepared.
  • CA in crRNA (5-4th from the 3 'end of GT206 (underlined)) indicates a sequence corresponding to a two-base insertion mutation.
  • the gene reversion test (FIG. 2) was performed as follows. On the day before the infection with SeV-Cas9, 5 ⁇ 10 5 TG439-1 cells / 2-mL DMEM medium (containing 6-thioguanine) / well was applied to a 6-well plate and adherent culture was performed. After approximately 24 hours, the medium was removed. While adding 2 mL Opti-MEM and keeping at 37 ° C., the number of cells in one well was measured to calculate the total number of cells to be infected, and the Send9 virus vector SeV (PM) CAS9TS15 with Cas9 corresponding to a multiplicity of infection of 3 was calculated.
  • PM Send9 virus vector SeV
  • Example 4 was collected, adjusted to 0.5 mL SeV-Cas9 solution / well by diluting with Opti-MEM, and the previously added Opti-MEM was removed, and 0.5 mL SeV-Cas9 solution / well was removed.
  • Opti-MEM Opti-MEM
  • the cells were replaced with -mL DMEM medium (containing 6-thioguanine) / well, and cultured at 32 ° C under 5% CO 2 conditions. After about 24 hours, the medium was replaced with a new DMEM medium, transferred to 35 ° C. and 5% CO 2 , and cultured for about 24 hours.
  • RNA concentration of 0.42 ⁇ g / 0.5 mL / well is expressed as 1 ⁇ RNAs.
  • a lipofection solution was prepared using 5 ⁇ g /0.5 mL / well of plasmid pCas9-sgHPRT1m3 (Example 10) instead of SeV-Cas9 / crHPRT1m3R (GT206) / tracrRNA.
  • This lipofection solution was added to a 6-well plate at 0.5 mL / well and incubated at 37 ° C., 5% CO 2 -17 hours.
  • To apply lipofection cells replace the lipofection solution in each well with 2 mL PBS / well, remove, add 0.25% trypsin / 1 mM EDTA solution at 0.5 mL / well, incubate at 37 ° C for 1 minute, and add 0.5 mL Add DMEM medium / well and detach / suspend cells by pipetting 3 to 4 times (P1000 pipette), collect in one 50-mL tube, measure cell number, centrifuge at 1,200 rpm for 3 minutes, and supernatant Removed, suspended at 4x10 4 cells / mL in DMEM medium (no 6-thioguanine, no HAT supplement), applied to 10 mL / diameter 10-cm dish, non-selective culture at 37 ° C, 5% CO 2 Started (Day 0).
  • Example 12 Gene reversion to TG439-1 cells using SeV-Cas9 Using the purified sample of SeV-Cas9, the gene reversion test of Example 11 was performed as Experiments 4-1 to 4-2 and 4-3. Performed three times.
  • the frequency of HAT resistant clones in living cells was 2.6e-5 under the plasmid pCas9-sgHPRT1m3 transfection condition, and 5.2e-4 under the SeV-Cas9 infection / crHPRT1m3R (GT206) / tracrRNA transfection condition.
  • the frequency was increased by 20 times as compared with the general plasmid conditions (FIG. 7-1, Experiment 4-2).
  • the main cause was considered to be cleavage of non-target similar sequences (donor DNA or modified sequences).
  • a possible explanation for the gene reversion test system for TG98 cells and TG439-1 cells is that Cas9 expression from SeV, in the RNAs introduction system, it becomes possible to cleave when a donor plasmid is introduced together with RNAs, whereas In the Cas9 sgRNA co-expression system, the donor plasmid is introduced together with the present plasmid. However, it may be because a sufficient amount of time is required for Cas9 sgRNA to be sufficiently expressed, and a sufficient amount of the donor plasmid does not remain at that time.
  • the problem of the time difference between the existence of the Cas9 sgRNA complex and the donor can be improved by selecting a cell that carries the Cas9 sgRNA-containing plasmid or a DNA virus vector system carrying the Cas9 sgRNA. There is a problem that the DNA vector carrying Cas9 sgRNA is inserted into the genome.)
  • the Cas9 expression and RNAs transfection system from SeV when a Cas9-RNAs complex is formed, the donor is present there and the reaction to gene reversion starts. At that time, the genome insertion of the viral vector does not occur because of the cytoplasmic RNA vector.
  • Experiments 2-1 and 2-2 TG98 gene reversion test
  • the amount of RNA was varied in the range of 2 to 8 ⁇ RNAs, but no dose-response relationship was observed (FIG. 5).
  • Experiment 4-2 TG439-1 gene reversion test
  • no dose-response relationship was observed from the comparison between 4xRNAs and 8xRNAs (FIG. 7-1).
  • Experiment 4-3 TG439-1 gene reversion test
  • a dose-response relationship was observed from a comparison between 1xRNAs and 4xRNAs (FIG. 7-1).
  • one of the features of the present method is that the frequency of gene modification can be adjusted by adjusting the amount of introduced RNA.
  • the present invention it has become possible to regulate the frequency of gene modification, to suppress the occurrence of unintended sequence abnormality accompanying the gene modification, and to provide a method for modifying a target gene with extremely high efficiency.
  • a two-step selection is performed, in which a cell into which a donor DNA has been inserted is selected using a selectable marker gene and a step in which a cell from which the selectable marker gene has been removed is selected.
  • the present invention can obtain genetically modified cells with extremely high efficiency, it is not always necessary to use a selectable marker gene, and it is possible to obtain target cells by one-stage selection. Is also possible.
  • the present invention is also useful for gene disruption (gene targeting).
  • a phenotype eg, a disorder
  • CRISPR / Cas9 can destroy target genes with high efficiency, it often involves disruption of non-target genes, and it is not possible to immediately identify whether the manifested disorder is due to target gene disruption or non-target gene disruption.
  • CRISPR / Cas9 technology can destroy target genes with high efficiency, it often involves disruption of non-target genes, and it is not possible to immediately identify whether the manifested disorder is due to target gene disruption or non-target gene disruption. Can not.
  • CRISPR / Cas9 technology To avoid the misinterpretation by CRISPR / Cas9 technology and to identify the correct causative gene of the impaired function, it requires undue effort and time, including complementation tests.
  • the method of the present invention can obtain genetically modified cells with extremely high efficiency, so that genetic modification can be performed more easily. Therefore, labor and time for specifying the causative gene of the dysfunction can be reduced. In addition, it can be said that the conversion of a specific sequence for domain analysis was made possible due to the improvement of the cutting efficiency.
  • the present invention provides an extremely useful technique in basic and applied research such as investigation of the cause of a genetic disease, and in genetic modification in all situations including clinical application such as gene therapy.

Abstract

Provided is a technology for more efficient genetic modification, including target gene disruption, using a guide RNA-dependent nuclease. The present invention also addresses the problem of different cleavage efficiencies for each target sequence. Specifically, by the present invention, a new system was developed in which, when developing a target cleavage system that utilizes a guide RNA-dependent nuclease, only the nuclease gene is integrated into a negative-strand RNA viral vector, which has the properties of high infection efficiency and high transgene expression, and, after the viral vector has been introduced into cells in advance and the nuclease has been caused to be expressed, guide RNA is separately supplied to the cells. As a result, an increase in cleavage efficiency and a reduction in recleavage were both successfully achieved, and the efficiency of target gene modification was improved. The present invention is useful as an efficient genetic modification technology, and also has the feature of making it possible to adjust the enhancement and attenuation of genetic modification efficiency by adjusting cleavage efficiency through adjustment of the amount of guide RNA that is introduced.

Description

標的配列を高効率で改変するシステムA system that modifies target sequences with high efficiency
 本発明は、遺伝子の機能解析、遺伝子治療、品種改良、生物工学的創作等を目的に遺伝子配列を簡便に短期間で改変する分子遺伝学技術に関する。 (4) The present invention relates to a molecular genetic technique for easily and quickly modifying a gene sequence for the purpose of gene function analysis, gene therapy, breed improvement, biotechnological creation, and the like.
 遺伝子編集を目的に標的とする塩基配列部位を切断する技術としては、ZFN法、TALEN法、CRISPR/Cas9法等が知られているが、現在では簡便性からCRISPR/Cas9法が最も広く利用されている(Morton, J., et al., Proc. Natl. Acad. Sci. USA 103, 16370-16375 (2006); Cermak, T. et al., Nucleic Acids Res. 39, e82 (2011); Cong, L. et al., Science 339, 819-823 (2013); Mali, P. et al., Science 339, 823-826 (2013))。どの切断方法であっても、細胞内機能として、切断直後に再結合反応が起こり、indelと呼ばれる挿入/欠失/変異配列への変化が生じうる。従って、これらの細胞内機能は遺伝子破壊技術を目的に利用されることが多い。一般に、デザイン配列への遺伝子改変の頻度は遺伝子破壊頻度よりも著しく低いため、それを実行するためには、以下に記す方法が一般的に採用されている。 As a technique for cutting a nucleotide sequence site targeted for gene editing, ZFN method, TALEN method, CRISPR / Cas9 method, etc. are known, but the CRISPR / Cas9 method is currently most widely used because of its simplicity. (Morton, J., et al., Proc. Natl. Acad. Sci. USA 103, 37016370-16375 (2006); erCermak, T. et al., Nucleic Acids Res. 39, e82 (2011); Cong , L. et al., Science 339, 819-823 (2013); Mali, P. et al., Science 339, 823-826 (2013)). Regardless of the cleavage method, a recombination reaction occurs immediately after the cleavage as an intracellular function, and a change to an inserted / deleted / mutated sequence called indel may occur. Therefore, these intracellular functions are often used for gene disruption technology. In general, the frequency of genetic modification to a design sequence is significantly lower than the frequency of gene disruption, and therefore, the following method is generally employed to carry out the modification.
 代表的な方法の一つでは、エキソン改変後塩基配列と、その直近のイントロンに部位特異的組換え酵素認識配列(LoxP, FRT)で挟まれた薬剤耐性遺伝子が挿入された配列とからなるドナーDNAを導入し、ゲノム上の対応するエキソン-イントロン領域内を切断する。イントロン薬剤耐性マーカー遺伝子からエキソン改変後塩基配列まで、長鎖に渡ってドナーDNAの配列に置き換わった細胞クローンを単離した後、薬剤耐性マーカー遺伝子を除去するために、当該細胞クローンに対して、部位特異的組換え酵素(Cre, Flp)遺伝子を導入して、薬剤耐性マーカーだけが抜けた細胞を獲得する(Li, H. L.et al., Stem Cell Reports 4, 143-154 (2015))。 One of the typical methods is a donor consisting of a base sequence after exon modification and a sequence in which a drug-resistant gene inserted between site-specific recombinase recognition sequences (LoxP, FRT) is inserted in the immediate vicinity of an intron. DNA is introduced and cut within the corresponding exon-intron region on the genome. From the intron drug resistance marker gene to the exon-modified base sequence, after isolating a cell clone that has been replaced with the sequence of the donor DNA over a long chain, in order to remove the drug resistance marker gene, Introduction of site-specific recombinase (Cre, Flp) gene to obtain cells with only drug resistance markers missing (Li, H. L.et al., Stem Cell Reports 4, 143-154 (2015) ).
 別の方法では、エキソン改変後塩基配列とその直近のイントロンにトランスポザーゼ認識配列(PiggyBac (PB) IRE)で挟まれた薬剤耐性遺伝子からなるドナーDNAを導入し、当該エキソン-イントロン領域を切断する。イントロン薬剤耐性マーカー遺伝子からエキソン改変後塩基配列まで、長鎖(1 kb以上)に渡ってドナーDNAの配列に置き換わった細胞クローンを単離した後、当該細胞クローンに対して、トランスポザーゼ(PiggyBac transposase)遺伝子を導入して、薬剤耐性マーカーと認識配列(PiggyBac IRE)が抜けた細胞を獲得する(Yusa, K. et al., Nature 478, 391-394 (2012))。 In another method, a donor DNA consisting of a drug resistance gene sandwiched between a transposase recognition sequence (PiggyBac (PB) IRE) is introduced into the exon-modified base sequence and the immediately adjacent intron, and the exon-intron region is cleaved. From the intron drug resistance marker gene to the exon-modified nucleotide sequence, after isolating a cell clone that has been replaced with the sequence of the donor DNA over a long chain (1 kb or more), for the cell clone, transposase (PiggyBac transposase) The gene is introduced to obtain cells from which the drug resistance marker and the recognition sequence (PiggyBac IRE) have been lost (Yusa, K. et al., Nature 478, 391-394 (2012)).
 最近では、droplet digital PCR法によって、上記の2方法のような選択マーカー遺伝子の挿入・除去を行わずに、改変後塩基配列に変換された細胞をsib-screeningを経て選抜することも試みられている。例えば、0.02%が配列改変細胞、数十%がindel(挿入/欠失/変異配列)に変化した不正確な再結合細胞、残りが親型の細胞である集団から、2段階程度のsib-screeningの後に配列改変細胞を選抜できたことが報告されている(Miyaoka, Y. et al., Nat. Methods 11, 291-293 (2014))。 Recently, it has also been attempted to select cells that have been converted into modified base sequences through sib-screening without performing the insertion / removal of a selectable marker gene as in the above two methods by the droplet digital PCR method. I have. For example, from a population in which 0.02% are sequence-modified cells, tens of percent are inaccurate recombined cells changed to indels (insertion / deletion / mutation sequences), and the remainder are parental cells, a two-stage sib- It has been reported that sequence-modified cells could be selected after screening (Miyaoka, Y. et al., Nat. Methods 11, 291-293 (2014)).
 本発明は、ゲノム配列を効率的に改変するための方法、および当該方法において用いられるベクター等を提供することを課題とする。 は An object of the present invention is to provide a method for efficiently modifying a genomic sequence, and a vector and the like used in the method.
 上に記した従来のゲノム改変技術には、いくつかの問題がある。
(1)標的外類似配列での切断
 活性酸素などによって染色体切断が生じると通常は正確に再結合される。同位置に活性酸素が再度作用する確率は極めて低いが、ZFN法、TALEN法、CRISPR/Cas9法では、標的配列または標的外に存在するゲノム上の類似した配列で切断・再結合が繰り返され、その過程でindelと呼ばれる挿入/欠失/変異配列に変化した不正確な再結合を生じた細胞が生じる。
 遺伝子破壊の際には、ゲノム上の標的外類似配列を切断して、そこでindelを起こしうる。デザイン配列への遺伝子改変の際には、ドナーDNA上の標的外類似配列であるデザイン配列での切断が遺伝子改変を妨げると考えられる。デザイン配列通りに遺伝子改変されても、遺伝子改変前後で配列が類似している場合には、改変後に再切断が起こりうる。
 このような標的外類似配列切断は、標的配列DNAの残存と意図しない配列異常をもたらすことがあり、デザインされた遺伝子改変細胞の選抜を困難にする。
There are several problems with the conventional genome modification techniques described above.
(1) Cleavage at an off-target similar sequence When chromosome breakage occurs due to active oxygen or the like, recombination is usually performed accurately. The probability of active oxygen reacting again at the same position is extremely low, but in the ZFN method, TALEN method, CRISPR / Cas9 method, cleavage / rejoining is repeated at the target sequence or a similar sequence on the genome existing outside the target, In the process, cells are produced that have incorrect recombination that has been changed to an insertion / deletion / mutation sequence called indel.
During gene disruption, off-target analogous sequences on the genome can be cleaved, causing indel there. In the case of genetic modification to a design sequence, cleavage at the design sequence, which is an off-target similar sequence on the donor DNA, would prevent genetic modification. Even if the gene is modified according to the design sequence, if the sequence is similar before and after the genetic modification, re-cutting may occur after the modification.
Such off-target similar sequence cleavage may result in residual target sequence DNA and unintended sequence abnormalities, making it difficult to select designed genetically modified cells.
(2)CRISPR/Cas9による切断効率の標的配列(ガイドRNA)間の多様性
 CRISPR/Cas9による遺伝子改変頻度は多様で予測困難であるという課題があり、その原因の一つは切断効率が標的配列(ガイドRNA)ごとに異なることであると考えられる。切断効率が低いガイドRNAでは、遺伝子改変が困難であり、切断効率が高いガイドRNAでは、類似デザイン配列を保持しているドナーDNAの破壊が起こりうる。その場合には、切断効率を抑制すべきであるが、Cas9/sgRNAの発現制御は現在のところ実現されていない。
(2) Diversity of CRISPR / Cas9 cleavage efficiency between target sequences (guide RNA) There is a problem that the frequency of gene modification by CRISPR / Cas9 is variable and difficult to predict, and one of the causes is that cleavage efficiency is a target sequence. (Guide RNA). With a guide RNA having a low cleavage efficiency, it is difficult to modify the gene, and with a guide RNA having a high cleavage efficiency, a donor DNA having a similar design sequence may be destroyed. In that case, the cleavage efficiency should be suppressed, but expression control of Cas9 / sgRNA has not been realized at present.
(2)2段階選抜
 従来法では、遺伝子改変効率が低いため2段階を要する。まず目的の改変配列断片に選択マーカー遺伝子を近接させたドナーDNAを導入し、両方が標的部位に挿入された薬剤耐性の遺伝子改変細胞クローンを単離して、最後に選択マーカーを除去する方法であるが、2段階のスクリーニング操作のため過剰な労力と時間を要するという課題がある。
(2) Two-stage selection In the conventional method, two stages are required due to low gene modification efficiency. First, a donor DNA in which a selectable marker gene is brought close to the target modified sequence fragment is introduced, a drug-resistant genetically modified cell clone in which both are inserted into the target site is isolated, and finally the selectable marker is removed. However, there is a problem that excessive labor and time are required for the two-stage screening operation.
(3)部位特異的組換え配列の残存
 ドナーDNA上に搭載された改変後配列と薬剤選択マーカー遺伝子は標的部位に同時に導入され、その後、部位特異的組換え酵素認識配列(LoxP, FRT)で挟まれた選択マーカー遺伝子だけが部位特異的組換え酵素によって除去されるが、Cre/LoxP法、Flp/FRT法を代表とする方法では、一つの認識配列が残ってしまうため、遺伝子改変には適用できないという課題がある。
(3) Remaining site-specific recombination sequence The modified sequence and the drug selection marker gene carried on the donor DNA are simultaneously introduced into the target site, and then the site-specific recombination enzyme recognition sequence (LoxP, FRT) is used. Although only the sandwiched selectable marker gene is removed by site-specific recombinase, one method, such as Cre / LoxP method or Flp / FRT method, leaves one recognition sequence. There is a problem that it cannot be applied.
(4)標的切断配列の喪失
 上述の部位特異的組換え法、トランスポザーゼ法は、標的切断部位にドナーDNA配列内の長鎖(1 kb以上)領域が導入されるが、この機構に依存する両方法においては、染色体遺伝子座上の標的配列の切断のみならず、ドナーDNA上の標的配列に切断が生じると、長鎖領域の組み換え反応が抑制されるので、ドナーDNA上から切断配列を除去して、ドナーDNA上での切断を回避する必要があるが、切断配列を除去するために本来は必要のない喪失がデザインされたドナーDNAを用いた場合、ドナーDNA配列が標的部位にコピーされた配列改変細胞では、不必要な喪失が最終産物となるため、遺伝子破壊以外の遺伝子改変には適用できないという課題がある。
(4) Loss of Target Cleavage Sequence In the site-specific recombination method and transposase method described above, a long chain (1 kb or more) region in the donor DNA sequence is introduced into the target cleavage site. In the method, not only the cleavage of the target sequence on the chromosomal locus but also the cleavage of the target sequence on the donor DNA suppresses the recombination reaction of the long chain region. However, when it was necessary to avoid cleavage on the donor DNA, but the donor DNA was designed with an unnecessary loss to remove the cleavage sequence, the donor DNA sequence was copied to the target site. In a sequence-modified cell, unnecessary loss is a final product, and therefore, there is a problem that it cannot be applied to genetic modification other than gene disruption.
 また部位特異的組換え法にしろ、トランスポザーゼ法にしろ、ドナーDNAが導入された細胞を選択後に、部位特異的組換え酵素やトランスポザーゼを発現するベクター等を細胞に導入するという追加的な工程が必要であり、その後、マーカー遺伝子が期待通りにゲノムから除去されたことを確認することや、導入したベクターが除去された細胞を選択することも必要となるなど手順が煩雑である。 Regardless of whether the site-specific recombination method or the transposase method is used, an additional step of selecting a cell into which the donor DNA has been introduced and then introducing a site-specific recombination enzyme, a vector expressing the transposase, etc. into the cell is added. The procedure is complicated, for example, it is necessary to confirm that the marker gene has been removed from the genome as expected, and to select cells from which the introduced vector has been removed.
 Indelが発生したり、ドナーDNA由来の不要なDNA配列の痕跡が細胞のゲノム上に残ることを防ぎつつ、高い精密さを持つ遺伝子改変を高効率で可能とするために本発明者らは、マイナス鎖RNAウイルスベクターを用いてCas9などのヌクレアーゼを発現させることを考えた。遺伝子改変の実験ではないものの、自己切り出し型のガイドRNAと共にCas9遺伝子を発現するマイナス鎖RNAウイルスベクターを細胞に導入した実験は既に報告がある(Park, et al., Mol Ther Methods Clin Dev., 2016, 3:16057, doi:10.1038/mtm.2016.57)。それによると、ベクターを導入した細胞の75~98%の細胞でindelが生じたことが報告されている。 In order to prevent the occurrence of Indel or traces of unnecessary DNA sequences derived from donor DNA from remaining on the genome of cells, and to enable highly precise genetic modification with high efficiency, the present inventors have It was considered that a nuclease such as Cas9 was expressed using a minus-strand RNA virus vector. Although not a genetic modification experiment, experiments have already been reported in which a minus-strand RNA virus vector expressing the Cas9 gene together with a self-excised guide RNA was introduced into cells (Park, et al., Mol Ther Methods Clin Dev., 2016, 3: 16057, doi: 10.1038 / mtm.2016.57). It is reported that indel occurred in 75 to 98% of cells transfected with the vector.
 センダイウイルスベクターなどのマイナス鎖RNAウイルスベクターは細胞質で発現し、発現過程においてDNAのフェーズを持たないため、ウイルスゲノムが宿主染色体に組み込まれるリスクがない。また、広範囲な細胞に対して高い感染性を示し、搭載遺伝子を高発現させることができるなどの優れた能力を持っている。しかし、複製型のマイナス鎖RNAウイルスベクターであれ、複製能を欠失したエンベロープ蛋白質遺伝子欠失型のマイナス鎖RNAウイルスベクターであれ、搭載遺伝子が発現するためには細胞質内でウイルスゲノムRNAが複製され、そこからさらに各ウイルス蛋白質をコードする遺伝子群が発現することによりウイルスの発現系が発動する必要があることから、ベクターを細胞に感染させてから搭載遺伝子の発現が十分に上昇するまでにはタイムラグが生じることは避けがたく、また、発現の立ち上がりを厳密に制御することも困難である。そして感染後、搭載遺伝子の発現レベルが十分に上昇するまで培養を続ける必要があるため、発現期間は長くならざるを得ない。本発明者らは、マイナス鎖RNAウイルスベクターの発現制御がこのように困難であり、このベクターを用いてCas9などのヌクレアーゼを発現させる場合に、その発現期間が長くならざるを得ないことが、細胞内におけるヌクレアーゼによる切断・結合の繰り返しを引き起こし、indelの生成を助長しているのではないかと考えた。そして、ヌクレアーゼが機能できるタイミングをより厳格に制御し、切断・結合の繰り返しを抑えることができれば、indelの生成を抑えることができるのではないかと考えた。 マ イ ナ ス Negative-strand RNA virus vectors, such as Sendai virus vectors, are expressed in the cytoplasm and have no DNA phase in the expression process, so there is no risk that the viral genome is integrated into the host chromosome. In addition, it shows high infectivity to a wide range of cells, and has excellent abilities such as being able to highly express a loaded gene. However, regardless of whether the virus is a replicative minus-strand RNA virus vector or an envelope protein gene-deficient minus-strand RNA virus vector lacking replication ability, the viral genomic RNA replicates in the cytoplasm in order to express the loaded gene. It is necessary to activate the virus expression system by further expressing the genes encoding the respective viral proteins.Therefore, from the time the cell is infected with the vector until the expression of the loaded gene is sufficiently increased. It is unavoidable that a time lag occurs, and it is also difficult to strictly control the onset of expression. After infection, it is necessary to continue culturing until the expression level of the loaded gene is sufficiently increased, so that the expression period must be long. The present inventors have found that it is difficult to control the expression of a minus-strand RNA virus vector in this way, and when expressing a nuclease such as Cas9 using this vector, the expression period must be long, It was thought that it caused repeated cleavage and binding by nucleases in the cells, which promoted the production of indel. Then, they thought that if the timing at which the nuclease can function could be more strictly controlled and the repetition of cleavage and binding could be suppressed, the generation of indel could be suppressed.
 ヌクレアーゼが機能できるタイミングをより厳格に制御するために本発明者らは、Cas9などのヌクレアーゼが、ガイドRNA依存的に機能を発揮することに着目した。ガイドRNA依存性ヌクレアーゼの場合、該ヌクレアーゼの活性の発現に必要なガイドRNAが揃っていない条件下でヌクレアーゼを発現させても機能は発揮されない。マイナス鎖RNAウイルスベクターにヌクレアーゼ遺伝子を搭載させ、該ヌクレアーゼの活性に必要なガイドRNA(例えばtracrRNAとcrRNAのセット)の遺伝子は搭載させないか、あるいは搭載させるとしても該ヌクレアーゼの活性に必要なガイドRNAのすべてはコードしないように設計した場合、当該マイナス鎖RNAウイルスベクターからはヌクレアーゼ蛋白質等だけ(ヌクレアーゼ蛋白質のみ、またはヌクレアーゼ蛋白質と一部のガイドRNAだけ)が高発現するが、ヌクレアーゼの活性に必要なガイドRNAがすべて揃わないためヌクレアーゼの機能は発揮されない。本発明者らは、まずマイナス鎖RNAウイルスベクターを細胞に導入し、ヌクレアーゼ蛋白質等だけを高発現させて細胞に蓄積させておき、その後、ヌクレアーゼの活性が発現するために不足しているガイドRNAを細胞に供給すれば、あらかじめ高発現しているヌクレアーゼ等と別途供給されたガイドRNAが合わさることにより機能的ヌクレアーゼが一気に生成して機能を発揮することになるため、マイナス鎖RNAウイルスベクターが持つ高発現の有利性を享受しつつ、マイナス鎖RNAウイルスベクターが持つ発現のタイムラグという欠点を克服することができるのではないかと考えた。 In order to more strictly control the timing at which nucleases can function, the present inventors have focused on the fact that nucleases such as Cas9 exert their functions in a guide RNA-dependent manner. In the case of a guide RNA-dependent nuclease, the function is not exhibited even if the nuclease is expressed under conditions where guide RNAs necessary for expressing the activity of the nuclease are not available. A nuclease gene is loaded on the minus-strand RNA virus vector, and a guide RNA (for example, a set of tracrRNA and crRNA) required for the activity of the nuclease is not loaded, or even if it is loaded, a guide RNA required for the activity of the nuclease Is designed not to encode all, the nuclease protein (only nuclease protein or only nuclease protein and some guide RNA) is highly expressed from the minus-strand RNA virus vector, but is required for nuclease activity. The nuclease function is not exhibited because all the guide RNAs are not available. The present inventors first introduced a minus-strand RNA viral vector into cells, allowed only high expression of nuclease proteins and the like to accumulate in the cells, and then lacked guide RNA due to the expression of nuclease activity. Is supplied to the cells, a functional nuclease is generated at a stretch by combining the guide RNA separately supplied with a nuclease that is highly expressed in advance and the like, and the function is exhibited. We thought that it would be possible to overcome the drawback of the expression lag of the minus-strand RNA virus vector while enjoying the advantages of high expression.
 また、マイナス鎖RNAウイルスベクターとして温度感受性のマイナス鎖RNAウイルスベクターを使用し、ヌクレアーゼ遺伝子等を発現させる際には許容温度で培養し、その後、ガイドRNAの供給前後に温度を非許容温度まで上げれば、ベクターを迅速に不活化させることができる。これにより、ガイドRNAの供給後にヌクレアーゼが不必要に生成され続けることは回避されるので、機能的ヌクレアーゼが細胞内で活性を発揮できるタイミングをより鋭く制御することができると考えた。 In addition, use a temperature-sensitive minus-strand RNA virus vector as a minus-strand RNA virus vector, culture at an allowable temperature when expressing a nuclease gene, etc., and then raise the temperature to a non-permissible temperature before and after the supply of guide RNA. Thus, the vector can be quickly inactivated. This avoids unnecessary generation of nuclease after the supply of the guide RNA, so that it was thought that the timing at which the functional nuclease could exert its activity in cells could be more sharply controlled.
 実際、温度感受性のマイナス鎖RNAウイルスベクターにヌクレアーゼ遺伝子を搭載させ、これをTG98細胞に導入して許容温度で発現させた後、ドナーDNA とHPRTTG98変異専用ガイドRNAsを細胞に導入して非許容温度で培養したところ、遺伝子改変が起こり読み枠が復帰した細胞が2.6×10-3~3.6×10-3という驚くべき高頻度で取得できることが判明した(実験2-1、2-2参照)。また発現プラスミドを用いた従来の方法では、ドナーDNA配列への改変に成功したと思われた細胞17クローン中2クローンで塩基挿入の意図しない配列異常が付随していたり、同17クローン中4クローン(実験1-1)、及び、12クローン中6クローン(実験1-2)で標的配列DNAの残存が付随していたのに対し、本発明の方法では、得られた12クローン(実験1)または24クローン(実験1-2)中、そのようなクローンは一つもないことが確認された。なお可視マーカー遺伝子搭載SeV(SeV-AzamiGreen)非感染下でCas9-sgRNA発現プラスミドを導入した実験系由来の5クローンでは、標的配列DNAの残存の付随や塩基挿入の意図しない配列異常の付随はなかった。
 本Cas9搭載ウイルスベクターを同条件でTG439-1細胞で発現させ、同ドナーDNAとHPRTTG439変異専用ガイドRNAsを導入して非許容温度で培養したところ、遺伝子改変が起こり読み枠が復帰した細胞が0.52x10-3~1.5x10-3という高頻度で取得できることが分かった。また、標的配列DNAの残存の付随や塩基挿入の意図しない配列異常の付随は、発現プラスミドを用いた従来の方法では、ドナーDNA配列への改変に成功したと思われた細胞5クローン中0(実験4-1)、または3クローン中0クローン(実験4-2)であった。本発明の方法でも、標的配列DNAの残存の付随や塩基挿入の意図しない配列異常の付随は、ドナーDNA配列への改変に成功したと思われた細胞12クローン中0(実験4-1)、または12クローン中0クローン(実験4-2)であった。
 上記のTG98遺伝子復帰試験より観察された、標的配列DNAの残存の付随と意図しない配列異常の付随の原因を断定することはできない。これらのTG98及びTG439-1遺伝子復帰試験の結果より、SeVからのCas9発現後にRNAsとドナーDNA導入する本発明の方法では、遺伝子改変に伴った、標的配列DNAの残存と意図しない配列異常の発生が抑えられていたと考えられる。
In fact, a nuclease gene is loaded into a temperature-sensitive negative-strand RNA virus vector, introduced into TG98 cells, and expressed at a permissive temperature.Then, donor DNA and guide RNAs dedicated to HPRT TG98 mutation are introduced into the cells, and non-permissive. When the cells were cultured at a temperature, it was found that cells whose genetic readings were changed and the reading frame was restored could be obtained at a surprisingly high frequency of 2.6 × 10 −3 to 3.6 × 10 −3 (see Experiments 2-1 and 2-2). . In the conventional method using an expression plasmid, two out of 17 clones that seemed to have successfully modified the donor DNA sequence were accompanied by an unintended sequence abnormality in base insertion, or 4 out of 17 clones. (Experiment 1-1) and 6 out of 12 clones (Experiment 1-2) were accompanied by residual target sequence DNA, whereas the method of the present invention obtained 12 clones (Experiment 1). Alternatively, it was confirmed that no such clone was found in 24 clones (Experiment 1-2). In the five clones derived from the experimental system into which the Cas9-sgRNA expression plasmid was introduced without infection with SeV (SeV-AzamiGreen) carrying the visible marker gene, there was no accompanying residual sequence of the target sequence DNA or unintended sequence abnormality of base insertion. Was.
This Cas9-loaded viral vector was expressed in TG439-1 cells under the same conditions, and the same donor DNA and HPRT TG439 mutation-specific guide RNAs were introduced and cultured at a non-permissive temperature. 0.52x10 -3 was found that it is possible to obtain a high frequency of ~ 1.5x10 -3. In addition, with the conventional method using an expression plasmid, 0 (in 5 clones of cells that were considered to be successfully modified into the donor DNA sequence) Experiment 4-1) or 0 out of 3 clones (Experiment 4-2). Also in the method of the present invention, the presence of the residual target sequence DNA or the unintended sequence abnormality of the base insertion was caused by 0 out of 12 clones which seemed to be successfully modified into the donor DNA sequence (Experiment 4-1). Alternatively, it was 0 out of 12 clones (Experiment 4-2).
It is not possible to determine the accompanying cause of the residual target sequence DNA and the unintended sequence abnormality observed from the TG98 gene reversion test described above. From the results of these TG98 and TG439-1 gene reversion tests, the method of the present invention in which RNAs and donor DNA were introduced after Cas9 expression from SeV was associated with the genetic modification, the target sequence DNA remained and unintended sequence abnormalities occurred. It is thought that was suppressed.
 また、ヌクレアーゼ遺伝子を搭載するマイナス鎖RNAウイルスベクターを細胞に導入して発現させた後、ドナーDNAを用いずにガイドRNAだけを細胞に導入する実験を行ったところ、驚くべきことに、発現プラスミドを用いた従来の方法よりも有意に高い頻度で標的破壊を達成できることも判明した(実験3-1、3-2)。しかしその値は、ドナーDNAを用いた場合の上述の遺伝子改変頻度と大きな違いはないことから、実験3-1、3-2で観察された遺伝子破壊頻度に対する、実験2-1、2-2、実験3-1、3-2で観察された遺伝子復帰頻度の比の値は、本発明のベクター系を用いた場合の方が、発現プラスミドを用いた従来の方法の比の値よりもはるかに高いということができ、実験1-1、1-2の遺伝子復帰において、発現プラスミドを用いた従来の方法ではドナーDNA導入条件下で遺伝子復帰頻度が低いのに対し、本発明の方法ではドナーDNA導入条件下でも高い遺伝子復帰頻度を維持できることを示している。 In addition, after introducing and expressing a minus-strand RNA virus vector carrying a nuclease gene into cells, an experiment was conducted in which only guide RNA was introduced into cells without using donor DNA. It was also found that target destruction can be achieved at a significantly higher frequency than the conventional method using (Experiments 3-1 and 3-2). However, the value is not significantly different from the above-described gene modification frequency when the donor DNA is used, and therefore, the values are higher than those of Experiments 2-1 and 2-2 with respect to the gene disruption frequency observed in Experiments 3-1 and 3-2. The values of the ratios of the gene reversion frequencies observed in Experiments 3-1 and 3-2 were much higher in the case of using the vector system of the present invention than in the conventional method using the expression plasmid. In the gene reversion of Experiments 1-1 and 1-2, the frequency of gene reversion was low under the conditions of donor DNA introduction in the conventional method using an expression plasmid, whereas in the method of the present invention, the frequency of gene reversion was low. This shows that a high gene reversion frequency can be maintained even under DNA introduction conditions.
 このように本発明者らは、ヌクレアーゼ遺伝子だけを搭載し、ガイドRNAの遺伝子を搭載しないマイナス鎖RNAウイルスベクター(あるいはヌクレアーゼ遺伝子を搭載し、一部のガイドRNAはコードするが、ヌクレアーゼの活性に必要なガイドRNAのすべてはコードしないマイナス鎖RNAウイルスベクター)をまず細胞に導入し、ヌクレアーゼ等を蓄積させた後に、不足するガイドRNAを細胞に供給することによって、indelの生成を抑制し、従来の方法では達成することができなかった高頻度・高品質の遺伝子改変が可能となることを見出し、本発明を完成した。 Thus, the present inventors have developed a minus-strand RNA viral vector that carries only a nuclease gene and does not carry a guide RNA gene (or carries a nuclease gene and encodes some guide RNAs, but has a low nuclease activity). A minus-strand RNA virus vector that does not encode all necessary guide RNA) is first introduced into cells, and after nucleases and the like are accumulated, the supply of insufficient guide RNA to the cells suppresses indel production. The present inventors have found that high-frequency and high-quality genetic modification that could not be achieved by the method described above can be performed, and completed the present invention.
 すなわち本発明は、マイナス鎖RNAウイルスベクターを用いた高効率な遺伝子改変技術を提供するものであり、より具体的には請求項の各項に記載の発明を包含する。なお同一の請求項を引用する請求項に記載の発明の2つまたはそれ以上の任意の組み合わせからなる発明も、本明細書において意図された発明である。すなわち本発明は、以下の発明を包含する。
〔1〕 ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変細胞の製造方法であって、
 (a)該ヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性に必要なガイドRNAの少なくとも一つをコードしない温度感受性マイナス鎖RNAウイルスベクターを細胞に導入し、許容温度下で該ベクターを発現させ、該ガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
 (b)工程(a)の後、不足するガイドRNAを細胞に供給する工程、
 (c)工程(b)の前後または同時に培養温度を非許容温度に上昇させ、該ガイドRNAが細胞中に存在する状態で培養する工程、を含む方法。
〔2〕 (d)遺伝子が改変された細胞を回収する工程、をさらに含む、〔1〕に記載の方法。
〔3〕 工程(b)においてガイドRNAを細胞に導入する、〔1〕または〔2〕に記載の方法。
〔4〕 工程(b)の実施時か、遅くともその24時間後までには培養温度は非許容温度に上昇している、〔1〕から〔3〕のいずれかに記載の方法。
〔5〕 該ヌクレアーゼが、CRISPR/Casクラス2エンドヌクレアーゼである、〔1〕から〔4〕のいずれかに記載の方法。
〔6〕 該マイナス鎖RNAウイルスベクターがガイドRNAをコードしない、〔1〕から〔5〕のいずれかに記載の方法。
〔7〕 工程(b)においてドナーDNAも細胞に導入する、〔1〕から〔6〕のいずれかに記載の方法。
〔8〕 該ドナーDNA中にポジティブ選択マーカー遺伝子を含まない、〔7〕に記載の方法。
〔9〕 工程(c)の後、ドナーDNA中の配列が組み込まれた細胞を選択する工程、をさらに含む、〔7〕または〔8〕に記載の方法。
〔10〕 該選択工程が、ポジティブ選択マーカーに頼らずに細胞を検査してドナーDNA中の配列が組み込まれた細胞を選択する工程である、〔9〕に記載の方法。
〔11〕 〔1〕から〔10〕のいずれかに記載の方法に用いられるベクターであって、ガイドRNA依存性DNAヌクレアーゼ遺伝子を搭載し、該ヌクレアーゼの活性に必要なガイドRNAの少なくとも一つをコードしない、温度感受性マイナス鎖RNAウイルスベクター。
〔12〕 温度感受性センダイウイルスベクターである、〔11〕に記載のベクター。
〔13〕 F遺伝子欠失型温度感受性センダイウイルスベクターである、〔12〕に記載のベクター。
〔14〕 センダイウイルスベクターが、F遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含む、〔12〕または〔13〕に記載のセンダイウイルスベクター。
〔15〕 以下の(i)および/または(ii)の変異をさらにゲノムに含む、〔14〕に記載のセンダイウイルスベクター。
 (i)P蛋白質のD433A、R434A、およびK437Aの変異
 (ii)L蛋白質のY942H、L1361Cおよび/またはL1558Iの変異
〔16〕 該ヌクレアーゼが、CRISPR/Casクラス2エンドヌクレアーゼである、〔11〕から〔15〕のいずれかに記載のベクター。
That is, the present invention provides a highly efficient gene modification technique using a minus-strand RNA virus vector, and more specifically includes the inventions described in the claims. It should be noted that an invention comprising any combination of two or more of the inventions described in the claims citing the same claim is also an invention intended in the present specification. That is, the present invention includes the following inventions.
[1] A method for producing a genetically modified cell using a guide RNA-dependent DNA nuclease,
(A) a temperature-sensitive minus-strand RNA virus vector that carries the nuclease gene and does not encode at least one guide RNA required for the activity of the nuclease is introduced into cells, and the vector is expressed at a permissive temperature; Accumulating the nuclease in cells in the absence of the guide RNA,
(B) supplying the missing guide RNA to the cells after step (a);
(C) raising the culture temperature to a non-permissible temperature before or after or simultaneously with step (b), and culturing in a state where the guide RNA is present in the cells.
[2] The method of [1], further comprising: (d) recovering a cell in which the gene has been modified.
[3] The method according to [1] or [2], wherein the guide RNA is introduced into the cells in the step (b).
[4] The method according to any one of [1] to [3], wherein the culture temperature is raised to a non-permissible temperature at the time of carrying out the step (b) or at the latest at least 24 hours after that.
[5] the method of any one of [1] to [4], wherein the nuclease is a CRISPR / Cas class 2 endonuclease;
[6] the method of any one of [1] to [5], wherein the minus-strand RNA virus vector does not encode a guide RNA;
[7] The method according to any one of [1] to [6], wherein the donor DNA is also introduced into the cells in the step (b).
[8] The method of [7], wherein the donor DNA does not contain a positive selection marker gene.
[9] The method of [7] or [8], further comprising, after the step (c), selecting a cell into which the sequence in the donor DNA has been integrated.
[10] The method according to [9], wherein the selection step is a step of examining cells without relying on a positive selection marker and selecting cells into which the sequence in the donor DNA has been integrated.
[11] A vector used in the method according to any one of [1] to [10], which carries a guide RNA-dependent DNA nuclease gene and contains at least one guide RNA required for the activity of the nuclease. Non-coding, temperature-sensitive negative-strand RNA viral vector.
[12] The vector according to [11], which is a temperature-sensitive Sendai virus vector.
[13] the vector of [12], which is an F gene deleted type temperature-sensitive Sendai virus vector;
(14) the Sendai virus vector has the F gene deleted, the M protein has G69E, T116A, and A183S mutations, the HN protein has A262T, G264R, and K461G mutations, the P protein has L511F mutation, and the L protein has The Sendai virus vector according to [12] or [13], wherein the genome contains mutations of N1197S and K1795E.
[15] The Sendai virus vector according to [14], wherein the genome further comprises the following mutations (i) and / or (ii):
(I) Mutations of D433A, R434A, and K437A of P protein (ii) Mutations of Y942H, L1361C and / or L1558I of L protein [16] From [11], wherein the nuclease is a CRISPR / Cas class 2 endonuclease The vector according to any one of [15].
 なお、本明細書に記載した任意の技術的事項およびその任意の組み合わせは、本明細書において意図されている。また、それらの発明において、本明細書に記載の任意の事項またはその任意の組み合わせを除外した発明も、本明細書において意図されている。また本発明に関して、明細書中に記載されたある特定の態様は、それを開示するのみならず、その態様を含むより上位の本明細書に開示された発明から、その態様を除外した発明も開示するものである。 In addition, any technical matter described in this specification and any combination thereof are intended in this specification. Further, in these inventions, inventions excluding any matter described in this specification or any combination thereof are also intended in this specification. In addition, with respect to the present invention, certain embodiments described in the specification not only disclose the invention, but also inventions excluding the embodiment from the inventions disclosed in the higher specification including the embodiment. It is disclosed.
・標的外類似配列での切断の減衰
 不正確再結合体は、標的DNAの切断・結合の繰り返しの末に生じる。切断の繰り返しを抑えることができれば、不正確再結合も抑えられると考えられる。本発明は、切断酵素の発現を強化・短期化することによって、標的ゲノムの繰り返し切断を抑え、不正確再結合を抑制することができる。これにより、例えば遺伝子破壊の際には標的外配列でのindelを抑えることができ、類似デザイン配列への遺伝子改変の際には、標的で生じた意図しない配列異常の保持細胞の減少により、デザイン配列通りに改変された細胞の選抜を容易にすることが期待できる。
Attenuation of cleavage at off-target analogous sequences Inaccurate recombination occurs after repeated cleavage and binding of target DNA. If repetition of cutting can be suppressed, it is considered that incorrect recombination can also be suppressed. The present invention can suppress repetitive cleavage of the target genome and suppress incorrect recombination by enhancing and shortening the expression of the cleavage enzyme. This makes it possible, for example, to suppress indels in off-target sequences during gene disruption, and to reduce the number of unintended sequence-abnormality-bearing cells in the target during gene modification to similar designed sequences. It can be expected to facilitate the selection of cells modified according to the sequence.
・CRISPR/Cas9による切断効率の標的配列(ガイドRNA)間多様性の縮小
 切断効率が低いガイドRNAでは、遺伝子改変が困難であり、切断効率が高いガイドRNAでは、類似デザイン配列を保持しているドナーDNAの破壊が起こりうる。本発明では、切断効率が低いガイドRNAは、切断効率を上げるために、別途導入するRNA量を増やすことによって、また、切断効率が高いガイドRNAでは、切断効率を抑制し標的外類似配列切断を抑制するために、導入RNA量を減らすことによって、それぞれに遺伝子改変頻度を調節できる。
・ Reduction of diversity between target sequences (guide RNAs) for cleavage efficiency by CRISPR / Cas9 Gene modification is difficult for guide RNAs with low cleavage efficiency, and guide RNAs with high cleavage efficiency retain similar designed sequences Destruction of the donor DNA can occur. According to the present invention, a guide RNA having a low cleavage efficiency is prepared by increasing the amount of RNA separately introduced in order to increase the cleavage efficiency. In order to suppress this, the frequency of gene modification can be adjusted by reducing the amount of introduced RNA.
・2段階選抜の回避
 2段階選抜の労力・時間の消耗という課題の根本的な解決手段は、遺伝子改変効率の向上であると考えられる。ガイドRNA依存性ヌクレアーゼ遺伝子を高頻度感染・高発現ベクターであるマイナス鎖RNAウイルスベクターに搭載させ、ガイドRNAは別途供給することにより、ヌクレアーゼの作用時間を短期化させる本発明の方法により、遺伝子改変効率の向上が実現し、選択マーカーを必要とせず、改変配列のみ標的挿入された遺伝子改変細胞を、限られた数の生細胞クローンからスクリーニングできるワンステップ選抜が可能であるため、労力と時間を削減できる。
-Avoidance of two-stage selection The fundamental solution to the problem of wasting time and labor in two-stage selection is considered to be improved genetic modification efficiency. The guide RNA-dependent nuclease gene is mounted on a minus-strand RNA virus vector that is a high-frequency infection / high expression vector, and the guide RNA is separately supplied, whereby the method of the present invention for shortening the action time of the nuclease enables gene modification. Improved efficiency, no need for a selectable marker, and one-step selection that enables screening of genetically modified cells with only the modified sequence as a target inserted from a limited number of live cell clones, saving labor and time Can be reduced.
・部位特異的組換え配列残存の回避
 従来法では、遺伝子改変効率が低いため、ドナープラスミド上で改変配列に、部位特異的組換え配列に挟まれた選択マーカーを近接させ、両方が標的部位に挿入された薬剤耐性の遺伝子改変細胞クローンを単離して、部位特異的組換えによって選択マーカーを除去する必要があったが、この方法によれば、最終産物(最終的に得られる細胞のゲノム)に部位特異的組換え配列が残ってしまう。本発明では、遺伝子改変効率の向上によって高頻度に遺伝子改変が起こるため、改変後配列が導入された遺伝子改変細胞を非選択条件下で選抜できるので、選択マーカー・部位特異的組換えシステムが不要となり、部位特異的組換え配列の残存の問題を回避することができる。
・ Avoidance of residual site-specific recombination sequences In the conventional method, since the gene modification efficiency is low, the selection marker sandwiched between the site-specific recombination sequences is brought close to the modified sequence on the donor plasmid, and both are located at the target site. It was necessary to isolate the inserted drug-resistant genetically modified cell clone and remove the selectable marker by site-specific recombination. According to this method, the final product (genome of the finally obtained cell) was required. Site-specific recombination sequences remain. In the present invention, since genetic modification occurs at a high frequency due to the improvement of the genetic modification efficiency, genetically modified cells into which the modified sequence has been introduced can be selected under non-selective conditions, thus eliminating the need for a selective marker / site-specific recombination system. Thus, the problem of the site-specific recombination sequence remaining can be avoided.
・標的切断配列情報の喪失の回避
 染色体遺伝子座上の標的配列の切断によって誘導される、ドナープラスミド上の選択マーカーを含む長鎖(1 kb以上)領域の、遺伝子座上標的部位への組み込みの頻度は、ドナープラスミド上の標的相同配列(被切断可能な配列)の存在によって、低下する。従来法では、ドナープラスミド上の被切断可能な配列をあらかじめ除去、または、蛋白質をコードする配列である場合はコードされるアミノ酸配列を変化させないように同義変換することによって、ドナープラスミドの切断を回避し組み換え反応を維持する。本発明では、上述したようにドナープラスミド上に選択マーカーを必要としないため、組み換え反応は、改変後配列のみを含む短鎖(~20 bp以下)領域内で完了する。このような短鎖領域組み換え反応による遺伝子改変は、ドナープラスミド上に標的相同配列(被切断可能な配列)が存在しても、低下しないことを発見したので、本発明実施形態には、ドナープラスミドの標的相同配列の除去も同義変換配列も必要としないことから、標的切断配列情報の喪失も同義変換も伴わない。長鎖組み換え反応系と短鎖組み換え反応系における被切断可能配列の影響の違いについて、長鎖組み換え反応中には、反応中間体が再切断を受け破壊され易いが、短鎖組み換え反応は短時間で完了するため再切断を受ける確率が低いという可能性が考えられる。
・ Avoid loss of target cleavage sequence information.Incorporation of the long chain (1 kb or more) region containing the selectable marker on the donor plasmid, induced by cleavage of the target sequence on the chromosomal locus, into the target site on the locus. Frequency is reduced by the presence of target homologous sequences (separable sequences) on the donor plasmid. In the conventional method, the cleavage of the donor plasmid is avoided by previously removing the cleavable sequence on the donor plasmid, or, in the case of a sequence encoding a protein, performing a synonymous conversion so as not to change the encoded amino acid sequence. And maintain the recombination reaction. In the present invention, since a selection marker is not required on the donor plasmid as described above, the recombination reaction is completed within a short chain (~ 20 bp or less) region containing only the sequence after modification. Genetic modification by such a short chain region recombination reaction, even if the target homologous sequence (separable sequence) is present on the donor plasmid, was found not to be reduced. Neither the removal of the target homologous sequence nor the synonymous conversion sequence is required, and thus no information on the target cleavage sequence and no synonymous conversion are involved. Regarding the difference in the effect of the cleavable sequence between the long-chain recombination reaction system and the short-chain recombination reaction system, during the long-chain recombination reaction, the reaction intermediate is liable to be destroyed by re-cleavage, It is conceivable that the probability of receiving a re-cut is low because of completion.
 また本発明により、以下の発明の実施も可能となる。
(i) 短期強発現による高頻度標的切断遺伝子改変方法
 本発明の系では、1)切断酵素遺伝子をマイナス鎖RNAウイルスベクターから発現すること;2)トランスフェクションによる導入RNA量の最適化の2点によって、高頻度感染性で搭載遺伝子を強く発現させる機能を有するマイナス鎖RNAウイルスベクターの特性を利用して切断酵素を短期間だけ高活性状態にさせることができるため、これにより達成できる高頻度標的切断能力に帰する、高頻度遺伝子改変方法の実施が可能となる。
(ii) 高頻度感染性を有した短期型強発現ウィルスベクター
 本発明の方法において高頻度遺伝子改変を行うための必須ツールであり、高頻度感染性を有し、搭載された切断酵素遺伝子を短期に強く発現させるための機能を有するマイナス鎖RNAウイルスベクターにガイドRNA依存性ヌクレアーゼ遺伝子が搭載されたベクターを提供する。
(iii) 改変後配列とその周辺の相同領域からなるドナーDNA
 従来の遺伝子改変法は低頻度である故にドナープラスミドに選択マーカーを搭載しなければならないが、本発明の遺伝子改変方法は高頻度であるためにドナープラスミド上から選択マーカーを省くことができることから、この高頻度技術との同時使用によって初めて可能となった、改変後配列とその周辺の相同領域のみから成る、単純化ドナーDNAが提供される。
(iv) 導入RNA量の調整による遺伝子改変頻度の向上とゲノム安全性の向上
 本発明の遺伝子改変方法の高頻度化は、マイナス鎖RNAウイルスベクターによる十分量のガイドRNA依存性ヌクレアーゼの発現と導入ガイドRNA(gRNA)分子の量的最適化によってさらに高めることができる。十分量のガイドRNA依存性ヌクレアーゼが発現する本発明の系において初めて、簡便に(導入gRNA量の調整だけによって)ゲノム不安定性を抑え、安全性を向上させることができる方法が可能となる。
According to the present invention, the following inventions can be implemented.
(I) Method for modifying high-frequency target cleavage gene by short-term strong expression In the system of the present invention, two points are 1) expression of a cleavage enzyme gene from a minus-strand RNA virus vector; and 2) optimization of the amount of RNA introduced by transfection. By using the characteristics of a minus-strand RNA viral vector that has a high frequency of infectivity and has the function of strongly expressing a loaded gene, the cleavage enzyme can be brought into a highly active state for a short period of time. It is possible to carry out a high-frequency genetic modification method attributable to the cleavage ability.
(Ii) High-frequency infectious short-term strongly expressing virus vector This is an essential tool for performing high-frequency gene modification in the method of the present invention. Provided is a vector having a guide RNA-dependent nuclease gene mounted on a minus-strand RNA virus vector having a function of causing strong expression in E. coli.
(Iii) Donor DNA consisting of the modified sequence and its surrounding homologous region
Since the conventional genetic modification method has a low frequency, it is necessary to mount a selection marker on the donor plasmid.However, since the genetic modification method of the present invention has a high frequency, the selection marker can be omitted from the donor plasmid, A simplified donor DNA comprising only the modified sequence and its surrounding homologous regions, which is made possible only by the simultaneous use of this high-frequency technique, is provided.
(Iv) Improvement of the frequency of gene modification and improvement of genomic safety by adjusting the amount of introduced RNA The frequency of the gene modification method of the present invention is increased by the expression and introduction of a sufficient amount of a guide RNA-dependent nuclease using a minus-strand RNA virus vector. This can be further enhanced by quantitative optimization of the guide RNA (gRNA) molecule. For the first time, in the system of the present invention in which a sufficient amount of guide RNA-dependent nuclease is expressed, a method that can easily suppress genomic instability (only by adjusting the amount of introduced gRNA) and improve safety can be realized.
従来のゲノム編集技術の骨子を示す図である。ドナーDNAは標的部位に隣接して部位特異的組換え酵素認識配列(loxP)に挟まれたポジティブ選択マーカー遺伝子(Hyg)が含まれており、外側のプラスミド骨格中にはネガティブ選択マーカー遺伝子(TK)が含まれている。CRISPR/Cas9により細胞の標的DNAを切断し、ドナーDNAが組み込まれた細胞をハイグロマイシンおよびガンシクロビルにより選択する(第1段階)。その後、部位特異的組換え酵素Creを作用させてポジティブ選択マーカー遺伝子(Hyg)を取り除く(第2段階)。このように二段階の選択が必要なことに加え、loxPの配列は最終的に取り除くことはできない。FIG. 7 is a diagram showing the outline of a conventional genome editing technique. The donor DNA contains a positive selection marker gene (Hyg) flanked by site-specific recombinase recognition sequences (loxP) adjacent to the target site, and a negative selection marker gene (TK )It is included. The target DNA of the cells is cleaved by CRISPR / Cas9, and the cells into which the donor DNA has been integrated are selected by hygromycin and ganciclovir (first step). Thereafter, the positive selectable marker gene (Hyg) is removed by the action of the site-specific recombination enzyme Cre (second stage). In addition to the need for a two-step selection, the loxP sequence cannot be finally removed. 本発明のゲノム編集技術の骨子を示す図である。マイナス鎖RNAウイルスベクターにはガイドRNAの遺伝子は搭載されず、ヌクレアーゼ蛋白質の遺伝子だけが搭載される。複製能欠失型のウイルスベクターの場合、感染性ウイルスが細胞外に放出されることはない(図中のAの太いバー)。ガイドRNAの非存在下で発現したヌクレアーゼ蛋白質は核に大量に蓄積する(図中のAのハサミ)。その後、ドナーDNAとガイドRNAを細胞に導入すると、ヌクレアーゼが機能を発揮し高頻度で組み換えが生じるため、薬剤選択の必要はなく、一段階で目的の遺伝子改変体を取得することも可能である(図中のB)。It is a figure showing the outline of the genome editing technology of the present invention. The minus-strand RNA virus vector does not carry the guide RNA gene, but carries only the nuclease protein gene. In the case of a replication-defective virus vector, the infectious virus is not released extracellularly (thick bar A in the figure). The nuclease protein expressed in the absence of guide RNA accumulates in the nucleus in large amounts (scissors A in the figure). Then, when the donor DNA and guide RNA are introduced into cells, the nuclease functions and recombination occurs at high frequency, so there is no need to select a drug, and it is possible to obtain the desired genetically modified product in one step (B in the figure). 本発明のゲノム編集技術による高頻度遺伝子改変(復帰)の実証実験を示す図である。ドナーDNAにHPRT遺伝子断片を用い、HPRT細胞を標的細胞として用いた。Cas9遺伝子を搭載する温度感受性SeVベクターを細胞に感染させ、許容温度(35℃)で培養してCas9を強発現させる。その後、ガイドRNA(tracrRNA, crRNA)およびドナーDNAを導入し、非許容温度(37℃)で培養する。細胞のゲノムDNAの標的切断によって誘導される遺伝子改変(復帰)反応が高頻度で生じ、限られたコロニーの解析で目的の細胞を得る。It is a figure which shows the demonstration experiment of high frequency gene modification (reversion) by the genome editing technique of this invention. HPRT gene fragments were used as donor DNA, and HPRT - cells were used as target cells. Cells are infected with a temperature-sensitive SeV vector carrying the Cas9 gene, and cultured at a permissive temperature (35 ° C.) to strongly express Cas9. Thereafter, guide RNA (tracrRNA, crRNA) and donor DNA are introduced and cultured at a non-permissive temperature (37 ° C.). Gene modification (reversion) reaction induced by targeted cleavage of the genomic DNA of the cell occurs at a high frequency, and the target cell is obtained by analyzing a limited number of colonies. SeV-Cas9上清サンプルによる遺伝子復帰クローンの出現頻度などを示す図である。Cas9とガイドRNA(sgRNA)をプラスミドから発現させる従来の方法と比べ、Cas9発現SeVを用いた本発明の方法では、生細胞に対するHAT耐性細胞(HPRT細胞)の出現頻度は著しく上昇した(パネルA)。It is a figure which shows the appearance frequency etc. of the gene reversion clone by SeV-Cas9 supernatant sample. Compared with the conventional method of expressing Cas9 and a guide RNA (sgRNA) from a plasmid, the frequency of appearance of HAT-resistant cells (HPRT + cells) in living cells was significantly increased in the method of the present invention using Cas9-expressing SeV (panel). A). HAT耐性コロニーにおける標的領域の構造の確認を示す図である。得られたHAT耐性コロニーにおける標的領域をPCRで増幅したところ、本発明の方法では、全クローンで期待される長さの増幅断片が得られたものの、プラスミドを用いる従来の方法では、17クローン中2クローンにおいて、期待されるよりも長い断片となっていることが観察された(パネルC)。It is a figure which shows confirmation of the structure of the target region in HAT resistant colonies. When the target region in the obtained HAT-resistant colony was amplified by PCR, the amplified fragment of the expected length was obtained in all the clones in the method of the present invention. Two clones were observed to be longer than expected (panel C). 得られたHAT耐性クローンの標的領域を解析した結果を示す。従来の方法では、実験1(Exp.1)においては17クローン中4クローンで標的配列DNAの残存の付随、2クローンで意図しない配列の隣接挿入、実験2(Exp.2)では12クローン中6クローンで標的配列DNAの残存の付随が見られたのに対し、本発明の方法ではそのようなクローンは一つも観察されなかった(パネルD)。The result of having analyzed the target region of the obtained HAT resistant clone is shown. According to the conventional method, in Experiment 1 (Exp. 1), 4 out of 17 clones were accompanied by the residual of the target sequence DNA, 2 clones inserted adjacent to the unintended sequence, and in Experiment 2 (Exp. 2), 6 out of 12 clones While clones were associated with the residual target sequence DNA, no such clones were observed with the method of the present invention (Panel D). SeV-Cas9精製サンプルによる遺伝子復帰クローンの出現頻度などを示す図である。SeV-Cas9上清サンプルを精製サンプルに変更することでCell viabilityが改善された。Cas9とガイドRNA(sgRNA)をプラスミドから発現させる従来の方法と比べ、Cas9発現SeVを用いた本発明の方法では、生細胞に対するHAT耐性細胞(HPRT細胞)の出現頻度が著しく上昇した。It is a figure which shows the appearance frequency etc. of the gene reversion clone by SeV-Cas9 refinement | purification sample. Cell viability was improved by changing the SeV-Cas9 supernatant sample to a purified sample. Compared with the conventional method of expressing Cas9 and a guide RNA (sgRNA) from a plasmid, the frequency of appearance of HAT-resistant cells (HPRT + cells) in living cells was significantly increased in the method of the present invention using Cas9-expressing SeV. SeV-Cas9精製サンプルによる遺伝子破壊クローンの出現頻度などを示す図である。Cas9とガイドRNA(sgRNA)をプラスミドから発現させる従来の方法と比べ、Cas9発現SeVを用いた本発明の方法では、生細胞に対する6チオグアニン耐性細胞(HPRT-細胞)の出現頻度が有意に上昇した。FIG. 2 is a diagram showing the frequency of appearance of gene-disrupted clones by a purified SeV-Cas9 sample and the like. Compared with the conventional method of expressing Cas9 and guide RNA (sgRNA) from a plasmid, the frequency of 6-thioguanine-resistant cells (HPRT - cells) in living cells was significantly increased in the method of the present invention using Cas9-expressing SeV. . 標的配列が異なる第2評価細胞による、SeV-Cas9精製サンプルによる遺伝子復帰クローンの出現頻度などを示す図である。Cas9とガイドRNA(sgRNA)をプラスミドから発現させる従来の方法と比べ、Cas9発現SeVを用いた本発明の方法では、生細胞に対するHAT耐性細胞(HPRT細胞)の出現頻度が著しく上昇した。FIG. 10 is a diagram showing the frequency of appearance of gene-reverted clones by a purified SeV-Cas9 sample in second evaluation cells having different target sequences. Compared with the conventional method of expressing Cas9 and a guide RNA (sgRNA) from a plasmid, the frequency of appearance of HAT-resistant cells (HPRT + cells) in living cells was significantly increased in the method of the present invention using Cas9-expressing SeV. 第2評価細胞から得られたHAT耐性クローンの標的領域を解析した結果を示す。従来の方法でも本発明の方法でも、標的配列DNAの残存の付随や意図しない配列の隣接挿入は観察されなかった。The result of having analyzed the target area | region of the HAT resistant clone obtained from the 2nd evaluation cell is shown. Neither the conventional method nor the method of the present invention observed any accompanying or unintended adjacent insertion of the target sequence DNA.
 本発明は、マイナス鎖RNAウイルスベクターを用いた新たな遺伝子改変方法を提供する。当該方法は、マイナス鎖RNAウイルスベクターを用い、ガイドRNAを発現させることなく(あるいは一部のガイドRNAは発現させるが、ヌクレアーゼの活性の発現に必要なガイドRNAのすべてを発現させることなく)、ガイドRNA依存性DNAヌクレアーゼを当該ベクターから発現させることを特徴とする。不足しているガイドRNA(該ヌクレアーゼの活性の発現のために欠けているガイドRNA)は、マイナス鎖RNAウイルスベクターから当該ヌクレアーゼが発現した後で、別途、細胞に供給される。すなわち、例えば別途細胞に導入されるか、または例えばマイナス鎖RNAウイルスベクターよりも迅速に発現できるベクターによって転写される。より具体的には、本発明の遺伝子改変方法は例えば以下の方法が例示できる。 (4) The present invention provides a new gene modification method using a minus-strand RNA virus vector. The method uses a minus-strand RNA virus vector and does not express a guide RNA (or expresses some guide RNAs, but does not express all guide RNAs necessary for expression of nuclease activity). A guide RNA-dependent DNA nuclease is expressed from the vector. The deficient guide RNA (the guide RNA missing for the expression of the activity of the nuclease) is separately supplied to cells after the expression of the nuclease from the minus-strand RNA virus vector. That is, for example, they are separately introduced into cells or transcribed by a vector that can express more rapidly than, for example, a minus-strand RNA viral vector. More specifically, examples of the gene modification method of the present invention include the following methods.
 なお本発明において遺伝子改変は所望の遺伝子編集を包含し、例えば遺伝子変換、遺伝子修復、遺伝子置換、遺伝子復帰、および遺伝子破壊等を包含する。 In the present invention, the genetic modification includes desired gene editing, and includes, for example, gene conversion, gene repair, gene replacement, gene reversion, and gene disruption.
 ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変方法であって、
(a)ガイドRNA依存性DNAヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしないマイナス鎖RNAウイルスベクターを細胞に導入し、該ベクターを発現させ、該少なくとも一つのガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
(b)工程(a)の後、不足するガイドRNAを細胞に供給する工程、を含む方法。
A genetic modification method using a guide RNA-dependent DNA nuclease,
(A) carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nuclease into cells, and expressing the vector; Accumulating the nuclease in a cell in the absence of the at least one guide RNA;
(B) a step of, after step (a), supplying a deficient guide RNA to the cells.
 なお、工程(b)の後に、
(c)遺伝子が改変された細胞を回収する工程、をさらに含んでもよい。
After the step (b),
(C) recovering a cell in which the gene has been modified.
 マイナス鎖RNAウイルスベクターは広範な細胞に対して高い感染性を有し、搭載遺伝子を極めて高いレベルで発現する能力を持つものの、感染から高発現に至るまでには一定の時間を要する。そのため、ベクターを感染後は一定期間培養することが必要であり、その間、搭載遺伝子の発現産物は徐々に細胞に蓄積して行くことになるため、それが活性を持つ酵素である場合は、その間、細胞中で作用し続けることになる。本発明においては、あえてマイナス鎖RNAウイルスベクターからヌクレアーゼだけ(あるいはヌクレアーゼと一部のガイドRNAだけ)を発現させ、ヌクレアーゼの活性の発現に必要なすべてのガイドRNAを発現させないようにすることにより、ベクターを細胞に導入して搭載されているヌクレアーゼ遺伝子が発現して細胞に蓄積する間、活性型のヌクレアーゼが細胞に作用することができないように設計されている点に特徴がある。 Negative-strand RNA virus vectors are highly infectious to a wide range of cells and have the ability to express on-board genes at extremely high levels, but it takes a certain amount of time from infection to high expression. Therefore, it is necessary to culture the vector for a certain period after infection, and during that time, the expression product of the loaded gene gradually accumulates in the cell. , Will continue to work in the cell. In the present invention, by intentionally expressing only a nuclease (or only a nuclease and some guide RNA) from a minus-strand RNA virus vector, and preventing the expression of all guide RNAs necessary for the expression of nuclease activity, It is characterized in that it is designed so that active nuclease cannot act on the cell while the nuclease gene carried by introducing the vector into the cell is expressed and accumulated in the cell.
 ガイドRNA依存性DNAヌクレアーゼには、ガイドRNAが一つしか必要のないものや、複数のガイドRNAが必要なものがある。例えば天然のCRISPR-Cas9系では、上述の通りcrRNAとtracrRNAという二つのRNAがヌクレアーゼと共に複合体を形成することによってヌクレアーゼ活性を発揮するため、そのどちらかがなければヌクレアーゼは機能を発揮できない。これに対してCpf1は、crRNAが標的サイトへのガイドRNAとして機能し、tracrRNAを必要としない。本発明のマイナス鎖RNAウイルスベクターは、コードしているガイドRNA依存性DNAヌクレアーゼの活性に必要なガイドRNAの少なくとも一つ(全部でもよい)をコードしないことにより、当該ベクターが発現してもヌクレアーゼが細胞に作用することができない。例えば活性の発現にcrRNAとtracrRNAが必要なヌクレアーゼの場合、本発明のマイナス鎖RNAウイルスベクターは、crRNAまたはtracrRNAのいずれか、あるいはその両方をコードしていない。活性の発現に一つのガイドRNAしか必要としないヌクレアーゼの場合、本発明のマイナス鎖RNAウイルスベクターは、そのガイドRNAをコードしていない。なお本発明においてガイドRNA等の遺伝子を「コードする」とは、発現可能にコードしていることをいい、当該遺伝子を発現可能に搭載していることをいう。 Some guide RNA-dependent DNA nucleases require only one guide RNA, while others require multiple guide RNAs. For example, in the natural CRISPR-Cas9 system, as described above, two RNAs, crRNA and tracrRNA, form a complex with a nuclease, thereby exhibiting nuclease activity. Therefore, the nuclease cannot function without either of them. In contrast, Cpf1 does not require tracrRNA because the crRNA functions as a guide RNA to the target site. The minus-strand RNA virus vector of the present invention does not encode at least one (or all) of the guide RNAs required for the activity of the encoded guide RNA-dependent DNA nuclease. Cannot act on cells. For example, in the case of a nuclease that requires crRNA and tracrRNA for expression of the activity, the minus-strand RNA viral vector of the present invention does not encode either crRNA or tracrRNA, or both. In the case of nucleases that require only one guide RNA for the expression of the activity, the minus-strand RNA viral vector of the present invention does not encode the guide RNA. In the present invention, "encoding" a gene such as a guide RNA means that the gene is expressed so that it can be expressed, and that the gene is mounted so that it can be expressed.
 本発明において用いられるマイナス鎖RNAウイルスベクターとしては特に制限はない。例えば、パラミクソウイルスベクターを好適に用いることができる。パラミクソウイルスとはパラミクソウイルス科(Paramyxoviridae)に属するウイルスまたはその誘導体を指す。パラミクソウイルス科はパラミクソウイルス亜科(Paramyxovirinae)(レスピロウイルス属(パラミクソウイルス属とも言う)、ルブラウイルス属、およびモービリウイルス属を含む)およびニューモウイルス亜科(Pneumovirinae)(ニューモウイルス属およびメタニューモウイルス属を含む)を含む。パラミクソウイルス科ウイルスに含まれるウイルスとして、具体的にはセンダイウイルス(Sendai virus)、ニューカッスル病ウイルス(Newcastle disease virus)、おたふくかぜウイルス(Mumps virus)、麻疹ウイルス(Measles virus)、RSウイルス(Respiratory syncytial virus)、牛疫ウイルス(rinderpest virus)、ジステンパーウイルス(distemper virus)、サルパラインフルエンザウイルス(SV5)、ヒトパラインフルエンザウイルス1, 2, 3型等が挙げられる。より具体的には、例えば Sendai virus (SeV)、human parainfluenza virus-1 (HPIV-1)、human parainfluenza virus-3 (HPIV-3)、phocine distemper virus (PDV)、canine distemper virus (CDV)、dolphin molbillivirus (DMV)、peste-des-petits-ruminants virus (PDPR)、measles virus (MeV)、rinderpest virus (RPV)、Hendra virus (Hendra)、Nipah virus (Nipah)、human parainfluenza virus-2 (HPIV-2)、simian parainfluenza virus 5 (SV5)、human parainfluenza virus-4a (HPIV-4a)、human parainfluenza virus-4b (HPIV-4b)、mumps virus (Mumps)、およびNewcastle disease virus (NDV) などが含まれる。ラブドウイルスとしては、ラブドウイルス科(Rhabdoviridae)の水疱性口内炎ウイルス(Vesicular stomatitis virus)、狂犬病ウイルス(Rabies virus)等が含まれる。 マ イ ナ ス The minus strand RNA virus vector used in the present invention is not particularly limited. For example, a paramyxovirus vector can be suitably used. Paramyxovirus refers to a virus belonging to Paramyxoviridae (Paramyxoviridae) or a derivative thereof. The Paramyxoviridae family includes Paramyxovirinae (including the genus Respirovirus (also referred to as Paramyxovirus), the genus Rubravirus, and the genus Mobilivirus) and the subfamily Pneumovirinae (Pneumovirinae) Genus and metapneumovirus genus). As the viruses included in the Paramyxoviridae virus, specifically, Sendai virus (Sendai virus), Newcastle disease virus (Newcastle disease virus), mumps virus (Mumps virus), measles virus (Measles virus), and RS virus (Respiratory syncytial virus) virus, rinderpest virus, distemper virus, simian parainfluenza virus (SV5), human parainfluenza virus 1, 2, 3 and the like. More specifically, for example, Sendai virus (SeV), human parainfluenza virus-1 (HPIV-1), human parainfluenza virus-3 (HPIV-3), phocine distemper virus (PDV), canine distemper virus (CDV), dolphin molbillivirus (DMV), peste-des-petits-ruminants virus (PDPR), measures virus (MeV), rinderpest virus (RPV), Hendra virus (Hendra), Nipah virus (Nipah), human parainfluenza virus-2 (HPIV-2) ), Simian parainfluenza virus 5 (SV5), human parainfluenza virus 4a (HPIV-4a), human parainfluenza virus 4b (HPIV-4b), mumps virus (Mumps), and Newcastle disease virus (NDV). Rhabdoviruses include vesicular stomatitis virus (Resbbviridae), rabies virus (Rabies virus), and the like.
 なおマイナス鎖RNAウイルスのゲノムRNAはマイナス鎖(ネガティブ鎖)であり、蛋白質やRNAをコードする場合は、ゲノムRNA上にアンチセンス配列としてコードされている。本発明においては、このような場合も蛋白質やRNAを「コードしている」と称す。また、蛋白質やRNAがマイナス鎖RNAゲノムにアンチセンス配列としてコードされているとき、当該蛋白質や当該RNAの遺伝子が当該ゲノムに搭載されているとも称す。マイナス鎖RNAゲノムを鋳型としてプラス鎖(ポジティブ鎖)RNAゲノム(アンチゲノムとも言う)が複製される他、マイナス鎖RNAゲノムを鋳型として転写が起こり、センス鎖のRNAが生成される。本発明においては、マイナス鎖RNAゲノムおよびプラス鎖RNAゲノムを「ゲノム」と総称する。 The genomic RNA of a minus-strand RNA virus is a minus strand (negative strand). When encoding a protein or RNA, it is encoded as an antisense sequence on the genomic RNA. In the present invention, such a case is also referred to as “encoding” a protein or RNA. Further, when a protein or RNA is encoded as an antisense sequence in a minus-strand RNA genome, it is also referred to as a gene of the protein or RNA being carried on the genome. The plus-strand (positive-strand) RNA genome (also called antigenome) is replicated using the minus-strand RNA genome as a template, and transcription occurs using the minus-strand RNA genome as a template to generate sense-strand RNA. In the present invention, the minus-strand RNA genome and the plus-strand RNA genome are collectively referred to as “genome”.
 本発明のウイルスベクターは、好ましくはパラミクソウイルス亜科(レスピロウイルス属、ルブラウイルス属、およびモービリウイルス属を含む)に属するウイルスまたはその誘導体であり、より好ましくはレスピロウイルス属(genus Respirovirus)(パラミクソウイルス属(Paramyxovirus)とも言う)に属するウイルスまたはその誘導体である。本発明を適用可能なレスピロウイルス属ウイルスとしては、例えばヒトパラインフルエンザウイルス1型(HPIV-1)、ヒトパラインフルエンザウイルス3型(HPIV-3)、ウシパラインフルエンザウイルス3型(BPIV-3)、センダイウイルス(Sendai virus; マウスパラインフルエンザウイルス1型とも呼ばれる)、麻疹ウイルス、サルパラインフルエンザウイルス(SV5)、およびサルパラインフルエンザウイルス10型(SPIV-10)などが含まれる。本発明においてパラミクソウイルスは、最も好ましくはセンダイウイルスである。 The viral vector of the present invention is preferably a virus belonging to the subfamily Paramyxoviridae (including the genera Respirovirus, Rubravirus, and Morbillivirus) or a derivative thereof, and more preferably the gene of Respirovirus (genus). Respirovirus (also referred to as Paramyxovirus) or a derivative thereof. Examples of respiroviruses to which the present invention can be applied include human parainfluenza virus type 1 (HPIV-1), human parainfluenza virus type 3 (HPIV-3), and bovine parainfluenza virus type 3 (BPIV-3). , Sendai virus (also called mouse parainfluenza virus type 1), measles virus, simian parainfluenza virus (SV5), and simian parainfluenza virus type 10 (SPIV-10). In the present invention, the paramyxovirus is most preferably a Sendai virus.
 パラミクソウイルスは、一般に、エンベロープの内部にRNAとタンパク質からなる複合体(リボヌクレオプロテイン; RNP)を含んでいる。RNPに含まれるRNAはマイナス鎖RNAウイルスのゲノムである(-)鎖(ネガティブ鎖)の一本鎖RNAであり、この一本鎖RNAが、NPタンパク質、Pタンパク質、およびLタンパク質と結合し、RNPを形成している。このRNPに含まれるRNAがウイルスゲノムの転写および複製のための鋳型となる(Lamb, R.A., and D. Kolakofsky, 1996, Paramyxoviridae: The viruses and their replication. pp.1177-1204. In Fields Virology, 3rd edn. Fields, B. N., D. M. Knipe, and P. M. Howley et al. (ed.), Raven Press, New York, N. Y.)。 Paramyxovirus generally contains a complex composed of RNA and protein (ribonucleoprotein; RNP) inside the envelope. The RNA contained in the RNP is a single-stranded (-) strand (negative strand), which is the genome of the negative-strand RNA virus, and this single-stranded RNA binds to the NP protein, P protein, and L protein, Forming RNP. The RNA contained in this RNP serves as a template for transcription and replication of the viral genome (Lamb, RA, and D. Kolakofsky, 1996, myParamyxoviridae: The viruses and their replication. Pp.1177-1204. In Fields Virology, 3rd edn. Fields, B. N., D. M. Knipe, and P. M. Howley et al. (ed.), Raven Press, New York, N. Y.).
 例えばセンダイウイルスの各遺伝子の塩基配列のデータベースのアクセッション番号は、NP遺伝子については M29343、M30202, M30203, M30204, M51331, M55565, M69046, X17218、P遺伝子については M30202, M30203, M30204, M55565, M69046, X00583, X17007, X17008、M遺伝子については D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056、F遺伝子については D00152, D11446, D17334, D17335, M30202, M30203, M30204, M69046, X00152, X02131、HN遺伝子については D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131、L遺伝子については D00053, M30202, M30203, M30204, M69040, X00587, X58886を参照のこと。またその他のウイルスがコードするウイルス遺伝子を例示すれば、NP遺伝子(N遺伝子とも言う)については、CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025; Mapuera, X85128; Mumps, D86172; MV, K01711; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; および Tupaia, AF079780、P遺伝子については、CDV, X51869; DMV, Z47758; HPIV-l, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; Mumps, D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311; SeV, M30202; SV5, AF052755; および Tupaia, AF079780、C遺伝子については CDV, AF014953; DMV, Z47758; HPIV-1. M74081; HPIV-3, D00047; MV, ABO16162; RPV, X68311; SeV, AB005796; および Tupaia, AF079780、M遺伝子については CDV, M12669; DMV Z30087; HPIV-1, S38067; HPIV-2, M62734; HPIV-3, D00130; HPIV-4a, D10241; HPIV-4b, D10242; Mumps, D86171; MV, AB012948; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956; および SV5, M32248、F遺伝子については CDV, M21849; DMV, AJ224704; HPN-1. M22347; HPIV-2, M60182; HPIV-3. X05303, HPIV-4a, D49821; HPIV-4b, D49822; Mumps, D86169; MV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ224706; RPV, M21514; SeV, D17334; および SV5, AB021962、HN(HまたはG)遺伝子については CDV, AF112189; DMV, AJ224705; HPIV-1, U709498; HPIV-2. D000865; HPIV-3, AB012132; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps, X99040; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132934; SeV, U06433; および SV-5, S76876 が例示できる。但し、各ウイルスは複数の株が知られており、株の違いにより上記に例示した以外の配列からなる遺伝子も存在する。これらのいずれかの遺伝子に由来するウイルス遺伝子を持つセンダイウイルスベクターは、本発明のベクターとして有用である。例えば本発明のセンダイウイルスベクターは、上記のいずれかのウイルス遺伝子のコード配列と、90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、または99%以上の同一性を持つ塩基配列を含む。また、本発明のセンダイウイルスベクターは、例えば上記のいずれかのウイルス遺伝子のコード配列がコードするアミノ酸配列と、90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、または99%以上の同一性を持つアミノ酸配列をコードする塩基配列を含む。また、本発明のセンダイウイルスベクターは、例えば上記のいずれかのウイルス遺伝子のコード配列がコードするアミノ酸配列において、10個以内、好ましくは9個以内、8個以内、7個以内、6個以内、5個以内、4個以内、3個以内、2個以内、または1個のアミノ酸が置換、挿入、欠失、および/または付加されたアミノ酸配列をコードする塩基配列を含む。 For example, the accession number of the database of the nucleotide sequence of each gene of Sendai virus is NPM29343, 30M30202, M30203, 30M30204, M51331, M55565, M69046, X17218 for the NP gene, M30202, M30203, M30204, M55565, M69046 for the P gene. , X00583, X17007, X17008, M gene D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056, and F gene D00152, D11446, D17334, D17335, M30202,30204, M30202,30204 , X02131, HN gene, D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131, and L gene D00053, M30202, M30203, M30204, M69040, X00587, X58886. As another example of the viral genes encoded by other viruses, for the NP gene (also called N gene), CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025 ; Mapuera, X85128; sMumps, D86172; MV, K01711; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; and Tupaia, ; DMV, Z47758; HPIV-l, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; -4Mumps, D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311 , 30M30202; SV5, AF052755; and Tupaia, 0AF079780, for the C gene CDV, AF014953; DMV, Z47758; HPIV-1. M74081; HPIV-3, D00047; MV, ABO16162; RPV, X68311; SeV, AB 0, AF079780, M gene 遺 伝 子 CDV, M12669; DMV Z30087; HPIV-1, S38067; HPIV-2, M62734; HPIV-3, D00130; HPIV-4a, D10241; HPIV-4b, D10242; Mumps, D86171; MV, 012AB012948; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956; and SV5, M32248; F gene CDV, M21849; DMV, NAJ224704; HPIV-2, M60182; HPIV-3. X05303, HPIV-4a, D49821; HPIV-4b, D49822; Mumps, 86D86169; MV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ224706; RPV, V215 , 17D17334; and SV5, AB021962, HN (H or G) gene CDV, AF112189; DMV, JAJ224705; HPIV-1, HP709498; HPIV-2. D000865; HPIV-3, AB012132; HPIV-4A, M34033; HPIV -4B, AB006954; Mumps, X99040; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132934; SeV, U06433; and SV-5, S76876. However, a plurality of strains are known for each virus, and there are also genes having sequences other than those exemplified above depending on the strain. Sendai virus vectors having a viral gene derived from any of these genes are useful as the vector of the present invention. For example, the Sendai virus vector of the present invention has 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identity with the coding sequence of any of the above viral genes. Includes base sequences with In addition, the Sendai virus vector of the present invention comprises, for example, an amino acid sequence encoded by the coding sequence of any of the above-mentioned virus genes and 90% or more, preferably 95% or more, 96% or more, 97% or more, 98% or more, Or a nucleotide sequence encoding an amino acid sequence having 99% or more identity. Further, the Sendai virus vector of the present invention, for example, in the amino acid sequence encoded by the coding sequence of any of the above viral genes, within 10, preferably within 9, within 8, within 7, within 6, It includes a nucleotide sequence encoding an amino acid sequence in which no more than 5, no more than 4, no more than 3, no more than 2, or 1 amino acid has been substituted, inserted, deleted, and / or added.
 なお本明細書に記載した塩基配列およびアミノ酸配列などのデータベースアクセッション番号が参照された配列は、例えば本願の出願日または優先日における配列を参照するものであって、本願の出願日および優先日のいずれ時点における配列としても特定することができ、好ましくは本願の出願日における配列として特定される。各時点での配列はデータベースのリビジョンヒストリーを参照することにより特定することができる。 The sequence referred to in the database accession number such as the base sequence and the amino acid sequence described in the present specification refers to, for example, the sequence on the filing date or priority date of the present application, and the filing date and priority date of the present application. Can be specified as a sequence at any point in time, and is preferably specified as a sequence on the filing date of the present application. The sequence at each time point can be specified by referring to the revision history of the database.
 なお本発明のマイナス鎖RNAウイルスベクターは、ウイルスが本来持つエンベロープ蛋白質とは異なる蛋白質をエンベロープに含むウイルスを使用してもよい。例えば、ウイルス製造の際に、所望の外来性エンベロープ蛋白質をウイルス産生細胞で発現させることにより、これを含むウイルスを製造することができる。このような蛋白質に特に制限はなく、哺乳動物細胞への感染能を付与する所望の接着因子、リガンド、受容体等の蛋白質を用いることができる。具体的には、例えば水疱性口内炎ウイルス(vesicular stomatitis virus; VSV)のG蛋白質(VSV-G)を挙げることができる。VSV-G蛋白質は、任意のVSV株に由来するものであってよく、例えば Indiana血清型株(J. Virology 39: 519-528 (1981))由来のVSV-G蛋白を用いることができるが、これに限定されない。例えばセンダイウイルスベクターは、他のウイルス由来のエンベロープ蛋白質を任意に組み合わせて含むことができる。 As the minus-strand RNA virus vector of the present invention, a virus whose envelope contains a protein different from the original envelope protein of the virus may be used. For example, when producing a virus, a virus containing the same can be produced by expressing a desired exogenous envelope protein in a virus-producing cell. Such proteins are not particularly limited, and proteins such as desired adhesive factors, ligands, and receptors that impart infectivity to mammalian cells can be used. Specific examples include the G protein (VSV-G) of vesicular stomatitis virus (VSV). The VSV-G protein may be derived from any VSV strain. For example, VSV-G protein derived from Indiana serotype strain (J. Virology 39: 519-528 (1981)) can be used. It is not limited to this. For example, a Sendai virus vector can contain any combination of envelope proteins from other viruses.
 また本発明において用いられるマイナス鎖RNAウイルスベクターは誘導体であってもよく、誘導体には、ウイルスによる遺伝子導入能を損なわないように、ウイルス遺伝子が改変されたウイルス、および化学修飾されたウイルス等が含まれる。 The minus-strand RNA virus vector used in the present invention may be a derivative, and the derivative may be a virus whose virus gene has been modified, a virus which has been chemically modified, or the like so as not to impair the gene transfer ability of the virus. included.
 またマイナス鎖RNAウイルスは、天然株、野生株、変異株、ラボ継代株、および人為的に構築された株などに由来してもよい。例えばセンダイウイルスであればZ株が挙げられるが、それに限定されるものではない(Medical Journal of Osaka University Vol.6, No.1, March 1955 p1-15)。例えば、野生型ウイルスが持ついずれかの遺伝子に変異や欠損があるものであってよい。例えば、ウイルスのエンベロープ蛋白質または外殻蛋白質をコードする少なくとも1つの遺伝子に欠損あるいはその発現を抑制するストップコドン変異などの変異を有する伝播能欠失型ウイルスを好適に用いることができる。このようなエンベロープ蛋白質を発現しないウイルスは、例えば感染細胞においてはゲノムを複製することはできるが、感染性ウイルス粒子を形成できないウイルスである。このような伝搬能欠損型のウイルスは、特に安全性の高いベクターとして好適である。例えば、FまたはHNのいずれかのエンベロープ蛋白質(スパイク蛋白質)の遺伝子、あるいはFおよびHNの遺伝子をゲノムにコードしないウイルスを用いることができる (WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。少なくともゲノム複製に必要な蛋白質(例えば N、P、およびL蛋白質)をゲノムRNAにコードしていれば、ウイルスは感染細胞においてゲノムを増幅することができる。エンベロープ蛋白質欠損型でありかつ感染性を持つウイルス粒子を製造するには、例えば、欠損している遺伝子産物またはそれを相補できる蛋白質をウイルス産生細胞において外来的に供給する(WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。一方、欠損するウイルス蛋白質を全く相補しないことによって、非感染性ウイルス粒子を回収することができる(WO00/70070)。 (4) The negative-strand RNA virus may be derived from a natural strain, a wild strain, a mutant strain, a laboratory passage strain, an artificially constructed strain, or the like. For example, the Sendai virus includes Z strain, but is not limited thereto (Medical \ Journal \ of \ Osaka \ University \ Vol.6, \ No.1, \ March \ 1955 \ p1-15). For example, any of the genes of the wild-type virus may be mutated or defective. For example, a transmissibility-defective virus having a mutation such as a stop codon mutation that is deficient or suppresses the expression of at least one gene encoding the envelope protein or coat protein of the virus can be suitably used. Viruses that do not express such envelope proteins are, for example, viruses that can replicate the genome in infected cells but cannot form infectious virions. Such a transmissibility-defective virus is particularly suitable as a highly safe vector. For example, a gene that does not encode the F or HN envelope protein (spike protein) gene or the F and HN genes in the genome can be used (WO00 / 70055 and WO00 / 70070; Li, H.-O). . Et al., J. Virol. 74 (14) 6564-6569 (2000)). The virus can amplify the genome in infected cells if it encodes at least proteins necessary for genome replication (eg, ΔN, P, and L proteins) in genomic RNA. To produce an infectious virus particle that is deficient in an envelope protein, for example, a defective gene product or a protein that can complement it is supplied exogenously in a virus-producing cell (WO00 / 70055} and {WO00 / 70070; Li, H.-O. et al., J. Virol. 74 (14) 6564-6569 (2000)). On the other hand, non-infectious virus particles can be recovered by not complementing the defective viral protein at all (WO00 / 70070).
 また、変異型のウイルス蛋白質遺伝子を搭載するウイルスベクターを用いることも好ましい。例えば、エンベロープ蛋白質や外殻蛋白質において弱毒化変異や温度感受性変異を含む多数の変異が知られている。これらの変異蛋白質遺伝子を有するウイルスを本発明において好適に用いることができる。本発明においては、望ましくは細胞傷害性を減弱したベクターを用い得る。細胞傷害性は、例えば細胞からの乳酸デヒドロゲナーゼ(LDH)の放出を定量することにより測定することができる。例えば細胞傷害性が野生型に比べ有意に減弱化したベクターを用いることができる。細胞傷害性の減弱化の程度は、例えば、ヒト由来 HeLa細胞(ATCC CCL-2)またはサル由来 CV-1細胞(ATCC CCL 70)にMOI(感染価)3で感染させて3日間培養した培養液中のLDH放出量が野生型に比べ有意に低下したもの、例えば20%以上、25%以上、30%以上、35%以上、40%以上、または50%以上低下したベクターを用いることができる。また細胞傷害性を低下させる変異には、温度感受性変異も含まれる。 It is also preferable to use a virus vector carrying a mutant virus protein gene. For example, a number of mutations are known in envelope proteins and coat proteins, including attenuating mutations and temperature-sensitive mutations. Viruses having these mutant protein genes can be suitably used in the present invention. In the present invention, a vector having reduced cytotoxicity may be used. Cytotoxicity can be measured, for example, by quantifying the release of lactate dehydrogenase (LDH) from the cells. For example, a vector whose cytotoxicity is significantly reduced as compared with the wild type can be used. The degree of attenuated cytotoxicity can be determined, for example, by culturing human HeLa cells (ATCC CCL-2) or monkey CV-1 cells (ATCC CCL 70) at an MOI of 3 and incubating for 3 days. A vector in which the amount of released LDH in the liquid is significantly reduced as compared with the wild type, for example, a vector in which the amount of released LDH is reduced by 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 50% or more can be used. . Mutations that reduce cytotoxicity also include temperature-sensitive mutations.
 本発明において用いられるマイナス鎖RNAウイルスベクターに特に制限はないが、好ましくは少なくとも1つ、より好ましくは少なくとも2、3、4、5、またはそれ以上のウイルス遺伝子に欠失または変異を有していてよい。欠失と変異は、各遺伝子に対して任意に組み合わせて導入してよい。ここで変異とは、機能低下型の変異または温度感受性変異であってよく、好ましくは、少なくとも37℃において、野生型または当該変異を有さないウイルスに比べ、ウイルスの粒子形成能(非伝播型ウイルスにおいては非感染性ウイルス様粒子(Nontransmissible virus-like particle formation; NTVLP)形成能 (Inoue et al., J. Virol. 77:3238-3246, 2003))、増殖速度および/または搭載するいずれかの遺伝子の発現レベルを好ましくは1/2以下、より好ましくは1/3以下、より好ましくは1/5以下、より好ましくは1/10以下、より好ましくは1/20以下に低下させる変異である。例えば本発明において好適に用いられるマイナス鎖RNAウイルスベクターは、少なくとも2つのウイルス遺伝子が、欠失または変異している。このようなウイルスには、少なくとも2つのウイルス遺伝子が欠失しているもの、少なくとも2つのウイルス遺伝子が変異しているもの、少なくとも1つのウイルス遺伝子が変異しており少なくとも1つのウイルス遺伝子が欠失しているものが含まれる。変異または欠失している少なくとも2つのウイルス遺伝子は、好ましくはエンベロープ構成蛋白質をコードする遺伝子である。例えばF遺伝子を欠失し、Mおよび/またはHN遺伝子をさらに欠失するか、Mおよび/またはHN遺伝子に変異(例えばNTVLP形成抑制型変異および/または温度感受性変異)をさらに有するベクターは、本発明において好適に用いられる。また、例えばF遺伝子を欠失し、MまたはHN遺伝子をさらに欠失し、残るMおよび/またはHN遺伝子に変異(例えばNTVLP形成抑制型変異および/または温度感受性変異)をさらに有するベクターも、本発明において好適に用いられる。本発明において用いられるベクターは、より好ましくは、少なくとも3つのウイルス遺伝子(好ましくはエンベロープ構成蛋白質をコードする少なくとも3つの遺伝子;F, HN, およびM)が、欠失または変異している。このようなウイルスベクターには、少なくとも3つの遺伝子が欠失しているもの、少なくとも3つの遺伝子が変異しているもの、少なくとも1つの遺伝子が変異しており少なくとも2つの遺伝子が欠失しているもの、少なくとも2つの遺伝子が変異しており少なくとも1つの遺伝子が欠失しているものが含まれる。より好ましい態様を挙げれば、例えばF遺伝子を欠失し、MおよびHN遺伝子をさらに欠失するか、MおよびHN遺伝子に変異(例えばNTVLP形成抑制型変異および/または温度感受性変異)をさらに有するベクターは、本発明において好適に用いられる。また例えばF遺伝子を欠失し、MあるいはHN遺伝子をさらに欠失し、残るMあるいはHN遺伝子に変異(例えばNTVLP形成抑制型変異および/または温度感受性変異)をさらに有するベクターは、本発明において好適に用いられる。このような変異型のウイルスは、公知の方法に従って作製することが可能である。 The minus-strand RNA viral vector used in the present invention is not particularly limited, but preferably has at least one, more preferably at least 2, 3, 4, 5, or more viral genes having a deletion or mutation. May be. Deletions and mutations may be introduced in any combination for each gene. Here, the mutation may be a function-lowering mutation or a temperature-sensitive mutation, and is preferably at least at 37 ° C. compared to a wild-type or a virus not having the mutation at a particle-forming ability (non-propagating type) of the virus. For viruses, non-transmissible virus-like particle formation (NTVLP) forming ability (Inoue et al., J. Virol. 77: 3238-3246, 2003), growth rate and / or loading Is preferably a mutation that reduces the expression level of the gene to 1/2 or less, more preferably 1/3 or less, more preferably 1/5 or less, more preferably 1/10 or less, more preferably 1/20 or less. . For example, a minus-strand RNA viral vector suitably used in the present invention has at least two viral genes deleted or mutated. Such viruses include those in which at least two viral genes have been deleted, those in which at least two viral genes have been mutated, and those in which at least one viral gene has been mutated and at least one viral gene has been deleted. Includes what you are doing. The at least two mutated or deleted viral genes are preferably genes encoding an envelope constituent protein. For example, a vector in which the F gene is deleted and the M and / or HN gene is further deleted, or the M and / or HN gene further has a mutation (eg, an NTVLP formation-suppressing mutation and / or a temperature-sensitive mutation) is It is suitably used in the invention. Further, a vector in which, for example, the F gene is deleted, the M or HN gene is further deleted, and the remaining M and / or HN gene further has a mutation (for example, an NTVLP formation-suppressing mutation and / or a temperature-sensitive mutation) is also disclosed in It is suitably used in the invention. More preferably, the vector used in the present invention has at least three viral genes (preferably, at least three genes encoding an envelope-constituting protein; F, {HN,}, and M) deleted or mutated. Such viral vectors have at least three gene deletions, at least three gene mutations, at least one gene mutation and at least two gene deletions And at least two genes are mutated and at least one gene is deleted. In a more preferred embodiment, for example, a vector in which the F gene is deleted, the M and HN genes are further deleted, or the M and HN genes further have a mutation (eg, an NTVLP formation-suppressing mutation and / or a temperature-sensitive mutation) Is suitably used in the present invention. Further, for example, a vector in which the F gene is deleted, the M or HN gene is further deleted, and the remaining M or HN gene further has a mutation (eg, an NTVLP formation inhibitory mutation and / or a temperature-sensitive mutation) is preferable in the present invention. Used for Such a mutant virus can be produced according to a known method.
 例えば、ウイルスの構造蛋白質(NP, M)やRNA合成酵素(P, L)において弱毒化変異や温度感受性変異を含む多数の変異が知られている。これらの変異蛋白質遺伝子を有するパラミクソウイルスベクターなどを本発明において目的に応じて好適に用いることができる。 For example, a large number of mutations, including attenuating mutations and temperature-sensitive mutations, in viral structural proteins (NP, ΔM) and RNA synthases (P, ΔL) are known. Paramyxovirus vectors having these mutant protein genes can be suitably used in the present invention according to the purpose.
 具体的には、例えばセンダイウイルスのM遺伝子の好ましい変異としては、M蛋白質における69位(G69)、116位(T116)、および183位(A183)からなる群より任意に選択される部位のアミノ酸置換が挙げられる(Inoue, M. et al., J.Virol. 2003, 77: 3238-3246)。センダイウイルスのM蛋白質に上記の3つの部位のいずれか、好ましくは任意の2部位の組み合わせ、さらに好ましくは3つの部位全てのアミノ酸が他のアミノ酸に置換された変異M蛋白質をコードするゲノムを有するウイルスは、本発明において好適に用いられる。 Specifically, for example, preferred mutations in the Sendai virus M gene include amino acids at sites arbitrarily selected from the group consisting of positions 69 (G69), 116 (T116), and 183 (A183) in the M protein. Substitution (Inoue, M. et al., J. Virol. 2003, 77: 3238-3246). The M protein of Sendai virus has a genome encoding a mutant M protein in which any of the above three sites, preferably a combination of any two sites, and more preferably all three sites are substituted with other amino acids Viruses are suitably used in the present invention.
 アミノ酸変異は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましく、例えばBLOSUM62マトリックス(Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919)の値が3以下、好ましくは2以下、より好ましくは1以下、より好ましくは0のアミノ酸に置換する。具体的には、センダイウイルスM蛋白質のG69、T116、およびA183を、それぞれGlu (E)、Ala (A)、およびSer (S) へ置換することができる。また、麻疹ウイルス温度感受性株 P253-505(Morikawa, Y. et al., Kitasato Arch. Exp. Med. 1991: 64; 15-30)のM蛋白質の変異と相同な変異を利用することも可能である。変異の導入は、例えばオリゴヌクレオチド等を用いて、公知の変異導入方法に従って実施すればよい。 Amino acid mutation is preferably substitution to another amino acid having a different side chain chemical property, for example, BLOSUM62 matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) is substituted with an amino acid having a value of 3 or less, preferably 2 or less, more preferably 1 or less, and more preferably 0. Specifically, G69, T116, and A183 of the Sendai virus M protein can be replaced with Glu (E), Ala (A), and Ser (S), respectively. It is also possible to use a mutation homologous to the M protein mutation of the measles virus temperature-sensitive strain 253P253-505 (Morikawa, Y. et al., Kitasato Arch. Exp. Med. 1991: 64; 15-30). is there. The mutation may be introduced, for example, using an oligonucleotide or the like according to a known mutation introduction method.
 また、HN遺伝子の好ましい変異としては、例えばセンダイウイルスのHN蛋白質の262位(A262)、264位(G264)、および461位(K461)からなる群より任意に選択される部位のアミノ酸置換が挙げられる(Inoue, M. et al., J.Virol. 2003, 77: 3238-3246)。3つの部位のいずれか1つ、好ましくは任意の2部位の組み合わせ、さらに好ましくは3つの部位全てのアミノ酸が他のアミノ酸に置換された変異HN蛋白質をコードするゲノムを有するウイルスは、本発明において好適に用いられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。好ましい一例を挙げれば、センダイウイルス HN蛋白質のA262、G264、およびK461を、それぞれThr (T)、Arg (R)、およびGly (G) へ置換する。また、例えば、ムンプスウイルスの温度感受性ワクチン株 Urabe AM9を参考に、HN蛋白質の464及び468番目のアミノ酸に変異導入することもできる(Wright, K. E. et al., Virus Res. 2000: 67; 49-57)。 Preferred mutations in the HN gene include, for example, amino acid substitution at a site arbitrarily selected from the group consisting of positions 262 (A262), 264 (G264), and 461 (K461) of the Sendai virus HN protein. (Inoue, M. et al., J.Virol. 2003, 77: 3238-3246). A virus having a genome coding for a mutant HN protein in which any one of the three sites, preferably a combination of any two sites, and more preferably all three amino acids are replaced with other amino acids, It is preferably used. As described above, substitution of an amino acid is preferably substitution with another amino acid having a different side chain chemical property. In a preferred example, Sendai virus {A262, G264, and K461 of the HN protein are replaced with Thr (T), Arg (R), and Gly (G)}, respectively. Further, for example, with reference to the mumps virus temperature-sensitive vaccine strain Urabe AM9, mutation can be introduced into the 464th and 468th amino acids of the HN protein (Wright, K. E. et al., Virus Res. 2000: 67 ; 49-57).
 またセンダイウイルスは、P遺伝子および/またはL遺伝子に変異を有していてもよい。このような変異としては、具体的には、SeV P蛋白質の86番目のGlu(E86)の変異、SeV P蛋白質の511番目のLeu(L511)の他のアミノ酸への置換が挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、86番目のアミノ酸のLysへの置換、511番目のアミノ酸のPheへの置換などが例示できる。またL蛋白質においては、SeV L蛋白質の1197番目のAsn(N1197)および/または1795番目のLys(K1795)の他のアミノ酸への置換が挙げられ、上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、1197番目のアミノ酸のSerへの置換、1795番目のアミノ酸のGluへの置換などが例示できる。P遺伝子およびL遺伝子の変異は、持続感染性、2次粒子放出の抑制、または細胞傷害性の抑制の効果を顕著に高めることができる。さらに、エンベロープ蛋白質遺伝子の変異および/または欠損を組み合わせることで、これらの効果を劇的に上昇させることができる。またL遺伝子は、SeV L蛋白質の1214番目のTyr(Y1214)および/または1602番目のMet(M1602)の他のアミノ酸への置換が挙げられ、上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、1214番目のアミノ酸のPheへの置換、1602番目のアミノ酸のLeuへの置換などが例示できる。以上に例示した変異は、任意に組み合わせることができる。 セ ン The Sendai virus may have a mutation in the P gene and / or L gene. Specific examples of such mutations include a mutation at Glu (E86) at position 86 of the SeV P protein and a substitution of another amino acid at Leu (L511) at position 511 of the SeV P protein. As described above, substitution of an amino acid is preferably substitution with another amino acid having a different side chain chemical property. Specific examples include substitution of the 86th amino acid with Lys, substitution of the 511th amino acid with Phe, and the like. In the L protein, substitution of Asn at position 1197 (N1197) and / or Lys at position 1795 (K1795) of the SeV L protein with other amino acids is mentioned. Is preferably substituted with another amino acid having a different chemical property. Specific examples include substitution of the amino acid at position 1197 with Ser, substitution of the amino acid at position 1795 with Glu, and the like. Mutations in the P and L genes can significantly enhance the effects of persistent infectivity, suppression of secondary particle release, or suppression of cytotoxicity. Furthermore, these effects can be dramatically increased by combining mutation and / or deletion of the envelope protein gene. Further, the L gene includes substitution of Tyr (Y1214) at position 1214 and / or Met (M1602) at position 1602 of the SeV L protein with other amino acids. Substitution with another amino acid having a different chemical property is preferred. Specific examples include substitution of the amino acid at position 1214 with Phe, substitution of the amino acid at position 1602 with Leu, and the like. The mutations exemplified above can be arbitrarily combined.
 例えば、SeV M蛋白質の少なくとも69位のG、116位のT、及び183位のA、SeV HN蛋白質の少なくとも262位のA,264位のG,及び461位のK、SeV P蛋白質の少なくとも511位のL、SeV L蛋白質の少なくとも1197位のN及び1795位のKが、それぞれ他のアミノ酸に置換されており、かつF遺伝子を欠損または欠失するセンダイウイルスベクター、ならびに、細胞傷害性がこれらと同様またはそれ以下、および/または37℃におけるNTVLP形成の抑制がこれらと同様またはそれ以上のF遺伝子欠損または欠失センダイウイルスベクターは、本発明において好適である。 For example, at least G at position 69, T at position 116, and A at position 183 of the SeVΔM protein, A at least position 262, G at position 264, and K at position 461 of the SeVΔHN protein, and at least 511 of the SeVΔP protein. At position L, at least N at position 1197 and K at position 1795 of the SeV L protein are each substituted with another amino acid, and the Sendai virus vector lacking or deleting the F gene, and F gene-deficient or deleted Sendai virus vectors having the same or lower and / or the same or higher NTVLP formation inhibition at 37 ° C. are suitable in the present invention.
 より具体的には、F遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含むセンダイウイルスベクターは、本発明において好適に用いることができる。本発明において、F遺伝子の欠失とこれらの変異との組み合わせを「TSΔF」と称す。 More specifically, the F gene is deleted, the M protein has G69E, T116A, and A183S mutations, the HN protein has A262T, G264R, and K461G mutations, the P protein has L511F mutation, and the L protein has N1197S and A Sendai virus vector containing a K1795E mutation in its genome can be suitably used in the present invention. In the present invention, a combination of the deletion of the F gene and these mutations is referred to as “TSΔF”.
 ガイドRNA依存性DNAヌクレアーゼの遺伝子を搭載するマイナス鎖RNAウイルスベクターの細胞への導入は、適宜周知の方法に従って実施すればよい。実施例ではMOI(multiplicity of infection)は3付近で実施されているが、MOIに特に制限はなく、適宜調整してよい。MOIは、例えば0.1~50、好ましくは0.5~30、1~20、2~10、または3~5程度であってよく、例えば1、2、3、4、5、6、7、8、9、または10であってよい。 The introduction of a minus-strand RNA virus vector carrying a guide RNA-dependent DNA nuclease gene into cells may be carried out according to a well-known method as appropriate. In the embodiment, the MOI (multiplicity of infection) is performed at around 3, but the MOI is not particularly limited and may be adjusted as appropriate. The MOI may be, for example, on the order of 0.1 to 50, preferably 0.5 to 30, 1 to 20, 2 to 10, or 3 to 5, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, , Or 10.
 ベクターを導入する標的細胞に特に制限はなく、マイナス鎖RNAウイルスが感染できる所望の細胞を用いることができる。細胞が由来する生物にも特に限定はなく、例えば所望の真核生物の細胞であってよい。より具体的には、標的細胞としては、例えば動物細胞または植物細胞、好ましくは動物細胞であり、より好ましくは哺乳動物細胞、例えば霊長類の細胞、具体的にはマウス、ラット、サル、およびヒトの細胞が挙げられる。また、細胞の種類にも特に制限はなく、所望の組織の細胞を用いることができ、分化した細胞や未分化な細胞、前駆細胞、始原細胞等にドナーポリヌクレオチドを導入してゲノム改変を行うことができる。また、胚性幹細胞、多能性幹細胞(例えば誘導多能性幹細胞 (iPS細胞))等に導入することもできる。 標的 There is no particular limitation on the target cells into which the vector is introduced, and any desired cells that can be infected with the minus-strand RNA virus can be used. The organism from which the cell is derived is not particularly limited, and may be, for example, a desired eukaryotic cell. More specifically, the target cell is, for example, an animal cell or a plant cell, preferably an animal cell, more preferably a mammalian cell, such as a primate cell, specifically, a mouse, rat, monkey, and human Cells. The type of cells is not particularly limited, and cells of a desired tissue can be used. The genome is modified by introducing a donor polynucleotide into differentiated cells, undifferentiated cells, precursor cells, progenitor cells, and the like. be able to. Further, it can also be introduced into embryonic stem cells, pluripotent stem cells (for example, induced pluripotent stem cells (iPS cells)) and the like.
 工程(a)においてベクターを導入した後、ベクターから発現されるヌクレアーゼが、少なくとも組み換えを引き起こすのに必要な量に達するまで培養される。実施例での期間は48時間であるが、その期間は適宜調整してよい。例えば12時間以上、24時間以上、36時間以上、または48時間以上である。また、例えば1日以上、2日以上、3日以上または4日以上発現させることができる。工程(a)の培養期間の上限に特に制限はないが、ヌクレアーゼが十分に蓄積すれば適宜次の工程に進んでよい。工程(a)の期間は、例えば10日以内、9日以内、8日以内、7日以内、6日以内、5日以内、4日以内、または3日以内である。 後 After introducing the vector in step (a), the nuclease expressed from the vector is cultured until it reaches at least the amount required to cause recombination. Although the period in the embodiment is 48 hours, the period may be appropriately adjusted. For example, 12 hours or more, 24 hours or more, 36 hours or more, or 48 hours or more. In addition, for example, expression can be carried out for 1 day or more, 2 days or more, 3 days or more, or 4 days or more. The upper limit of the culture period in step (a) is not particularly limited, but may proceed to the next step as long as nuclease is sufficiently accumulated. The period of step (a) is, for example, within 10 days, within 9 days, within 8 days, within 7 days, within 6 days, within 5 days, within 4 days, or within 3 days.
 工程(a)の次に、ヌクレアーゼが活性を発揮するために不足しているガイドRNAを細胞に供給する(工程(b))。当該ガイドRNAは、細胞に導入しても、ガイドRNAを発現するベクターを細胞に導入し、ベクターから発現させてもよい。 (4) After step (a), guide RNA that is insufficient for nuclease to exert its activity is supplied to the cells (step (b)). The guide RNA may be introduced into a cell, or a vector that expresses the guide RNA may be introduced into the cell and expressed from the vector.
 ガイドRNAをベクターから発現させる場合、ベクターとしては、工程(a)で用いたマイナス鎖RNAウイルスベクターよりも迅速に発現を開始できるベクターが用いられる。そのようなベクターとしては、例えばプラスミドベクターなどの非ウイルスベクターが挙げられるが、それに限定されるものではない。ベクターからRNAを転写させるためのプロモーターは特に制限はなく、Pol Iプロモーター、Pol IIプロモーター、Pol IIIプロモーター、バクテリオファージの所望のプロモーターを用いることができる。例えばT4ファージやT7ファージのRNAポリメラーゼやプロモーターを例示することができる。またポリメラーゼII(Pol II)プロモーターとしては、例えばCMVプロモーターやβ-globinプロモーター等を例示することができる。数百塩基以内の比較的短いRNAを発現させるためには、Pol IIよりも高い発現量が見込めるポリメラーゼIII(Pol III)プロモーターを利用することが好ましい。Pol IIIプロモーターとしては、U6プロモーター、H1プロモーター、tRNAプロモーター、7SKプロモーター、7SLプロモーター、Y3プロモーター、5S rRNAプロモーター、Ad2 VAIおよびVAIIプロモーター等を例示することができる(Das, G. et al., 1988, EMBO J. 7:503-512; Hernandez, N., 1992, pp. 281-313, In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.; Kunkel, G. R., 1991, Biochim. Biophys. Acta 1088:1-9; Lobo, S. M., and N. Hernandez, 1989, Cell 58:55-67; Mattaj, I. W. et al., 1988, Cell 55:435-442; Geiduschek, E.P. and G.A. Kassavetis, 1992, pp.247-280, In Transcriptional regulation. Monograph 22 (ed. S.L. McKnight and K.R. Yamamoto), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.)。特に、Class 3プロモーター、例えばU6, 7SK, hY1 および hY3, H1, および MRP/Th RNA遺伝子のプロモーターが挙げられる(Hernandez, N., 1992, pp. 281-313, In Transcriptional regulation. Monograph 22 (ed. S. McKnight and K.R. Yamamoto), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York)。 When the guide RNA is expressed from a vector, a vector that can start expression more rapidly than the minus-strand RNA virus vector used in step (a) is used as the vector. Such vectors include, but are not limited to, non-viral vectors such as, for example, plasmid vectors. The promoter for transcribing RNA from the vector is not particularly limited, and a Pol I promoter, a Pol II promoter, a Pol III promoter, or a desired bacteriophage promoter can be used. For example, RNA polymerase and promoter of T4 phage and T7 phage can be exemplified. Examples of the polymerase II (PolII) promoter include, for example, a CMV promoter and a β-globin promoter. In order to express a relatively short RNA of several hundred bases or less, it is preferable to use a polymerase III (Pol III) promoter, which can provide a higher expression level than Pol II. Examples of the Pol III promoter include U6 promoter, H1 promoter, tRNA promoter, 7SK promoter, 7SL promoter, Y3 promoter, 5S rRNA promoter, Ad2 VAI and VAII promoter, and the like (Das, G. et al., 1988). , EMBO J. 7: 503-512; Hernandez, N., 1992, pp. 281-313, In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation, vol. 1.Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; Kunkel, G. R., 1991, Biochim. Biophys. Acta 1088: 1-9; Lobo, S. M., and N. Hernandez, 1989, Cell 58: 55-67; Mattaj Et.al., 1988, Cell 55: 435-442; Geiduschek, EP and GA Kassavetis, 1992, pp. 247-280, In Transcriptional regulation.Monograph 22 (ed.SL McKnight and KR Yamamoto), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.) In particular, the class III promoters include the promoters of the U6, 7SK, hY1 and hY3, H1, and MRP / Th RNA genes (Hernandez, N., 1992, pp. 281-313, In Transcriptional regulation.Monograph 22 (ed. . S. McKnight and KR Yamamoto), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).
 ガイドRNAをベクターから発現させるときに、ガイドRNAだけを正確に転写させることが困難である場合、自己切り出し型のリボザイムとの融合RNAとして発現させ、転写後にガイドRNAが正確に切り出されるようにすることができる。 If it is difficult to accurately transcribe only the guide RNA when expressing the guide RNA from a vector, express it as a fusion RNA with a self-excised ribozyme so that the guide RNA is accurately excised after transcription be able to.
 好ましくは、ガイドRNAは発現ベクターを介して発現させるのではなく、ガイドRNAそのものが細胞に導入される。そのためには、トランスフェクションなどによりRNAを細胞に導入すればよい。 Preferably, the guide RNA itself is introduced into the cell instead of expressing the guide RNA via an expression vector. For that purpose, RNA may be introduced into cells by transfection or the like.
 RNAなどの核酸を細胞に導入する方法は数多く知られている。例えば、リン酸カルシウム法(Graham FL et al., 1973, Virology 52(2):456-467; Chen C et al., 1987, Mol. Cell Biol. 7(8):2745-2752)、リポフェクション法(Felgner PL et al., 1987, Proc Natl Acad Sci USA 84(21):7413-7417)、DEAE デキストラン法(Vaheri A et al., 1965, Virology 27(3):434-436; McCutchan JH et al., 1968, J. Natl. Cancer Inst. 41(2):351-357)、エレクトロポレーション法、マイクロインジェクション法、パーティクル・ガン法などが挙げられるが、それらに限定されない。陽イオン性脂質、デンドリマー、Polyethylenimine (PEI) 等のポリマーを利用した試薬による導入は簡便であるため好ましい。 方法 There are many known methods for introducing nucleic acids such as RNA into cells. For example, the calcium phosphate method (Graham FL et al., 1973, Virology 52 (2): 456-467; Chen Cet et al., 1987, Mol. Cell Biol. 7 (8): 2745-2752), lipofection method (Felgner) PL et al., 1987, Proc Natl Acad Sci USA 84 (21): 7413-7417), DEAE dextran method (Vaheri A et al., 9651965, Virology 27 (3): 434-436; McCutchan JH et al., 1968, J. Natl. Cancer Inst. 41 (2): 351-357), electroporation method, microinjection method, particle gun method, and the like, but are not limited thereto. The introduction by a reagent using a polymer such as a cationic lipid, a dendrimer, or Polyethylenimine {(PEI)} is preferred because it is simple.
 ガイドRNAは所望の方法で作製してよく、合成RNAであってもベクター等から発現させたRNAであってもよい。また、天然の塩基から成っていてもよく、修飾された塩基が含まれていてもよい。活性が維持される限り、ガイドRNAは適宜改変してもよい。例えば工程(b)において導入されるガイドRNAは、一つであっても複数であってもよい。天然のCRISPR-Cas9系では、CRISPR RNA(crRNA)とトランス型活性型CRISPR RNA(tracrRNA)という二つのRNAが複合体を形成することによって、標的DNA部位にCas9ヌクレアーゼを配向させるが、crRNAとtracrRNAは末端をつなげて1つのガイドRNA(single guide RNA; sgRNA)にできることは周知である(Mali, P. et a l., 2013, Science 339(6121):823-826)。このようなsgRNAを好適に用いることができる。また、ガイドRNAの配列は、活性が維持される限り、適宜変異を導入することができる(Sander, JD et al., 2014, Nature Biotechnology, 32:347-355)。 The guide RNA may be prepared by a desired method, and may be a synthetic RNA or an RNA expressed from a vector or the like. Further, it may be composed of a natural base or may contain a modified base. The guide RNA may be appropriately modified as long as the activity is maintained. For example, one or a plurality of guide RNAs may be introduced in step (b). In the natural CRISPR-Cas9 system, two RNAs, CRISPR RNA (crRNA) and trans-activated CRISPR RNA (tracrRNA), form a complex to orient Cas9 nuclease at the target DNA site, but crRNA and tracrRNA It is well known that the ends can be joined into one guide RNA (single guide RNA; sgRNA) (Mali, P. et a l., 2013, Science) 339 (6121): 823-826). Such sgRNA can be suitably used. In addition, a mutation can be appropriately introduced into the sequence of the guide RNA as long as the activity is maintained (Sander, JD et al., 2014, Nature Biotechnology, 32: 347-355).
 なお、例えばCRISPR-Cas9系においては、標的切断に必要な要素は、Cas9タンパク質、tracrRNA、crRNAであるが、標的部位がどこであっても使われる共通要素は、Cas9タンパク質とtracrRNAであるので、マイナス鎖RNAウィルスベクターにCas9遺伝子とtracrRNA遺伝子を同時搭載して、crRNAだけをトランスフェクションすることもできる。 In the CRISPR-Cas9 system, for example, the elements required for target cleavage are Cas9 protein, tracrRNA, and crRNA, but the common elements used wherever the target site is are Cas9 protein and tracrRNA. The cr9 alone can also be transfected by simultaneously loading the Cas9 gene and the tracrRNA gene in a strand RNA virus vector.
 トランスフェクション等によりガイドRNAを細胞に導入する場合、導入するRNA量は適宜調整することができる。具体的には、例えば各ガイドRNAの濃度として0.1ng/ml~2mg/ml、より具体的には、0.2ng/ml~1mg/ml、0.4ng/ml~500μg/ml、1ng/ml~250μg/ml、2ng/ml~100μg/ml、5ng/ml~50μg/ml、10ng/ml~20μg/ml、20ng/ml~10μg/ml、または10ng/ml~5μg/mlで含む溶液に細胞を懸濁してRNAを導入することができるが、それらに限定されない。細胞数は適宜調整してよく、例えば1×103~1×107/ml、具体的には、2×103~8×106/ml、5×103~4×106/ml、1×104~2×106/mlの細胞数でRNAを導入することができるが、それらに限定されず、例えば細胞を限界希釈して1細胞のみが存在する条件下でRNAを導入してもよい。実施例の実験1-1~4-3等では、tracrRNAを 0.27~2.16μg/well (6-well plate;500μl/well)(すなわち0.54~4.32μg/ml)、crRNA 0.15~1.2μg/well (6-well plate;500μl/well)(すなわち0.30~2.4μg/ml)、その時の細胞量は大凡1wellあたり1~3×106 cellsで実施したが、効率の大きな変動は見られなかったことから、幅広いRNA量で実施が可能である。なお実験3-1~3-2では、高用量のRNA(crRNA とtracrRNAの合計が6.72μg/ml)を用いた場合において、その半量を用いた場合よりも効率の上昇がみられ、実験4-3においては比較的低用量のRNA(crRNA とtracrRNAの合計が0.84μg/ml)を用いた場合に比べ、その4倍量を用いた場合に効率の上昇がみられた。したがって、用いるガイドRNAによって、その用量を調整することで反応効率を制御することが可能と考えられる。 When introducing guide RNA into cells by transfection or the like, the amount of RNA to be introduced can be appropriately adjusted. Specifically, for example, the concentration of each guide RNA is 0.1 ng / ml to 2 mg / ml, more specifically, 0.2 ng / ml to 1 mg / ml, 0.4 ng / ml to 500 μg / ml, 1 ng / ml to 250 μg Cells are suspended in a solution containing 2 ng / ml, 2 ng / ml to 100 μg / ml, 5 ng / ml to 50 μg / ml, 10 ng / ml to 20 μg / ml, 20 ng / ml to 10 μg / ml, or 10 ng / ml to 5 μg / ml. The RNA can be introduced in a turbid manner, but is not limited thereto. The number of cells may be appropriately adjusted, for example, 1 × 10 3 to 1 × 10 7 / ml, specifically, 2 × 10 3 to 8 × 10 6 / ml, 5 × 10 3 to 4 × 10 6 / ml RNA can be introduced at a cell count of 1 × 10 4 to 2 × 10 6 / ml, but is not limited thereto. For example, RNA is introduced under conditions that only cells are present by limiting dilution of cells. May be. In the experiments 1-1 to 4-3 and the like in Examples, tracrRNA was used in an amount of 0.27 to 2.16 μg / well (6-well plate; 500 μl / well) (that is, 0.54 to 4.32 μg / ml), and crRNA 0.15 to 1.2 μg / well ( 6-well plate; 500 μl / well) (that is, 0.30 to 2.4 μg / ml), and the cell volume at that time was approximately 1 to 3 × 10 6 cells per well, but no significant change in efficiency was observed. It can be performed with a wide range of RNA amounts. In Experiments 3-1 and 3-2, the efficiency was higher when a high dose of RNA (total of crRNA and tracrRNA was 6.72 μg / ml) was used than when half of the RNA was used. In the case of -3, the efficiency was higher when a 4-fold amount of RNA was used than when a relatively low dose of RNA (the total of crRNA and tracrRNA was 0.84 μg / ml) was used. Therefore, it is considered that the reaction efficiency can be controlled by adjusting the dose depending on the guide RNA used.
 本発明においては、工程(a)で用いるマイナス鎖RNAウイルスベクターとして温度感受性マイナス鎖RNAウイルスベクターを好適に用いることができる。温度感受性マイナス鎖RNAウイルスベクターを用いることによって、工程(a)が終了後、培養温度を上げることによりベクターを迅速に失活させることができるため、活性型のヌクレアーゼの発現期間をより厳密に制御することが可能となる。温度感受性マイナス鎖RNAウイルスベクターとは、低温(例えば32℃から35℃、より具体的には例えば35℃)におけるベクターからの発現に比べ、37℃における発現が有意に低下するマイナス鎖RNAウイルスベクターを言う。例えば、本発明において用いられる温度感受性マイナス鎖RNAウイルスベクターは、低温(例えば35℃)におけるベクターからの発現に比べ、37℃における発現が1/2以下、好ましくは1/3以下、より好ましくは1/4以下、1/5以下、1/6以下、1/7以下、1/8以下、1/9以下、1/10以下、1/20以下、1/30以下、1/40以下、1/50以下、または1/100以下に低下する。発現レベルは、例えば発現蛋白質に対する蛍光標識抗体を用い、蛍光強度を測定することによって知ることができるほか、GFP蛋白質等を発現させ、その蛍光強度を測定することによって知ることもできる。 温度 In the present invention, a temperature-sensitive minus-strand RNA virus vector can be suitably used as the minus-strand RNA virus vector used in step (a). By using a temperature-sensitive negative-strand RNA virus vector, after step (a) is completed, the vector can be rapidly inactivated by raising the culture temperature, so that the expression period of the active nuclease is more strictly controlled. It is possible to do. A temperature-sensitive minus-strand RNA virus vector is a minus-strand RNA virus vector whose expression at 37 ° C is significantly reduced as compared to expression from a vector at a low temperature (eg, 32 ° C to 35 ° C, more specifically, 35 ° C, for example). Say For example, the temperature-sensitive negative-strand RNA virus vector used in the present invention has an expression at 37 ° C. of 以下 or less, preferably 1/3 or less, more preferably 1/3 or less, as compared to expression from a vector at a low temperature (eg, 35 ° C.). 1/4 or less, 1/5 or less, 1/6 or less, 1/7 or less, 1/8 or less, 1/9 or less, 1/10 or less, 1/20 or less, 1/30 or less, 1/40 or less, Decrease to 1/50 or less, or 1/100 or less. The expression level can be determined, for example, by measuring the fluorescence intensity using a fluorescent-labeled antibody against the expressed protein, or by expressing the GFP protein or the like and measuring the fluorescence intensity.
 本発明において許容温度(permissive temperature)とは、温度感受性ベクターの発現が有意に抑制されない温度を言い、非許容温度(non-permissive temperature)とは、温度感受性ベクターの発現が抑制される温度を言う。より具体的には、許容温度は、例えば温度感受性ベクターの最適温度(24時間あたりの発現量が最大となる最高温度)での発現量と温度感受性ベクターの非最適温度(24時間あたりの発現量が最小となる最低温度)(例えば37~39℃における最低温度)での発現量との差の中間となる温度を境界とし、それ未満の温度を許容温度、それ以上の温度を非許容温度とすることができる。許容温度は、例えば36.5℃未満の温度、例えば36℃以下、または35.5℃以下、または35℃以下の温度であり、非許容温度は、例えば36.6℃以上の温度、例えば36.8℃以上、または37℃以上の温度であってよい。 In the present invention, a permissive temperature refers to a temperature at which expression of a temperature-sensitive vector is not significantly suppressed, and a non-permissive temperature refers to a temperature at which expression of a temperature-sensitive vector is suppressed. . More specifically, the permissible temperature is determined, for example, by the expression level of the temperature-sensitive vector at the optimal temperature (the maximum temperature at which the expression level per 24 hours is maximum) and the non-optimum temperature of the temperature-sensitive vector (the expression level per 24 hours). At the minimum temperature) (eg, the lowest temperature at 37-39 ° C), with the boundary between the expression level and the lower temperature as the allowable temperature, and the higher temperature as the non-permissible temperature. can do. The permissible temperature is, for example, a temperature of less than 36.5 ° C, for example, 36 ° C or less, or 35.5 ° C or less, or a temperature of 35 ° C or less, and the non-permissible temperature is, for example, a temperature of 36.6 ° C or more, for example, 36.8 ° C or more, or 37 ° C. The above temperature may be used.
 温度感受性マイナス鎖RNAウイルスベクターを用いる本発明の方法は、例えば以下の方法が挙げられる。 方法 The method of the present invention using a temperature-sensitive negative-strand RNA virus vector includes, for example, the following method.
 ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変方法であって、
(a)該ヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしない温度感受性マイナス鎖RNAウイルスベクターを細胞に導入し、許容温度下で該ベクターを発現させ、該少なくとも一つのガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
(b)工程(a)の後、不足するガイドRNAを細胞に供給する工程、
(c)工程(b)の前後または同時に培養温度を非許容温度に上昇させ、該ガイドRNAが細胞中に存在する状態で培養する工程、を含む方法。
A genetic modification method using a guide RNA-dependent DNA nuclease,
(A) a temperature-sensitive minus-strand RNA viral vector carrying the nuclease gene and not encoding at least one of the guide RNAs required for the expression of the nuclease activity is introduced into cells, and the vector is expressed at a permissive temperature. Allowing the nuclease to accumulate in a cell in the absence of the at least one guide RNA,
(B) supplying the missing guide RNA to the cells after step (a);
(C) raising the culture temperature to a non-permissible temperature before or after or simultaneously with step (b), and culturing in a state where the guide RNA is present in the cells.
 なお、工程(c)の後に、
(d)遺伝子が改変された細胞を回収する工程、をさらに含んでもよい。
After the step (c),
(D) recovering a cell in which the gene has been modified.
 温度感受性ベクターを用いない場合との違いは、工程(a)において許容温度下で細胞を培養することと、工程(b)の前後または同時に培養温度を非許容温度に上昇させ、工程(b)で供給したガイドRNAが細胞内に存在する状態で培養する工程が含まれる点(工程(c))にある。これにより、細胞内に機能的ガイドRNAが存在する状態において、該マイナス鎖RNAウイルスベクターは不活化する。工程(a)の培養温度は、用いるベクターに応じて、ベクターからの発現が阻害されない温度を適宜選択すればよく、例えば30℃~36℃の範囲内、例えば32℃~35℃、例えば約32℃、約33℃、約34℃、約35℃または約36℃である。 The difference from the case where a temperature-sensitive vector is not used is that cells are cultured at a permissive temperature in step (a), and the culture temperature is increased to a non-permissive temperature before or after step (b) or simultaneously with step (b). (Step (c)) of culturing in a state where the guide RNA supplied in step (1) is present in the cells. This inactivates the minus-strand RNA virus vector in a state where the functional guide RNA is present in the cell. The culturing temperature in step (a) may be appropriately selected depending on the vector to be used, so long as expression from the vector is not inhibited, for example, in the range of 30 ° C to 36 ° C, for example, 32 ° C to 35 ° C, for example, about 32 ° C. ° C, about 33 ° C, about 34 ° C, about 35 ° C or about 36 ° C.
 培養温度を非許容温度に上昇させるタイミング(工程(c))は、工程(b)の実施と同時であっても、工程(b)の前または後であってもよいが、ガイドRNAの供給により十分な量の活性型ヌクレアーゼを形成させ、その後速やかに活性型ヌクレアーゼを消失させるためには、工程(b)の実施から時間的にあまり離れていないことが望ましい。例えば工程(b)の実施時か、遅くともその24時間後までには培養温度は非許容温度に上昇していることが好ましい。例えば、工程(b)の実施時かその直前または直後に培養温度を上昇させることができる。実施例ではリポフェクション開始と同時に非許容温度に上昇させたが、例えば工程(b)の実施時の前後24時間以内、好ましくは23時間以内、22時間以内、20時間以内、18時間以内、16時間以内、15時間以内、12時間以内、10時間以内、8時間以内、6時間以内、4時間以内または3時間以内においても、培養温度を非許容温度(例えば37~38℃、37~37.5℃、または約37℃)にまで上昇させることができる。 The timing of raising the culture temperature to the non-permissible temperature (step (c)) may be simultaneous with the execution of step (b) or before or after step (b). In order to form a sufficient amount of the active nuclease and then quickly eliminate the active nuclease, it is desirable that the step (b) is not too far in time. For example, it is preferable that the culture temperature has risen to a non-permissible temperature at the time of carrying out the step (b) or at the latest after 24 hours. For example, the culturing temperature can be increased immediately before, immediately after, or immediately after the step (b) is performed. In the examples, the temperature was raised to the non-permissible temperature simultaneously with the start of lipofection. For example, within 24 hours before and after the step (b) was performed, preferably within 23 hours, within 22 hours, within 20 hours, within 18 hours, and within 16 hours Even within 15 hours, within 12 hours, within 10 hours, within 8 hours, within 6 hours, within 4 hours or within 3 hours, the culture temperature is set to a non-permissible temperature (eg, 37 to 38 ° C, 37 to 37.5 ° C, Or about 37 ° C).
 用いる温度感受性マイナス鎖RNAウイルスベクターは特に制限はなく、所望の温度感受性変異やその他の変異を導入したベクターを用いることができる。 The temperature-sensitive negative-strand RNA virus vector to be used is not particularly limited, and a vector into which a desired temperature-sensitive mutation or another mutation is introduced can be used.
 例えば、センダイウイルス(SeV)の場合、L蛋白質の変異としては、SeV L蛋白質の942位(Y942)、1361位(L1361)、および1558位(L1558)から任意に選択される部位のアミノ酸の他のアミノ酸への置換も挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、942番目のアミノ酸のHisへの置換、1361番目のアミノ酸のCysへの置換、1558番目のアミノ酸のIleへの置換などが例示できる。特に少なくとも942位または1558位が置換されたL蛋白質を好適に用いることができる。例えば1558位に加え、1361位も他のアミノ酸に置換された変異L蛋白質も好適である。また、942位に加え、1558位および/または1361位も他のアミノ酸に置換された変異L蛋白質も好適である。これらの変異により、L蛋白質の温度感受性を上昇させることができる。 For example, in the case of Sendai virus (SeV), mutations in the L protein include amino acids at sites arbitrarily selected from positions 942 (Y942), 1361 (L1361), and 1558 (L1558) of the SeV L protein. To amino acids. As described above, substitution of an amino acid is preferably substitution with another amino acid having a different side chain chemical property. Specific examples include substitution of the 942th amino acid with His, substitution of the 1361th amino acid with Cys, substitution of the 1558th amino acid with Ile, and the like. Particularly, an L protein in which at least the position 942 or 1558 is substituted can be suitably used. For example, in addition to position 1558, a mutant L protein in which position 1361 is substituted with another amino acid is also suitable. Further, a mutant L protein in which positions 1558 and / or 1361 in addition to position 942 are substituted with other amino acids is also suitable. These mutations can increase the temperature sensitivity of the L protein.
 またP蛋白質の変異としては、SeV P蛋白質の433位(D433)、434位(R434)、および437位(K437)から任意に選択される部位のアミノ酸の他のアミノ酸への置換が挙げられる。上記と同様に、アミノ酸の置換は、側鎖の化学的性質の異なる他のアミノ酸への置換が好ましい。具体的には、433番目のアミノ酸のAla (A) への置換、434番目のアミノ酸のAla (A) への置換、437番目のアミノ酸のAla (A) への置換などが例示できる。特にこれら3つの部位全てが置換されたP蛋白質を好適に用いることができる。これらの変異により、P蛋白質の温度感受性を上昇させることができる。 Also, examples of mutations in the P protein include substitution of an amino acid at a site arbitrarily selected from positions 433 (D433), 434 (R434), and 437 (K437) of the SeVΔP protein with another amino acid. As described above, substitution of an amino acid is preferably substitution with another amino acid having a different side chain chemical property. Specific examples include substitution of the 433rd amino acid with Ala {(A)}, substitution of the 434th amino acid with Ala {(A)}, substitution of the 437th amino acid with Ala {(A)}, and the like. In particular, a P protein in which all three sites are substituted can be suitably used. These mutations can increase the P protein's temperature sensitivity.
 SeV P蛋白質の少なくとも433位のD、434位のR、および437位のKの3箇所が、他のアミノ酸に置換された変異P蛋白質、およびSeV L蛋白質の少なくとも1558位のLが置換された変異L蛋白質(好ましくは少なくとも1361位のLも他のアミノ酸に置換された変異L蛋白質)をコードする、F遺伝子を欠損または欠失するセンダイウイルスベクター、ならびに、細胞傷害性がこれと同様またはそれ以下、および/または温度感受性がこれと同様またはそれ以上のF遺伝子を欠損または欠失するセンダイウイルスベクターも、本発明において好適に用いられる。各ウイルス蛋白質は、本明細書に例示した変異以外に他のアミノ酸(例えば10以内、5以内、4以内、3以内、2以内、または1アミノ酸)に変異を有していてもよい。上記に示した変異を有するベクターは高い温度感受性を示すので、細胞を通常温度(例えば約37℃、具体的には36.5~37.5℃、好ましくは36.6~37.4℃、より好ましくは36.7℃~37.3℃)で培養することにより、ベクターを簡便に除去することができる。ベクターの除去においては、やや高温(例えば37.5~39℃、好ましくは38~39℃、または38.5~39℃)で培養してもよい。 A mutant P protein in which at least three positions of D at position 433, R at position 434, and K at position 437 of the SeV P protein have been substituted with another amino acid, and at least L at position 1558 of the SeV L protein has been substituted. A Sendai virus vector deficient or deficient in the F gene, which encodes a mutated L protein (preferably a mutated L protein in which L at least at position 1361 is also substituted with another amino acid), and which has cytotoxicity similar to or less than this. A Sendai virus vector deficient or deficient in the following and / or F gene having the same or higher temperature sensitivity is also suitably used in the present invention. Each viral protein may have mutations in other amino acids (eg, within 10, 5, 5, 4, 3, 2, or 1 amino acid) in addition to the mutations exemplified herein. Since the vector having the mutation shown above has a high temperature sensitivity, the cells are kept at normal temperature (for example, about 37 ° C., specifically 36.5 to 37.5 ° C., preferably 36.6 to 37.4 ° C., more preferably 36.7 to 37.3 ° C.). ), The vector can be easily removed. In removing the vector, the cells may be cultured at a slightly elevated temperature (eg, 37.5 to 39 ° C., preferably 38 to 39 ° C., or 38.5 to 39 ° C.).
 具体的なベクターを例示すれば、例えばF遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含むセンダイウイルスベクターが挙げられる。 If a specific vector is exemplified, for example, the F gene is deleted, the M protein has G69E, T116A, and A183S mutations, the HN protein has A262T, G264R, and K461G mutations, the P protein has L511F mutation, and L A Sendai virus vector containing N1197S and K1795E mutations in the genome of the protein can be used.
 また、好ましくは、例えばF遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含むセンダイウイルスベクターであって、以下の(i)および/または(ii)の変異をさらにゲノムに含むセンダイウイルスベクターが挙げられる。
 (i)P蛋白質のD433A、R434A、およびK437Aの変異
 (ii)L蛋白質のY942H、L1361Cおよび/またはL1558Iの変異
Also preferably, for example, F gene deletion, G69E, T116A, and A183S mutations in the M protein, A262T, G264R, and K461G mutations in the HN protein, L511F mutation in the P protein, and N1197S and A Sendai virus vector containing a K1795E mutation in the genome, further including the following mutations (i) and / or (ii) in the genome:
(I) Mutation of D433A, R434A, and K437A of P protein (ii) Mutation of Y942H, L1361C and / or L1558I of L protein
 より具体的に例示すれば、F遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含み、以下の(i)から(iv)のいずれかの変異をさらにゲノムに含むセンダイウイルスベクターが挙げられる。
 (i)P蛋白質のD433A、R434A、およびK437Aの変異、ならびにL蛋白質のL1361CおよびL1558Iの変異(TS15)
 (ii)P蛋白質のD433A、R434A、およびK437Aの変異(TS12)
 (iii)L蛋白質のY942H、L1361C、およびL1558Iの変異(TS7)
 (iv)P蛋白質のD433A、R434A、およびK437Aの変異、ならびにL蛋白質のL1558Iの変異(TS13)
 (v)P蛋白質のD433A、R434A、およびK437Aの変異、ならびにL蛋白質のL1361Cの変異(TS14)
More specifically, the F gene is deleted, the G protein has a mutation of G69E, T116A, and A183S, the HN protein has a mutation of A262T, G264R, and K461G, the P protein has a mutation of L511F, and the L protein has a mutation. A Sendai virus vector which contains mutations of N1197S and K1795E in its genome and further contains any of the following mutations (i) to (iv) in its genome:
(I) Mutations of D433A, R434A, and K437A of P protein, and mutations of L1361C and L1558I of L protein (TS15)
(Ii) Mutations in D433A, R434A, and K437A of the P protein (TS12)
(Iii) Mutations of L942Y, L1361C, and L1558I of L protein (TS7)
(Iv) P protein mutations D433A, R434A, and K437A, and L protein L1558I mutation (TS13)
(V) Mutations in D433A, R434A, and K437A of the P protein, and mutations in L1361C of the L protein (TS14)
 ヌクレアーゼ遺伝子をベクターに搭載させる場合、ヌクレアーゼ遺伝子は、いずれかのウイルス遺伝子(NP, P, M, F, HN, または L)の直前(ゲノムの3'側)または直後(ゲノムの5'側)に挿入することができる。例えばセンダイウイルスのP遺伝子の直後、すなわちP遺伝子のすぐ下流(マイナス鎖RNAゲノムのすぐ5'側)に組み込むことができるが、それに限定されない。 If the nuclease gene is to be carried on a vector, the nuclease gene must be immediately before (3 'side of the genome) or immediately after (5' side of the genome) any of the viral genes (NP, P, M, F, HN, or L) Can be inserted. For example, it can be integrated immediately after the Sendai virus P gene, that is, immediately downstream of the P gene (immediately 5 ′ to the minus-strand RNA genome), but is not limited thereto.
 これらのベクターは、37℃においてNTVLP(nontransmissible virus-like particle)の形成が抑制され、細胞傷害性が低い優れたベクターとなる。NTVLP形成は、文献Inoue et al., J. Virol. 77:3238-3246, 2003に従って測定することができる。ベクターの細胞傷害性は、例えば細胞からの乳酸デヒドロゲナーゼ(LDH)の放出を定量することにより測定することができる。具体的には、例えばHeLa(ATCC CCL-2)またはサルCV-1(ATCC CCL 70)にMOI 3で感染させて3日間培養した培養液中のLDH放出量を測定する。LDH放出量が少ないほど細胞傷害性は低い。また温度感受性は、ウイルス宿主の通常の温度(例えば37℃ないし38℃)におけるウイルスの増殖速度または搭載遺伝子の発現レベルを測定することにより決定することができる。変異を有さないものに比べ、ウイルスの増殖速度および/または搭載遺伝子の発現レベルが低下すれば、その変異は温度感受性変異だと判断され、当該増殖速度および/または発現レベルが低下するほど、温度感受性は高いと判断される。 These vectors suppress the formation of nontransmissible virus-like particles (NTVLP) at 37 ° C and are excellent vectors with low cytotoxicity. NTVLP formation can be measured according to the literature Inoue et al., J. Virol. 77: 3238-3246, 2003. The cytotoxicity of the vector can be measured, for example, by quantifying the release of lactate dehydrogenase (LDH) from the cells. Specifically, for example, the amount of LDH release in a culture solution obtained by infecting HeLa (ATCC CCL-2) or monkey CV-1 (ATCC CCL 70) with MOI 3 and culturing for 3 days is measured. The lower the LDH release, the lower the cytotoxicity. The temperature sensitivity can be determined by measuring the growth rate of the virus or the expression level of the carried gene at the normal temperature of the virus host (for example, 37 ° C. to 38 ° C.). If the growth rate of the virus and / or the expression level of the carried gene are lower than those without the mutation, the mutation is determined to be a temperature-sensitive mutation, and the lower the growth rate and / or the expression level, Temperature sensitivity is determined to be high.
 例えば、マイナス鎖RNAウイルスの製造は、以下の公知の方法を利用して実施することができる(WO97/16539; WO97/16538; WO00/70055; WO00/70070; WO01/18223; WO03/025570; WO2005/071092; WO2006/137517; WO2007/083644; WO2008/007581; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997、Kato, A. et al., 1997, EMBO J. 16: 578-587 及び Yu, D. et al., 1997, Genes Cells 2: 457-466; Durbin, A. P. et al., 1997, Virology 235: 323-332; Whelan, S. P. et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388-8392; Schnell. M. J. et al., 1994, EMBO J. 13: 4195-4203; Radecke, F. et al., 1995, EMBO J. 14: 5773-5784; Lawson, N. D. et al., Proc. Natl. Acad. Sci. USA 92: 4477-4481; Garcin, D. et al., 1995, EMBO J. 14: 6087-6094; Kato, A. et al., 1996, Genes Cells 1: 569-579; Baron, M. D. and Barrett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, R. M., 1996, Proc. Natl. Acad. Sci. USA 93: 15400-15404; Tokusumi, T. et al. Virus Res. 2002: 86; 33-38、Li, H.-O. et al., J. Virol. 2000: 74; 6564-6569)。またウイルスの増殖方法および組み換えウイルスの製造方法については、ウイルス学実験学 各論、改訂二版(国立予防衛生研究所学友会編、丸善、1982)も参照のこと。 For example, production of a minus-strand RNA virus can be carried out using the following known method (WO97 / 16539; WO97 / 16538; WO00 / 70055; WO00 / 70070; WO01 / 18223; WO03 / 025570; WO2005) / 071092; WO2006 / 137517; WO2007 / 083644; WO2008 / 007581; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997, Kato, A. et al., 1997, EMBO J. 16: 578-587 and Yu, D. et al., 1997, Genes Cells 2: 457-466; Durbin, A. P. et al., 1997, Virology 235: 323-332; Whelan, S. P Et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388-8392; Schnell. M. J. et al., 1994, EMBO. 13: 4195-4203; Radecke, F. et al. , 1995, EMBO J. 14: 5773-5784; sonLawson, N. D. et al., Proc. Natl..Acad. Sci. USA 92: 4477-4481; Garcin, D. et al., 1995, EMBO J. 14: 6087-6094; Kato, A. et al., 1996, Genes Cells 1: 569-579; Baron, M. D. and Barrett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, R. M., 1996, Proc. Natl. Acad. Sci. USA 93: 15400-15404; Tokusumi, T. et al. Virus Res. 2002: 86; 33-38, Li, H.-O. et. al., J. Virol. 2000: 74; 6564-6569). In addition, regarding the method of virus propagation and the method of production of the recombinant virus, see also Virology Experimental Studies, Vol. 2, Revised Edition (National Institutes of Health, Gakuyukai, Maruzen, 1982).
 本発明のベクターに搭載されるガイドRNA依存性ヌクレアーゼ遺伝子に特に制限はなく、ゲノム編集に使用できる所望のガイドRNA依存性DNAエンドヌクレアーゼの遺伝子を搭載することができる。例えばCRISPR-Casシステムのヌクレアーゼが挙げられ、特にCRISPR-Casシステムのクラス2のヌクレアーゼ、例えばタイプII、タイプV、およびタイプVIのヌクレアーゼが挙げられる。具体的には、Cas9(Jinek M. et al. (2012) Science. 337 (6096): 816-821)、Cpf1(Accession No. NZ_CP010070.1)(Zetsche B et al., Cell (2015) 163(3):759-71)、C2c1(Yang H et al., Cell. (2016) 167(7):1814-1828)を例示することができるが、これらに限定されない。他生物由来のこれらのホモローグのいずれをも搭載することができる。 ガ イ ド There is no particular limitation on the guide RNA-dependent nuclease gene to be mounted on the vector of the present invention, and a desired guide RNA-dependent DNA endonuclease gene that can be used for genome editing can be mounted. Examples include nucleases of the CRISPR-Cas system, especially class 2 nucleases of the CRISPR-Cas system, such as type II, type V and type VI nucleases. Specifically, Cas9 (Jinek M. et al. (2012) Science. 337 (6096): 816-821), Cpf1 (Accession No. NZ_CP010070.1) (Zetsche B et al., Cell (2015) 163 ( 3): 759-71), and C2c1 (Yang H et al., Cell. (2016) 167 (7): 1814-1828), but are not limited thereto. Any of these homologs from other organisms can be carried.
 また本発明は、本発明のガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変方法によって、遺伝子改変細胞または遺伝子改変細胞を含む細胞集団を製造する方法にも関する。当該方法は、例えば以下の方法が包含される。 The present invention also relates to a method for producing a genetically modified cell or a cell population containing the genetically modified cell by the genetic modification method using the guide RNA-dependent DNA nuclease of the present invention. The method includes, for example, the following method.
 ガイドRNA依存性DNAヌクレアーゼを用いた遺伝子改変方法、あるいは当該細胞または当該細胞を含む細胞集団の製造方法であって、
(a)ガイドRNA依存性DNAヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしないマイナス鎖RNAウイルスベクターを細胞に導入し、該ベクターを発現させ、該少なくとも一つのガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
(b)工程(a)の後、不足するガイドRNAを細胞に供給する工程、を含む方法。
A method for genetic modification using a guide RNA-dependent DNA nuclease, or a method for producing the cell or a cell population containing the cell,
(A) carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nuclease into cells, and expressing the vector; Accumulating the nuclease in a cell in the absence of the at least one guide RNA;
(B) a step of, after step (a), supplying a deficient guide RNA to the cells.
 なお、工程(b)の後に、
(c)得られた細胞集団を回収する工程、
をさらに含んでもよい。
 あるいは工程(b)または(c)の後に、
(c’)遺伝子が改変された細胞を回収する工程、
をさらに含んでもよい。
After the step (b),
(C) a step of collecting the obtained cell population,
May be further included.
Alternatively, after step (b) or (c),
(C ′) a step of collecting cells in which the gene has been modified,
May be further included.
 また当該方法において、温度感受性マイナス鎖RNAウイルスベクターを用いることも好適である。すなわち本発明は、例えば以下の方法を包含する。 In the method, it is also preferable to use a temperature-sensitive negative-strand RNA virus vector. That is, the present invention includes, for example, the following method.
 ガイドRNA依存性DNAヌクレアーゼを用いた遺伝子改変方法、あるいは当該細胞または当該細胞を含む細胞集団の製造方法であって、
(a)該ヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしない温度感受性マイナス鎖RNAウイルスベクターを細胞に導入し、許容温度下で該ベクターを発現させ、該少なくとも一つのガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
(b)工程(a)の後、不足するガイドRNAを細胞に供給する工程、
(c)工程(b)の前後または同時に培養温度を非許容温度に上昇させ、該ガイドRNAが細胞中に存在する状態で培養する工程、を含む方法。
A method for genetic modification using a guide RNA-dependent DNA nuclease, or a method for producing the cell or a cell population containing the cell,
(A) a temperature-sensitive minus-strand RNA viral vector carrying the nuclease gene and not encoding at least one of the guide RNAs required for the expression of the nuclease activity is introduced into cells, and the vector is expressed at a permissive temperature. Allowing the nuclease to accumulate in a cell in the absence of the at least one guide RNA,
(B) supplying the missing guide RNA to the cells after step (a);
(C) raising the culture temperature to a non-permissible temperature before or after or simultaneously with step (b), and culturing in a state where the guide RNA is present in the cells.
 なお、工程(c)の後に、
(d)得られた細胞集団を回収する工程、
をさらに含んでもよい。
 あるいは工程(c)または(d)の後に、
(d’)遺伝子が改変された細胞を回収する工程、
をさらに含んでもよい。
After the step (c),
(D) recovering the obtained cell population,
May be further included.
Alternatively, after step (c) or (d),
(D ′) recovering a cell in which the gene has been modified,
May be further included.
 また本発明は、上記した、ガイドRNA依存性ヌクレアーゼをコードし、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしないマイナス鎖RNAウイルスベクターの、本発明の方法を用いてゲノム改変を行うための使用、そして、本発明の方法を用いてゲノム改変された細胞を製造または当該細胞を含む細胞集団を製造するための使用を提供する。また本発明は、当該マイナス鎖RNAウイルスベクターを含む、本発明の方法を用いてゲノム改変を行うための試薬(ゲノム改変剤)を提供する。また本発明は、当該マイナス鎖RNAウイルスベクターを含む、本発明の方法を用いてゲノム改変を行うための組成物を提供する。当該マイナス鎖RNAウイルスベクターおよび組成物は、医学的用途および非医学的用途のために用いることができ、メディカルおよびノンメディカルの態様において有用である。例えば本発明は、治療、手術、および/または診断、あるいは非治療、非手術、および/または非診断の目的に用いることができる。本発明の方法は、例えば生体外(例えばインビトロまたはエクスビボ)において実施される。なお本発明においてインビトロにおける実施には、エクスビボにおける実施も包含される。また本発明は、エクスビボの実施態様を含まないインビボにおける実施にも有用である。 The present invention also provides a minus-strand RNA virus vector encoding a guide RNA-dependent nuclease as described above and not encoding at least one guide RNA required for the expression of the activity of the nuclease, using the method of the present invention to obtain a genome. Uses for making modifications and for producing genomically modified cells or producing cell populations comprising such cells using the methods of the invention are provided. The present invention also provides a reagent (genome modifying agent) for carrying out genomic modification using the method of the present invention, comprising the minus-strand RNA virus vector. The present invention also provides a composition comprising the minus-strand RNA virus vector for performing genomic modification using the method of the present invention. The negative-strand RNA viral vectors and compositions can be used for medical and non-medical applications, and are useful in medical and non-medical embodiments. For example, the present invention can be used for therapeutic, surgical, and / or diagnostic, or non-therapeutic, non-surgical, and / or non-diagnostic purposes. The methods of the invention are practiced, for example, ex vivo (eg, in vitro or ex vivo). In the present invention, implementation in vitro includes implementation in ex vivo. The invention is also useful for in vivo implementations that do not include ex vivo embodiments.
 本発明のガイドRNA依存性ヌクレアーゼをコードし、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしないマイナス鎖RNAウイルスベクターを含む組成物は、適宜、薬学的に許容される担体または媒体を含んでよい。本発明の組成物は、医薬組成物、例えば、遺伝子疾患のゲノム修復用の医薬組成物として用いられる。担体および媒体に特に制限はないが、例えば、水(例えば滅菌水)、生理食塩水(例えばリン酸緩衝生理食塩水)、グリコール、エタノール、グリセロール、ラクトース、スクロース、リン酸カルシウム、ゼラチン、デキストラン、寒天、ペクチン、オリーブオイル、ピーナッツ油、ゴマ油などのオイル等が挙げられ、緩衝剤、希釈剤、保存剤、安定剤、賦形剤等も挙げられる。また本発明は、ガイドRNA依存性ヌクレアーゼ遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしない上記本発明のマイナス鎖RNAウイルスベクターを含むキットを提供する。当該組成物およびキットは、ガイドRNA依存性ヌクレアーゼを用いたゲノム編集、すなわち、遺伝子破壊や遺伝子変換、遺伝子修復などを含む遺伝子改変のために有用である。 A composition comprising a minus-strand RNA viral vector that encodes the guide RNA-dependent nuclease of the present invention and does not encode at least one of the guide RNAs required for the expression of the activity of the nuclease may be suitably a pharmaceutically acceptable carrier. Or it may contain a medium. The composition of the present invention is used as a pharmaceutical composition, for example, a pharmaceutical composition for genome repair of a genetic disease. The carrier and the medium are not particularly limited, but include, for example, water (eg, sterile water), physiological saline (eg, phosphate buffered saline), glycol, ethanol, glycerol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, Examples include oils such as pectin, olive oil, peanut oil, sesame oil and the like, and also include buffers, diluents, preservatives, stabilizers, excipients and the like. The present invention also provides a kit comprising the minus-strand RNA virus vector of the present invention, which carries a guide RNA-dependent nuclease gene and does not encode at least one guide RNA required for expression of the activity of the nuclease. The composition and the kit are useful for genome editing using a guide RNA-dependent nuclease, that is, gene modification including gene disruption, gene conversion, and gene repair.
 本発明の組成物は、適宜、ガイドRNAと組み合わせることができる。例えば本発明のキットは、マイナス鎖RNAウイルスベクターを含む組成物と、ガイドRNAを含む試薬とを含むことができる。上述の通り、tracrRNAの配列は標的部位に依存しないため、本発明のマイナス鎖RNAウイルスベクターと、当該ベクターにコードされているヌクレアーゼに対応するtracrRNAとの組み合わせを含むキットは本発明において有用である。また、tracrRNAに加えcrRNAを含んでもよく、crRNAとtracrRNAは混合されていてもよく、また上述のとおり融合して一本鎖となっていてもよい。本発明の組成物、およびキットは、さらにドナーDNAを含んでもよい。また当該組成物およびキットには、適宜、取扱説明書を添付することができる。本発明の組成物およびキットは、本発明の方法を用いたゲノム編集、遺伝子改変に有用である。 組成 The composition of the present invention can be appropriately combined with a guide RNA. For example, the kit of the present invention can include a composition containing a minus-strand RNA viral vector and a reagent containing guide RNA. As described above, since the sequence of tracrRNA does not depend on the target site, a kit containing a combination of the minus-strand RNA virus vector of the present invention and tracrRNA corresponding to the nuclease encoded by the vector is useful in the present invention. . In addition, crRNA may be contained in addition to tracrRNA, and crRNA and tracrRNA may be mixed, or may be fused to form a single strand as described above. The compositions and kits of the present invention may further include donor DNA. In addition, an instruction manual can be appropriately attached to the composition and the kit. The compositions and kits of the present invention are useful for genome editing and genetic modification using the method of the present invention.
 例えば、本発明のマイナス鎖RNAウイルスベクターを用いて、標的ゲノム部位を効率よく破壊することができる。実施例7および8に示す通り、本発明の方法は、Cas9遺伝子を搭載するプラスミドベクターを用いた従来の方法よりも高頻度で標的遺伝子を破壊することができた。それでも、実施例5、実施例12より、標的配列DNAの残存と意図しない配列異常の発生頻度は低いことが期待できる。したがって本発明の方法は、目的外の部位の配列異常のリスクを最小限に抑えつつ、目的の標的部位のみを破壊する方法として有用と考えられる。 For example, using the minus-strand RNA virus vector of the present invention, a target genome site can be efficiently destroyed. As shown in Examples 7 and 8, the method of the present invention was able to destroy the target gene more frequently than the conventional method using a plasmid vector carrying the Cas9 gene. Nevertheless, from Examples 5 and 12, it can be expected that the frequency of occurrence of unintended sequence abnormalities and residual target sequence DNA is low. Therefore, the method of the present invention is considered to be useful as a method for destroying only the target site of interest while minimizing the risk of sequence abnormality at sites other than the target site.
 また、標的とするゲノムDNAにヌクレアーゼを作用させるときに、ゲノムDNAと相同な配列を持つドナーDNAを共存させておくことで、標的DNAとドナーDNAの間で組み換えを惹起させ、ドナーDNA中に存在する配列(ドナー配列)が組み込まれたゲノムを持つ細胞を取得することができる。ドナーDNAは、標的とする細胞が持つゲノムDNAの配列と高いホモロジーを持つDNAを含んでおり、そのドナーDNAは2本鎖であってもいずれかの1本鎖DNAであっても良い。 In addition, when a nuclease is allowed to act on the target genomic DNA, by coexisting with a donor DNA having a sequence homologous to the genomic DNA, recombination is induced between the target DNA and the donor DNA, and Cells having a genome in which the existing sequence (donor sequence) is integrated can be obtained. The donor DNA includes a DNA having a high homology with the sequence of the genomic DNA of the target cell, and the donor DNA may be double-stranded or any single-stranded DNA.
 ドナーDNAは、標的細胞のゲノム配列と高いホモロジーを持つDNAを含む限り、他の配列をさらに含んでいてもよい。ドナーDNAは、所望のベクターとして調製してもよく、例えばプラスミドベクター、ファージベクター、コスミドベクター、ウイルスベクター、人工染色体ベクター(例えば酵母人工染色体ベクター(YAC)および細菌人工染色体ベクター(BAC)を含む)等に由来するDNAを含んでもよい。このようにドナーDNAがベクター骨格を有し、ベクターとして機能する場合、本発明のドナーDNA(ドナーDNA)は、ドナーベクター(供与ベクター)ともいう。ベクターがプラスミドベクターの場合、本発明のドナーDNAは、ドナープラスミド(供与プラスミド)ともいう。ベクターとして機能するドナーDNAは、適当な宿主(細胞や大腸菌)内で保持されうる。またベクターに複製能がある場合は、ドナーDNAは宿主内で複製されうる。本発明のドナーDNAは、好ましくは、適当な宿主(例えば大腸菌)内で自律複製能を有する。 The donor DNA may further include other sequences as long as it contains DNA having high homology with the genomic sequence of the target cell. The donor DNA may be prepared as a desired vector, for example, a plasmid vector, a phage vector, a cosmid vector, a virus vector, an artificial chromosome vector (for example, including a yeast artificial chromosome vector (YAC) and a bacterial artificial chromosome vector (BAC)). And the like. When the donor DNA has a vector backbone and functions as a vector, the donor DNA (donor DNA) of the present invention is also referred to as a donor vector (donor vector). When the vector is a plasmid vector, the donor DNA of the present invention is also referred to as a donor plasmid (donor plasmid). The donor DNA that functions as a vector can be maintained in a suitable host (cell or E. coli). If the vector has replication ability, the donor DNA can be replicated in the host. The donor DNA of the present invention preferably has autonomous replication ability in a suitable host (for example, E. coli).
 ドナーDNAに含まれる当該ゲノム断片の長さに特に制限はなく、細胞に導入した場合に、細胞のゲノムと組み換えが起こるのに必要な長さを少なくとも有していれば、所望の長さの断片を用いることができる。ドナーDNAに含まれるゲノム断片の長さは、例えばオリゴ長(例えば十数ベース~数十ベース)から染色体長(数百Mbまたはそれ以上)の範囲を含む所望の長さであってよく、例えば0.01kb以上、0.05kb以上、0.5kb以上、1kb以上、1.5kb以上、2kb以上、3kb以上、4kb以上、または5kb以上であり、例えば10,000kb以下、5,000kb以下、500kb以下、300kb以下、200kb以下、100kb以下、80kb以下、50kb以下、30kb以下、20kb以下、または10kb以下である。なお、ドナーDNAに含まれるゲノム断片を、一遺伝子座サイズに相当する数十kbまたは数百kb程度まで拡大することによって、広範囲にわたる複数の変異箇所をまとめて改変することもできる。本発明のドナーDNAは、そのような長いゲノム断片を含んでいてもよい。 There is no particular limitation on the length of the genomic fragment contained in the donor DNA, and if it has at least the length necessary for recombination with the genome of the cell when introduced into the cell, it has the desired length. Fragments can be used. The length of the genomic fragment contained in the donor DNA may be a desired length including, for example, a range from oligo length (for example, tens of bases to tens of bases) to chromosome length (several hundred Mb or more). 0.01kb or more, 0.05kb or more, 0.5kb or more, 1kb or more, 1.5kb or more, 2kb or more, 3kb or more, 4kb or more, or 5kb or more, for example, 10,000kb or less, 5,000kb or less, 500kb or less, 300kb or less, 200kb or less Hereinafter, it is 100 kb or less, 80 kb or less, 50 kb or less, 30 kb or less, 20 kb or less, or 10 kb or less. By expanding the genomic fragment contained in the donor DNA to about several tens kb or several hundred kb corresponding to the size of one locus, it is also possible to collectively modify a plurality of mutation sites over a wide range. The donor DNA of the present invention may include such a long genomic fragment.
 ドナーDNAを細胞に導入することにより、ドナーDNAに含まれるゲノム断片の配列(ドナー配列)に対応する標的細胞中のゲノム配列との間で組み換えが誘発される。例えば、ドナーDNAに含まれるドナー配列(ゲノム断片等)の配列は、標的とする細胞のゲノムの対応する断片の配列と、通常90%以上、好ましくは95%以上、96%以上、97%以上、98%以上、99%以上、または99.9%以上の同一性を有し得る。 導入 By introducing the donor DNA into the cells, recombination is induced between the sequence of the genomic fragment contained in the donor DNA (donor sequence) and the corresponding genomic sequence in the target cell. For example, the sequence of the donor sequence (genomic fragment or the like) contained in the donor DNA is usually 90% or more, preferably 95% or more, 96% or more, 97% or more of the sequence of the corresponding fragment of the genome of the target cell. , 98% or more, 99% or more, or 99.9% or more.
 すなわち本発明は、ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変方法であって、
(a)ガイドRNA依存性DNAヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしないマイナス鎖RNAウイルスベクターを細胞に導入し、該ベクターを発現させ、該の少なくとも一つのガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
(b)工程(a)の後、不足するガイドRNAおよびドナーDNAを細胞に供給する工程、を含む方法に関する。
That is, the present invention is a gene modification method using a guide RNA-dependent DNA nuclease,
(A) carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nuclease into cells, and expressing the vector; Accumulating the nuclease in a cell in the absence of the at least one guide RNA;
(B) after step (a), supplying the missing guide RNA and donor DNA to the cells.
 なお上記の方法は、工程(b)の後、
(c)遺伝子が改変された細胞を選択する工程、
をさらに含んでもよい。
 当該工程は、「ドナーDNA中の配列が組み込まれた細胞を選択する工程」であってもよい。
In addition, the above method, after the step (b),
(C) selecting a cell in which the gene has been modified,
May be further included.
This step may be a “step of selecting a cell into which the sequence in the donor DNA has been integrated”.
 当該マイナス鎖RNAウイルスベクターとしては、上述の通り温度感受性マイナス鎖RNAウイルスベクターを用いることができる。すなわち本発明は、ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変方法であって、
(a)該ヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしない温度感受性マイナス鎖RNAウイルスベクターを細胞に導入し、許容温度下で該ベクターを発現させ、該の少なくとも一つのガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
(b)工程(a)の後、不足するガイドRNAおよびドナーDNAを細胞に供給する工程、
(c)工程(b)の前後または同時に培養温度を非許容温度に上昇させ、該ガイドRNAおよびドナーDNAが細胞内に存在する状態で培養する工程、を含む方法に関する。
As described above, a temperature-sensitive negative-strand RNA virus vector can be used as described above. That is, the present invention is a gene modification method using a guide RNA-dependent DNA nuclease,
(A) a temperature-sensitive minus-strand RNA viral vector carrying the nuclease gene and not encoding at least one of the guide RNAs required for the expression of the nuclease activity is introduced into cells, and the vector is expressed at a permissive temperature. Allowing the nuclease to accumulate in the cell in the absence of the at least one guide RNA,
(B) after step (a), supplying the missing guide RNA and donor DNA to the cells;
(C) raising the culture temperature to a non-permissive temperature before or after or simultaneously with the step (b), and culturing the cells in a state where the guide RNA and the donor DNA are present in the cells.
 なお上記の方法は、工程(c)の後、
(d)遺伝子が改変された細胞を選択する工程、
をさらに含んでもよい。
 当該工程は、「ドナーDNA中の配列が組み込まれた細胞を選択する工程」であってもよい。
In addition, the said method, after a process (c),
(D) selecting cells in which the gene has been modified,
May be further included.
This step may be a “step of selecting a cell into which the sequence in the donor DNA has been integrated”.
 ガイドRNAとドナーDNAは一緒に細胞に導入しても、別々に細胞に導入してもよいが、一緒に導入することが簡便であり好ましい。細胞へのドナーDNAの導入方法に特に制限はなく、上述のガイドRNAと同様に、リポフェクション、エレクトロポレーション、マイクロインジェクション、パーティクル・ガン法などの所望の方法によって導入することができる。 (4) The guide RNA and the donor DNA may be introduced into cells together or separately into cells, but it is convenient and preferable to introduce them together. There is no particular limitation on the method of introducing the donor DNA into the cells, and the donor DNA can be introduced by a desired method such as lipofection, electroporation, microinjection, or the particle gun method, similarly to the above guide RNA.
 導入するドナーDNA量に特に制限はなく、適宜決定すればよい。例えば、実施例に記載の実験1-1~2-2等では2.5μg/well (6-well plate;500μl)であり、その時の細胞量は大凡1wellあたり2~2.5×106 cellsであったが、それに限定されることはなく、幅広いドナーDNA量にて適用することが可能である。 The amount of the donor DNA to be introduced is not particularly limited, and may be appropriately determined. For example, in Experiments 1-1 and 2-2 described in Examples, the concentration was 2.5 μg / well (6-well plate; 500 μl), and the cell amount at that time was approximately 2 to 2.5 × 10 6 cells per well. However, the present invention is not limited thereto, and can be applied with a wide range of donor DNA amounts.
 本発明においてドナーDNAは、ポジティブ選択マーカー遺伝子および/またはネガティブ選択マーカー遺伝子を含んでもよいが、含まなくてもよい。ここでポジティブ選択マーカー遺伝子とは、当該マーカーを保持する細胞を選択する(および/または当該マーカー遺伝子を持たない細胞を除去する)ために用いられるマーカーをコードする遺伝子であり、ネガティブ選択マーカー遺伝子とは、当該マーカーを保持する細胞を除去する(および/または当該マーカー遺伝子を持たない細胞を選択する)ために用いられるマーカーをコードする遺伝子を言う。ポジティブ選択マーカー遺伝子およびネガティブ選択マーカー遺伝子は適宜選択することができる。例えばポジティブ選択マーカー遺伝子としては、Hyg(ハイグロマイシン耐性遺伝子)、Puro(ピューロマイシン耐性遺伝子)、β-geo(βガラクトシダーゼとネオマイシン耐性遺伝子の融合遺伝子)などの種々の薬剤耐性遺伝子などが例示されるが、それらに限定されるものではない。ネガティブ選択マーカー遺伝子としては、例えば細胞増殖または生存の阻害を直接的または間接的に誘導する遺伝子が挙げられ、具体的には、単純ヘルペスウイルス由来チミジンキナーゼ(TK)遺伝子、ジフテリアトキシンAフラグメント(DT-A)遺伝子、シトシンデアミナーゼ(CD)遺伝子などが挙げられるが、これらに限定されない。 に お い て In the present invention, the donor DNA may or may not contain the positive selectable marker gene and / or the negative selectable marker gene. Here, the positive selectable marker gene is a gene that encodes a marker used to select cells that carry the marker (and / or remove cells that do not have the marker gene), Refers to a gene encoding a marker that is used to remove cells that carry the marker (and / or select cells that do not have the marker gene). The positive selectable marker gene and the negative selectable marker gene can be appropriately selected. For example, examples of the positive selectable marker gene include various drug resistance genes such as Hyg (hygromycin resistance gene), Puro (puromycin resistance gene), and β-geo (fusion gene of β galactosidase and neomycin resistance gene). However, it is not limited to them. Negative selectable marker genes include, for example, genes that directly or indirectly induce inhibition of cell growth or survival, and specifically, herpes simplex virus-derived thymidine kinase (TK) gene, diphtheria toxin A fragment (DT -A) gene, cytosine deaminase (CD) gene and the like, but are not limited thereto.
 ポジティブ選択マーカーを用いる場合、ポジティブ選択マーカー遺伝子は、ドナーDNA中の、標的細胞のゲノムに導入される断片の中(例えばイントロンの中)に挿入される。ポジティブ選択マーカー遺伝子は、後で取り除けるようにするために、部位特異的組換え酵素の認識配列(LoxP, FRT等)で挟み込んでおいてもよい。 When using a positive selectable marker, the positive selectable marker gene is inserted into a fragment (eg, in an intron) of the donor DNA that is introduced into the genome of the target cell. The positive selectable marker gene may be inserted between site-specific recombinase recognition sequences (LoxP, ΔFRT, etc.) so that it can be removed later.
 ネガティブ選択マーカーを用いる場合、ドナーDNA中の、標的細胞のゲノムに導入される断片以外の部分(プラスミドベクターを用いる場合は、プラスミドの骨格中など)に挿入される。 When a negative selection marker is used, it is inserted into a portion of the donor DNA other than the fragment to be introduced into the genome of the target cell (in the case of using a plasmid vector, in the backbone of the plasmid).
 しかし本発明の方法によれば、ドナーDNAがゲノムに組み込まれた細胞を極めて高い割合で取得できるため、選択マーカーを使う必要は必ずしもない。ポジティブ選択マーカー遺伝子を使用しない場合、ドナーDNA中にマーカー遺伝子や上述の部位特異的組換え酵素の認識配列などの異種配列(標的細胞が属する生物種が本来持っていない配列)を挿入する必要はなく、ドナーDNAに含まれるドナー配列は標的細胞に最終的に導入したい配列のみから構成させることができる。例えば、標的細胞が持つ異常遺伝子や疾患遺伝子を正常遺伝子に置換したい場合、ドナー配列は正常遺伝子の配列のみで構成させることができる。これにより、最終的に得られる細胞のゲノムに、マーカー遺伝子や部位特異的組換え酵素の認識配列などの異種配列が残存することがなくなるので、理想的な遺伝子改変が可能となる。すなわち本発明は、本発明のマイナス鎖RNAウイルスベクターと、ポジティブ選択マーカー遺伝子を持たないドナーDNAとを用いる、遺伝子改変方法を提供する。 However, according to the method of the present invention, it is not always necessary to use a selection marker, since an extremely high percentage of cells in which the donor DNA has been integrated into the genome can be obtained. When a positive selectable marker gene is not used, it is not necessary to insert a heterologous sequence (sequence not originally possessed by the species to which the target cell belongs) such as the marker gene or the site-specific recombinase recognition sequence described above in the donor DNA. Instead, the donor sequence contained in the donor DNA can be composed of only the sequence that is ultimately to be introduced into the target cell. For example, when it is desired to replace an abnormal gene or disease gene possessed by a target cell with a normal gene, the donor sequence can be composed of only the sequence of the normal gene. As a result, a heterologous sequence such as a marker gene or a recognition sequence of a site-specific recombinase does not remain in the genome of the finally obtained cell, so that ideal gene modification is possible. That is, the present invention provides a gene modification method using the minus-strand RNA virus vector of the present invention and a donor DNA having no positive selection marker gene.
 具体的には本発明は、上記「遺伝子が改変された細胞を選択する工程」(または「ドナーDNA中の配列が組み込まれた細胞を選択する工程」)において、選択マーカーに頼らずに細胞を検査してドナーDNA中のドナー配列が組み込まれた細胞を選択する方法に関する。本発明の方法によれば、マーカーで選択を行わずとも、目的の組み換えを起こした細胞(標的部位にドナーDNA中のドナー配列が組み込まれた細胞)が、例えば全生細胞中1×10-4以上、例えば2×10-4以上、3×10-4以上、4×10-4以上、5×10-4以上、6×10-4以上、7×10-4以上、8×10-4以上、9×10-4以上、1×10-3以上、2×10-3以上、3×10-3以上、4×10-3以上、5×10-3以上、6×10-3以上、7×10-3以上、8×10-3以上、9×10-3以上、1×10-2以上、または2×10-2以上の割合で生成する。実際、実施例に示す通り、目的の組み換えを起こした細胞(標的部位にドナーDNAの配列が組み込まれた細胞)は、全生細胞の9.7×10-3~2.4×10-2の割合で認められた(実験1-1~2-2)。よって、選択マーカーに頼らずとも、限られた数の細胞を調べれば目的の組み換えを起こした細胞を取得できると期待される。割合の上限に特に制限はないが、例えば1未満であってよく、例えば0.8以下、0.7以下、0.6以下、0.5以下、0.4以下、または0.3以下である。本発明は、上記「遺伝子が改変された細胞を選択する工程」(または「ドナーDNA中の配列が組み込まれた細胞を選択する工程」)において、選択マーカーに頼らずに、例えば5000個未満の細胞を検査してドナーDNAの配列が組み込まれた細胞を選択する方法に関し、好ましくは、3000個未満の細胞、より好ましくは2000個未満、1000個未満、800個未満、600個未満、500個未満、400個未満、300個未満、200個未満、100個未満、または50個未満の細胞を検査してドナーDNAの配列が組み込まれた細胞を選択する方法に関する。上記の数値は、平均値、概算値、または期待値等であってもよい。 Specifically, in the present invention, in the above-mentioned “step of selecting a cell in which a gene has been modified” (or “step of selecting a cell into which a sequence in a donor DNA has been integrated”), the cell is selected without relying on a selection marker. Testing to select for cells that have incorporated the donor sequence in the donor DNA. According to the method of the present invention, cells that have undergone the desired recombination (cells in which the donor sequence in the donor DNA has been integrated into the target site) can be obtained, for example, in 1 × 10 − 4 or more, for example, 2 × 10 -4 or more, 3 × 10 -4 or more, 4 × 10 -4 or more, 5 × 10 -4 or more, 6 × 10 -4 or more, 7 × 10 -4 or more, 8 × 10 − 4 or more, 9 × 10 -4 or more, 1 × 10 -3 or more, 2 × 10 -3 or more, 3 × 10 -3 or more, 4 × 10 -3 or more, 5 × 10 -3 or more, 6 × 10 -3 Above, 7 × 10 −3 or more, 8 × 10 −3 or more, 9 × 10 −3 or more, 1 × 10 −2 or more, or 2 × 10 −2 or more. In fact, as shown in the examples, cells having the desired recombination (cells in which the sequence of the donor DNA was integrated into the target site) were observed in a ratio of 9.7 × 10 −3 to 2.4 × 10 −2 of all living cells. (Experiments 1-1 and 2-2). Therefore, it is expected that a target recombinant cell can be obtained by examining a limited number of cells without relying on a selection marker. The upper limit of the ratio is not particularly limited, but may be, for example, less than 1, for example, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, or 0.3 or less. In the present invention, in the above-mentioned “step of selecting cells in which the gene is modified” (or “step of selecting cells in which the sequence in the donor DNA is integrated”), for example, less than 5000 For a method of examining cells and selecting cells into which the sequence of the donor DNA has been incorporated, preferably less than 3000 cells, more preferably less than 2000, less than 1000, less than 800, less than 600, 500 cells Less than 400, less than 300, less than 200, less than 100, or less than 50 cells and selecting a cell into which the sequence of the donor DNA has been integrated. The above numerical value may be an average value, an approximate value, an expected value, or the like.
 目的とする改変を有しているか否かは、例えば目的の改変箇所に特異的な配列を直接または間接に検出することにより行うことができ、例えばPCRにより標的部位を増幅して塩基配列を確認したり、あるいは変異部位特異的なプライマー等を利用したPCRを行い、PCR産物の有無や増幅断片の長さ等を確認することにより識別することができる。 Whether or not the target modification is present can be determined by, for example, directly or indirectly detecting a sequence specific to the target modification site.For example, the base sequence is confirmed by amplifying the target site by PCR. Alternatively, PCR can be performed by using a primer specific to the mutation site or the like, and the presence or absence of the PCR product, the length of the amplified fragment, and the like can be confirmed.
 本発明のベクターを用いる遺伝子改変方法は、ドナーDNAの配列通りに改変された改変体の取得効率が極めて高く、遺伝子改変に伴った、標的配列DNAの残存と意図しない配列異常の発生率が低い。 The gene modification method using the vector of the present invention has a very high efficiency of obtaining a modified product modified according to the sequence of the donor DNA, and has a low incidence of unintended sequence abnormality due to the residual target sequence DNA due to the genetic modification. .
 遺伝子改変の頻度を測定する細胞に特に制限はないが、比較を行う場合、好ましくは、同じ細胞に由来する細胞株を用いて計測される。例えば、fibrosarcoma由来細胞、具体的にはHT-1080細胞(ATCC CCL-121)に由来する細胞株などを好適に用いることができる。 細胞 There is no particular limitation on the cells for which the frequency of genetic modification is measured, but in the case of comparison, it is preferably measured using a cell line derived from the same cells. For example, fibrosarcoma-derived cells, specifically, cell lines derived from HT-1080 cells (ATCC @ CCL-121) can be suitably used.
 また本発明は、遺伝子改変細胞または当該細胞を含む細胞集団を製造する以下の方法にも関する。すなわち本発明は、ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変細胞を製造、または当該細胞を含む細胞集団を製造する方法であって、
(a)ガイドRNA依存性DNAヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしないマイナス鎖RNAウイルスベクターを細胞に導入し、該ベクターを発現させ、該少なくとも一つのガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
(b)工程(a)の後、不足するガイドRNAおよびドナーDNAを細胞に供給する工程、を含む方法。
The present invention also relates to the following method for producing a genetically modified cell or a cell population containing the cell. That is, the present invention is a method for producing a genetically modified cell using a guide RNA-dependent DNA nuclease, or a method for producing a cell population containing the cell,
(A) carrying a gene for a guide RNA-dependent DNA nuclease, introducing a minus-strand RNA viral vector not encoding at least one of the guide RNAs required for the expression of the activity of the nuclease into cells, and expressing the vector; Accumulating the nuclease in a cell in the absence of the at least one guide RNA;
(B) supplying, after the step (a), the insufficient guide RNA and donor DNA to the cells.
 なお上記の方法は、工程(b)の後に、
(c)得られた細胞集団を回収する工程、
をさらに含んでもよい。
 あるいは、工程(b)または(c)の後に、
(c’)遺伝子が改変された細胞を選択する工程、
をさらに含んでもよい。
 当該工程は、「ドナーDNA中の配列が組み込まれた細胞を選択する工程」であってもよい。
In addition, the above-mentioned method, after the step (b),
(C) a step of collecting the obtained cell population,
May be further included.
Alternatively, after step (b) or (c),
(C ′) a step of selecting cells in which the gene has been modified,
May be further included.
This step may be a “step of selecting a cell into which the sequence in the donor DNA has been integrated”.
 当該マイナス鎖RNAウイルスベクターとしては、温度感受性マイナス鎖RNAウイルスベクターを用いることができる。すなわち本発明は、ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変方法、あるいは、ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変細胞または該細胞を含む細胞集団の製造方法であって、
(a)該ヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性の発現に必要なガイドRNAの少なくとも一つをコードしない温度感受性マイナス鎖RNAウイルスベクターを細胞に導入し、許容温度下で該ベクターを発現させ、該少なくとも一つのガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
(b)工程(a)の後、不足するガイドRNAおよびドナーDNAを細胞に供給する工程、
(c)工程(b)の前後または同時に培養温度を非許容温度に上昇させ、該ガイドRNAおよびドナーDNAが細胞内に存在する状態で培養する工程、を含む方法に関する。
As the minus strand RNA virus vector, a temperature sensitive minus strand RNA virus vector can be used. That is, the present invention is a method for gene modification using a guide RNA-dependent DNA nuclease, or a method for producing a genetically modified cell using a guide RNA-dependent DNA nuclease or a cell population containing the cell,
(A) a temperature-sensitive minus-strand RNA viral vector carrying the nuclease gene and not encoding at least one of the guide RNAs required for the expression of the nuclease activity is introduced into cells, and the vector is expressed at a permissive temperature. Allowing the nuclease to accumulate in a cell in the absence of the at least one guide RNA,
(B) after step (a), supplying the missing guide RNA and donor DNA to the cells;
(C) raising the culture temperature to a non-permissive temperature before or after or simultaneously with the step (b), and culturing the cells in a state where the guide RNA and the donor DNA are present in the cells.
 なお上記の方法は、工程(c)の後に、
(d)得られた細胞集団を回収する工程、
をさらに含んでもよい。
 あるいは工程(c)または(d)の後に、
(d’)遺伝子が改変された細胞を選択する工程、
をさらに含んでもよい。
 当該工程は、「ドナーDNA中の配列が組み込まれた細胞を選択する工程」であってもよい。
In addition, the above-mentioned method, after the step (c),
(D) recovering the obtained cell population,
May be further included.
Alternatively, after step (c) or (d),
(D ′) selecting cells in which the gene has been modified,
May be further included.
This step may be a “step of selecting a cell into which the sequence in the donor DNA has been integrated”.
 本発明の方法で製造される細胞集団は、ゲノムの標的部位が目的通りに改変された細胞を高頻度で含む。また、個々の細胞においても、標的部位が正確に改変され、標的外部位におけるindelの生成が抑制されていることが期待される。例えば、ドナーDNAを用いた本発明の方法で製造された細胞集団は、標的部位にドナーDNA由来のドナー配列を含む細胞の割合が、全生細胞中1×10-4以上、例えば2×10-4以上、3×10-4以上、4×10-4以上、5×10-4以上、6×10-4以上、7×10-4以上、8×10-4以上、9×10-4以上、1×10-3以上、2×10-3以上、3×10-3以上、4×10-3以上、5×10-3以上、6×10-3以上、7×10-3以上、8×10-3以上、9×10-3以上、1×10-2以上、または2×10-2以上である。割合の上限に特に制限はないが、例えば1未満であってよく、例えば0.8以下、0.7以下、0.6以下、0.5以下、0.4以下、または0.3以下である。上述の通り本発明の方法においては、細胞を選択マーカーで選択することは必須ではないため、本発明の方法で得られる細胞集団は、選択マーカー遺伝子を保持していない細胞が高頻度で含まれていてよい。本発明の細胞集団は、例えば選択マーカー遺伝子(例えば薬剤耐性遺伝子)を保持しない細胞を0.3以上、例えば0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、または0.9以上の割合で含んでいてよい。あるいは本発明の細胞集団は、すべての細胞が選択マーカー遺伝子を保持していなくてよい。 The cell population produced by the method of the present invention frequently contains cells in which the target site of the genome has been modified as desired. In addition, it is expected that the target site is accurately modified in each cell, and the generation of indel at the external position of the target is suppressed. For example, in the cell population produced by the method of the present invention using donor DNA, the ratio of cells containing the donor sequence derived from the donor DNA at the target site is 1 × 10 -4 or more in all living cells, for example, 2 × 10 -4 or more, 3 × 10 -4 or more, 4 × 10 -4 or more, 5 × 10 -4 or more, 6 × 10 -4 or more, 7 × 10 -4 or more, 8 × 10 -4 or more, 9 × 10 − 4 or more, 1 × 10 -3 or more, 2 × 10 -3 or more, 3 × 10 -3 or more, 4 × 10 -3 or more, 5 × 10 -3 or more, 6 × 10 -3 or more, 7 × 10 -3 The above is 8 × 10 −3 or more, 9 × 10 −3 or more, 1 × 10 −2 or more, or 2 × 10 −2 or more. The upper limit of the ratio is not particularly limited, but may be, for example, less than 1, for example, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, or 0.3 or less. As described above, in the method of the present invention, since it is not essential to select cells with a selection marker, the cell population obtained by the method of the present invention contains cells that do not carry the selection marker gene at a high frequency. May be. The cell population of the present invention contains, for example, 0.3 or more, for example, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, or 0.9 or more cells that do not have a selection marker gene (for example, a drug resistance gene). Good. Alternatively, in the cell population of the present invention, not all cells need to carry the selectable marker gene.
 また本発明の方法で製造される細胞集団は、ゲノムの標的部位にドナーDNA由来のドナー配列を含む細胞(すなわち、ゲノムの標的部位が目的通りに改変された細胞、およびゲノムの標的部位に塩基の挿入および/または欠損を伴う意図しない改変を含む細胞を含む)のうち、ゲノムの標的部位に塩基の挿入および/または欠損を伴う意図しない改変を含む細胞の割合が、例えば0.5以下、好ましくは0.4以下、0.3以下、0.2以下、または0.1以下(例えば7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、または1%以下)である。 The cell population produced by the method of the present invention includes cells containing a donor sequence derived from a donor DNA at a target site in the genome (ie, cells in which the target site in the genome has been modified as desired, and base cells in the target site in the genome). Of cells containing unintended modifications involving insertions and / or deletions), the percentage of cells containing unintended modifications involving insertion and / or deletion of bases at target sites in the genome is, for example, 0.5 or less, preferably 0.4 or less, 0.3 or less, 0.2 or less, or 0.1 or less (for example, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less).
 本発明の遺伝子改変の態様について、図に沿ってさらに詳細に説明する。 (4) The embodiment of the genetic modification of the present invention will be described in more detail with reference to the drawings.
 図2に、この発明の一実施形態による遺伝子改変スキームを示す。
 Aでは、Cas9搭載センダイウィルスベクターの感染、複製による鋳型の増幅、鋳型からのCas9 mRNAの転写、本ベクターの非再感染性を示すとともに、翻訳後核移行した多量のCas9ヌクレアーゼを示している。
 Bでは、ドナープラスミドのベクター骨格を細線で、ドナープラスミドの改変後配列が中心に位置する改変遺伝子に相同な配列を太線で示し、その下に、改変したい遺伝子座を長い太線で示しているが、改変遺伝子座の細胞に、ドナープラスミドが導入されると、改変遺伝子座とドナープラスミドの相同領域同士が整列することを示すとともに、Cas9/tracrRNA/crRNA複合体による標的配列の認識を示している。
 Cでは、切断によって改変後配列の組み換え反応が誘導されて、遺伝子改変体ができることを示すとともに、高頻度切断による高頻度遺伝子改変が起こるため、この遺伝子改変体クローンを、薬剤選択なしでワンステップシステムとして、生細胞クローンから選抜可能なことを示している。
 (ドナーDNAは、改変遺伝子に相同なDNA配列であり、ヒトHPRT遺伝子のイントロン1、改変後配列(縦線で表す)を持つエキソン2、イントロン2、エキソン3、イントロン3に渡る5488 bpの断片から成る。ドナーDNAとして、大腸菌DNA複製の開始点を有するドナープラスミドを活用できるが、改変遺伝子の相同DNA断片だけでも良いと考えられる。改変遺伝子座は、エキソン2内部に改変対象である改変前配列(星印)を持つ。)
FIG. 2 shows a genetic modification scheme according to one embodiment of the present invention.
A shows infection of the Send9 virus vector carrying Cas9, amplification of the template by replication, transcription of Cas9 mRNA from the template, non-reinfection of this vector, and a large amount of Cas9 nuclease that translocated to the nucleus after translation.
In B, the vector backbone of the donor plasmid is indicated by a thin line, the sequence after modification of the donor plasmid is indicated by a thick line, and the sequence homologous to the altered gene is indicated by a thick line, and the locus to be altered is indicated by a long thick line below. Shows that when the donor plasmid is introduced into cells at the modified locus, the homologous regions of the modified locus and the donor plasmid are aligned with each other, and that the target sequence is recognized by the Cas9 / tracrRNA / crRNA complex. .
In C, cleavage induces a recombination reaction of the modified sequence, indicating that a genetically modified product can be formed.In addition, since high-frequency genetic modification occurs due to frequent cleavage, this genetically modified clone can be used in one step without drug selection. This shows that the system can be selected from live cell clones.
(The donor DNA is a DNA sequence homologous to the modified gene, a 5488 bp fragment spanning intron 1, exon 2, intron 2, exon 3, and intron 3 of the human HPRT gene having the modified sequence (represented by a vertical line). As the donor DNA, a donor plasmid having an origin of E. coli DNA replication can be used, but it is considered that only a homologous DNA fragment of the modified gene may be used. It has an array (star).)
 図3に、SeV-Cas9技術による高頻度遺伝子改変の実証実験の手順を示す。
 A-Bは、図1と同様な遺伝子改変スキームを示す。試験細胞(TG98)のHPRT遺伝子座の標的には2塩基挿入のフレームシフト変異(HPRTTG98)を持つ。本実証実験では、遺伝子改変頻度を、HPRTTG98からHPRT+への遺伝子復帰頻度として定量する。TG98細胞はHAT培地で増殖不能であり、その細胞集団の中で、HPRT+復帰細胞だけがHAT培地で増殖できるため、HAT耐性コロニーの出現頻度を測定する。ドナープラスミドは、エキソン2上のSexAIサイト(ACCAGGT)を同義変換させたSmaI分子マーカー(ACCCGGG)を持つので、遺伝子座標的領域の配列改変をSexAIサイトからSmaIサイトへの変化によって確認できる。このドナープラスミドが遺伝子改変反応の鋳型に用いられずに、2塩基挿入変異からHPRT+配列に復帰することも考えられる。
 C-DはA-Bの反応に沿った操作手順を示す。Cas9搭載温度感受性型センダイウィルスベクターの感染、低温度条件下でCas9強発現後、Cas9発現減衰のため高温条件下で、RNA分子とドナーDNAを同時導入して非選択培地に播種する。5日後にHAT培地で選択をかけて、HAT耐性であるHPRT+への復帰クローンの出現頻度を測定し、遺伝子復帰頻度を正確に定量する。
FIG. 3 shows the procedure of a demonstration experiment of high-frequency gene modification using the SeV-Cas9 technology.
AB shows the same genetic modification scheme as FIG. The target of the HPRT locus of the test cell (TG98) has a two base-insertion frameshift mutation ( HPRTTG98 ). In this demonstration experiment, the frequency of gene modification is quantified as the frequency of gene reversion from HPRT TG98 to HPRT +. Since TG98 cells cannot proliferate in HAT medium and only HPRT + revertant cells can proliferate in HAT medium among the cell population, the frequency of appearance of HAT-resistant colonies is measured. Since the donor plasmid has a SmaI molecular marker (ACCCGGG) obtained by synonymously converting the SexAI site (ACCAGGT) on exon 2, sequence modification of the gene coordinate region can be confirmed by a change from the SexAI site to the SmaI site. It is also conceivable that this donor plasmid is not used as a template for the gene modification reaction, but returns to the HPRT + sequence from the double-base insertion mutation.
CD indicates the operating procedure along the reaction of AB. After infection of Cas9-loaded temperature-sensitive Sendai virus vector and strong expression of Cas9 under low temperature conditions, RNA molecules and donor DNA are simultaneously introduced under high temperature conditions to attenuate Cas9 expression, and seeded on a non-selective medium. Five days later, selection is performed in a HAT medium, the frequency of appearance of clones reverting to HAT-resistant HPRT + is measured, and the frequency of gene reversion is accurately quantified.
 図4(図4-1~図4-3)に、SeV-Cas9上清サンプルによる遺伝子復帰試験結果と遺伝子復帰体候補クローン(HAT耐性コロニー)における遺伝子復帰体構造の確認手順を示す。
 Aでは、実験1と実験2における、生細胞中のHAT耐性コロニーの出現頻度における、プラスミドからのCas9 sgRNA同時発現系とSeVからのCas9発現、RNAs導入系間の比較を示す。2つの条件のそれぞれにおける、総細胞数、総生細胞数、cell viability、総HAT耐性コロニー数、生細胞中のHAT耐性コロニーの出現頻度を表している。HAT耐性コロニーの出現頻度は、実験1、2において、プラスミドからのCas9 sgRNA同時発現系では0.003%程度であるのに対して、SeVからのCas9発現、RNAs導入系では1-2%程度であり、本発明条件において、一般的なプラスミド条件よりも顕著な高頻度化を示す。
 Bでは、遺伝子改変体の構造とPCRプライマーの位置を示す。相同遺伝子座領域5488 bp断片の5’外側プライマーGT68と3’外側プライマーGT69によるPCR解析から、9367 bp相当の断片を得ることによって、ドナープラスミドの骨格部分の挿入が起こっていないことを確認する。続いて、分子マーカー配列が位置するエキソン2の領域を増幅するプライマーGT19/GT22によるPCRから、525 bp相当の断片を得て配列を決定する。
 Cでは、実験1から単離されたHAT耐性クローンのPCRによる構造解析の結果を示す。プライマーGT68/GT69によって9367 bp相当のPCR産物が確認されたので、ドナープラスミドの骨格部分の挿入が起こっていないことを示す。Cの左下及び右下写真が示すように、分子マーカー配列が位置するエキソン2の領域を増幅するプライマーGT19/GT22によって525 bp相当のPCR産物を得たので配列解析を行う。白矢印を付けた2クローンについては、525 bpよりも大きなPCR産物を得た。これは、~100 bp程度の挿入が存在することを示唆する(D参照)。
 Dでは、第2列に、実験1-1と実験1-2におけるプラスミドからのCas9 sgRNA同時発現系由来の17個、12個のHAT耐性クローンの配列解析の結果のそれぞれを示す。実験1-1からの17 個のHAT耐性クローンのうち全クローンで読み枠が復帰していたが、次のような異常が伴っていた:1)17のうちの4クローンで標的配列DNAの残存(無作為挿入の可能性)が伴っていた;2)17のうちの2クローンで近接イントロン内での意図しない配列の挿入が伴っていた。実験2-1からの12 個のHAT耐性クローンのうち全クローンが遺伝子復帰されていたが、次のような異常が伴っていた:1)12のうちの6クローンで標的配列DNAの残存(無作為挿入の可能性)が伴っていた。
 第3列に、実験1-1と実験1-2におけるSeVからのCas9発現、RNAs導入系由来の12個、24個のHAT耐性クローンの配列解析の結果のそれぞれを示す。実験1-1からの12 個のHAT耐性クローンのうち全てのクローンで読み枠が復帰していた。実験1-2からの24 個のHAT耐性クローンのうち全てで読み枠は復帰していた。意図しない配列異常の付随現象は、SeVからのCas9発現、RNAs導入系で観察されなかった。この違いは、従来の方法では、標的外類似配列である、ドナーDNA上のデザイン配列や遺伝子改変後配列の切断・再結合が起こり易いが、本発明の方法では標的外類似配列への切断が抑制されていることを示唆する。
 以上の結果から、マイナス鎖RNAウイルスベクターからのヌクレアーゼ発現と、RNA導入とを組み合わせた方法は、意図しない配列異常の、遺伝子改変への付随を抑制できる、安全性の高い方法と言える。
FIG. 4 (FIGS. 4-1 to 4-3) shows the results of the gene reversion test using the supernatant sample of SeV-Cas9 and the procedure for confirming the structure of the gene revertant in the candidate revertant clone (HAT-resistant colony).
A shows a comparison between the expression system of Cas9 sgRNA from a plasmid, the expression system of Cas9 from SeV, and the introduction system of RNAs in the frequency of appearance of HAT-resistant colonies in living cells in Experiments 1 and 2. In each of the two conditions, the total number of cells, the total number of living cells, the cell viability, the total number of HAT-resistant colonies, and the frequency of appearance of HAT-resistant colonies in living cells are shown. In Experiments 1 and 2, the frequency of appearance of HAT resistant colonies was about 0.003% in the Cas9 sgRNA co-expression system from the plasmid, whereas it was about 1-2% in the Cas9 expression from RNA and the RNAs introduction system in the plasmid. Under the conditions of the present invention, the frequency is significantly higher than that under general plasmid conditions.
B shows the structure of the gene variant and the position of the PCR primer. PCR analysis of the 5488 bp fragment of the homologous locus region with the 5 'outer primer GT68 and the 3' outer primer GT69 confirms that insertion of the backbone portion of the donor plasmid has not occurred by obtaining a fragment corresponding to 9367 bp. Subsequently, a fragment corresponding to 525 bp is obtained from the PCR using primers GT19 / GT22 to amplify the region of exon 2 where the molecular marker sequence is located, and the sequence is determined.
C shows the results of PCR-based structural analysis of the HAT resistant clone isolated from Experiment 1. Since a PCR product equivalent to 9367 bp was confirmed by the primer GT68 / GT69, it indicates that insertion of the backbone portion of the donor plasmid has not occurred. As shown in the lower left and lower right photographs of C, a PCR product equivalent to 525 bp was obtained by the primer GT19 / GT22 which amplifies the region of exon 2 where the molecular marker sequence was located, and thus sequence analysis was performed. For the two clones with white arrows, PCR products larger than 525 bp were obtained. This suggests that there is an insertion of about 100100 bp (see D).
In D, the second row shows the results of sequence analysis of 17 and 12 HAT-resistant clones derived from the Cas9 sgRNA co-expression system from plasmids in Experiment 1-1 and Experiment 1-2, respectively. Of the 17 HAT-resistant clones from Experiment 1-1, the reading frame was restored in all clones, but the following abnormalities were accompanied: 1) The target sequence DNA remained in 4 of 17 clones (Possibility of random insertion); 2) 2 out of 17 clones were associated with unintended insertion of sequences in adjacent introns. All of the 12 HAT resistant clones from Experiment 2-1 had their genes reverted, but had the following abnormalities: 1) 6 of 12 clones had residual target sequence DNA (no Possibility of random insertion).
The third column shows the results of Cas9 expression from SeV and sequence analysis of 12 and 24 HAT-resistant clones derived from the RNAs transfection system in Experiment 1-1 and Experiment 1-2, respectively. All of the 12 HAT resistant clones from Experiment 1-1 had their reading frames restored. The reading frame was restored in all 24 HAT resistant clones from Experiment 1-2. No unintended sequence abnormality was observed in the expression of Cas9 from SeV or the RNAs transfection system. This difference is due to the fact that in the conventional method, cleavage / rejoining of the design sequence on the donor DNA or the sequence after genetic modification, which is an off-target analogous sequence, is likely to occur, but the cleavage of the off-target analogous sequence in the method of the present invention. Suggests that it is suppressed.
From the above results, it can be said that the method combining nuclease expression from a minus-strand RNA virus vector and RNA introduction is a highly safe method that can suppress unintended sequence abnormalities from being attached to genetic modification.
 図5に、TG98評価細胞に対するSeV-Cas9の精製サンプルによる遺伝子復帰試験、実験2-1、2-2から、生細胞中のHAT耐性コロニーの出現頻度における、プラスミドからのCas9 sgRNA同時発現系とSeVからのCas9発現、RNAs導入系間の比較を示す。2つの条件のそれぞれにおける、総細胞数、総生細胞数、cell viability、総HAT耐性コロニー数、生細胞中のHAT耐性コロニーの出現頻度を表している。HAT耐性コロニーの出現頻度は、プラスミドからのCas9 sgRNA同時発現系では0.004%程度であるのに対して、SeVからのCas9発現、RNAs導入系では0.3%程度であり、本発明条件において、一般的なプラスミド条件よりも顕著な高頻度化を示す。また、Cell viabilityが、SeV-Cas9の上清サンプルを用いた実験1-1、1-2では1-2%であったのに対して、SeV-Cas9精製サンプルを用いた実験2-1、2-2では10-13%に向上したことが分かる。この改善された実験条件から得られた結果を根拠に、HPRTTG98変異の遺伝子復帰において、SeVからのCas9発現、RNAs導入系による生細胞中の遺伝子復帰頻度は0.3%程度であると考えられる。 FIG. 5 shows a gene reversion test using a purified sample of SeV-Cas9 on TG98 evaluation cells. Experiments 2-1 and 2-2 show that the frequency of appearance of HAT-resistant colonies in living cells was higher than that of Cas9 sgRNA co-expression system from plasmid. 2 shows a comparison between Cas9 expression from SeV and an RNAs transfection system. In each of the two conditions, the total number of cells, the total number of living cells, the cell viability, the total number of HAT-resistant colonies, and the frequency of appearance of HAT-resistant colonies in living cells are shown. The appearance frequency of HAT-resistant colonies is about 0.004% in the Cas9 sgRNA co-expression system from the plasmid, whereas it is about 0.3% in the Cas9 expression from RNA and the RNAs introduction system. It shows a remarkable increase in frequency more than the simple plasmid condition. In addition, while the cell viability was 1-2% in Experiments 1-1 and 1-2 using the supernatant sample of SeV-Cas9, Experiment 2-1 using the purified sample of SeV-Cas9, In 2-2, it can be seen that it was improved to 10-13%. Based on the results obtained from the improved experimental conditions, it is considered that in the gene reversion of the HPRT TG98 mutation, the expression of Cas9 from SeV and the frequency of gene reversion in living cells by the RNAs transfection system are about 0.3%.
 図6に、SeV-Cas9の精製サンプルによる遺伝子破壊試験、実験3-1、3-2から、生細胞中の6チオグアニン耐性(6TGR)コロニーの出現頻度における、プラスミドからのCas9 sgRNA同時発現系とSeVからのCas9発現、RNAs導入系間の比較を示す。2つの条件のそれぞれにおける、総細胞数、総生細胞数、cell viability、総6TGR耐性コロニー数、生細胞中の6TGR耐性コロニーの出現頻度を表している。6TGR耐性コロニーの出現頻度は、プラスミドからのCas9 sgRNA同時発現系では0.17%程度あるのに対して、SeVからのCas9発現、RNAs導入系では0.3-0.5%程度であり、本発明条件において、一般的なプラスミド条件よりも有意な高頻度化を示す。Cas9発現、RNA導入系を遺伝子破壊目的で使用できることを確認した。また、導入RNA量と遺伝子破壊頻度との用量反応関係性が認められた。 FIG. 6 shows a gene disruption test using a purified sample of SeV-Cas9. Experiments 3-1 and 3-2 show that the frequency of appearance of 6-thioguanine-resistant (6TG R ) colonies in living cells indicates that the Cas9 sgRNA co-expression system from plasmid was used 7 shows a comparison between Cas9 expression from RNA and SeV, and an RNAs transfection system. In each of the two conditions, the total cell number, the total number of viable cells, cell viability, total 6TG R resistant colony number represents the frequency of occurrence of 6TG R resistant colonies of viable cells. Frequency of 6TG R resistant colonies, whereas there about 0.17% in Cas9 sgRNA coexpression system from plasmid, Cas9 expression from SeV, the RNAs introduction system is about 0.3-0.5%, in the present invention conditions, The frequency is significantly higher than that of general plasmid conditions. It was confirmed that Cas9 expression and RNA introduction system can be used for gene disruption purpose. In addition, a dose-response relationship between the amount of introduced RNA and the frequency of gene disruption was observed.
 図7-1に、TG439-1評価細胞に対するSeV-Cas9の精製サンプルによる遺伝子復帰試験、実験4-1、4-2、4-3から、生細胞中のHAT耐性コロニーの出現頻度における、プラスミドからのCas9 sgRNA同時発現系とSeVからのCas9発現、RNAs導入系間の比較を示す。2つの条件のそれぞれにおける、総細胞数、総生細胞数、cell viability、総HAT耐性コロニー数、生細胞中のHAT耐性コロニーの出現頻度を表している。HAT耐性コロニーの出現頻度は、プラスミドからのCas9 sgRNA同時発現系では0.003%程度であるのに対して、SeVからのCas9発現、RNAs導入系では0.1%程度であり、本発明条件において、一般的なプラスミド条件よりも顕著な高頻度化を示す。
 実験4-1と実験4-2におけるプラスミドからのCas9 sgRNA同時発現系由来の5個、3個のHAT耐性クローンの配列解析の結果のそれぞれを図7-2左側に示す。1)標的配列DNAの残存が伴っていなかった;2)近接イントロン内での意図しない配列の挿入が伴っていなかった。実験4-1と実験4-2における、SeVからのCas9発現、RNAs導入系由来の12個、12個のHAT耐性クローンの配列解析の結果のそれぞれを図7-2右側に示す。1)2)のような遺伝子復帰に伴った、意図しない配列異常の付随は認められなかった。
 実験4-3において、導入RNA量と遺伝子破壊頻度との用量反応関係性が認められた。
FIG. 7-1 shows a gene reversion test using a purified sample of SeV-Cas9 on TG439-1 evaluation cells, and experiments 4-1, 4-2, and 4-3 show plasmids in the frequency of appearance of HAT-resistant colonies in living cells. 2 shows a comparison between a Cas9 sgRNA co-expression system from Escherichia coli and a Cas9 expression from SeV and RNAs transfection system. In each of the two conditions, the total number of cells, the total number of living cells, the cell viability, the total number of HAT-resistant colonies, and the frequency of appearance of HAT-resistant colonies in living cells are shown. The frequency of appearance of HAT-resistant colonies is about 0.003% in the Cas9 sgRNA co-expression system from the plasmid, whereas it is about 0.1% in the Cas9 expression from SeV and RNAs introduction system. It shows a remarkable increase in frequency more than the simple plasmid condition.
The results of sequence analysis of five and three HAT-resistant clones derived from the Cas9 sgRNA co-expression system from plasmids in Experiment 4-1 and Experiment 4-2 are shown on the left side of FIG. 7-2. 1) There was no accompanying residual target sequence DNA; 2) No unintended sequence insertion in adjacent introns. The right side of FIG. 7-2 shows the results of Cas9 expression from SeV and sequence analysis of 12 and 12 HAT-resistant clones derived from the RNAs transfection system in Experiment 4-1 and Experiment 4-2, respectively. No unintended sequence abnormality accompanying the gene reversion as in 1) and 2) was observed.
In Experiment 4-3, a dose-response relationship between the amount of the introduced RNA and the frequency of gene disruption was observed.
 以下に、CRISPR/Cas9誘導型の遺伝子改変法における従来法の問題点と本発明の方法の優位性を示す。
 図1には、従来遺伝子改変法の代表的なスキームを図示している。図2には、従来の課題を解決する本発明(新規遺伝子改変法)のスキームを図示している。下表には、従来法が抱える課題と、本発明による解決を示した。すなわち、本発明において用いられるマイナス鎖RNAウイルスベクターは、DNAフェーズを持たないため細胞の染色体への意図しない挿入は起こる危険はない(表の一番上)。また、標的外類似配列の切断、2段階選抜に起因する過剰な労力・時間の課題、部位特異的組換え部位残存(痕跡)の課題、ドナーからの標的切断配列の除去、遺伝子改変頻度の調節(以上、表参照)などの課題が、本発明によって解決または改善されることを示している。これらの課題の解決や改善は、Cas9発現の短期化・強化を実現させた本発明のシステムによる遺伝子改変頻度の数十倍以上の向上(表の一番下)によって成されたと言える。
The problems of the conventional method in the CRISPR / Cas9-induced gene modification method and the superiority of the method of the present invention are described below.
FIG. 1 illustrates a typical scheme of a conventional gene modification method. FIG. 2 illustrates a scheme of the present invention (a novel gene modification method) that solves the conventional problem. The table below shows the problems of the conventional method and the solution by the present invention. That is, since the minus-strand RNA virus vector used in the present invention does not have a DNA phase, there is no danger of unintended insertion into the chromosome of a cell (at the top of the table). In addition, cleavage of off-target similar sequences, problems of excessive labor and time due to two-step selection, problems of site-specific recombination sites remaining (traces), removal of target cleavage sequences from donors, regulation of gene modification frequency Problems such as those described above (see the table) are shown to be solved or improved by the present invention. It can be said that these problems were solved or improved by improving the frequency of genetic modification by several tens of times or more (at the bottom of the table) by the system of the present invention that realized the shortening and enhancement of Cas9 expression.
[表1]
Figure JPOXMLDOC01-appb-I000001
[Table 1]
Figure JPOXMLDOC01-appb-I000001
 本発明は、遺伝子改変頻度の調節が可能で、遺伝子改変に伴った意図しない配列異常の発生を抑え、高い割合で細胞のゲノムに所望の改変を導入したり、ゲノム上の変異を修復するために有用であり、例えば、遺伝子の機能解析、遺伝子治療、品種改良、生物工学的創作を目的に遺伝子配列を高効率に改変する分子遺伝学システムとして有用である。特に本発明は、遺伝性疾患の原因遺伝子において、疾患原因配列を正常配列に変換するために用いることができる。 The present invention is capable of regulating the frequency of genetic modification, suppressing the occurrence of unintended sequence abnormalities associated with genetic modification, introducing a desired modification into the genome of cells at a high rate, or repairing mutations in the genome. For example, it is useful as a molecular genetics system for highly efficiently modifying a gene sequence for the purpose of gene function analysis, gene therapy, breed improvement, and biotechnological creation. In particular, the present invention can be used to convert a disease-causing sequence into a normal sequence in a causative gene of a hereditary disease.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。また、本明細書中に引用された文献及びその他の参照は、すべて本明細書の一部として組み込まれる。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Also, all references and other references cited herein are incorporated as part of this specification.
[実施例1] pBS-HPRTEx2SMAIプラスミドの構築
 本発明で用いたドナープラスミド作製のためのサブプラスミドの構築方法を以下に示す。本発明において「pBS」とは、pBluescript SK+を示す。
[Example 1] Construction of pBS-HPRTEx2SMAI plasmid A subplasmid construction method for producing a donor plasmid used in the present invention is described below. In the present invention, “pBS” indicates pBluescript SK +.
 pBS-HPRTEx2サブプラスミドの構築は以下の通りに行った。Fibrosarcoma由来のHT-1080細胞のgenomic DNAを鋳型にして、5’- AGCCTGGGCAACATAGCGAGACTTC -3’(GT28)(配列番号1)及び 5’- TCTGGTCCCTACAGAGTCCCACTATACC -3’(GT22)(配列番号2)を用いて、KOD-PLUS-DNA polymerase(TOYOBO)によるPCR反応(94℃-2分→94℃-15秒、60℃-30秒、68℃-3分30秒を40サイクル→68℃-7分)を行い、約2800 baseのPCR産物を得た。Fibrosarcoma由来のHT-1080細胞のgenomic DNAを鋳型にして、5’- GCTGGGATTACACGTGTGAACCAACC -3’(GT19)(配列番号3)及び 5’- TGGCTGCCCAATCACCTACAGGATTG -3’(GT24)(配列番号4)を用いて、KOD-PLUS-DNA polymeraseによるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-8分を40サイクル→68℃-7分)を行い、約3100 baseのPCR産物を得た。上記の2800-bp PCR産物と3100-bp PCR産物を鋳型にして、5’- ATCCACTAGTTCTAGAAGCCTGGGCAACATAGCGAGACTTC -3’(GT29)(配列番号5)及び 5’- CACCGCGGTGGCGGCCGCTGGCTGCCCAATCACCTACAGGATTG -3’(GT30)(配列番号6)を用いて、KOD-PLUS-DNA polymerase(TOYOBO株式会社 コード番号KOD-101)によるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-6分を40サイクル→68℃7分)を行い、約5500 baseのPCR産物を得た。上記の5500-bp PCR産物とNotIで消化したpBluescript SK+をIn-Fusion kit(Clontech Laboratories, Inc. カタログ番号639649)で連結させて、pBS-HPRTEx2(18-7)を得た。以後、このプラスミドをsite-directed mutagenesisの鋳型として用いた。 構築 Construction of the pBS-HPRTEx2 subplasmid was performed as follows. Using genomic DNA of HT-1080 cells derived from Fibrosarcoma as a template, using 5'- AGCCTGGGCAACATAGCGAGACTTC -3 '(GT28) (SEQ ID NO: 1) and 5'- TCTGGTCCCTACAGAGTCCCACTATACC -3' (GT22) (SEQ ID NO: 2), Perform PCR reaction with KOD-PLUS-DNA polymerase (TOYOBO) (94 cycles of 94 ° C for 2 minutes → 94 ° C for 15 seconds, 60 ° C for 30 seconds, 68 ° C for 3 minutes and 30 seconds for 40 cycles → 68 ° C for 7 minutes) As a result, a PCR product of about 2800 base was obtained. Using genomic DNA of HT-1080 cells derived from Fibrosarcoma as a template, using 5'- GCTGGGATTACACGTGTGAACCAACC -3 '(GT19) (SEQ ID NO: 3) and 5'- TGGCTGCCCAATCACCTACAGGATTG -3' (GT24) (SEQ ID NO: 4), Perform a PCR reaction with KOD-PLUS-DNA polymerase (94 ° C for 2 minutes → 94 ° C for 15 seconds, 58 ° C for 30 seconds, 68 ° C for 8 minutes, 40 cycles → 68 ° C for 7 minutes). A PCR product was obtained. Using the above 2800-bp PCR product and 3100-bp PCR product as templates, 5′- ATCCACTAGTTCTAGAAGCCTGGGCAACATAGCGAGACTTC -3 ′ (GT29) (SEQ ID NO: 5) and 5′- CACCGCGGTGGCGGCCGCTGGCTGCCCAATCACCTACAGGATTG -3 ′ (GT30) (SEQ ID NO: 6) Using KOD-PLUS-DNA polymerase (TOYOBO Co., Ltd., code number KOD-101), PCR reaction (94 ° C-2 minutes → 94 ° C-15 seconds, 58 ° C-30 seconds, 68 ° C-6 minutes, 40 cycles → 68 ° C for 7 minutes) to obtain a PCR product of about 5500 base. The 5500-bp @PCR product and pBluescript \ SK + digested with NotI were ligated with an In-Fusion \ kit (Clontech Laboratories, Inc., catalog number 639649) to obtain pBS-HPRTEx2 (18-7). Thereafter, this plasmid was used as a template for site-directed Δmutagenesis.
 pBS-HPRTEx2ISCEIサブプラスミドの構築は以下の通りに行った。Fibrosarcoma由来のHT-1080細胞のgenomic DNAを鋳型にして、5’- TAGTTCTAGAGCGGCCGCAGCCTGGGCAACATAGCGAGACTTC -3’(GT35)(配列番号7)及びI-SceI認識配列(下線)を含む 5’- ATTACCCTGTTATCCCTAACCTGGTTCATCATCACTAATCTG -3’(GT34)(配列番号8)を用いて、KOD-PLUS-DNA polymerase(TOYOBO株式会社 コード番号KOD-101)によるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-3分を40サイクル→68℃-7分)を行い、約2500 baseのPCR産物を得た。Fibrosarcoma由来のHT-1080細胞のgenomic DNAを鋳型にして、I-SceI認識配列(下線)を含む 5’- TAGGGATAACAGGGTAATTATGACCTTGATTTATTTTGCATACC -3’(GT33)(配列番号9)及び 5’- CACCGCGGTGGCGGCCGCTGGCTGCCCAATCACCTACAGGATTG -3’(GT30)(配列番号6)を用いて、KOD-PLUS-DNA polymeraseによるPCR反応(94℃-2分→94℃-15秒、58℃-30秒、68℃-3分を40サイクル→68℃-7分)を行い、約2900 baseのPCR産物を得た。上記の2500-bp PCR産物と2900-bp PCR産物とNotIで消化したpBluescript SK+とをIn-Fusion kit(TOYOBO)で連結させて、pBS-HPRTEx2ISCEI(21-1)を得た。以後、このプラスミドを、site-directed mutagenesisから得られる改変配列を有した断片の置換先プラスミドとして用いた。 Construction of the pBS-HPRTEx2ISCEI subplasmid was performed as follows. The genomic DNA of HT-1080 cells from Fibrosarcoma as a template, 5'- TAGTTCTAGAGCGGCCGCAGCCTGGGCAACATAGCGAGACTTC -3 '(GT35) ( SEQ ID NO: 7) and I-SceI recognition sequence including (underlined) 5'- ATTACCCTGTTATCCCTA ACCTGGTTCATCATCACTAATCTG -3' ( GT34) (SEQ ID NO: 8) and PCR reaction (94 ° C for 2 minutes → 94 ° C for 15 seconds, 94 ° C for 15 seconds, 58 ° C for 30 seconds, 68) by KOD-PLUS-DNA polymerase (TOYOBO Co., code number KOD-101) 40 cycles of -3 ° C for 3 minutes → 68 ° C for 7 minutes) to obtain a PCR product of about 2500 bases. Using the genomic DNA of HT-1080 cells derived from Fibrosarcoma as a template, 5′- TAGGGATAACAGGGTAAT TATGACCTTGATTTATTTTGCATACC -3 ′ (GT33) (SEQ ID NO: 9) containing the I-SceI recognition sequence (underlined) and 5′-CACCGCGGGGGCGGCCGCTGGCTGCCCAATCACCTACAGGATTG-3 ′ Using GT30) (SEQ ID NO: 6), PCR reaction with KOD-PLUS-DNA polymerase (94 ° C for 2 minutes → 94 ° C for 15 seconds, 58 ° C for 30 seconds, 68 ° C for 3 minutes, 40 cycles → 68 ° C) -7 minutes) to obtain a PCR product of about 2900 bases. The 2500-bp PCR product, the 2900-bp PCR product, and pBluescript SK + digested with NotI were ligated with an In-Fusion kit (TOYOBO) to obtain pBS-HPRTEx2ISCEI (21-1). Thereafter, this plasmid was used as a replacement plasmid for a fragment having a modified sequence obtained from site-directed mutagenesis.
 pBS-HPRTEx2SMAIプラスミドの構築は以下の通りに行った。前期のプラスミドpBS-HPRTEx2(18-7)を鋳型にして、改変後配列SMAI(下線)を含む 5’- GGGTATGACCTTGATTTATTTTGCATACC-3’(GT42)(配列番号10)及び 5’- GGGTTCATCATCACTAATCTG-3’(GT43)(配列番号11)を用いて、site-directed mutagenesis法の一つとしてKOD-PLUS-Inverse PCR mutagenesis kit(TOYOBO)を用いることによって、pBS-HPRTEx2SMAI(P1)得た。pBS-HPRTEx2SMAI(P1) plasmid DNA をBglIIとSphIで消化・ゲル抽出したSMAI配列を含むBglII-SphI断片とBglIIとSphIで消化した上記のpBS-HPRTEx2ISCEI(21-1) plasmid DNAでライゲーションを行い、ドナープラスミドpBS-HPRTEx2SMAI (P1-6)を得た。 Construction of the pBS-HPRTEx2SMAI plasmid was performed as follows. Using the plasmid pBS-HPRTEx2 (18-7) of the first term as a template, 5′-GG G TATGACCTTGATTTATTTTGCATACC-3 ′ (GT42) (SEQ ID NO: 10) and 5′- G GGTTCATCATCACTAATCTG-3 containing the modified sequence SMAI (underlined) Using '(GT43) (SEQ ID NO: 11), pBS-HPRTEx2SMAI (P1) was obtained by using KOD-PLUS-Inverse PCR mutagenesis kit (TOYOBO) as one of the site-directed mutagenesis methods. The pBS-HPRTEx2SMAI (P1) plasmid DNA was digested with BglII and SphI. The donor plasmid pBS-HPRTEx2SMAI (P1-6) was obtained.
[実施例2] 遺伝子復帰試験の評価細胞(TG98細胞)の作製
 SeV-Cas9を用いた遺伝子復帰の対象細胞の作製は以下の通りに行った。Fibrosarcoma由来HT-1080細胞のHPRT遺伝子のエキソン2内のSexAIサイト(5’-ACCAGGT-3’)の5’-CCA-3’をProtospacer Adjacent Motif (PAM)とする標的配列を設定して、その配列付近の変異を持つ細胞を単離するために、CAG-hspCas9-H1-gRNA linearized SmartNuclease vector DNA (System Biosciencesカタログ番号CAS920A-1)を用いて、H1 promoterの直後に、標的配列(下線)を含む5’-TGTATGAGACCACAATAAATCAAGGTCATAACC-3’(GT50)(配列番号12)と5’-AAACGGTTATGACCTTGATTTATTGTGGTCTCA-3’(GT51)(配列番号13)から成る2本鎖オリゴヌクレオチドを連結させて、プラスミドpCas9-sgHPRT1を得た。
 次に、Fibrosarcoma由来HT-1080細胞を準備して、pCas9-sgHPRT1 plasmid DNAを、X-tremeGene HP DNA Transfection Reagent Version 08(Roche カタログ番号06 366 236 001)を用いて導入し、ディッシュに播種した後、7.5μg/mL 6-thioguanine (Wakoカタログ番号203-03771)を含む培地で交換して、1x106個オーダーのHT-1080細胞から2個の6-チオグアニン耐性コロニーを得た。配列解析の結果、2クローンともに標的配列内に変異を持つことが分かった。そのうちの一つでは、図4Dの表中上段行に示すように2塩基挿入によるフレームシフトが起こっていた(GGTTATGACCTTGATTTATT (配列番号44) → GGTTATATGACCTTGATTTATT (配列番号45)下線部)。この変異をHPRTTG98として、このクローンをTG98細胞とする。
 以上のようにFibrosarcoma由来HT-1080細胞のHPRT遺伝子の変異体の一つとしてTG98細胞株を得たので、Cas9搭載センダイウィルスベクターまたはプラスミド(コントロール)による遺伝子復帰試験の評価細胞として用いた。
[Example 2] Preparation of evaluation cells (TG98 cells) for gene reversion test Preparation of target cells for gene reversion using SeV-Cas9 was performed as follows. A target sequence was set as Protospacer Adjacent Motif (PAM) at 5'-CCA-3 'of the SexAI site (5'-ACCAGGT-3') in exon 2 of the HPRT gene of Fibrosarcoma-derived HT-1080 cells, To isolate cells with mutations near the sequence, use CAG-hspCas9-H1-gRNA linearized SmartNuclease vector DNA (System Biosciences Catalog No. CAS920A-1) to insert the target sequence (underlined) immediately after the H1 promoter. 5'-TGTATGAGACCAC AATAAATCAAGGTCATAACC -3 '(GT50) (SEQ ID NO: 12) and 5'-AAAC GGTTATGACCTTGATTTATT GTGGTCTCA-3' (GT51) (SEQ ID NO: 13) are ligated to form a plasmid pCas9- sgHPRT1 was obtained.
Next, HT-1080 cells derived from Fibrosarcoma were prepared, pCas9-sgHPRT1 plasmid DNA was introduced using X-tremeGene HP DNA Transfection Reagent Version 08 (Roche Cat. No. 06 366 236 001), and seeded on a dish. The medium was replaced with a medium containing 7.5 μg / mL 6-thioguanine (Wako Cat. No. 203-03771) to obtain two 6-thioguanine resistant colonies from 1 × 10 6 HT-1080 cells. As a result of sequence analysis, both clones were found to have mutations in the target sequence. In one of them, as shown in the upper row of the table in FIG. 4D, a frame shift occurred due to insertion of two bases (GGTTATGACCTTGATTTATT (SEQ ID NO: 44) → GGT TA TATGACCTTGATTTATT (SEQ ID NO: 45) underlined). This mutation is designated as HPRT TG98 , and this clone is designated as TG98 cells.
As described above, a TG98 cell line was obtained as one of the HPRT gene mutants of Fibrosarcoma-derived HT-1080 cells, and was used as an evaluation cell in a gene reversion test using a Cas9-loaded Sendai virus vector or plasmid (control).
[実施例3] 遺伝子復帰試験の評価細胞TG98細胞に対するプラスミドpCas9-sgRNAの作製
 HT-1080細胞のHPRT遺伝子変異体TG98細胞株のエキソン2内の2塩基挿入変異(HPRTTG98)付近を標的として切断できるプラスミドを作製するために、SexAIサイト(5’-ACCAGGT-3’)の5’-CCA-3’をPAMとする標的配列を設定して、CAG-hspCas9-H1-gRNA linearized SmartNuclease vector DNA (System Biosciencesカタログ番号CAS920A-1)を用いて、H1 promoterの直後に、標的配列(下線)を含む5’-TGTATGAGACCACTAAATCAAGGTCATATAACC-3’(GT99)(配列番号14)と5’-AAACGGTTATATGACCTTGATTTAGTGGTCTCA-3’(GT100)(配列番号15)から成る2本鎖オリゴヌクレオチドを連結させて、プラスミドpCas9-sgHPRT1mを得て、遺伝子復帰実験の際に、コントロールとして用いた。なおGT99の3'端から5-4番目のTA、およびGT100の5'端から8-9番目のTAは2塩基挿入変異の位置を示す。
Example 3 Evaluation of Gene Reversion Test Preparation of Plasmid pCas9-sgRNA for TG98 Cell HT-1080 Cell HPRT Gene Mutant TG98 Cell Line Cleavage Targeted near the Two-Base Insertion Mutation (HPRT TG98 ) in Exon 2 of TG98 Cell Line In order to prepare a plasmid that can be prepared, a target sequence having PAM at 5′-CCA-3 ′ of the SexAI site (5′-ACCAGGT-3 ′) is set, and CAG-hspCas9-H1-gRNA linearized SmartNuclease vector DNA ( Using System Biosciences catalog number CAS920A-1), immediately after the H1 promoter, 5'-TGTATGAGACCAC TAAATCAAGGTCATATAACC -3 '(GT99) containing the target sequence (underlined) (SEQ ID NO: 14) and 5'-AAAC GGTTATATGACCTTGATTTA GTGGTCTCA-3 A double-stranded oligonucleotide consisting of '(GT100) (SEQ ID NO: 15) was ligated to obtain plasmid pCas9-sgHPRT1m, which was used as a control in a gene reversion experiment. The 5th to 4th TA from the 3 'end of GT99 and the 8th to 9th TA from the 5' end of GT100 indicate the positions of the two-base insertion mutation.
[実施例4] Cas9搭載センダイウィルスベクター SeV-Cas9の作製
 Cas9搭載センダイウィルスベクター SeV-Cas9の作製は以下の通りに行った。Cas9 SmartNuclease All-in-one Vector (System Biosciencesカタログ番号CAS920A-1)に由来するCas9 nuclease配列をセンダイウィルスベクターSeVに搭載するために、第1PCRによって、当該Cas9 nuclease配列が10分割された第1PCR産物を得て、第2PCRでは、5’側の4つの第1PCR産物を鋳型とする場合、中央付近の3つの第1PCR産物を鋳型とする場合、3’側の3つの第1PCR産物を鋳型とする場合、それぞれの場合から第2PCR産物を得て、第3PCRで、3つの第2PCR産物を鋳型として、当該Cas9 nuclease配列の全長に渡る第3PCR産物を得て、これをセンダイウィルスベクターに搭載させた。第1PCRにおいて当該Cas9 nuclease配列を10分割する理由は、当該Cas9 nuclease配列内には9か所のA rich配列(5Aまたは6A)が散在しているが、A rich配列上では、センダイウィルスベクターの生産過程でセンダイウィルスのRNA依存性RNAポリメラーゼによるエラーが起こりがちなので、このようなエラー現象を回避するためである。A rich配列部位を分割PCRの継ぎ目になるようにPCRプライマーを設定して、各プライマー配列を同義コドンの制限下にA/TからG/Cに置換させた。
[Example 4] Preparation of Send9 virus vector SeV-Cas9 carrying Cas9 Preparation of a Sendai virus vector SeV-Cas9 carrying Cas9 was performed as follows. First PCR product in which the Cas9 nuclease sequence was divided into 10 by the first PCR in order to load the Cas9 nuclease sequence derived from the Cas9 SmartNuclease All-in-one Vector (System Biosciences Catalog No. CAS920A-1) into the Sendai virus vector SeV In the second PCR, when the four first PCR products on the 5 ′ side are used as templates, when the three first PCR products near the center are used as templates, the three first PCR products on the 3 ′ side are used as templates. In each case, the second PCR product was obtained from each case, and in the third PCR, using the three second PCR products as templates, a third PCR product over the entire length of the Cas9 nuclease sequence was obtained, and this was mounted on the Sendai virus vector. . The reason that the Cas9 nuclease sequence is divided into 10 in the first PCR is that nine A rich sequences (5A or 6A) are scattered in the Cas9 nuclease sequence, but the Sendai virus vector This is to avoid such an error phenomenon because an error due to the RNA-dependent RNA polymerase of Sendai virus tends to occur during the production process. PCR primers were set so that the A rich sequence site became a joint of the split PCR, and each primer sequence was replaced from A / T to G / C under the restriction of synonymous codons.
[表2]
第1PCRのプライマーと鋳型DNA
Figure JPOXMLDOC01-appb-I000002
*: CAG-hspCas9-H1-gRNA linearized SmartNuclease vector (System Biosciences カタログ# CAS920A-1)のDNAを使用した。
[Table 2]
First PCR primer and template DNA
Figure JPOXMLDOC01-appb-I000002
*: DNA of CAG-hspCas9-H1-gRNA linearized SmartNuclease vector (System Biosciences catalog # CAS920A-1) was used.
 各プライマー配列を以下に示す。
Not1_CAS9_N (配列番号16): ATATGCGGCCGCTCGCCACCATGGCTAGTATGCAGAAACTG
CAS9_A96G_C (配列番号17): CCGATACTATACTTCTTGTCGGCAGCGGGC
CAS9_A96G_N (配列番号18): GCCCGCTGCCGACAAGAAGTATAGTATCGG
CAS9_A222G_C (配列番号19): GGCTCCAATCAGATTCTTCTTGATACTGTG
CAS9_A222G_N (配列番号20): CACAGTATCAAGAAGAATCTGATTGGAGCC
CAS9_A789G_C (配列番号21): CCAAACAGGCCGTTCTTCTTTTCGCCTGG
CAS9_A789G_N (配列番号22): CCAGGCGAAAAGAAGAACGGCCTGTTTGG
CAS9_A789G_C (配列番号23): CCAAACAGGCCGTTCTTCTTTTCGCCTGG
CAS9_A1413G_N (配列番号24): GAGAAGATCGAAAAGATTCTGACTTTCCGC
CAS9_A1602G_C (配列番号25): GCTTGGGCAGCACTTTCTCATTTGGCAGG
CAS9_A1602G_N (配列番号26): CCTGCCAAATGAGAAAGTGCTGCCCAAGC
CAS9_A2673G_C (配列番号27): CACTCTTTCCTCGGTTCTTGTCGCTGCGGG
CAS9_A2673G_N (配列番号28): CCCGCAGCGACAAGAACCGAGGAAAGAGTG
CAS9_A3147G_C (配列番号29): CTCTTGGCGATCATCTTTCTGACATCGTAC
CAS9_A3147G_N (配列番号30): GTACGATGTCAGAAAGATGATCGCCAAGAG
CAS9_A3546G_C (配列番号31): CAGTTTCTTGCTCTTTCCCTTCTCCACC
CAS9_A3546G_N (配列番号32): GGTGGAGAAGGGAAAGAGCAAGAAACTG
CAS9_A3750G_C (配列番号33): CAGTTCATTTCCTTTCTGCAGCTCGCCGGC
CAS9_A3750G_N (配列番号34): GCCGGCGAGCTGCAGAAAGGAAATGAACTG
CAS9_EIS_Not1_C (配列番号35): ATATGCGGCCGCGAACTTTCACCCTAAGTTTTTCTTACTCACTTCTTCTTCTTTGCCTGTCCTGCTTTC
Each primer sequence is shown below.
Not1_CAS9_N (SEQ ID NO: 16): ATATGCGGCCGCTCGCCACCATGGCTAGTATGCAGAAACTG
CAS9_A96G_C (SEQ ID NO: 17): CCGATACTATACTTCTTGTCGGCAGCGGGC
CAS9_A96G_N (SEQ ID NO: 18): GCCCGCTGCCGACAAGAAGTATAGTATCGG
CAS9_A222G_C (SEQ ID NO: 19): GGCTCCAATCAGATTCTTCTTGATACTGTG
CAS9_A222G_N (SEQ ID NO: 20): CACAGTATCAAGAAGAATCTGATTGGAGCC
CAS9_A789G_C (SEQ ID NO: 21): CCAAACAGGCCGTTCTTCTTTTCGCCTGG
CAS9_A789G_N (SEQ ID NO: 22): CCAGGCGAAAAGAAGAACGGCCTGTTTGG
CAS9_A789G_C (SEQ ID NO: 23): CCAAACAGGCCGTTCTTCTTTTCGCCTGG
CAS9_A1413G_N (SEQ ID NO: 24): GAGAAGATCGAAAAGATTCTGACTTTCCGC
CAS9_A1602G_C (SEQ ID NO: 25): GCTTGGGCAGCACTTTCTCATTTGGCAGG
CAS9_A1602G_N (SEQ ID NO: 26): CCTGCCAAATGAGAAAGTGCTGCCCAAGC
CAS9_A2673G_C (SEQ ID NO: 27): CACTCTTTCCTCGGTTCTTGTCGCTGCGGG
CAS9_A2673G_N (SEQ ID NO: 28): CCCGCAGCGACAAGAACCGAGGAAAGAGTG
CAS9_A3147G_C (SEQ ID NO: 29): CTCTTGGCGATCATCTTTCTGACATCGTAC
CAS9_A3147G_N (SEQ ID NO: 30): GTACGATGTCAGAAAGATGATCGCCAAGAG
CAS9_A3546G_C (SEQ ID NO: 31): CAGTTTCTTGCTCTTTCCCTTCTCCACC
CAS9_A3546G_N (SEQ ID NO: 32): GGTGGAGAAGGGAAAGAGCAAGAAACTG
CAS9_A3750G_C (SEQ ID NO: 33): CAGTTCATTTCCTTTCTGCAGCTCGCCGGC
CAS9_A3750G_N (SEQ ID NO: 34): GCCGGCGAGCTGCAGAAAGGAAATGAACTG
CAS9_EIS_Not1_C (SEQ ID NO: 35): ATATGCGGCCGCGAACTTTCACCCTAAGTTTTTCTTACTCACTTCTTCTTCTTTGCCTGTCCTGCTTTC
 これらのプライマーペアと鋳型DNAを用いて、KOD-PLUS-Ver.2-DNA polymerase(TOYOBO株式会社 コード番号KOD-211)によるPCR反応(94℃-2分→98℃-10秒、55℃-30秒、68℃-1分を30サイクル→68℃-17分)を行い、それぞれのPCR産物を得た。電気泳動によってPCR産物のサイズを確認後、NucleoSpinTM Gel and PCR Clean-up (MACGEREY-NAGELカタログ番号740609.250/U0609C)にて精製した。 Using these primer pairs and the template DNA, a PCR reaction (94 ° C for 2 minutes → 98 ° C for 10 seconds, 55 ° C for 55 minutes) using KOD-PLUS-Ver. 2-DNA polymerase (TOYOBO Co., code number KOD-211) 30 cycles of 68 ° C. for 1 minute and 30 cycles of 68 ° C. for 17 minutes) were performed to obtain respective PCR products. After confirming the size of the PCR product by electrophoresis, the product was purified by NucleoSpin Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250 / U0609C).
[表3]
第2PCRのプライマーと鋳型DNA
Figure JPOXMLDOC01-appb-I000003
[Table 3]
Second PCR primers and template DNA
Figure JPOXMLDOC01-appb-I000003
 これらのプライマーペアと鋳型DNAを用いて、KOD-PLUS-Ver.2-DNA polymerase(TOYOBO株式会社 コード番号KOD-211)によるPCR反応(94℃-2分→98℃-10秒、55℃-30秒、68℃-2分を30サイクル→68℃-17分)を行い、それぞれのPCR産物を得た。電気泳動によって産物サイズを確認後、NucleoSpinTM Gel and PCR Clean-up (MACGEREY-NAGELカタログ番号740609.250/U0609C)にて精製した。 Using these primer pairs and the template DNA, a PCR reaction (94 ° C for 2 minutes → 98 ° C for 10 seconds, 55 ° C for 55 minutes) using KOD-PLUS-Ver. 2-DNA polymerase (TOYOBO Co., code number KOD-211) 30 cycles of 68 seconds at 68 ° C. for 30 seconds → 68 minutes at 68 ° C.) were performed to obtain respective PCR products. After confirming the product size by electrophoresis, the product was purified by NucleoSpin Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250 / U0609C).
[表4]
第3PCRのプライマーと鋳型DNA
Figure JPOXMLDOC01-appb-I000004
[Table 4]
Third PCR primer and template DNA
Figure JPOXMLDOC01-appb-I000004
 これらのプライマーペアと鋳型DNAを用いて、KOD-PLUS-Ver.2-DNA polymerase(TOYOBO株式会社 コード番号KOD-211)によるPCR反応(94℃-2分→98℃-10秒、65℃から55℃へステップダウン-30秒、68℃-4分30秒を10サイクルずつ)→(98℃- 10秒、55℃-30秒、68℃-4分30秒 を30サイクル→68℃-17分)を行い、全長のPCR産物を得た。電気泳動によって産物サイズを確認後、NucleoSpinTM Gel and PCR Clean-up (MACGEREY-NAGELカタログ番号740609.250/U0609C)にて精製した。NotIで消化・ゲル抽出した全長Cas9断片を、NotIで消化・BAP処理したプラスミドpSeV(PM)TS15/ΔF DNA(F遺伝子を欠失し、M(G69E/T116A/A183S), HN(A262T/G264/K461G), P(D433A/R434A/K437A/L511F), L(L1361C/L1558I/N1197S/K1795E) の変異を有するセンダイウイルスベクター(WO2003/025570, WO2010/008054)のゲノムをコードするDNAであって、P遺伝子のM遺伝子の間に外来遺伝子の搭載サイトを持つ)でライゲーションを行い、クローニングされたCAS9の塩基配列を確認して、SeVに最適化された全長Cas9遺伝子(VCas9)を搭載したプラスミドpSeV(PM)CAS9TS15/ΔFを得た。このプラスミド DNAを鋳型にしてセンダイウィルス再構成を行い、Cas9搭載センダイウィルスベクター SeV(PM)CAS9TS15/ΔFを得た。 Using these primer pairs and template DNA, a PCR reaction (94 ° C for 2 minutes → 98 ° C for 10 seconds, from 65 ° C) using KOD-PLUS-Ver. 2-DNA polymerase (TOYOBO Co., code number KOD-211) Step down to 55 ° C-30 seconds, 68 ° C-4 minutes 30 seconds, 10 cycles each) → (98 ° C-10 seconds, 55 ° C-30 seconds, 68 ° C-4 minutes 30 seconds, 30 cycles → 68 ° C-17) Min) to obtain a full-length PCR product. After confirming the product size by electrophoresis, the product was purified by NucleoSpin Gel and PCR Clean-up (MACGEREY-NAGEL Catalog No. 740609.250 / U0609C). NotI-digested and gel-extracted full-length Cas9 fragment was digested with NotI and BAP-treated plasmid pSeV (PM) TS15 / ΔF DNA (F gene deleted, M (G69E / T116A / A183S), HN (A262T / G264 / K461G), P (D433A / R434A / K437A / L511F), DNA encoding the genome of Sendai virus vector (WO2003 / 025570, WO2010 / 008054) having mutation of L (L1361C / L1558I / N1197S / K1795E). , And a plasmid carrying the full-length Cas9 gene (VCas9) optimized for SeV after confirming the cloned CAS9 nucleotide sequence. pSeV (PM) CAS9TS15 / ΔF was obtained. Sendai virus was reconstituted using this plasmid DNA as a template to obtain a Send9 virus vector SeV (PM) CAS9TS15 / ΔF carrying Cas9.
[実施例5]TG98細胞に対するSeV-Cas9を用いた遺伝子復帰試験
 TG98細胞のHPRT遺伝子エキソン2の2塩基挿入変異(HPRTTG98)(実施例2)に対して、SeV-Cas9を用いて遺伝子復帰試験を行うために、ドナープラスミドpBS-HPRTEx2SMAI (P1-6)(実施例1) DNA と同時にリポフェクションされる2種のRNA、1)標的化RNA として働くcrRNA  5’-UAAAUCAAGGUCAUAUAACC-3’ (GT79)(配列番号36)、2)Cas9酵素の足場RNAとして働く tracrRNA(ファスマックカタログ番号GE002)を準備した。crRNA内のUA(GT79の3'端から5-4番目 (下線で示す))は2塩基挿入変異に相当する部位を示す。
[Example 5] Gene reversion test using SeV-Cas9 to TG98 cells Gene reversion using HPV gene exon 2 double mutation (HPRT TG98 ) (Example 2) in TG98 cells using SeV-Cas9 In order to perform the test, the donor plasmid pBS-HPRTEx2SMAI (P1-6) (Example 1) Two types of RNA that are lipofected simultaneously with DNA, 1) crRNA 5'-UAAAUCAAGGUCAUA UA ACC-3 '(acting as target RNA) ( GT79) (SEQ ID NO: 36), 2) A tracrRNA (Fasmac catalog number GE002) serving as a scaffold RNA for Cas9 enzyme was prepared. UA in the crRNA (5-4th from the 3 'end of GT79 (underlined)) indicates a site corresponding to a two-base insertion mutation.
 遺伝子復帰試験(図2)は以下の通りに行った。SeV-Cas9の感染の前日に5x105個TG98細胞/2-mL DMEM培地(6-thioguanine含)/wellで6-well plateに塗布し接着培養を行い、大凡24時間後に培地を除去、2mL Opti-MEMを添加し、37℃に置く一方で、1 well内の細胞数を測定し感染する全細胞数を算出し、感染多重度3に相当するCas9搭載センダイウィルスベクター SeV(PM)CAS9TS15/ΔF(実施例4)を採取し、Opti-MEMで希釈することによって0.5 mL SeV-Cas9溶液/wellに調整し、あらかじめ添加されていたOpti-MEMを除去、0.5 mL SeV-Cas9溶液/wellを加えて、32℃, 5%CO2条件下で吸着感染を開始し、15分毎に混合操作を行い、2時間後に、SeV-Cas9溶液を除去、2mL Opti-MEM/wellを添加、2-mL DMEM培地(6-thioguanine含)/wellで交換して、32℃, 5%CO2条件下で培養した。大凡24時間後に新しいDMEM培地に交換して、35℃, 5%CO2に移動させて、大凡24時間そのまま培養した。 The gene reversion test (FIG. 2) was performed as follows. On the day before the infection with SeV-Cas9, 5 × 10 5 TG98 cells / 2-mL DMEM medium (including 6-thioguanine) / well was applied to a 6-well plate and adherent culture was performed. After approximately 24 hours, the medium was removed and 2 mL Opti While adding -MEM and keeping at 37 ° C, the number of cells in one well was measured to calculate the total number of cells to be infected, and the Send9 virus vector SeV (PM) CAS9TS15 / ΔF carrying Cas9 corresponding to a multiplicity of infection of 3 was calculated. (Example 4) was collected, adjusted to 0.5 mL SeV-Cas9 solution / well by diluting with Opti-MEM, removing the previously added Opti-MEM, and adding 0.5 mL SeV-Cas9 solution / well. Then, adsorption infection was started at 32 ° C. and 5% CO 2 , and the mixing operation was performed every 15 minutes. After 2 hours, the SeV-Cas9 solution was removed, 2 mL Opti-MEM / well was added, and 2-mL was added. The medium was replaced with a DMEM medium (containing 6-thioguanine) / well and cultured at 32 ° C. under 5% CO 2 . After about 24 hours, the medium was replaced with a new DMEM medium, transferred to 35 ° C. and 5% CO 2 , and cultured for about 24 hours.
 リポフェクション溶液を播種する1時間前に、SeV感染細胞培養プレートから、培地を除去、Opti-MEMを2 mL/wellで加えて置いた。リポフェクション法により、crRNA GT79とtracrRNA (ファスマックカタログ番号GE002)及びドナープラスミドDNAを導入するために、X-tremeGene HP DNA Transfection Reagent Version 08(Roche カタログ番号06 366 236 001)を用いた。0.15μg のcrHPRT1mR(GT79), 0.27μg のtracrRNA, 2.5μg のpBS-HPRTEx2SMAI (P1-6)ドナープラスミドを混合して、Opti-MEM で1μg RNA・DNA/100μLに調整して、1μg RNA・DNA につき1μL のX-tremeGene HP DNA Transfection Reagentを加えて、25℃-15分間でDNA/RNA/リポソーム複合体を形成させて、Opti-MEMで総容量0.5 mL/wellにメスアップした。このRNA濃度0.42μg/0.5 mL/wellを1xRNAsと表現する。対照としてSeV-Cas9/tracrRNA/crRNAの代わりに、5 μg/0.5 mL/well のプラスミドpCas9-sgHPRT1m(実施例3)を用いて、リポフェクション溶液を調整した。 1 hour before seeding the lipofection solution, the medium was removed from the SeV-infected cell culture plate, and Opti-MEM was added at 2 mL / well. X-tremeGene HP DNA Transfection Reagent Version 08 (Roche Catalog No. 06 366 236 001) was used to introduce crRNA GT79 and tracrRNA (Fasmac catalog number GE002) and donor plasmid DNA by the lipofection method. Mix 0.15 μg of crHPRT1mR (GT79), 0.27 μg of tracrRNA, and 2.5 μg of pBS-HPRTEx2SMAI (P1-6) donor plasmid, adjust to 1 μg RNA / DNA / 100 μL with Opti-MEM, and add 1 μg RNA / DNA. Then, 1 μL of X-tremeGene / HP / DNA / Transfection / Reagent was added, and a DNA / RNA / liposome complex was formed at 25 ° C. for 15 minutes, and the volume was adjusted to a total volume of 0.5 μmL / well with Opti-MEM. This RNA concentration of 0.42 μg / 0.5 mL / well is expressed as 1 × RNAs. As a control, a lipofection solution was prepared using the plasmid pCas9-sgHPRT1m (Example 3) at 5 μg / 0.5 μmL / well instead of SeV-Cas9 / tracrRNA / crRNA.
 このリポフェクション溶液を0.5 mL/wellで6-well plateに添加して、37℃, 5%CO2-17時間でインキュベーションした。リポフェクション細胞を塗布するために、各wellのリポフェクション溶液を2 mL PBS/wellで交換し除去後、0.25%トリプシン/1 mM EDTA液を0.5 mL/wellで添加、37℃-1分インキュベート、0.5 mL/wellでDMEM培地を添加し3~4回のピペッティング(P1000ピペット)で細胞を剥離・懸濁、1本の50-mLチューブに回収、細胞数測定後、1,200 rpm 3分遠心し上清を除去、4x104細胞/mLでDMEM培地(6-thioguanineなし)に懸濁して、10 mL/直径10-cmディッシュに塗布、37℃, 5%CO2条件下で非選択培養を開始した(Day 0)。Day 5で1/50量のHAT Supplement (50x), Liquid(ThermoFisher カタログ# 21060017)を加えたDMEM培地(HAT含)に交換し選択培養を開始、2、3日置きに同培地で交換を行い、Day 14で4枚のディッシュを代表してHAT耐性コロニー数を測定した。 This lipofection solution was added to a 6-well plate at 0.5 mL / well and incubated at 37 ° C., 5% CO 2 -17 hours. To apply lipofection cells, replace the lipofection solution in each well with 2 mL PBS / well, remove, add 0.25% trypsin / 1 mM EDTA solution at 0.5 mL / well, incubate at 37 ° C for 1 minute, and add 0.5 mL Add DMEM medium / well and detach / suspend cells by pipetting 3 to 4 times (P1000 pipette), collect in one 50-mL tube, measure cell number, centrifuge at 1,200 rpm for 3 minutes, and supernatant The cells were suspended in DMEM medium (without 6-thioguanine) at 4 × 10 4 cells / mL, applied to a 10 mL / 10-cm diameter dish, and non-selective culture was started under the conditions of 37 ° C. and 5% CO 2 ( Day 0). On Day 5, change to DMEM medium (including HAT) supplemented with 1/50 volume of HAT Supplement (50x), Liquid (ThermoFisher catalog # 21060017) and start selective cultivation. Replace with the same medium every 2 or 3 days. On Day 14, the number of HAT resistant colonies was measured on four dishes.
 遺伝子復帰体単離と構造解析の手順は以下の通りに行った。HAT耐性コロニーのそれぞれに対して、顕微鏡下でP1000ピペットマンを200μLに合わせて細胞を剥ぎ取り、2 mL のHAT添加培地を加えた、6ウェルプレートの1ウェルに懸濁して、HATクローンナンバーを付して、37℃, 5%CO2条件下で選択培養を行い、コンフルエント付近まで培養を続けた。培地を除去、2 mL/wellでPBSを添加・除去、0.25%トリプシン/1 mM EDTA液を500μL/wellで添加、37℃1分インキュベート、500μL/wellでDMEM培地を添加し3~4回のP1000ピペッティングで細胞を剥離・懸濁、1本の1.5-mLエッペンドルフチューブに細胞を回収、2,500 rpm 3分遠心し上清を除去、100μL PBSを添加・ピペッティングで細胞を懸濁、40μLずつ2本のクライオチューブに分取、セルバンカー1プラスを500μL/クライオチューブで加えて-80℃に保管、残りの20μL PBS細胞懸濁液を2,500 rpm 3分遠心し上清を除去、細胞ペレットを-80℃にで凍結保存した。凍結細胞ペレットを氷中で解凍、GeneElute Mammalian Genomic DNA miniprep Kit(SIGMA-ALDRICH, カタログ番号G1N350)でゲノムDNAを抽出、100μLサンプルとして4℃保管した。HATクローンのgenomic DNAを鋳型にして、1)(GT68);5’-ACGACCTCGCCCGGCCTTGTATT-3’(GT68)(配列番号37)及び5’- GCCACTGCACCCAGCCGTATGT-3’(GT69)(配列番号38)を用いて、KOD-FX-DNA polymerase(TOYOBO株式会社コード番号KFX-101)によるPCR反応(94℃-2分→98℃-10秒、68℃-20分を40サイクル→68℃7分)を行い、HT-1080 genomic DNAを鋳型としたPCR産物と同様に約9300 baseのPCR産物が得られたので、ドナープラスミドが挿入されていないことを確認した(実験1-1(図4B、C上)で実施;他の実験では未実施)、2)5’-GCTGGGATTACACGTGTGAACCAACC -3’(GT19)(配列番号3)及び5’-TCTGGTCCCTACAGAGTCCCACTATACC-3’(GT22)(配列番号2)を用いて、KOD-FX-DNA polymerase(TOYOBO株式会社コード番号KFX-101)によるPCR反応(94℃-2分→98℃-10秒、68℃-1分を40サイクル→68℃7分)を行い、約500 baseのPCR産物を確認して(実験1-1(図4B、C下)、1-2で実施)、PCR clean-up(MACHEREY-NAGEL, 740609.250)で精製後、シーケンシングを行った(実験1-1、1-2で実施)。 The procedure of gene revertant isolation and structural analysis was performed as follows. For each HAT resistant colony, 200 μL of P1000 Pipetman was removed under a microscope to remove the cells, suspended in one well of a 6-well plate supplemented with 2 mL of HAT supplemented medium, and assigned a HAT clone number. Then, selective culture was performed under the conditions of 37 ° C. and 5% CO 2 , and the culture was continued to near confluence. Remove the medium, add / remove PBS at 2 mL / well, add 0.25% trypsin / 1 mM EDTA solution at 500 μL / well, incubate at 37 ° C for 1 minute, add DMEM medium at 500 μL / well, and perform 3-4 times. Peel and suspend cells by P1000 pipetting, collect cells in one 1.5-mL Eppendorf tube, remove the supernatant by centrifugation at 2,500 rpm for 3 minutes, add 100 μL PBS, suspend cells by pipetting, suspend 40 μL each Dispense into 2 cryotubes, add Cell Banker 1 Plus in a 500 μL / cryotube, store at -80 ° C, centrifuge the remaining 20 μL PBS cell suspension at 2,500 rpm for 3 minutes, remove the supernatant, and remove the cell pellet. Stored frozen at -80 ° C. The frozen cell pellet was thawed in ice, and genomic DNA was extracted using a GeneElute Mammalian Genomic DNA miniprep Kit (SIGMA-ALDRICH, catalog number G1N350), and stored at 4 ° C as a 100 μL sample. Using genomic DNA of the HAT clone as a template, 1) (GT68); using 5'-ACGACCTCGCCCGGCCTTGTATT-3 '(GT68) (SEQ ID NO: 37) and 5'-GCCACTGCACCCAGCCGTATGT-3' (GT69) (SEQ ID NO: 38) , KOD-FX-DNA polymerase (TOYOBO Co., code number KFX-101) was used to perform a PCR reaction (94 ° C-2 minutes → 98 ° C-10 seconds, 68 ° C-20 minutes 40 cycles → 68 ° C for 7 minutes) Since a PCR product of about 9300 bases was obtained in the same manner as the PCR product using HT-1080 genomic DNA as a template, it was confirmed that the donor plasmid was not inserted (Experiment 1-1 (FIG. 4B, C)). 2) 5) -GCTGGGATTACACGTGTGAACCAACC-3 '(GT19) (SEQ ID NO: 3) and 5'-TCTGGTCCCTACAGAGTCCCACTATACC-3' (GT22) (SEQ ID NO: 2) -Perform a PCR reaction (94 ° C-2 minutes → 98 ° C-10 seconds, 68 ° C-1 minute 40 cycles → 68 ° C for 7 minutes) using DNA polymerase (TOYOBO Co., Ltd., code number KFX-101). Confirm the PCR product (Experiment 1- (Figure 4B, C under), carried out in 1-2), PCR clean-up (MACHEREY-NAGEL, after purification by 740,609.250), was sequenced (performed in experiments 1-1 and 1-2).
 まず、上記の遺伝子復帰試験を2回行った。実験1-1では、生細胞中のHAT耐性クローン出現率が、プラスミドpCas9-sgHPRT1m導入条件で3.7e-5に対して、SeV-Cas9感染/crHPRT1mR(GT79)/tracrRNA導入条件で9.7e-3であり、計算上、本発明条件において、一般的なプラスミド条件よりも265倍の高頻度化を示した(図4A 実験1-1)。実験1-2では、生細胞中のHAT耐性クローン出現率が、プラスミドpCas9-sgHPRT1m導入条件で2.5e-5に対して、SeV-Cas9感染/crHPRT1mR(GT79)/tracrRNA導入条件で2.4e-2であり、計算上、本発明条件において、一般的なプラスミド条件よりも975倍の高頻度化を示した(図4A 実験1-2)。また、実験1-1では、cell viabilityが、プラスミドpCas9-sgHPRT1m導入条件で11%に対して、SeV-Cas9感染/crRNA GT79/tracrRNA導入条件で2.0%であり(図4A 実験1-1)、実験1-2では、cell viabilityが、プラスミドpCas9-sgHPRT1m導入条件で12%に対して、SeV-Cas9感染/crHPRT1mR(GT79)/tracrRNA導入条件で1.4%であり(図4A 実験1-2)、SeV-Cas9感染によるcell viabilityの著しい低下が認められた。これは、用いられたSeV-Cas9サンプルが、限外濾過・カラム精製前の上清サンプルであることが影響している可能性が考えられるので、次項において、SeV-Cas9の限外濾過・カラム精製後の精製サンプルを用いて同様な実験を行い、プラスミドpCas9-sgHPRT1m導入条件に対する本発明条件による高頻度化の程度を判定した。 First, the above gene reversion test was performed twice. In Experiment 1-1, the appearance rate of HAT resistant clones in living cells was 3.7 e-5 under the conditions of plasmid pCas9-sgHPRT1m introduction, and 9.7 e-3 under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA introduction. According to the calculation, the frequency of the present invention was 265 times higher than that of general plasmid conditions (FIG. 4A, Experiment 1-1). In Experiment 1-2, the appearance rate of HAT-resistant clones in living cells was 2.5e-5 under the conditions of plasmid pCas9-sgHPRT1m introduction, and 2.4e-2 under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA introduction. From the calculation, the frequency of the present invention was 975 times higher than that of the general plasmid under the conditions of the present invention (FIG. 4A, Experiment 1-2). In Experiment 1-1, the cell viability was 11% under the plasmid pCas9-sgHPRT1m introduction condition and 2.0% under the SeV-Cas9 infection / crRNA GT79 / tracrRNA introduction condition (FIG. 4A, Experiment 1-1). In Experiment 1-2, the cell viability was 1.4% under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA introduction, compared to 12% under the conditions of plasmid pCas9-sgHPRT1m introduction (FIG. 4A, Experiment 1-2). CellV viability was significantly reduced by SeV-Cas9 infection. This may be due to the fact that the used SeV-Cas9 sample is a supernatant sample before ultrafiltration / column purification. A similar experiment was performed using the purified sample after purification, and the degree of frequency increase under the conditions of the present invention with respect to the plasmid pCas9-sgHPRT1m introduction conditions was determined.
[実施例6]TG98細胞に対するSeV-Cas9を用いた遺伝子復帰
 SeV-Cas9の精製サンプルを用いて、実施例5の遺伝子復帰試験を、実験2-1、実験2-2としてさらに2回行った。
 実験2-1では、cell viabilityが、プラスミドpCas9-sgHPRT1m導入条件で15%に対して、SeV-Cas9感染/crHPRT1mR(GT79)/tracrRNA導入条件で11%~17%であり(図5実験2-1)、実験2-2では、cell viabilityが、プラスミドpCas9-sgHPRT1m導入条件で14%に対して、SeV-Cas9感染/crHPRT1mR(GT79)/tracrRNA導入条件で11%~15%であり(図5実験2-2)、SeV-Cas9感染によるcell viabilityの低下が認められなかった。
 また、実験2-1では、生細胞中のHAT耐性クローン出現率が、プラスミドpCas9-sgHPRT1m導入条件で3.9e-5に対して、SeV-Cas9感染/crHPRT1mR(GT79)/tracrRNA導入条件では2.6e-3~3.5e-3であり、本発明条件において、一般的なプラスミド条件よりも69~90倍の高頻度化が観察された(図5実験2-1)。実験2-2では、生細胞中のHAT耐性クローン頻度が、プラスミドpCas9-sgHPRT1m導入条件で3.9e-5に対して、SeV-Cas9感染/crHPRT1mR(GT79)/tracrRNA導入条件では3.3e-3~3.6e-3であり、本発明条件において、一般的なプラスミド条件よりも85~91倍の高頻度化が観察された(図5実験2-2)。
 遺伝子復帰頻度について、SeV-Cas9の上清サンプル(図4A 実験1-1、1-2)及び精製サンプルの両方においてもプラスミドpCas9-sgHPRT1mよりも著しく高いことが再現されたと言える。プラスミドpCas9-sgHPRT1m導入条件とSeV-Cas9感染/crHPRT1mR(GT79)/tracrRNA導入条件間のcell viabilityにおいて、著しい差異が生じなかった、実験2-1、2-2の結果に基づいて、プラスミドpCas9-sgHPRT1m導入条件に対する本発明条件による高頻度化の程度は、60~90倍程度と判定される。
[Example 6] Gene reversion to TG98 cells using SeV-Cas9 Using a purified sample of SeV-Cas9, the gene reversion test of Example 5 was further performed twice as Experiment 2-1 and Experiment 2-2. .
In Experiment 2-1, the cell viability was 11% to 17% under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA, whereas the cell viability was 15% under the conditions of plasmid pCas9-sgHPRT1m (Figure 5 Experiment 2). 1) In Experiment 2-2, the cell viability was 11% to 15% under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA, compared to 14% under the conditions of plasmid pCas9-sgHPRT1m (FIG. 5). Experiment 2-2), no decrease in cell viability due to SeV-Cas9 infection was observed.
In Experiment 2-1, the appearance rate of HAT-resistant clones in living cells was 3.9e-5 under the plasmid pCas9-sgHPRT1m transfection condition, but 2.6e under the SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA transfection condition. -3 to 3.5e-3, which was 69 to 90 times higher than that of general plasmid conditions under the conditions of the present invention (FIG. 5, Experiment 2-1). In Experiment 2-2, the frequency of HAT resistant clones in living cells was 3.9e-5 under the conditions of plasmid pCas9-sgHPRT1m introduction, and 3.3e-3 under the conditions of SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA introduction. 3.6e-3, which was 85-91 times higher than that of general plasmid conditions under the conditions of the present invention (FIG. 5, Experiment 2-2).
It can be said that the frequency of gene reversion was significantly higher than that of plasmid pCas9-sgHPRT1m in both the supernatant sample of SeV-Cas9 (FIG. 4A, experiments 1-1 and 1-2) and the purified sample. No significant difference occurred in the cell viability between the plasmid pCas9-sgHPRT1m introduction condition and the SeV-Cas9 infection / crHPRT1mR (GT79) / tracrRNA introduction condition. Based on the results of Experiments 2-1 and 2-2, plasmid pCas9- The degree of frequency increase by the conditions of the present invention with respect to the sgHPRT1m introduction condition is determined to be about 60 to 90 times.
 実験1-1と実験1-2において、実施例5に示した手順で、遺伝子復帰体HATクローンの単離を行い、構造解析を行った。
 実験1-1におけるプラスミドからのCas9 sgRNA同時発現系では、17 個のHAT耐性クローンにおいて、標的領域5488 bp断片の5’外側プライマーGT68と3’外側プライマーGT69によるPCR解析から、9367 bp相当の断片を得たことから(図4C上左)、ドナープラスミドの骨格部分の挿入が起こっていないことを確認し、続いて、エキソン2の領域を増幅するプライマーGT19/GT22によるPCRから、主に525 bp相当のPCR産物を得た(図4C下左)。白矢印を付けた2クローンについては、525 bpよりも大きなPCR産物を得た。これは、~100 bp程度の挿入が存在することを示す。プライマーGT19/GT22 PCR産物のシーケンス解析から、17 個のHAT耐性クローンの全クローンにおいて(図4D中段2列目)、標的配列部位が復帰していたが、次のような異常が伴っていた:1)17のうちの2クローンで近接イントロン内での挿入が伴っていた;2)17のうちの他4クローンで2塩基挿入変異配列DNAがどこかに残存していることを示唆する。これは、標的配列の復帰に伴って、2塩基挿入変異配列DNAがランダムインテグレーションした可能性が考えられる。また、実験1-2におけるプラスミドからのCas9 sgRNA同時発現系では、12個のHAT耐性クローンにおいて(図4D下段2列目)、標的配列部位が復帰していたが、実験2由来の17クローンのような異常が伴っているかどうか解析したところ、近接イントロン内での挿入は12個中に存在しなかったが、12個のうちの6クローンで2塩基挿入変異配列DNAがどこかに(ゲノム上の可能性)残存していることを示唆する。
In Experiment 1-1 and Experiment 1-2, a reverted HAT clone was isolated and subjected to structural analysis by the procedure described in Example 5.
In the Cas9 sgRNA co-expression system from plasmid in Experiment 1-1, in 17 HAT-resistant clones, the PCR analysis of the 5488 bp fragment of the target region with the 5 ′ outer primer GT68 and the 3 ′ outer primer GT69 revealed that a fragment corresponding to 9367 bp was obtained. (Fig. 4C, upper left), it was confirmed that insertion of the backbone portion of the donor plasmid had not occurred. Subsequently, PCR using primers GT19 / GT22 to amplify the region of exon 2 showed that 525 bp was mainly detected. A considerable PCR product was obtained (FIG. 4C, lower left). For the two clones with white arrows, PCR products larger than 525 bp were obtained. This indicates that there is an insertion of about 100 bp. Sequence analysis of the primer GT19 / GT22 PCR products showed that all of the 17 HAT resistant clones (FIG. 4D, middle row, 2nd row) had their target sequence sites reverted, with the following abnormalities: 1) Two out of 17 clones were accompanied by insertions in the proximal intron; 2) Four other out of 17 clones suggest that the 2-base insert mutated DNA remains somewhere. This is probably because the two-base insertion mutant sequence DNA was randomly integrated with the return of the target sequence. In the Cas9 sgRNA co-expression system from plasmid in Experiment 1-2, the target sequence site was restored in 12 HAT-resistant clones (lower second row in FIG. 4D), but 17 clones derived from Experiment 2 Analysis of the presence of such abnormalities revealed that insertions in the proximal intron were absent in 12 clones, but in 6 of the 12 clones the double-base insertion mutant DNA was found somewhere (on the genome). Possibility of suggesting that it remains.
 実験1-1におけるSeVからのCas9発現、RNAs導入系では、12個のHAT耐性クローンにおいて、標的領域5488 bp断片の5’外側プライマーGT68と3’外側プライマーGT69によるPCR解析から、9367 bp相当の断片を得たことから(図4C上右)、ドナープラスミドの骨格部分の挿入が起こっていないことを確認し、続いて、エキソン2の領域を増幅するプライマーGT19/GT22によるPCRから、525 bp相当のPCR産物を得た(図4C下右)。プライマーGT19/GT22 PCR産物のシーケンス解析から、12 個のHAT耐性クローンのうち全てにおいて(図4D中段3列目)、標的配列部位が復帰していて、近接イントロン内での挿入や2塩基挿入変異配列断片のゲノム上での残存の付随現象は、観察されなかった。また、実験1-2におけるSeVからのCas9発現、RNAs導入系では、24個のHAT耐性クローンにおいて(図4D下段3列目)、標的配列部位が復帰していて、近接イントロン内での挿入や2塩基挿入変異配列断片のゲノム上での残存の付随現象は、観察されなかった。
 プラスミドからのCas9 sgRNA同時発現系では、読み枠が復帰しても、1)近接イントロン内での挿入;2)2塩基挿入変異配列断片のゲノム上のどこかでの残存の付随現象が伴う危険性があり、SeVからのCas9発現、RNAs導入系ではそのような危険性がより低いと考えられる。
In the system expressing Cas9 from SeV and introducing RNAs in Experiment 1-1, in 12 HAT-resistant clones, the PCR analysis of the 5488 bp fragment of the target region with the 5 ′ outer primer GT68 and the 3 ′ outer primer GT69 revealed that the 967 bp equivalent was obtained. Since the fragment was obtained (upper right in FIG. 4C), it was confirmed that insertion of the backbone portion of the donor plasmid had not occurred. Subsequently, PCR using primers GT19 / GT22 for amplifying the exon 2 region revealed that the fragment was equivalent to 525 bp. (FIG. 4C, lower right). From the sequence analysis of the primer GT19 / GT22 PCR products, the target sequence site was restored in all of the 12 HAT-resistant clones (middle column, 3D in FIG. 4D), and insertions in adjacent introns and mutations at two-base insertions were observed. No incidental phenomenon of sequence fragments remaining on the genome was observed. In addition, in the system expressing Cas9 from SeV and introducing RNAs in Experiment 1-2, in 24 HAT-resistant clones (lower third row in FIG. 4D), the target sequence site was restored, and insertion into adjacent introns was prevented. No incidental phenomenon of the 2-base insertion mutant sequence fragment remaining on the genome was observed.
In the Cas9 sgRNA co-expression system from plasmid, even if the reading frame is restored, 1) insertion in the adjacent intron; 2) the danger associated with the persistence of the double-base insertion mutant sequence fragment remaining somewhere on the genome Therefore, it is considered that such risk is lower in the Cas9 expression from SeV and the RNAs introduction system.
[実施例7]HT-1080細胞に対するSeV-Cas9を用いた遺伝子破壊試験
 SeV-Cas9を用いて遺伝子破壊試験を行うために、Fibrosarcoma由来HT-1080細胞のHPRT遺伝子のエキソン2内のSexAIサイト(5’-ACCAGGT-3’)の5’-CCA-3’をProtospacer Adjacent Motif (PAM)とする標的配列を設定して、リポフェクションされる2種のRNA、1)crRNA 5’-AAUAAAUCAAGGUCAUAACC-3’ (crHPRT1R(GT78))(配列番号39)、2)tracrRNA(ファスマックカタログ番号GE002)を準備した。
[Example 7] Gene disruption test using SeV-Cas9 for HT-1080 cells In order to perform a gene disruption test using SeV-Cas9, a SexAI site in exon 2 of the HPRT gene of Fibrosarcoma-derived HT-1080 cells ( 5'-CCAGGT-3 ') 5'-CCA-3' is set as a target sequence with Protospacer Adjacent Motif (PAM), and two types of RNA to be lipofected, 1) crRNA 5'-AAUAAAUCAAGGUCAUAACC-3 ' (crHPRT1R (GT78)) (SEQ ID NO: 39), 2) tracrRNA (Fasmac catalog number GE002) was prepared.
 遺伝子破壊試験は以下の通りに行った。SeV-Cas9の感染の前日に5x105個HT-1080細胞/2-mL DMEM培地/wellで6-well plateに塗布し接着培養を行い、大凡24時間後に培地を除去、2mL Opti-MEMを添加し、37℃に置く一方で、1 well内の細胞数を測定し感染する全細胞数を算出し、感染多重度3に相当するCas9搭載センダイウィルスベクター SeV(PM)CAS9TS15/ΔF(実施例4)を採取し、Opti-MEMで希釈することによって0.5 mL SeV-Cas9溶液/wellに調整し、あらかじめ添加されていたOpti-MEMを除去、0.5 mL SeV-Cas9溶液/wellを加えて、32℃, 5%CO2条件下で吸着感染を開始し、15分毎に混合操作を行い、2時間後に、SeV-Cas9溶液を除去、2mL Opti-MEM/wellを添加、2-mL DMEM培地/wellで交換して、32℃, 5%CO2条件下で培養した。大凡24時間後に新しいDMEM培地に交換して、35℃, 5%CO2に移動させて、大凡24時間そのまま培養した。 The gene disruption test was performed as follows. On the day before the infection with SeV-Cas9, 5x10 5 HT-1080 cells / 2-mL DMEM medium / well was applied to a 6-well plate and adherent culture was performed. After approximately 24 hours, the medium was removed and 2 mL Opti-MEM was added. While keeping at 37 ° C., the number of cells in one well was measured by counting the number of cells to be infected, and the Send9 virus vector SeV (PM) CAS9TS15 / ΔF with Cas9 corresponding to a multiplicity of infection of 3 (Example 4) ) Was collected, adjusted to 0.5 mL SeV-Cas9 solution / well by diluting with Opti-MEM, removing the previously added Opti-MEM, adding 0.5 mL SeV-Cas9 solution / well, and adding Adsorption infection was started under 5% CO 2 conditions, mixing operation was performed every 15 minutes, and after 2 hours, SeV-Cas9 solution was removed, 2 mL Opti-MEM / well was added, and 2-mL DMEM medium / well was added. And the cells were cultured under the conditions of 32 ° C. and 5% CO 2 . After about 24 hours, the medium was replaced with a new DMEM medium, transferred to 35 ° C. and 5% CO 2 , and cultured for about 24 hours.
 リポフェクション溶液を播種する1時間前に、SeV感染細胞培養プレートから、培地を除去、Opti-MEMを2 mL/wellで加えて置いた。リポフェクション法により、crRNA GT79とtracrRNA (ファスマックカタログ番号GE002)を導入するために、X-tremeGene HP DNA Transfection Reagent Version 08(Roche カタログ番号06 366 236 001)を用いた。0.15μg のcrHPRT1R(GT78)、0.27μg のtracrRNAを混合して、Opti-MEM で1μg RNA/100μLに調整して、1μg RNA につき1μL のX-tremeGene HP DNA Transfection Reagentを加えて、25℃-15分間でDNA/RNA/リポソーム複合体を形成させて、Opti-MEMで総容量0.5 mL/wellにメスアップした。このRNA量0.42μg/0.5 mL/wellを1xRNAsと表現する。対照としてSeV-Cas9/tracrRNA/crRNAの代わりに、5μg/0.5 mL/wellのプラスミドpCas9-sgHPRT1(実施例2)を用いて、リポフェクション溶液を調整した。本試験において、ドナープラスミドの導入は行わない。 1 hour before seeding the lipofection solution, the medium was removed from the SeV-infected cell culture plate, and Opti-MEM was added at 2 mL / well. X-tremeGene | HP | DNA | Transfection | Reagent | Version | 08 (Roche | catalog number 06 | 366 | 236 | 001) was used to introduce crRNA | GT79 and tracrRNA | (Fasmac catalog number GE002) by the lipofection method. Mix 0.15 μg of crHPRT1R (GT78), 0.27 μg of tracrRNA, adjust to 1 μg RNA / 100 μL with Opti-MEM, add 1 μL of X-tremeGene HP DNA Transfection Reagent per 1 μg RNA, and add 25 ° C-15 ° C. A DNA / RNA / liposome complex was formed in a minute, and the volume was adjusted to a total volume of 0.5 μmL / well with Opti-MEM. This RNA amount of 0.42 μg / 0.5 μmL / well is expressed as 1 × RNAs. As a control, a lipofection solution was prepared using 5 μg / 0.5 μmL / well of plasmid pCas9-sgHPRT1 (Example 2) instead of SeV-Cas9 / tracrRNA / crRNA. In this test, no donor plasmid was introduced.
 このリポフェクション溶液を0.5 mL/wellで6-well plateに添加して、37℃, 5%CO2-17時間でインキュベーションした。リポフェクション細胞を塗布するために、各wellのリポフェクション溶液を2 mL PBS/wellで交換し除去後、0.25%トリプシン/1 mM EDTA液を0.5 mL/wellで添加、37℃-1分インキュベート、0.5 mL/wellでDMEM培地を添加し3~4回のピペッティング(P1000ピペット)で細胞を剥離・懸濁、1本の50-mLチューブに回収、細胞数測定後、1,200 rpm 3分遠心し上清を除去、4x104細胞/mLでDMEM培地に懸濁して、10 mL/直径10-cmディッシュに塗布、37℃, 5%CO2条件下で非選択培養を開始した(Day 0)。Day 5でDMEM培地(6-thioguanine含)に交換し選択培養を開始、2、3日置きに同培地で交換を行い、Day 14以降で2枚のディッシュを代表して6チオグアニン耐性コロニー数を測定した。  This lipofection solution was added to a 6-well plate at 0.5 mL / well and incubated at 37 ° C., 5% CO 2 -17 hours. To apply lipofection cells, replace the lipofection solution in each well with 2 mL PBS / well, remove, add 0.25% trypsin / 1 mM EDTA solution at 0.5 mL / well, incubate at 37 ° C for 1 minute, and add 0.5 mL Add DMEM medium / well and detach / suspend cells by pipetting 3 to 4 times (P1000 pipette), collect in one 50-mL tube, measure cell number, centrifuge at 1,200 rpm for 3 minutes, and supernatant The cells were suspended in a DMEM medium at 4 × 10 4 cells / mL, applied to a 10 mL / diameter 10-cm dish, and non-selective culture was started at 37 ° C. under 5% CO 2 (Day 0). On Day 5, the medium was replaced with DMEM medium (containing 6-thioguanine) and selective culture was started. The medium was replaced every 2 or 3 days, and the number of 6-thioguanine-resistant colonies on Day 14 and after was represented on two dishes. It was measured.
[実施例8]HT-1080細胞に対するSeV-Cas9を用いた遺伝子破壊
 SeV-Cas9の精製サンプルを用いて、実施例7の遺伝子破壊試験を、実験3-1、3-2として2回行った。実験3-1では、生細胞中の6チオグアニン耐性(6TGR)クローン出現頻度が、プラスミドpCas9-sgHPRT1 導入条件で1.8e-3に対して、SeV-Cas9感染/crHPRT1R(GT78)/tracrRNA導入条件では3.5e-3~5.3e-3であり (図6実験3-1)、実験3-2では、生細胞中の6TGRクローン頻度が、プラスミドpCas9-sgHPRT1導入条件で1.6e-3に対して、SeV-Cas9感染/crHPRT1R(GT78)/tracrRNA導入条件では3.6e-3~5.3e-3であり(図6実験3-2)、本発明条件において、一般的なプラスミド条件よりも2~3倍の高頻度化が観察された。遺伝子破壊頻度において、SeV-Cas9感染/crHPRT1R(GT78)/tracrRNA導入系がプラスミドpCas9-sgHPRT1 導入系よりも有意に高かったことから、前者の方が後者よりも細胞あたりの切断頻度が高いと考えられる。
[Example 8] Gene disruption of HT-1080 cells using SeV-Cas9 Using a purified sample of SeV-Cas9, the gene disruption test of Example 7 was performed twice as experiments 3-1 and 3-2. . In Experiment 3-1, the frequency of 6-thioguanine-resistant (6TG R ) clones in living cells was 1.8 e-3 under the plasmid pCas9-sgHPRT1 transfection condition, compared to the SeV-Cas9 infection / crHPRT1R (GT78) / tracrRNA transfection condition. in a 3.5e-3 ~ 5.3e-3 (Fig. 6 experiment 3-1), in experiment 3-2, the 6TG R clone frequencies in living cells, to 1.6e-3 with plasmid pCas9-sgHPRT1 delivery conditions In the condition of SeV-Cas9 infection / crHPRT1R (GT78) / tracrRNA introduction, the ratio was 3.6e-3 to 5.3e-3 (Experiment 3-2 in FIG. 6). A threefold increase in frequency was observed. In terms of gene disruption frequency, the SeV-Cas9 infection / crHPRT1R (GT78) / tracrRNA transfection system was significantly higher than the plasmid pCas9-sgHPRT1 transfection system, so the former was considered to have a higher frequency of cleavage per cell than the latter. Can be
[実施例9] 遺伝子復帰試験の評価細胞の追加作製
 SeV-Cas9を用いた遺伝子復帰の評価細胞の追加作製は以下の通りに行った。HT-1080の新たな変異を、遺伝子復帰試験の追加評価細胞として得るために、実施例8のようにSeV-Cas9を用いた遺伝子破壊実験を再度行った。0.15μg のcrHPRT1R(GT78)、0.27μg のtracrRNAを混合して、Opti-MEM で1μg RNA/100μLに調整して、1μg RNA につき1μL のX-tremeGene HP DNA Transfection Reagentを加えて、25℃-15分間でDNA/RNA/リポソーム複合体を形成させて、Opti-MEMで総容量0.5 mL(1 well分)にメスアップした。このRNA量0.42μg/wellを1xRNAsと表現する。SeV-Cas9の精製サンプルがあらかじめ感染された、1 well分のHT1080細胞に、8xRNAsをリポフェクションしたところ、生細胞中の6チオグアニン耐性(6TGR)クローン出現頻度が、SeV-Cas9感染/8x crHPRT1R(GT78)/8x tracrRNA導入条件では7.0e-3であった。その頻度から、生細胞数測定のために塗布された2枚のディッシュ上に生じた137個の非選択コロニーの中に、遺伝子破壊クローンが存在することが期待されるので、リポフェクション・塗布後Day 18で、6チオグアニンを導入し培養を続けると、Day25でほとんどのコロニーが剥離していたが、2個のコロニーだけが増殖を続けた。これらの6チオグアニン耐性コロニーをTG438,TG439として保管し、配列解析を行ったところ、TG438では標的配列内に変異が認められなかったが、TG439では、図7-2B表中の上段行に示すように、HPRTTG98(図4-3D:TAの挿入)と同じ位置に2塩基TGの挿入によるフレームシフトが起こっており(図7-2B:TGの挿入)、この変異をHPRTTG439とした。このTG439細胞を限界希釈法(16 cells/well(96-well plate))によって単離操作を行い、TG439-1細胞を得た。それを遺伝子復帰試験の第2評価細胞として用いた。
Example 9 Additional Production of Evaluation Cells for Gene Reversion Test Additional production of evaluation cells for gene reversion using SeV-Cas9 was performed as follows. In order to obtain a new mutation of HT-1080 as an additional evaluation cell in a gene reversion test, a gene disruption experiment using SeV-Cas9 was performed again as in Example 8. Mix 0.15 μg of crHPRT1R (GT78) and 0.27 μg of tracrRNA, adjust to 1 μg RNA / 100 μL with Opti-MEM, add 1 μL of X-tremeGene HP DNA Transfection Reagent per 1 μg RNA, and add A DNA / RNA / liposome complex was formed within a minute, and the volume was adjusted to 0.5 mL (1 well) with Opti-MEM. This RNA amount of 0.42 μg / well is expressed as 1 × RNAs. Purification Sample SeV-Cas9 is previously infected, in HT1080 cells 1 well worth, was lipofection 8XRNAs, 6-thioguanine resistant (6TG R) clones frequency of viable cells, SeV-Cas9 infection / 8x crHPRT1R ( Under GT7) / 8x tracrRNA introduction conditions, it was 7.0e-3. From the frequency, it is expected that gene-disrupted clones will be present in 137 non-selective colonies generated on the two dishes applied for viable cell counting. When 6 thioguanine was introduced and culture was continued at 18, most of the colonies were detached on Day 25, but only two colonies continued to grow. These 6-thioguanine-resistant colonies were stored as TG438 and TG439, and sequence analysis was performed. No mutation was found in the target sequence for TG438, but for TG439, as shown in the upper row of Table 7-2B. In addition, a frame shift occurred due to insertion of a two-base TG at the same position as HPRT TG98 (Fig. 4-3D: Insertion of TA) (Fig. 7-2B: Insertion of TG), and this mutation was designated as HPRT TG439 . The TG439 cells were isolated by a limiting dilution method (16 cells / well (96-well plate)) to obtain TG439-1 cells. It was used as the second evaluation cell in the gene reversion test.
[実施例10] 遺伝子復帰試験の第2評価細胞TG439-1に対するプラスミドpCas9-sgRNAの作製
 HT-1080細胞のHPRT遺伝子変異体TG439-1細胞株のエキソン2内の2塩基挿入変異(HPRTTG439)付近を標的として切断できるプラスミドを作製するために、SexAIサイト(5’-ACCAGGT-3’)の5’-CCA-3’をPAMとする標的配列を設定して、CAG-hspCas9-H1-gRNA linearized SmartNuclease vector DNA (System Biosciencesカタログ番号CAS920A-1)を用いて、H1 promoterの直後に、標的配列(下線)を含む5’-TGTATGAGACCACTAAATCAAGGTCATACAACC-3’(GT204)(配列番号40)と5’-AAACGGTTGTATGACCTTGATTTAGTGGTCTCA-3’(GT205)(配列番号41)から成る2本鎖オリゴヌクレオチドを連結させて、プラスミドpCas9-sgHPRT1m3を得て、遺伝子復帰実験の際に、コントロールとして用いた。なおGT204の3'端から5-4番目のCA、およびGT205の5'端から8-9番目のTGは2塩基挿入変異の位置を示す。
[Example 10] Preparation of plasmid pCas9-sgRNA for second evaluation cell TG439-1 in gene reversion test Two-base insertion mutation (HPRT TG439 ) in exon 2 of HPRT gene mutant TG439-1 cell line of HT-1080 cell In order to prepare a plasmid that can be cleaved in the vicinity of the target, set a target sequence with PAM 5'-CCA-3 'of the SexAI site (5'-ACCAGGT-3'), CAG-hspCas9-H1-gRNA 5'-TGTATGAGACCAC TAAATCAAGGTCATACAACC -3 '(GT204) containing the target sequence (underlined) immediately after the H1 promoter using linearized SmartNuclease vector DNA (System Biosciences Catalog No. CAS920A-1) and 5'- A double-stranded oligonucleotide consisting of AAAC GGTTGTATGACCTTGATTTA GTGGTCTCA-3 ′ (GT205) (SEQ ID NO: 41) was ligated to obtain a plasmid pCas9-sgHPRT1m3, which was used as a control in a gene reversion experiment. The CA at the 5-4th position from the 3 ′ end of GT204 and the TG at the 8-9th position from the 5 ′ end of GT205 indicate the positions of the 2-base insertion mutation.
[実施例11]TG439-1細胞に対するSeV-Cas9を用いた遺伝子復帰試験
 TG439-1細胞HPRT遺伝子エキソン2の2塩基挿入変異(HPRTTG439)(実施例9)に対して、SeV-Cas9を用いて遺伝子復帰試験を行うために、ドナープラスミドpBS-HPRTEx2SMAI (P1-6)(実施例1) DNA と同時にリポフェクションされる2種のRNA、1)標的化RNA として働くcrRNA  5’-UAAAUCAAGGUCAUACAACC-3’ (crHPRT1m3R(GT206))(配列番号42)、2)Cas9酵素の足場RNAとして働く tracrRNA(ファスマックカタログ番号GE002)を準備した。crRNA内のCA(GT206の3'端から5-4番目 (下線で示す))は2塩基挿入変異に相当する配列を示す。
[Example 11] Gene reversion test using SeV-Cas9 for TG439-1 cells SeV-Cas9 was used for a two-base insertion mutation (HPRT TG439 ) of HPRT gene exon 2 of TG439-1 cells (Example 9). In order to perform a gene reversion test, the donor plasmid pBS-HPRTEx2SMAI (P1-6) (Example 1), two types of RNA that are lipofected simultaneously with DNA, 1) crRNA 5'-UAAAUCAAGGUCAUA CA ACC- which functions as a targeting RNA 3 ′ (crHPRT1m3R (GT206)) (SEQ ID NO: 42), 2) A tracrRNA (Fasmac catalog number GE002) serving as a scaffold RNA for Cas9 enzyme was prepared. CA in crRNA (5-4th from the 3 'end of GT206 (underlined)) indicates a sequence corresponding to a two-base insertion mutation.
 遺伝子復帰試験(図2)は以下の通りに行った。SeV-Cas9の感染の前日に5x105個TG439-1細胞/2-mL DMEM培地(6-thioguanine含)/wellで6-well plateに塗布し接着培養を行い、大凡24時間後に培地を除去、2mL Opti-MEMを添加し、37℃に置く一方で、1 well内の細胞数を測定し感染する全細胞数を算出し、感染多重度3に相当するCas9搭載センダイウィルスベクター SeV(PM)CAS9TS15/ΔF(実施例4)を採取し、Opti-MEMで希釈することによって0.5 mL SeV-Cas9溶液/wellに調整し、あらかじめ添加されていたOpti-MEMを除去、0.5 mL SeV-Cas9溶液/wellを加えて、32℃, 5%CO2条件下で吸着感染を開始し、15分毎に混合操作を行い、2時間後に、SeV-Cas9溶液を除去、2mL Opti-MEM/wellを添加、2-mL DMEM培地(6-thioguanine含)/wellで交換して、32℃, 5%CO2条件下で培養した。大凡24時間後に新しいDMEM培地に交換して、35℃, 5%CO2に移動させて、大凡24時間そのまま培養した。 The gene reversion test (FIG. 2) was performed as follows. On the day before the infection with SeV-Cas9, 5 × 10 5 TG439-1 cells / 2-mL DMEM medium (containing 6-thioguanine) / well was applied to a 6-well plate and adherent culture was performed. After approximately 24 hours, the medium was removed. While adding 2 mL Opti-MEM and keeping at 37 ° C., the number of cells in one well was measured to calculate the total number of cells to be infected, and the Send9 virus vector SeV (PM) CAS9TS15 with Cas9 corresponding to a multiplicity of infection of 3 was calculated. / ΔF (Example 4) was collected, adjusted to 0.5 mL SeV-Cas9 solution / well by diluting with Opti-MEM, and the previously added Opti-MEM was removed, and 0.5 mL SeV-Cas9 solution / well was removed. To start adsorption infection at 32 ° C. and 5% CO 2 , and perform a mixing operation every 15 minutes. After 2 hours, remove the SeV-Cas9 solution and add 2 mL Opti-MEM / well. The cells were replaced with -mL DMEM medium (containing 6-thioguanine) / well, and cultured at 32 ° C under 5% CO 2 conditions. After about 24 hours, the medium was replaced with a new DMEM medium, transferred to 35 ° C. and 5% CO 2 , and cultured for about 24 hours.
 リポフェクション溶液を播種する1時間前に、SeV感染細胞培養プレートから、培地を除去、Opti-MEMを2 mL/wellで加えて置いた。リポフェクション法により、crHPRT1m3(GT206)とtracrRNA (ファスマックカタログ番号GE002)及びドナープラスミドDNAを導入するために、X-tremeGene HP DNA Transfection Reagent Version 08(Roche カタログ番号06 366 236 001)を用いた。0.15μg のcrHPRT1m3R(GT206), 0.27μg のtracrRNA, 2.5μg のpBS-HPRTEx2SMAI(P1-6)ドナープラスミドを混合して、Opti-MEM で1μg RNA・DNA/100μLに調整して、1μg RNA・DNA につき1μL のX-tremeGene HP DNA Transfection Reagentを加えて、25℃-15分間でDNA/RNA/リポソーム複合体を形成させて、Opti-MEMで総容量0.5 mL(1 well分)にメスアップした。このRNA濃度0.42μg/0.5 mL/wellを1xRNAsと表現する。対照としてSeV-Cas9/crHPRT1m3R(GT206)/tracrRNAの代わりに、5μg /0.5 mL/wellのプラスミドpCas9-sgHPRT1m3(実施例10)を用いて、リポフェクション溶液を調整した。 1 hour before seeding the lipofection solution, the medium was removed from the SeV-infected cell culture plate, and Opti-MEM was added at 2 mL / well. X-tremeGene | HP | DNA | Transfection | Reagent | Version | 08 (Roche | catalog number 06 | 366 | 236 | 001) was used to introduce crHPRT1m3 (GT206), tracrRNA | (Fasmac catalog number GE002) and donor plasmid DNA by the lipofection method. 0.15 μg HP crHPRT1m3R (GT206), 0.27 μg tra tracrRNA, 2.5 μg p pBS-HPRTEx2SMAI (P1-6) Donor plasmid mixed, adjusted to 1 μg RNA DNA / 100 μL with Opti- MEM 1, 1 μg RNA DNA Then, 1 μL of X-tremeGene / HP / DNA / Transfection / Reagent was added thereto to form a DNA / RNA / liposome complex at 25 ° C. for 15 minutes, and the volume was increased to 0.5 μmL (1 μwell) with Opti-MEM. This RNA concentration of 0.42 μg / 0.5 mL / well is expressed as 1 × RNAs. As a control, a lipofection solution was prepared using 5 μg /0.5 mL / well of plasmid pCas9-sgHPRT1m3 (Example 10) instead of SeV-Cas9 / crHPRT1m3R (GT206) / tracrRNA.
 このリポフェクション溶液を0.5 mL/wellで6-well plateに添加して、37℃, 5%CO2-17時間でインキュベーションした。リポフェクション細胞を塗布するために、各wellのリポフェクション溶液を2 mL PBS/wellで交換し除去後、0.25%トリプシン/1 mM EDTA液を0.5 mL/wellで添加、37℃-1分インキュベート、0.5 mL/wellでDMEM培地を添加し3~4回のピペッティング(P1000ピペット)で細胞を剥離・懸濁、1本の50-mLチューブに回収、細胞数測定後、1,200 rpm 3分遠心し上清を除去、4x104細胞/mLでDMEM培地(6-thioguanineなし, HAT Supplementなし)に懸濁して、10 mL/直径10-cmディッシュに塗布、37℃, 5%CO2条件下で非選択培養を開始した(Day 0)。Day 5で1/50量のHAT Supplement (50x), Liquid(ThermoFisher カタログ# 21060017)を加えたDMEM培地(HAT含)に交換し選択培養を開始、2、3日置きに同培地で交換を行い、Day 18付近で2枚のディッシュを代表してHAT耐性コロニー数を測定した。
[実施例12]TG439-1細胞に対するSeV-Cas9を用いた遺伝子復帰
 SeV-Cas9の精製サンプルを用いて、実施例11の遺伝子復帰試験を、実験4-1、4-2、4-3として3回行った。実験4-1では、生細胞中のHAT耐性クローン頻度が、プラスミドpCas9-sgHPRT1m3導入条件で5.2e-5に対して、SeV-Cas9感染/crRNA GT206/tracrRNA導入条件では9.2e-4であり、本発明条件において、一般的なプラスミド条件よりも18倍の高頻度化が観察された(図7-1実験4-1)。実験4-2では、生細胞中のHAT耐性クローン頻度が、プラスミドpCas9-sgHPRT1m3導入条件で2.6e-5に対して、SeV-Cas9感染/crHPRT1m3R(GT206)/tracrRNA導入条件では5.2e-4であり、本発明条件において、一般的なプラスミド条件よりも20倍の高頻度化が観察された(図7-1実験4-2)。実験4-3では、生細胞中のHAT耐性クローン頻度が、プラスミドpCas9-sgHPRT1m3導入条件で7.4e-5に対して、SeV-Cas9感染/crHPRT1m3R(GT206)/tracrRNA導入条件では9.2e-4から1.5e-3であり、本発明条件において、一般的なプラスミド条件よりも13-20倍の高頻度化が観察された(図7-1実験4-3)。遺伝子復帰頻度について、SeV-Cas9精製サンプルにおいてプラスミドpCas9-sgHPRT1m3よりも著しく高いことが、TG98細胞に続いてTG439-1細胞についても確認されたと言える。
This lipofection solution was added to a 6-well plate at 0.5 mL / well and incubated at 37 ° C., 5% CO 2 -17 hours. To apply lipofection cells, replace the lipofection solution in each well with 2 mL PBS / well, remove, add 0.25% trypsin / 1 mM EDTA solution at 0.5 mL / well, incubate at 37 ° C for 1 minute, and add 0.5 mL Add DMEM medium / well and detach / suspend cells by pipetting 3 to 4 times (P1000 pipette), collect in one 50-mL tube, measure cell number, centrifuge at 1,200 rpm for 3 minutes, and supernatant Removed, suspended at 4x10 4 cells / mL in DMEM medium (no 6-thioguanine, no HAT supplement), applied to 10 mL / diameter 10-cm dish, non-selective culture at 37 ° C, 5% CO 2 Started (Day 0). On Day 5, change to DMEM medium (including HAT) supplemented with 1/50 volume of HAT Supplement (50x), Liquid (ThermoFisher catalog # 21060017) and start selective cultivation. Replace with the same medium every 2 or 3 days. On the other hand, the number of HAT resistant colonies was measured around Day 18 on two dishes.
[Example 12] Gene reversion to TG439-1 cells using SeV-Cas9 Using the purified sample of SeV-Cas9, the gene reversion test of Example 11 was performed as Experiments 4-1 to 4-2 and 4-3. Performed three times. In Experiment 4-1, the frequency of HAT resistant clones in living cells was 5.2e-5 under the conditions of plasmid pCas9-sgHPRT1m3 introduction, and 9.2e-4 under the conditions of SeV-Cas9 infection / crRNA GT206 / tracrRNA introduction, Under the conditions of the present invention, an 18-fold increase in frequency was observed compared to general plasmid conditions (FIG. 7-1, Experiment 4-1). In Experiment 4-2, the frequency of HAT resistant clones in living cells was 2.6e-5 under the plasmid pCas9-sgHPRT1m3 transfection condition, and 5.2e-4 under the SeV-Cas9 infection / crHPRT1m3R (GT206) / tracrRNA transfection condition. In fact, under the conditions of the present invention, the frequency was increased by 20 times as compared with the general plasmid conditions (FIG. 7-1, Experiment 4-2). In Experiment 4-3, the frequency of HAT-resistant clones in living cells increased from 7.4e-5 under the conditions of plasmid pCas9-sgHPRT1m3 introduction, and from 9.2e-4 under the conditions of SeV-Cas9 infection / crHPRT1m3R (GT206) / tracrRNA introduction. 1.5e-3, which was 13-20 times higher than that of general plasmid conditions under the conditions of the present invention (FIG. 7-1, Experiment 4-3). Regarding the gene reversion frequency, it can be said that it was confirmed that the TG439-1 cells, as well as the TG98 cells, were significantly higher than the plasmid pCas9-sgHPRT1m3 in the purified SeV-Cas9 sample.
 実験4-1、4-2において、実施例5に示した手順で、遺伝子復帰体HATクローンの単離を行い、構造解析を行った。
 実験4-1、4-2におけるプラスミドからのCas9 sgRNA同時発現系では、それぞれ5 個,3個のHAT耐性クローンにおいて、エキソン2の領域を増幅するプライマーGT19/GT22によるPCRから、主に525 bp相当のPCR産物を得て、それらをシーケンス解析したところ、5 個,3個のHAT耐性クローンの全クローンにおいて標的配列部位が復帰していた。また、1)隣接イントロン内での意図しない配列の挿入;2)2塩基挿入変異配列DNAの残存は観察されなかった。
In Experiments 4-1 and 4-2, a reverted HAT clone was isolated and subjected to structural analysis by the procedure shown in Example 5.
In the Cas9 sgRNA co-expression system from plasmids in Experiments 4-1 and 4-2, 525 bp was mainly obtained from PCR using primers GT19 / GT22, which amplify the exon 2 region, in 5 and 3 HAT-resistant clones, respectively. When considerable PCR products were obtained and subjected to sequence analysis, the target sequence site was restored in all of the five or three HAT-resistant clones. In addition, 1) insertion of an unintended sequence in the adjacent intron; 2) no residual double-base insertion mutant sequence DNA was observed.
 実験4-1、4-2におけるSeVからのCas9発現、RNAs導入系では、それぞれ12個のHAT耐性クローンにおいて、エキソン2の領域を増幅するプライマーGT19/GT22によるPCRから、525 bp相当のPCR産物を得て、それらのシーケンス解析から、12 個, 12 個のHAT耐性クローンのうち全てにおいて、標的配列部位が復帰していた。また、近接イントロン内での挿入や2塩基挿入変異配列DNAの残存といった付随現象は、観察されなかった。
 TG439-1細胞に対する遺伝子復帰試験の結果より、SeVからのCas9発現、RNAs導入系による遺伝子復帰頻度は、プラスミドからのCas9 sgRNA同時発現系よりも著しく高いことが分かった。一方で、遺伝子復帰に付随した、意図しない配列異常は、プラスミドからのCas9 sgRNA同時発現系においてもSeVからのCas9発現、RNAs導入系同様に、認められなかった。
 TG98細胞に対する遺伝子復帰試験の結果では、プラスミドからのCas9 sgRNA同時発現系において、遺伝子復帰に伴って意図しない配列異常が生じていたことから、プラスミドからのCas9 sgRNA同時発現系における低頻度遺伝子復帰について、標的外類似配列(ドナーDNAや改変後配列)の切断を主たる原因として考察した。
 しかしながら、TG439-1細胞でのプラスミドからのCas9 sgRNA同時発現系における低頻度遺伝子復帰について、標的外類似配列(ドナーDNAや改変後配列)の切断の可能性を主たる原因として考察することは難しい。
 TG98細胞及びTG439-1細胞に対する遺伝子復帰試験系において可能な説明は、SeVからのCas9発現、RNAs導入系では、RNAsとともにドナープラスミドが導入された時に切断可能となるのに対して、プラスミドからのCas9 sgRNA同時発現系では、本プラスミドとともにドナープラスミドが導入されるが、Cas9 sgRNAの十分な発現まで時間がかかりその時点でドナープラスミドが十分量残っていないという原因が考えられる。(このCas9 sgRNA複合体とドナーとの間の存在時期のズレ問題に対して、Cas9 sgRNA搭載プラスミドやCas9 sgRNA搭載DNA型ウイルスベクター系では、その保持細胞を薬剤選択することによって改善される。しかしながらCas9 sgRNA搭載DNAベクターがゲノム挿入されるという問題が起こる。)
 SeVからのCas9発現、RNAs導入系では、Cas9-RNAs複合体が形成された時そこにドナーが存在し、遺伝子復帰への反応が始まる。その際ウイルスベクターのゲノム挿入は細胞質型RNAベクターゆえに起こらない。従って、SeVからのCas9発現、RNAs導入系では、DNA型ベクターからのCas9 sgRNA同時発現系に比べて、Cas9-RNAs複合体とドナーとの間の存在時期がよく一致することであり、その特長が、より高い遺伝子復帰頻度をもたらしていると考えられる。
In the expression of Cas9 from SeV and the RNAs transfection system in Experiments 4-1 and 4-2, in each of 12 HAT-resistant clones, a PCR product equivalent to 525 bp was obtained from PCR using primers GT19 / GT22 for amplifying the exon 2 region. And sequence analysis revealed that the target sequence site was restored in all 12 and 12 HAT resistant clones. In addition, no accompanying phenomena such as insertion in the adjacent intron and residual DNA having a two-base insertion mutant sequence were not observed.
From the results of the gene reversion test for TG439-1 cells, it was found that the expression of Cas9 from SeV and the frequency of gene reversion by the RNAs transfection system were remarkably higher than those of the Cas9 sgRNA co-expression system from plasmid. On the other hand, unintended sequence abnormalities associated with gene reversion were not observed in the Cas9 sgRNA co-expression system from the plasmid, as in the Cas9 expression system from SeV and the RNAs transfection system.
As a result of the gene reversion test for TG98 cells, unintended sequence abnormalities occurred with the gene reversion in the Cas9 sgRNA co-expression system from the plasmid. The main cause was considered to be cleavage of non-target similar sequences (donor DNA or modified sequences).
However, it is difficult to consider low-frequency gene reversion in the Cas9 sgRNA co-expression system from plasmids in TG439-1 cells as the main cause of the possibility of cleavage of off-target similar sequences (donor DNA or modified sequences).
A possible explanation for the gene reversion test system for TG98 cells and TG439-1 cells is that Cas9 expression from SeV, in the RNAs introduction system, it becomes possible to cleave when a donor plasmid is introduced together with RNAs, whereas In the Cas9 sgRNA co-expression system, the donor plasmid is introduced together with the present plasmid. However, it may be because a sufficient amount of time is required for Cas9 sgRNA to be sufficiently expressed, and a sufficient amount of the donor plasmid does not remain at that time. (The problem of the time difference between the existence of the Cas9 sgRNA complex and the donor can be improved by selecting a cell that carries the Cas9 sgRNA-containing plasmid or a DNA virus vector system carrying the Cas9 sgRNA. There is a problem that the DNA vector carrying Cas9 sgRNA is inserted into the genome.)
In the Cas9 expression and RNAs transfection system from SeV, when a Cas9-RNAs complex is formed, the donor is present there and the reaction to gene reversion starts. At that time, the genome insertion of the viral vector does not occur because of the cytoplasmic RNA vector. Therefore, Cas9 expression from SeV, in the RNAs transfection system, compared with the Cas9 sgRNA co-expression system from the DNA type vector, the existence time between the Cas9-RNAs complex and the donor is well matched, its features However, it is considered that this results in a higher frequency of gene reversion.
 実験2-1、2-2(TG98遺伝子復帰試験)において、2~8xRNAsの範囲でRNA量を振ったが、用量反応関係性は認められなかった(図5)。また、実験4-2(TG439-1遺伝子復帰試験)においても、4xRNAs と8xRNAsの比較から用量反応関係性が認められなかった(図7-1)。しかしながら、実験4-3(TG439-1遺伝子復帰試験)において、1xRNAs と4xRNAsの比較から用量反応関係性が認められた(図7-1)。さらに実験3-1、3-2(HT-1080遺伝子破壊試験)においても、4~8xRNAsの範囲で用量反応関係性が認められた(図6)。これらの結果から、1~4xRNAs用量領域において、導入RNAs量と遺伝子改変頻度との間に用量反応関係性があることが分かった。
 CRISPR/Cas9による遺伝子改変頻度は標的配列ごとに多様で予測困難であるという課題があり、その原因の一つは切断効率が標的配列間で異なることであると考えられる。切断効率が低い標的では導入RNA量を高くして遺伝子改変頻度を向上させ、切断効率が高い標的では導入RNA量を低くして類似のデザイン配列を保持しているドナーDNAの破壊を減衰することが可能であると考えられる。つまり、導入RNA量を調整することによって遺伝子改変頻度を調節することができることが、本法の特長のひとつと言える。
In Experiments 2-1 and 2-2 (TG98 gene reversion test), the amount of RNA was varied in the range of 2 to 8 × RNAs, but no dose-response relationship was observed (FIG. 5). Also, in Experiment 4-2 (TG439-1 gene reversion test), no dose-response relationship was observed from the comparison between 4xRNAs and 8xRNAs (FIG. 7-1). However, in Experiment 4-3 (TG439-1 gene reversion test), a dose-response relationship was observed from a comparison between 1xRNAs and 4xRNAs (FIG. 7-1). Further, in Experiments 3-1 and 3-2 (HT-1080 gene disruption test), a dose-response relationship was observed in the range of 4 to 8 × RNAs (FIG. 6). These results indicate that there is a dose-response relationship between the amount of introduced RNAs and the frequency of gene modification in the 1-4xRNAs dose region.
There is a problem that the frequency of gene modification by CRISPR / Cas9 is variable and difficult to predict for each target sequence, and one of the causes is considered to be that the cleavage efficiency differs between target sequences. To increase the frequency of genetic modification by increasing the amount of introduced RNA for targets with low cleavage efficiency, and to reduce the amount of introduced RNA for targets with high cleavage efficiency to attenuate the destruction of donor DNA that retains similar designed sequences Is considered possible. That is, it can be said that one of the features of the present method is that the frequency of gene modification can be adjusted by adjusting the amount of introduced RNA.
 本発明の好ましい態様を詳細に説明してきたが、これらの態様が変更され得ることは当業者にとって自明であろう。よって、本発明は、本発明が本明細書に詳細に記載された以外の方法や態様で実施され得るが、それらもまた本発明に含まれることは意図されている。即ち、本発明は添付の「特許請求の範囲」の精神またはその本質的部分を同じくする範囲に包含されるすべての変更を含むものである。 While the preferred embodiments of the invention have been described in detail, it will be obvious to those skilled in the art that these embodiments may be varied. Thus, it is intended that the present invention be practiced in other ways and embodiments than those specifically set forth herein, which are also included in the present invention. That is, the present invention includes all modifications that fall within the scope of the spirit of the appended claims or the essential part thereof.
 本発明により、遺伝子改変頻度を調節することが可能となり、遺伝子改変に伴った意図しない配列異常の発生を抑え、極めて高効率で標的遺伝子を改変する方法が提供された。従来の方法では、遺伝子改変を行うためには、ドナーDNAが挿入された細胞を選択マーカー遺伝子を用いて選択する工程と、選択マーカー遺伝子を除去された細胞を選択する工程という二段階選抜を行うことが必要であったが、本発明は極めて高い効率で遺伝子改変細胞を取得することができるため、選択マーカー遺伝子を用いることは必ずしも必要ではなくなり、一段階の選抜で目的の細胞を取得することも可能となる。 According to the present invention, it has become possible to regulate the frequency of gene modification, to suppress the occurrence of unintended sequence abnormality accompanying the gene modification, and to provide a method for modifying a target gene with extremely high efficiency. In the conventional method, in order to perform genetic modification, a two-step selection is performed, in which a cell into which a donor DNA has been inserted is selected using a selectable marker gene and a step in which a cell from which the selectable marker gene has been removed is selected. However, since the present invention can obtain genetically modified cells with extremely high efficiency, it is not always necessary to use a selectable marker gene, and it is possible to obtain target cells by one-stage selection. Is also possible.
 また、選択マーカー遺伝子を除去する従来の方法では、除去後も部位特異的組換え酵素の認識配列が残存することは避けられなかったが、本発明の方法では選択マーカー遺伝子を用いることは必要ではなく、選択マーカー遺伝子を除去する必要もなくなることから、部位特異的組換え酵素の認識配列が残存する問題を回避することができる。 Further, in the conventional method for removing the selectable marker gene, it is inevitable that the recognition sequence of the site-specific recombinase remains even after the removal, but it is not necessary to use the selectable marker gene in the method of the present invention. In addition, since there is no need to remove the selectable marker gene, the problem that the recognition sequence of the site-specific recombinase remains can be avoided.
 また、本発明は遺伝子破壊(遺伝子ターゲッティング)においても有用である。遺伝子を破壊すると細胞または個体レベルで表現型(例えば障害)が顕れ、そこから本来の遺伝子機能を推察することができる。最近CRISPR/Cas9による新しい遺伝子破壊技術の利用が、基礎研究分野から臨床研究分野まで拡がっている。しかしながら、CRISPR/Cas9技術は高効率に標的遺伝子を破壊できる一方、標的外遺伝子での破壊を伴うことが多く、顕れた障害が標的遺伝子破壊か標的外遺伝子破壊によるものかを直ちに特定することはできない。かつて、化学変異原処理によって作製された変異株に対して、それらの機能解析の段階で見られたように遺伝子機能の誤解釈をもたらす危険性がある。CRISPR/Cas9技術による誤解釈を回避して、顕われた機能障害の正しい原因遺伝子を特定するには、相補性試験などを含む過重な労力と時間を要する。 The present invention is also useful for gene disruption (gene targeting). When the gene is disrupted, a phenotype (eg, a disorder) appears at the cell or individual level, from which the original gene function can be inferred. Recently, the use of new gene disruption technology using CRISPR / Cas9 has been expanding from basic research to clinical research. However, while CRISPR / Cas9 technology can destroy target genes with high efficiency, it often involves disruption of non-target genes, and it is not possible to immediately identify whether the manifested disorder is due to target gene disruption or non-target gene disruption. Can not. In the past, there is a risk that a mutant strain created by chemical mutagen treatment may cause a misinterpretation of gene function as seen in the stage of their functional analysis. To avoid the misinterpretation by CRISPR / Cas9 technology and to identify the correct causative gene of the impaired function, it requires undue effort and time, including complementation tests.
 しかし本発明の方法では、遺伝子改変頻度を調節できることと、遺伝子改変に伴った、標的配列DNAの残存と意図しない配列異常の発生が抑えられることから、標的部位だけが破壊された細胞をより効率的に取得できるため、実験効率の改善が期待できる。 However, in the method of the present invention, since the frequency of gene modification can be regulated and the occurrence of unintended sequence abnormalities due to the gene modification can be suppressed, cells in which only the target site is destroyed can be more efficiently used. It can be expected that the experimental efficiency will be improved.
 また、大半の酵素は複数のドメインから成り立つが、ドメインの機能を解明するためには、遺伝子破壊技術は不適切であり、代わりに、ドメイン内のアミノ酸配列に相当する特定エキソンの塩基配列を精密に改変しなければならない。従来CRISPR/Cas9技術は、遺伝子改変細胞よりも遺伝子破壊細胞の方が数十倍高く生じるので、前者を選抜するためには、選択マーカー遺伝子の適用が必要とされる。選択マーカーなしで選抜するためには、sib-screeningを簡便化できる高額な機器(droplet digital PCR)の適用が必要とされる。 In addition, most enzymes consist of multiple domains, but gene disruption techniques are inadequate to elucidate the function of the domains, and instead, the base sequence of a specific exon corresponding to the amino acid sequence in the domain is refined. Must be modified. Conventionally, in the CRISPR / Cas9 technology, gene-disrupted cells are several tens times higher than gene-modified cells, so that selection of the former requires the application of a selectable marker gene. In order to select without a selection marker, it is necessary to apply an expensive device (droplet \ digital \ PCR) that can simplify sib-screening.
 しかし上述の通り本発明の方法は極めて高い効率で遺伝子改変細胞を取得することができるため、より簡便に遺伝子改変を実施することができる。従って、機能障害の原因遺伝子を特定するための労力と時間を削減できる。また、切断効率の向上から、ドメイン解析のための特定配列の変換を可能にしたと言える。このように本発明は、遺伝子疾患の原因究明などの基礎および応用研究や、遺伝子治療などの臨床適用までを含むあらゆる場面での遺伝子改変において、極めて有用な技術を提供するものである。 However, as described above, the method of the present invention can obtain genetically modified cells with extremely high efficiency, so that genetic modification can be performed more easily. Therefore, labor and time for specifying the causative gene of the dysfunction can be reduced. In addition, it can be said that the conversion of a specific sequence for domain analysis was made possible due to the improvement of the cutting efficiency. As described above, the present invention provides an extremely useful technique in basic and applied research such as investigation of the cause of a genetic disease, and in genetic modification in all situations including clinical application such as gene therapy.

Claims (16)

  1.  ガイドRNA依存性DNAヌクレアーゼを用いる遺伝子改変細胞の製造方法であって、
     (a)該ヌクレアーゼの遺伝子を搭載し、該ヌクレアーゼの活性に必要なガイドRNAの少なくとも一つをコードしない温度感受性マイナス鎖RNAウイルスベクターを細胞に導入し、許容温度下で該ベクターを発現させ、該ガイドRNAの非存在下で該ヌクレアーゼを細胞に蓄積させる工程、
     (b)工程(a)の後、不足するガイドRNAを細胞に供給する工程、
     (c)工程(b)の前後または同時に培養温度を非許容温度に上昇させ、該ガイドRNAが細胞中に存在する状態で培養する工程、を含む方法。
    A method for producing a genetically modified cell using a guide RNA-dependent DNA nuclease,
    (A) a temperature-sensitive minus-strand RNA virus vector that carries the nuclease gene and does not encode at least one guide RNA required for the activity of the nuclease is introduced into cells, and the vector is expressed at a permissive temperature; Accumulating the nuclease in cells in the absence of the guide RNA,
    (B) supplying the missing guide RNA to the cells after step (a);
    (C) raising the culture temperature to a non-permissible temperature before or after or simultaneously with step (b), and culturing in a state where the guide RNA is present in the cells.
  2.  (d)遺伝子が改変された細胞を回収する工程、をさらに含む、請求項1に記載の方法。 The method according to claim 1, further comprising: (d) recovering a cell in which the gene has been modified.
  3.  工程(b)においてガイドRNAを細胞に導入する、請求項1または2に記載の方法。 方法 The method according to claim 1 or 2, wherein the guide RNA is introduced into the cells in step (b).
  4.  工程(b)の実施時か、遅くともその24時間後までには培養温度は非許容温度に上昇している、請求項1から3のいずれかに記載の方法。 (4) The method according to any one of (1) to (3), wherein the culture temperature has been raised to a non-permissible temperature at the time of carrying out step (b) or at the latest at least 24 hours after that.
  5.  該ヌクレアーゼが、CRISPR/Casクラス2エンドヌクレアーゼである、請求項1から4のいずれかに記載の方法。 方法 The method according to any one of claims 1 to 4, wherein the nuclease is a CRISPR / Cas class 2 endonuclease.
  6.  該マイナス鎖RNAウイルスベクターがガイドRNAをコードしない、請求項1から5のいずれかに記載の方法。 (6) The method according to any one of (1) to (5), wherein the minus-strand RNA virus vector does not encode a guide RNA.
  7.  工程(b)においてドナーDNAも細胞に導入する、請求項1から6のいずれかに記載の方法。 (7) The method according to any one of (1) to (6), wherein the donor DNA is also introduced into the cells in the step (b).
  8.  該ドナーDNA中にポジティブ選択マーカー遺伝子を含まない、請求項7に記載の方法。 (8) The method according to (7), wherein the donor DNA does not contain a positive selection marker gene.
  9.  工程(c)の後、ドナーDNA中の配列が組み込まれた細胞を選択する工程、をさらに含む、請求項7または8に記載の方法。 9. The method according to claim 7 or 8, further comprising, after step (c), selecting a cell into which the sequence in the donor DNA has been integrated.
  10.  該選択工程が、ポジティブ選択マーカーに頼らずに細胞を検査してドナーDNA中の配列が組み込まれた細胞を選択する工程である、請求項9に記載の方法。 (10) The method according to (9), wherein the selection step is a step of examining cells without relying on a positive selection marker and selecting cells into which the sequence in the donor DNA has been integrated.
  11.  請求項1から10のいずれかに記載の方法に用いられるベクターであって、ガイドRNA依存性DNAヌクレアーゼ遺伝子を搭載し、該ヌクレアーゼの活性に必要なガイドRNAの少なくとも一つをコードしない、温度感受性マイナス鎖RNAウイルスベクター。 A vector for use in the method according to any one of claims 1 to 10, which carries a guide RNA-dependent DNA nuclease gene and does not encode at least one guide RNA required for the activity of the nuclease. Minus strand RNA virus vector.
  12.  温度感受性センダイウイルスベクターである、請求項11に記載のベクター。 The vector according to claim 11, which is a temperature-sensitive Sendai virus vector.
  13.  F遺伝子欠失型温度感受性センダイウイルスベクターである、請求項12に記載のベクター。 The vector according to claim 12, which is a F gene deleted temperature-sensitive Sendai virus vector.
  14.  センダイウイルスベクターが、F遺伝子を欠失し、M蛋白質にG69E、T116A、およびA183Sの変異、HN蛋白質にA262T、G264R、およびK461Gの変異、P蛋白質にL511Fの変異、ならびにL蛋白質にN1197SおよびK1795Eの変異をゲノムに含む、請求項12または13に記載のセンダイウイルスベクター。 Sendai virus vector deleted the F gene, G protein mutations G69E, T116A, and A183S, HN protein mutations A262T, G264R, and K461G, P protein mutation L511F, and L protein N1197S and K1795E The Sendai virus vector according to claim 12 or 13, which comprises a mutation of
  15.  以下の(i)および/または(ii)の変異をさらにゲノムに含む、請求項14に記載のセンダイウイルスベクター。
     (i)P蛋白質のD433A、R434A、およびK437Aの変異
     (ii)L蛋白質のY942H、L1361Cおよび/またはL1558Iの変異
    The Sendai virus vector according to claim 14, further comprising the following mutations (i) and / or (ii) in the genome.
    (I) Mutation of D433A, R434A, and K437A of P protein (ii) Mutation of Y942H, L1361C and / or L1558I of L protein
  16.  該ヌクレアーゼが、CRISPR/Casクラス2エンドヌクレアーゼである、請求項11から15のいずれかに記載のベクター。 ベ ク タ ー The vector according to any one of claims 11 to 15, wherein the nuclease is a CRISPR / Cas class 2 endonuclease.
PCT/JP2019/029381 2018-07-27 2019-07-26 System for highly efficient modification of target sequences WO2020022476A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-141798 2018-07-27
JP2018141798A JP2021176265A (en) 2018-07-27 2018-07-27 System for highly efficient modification of target sequences

Publications (1)

Publication Number Publication Date
WO2020022476A1 true WO2020022476A1 (en) 2020-01-30

Family

ID=69181660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029381 WO2020022476A1 (en) 2018-07-27 2019-07-26 System for highly efficient modification of target sequences

Country Status (2)

Country Link
JP (1) JP2021176265A (en)
WO (1) WO2020022476A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010008054A1 (en) * 2008-07-16 2010-01-21 ディナベック株式会社 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
WO2017223330A1 (en) * 2016-06-22 2017-12-28 Icahn School Of Medicine At Mount Sinai Viral delivery of rna utilizing self-cleaving ribozymes and crispr-based applications thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010008054A1 (en) * 2008-07-16 2010-01-21 ディナベック株式会社 Method for production of reprogrammed cell using chromosomally unintegrated virus vector
WO2017223330A1 (en) * 2016-06-22 2017-12-28 Icahn School Of Medicine At Mount Sinai Viral delivery of rna utilizing self-cleaving ribozymes and crispr-based applications thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, A. ET AL.: "Highly Efficient Sendai Virus Mediated CRISPR/CAS9 Gene Edi ting in Hematopoietic Stem Cells", MOLECULAR THERAPY, vol. 25, no. 5, 2017, pages 136 - 137 , 290 *

Also Published As

Publication number Publication date
JP2021176265A (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP6637444B2 (en) Lentivirus vector
KR100776086B1 (en) Paramyxoviruses having modified transcription initiation sequence
CN1934260B (en) Method of producing negative strand RNA virus vector with the use of hybrid promoter containing cytomegalovirus enhancer and avian beta-actin promoter
JP3766596B2 (en) RNP derived from paramyxovirus
JP4936482B2 (en) Improved persistent infection Sendai virus vector
KR20230128289A (en) A Engineered Class 2 Type V CRISPR System
JP2019511240A (en) Genome Editing of Human Neural Stem Cells Using Nuclease
CN109689865A (en) BCL11A homing endonuclease variants, composition and application method
KR20230002401A (en) Compositions and methods for targeting C9orf72
KR20020014786A (en) Paramyxoviridae virus vector defective in envelope gene
JP2019517281A (en) Gene therapy for neurotheloid lipofuscinosis
JP2019533440A (en) Method for modifying dystrophin gene to restore dystrophin expression and use thereof
JP6927883B2 (en) Improved paramyxovirus vector
JPWO2008096811A1 (en) Attenuated minus-strand RNA virus
WO2020022476A1 (en) System for highly efficient modification of target sequences
JP4791651B2 (en) Paramyxovirus vector for foreign gene transfer
KR20150038374A (en) Production of infectious influenza viruses
EP3897675A1 (en) Compositions and methods for airway tissue regeneration
JP6947825B2 (en) Polynucleotides and their use to modify target sequences
JPWO2004067752A1 (en) Paramyxovirus vectors encoding ribozymes and uses thereof
US20200071721A1 (en) Gene therapy for mucopolysaccharidosis, type ii
WO2020013317A1 (en) Virus-like particles and use thereof
CA3126886A1 (en) Liver-specific inducible promoters and methods of use thereof
JP2023553701A (en) Therapeutic LAMA2 Payload for the Treatment of Congenital Muscular Dystrophy
WO2024044673A1 (en) Dual cut retron editors for genomic insertions and deletions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP