WO2020022149A1 - Electromagnetic wave detection device and information acquisition system - Google Patents

Electromagnetic wave detection device and information acquisition system Download PDF

Info

Publication number
WO2020022149A1
WO2020022149A1 PCT/JP2019/028119 JP2019028119W WO2020022149A1 WO 2020022149 A1 WO2020022149 A1 WO 2020022149A1 JP 2019028119 W JP2019028119 W JP 2019028119W WO 2020022149 A1 WO2020022149 A1 WO 2020022149A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
unit
detection device
incident
reflection
Prior art date
Application number
PCT/JP2019/028119
Other languages
French (fr)
Japanese (ja)
Inventor
絵梨 竹内
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2020022149A1 publication Critical patent/WO2020022149A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/18Detecting, e.g. by using light barriers using one transmitter and one receiver using mechanical scanning systems

Definitions

  • the present invention relates to an electromagnetic wave detection device and an information acquisition system.
  • the electromagnetic wave detection device includes: An imaging unit for imaging an incident electromagnetic wave; A prism including a reflection surface that reflects the electromagnetic wave incident from the imaging unit, and a first emission surface that emits the electromagnetic wave reflected by the reflection surface; A first detection unit that detects an electromagnetic wave emitted from the first emission surface; With The traveling direction of the first electromagnetic wave included in the bundle of the first electromagnetic waves incident on and passing through the imaging unit, and the second direction included in the bundle of the second electromagnetic waves incident on and passing through the imaging unit. The angle between the electromagnetic wave and the traveling direction is within a predetermined value, The electromagnetic wave detectable region by the first detection unit is arranged only on the traveling path of the electromagnetic wave incident from a predetermined angle of view range.
  • the information acquisition system includes: Said electromagnetic wave detection device, A control unit that obtains information about the surroundings based on a detection result of the electromagnetic wave by the first detection unit; Is provided.
  • the solution of the present disclosure has been described as an apparatus and a system.
  • the present disclosure can also be realized as an embodiment including these, and a method, a program, It should be understood that the present invention can also be realized as a storage medium on which a program is recorded, and these are also included in the scope of the present disclosure.
  • FIG. 1 is a configuration diagram illustrating a schematic configuration of an information acquisition system including an electromagnetic wave detection device according to a first embodiment.
  • FIG. 2 is a configuration diagram illustrating a schematic configuration of the electromagnetic wave detection device of FIG. 1.
  • 3 is a timing chart illustrating the timing of electromagnetic wave radiation and the timing of detection for explaining the principle of distance measurement by a distance measurement sensor configured by the radiation unit, the second detection unit, and the control unit in FIG. 1.
  • It is a lineblock diagram showing the schematic structure of the electromagnetic wave detection device concerning a 2nd embodiment.
  • It is a lineblock diagram showing a schematic structure of an electromagnetic wave detection device concerning a 3rd embodiment.
  • It is a lineblock diagram showing the schematic structure of the electromagnetic wave detection device concerning a 4th embodiment.
  • FIG. 9 is a configuration diagram illustrating a schematic configuration in which a conventional electromagnetic wave detection device includes a light shielding plate.
  • an object of the present disclosure made in view of the problems of the related art described above is to detect electromagnetic waves with high accuracy.
  • An electromagnetic wave detection device having a primary imaging optical system that forms an image of an incident electromagnetic wave and a reflecting surface that reflects the electromagnetic wave transmitted through the primary imaging optical system can detect the reflected electromagnetic wave.
  • a reflection surface is arranged on the image side of the primary imaging optical system, and a surface for causing the electromagnetic wave traveling by reflection to travel to the detection unit is provided. It can be arranged without interference. Thereby, good imaging characteristics such as imaging performance, brightness, and angle of view of the primary imaging optical system can be secured.
  • such an electromagnetic wave detection device is configured such that, out of the electromagnetic waves emitted from the imaging unit 159, the electromagnetic waves incident on the imaging unit 159 from outside the predetermined angle of view range ⁇ are reflected by a desired reflection surface. May not be reflected.
  • the electromagnetic wave EW1 that has entered the imaging unit 159 from an object point in a predetermined angle of view range ⁇ is emitted from the imaging unit 159, the first surface s19 and the second surface s19 in the prism 169 After being reflected at s29, the light passes through the third surface s39 and reaches the detection unit 179.
  • the electromagnetic wave EW2 that has entered the image forming unit 159 from some object points outside the range of the predetermined angle of view range ⁇ is reflected by the first surface s19, and then reflected by the third surface s29 without being reflected by the second surface s29. And reaches the detection unit 179 through the surface s39. For this reason, the electromagnetic wave radiated from the object point within the predetermined angle of view range ⁇ and the electromagnetic wave EW2 radiated from some object points outside the predetermined angle of view range ⁇ May be reached.
  • the electromagnetic wave EW3 that has entered the imaging unit 159 from some other object point outside the predetermined angle-of-view range ⁇ may be reflected by a reflection surface other than the desired reflection surface. Also in this case, the electromagnetic wave radiated from the object point within the predetermined angle of view range ⁇ and incident on the imaging unit 159 and the electromagnetic wave radiated from some other object points outside the predetermined angle of view range ⁇ EW3 may reach the same position in the detection unit 17.
  • the detection unit 17 converts the electromagnetic wave EW1 radiated from the object point within the predetermined angle of view range ⁇ into the electromagnetic wave EW2, EW3 radiated from the object point outside the predetermined angle of view range ⁇ . To detect. Therefore, ghosts and flares are generated in the information based on the detected electromagnetic waves, and it is difficult to detect the electromagnetic waves with high accuracy.
  • FIG. A configuration is conceivable in which a light shielding plate 90 composed of an absorber, a lens hood, and the like is provided on the first surface s19.
  • a part of the electromagnetic wave radiated from the object point within the predetermined angle of view range ⁇ is also blocked by the light shielding plate 90, the intensity of the electromagnetic wave radiated from the object point and reaching the detection unit 17 is reduced by the light shielding plate 90. It is lower than when not arranged.
  • an information acquisition system 11 including an electromagnetic wave detection device 10 according to the first embodiment of the present disclosure includes an electromagnetic wave detection device 10, a radiation unit 12, a scanning unit 13, and a control unit 14. Have been.
  • the broken lines connecting the functional blocks indicate the flow of control signals or information to be communicated.
  • the communication indicated by the broken line may be wire communication or wireless communication.
  • a solid line protruding from each functional block indicates a beam-like electromagnetic wave.
  • the electromagnetic wave detection device 10 has an imaging unit 15, a prism 16, and a first detection unit 17.
  • a solid line crossing each member or within each member travels along a traveling axis which is a central axis of a bundle of electromagnetic waves incident on the imaging unit 15 from an object point within a predetermined angle of view range ⁇ .
  • 3 shows a traveling path of an electromagnetic wave.
  • a broken line traversing each member or within each member indicates a traveling path of an electromagnetic wave traveling along a traveling axis among electromagnetic waves incident on the imaging unit 15 from an object point outside the predetermined angle of view range ⁇ .
  • the bundle of electromagnetic waves indicates electromagnetic waves that are spreading radially. When the electromagnetic wave on the traveling axis travels in the traveling direction, the electromagnetic wave on the traveling axis travels along the traveling path.
  • the first electromagnetic wave and the second electromagnetic wave may be simply referred to as “electromagnetic waves”.
  • the imaging unit 15 includes, for example, at least one of a lens and a mirror.
  • the imaging unit 15 forms an image of an electromagnetic wave incident from a target ob which is a subject.
  • the imaging unit 15 may be a retrofocus type lens system.
  • the imaging unit 15 includes a traveling direction of the first electromagnetic wave included in the bundle of the first electromagnetic waves incident on and passing through the imaging unit 15, and a second electromagnetic wave incident on the imaging unit 15 and passing through the bundle.
  • a traveling direction of the first electromagnetic wave included in the bundle of the first electromagnetic waves incident on and passing through the imaging unit 15 and a second electromagnetic wave incident on the imaging unit 15 and passing through the bundle.
  • the imaging unit 15 may be arranged so that the traveling axis of the electromagnetic wave incident from each angle of view passes through the center of the imaging unit in the preceding stage and then passes through the imaging unit in the subsequent stage.
  • the first electromagnetic wave and the second electromagnetic wave are electromagnetic waves radiated from arbitrary object points different from each other.
  • the angle between the traveling direction of the first electromagnetic wave and the traveling direction of the second electromagnetic wave may be, for example, within 15 °.
  • the angle between the traveling direction of the first electromagnetic wave and the traveling direction of the second electromagnetic wave may be, for example, 0 °.
  • the imaging unit 15 may be configured such that an angle between the traveling direction of the electromagnetic wave included in the bundle of electromagnetic waves incident on and passing through the imaging unit 15 and the main axis of the imaging unit 15 is within a predetermined value. Designed and manufactured to be.
  • the traveling direction of the electromagnetic wave included in the bundle of electromagnetic waves that has entered and passed the imaging unit 15 may be substantially parallel to the main axis of the imaging unit 15.
  • the optical system constituted by the imaging unit 15 may be image-side telecentric. For this purpose, an opening may be arranged in the vicinity of the position of the front focal point by the imaging unit 15.
  • the prism 16 is provided on the image side of the image forming unit 15.
  • the prism 16 reflects the electromagnetic wave traveling from the image forming unit 15 and emits the reflected electromagnetic wave toward the first detecting unit 17.
  • the detailed structure of the prism 16 will be described below.
  • the prism 16 has at least a reflection surface including a first reflection surface and a second reflection surface, and a first emission surface.
  • the prism 16 includes a first surface s1, which is a first reflection surface, a second surface s2, which is a second reflection surface, and a third surface s3, which is a first exit surface. At least.
  • the prism 16 may have the first surface s1, the second surface s2, and the third surface s3 as different different surfaces.
  • the prism 16 includes, for example, a triangular prism, and the first surface s1, the second surface s2, and the third surface s3 may intersect each other.
  • the prism 16 may be arranged such that the traveling axis of the electromagnetic wave incident on the second surface s2 from the first direction d1 is perpendicular to the second surface s2. Further, the prism 16 is disposed such that the first surface s1 is located in the second direction d2 in which the electromagnetic wave travels through the prism 16 by transmitting or refracting the second surface s2 from the first direction d1. May be. In addition, the prism 16 may be arranged such that the second surface s2 is located in the third direction d3 in which the electromagnetic wave reflected on the first surface s1 travels.
  • the first direction d1 is parallel to the main axis of the imaging unit 15 and includes a direction from the object plane to the imaging unit 15 and a direction from the imaging unit 15 to the image plane.
  • the first surface s1 causes the electromagnetic wave traveling in the second direction d2 from the second surface s2 to travel in the third direction d3.
  • the first surface s1 may internally reflect an electromagnetic wave traveling in the second direction d2 from the second surface s2 and cause the electromagnetic wave to travel in the third direction d3.
  • the first surface s1 may cause the electromagnetic wave traveling from the second surface s2 in the second direction d2 to be totally internally reflected and travel in the third direction d3.
  • the incident angle of the electromagnetic wave traveling from the first surface s1 in the third direction d3 to the second surface s2 may be equal to or greater than the critical angle.
  • the second surface s2 allows the electromagnetic wave incident on the prism 16 from the first direction d1 to travel in the second direction d2.
  • the second surface s2 may be perpendicular to the traveling axis of the electromagnetic wave incident on the second surface s2 from the first direction d1.
  • the main axis of the imaging unit 15 is perpendicular to the second surface s2, in other words, the main surface of the imaging unit 15 and the second surface s2.
  • the plane s2 may be parallel.
  • the second surface s2 may transmit or refract an electromagnetic wave incident from the first direction d1 to travel in the second direction d2.
  • the second surface s2 causes the electromagnetic wave traveling from the first surface s1 in the third direction d3 to travel in the fourth direction d4.
  • the second surface s2 may internally reflect an electromagnetic wave that has traveled in the third direction d3 from the first surface s1 and travel in the fourth direction d4.
  • the second surface s2 may cause the electromagnetic wave traveling from the first surface s1 in the third direction d3 to undergo total internal reflection and travel in the fourth direction d4.
  • the incident angle of the electromagnetic wave traveling from the first surface s1 in the third direction d3 to the second surface s2 may be equal to or greater than the critical angle.
  • the third surface s3 emits, from the prism 16, an electromagnetic wave traveling from the second surface s2 in the fourth direction d4.
  • the third surface s3 may be perpendicular to the traveling axis of the electromagnetic wave traveling in the fourth direction d4 from the second surface s2, that is, perpendicular to the fourth direction d4.
  • the first detector 17 detects the electromagnetic wave emitted from the third surface s3.
  • the first detection unit 17 is provided on the path of the electromagnetic wave traveling from the prism 16 in the fourth direction d4.
  • the first detection unit 17 uses the predetermined angle of view ⁇ Are provided on the path of the electromagnetic wave that enters the image forming unit 15 from the object point and travels from the prism 16 in the fourth direction d4.
  • the first detection unit 17 may be provided at or near the imaging position of the object ob by the imaging unit 15 in the fourth direction d4 from the prism 16. Therefore, the image of the electromagnetic wave of the target ob which reaches the detection surface of the first detection unit 17 via the first surface s1, the second surface s2, and the third surface s3 may be formed.
  • the first detector 17 may be arranged so that the detection surface is parallel to the third surface s3. As described above, the third surface s3 can be perpendicular to the traveling axis of the electromagnetic wave that travels and exits in the fourth direction d4, and the detection surface of the first detection unit 17 is separated from the third surface s3. It may be perpendicular to the traveling axis of the emitted electromagnetic wave.
  • the first detection unit 17 includes a passive sensor.
  • the first detection unit 17 more specifically includes an element array.
  • the first detection unit 17 may include an image sensor such as an image sensor or an imaging array, capture an image of an electromagnetic wave formed on the detection surface, and generate image information corresponding to the captured object ob. .
  • the first detection unit 17 may more specifically capture a visible light image.
  • the first detection unit 17 may transmit the generated image information to the control unit 14 as a signal.
  • the first detector 17 may detect electromagnetic waves in bands other than visible light.
  • the first detection unit 17 may include an infrared sensor that detects electromagnetic waves in an infrared band.
  • the first detection unit 17 may include a sensor that detects at least one of ultraviolet light and radio waves.
  • the first detection unit 17 may include a distance measurement sensor. In this configuration, the electromagnetic wave detection device 10 can acquire image-like distance information using the first detection unit 17. Further, the first detection unit 17 may include a thermosensor or the like. In this configuration, the electromagnetic wave detection device 10 can acquire image-like temperature information by the first detection unit 17.
  • an IR (infrared) cut coat is applied to at least one of the first surface s1, the second surface s2, and the third surface s3. It may be. Further, in a configuration in which the first detection unit 17 captures an image of an arbitrary electromagnetic wave, an AR (Anti-Reflection) coat may be applied to the third surface s3.
  • the first detection unit 17 may be an active sensor that detects a reflected wave of the electromagnetic wave emitted from the radiation unit 12 toward the target ob from the target ob.
  • the first detection unit 17 is a reflected wave of the electromagnetic wave radiated toward the target ob by being radiated from the radiation unit 12 and reflected by the scanning unit 13. May be detected.
  • the electromagnetic wave radiated from the radiating unit 12 may be at least one of infrared light, visible light, ultraviolet light, and radio wave.
  • the first detection unit 17 more specifically includes an element constituting a distance measurement sensor.
  • the first detection unit 17 includes a single element such as an APD (Avalanche PhotoDiode), a PD (PhotoDiode), a SPAD (Single Photon Avalanche Diode), a millimeter wave sensor, a submillimeter wave sensor, and a ranging image sensor.
  • the first detection unit 17 may include an element array such as an APD array, a PD array, an MPPC (Multi Photo Pixel Pixel), a ranging imaging array, and a ranging image sensor.
  • the first detection unit 17 transmits detection information indicating that a reflected wave from a subject has been detected to the control unit 14 as a signal.
  • the first detection unit 17 is only required to be able to detect an electromagnetic wave in the configuration that is a single element constituting the above-described distance measuring sensor, and does not need to be imaged on the detection surface. Therefore, the first detection unit 17 does not necessarily have to be provided in the vicinity of the imaging position of the imaging unit 15. In other words, in this configuration, the first detecting unit 17 can detect the third position of the prism 16 if the electromagnetic wave incident on the image forming unit 15 from an object point in the predetermined angle of view range ⁇ can be incident on the detecting surface. May be placed anywhere on the path of the electromagnetic wave that travels after exiting from the surface s3.
  • the radiating unit 12 may radiate, for example, at least one of infrared light, visible light, ultraviolet light, and radio waves. In the first embodiment, the radiating unit 12 radiates infrared rays. The radiating unit 12 may radiate the radiated electromagnetic wave directly or indirectly via the scanning unit 13 toward the target ob. In the first embodiment, the radiating unit 12 may radiate the radiated electromagnetic wave indirectly to the target ob via the scanning unit 13.
  • the radiating section 12 may radiate a beam-shaped electromagnetic wave having a small width, for example, 0.5 °. Further, in the first embodiment, the radiating unit 12 may radiate the electromagnetic wave in a pulse shape.
  • the radiating unit 12 includes, for example, an LED (Light Emitting). Diode) and LD (Laser Diode). The radiating unit 12 may switch between radiating and stopping electromagnetic waves based on the control of the control unit 14 described below.
  • the scanning unit 13 has, for example, a reflecting surface that reflects the electromagnetic wave, and changes the radiation position of the electromagnetic wave applied to the target ob by reflecting the electromagnetic wave radiated from the radiation unit 12 while changing its direction. Good. That is, the scanning unit 13 may scan the target ob using the electromagnetic waves radiated from the radiation unit 12. Therefore, in the first embodiment, the first detection unit 17 may constitute a scanning distance measuring sensor in cooperation with the scanning unit 13. Note that the scanning unit 13 may scan the object ob in a one-dimensional direction or a two-dimensional direction. In the first embodiment, the scanning unit 13 scans the target ob in a two-dimensional direction.
  • the scanning unit 13 may be configured such that at least a part of the irradiation region of the electromagnetic wave radiated and reflected from the radiation unit 12 is included in the electromagnetic wave detection range of the electromagnetic wave detection device 10. Therefore, at least a part of the electromagnetic wave applied to the target ob via the scanning unit 13 can be detected by the electromagnetic wave detection device 10.
  • the scanning unit 13 includes, for example, a MEMS (Micro Electro Mechanical Systems) mirror, a polygon mirror, a galvano mirror, and the like. In the first embodiment, the scanning unit 13 includes a MEMS mirror.
  • MEMS Micro Electro Mechanical Systems
  • the scanning unit 13 may change the direction in which the electromagnetic wave is reflected based on the control of the control unit 14 described later.
  • the scanning unit 13 may include an angle sensor such as an encoder, for example, and may notify the control unit 14 of the angle detected by the angle sensor as direction information for reflecting electromagnetic waves.
  • the control unit 14 can calculate the radiation position based on the direction information acquired from the scanning unit 13.
  • the control unit 14 can calculate the irradiation position based on a drive signal input to cause the scanning unit 13 to change the direction in which the electromagnetic wave is reflected.
  • the scanning unit 13 is configured such that at least a part of the irradiation area of the electromagnetic wave radiated from the radiation unit 12 and reflected by the scanning unit 13 is included in the detection range of the first detection unit 17. It is configured. Therefore, in the first embodiment, at least a part of the electromagnetic wave radiated to the target ob via the scanning unit 13 can be detected by the first detection unit 17.
  • the control unit 14 includes one or more processors and a memory.
  • the processor may include at least one of a general-purpose processor that reads a specific program and executes a specific function, and a dedicated processor specialized for a specific process.
  • the special purpose processor may include an application specific integrated circuit (ASIC; Application ⁇ Specific ⁇ Integrated ⁇ Circuit).
  • the processor may include a programmable logic device (PLD; Programmable Logic Device).
  • the PLD may include an FPGA (Field-Programmable Gate Array).
  • the control unit 14 may include at least one of an SoC (System-on-a-Chip) in which one or a plurality of processors cooperate, and a SiP (System ⁇ In ⁇ a ⁇ Package).
  • the control unit 14 may acquire information about the periphery of the electromagnetic wave detection device 10 based on the detection result of the electromagnetic wave detected by the first detection unit 17.
  • the information about the surroundings is, for example, image information, distance information, and temperature information.
  • the control unit 14 acquires, as image information, the electromagnetic wave detected by the first detection unit 17 as an image. Further, in the first embodiment, the control unit 14 performs the ToF (Time-of-Flight) method based on the detection information detected by the first detection unit 17 in a ToF (Time-of-Flight) manner as described below.
  • the distance information of the radiation position radiated to the camera may be acquired.
  • the control unit 14 radiates a pulsed electromagnetic wave to the radiating unit 12 by inputting the electromagnetic wave radiating signal to the radiating unit 12 (see the “Electromagnetic radiation signal” column).
  • the radiating unit 12 irradiates an electromagnetic wave based on the input electromagnetic wave radiation signal (see the “radiation unit radiation amount” column).
  • An electromagnetic wave emitted from the radiation unit 12 and reflected by the scanning unit 13 and applied to an arbitrary radiation region is reflected in the radiation region.
  • the first detection unit 17 detects the detection information as described above. Is notified to the control unit 14.
  • the control unit 14 has, for example, a time measurement LSI (Large Scale Integrated circuit), and obtains detection information from the time T1 at which the radiation unit 12 emits the electromagnetic wave (see the “detection information acquisition” column). The time ⁇ T until T2 is measured. The control unit 14 calculates the distance to the radiation position by multiplying the time ⁇ T by the speed of light and dividing by 2. In addition, the control unit 14 calculates the radiation position based on the direction information acquired from the scanning unit 13 or the drive signal output to the scanning unit 13 as described above. The control unit 14 creates image-like distance information by calculating the distance to each radiation position while changing the radiation position.
  • LSI Large Scale Integrated circuit
  • the information acquisition system 11 is configured to generate distance information by using Direct @ ToF which directly radiates an electromagnetic wave and directly measures a time required to return.
  • the information acquisition system 11 is not limited to such a configuration.
  • the information acquisition system 11 emits an electromagnetic wave at a fixed cycle, and obtains distance information by Flash @ ToF which indirectly measures a time until the electromagnetic wave is returned from a phase difference between the emitted electromagnetic wave and the returned electromagnetic wave. May be created.
  • the information acquisition system 11 may create the distance information by another ToF method, for example, Phased @ ToF.
  • the traveling direction of the first electromagnetic wave included in the bundle of first electromagnetic waves that has entered and passed the imaging unit 15 and the imaging unit 15 The angle between the second electromagnetic wave included in the bundle of the second electromagnetic waves that has entered and passed through and the traveling direction of the second electromagnetic wave is within a predetermined value.
  • the electromagnetic wave detection device 10 of the first embodiment reduces the spread of the electromagnetic waves radiated from a plurality of object points within the predetermined angle of view range ⁇ and transmitted through the imaging unit 15, and Is not reflected by the reflecting surface of the above, or is reflected by a reflecting surface other than the desired reflecting surface.
  • the electromagnetic wave detection device 10 can reduce the intersection of the electromagnetic wave with the traveling path of the electromagnetic wave that enters the imaging unit 15 within the predetermined angle of view range ⁇ and is reflected by the desired reflection surface. As a result, the position of the electromagnetic wave incident on the imaging unit 15 from the object point outside the predetermined angle of view range ⁇ and the position of the electromagnetic wave incident on the imaging unit 15 from the object point ⁇ within the predetermined angle of view range Reaching the same location can be reduced. Therefore, the electromagnetic wave detection device 10 can reduce ghost caused by the electromagnetic wave incident on the imaging unit 15 from an object point outside the predetermined angle of view range ⁇ , and can detect the electromagnetic wave with high accuracy. Note that such configurations and effects are the same for the electromagnetic wave detection devices according to the second to fifth embodiments to be described later.
  • the electromagnetic wave detection device 10 does not require the use of a light-shielding plate to reduce the number of electromagnetic waves intersecting on the detection surface of the detection unit 17. Therefore, a decrease in the amount of electromagnetic waves reaching the detection surface from the object point within the predetermined angle of view range ⁇ can be reduced. Note that such configurations and effects are the same for the electromagnetic wave detection devices according to the second to fifth embodiments to be described later.
  • the angle between the traveling direction of the electromagnetic wave included in the bundle of electromagnetic waves incident on and passing through the imaging unit 15 and the main axis of the imaging unit 15 is within a predetermined value. It is. With such a configuration, as described above, the electromagnetic wave detection device 10 according to the first embodiment allows the electromagnetic wave detection device 10 according to the first embodiment to move the object point within a predetermined angle of view range ⁇ to the image forming unit 15. The arrival of the incident electromagnetic wave and the electromagnetic wave incident on the imaging unit 15 from an object point outside the predetermined angle-of-view range ⁇ at the same position in the detection unit 17 can be reduced.
  • the imaging unit 15 forms an image-side telecentric optical system.
  • the electromagnetic wave detection device 10 according to the first embodiment is configured such that the electromagnetic wave incident on the imaging unit 15 from the object point in the predetermined angle of view range ⁇ And the electromagnetic wave incident on the imaging unit 15 from an object point outside the range of the angle of view ⁇ can reach the same position in the detection unit 17.
  • the electromagnetic wave detection device 10 of the first embodiment includes a first surface s1, a second surface s2, and a third surface s3, and the first surface s1 detects electromagnetic waves incident from the imaging unit 15. Reflecting, the second surface s2 reflects the electromagnetic wave reflected by the first surface s1, and the third surface s3 emits the electromagnetic wave reflected by the second surface s2. For this reason, even if the angle between the main axis of the imaging unit 15 and the first surface s1 is close to 90 °, the electromagnetic wave detection device 10 can detect the electromagnetic wave reflected by the first surface s1 by the second surface s1. Can travel in a direction different from the direction toward the imaging unit 15 by the surface s2.
  • the electromagnetic wave detection device 10 can avoid the interference between the imaging unit 15 and the first detection unit 17 even when the angle between the second direction d2 and the first surface s1 approaches 90 °. As a result, the electromagnetic wave detection device 10 can avoid the restriction on the design of the first imaging unit 15 and can ensure good imaging characteristics of the first imaging unit 15. Note that such configurations and effects are the same for the electromagnetic wave detection device according to the third embodiment described later.
  • the configuration of the prism is different from that of the first embodiment.
  • the second embodiment will be described focusing on the differences from the first embodiment. Parts having the same configuration as the first embodiment are denoted by the same reference numerals.
  • the electromagnetic wave detection device 100 includes an imaging unit 15, a prism 160, and a first detection unit 17.
  • the configuration and functions of the information acquisition system 11 according to the second embodiment other than the electromagnetic wave detection device 100 are the same as those of the first embodiment.
  • the configurations and functions of the imaging unit 15 and the first detection unit 17 of the electromagnetic wave detection device 100 according to the second embodiment are the same as those of the first embodiment.
  • the prism 160 has at least a first surface s10, a second surface s20, and a third surface s30.
  • the prism 160 may have the first surface s10, the second surface s20, and the third surface s30 as different different surfaces.
  • the prism 160 includes a rectangular prism, and the first surface s10, the second surface s2, and the third surface s30 may intersect each other.
  • the first surface s10 causes the electromagnetic wave traveling from the second surface s20 in the second direction d2 to travel in the fifth direction d5.
  • the first surface s10 may internally reflect an electromagnetic wave that has traveled in the second direction d2 from the second surface s20 and travel in the fifth direction d5.
  • the first surface s10 may cause the electromagnetic wave traveling from the second surface s20 in the second direction d2 to be totally internally reflected and travel in the fifth direction d5.
  • the first surface s10 has a distance at which the electromagnetic wave incident from the second surface s20 and reflected by the first surface s10 can reach the third surface s30 instead of the second surface s20. Away from
  • the second surface s20 allows the electromagnetic wave incident on the prism 16 from the first direction d1 to travel in the second direction d2.
  • the second surface s20 may be perpendicular to the traveling axis of the electromagnetic wave incident on the second surface s20 from the first direction d1.
  • the main axis of the imaging unit 15 is perpendicular to the second surface s20, in other words, the main surface of the imaging unit 15 and the second surface s20.
  • the plane s20 may be parallel.
  • the second surface s20 may transmit or refract an electromagnetic wave incident from the first direction d1 to travel in the second direction d2.
  • the third surface s30 emits, from the prism 16, an electromagnetic wave traveling from the first surface s1 in the fifth direction d5.
  • the third surface s30 may be perpendicular to the traveling axis of the electromagnetic wave traveling in the fifth direction d5 from the second surface s20, that is, perpendicular to the fifth direction d5.
  • an electromagnetic wave detection device according to a third embodiment of the present disclosure will be described.
  • the configuration of the prism is different from that of the second embodiment.
  • the third embodiment will be described focusing on the differences from the second embodiment. Parts having the same configuration as the second embodiment are denoted by the same reference numerals.
  • the electromagnetic wave detection device 101 has an imaging unit 15, a prism 161, and a first detection unit 17.
  • the configuration and functions of the information acquisition system 11 according to the third embodiment other than the electromagnetic wave detection device 101 are the same as those of the first embodiment.
  • the configuration and functions of the third embodiment other than the prism 161 are the same as those of the second embodiment.
  • the prism 161 has at least a first surface s10, a second surface s20, a third surface s30, and the reflection suppressing unit 22.
  • the configurations and functions of the first surface s10, the second surface s20, and the third surface s30 are the same as those in the second embodiment.
  • the reflection suppressing unit 22 suppresses the reflection of the electromagnetic wave at a position other than the traveling path of the electromagnetic wave incident on the imaging unit 15 from the object point in the predetermined angle of view range ⁇ .
  • the reflection suppressing unit 22 may, for example, suppress the reflection of the electromagnetic wave by absorbing the electromagnetic wave.
  • the reflection suppressing unit 22 is a portion of the prism on which black paint is applied.
  • the reflection suppressing unit 22 may be a black plate-like member arranged on the incident surface of the prism on the electromagnetic wave.
  • the reflection suppressing unit 22 may be a member having a sanding surface, a spherical surface, an aspheric surface, or an uneven surface that suppresses reflection of electromagnetic waves.
  • the reflection suppressing unit 22 is arranged in a region other than a region of the traveling path of the prism 161 where the electromagnetic wave travels from the object point within the predetermined angle of view range ⁇ in the traveling path of the electromagnetic wave. .
  • the reflection suppressing unit 22 is disposed on a seventh surface s7 that is an interface of the prism 161.
  • the first surface s10, the second surface s20, and the third surface s30 allow the electromagnetic waves incident on the imaging unit 15 to travel.
  • the electromagnetic wave enters the prism 161 from the first direction d1 on the second surface s20, and travels in the second direction d2.
  • the electromagnetic wave traveling in the second direction d2 travels in the fifth direction d5 by the first surface S10.
  • the electromagnetic wave traveling in the fifth direction d5 is emitted from the prism 161 through the third surface S30.
  • the electromagnetic wave detection device 101 includes the reflection suppression unit 22 that suppresses the reflection of the electromagnetic wave at a position other than the traveling path of the electromagnetic wave incident from the object point in the predetermined angle of view range ⁇ . And a prism having the same. For this reason, the reflection suppressing unit 22 is disposed at a position on the traveling path of the electromagnetic wave incident from an object point outside the predetermined angle of view range ⁇ , and the electromagnetic wave detecting device 101 It is possible to suppress the reflection of the electromagnetic wave incident from an object point outside the range ⁇ .
  • the electromagnetic wave detection device 102 is configured such that the electromagnetic wave that enters from an object point outside the predetermined angle of view range ⁇ and reaches the interface is the first electromagnetic wave that enters from the object point within the predetermined angle of view range ⁇ . Reaching the same position as the position in the detection unit 17 can be reduced. As a result, the electromagnetic wave detection device 101 can reduce ghosts and flares caused by electromagnetic waves incident on the imaging unit 15 from object points outside the predetermined angle-of-view range ⁇ , and can detect electromagnetic waves with high accuracy.
  • an electromagnetic wave detection device according to a fourth embodiment of the present disclosure will be described.
  • the configuration of the prism is different from that of the second embodiment.
  • the fourth embodiment will be described focusing on the differences from the second embodiment. Parts having the same configuration as the second embodiment are denoted by the same reference numerals.
  • the electromagnetic wave detection device 102 has an imaging unit 15, a prism 162, and a first detection unit 17.
  • the configuration and functions of the information acquisition system 11 according to the fourth embodiment other than the electromagnetic wave detection device 102 are the same as those of the first embodiment.
  • the configuration and functions of the fourth embodiment other than the prism 162 are the same as those of the second embodiment.
  • the prism 162 has at least a first surface s11, a second surface s21, and a third surface s30.
  • the configuration and function of the third surface s30 are the same as those in the second embodiment.
  • the prism 162 may have the first surface s11, the second surface s21, and the third surface s30 as different different surfaces.
  • the prism 162 includes a rectangular prism, and the first surface s11, the second surface s21, and the third surface s30 may intersect each other.
  • the prism 162 has the reflection suppressing unit 220.
  • the reflection suppressing unit 220 suppresses reflection of electromagnetic waves.
  • the reflection suppressing unit 220 includes a region in the prism 162 from the traveling path of the electromagnetic wave incident on the imaging unit 15 to the interface.
  • the reflection suppressing unit 220 is a region of the prism 162 from the end of the region where the electromagnetic wave incident on the imaging unit 15 can travel to the interface. More specifically, the reflection suppressing unit 220 is a region in the prism 162 from the end of the region where the electromagnetic wave incident on the imaging unit 15 can travel to the interface.
  • the reflection suppressing unit 220 does not reach the other interface, but the first surface s11 Is the area of the prism 162 that can be reached.
  • the distance L from the traveling path of the electromagnetic wave to the interface of the prism 162 is equal to or longer than a predetermined distance.
  • the first surface s11 is a region where the electromagnetic wave incident on the image forming unit 15 from an object point within a predetermined angle of view range ⁇ and is incident on the prism 162 on the second surface s21 is reflected. And a region constituting the unit 220.
  • the first surface s11 causes an electromagnetic wave traveling in the second direction d2 from the second surface s21 to travel in the fifth direction d5.
  • the first surface s11 may internally reflect an electromagnetic wave traveling in the second direction d2 from the second surface s21 and cause the electromagnetic wave to travel in the fifth direction d5.
  • the first surface s11 may cause the electromagnetic wave traveling in the second direction d2 from the second surface s21 to be totally internally reflected and travel in the fifth direction d5.
  • the second surface s21 includes a region through which the electromagnetic wave incident on the imaging unit 15 from an object point in the predetermined angle of view range ⁇ is transmitted, and a region constituting the reflection suppressing unit 220 continuous with the region.
  • the second surface s21 reflects an electromagnetic wave traveling in the second direction d2 and causes the electromagnetic wave to travel in the fifth direction d5.
  • the second surface s20 causes the electromagnetic wave incident on the prism 162 from the first direction d1 to travel in the second direction d2.
  • the second surface s21 may be perpendicular to the traveling axis of the electromagnetic wave incident on the second surface s21 from the first direction d1.
  • the main axis of the imaging unit 15 is perpendicular to the second surface s21, in other words, the main surface of the imaging unit 15 and the second surface s21.
  • the plane s21 may be parallel.
  • the second surface s21 may transmit or refract an electromagnetic wave incident from the first direction d1 to travel in the second direction d2.
  • the reflection suppressing unit 220 determines the area of the prism 162 from the traveling path of the electromagnetic wave incident from an object point within a predetermined angle of view range ⁇ to the interface. Including, the distance from the traveling path to the interface is equal to or longer than a predetermined distance. Since the distance from the traveling path of the electromagnetic wave incident from the object point in the predetermined angle of view range ⁇ to the interface is greater than or equal to the predetermined distance, the electromagnetic wave reflected at the interface other than the desired reflection surface can be reduced. .
  • the electromagnetic wave detection device 102 can reduce the electromagnetic waves reflected at the interface that has entered the prism 162 from an object point outside the predetermined angle-of-view range ⁇ .
  • the electromagnetic wave detection device 102 performs the first detection in which the electromagnetic wave from an object point outside the predetermined angle of view range ⁇ reaches the electromagnetic wave incident on the prism 162 from the object point within the predetermined angle of view range ⁇ . Reaching the same position as the position in the part 17 can be reduced. Therefore, the electromagnetic wave detection device 101 can reduce ghost caused by the electromagnetic wave incident on the imaging unit 15 from an object point outside the predetermined angle of view range ⁇ , and can detect the electromagnetic wave with high accuracy.
  • the fifth embodiment differs from the first embodiment in that the electromagnetic wave detection device includes a traveling unit and a second detection unit.
  • the configuration of the prism is different from that of the first embodiment.
  • the fifth embodiment will be described focusing on the differences from the first embodiment. Parts having the same configuration as the first embodiment are denoted by the same reference numerals.
  • the electromagnetic wave detection device 103 includes an imaging unit 15, a prism unit 163, a first detection unit 17, a traveling unit 20, and a second detection unit 21. ing.
  • the configuration and functions of the information acquisition system 11 according to the fifth embodiment other than the electromagnetic wave detection device 103 are the same as those of the first embodiment.
  • the configurations and functions of the imaging unit 15 and the first detection unit 17 in the electromagnetic wave detection device 103 of the fifth embodiment are the same as those of the first embodiment.
  • the advancing unit 20 is provided on a path of an electromagnetic wave that enters from the second surface s2 of the prism unit 163 and exits from the fourth surface s4. Further, the advancing unit 20 may be provided at or near the primary imaging position of the target ob which is separated from the imaging unit 15 by a predetermined distance.
  • the advancing unit 20 is provided at the primary imaging position.
  • the advancing unit 20 has a reference surface ss on which the electromagnetic wave passing through the imaging unit 15 and the prism unit 163 is incident.
  • the reference plane ss is configured by a plurality of pixels px arranged along a two-dimensional shape.
  • the reference surface ss is a surface that causes an electromagnetic wave to have an action such as reflection and transmission in at least one of a first state and a second state described later.
  • the advancing unit 20 may form an image of the electromagnetic wave of the target ob by the imaging unit 15 on the reference plane ss.
  • the reference plane ss may be perpendicular to the traveling axis of the electromagnetic wave emitted from the fourth plane s4.
  • the reference plane ss is arranged on the traveling path of the electromagnetic wave incident on the imaging unit 15 from an object point within a predetermined angle of view range ⁇ .
  • the plurality of pixels px are arranged on the traveling path of the electromagnetic wave incident on the imaging unit 15 from an object point in a predetermined angle of view range ⁇ .
  • the advancing unit 20 causes the electromagnetic wave emitted from the fourth surface s4 and incident on the reference surface ss to travel in a specific direction for each pixel px.
  • the advancing unit 20 sets, for each pixel px, a first state of advancing in the first selection direction ds1 as a specific direction and a second state of advancing in the second selection direction ds2 as another specific direction. It can be switched.
  • the first state includes a first reflection state in which an electromagnetic wave incident on the reference surface ss is reflected in a first direction d1.
  • the second state includes a second reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the second direction d2.
  • the advancing unit 20 may include a reflection surface that reflects an electromagnetic wave for each pixel px.
  • the advancing unit 20 may switch the first reflection state and the second reflection state for each pixel px by changing the direction of the reflection surface for each pixel px.
  • the advancing unit 20 is, for example, a DMD (Digital Micro). (mirror Device: digital micromirror device).
  • the DMD can switch the reflection surface to any one of + 12 ° and ⁇ 12 ° with respect to the reference surface ss for each pixel px by driving the minute reflection surface forming the reference surface ss.
  • the reference surface ss may be parallel to the plate surface of the substrate on which the minute reflecting surface of the DMD is placed.
  • the advancing unit 20 may switch the first state and the second state for each pixel px based on the control of the control unit 14 described later.
  • the traveling unit 20 can simultaneously advance an electromagnetic wave incident on the pixel px in the first selection direction ds1 by switching a part of the pixels px to the first state, and change another part of the pixels px.
  • the electromagnetic wave incident on the pixel px can be advanced in the second selection direction ds2.
  • the prism unit 163 is provided between the imaging unit 15 and the traveling unit 20.
  • the prism unit 163 separates the electromagnetic wave traveling from the image forming unit 15 and emits the electromagnetic wave toward the first detection unit 17 and the traveling unit 20.
  • the prism unit 163 emits the electromagnetic wave whose traveling direction has been changed by the traveling unit 20 toward the second detection unit 21.
  • the detailed structure of the prism section 163 will be described below.
  • the prism unit 163 includes at least a first surface s12, a second surface s2, a third surface s3, a fourth surface s4, a fifth surface s5, and a sixth surface s6.
  • the configurations and functions of the first surface s1 and the third surface s3 are the same as those in the first embodiment.
  • the prism section 163 has a first prism 163a, a second prism 163b, and a third prism 163c.
  • the function and configuration of the first prism 163a are the same as those of the prism 16 of the first embodiment.
  • the second prism 163b may have at least the fourth surface s4, the fifth surface s5, and the sixth surface s6 as different different surfaces.
  • the second prism 163b includes, for example, a rectangular prism, and the fourth surface s4 and the fifth surface s5 may intersect with the sixth surface s6.
  • the second prism 163b may be arranged such that the fifth surface s5 faces the first surface s12 of the first prism 163a.
  • the second prism 163b is connected to the first surface s12 of the first prism 163a, and the fourth surface in the traveling direction of the electromagnetic wave traveling inside the second prism 163b via the fifth surface s5 via the fifth surface s5. It may be arranged so that s4 is located.
  • the second prism 163b is arranged such that the sixth surface s6 is located in the eighth direction d8, which is a reflection angle equal to the incident angle of the electromagnetic wave from the seventh direction d7 on the fifth surface s5. May be.
  • the fifth surface s51 internally reflects the electromagnetic wave traveling inside the second prism 163b with the seventh direction d7 as the traveling axis and causes the electromagnetic wave to travel in the eighth direction d8.
  • the fifth surface s5 totally internally reflects the electromagnetic wave traveling internally in the seventh direction d7 and moves in the eighth direction d8. Let go.
  • the third prism 163c may be arranged between the first prism 163a and the second prism 163b.
  • the third prism 163c is arranged close to the second prism 163b via the air layer. Further, the third prism 163c may be disposed between the first prism 163a and the second prism 163b via an air layer by disposing a spacer between the third prism 163c and the second prism 163b. .
  • the above-described second prism 163b may have an arbitrary refractive index larger than the refractive index of the air layer so that the electromagnetic wave is internally reflected by the fifth surface s5.
  • the third prism 163c may be arranged so as to be in surface contact with the second prism 163b at the fifth surface s5.
  • the second prism 163b has a refractive index larger than the refractive index of the third prism 163c so that the electromagnetic wave is internally reflected by the fifth surface s5.
  • the first surface s12 separates the electromagnetic wave traveling in the second direction d2 from the second surface s2 and causes the electromagnetic wave to travel in the third direction d3 and the sixth direction d6.
  • the first surface s12 makes the electromagnetic wave of a specific wavelength among the electromagnetic waves that have traveled in the second direction d2 travel in the third direction d3, and makes the electromagnetic waves other than the specific wavelength band travel in the sixth direction d6.
  • the first surface s12 reflects an electromagnetic wave of a specific wavelength out of the electromagnetic waves that have traveled in the second direction d2 to travel in the third direction d3, and transmits or refracts electromagnetic waves outside the specific wavelength band to form a sixth surface.
  • the angle of incidence of the electromagnetic wave traveling in the second direction d2 on the first surface s12 may be less than the critical angle.
  • the fourth surface s4 emits the electromagnetic wave traveling in the sixth direction d6 from the first surface s12 to the reference surface ss of the traveling unit 20.
  • the fourth surface s4 travels in the first selection direction ds1 as a specific direction from the reference surface ss of the advancing part 20, and re-enters the electromagnetic wave in the seventh direction d7.
  • the fourth surface s4 may be perpendicular to the traveling axis of the electromagnetic wave traveling in the sixth direction d6 from the first surface s12, that is, perpendicular to the sixth direction d6.
  • the fourth plane s4 may be parallel to the reference plane ss of the traveling section 20.
  • the fourth surface s4 may transmit or refract an electromagnetic wave that is re-entered from the reference surface ss and travel in the seventh direction d7.
  • the fifth surface s5 allows the electromagnetic wave traveling from the fourth surface s4 in the seventh direction d7 to travel in the eighth direction d8.
  • the fifth surface s5 may internally reflect an electromagnetic wave traveling in the seventh direction d7 from the fourth surface s4 and cause the electromagnetic wave to travel in the eighth direction d8.
  • the fifth surface s5 may cause the electromagnetic wave traveling from the fourth surface s4 in the seventh direction d7 to be totally internally reflected and travel in the eighth direction d8.
  • the incident angle of the electromagnetic wave traveling from the fourth surface s4 to the fifth surface s5 in the seventh direction d7 may be equal to or greater than the critical angle.
  • the incident angle of the electromagnetic wave traveling in the seventh direction d7 from the fourth surface s4 to the fifth surface s5 is determined by the angle of incidence of the electromagnetic wave traveling in the second direction d2 from the second surface s2 to the first surface s12. It may be different from the angle of incidence.
  • the sixth surface s6 is a second emission surface that emits an electromagnetic wave traveling in the eighth direction d8 from the fifth surface s5.
  • the sixth surface s6 may be perpendicular to the traveling axis of the electromagnetic wave traveling in the eighth direction d8 from the fifth surface s5, that is, perpendicular to the eighth direction d8.
  • the second detection unit 21 detects the electromagnetic wave emitted from the first surface s12.
  • the second detection unit 21 detects the electromagnetic wave emitted from the first surface s1 and then traveling through the traveling unit 20 and emitted from the sixth surface s6.
  • the second detector 21 detects the electromagnetic wave that travels from the prism portion 163 in the eighth direction d8 and then travels from the sixth surface s6. It may be located on the route.
  • the second detection unit 2 is arranged such that the electromagnetic wave detectable area overlaps the traveling path of the electromagnetic wave incident on the imaging unit 15 from an object point within a predetermined angle of view range ⁇ .
  • the second detection unit 21 may be arranged at the secondary imaging position or near the secondary imaging position of the electromagnetic wave image formed on the reference surface ss of the traveling unit 20.
  • the second detector 21 may be arranged so that the detection surface is parallel to the sixth surface s6.
  • the sixth surface s6 can be perpendicular to the traveling axis of the electromagnetic wave that travels and exits in the eighth direction d8, and the detection surface of the second detection unit 21 is different from the sixth surface s6. It may be perpendicular to the traveling axis of the emitted electromagnetic wave.
  • the second detection unit 21 is a sensor of a different type or the same type as the first detection unit 17, and detects a different type or the same type of electromagnetic wave.
  • the second detection unit 21 is only required to be able to detect an electromagnetic wave in a single element constituting the distance measurement sensor, and does not need to form an image on the detection surface. Therefore, the second detection unit 21 does not necessarily need to be provided at the secondary imaging position or near the secondary imaging position. That is, in this configuration, if the electromagnetic wave incident on the imaging unit 15 from an object point in the predetermined angle of view range ⁇ can enter the detection surface, the second detection unit 21 6 may be arranged anywhere on the path of the electromagnetic wave that travels after being emitted from the surface s6.
  • the second detection unit 21 transmits detection information indicating that the reflected wave from the subject has been detected to the control unit 14 as a signal.
  • the radiation unit 12, the scanning unit 13, and the control unit 14 configure the information acquisition system 11 together with the electromagnetic wave detection devices 10, 100, 101, 102, and 103.
  • the electromagnetic wave detection devices 10, 100, 101, 102, and 103 may be configured to include at least one of them.
  • the traveling unit 20 can switch the traveling direction of the electromagnetic wave incident on the reference surface ss into two directions, a first selection direction ds1 and a second selection direction ds2. May be switchable in three or more directions.
  • the first state and the second state are a first reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the first selection direction ds1, and a second reflection state, respectively.
  • this is the second reflection state in which the light is reflected in the selection direction ds2, another mode may be used.
  • the second state may be a transmission state in which electromagnetic waves incident on the reference surface ss are transmitted and travel in the second selection direction ds2.
  • the prism 167 may include a shutter having a reflection surface that reflects an electromagnetic wave in the first selection direction ds1 for each pixel px.
  • the reflection state as the first state and the transmission state as the second state can be switched for each pixel px by opening and closing the shutter for each pixel px.
  • a switching section including a MEMS shutter in which a plurality of shutters that can be opened and closed is arranged in an array is exemplified.
  • a switching unit including a liquid crystal shutter capable of switching between a reflection state in which electromagnetic waves are reflected and a transmission state in which electromagnetic waves are transmitted in accordance with the liquid crystal orientation is exemplified.
  • the reflection state as the first state and the transmission state as the second state can be switched for each pixel px by switching the liquid crystal alignment for each pixel px.
  • the information acquisition system 11 scans the second detection unit 21 by causing the scanning unit 13 to scan the beam-shaped electromagnetic waves emitted from the emission unit 12. It has a configuration to function as a scanning type active sensor in cooperation with the unit 13.
  • the information acquisition system 11 is not limited to such a configuration.
  • a scanning type active without a scanning unit 13 is provided by a phased scanning method in which electromagnetic waves are radiated from each radiation source while shifting the radiation timing.
  • the information acquisition system 11 includes the first to fifth embodiments. A similar effect is obtained.
  • the information acquisition system 11 has a configuration in which the first detection unit 17 is a passive sensor and the second detection unit 21 is an active sensor.
  • the information acquisition system 11 is not limited to such a configuration.
  • an effect similar to that of the fifth embodiment can be obtained regardless of whether the first detection unit 17 and the second detection unit 21 are both active sensors or passive sensors.
  • the radiating units 12 that radiate the electromagnetic wave to the target ob may be different or the same. Further, different radiating parts 12 may radiate different or the same type of electromagnetic waves, respectively.
  • Electromagnetic wave detection device 11
  • Information acquisition system 12 Emission unit 13
  • Scanning unit 14 Control unit 15
  • First detection unit 20 Progression unit 21
  • Second detection unit 22, 220 Reflection suppression unit d1, d2, d3, d4, d5, d6, d7, d8 First direction, second direction , Third direction, fourth direction, fifth direction, sixth direction, seventh direction, eighth direction ds1, ds2 first selection direction, second selection direction ob target px pixel s1, s10, s11, s12 First surface s2, s20, s21 Second surface s3, s30 Third surface s4, s5, s6, s7 Fourth surface, fifth surface, sixth surface, seventh surface Face ss reference plane

Abstract

This electromagnetic wave detection device comprises an image formation part for forming incident electromagnetic waves into an image, a prism including a reflection surface for reflecting incident electromagnetic waves from the image formation part and a first emission surface for emitting the electromagnetic waves reflected by the reflection surface, and a first detection unit for detecting the electromagnetic waves emitted from the first emission surface.

Description

電磁波検出装置および情報取得システムElectromagnetic wave detection device and information acquisition system 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年7月27日出願の日本国特許出願第2018-141782号の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2018-141782 filed on Jul. 27, 2018, the entire disclosure of which is incorporated herein by reference.
 本発明は、電磁波検出装置および情報取得システムに関するものである。 The present invention relates to an electromagnetic wave detection device and an information acquisition system.
 対物レンズ系からの光束を撮像素子へ導くためのプリズムを備える内視鏡用光学系装置が知られている(特許文献1参照)。 (2) An optical system for an endoscope including a prism for guiding a light beam from an objective lens system to an image sensor is known (see Patent Document 1).
特開平6-59195号公報JP-A-6-59195
 上述した諸課題を解決すべく、第1の観点による電磁波検出装置は、
 入射する電磁波を結像する結像部と、
 前記結像部から入射した電磁波を反射する反射面と、前記反射面により反射された電磁波を射出する第1の射出面と、を含むプリズムと、
 前記第1の射出面により射出された電磁波を検出する第1の検出部と、
を備え、
 前記結像部に入射して通過した第1の電磁波の束に含まれる第1の電磁波の進行方向と、前記結像部に入射して通過した第2の電磁波の束に含まれる第2の電磁波の進行方向とのなす角度は、所定値以内であり、
 前記第1の検出部による電磁波の検出可能領域は、所定の画角範囲から入射する電磁波の進行経路上にのみ配置されている。
In order to solve the above-described problems, the electromagnetic wave detection device according to the first aspect includes:
An imaging unit for imaging an incident electromagnetic wave;
A prism including a reflection surface that reflects the electromagnetic wave incident from the imaging unit, and a first emission surface that emits the electromagnetic wave reflected by the reflection surface;
A first detection unit that detects an electromagnetic wave emitted from the first emission surface;
With
The traveling direction of the first electromagnetic wave included in the bundle of the first electromagnetic waves incident on and passing through the imaging unit, and the second direction included in the bundle of the second electromagnetic waves incident on and passing through the imaging unit. The angle between the electromagnetic wave and the traveling direction is within a predetermined value,
The electromagnetic wave detectable region by the first detection unit is arranged only on the traveling path of the electromagnetic wave incident from a predetermined angle of view range.
 また、第2の観点による情報取得システムは、
 上記の電磁波検出装置と、
 前記第1の検出部による電磁波の検出結果に基づいて、周囲に関する情報を取得する制御部と、
を備える。
Further, the information acquisition system according to the second aspect includes:
Said electromagnetic wave detection device,
A control unit that obtains information about the surroundings based on a detection result of the electromagnetic wave by the first detection unit;
Is provided.
 上述したように本開示の解決手段を装置、およびシステムとして説明してきたが、本開示は、これらを含む態様としても実現し得るものであり、また、これらに実質的に相当する方法、プログラム、プログラムを記録した記憶媒体としても実現し得るものであり、本開示の範囲にはこれらも包含されるものと理解されたい。 As described above, the solution of the present disclosure has been described as an apparatus and a system. However, the present disclosure can also be realized as an embodiment including these, and a method, a program, It should be understood that the present invention can also be realized as a storage medium on which a program is recorded, and these are also included in the scope of the present disclosure.
第1の実施形態に係る電磁波検出装置を含む情報取得システムの概略構成を示す構成図である。FIG. 1 is a configuration diagram illustrating a schematic configuration of an information acquisition system including an electromagnetic wave detection device according to a first embodiment. 図1の電磁波検出装置の概略構成を示す構成図である。FIG. 2 is a configuration diagram illustrating a schematic configuration of the electromagnetic wave detection device of FIG. 1. 図1の放射部、第2の検出部、および制御部が構成する測距センサによる測距の原理を説明するための電磁波の放射の時期と検出の時期を示すタイミングチャートである。3 is a timing chart illustrating the timing of electromagnetic wave radiation and the timing of detection for explaining the principle of distance measurement by a distance measurement sensor configured by the radiation unit, the second detection unit, and the control unit in FIG. 1. 第2の実施形態に係る電磁波検出装置の概略構成を示す構成図である。It is a lineblock diagram showing the schematic structure of the electromagnetic wave detection device concerning a 2nd embodiment. 第3の実施形態に係る電磁波検出装置の概略構成を示す構成図である。It is a lineblock diagram showing a schematic structure of an electromagnetic wave detection device concerning a 3rd embodiment. 第4の実施形態に係る電磁波検出装置の概略構成を示す構成図である。It is a lineblock diagram showing the schematic structure of the electromagnetic wave detection device concerning a 4th embodiment. 第5の実施形態に係る電磁波検出装置の概略構成を示す構成図である。It is a lineblock diagram showing the schematic structure of the electromagnetic wave detection device concerning a 5th embodiment. 第5の実施形態に係る電磁波検出装置の変形例の概略構成を示す構成図である。It is a lineblock diagram showing the schematic structure of the modification of the electromagnetic wave detection device concerning a 5th embodiment. 従来の電磁波検出装置の概略構成を示す構成図である。It is a block diagram which shows the schematic structure of the conventional electromagnetic wave detection apparatus. 従来の電磁波検出装置が遮光板を備えた概略構成を示す構成図である。FIG. 9 is a configuration diagram illustrating a schematic configuration in which a conventional electromagnetic wave detection device includes a light shielding plate.
 光学系装置において、高い精度での電磁波の検出は有益である。 (4) In an optical system device, detection of an electromagnetic wave with high accuracy is useful.
 従って、上記のような従来技術の問題点に鑑みてなされた本開示の目的は、高い精度での電磁波の検出にある。 Accordingly, an object of the present disclosure made in view of the problems of the related art described above is to detect electromagnetic waves with high accuracy.
 以下、本発明を適用した電磁波検出装置の実施形態について、図面を参照して説明する。入射する電磁波を結像させる一次結像光学系、および一次結像光学系を透過した電磁波を反射する反射面を有する電磁波検出装置は、反射した電磁波を検出し得る。このような電磁波検出装置においては、一次結像光学系の像側に反射面を配置し、反射により進行する電磁波を検出部に進行させる面を設けることにより、検出部を一次結像光学系と干渉せずに配置することができる。これにより、一次結像光学系の、結像性能、明るさ、および画角などの良好な結像特性が確保され得る。 Hereinafter, an embodiment of an electromagnetic wave detection device to which the present invention is applied will be described with reference to the drawings. An electromagnetic wave detection device having a primary imaging optical system that forms an image of an incident electromagnetic wave and a reflecting surface that reflects the electromagnetic wave transmitted through the primary imaging optical system can detect the reflected electromagnetic wave. In such an electromagnetic wave detection device, a reflection surface is arranged on the image side of the primary imaging optical system, and a surface for causing the electromagnetic wave traveling by reflection to travel to the detection unit is provided. It can be arranged without interference. Thereby, good imaging characteristics such as imaging performance, brightness, and angle of view of the primary imaging optical system can be secured.
 このような電磁波検出装置は、図9に示すように、結像部159から射出された電磁波のうち所定の画角範囲αの範囲外から結像部159に入射した電磁波が所望の反射面によって反射されないことがある。具体的には、所定の画角範囲αの物点から結像部159に入射した電磁波EW1は、結像部159から射出されると、プリズム169内の第1の面s19および第2の面s29で反射された後、第3の面s39を透過して検出部179に到達する。所定の画角範囲αの範囲外の一部の物点から結像部159に入射した電磁波EW2は、第1の面s19で反射された後、第2の面s29で反射されずに第3の面s39を透過して検出部179に到達する。このため、所定の画角範囲α内の物点から放射された電磁波と、所定の画角範囲αの範囲外の一部の物点から放射された電磁波EW2とが、検出部17における同じ位置に到達することがある。 As shown in FIG. 9, such an electromagnetic wave detection device is configured such that, out of the electromagnetic waves emitted from the imaging unit 159, the electromagnetic waves incident on the imaging unit 159 from outside the predetermined angle of view range α are reflected by a desired reflection surface. May not be reflected. Specifically, when the electromagnetic wave EW1 that has entered the imaging unit 159 from an object point in a predetermined angle of view range α is emitted from the imaging unit 159, the first surface s19 and the second surface s19 in the prism 169 After being reflected at s29, the light passes through the third surface s39 and reaches the detection unit 179. The electromagnetic wave EW2 that has entered the image forming unit 159 from some object points outside the range of the predetermined angle of view range α is reflected by the first surface s19, and then reflected by the third surface s29 without being reflected by the second surface s29. And reaches the detection unit 179 through the surface s39. For this reason, the electromagnetic wave radiated from the object point within the predetermined angle of view range α and the electromagnetic wave EW2 radiated from some object points outside the predetermined angle of view range α May be reached.
 また、所定の画角範囲αの範囲外の他の一部の物点から結像部159に入射した電磁波EW3が所望の反射面以外の反射面によって反射されることがある。この場合も、所定の画角範囲α内の物点から放射されて結像部159に入射した電磁波と、所定の画角範囲αの範囲外の他の一部の物点から放射された電磁波EW3とが、検出部17における同じ位置に到達することがある。 電磁 Also, the electromagnetic wave EW3 that has entered the imaging unit 159 from some other object point outside the predetermined angle-of-view range α may be reflected by a reflection surface other than the desired reflection surface. Also in this case, the electromagnetic wave radiated from the object point within the predetermined angle of view range α and incident on the imaging unit 159 and the electromagnetic wave radiated from some other object points outside the predetermined angle of view range α EW3 may reach the same position in the detection unit 17.
 この結果、検出部17は、所定の画角範囲α内の物点から放射された電磁波EW1に所定の画角範囲αの範囲外の物点から放射された電磁波EW2、EW3が干渉した電磁波を検出する。したがって、検出した電磁波に基づく情報にゴーストおよびフレアなどが発生し、高い精度での電磁波検出が妨げられる。 As a result, the detection unit 17 converts the electromagnetic wave EW1 radiated from the object point within the predetermined angle of view range α into the electromagnetic wave EW2, EW3 radiated from the object point outside the predetermined angle of view range α. To detect. Therefore, ghosts and flares are generated in the information based on the detected electromagnetic waves, and it is difficult to detect the electromagnetic waves with high accuracy.
 また、第1の検出部17の検出面に、所定の画角範囲αの範囲外の物点から結像部15に入射した電磁波が到達することを回避するために、図10に示すように、第1の面s19上に、吸収材、レンズフードなどによって構成される遮光板90を設ける構成が考えられる。しかし、所定の画角範囲α内の物点から放射する電磁波の一部も遮光板90によって遮られるので、当該物点から放射して検出部17に到達する電磁波の強度が、遮光板90が配置されない場合に比べて低下する。 Further, in order to prevent the electromagnetic wave incident on the imaging unit 15 from reaching the detection surface of the first detection unit 17 from an object point outside the predetermined angle of view range α, as shown in FIG. A configuration is conceivable in which a light shielding plate 90 composed of an absorber, a lens hood, and the like is provided on the first surface s19. However, since a part of the electromagnetic wave radiated from the object point within the predetermined angle of view range α is also blocked by the light shielding plate 90, the intensity of the electromagnetic wave radiated from the object point and reaching the detection unit 17 is reduced by the light shielding plate 90. It is lower than when not arranged.
 図1に示すように、本開示の第1の実施形態に係る電磁波検出装置10を含む情報取得システム11は、電磁波検出装置10、放射部12、走査部13、および制御部14を含んで構成されている。 As illustrated in FIG. 1, an information acquisition system 11 including an electromagnetic wave detection device 10 according to the first embodiment of the present disclosure includes an electromagnetic wave detection device 10, a radiation unit 12, a scanning unit 13, and a control unit 14. Have been.
 図1において、各機能ブロックを結ぶ破線は、制御信号または通信される情報の流れを示す。破線が示す通信は有線通信であってもよいし、無線通信であってもよい。また、各機能ブロックから突出する実線は、ビーム状の電磁波を示す。 In FIG. 1, the broken lines connecting the functional blocks indicate the flow of control signals or information to be communicated. The communication indicated by the broken line may be wire communication or wireless communication. A solid line protruding from each functional block indicates a beam-like electromagnetic wave.
 図2に示すように、電磁波検出装置10は、結像部15、プリズム16、および第1の検出部17を有している。以降の図において、各部材を横切る、または各部材内の実線は、所定の画角範囲αの物点から結像部15に入射した電磁波の束の中心軸である進行軸に沿って進行する電磁波の進行経路を示す。また、各部材を横切る、または各部材内の破線は、所定の画角範囲αの範囲外の物点から結像部15に入射した電磁波のうち進行軸に沿って進行する電磁波の進行経路を示す。電磁波の束は、放射状に広がっている電磁波を示す。進行軸上の電磁波が進行方向に進行することによって、進行軸上の電磁波は進行経路を進行する。以降において、第1の電磁波および第2の電磁波を単に「電磁波」と称することがある。 電磁 As shown in FIG. 2, the electromagnetic wave detection device 10 has an imaging unit 15, a prism 16, and a first detection unit 17. In the following drawings, a solid line crossing each member or within each member travels along a traveling axis which is a central axis of a bundle of electromagnetic waves incident on the imaging unit 15 from an object point within a predetermined angle of view range α. 3 shows a traveling path of an electromagnetic wave. A broken line traversing each member or within each member indicates a traveling path of an electromagnetic wave traveling along a traveling axis among electromagnetic waves incident on the imaging unit 15 from an object point outside the predetermined angle of view range α. Show. The bundle of electromagnetic waves indicates electromagnetic waves that are spreading radially. When the electromagnetic wave on the traveling axis travels in the traveling direction, the electromagnetic wave on the traveling axis travels along the traveling path. Hereinafter, the first electromagnetic wave and the second electromagnetic wave may be simply referred to as “electromagnetic waves”.
 結像部15は、例えば、レンズおよびミラーの少なくとも一方を含む。結像部15は、被写体となる対象obから入射する電磁波の像を結像させる。結像部15は、レトロフォーカスタイプのレンズ系であってよい。 The imaging unit 15 includes, for example, at least one of a lens and a mirror. The imaging unit 15 forms an image of an electromagnetic wave incident from a target ob which is a subject. The imaging unit 15 may be a retrofocus type lens system.
 また、結像部15は、結像部15に入射して通過した第1の電磁波の束に含まれる第1の電磁波の進行方向と、結像部15に入射して通過した第2の電磁波の束に含まれる第2の電磁波の進行方向とのなす角度が、所定値以内となるように設計され、製造される。例えば、結像部15は、各画角から入射する電磁波の進行軸が、前段にある結像部の中心を通った後に後段の結像部に通るように、配置されてよい。第1の電磁波および第2の電磁波は、それぞれ互いに異なる任意の物点から放射される電磁波である。 Further, the imaging unit 15 includes a traveling direction of the first electromagnetic wave included in the bundle of the first electromagnetic waves incident on and passing through the imaging unit 15, and a second electromagnetic wave incident on the imaging unit 15 and passing through the bundle. Are designed and manufactured so that the angle between the second electromagnetic wave included in the bundle and the traveling direction of the second electromagnetic wave is within a predetermined value. For example, the imaging unit 15 may be arranged so that the traveling axis of the electromagnetic wave incident from each angle of view passes through the center of the imaging unit in the preceding stage and then passes through the imaging unit in the subsequent stage. The first electromagnetic wave and the second electromagnetic wave are electromagnetic waves radiated from arbitrary object points different from each other.
 第1の電磁波の進行方向と第2の電磁波の進行方向とのなす角度は、例えば、15°以内であってよい。第1の電磁波の進行方向と第2の電磁波の進行方向とのなす角度は、例えば、0°であってよい。 角度 The angle between the traveling direction of the first electromagnetic wave and the traveling direction of the second electromagnetic wave may be, for example, within 15 °. The angle between the traveling direction of the first electromagnetic wave and the traveling direction of the second electromagnetic wave may be, for example, 0 °.
 代わりに、あるいは加えて、結像部15は、結像部15に入射して通過した電磁波の束に含まれる電磁波の進行方向と、結像部15の主軸とのなす角度が所定値以内となるよう設計され、製造される。例えば、結像部15に入射して通過した電磁波の束に含まれる電磁波の進行方向は、結像部15の主軸に略平行であってよい。結像部15によって構成される光学系は、像側テレセントリックであってよい。このために、結像部15による前側焦点の位置近傍に開口が配置されてもよい。 Alternatively or additionally, the imaging unit 15 may be configured such that an angle between the traveling direction of the electromagnetic wave included in the bundle of electromagnetic waves incident on and passing through the imaging unit 15 and the main axis of the imaging unit 15 is within a predetermined value. Designed and manufactured to be. For example, the traveling direction of the electromagnetic wave included in the bundle of electromagnetic waves that has entered and passed the imaging unit 15 may be substantially parallel to the main axis of the imaging unit 15. The optical system constituted by the imaging unit 15 may be image-side telecentric. For this purpose, an opening may be arranged in the vicinity of the position of the front focal point by the imaging unit 15.
 プリズム16は、結像部15の像側に設けられている。プリズム16は、結像部15から進行した電磁波を反射させて第1の検出部17に向けて射出する。プリズム16の詳細な構造を以下に説明する。 The prism 16 is provided on the image side of the image forming unit 15. The prism 16 reflects the electromagnetic wave traveling from the image forming unit 15 and emits the reflected electromagnetic wave toward the first detecting unit 17. The detailed structure of the prism 16 will be described below.
 プリズム16は、第1の反射面および第2の反射面を含む反射面と、第1の射出面とを少なくとも有する。第1の実施形態では、プリズム16は、第1の反射面である第1の面s1、第2の反射面である第2の面s2、および第1の射出面である第3の面s3を少なくとも有する。 The prism 16 has at least a reflection surface including a first reflection surface and a second reflection surface, and a first emission surface. In the first embodiment, the prism 16 includes a first surface s1, which is a first reflection surface, a second surface s2, which is a second reflection surface, and a third surface s3, which is a first exit surface. At least.
 プリズム16は、第1の面s1、第2の面s2、および第3の面s3を別々の異なる表面として有してよい。プリズム16は、例えば、三角プリズムを含み、第1の面s1、第2の面s2、および第3の面s3は、互いに交差してよい。 The prism 16 may have the first surface s1, the second surface s2, and the third surface s3 as different different surfaces. The prism 16 includes, for example, a triangular prism, and the first surface s1, the second surface s2, and the third surface s3 may intersect each other.
 プリズム16は、第1の方向d1から第2の面s2に入射する電磁波の進行軸と第2の面s2とが垂直となるように、配置されていてよい。また、プリズム16は、第1の方向d1から第2の面s2を透過または屈折して電磁波がプリズム16内を進行する第2の方向d2に第1の面s1が位置するように、配置されていてよい。また、プリズム16は、第1の面s1において反射した電磁波が進行する第3の方向d3に第2の面s2が位置するように、配置されていてよい。例えば、第1の方向d1は、結像部15の主軸と平行であって、物体面から結像部15に向かう方向かつ結像部15から像面に向かう方向を含む。 The prism 16 may be arranged such that the traveling axis of the electromagnetic wave incident on the second surface s2 from the first direction d1 is perpendicular to the second surface s2. Further, the prism 16 is disposed such that the first surface s1 is located in the second direction d2 in which the electromagnetic wave travels through the prism 16 by transmitting or refracting the second surface s2 from the first direction d1. May be. In addition, the prism 16 may be arranged such that the second surface s2 is located in the third direction d3 in which the electromagnetic wave reflected on the first surface s1 travels. For example, the first direction d1 is parallel to the main axis of the imaging unit 15 and includes a direction from the object plane to the imaging unit 15 and a direction from the imaging unit 15 to the image plane.
 第1の面s1は、第2の面s2から第2の方向d2に進行する電磁波を第3の方向d3に進行させる。例えば、第1の面s1は、第2の面s2から第2の方向d2に進行した電磁波を内部反射して第3の方向d3に進行させてよい。さらには、第1の面s1は、第2の面s2から第2の方向d2に進行した電磁波を内部全反射して第3の方向d3に進行させてもよい。第1の面s1から第3の方向d3に進行した電磁波の第2の面s2への入射角は臨界角以上であってよい。 The first surface s1 causes the electromagnetic wave traveling in the second direction d2 from the second surface s2 to travel in the third direction d3. For example, the first surface s1 may internally reflect an electromagnetic wave traveling in the second direction d2 from the second surface s2 and cause the electromagnetic wave to travel in the third direction d3. Furthermore, the first surface s1 may cause the electromagnetic wave traveling from the second surface s2 in the second direction d2 to be totally internally reflected and travel in the third direction d3. The incident angle of the electromagnetic wave traveling from the first surface s1 in the third direction d3 to the second surface s2 may be equal to or greater than the critical angle.
 第2の面s2は、第1の方向d1からプリズム16に入射する電磁波を第2の方向d2に進行させる。第2の面s2は、第1の方向d1から第2の面s2に入射する電磁波の進行軸に対して垂直であってよい。前述のように、第1の方向d1は結像部15の主軸と平行なので、結像部15の主軸と第2の面s2とが垂直、言い換えると結像部15の主面と第2の面s2とが平行であってよい。第2の面s2は、第1の方向d1から入射する電磁波を透過または屈折させて第2の方向d2に進行させてよい。 The second surface s2 allows the electromagnetic wave incident on the prism 16 from the first direction d1 to travel in the second direction d2. The second surface s2 may be perpendicular to the traveling axis of the electromagnetic wave incident on the second surface s2 from the first direction d1. As described above, since the first direction d1 is parallel to the main axis of the imaging unit 15, the main axis of the imaging unit 15 is perpendicular to the second surface s2, in other words, the main surface of the imaging unit 15 and the second surface s2. The plane s2 may be parallel. The second surface s2 may transmit or refract an electromagnetic wave incident from the first direction d1 to travel in the second direction d2.
 第2の面s2は、第1の面s1から第3の方向d3へ進行する電磁波を第4の方向d4へ進行させる。例えば、第2の面s2は、第1の面s1から第3の方向d3に進行した電磁波を内部反射して第4の方向d4に進行させてよい。さらには、第2の面s2は、第1の面s1から第3の方向d3に進行した電磁波を内部全反射して第4の方向d4に進行させてもよい。第1の面s1から第3の方向d3に進行した電磁波の第2の面s2への入射角は臨界角以上であってよい。 The second surface s2 causes the electromagnetic wave traveling from the first surface s1 in the third direction d3 to travel in the fourth direction d4. For example, the second surface s2 may internally reflect an electromagnetic wave that has traveled in the third direction d3 from the first surface s1 and travel in the fourth direction d4. Furthermore, the second surface s2 may cause the electromagnetic wave traveling from the first surface s1 in the third direction d3 to undergo total internal reflection and travel in the fourth direction d4. The incident angle of the electromagnetic wave traveling from the first surface s1 in the third direction d3 to the second surface s2 may be equal to or greater than the critical angle.
 第3の面s3は、第2の面s2から第4の方向d4に進行した電磁波を、プリズム16から射出する。第3の面s3は、第2の面s2から第4の方向d4に進行した電磁波の進行軸に対して垂直、すなわち第4の方向d4に垂直であってよい。 電磁 The third surface s3 emits, from the prism 16, an electromagnetic wave traveling from the second surface s2 in the fourth direction d4. The third surface s3 may be perpendicular to the traveling axis of the electromagnetic wave traveling in the fourth direction d4 from the second surface s2, that is, perpendicular to the fourth direction d4.
 第1の検出部17は、第3の面s3から射出された電磁波を検出する。第3の面s3から射出された電磁波を検出するために、第1の検出部17は、プリズム16から第4の方向d4に進行する電磁波の経路上に、設けられている。また、所定の画角範囲αの物点から結像部15に入射し、第3の面s3から射出された電磁波を検出するために、第1の検出部17は、所定の画角範囲αの物点から結像部15に入射し、プリズム16から第4の方向d4に進行する電磁波の経路上に、設けられている。 The first detector 17 detects the electromagnetic wave emitted from the third surface s3. In order to detect the electromagnetic wave emitted from the third surface s3, the first detection unit 17 is provided on the path of the electromagnetic wave traveling from the prism 16 in the fourth direction d4. In addition, in order to detect an electromagnetic wave that is incident on the imaging unit 15 from an object point in a predetermined angle of view range α and is emitted from the third surface s3, the first detection unit 17 uses the predetermined angle of view α Are provided on the path of the electromagnetic wave that enters the image forming unit 15 from the object point and travels from the prism 16 in the fourth direction d4.
 さらに、第1の検出部17は、プリズム16から第4の方向d4における結像部15による対象obの結像位置または当該結像位置近傍に、設けられていてよい。したがって、第1の検出部17の検出面に、第1の面s1、第2の面s2、および第3の面s3を介して到達する対象obの電磁波の像は、結像してよい。 Furthermore, the first detection unit 17 may be provided at or near the imaging position of the object ob by the imaging unit 15 in the fourth direction d4 from the prism 16. Therefore, the image of the electromagnetic wave of the target ob which reaches the detection surface of the first detection unit 17 via the first surface s1, the second surface s2, and the third surface s3 may be formed.
 第1の検出部17は、検出面が第3の面s3と平行となるように配置されていてよい。前述のように、第3の面s3は、第4の方向d4に進行して射出する電磁波の進行軸に垂直であり得、第1の検出部17の検出面は、第3の面s3から射出される電磁波の進行軸と垂直であってよい。 The first detector 17 may be arranged so that the detection surface is parallel to the third surface s3. As described above, the third surface s3 can be perpendicular to the traveling axis of the electromagnetic wave that travels and exits in the fourth direction d4, and the detection surface of the first detection unit 17 is separated from the third surface s3. It may be perpendicular to the traveling axis of the emitted electromagnetic wave.
 第1の実施形態において、第1の検出部17は、パッシブセンサを含む。第1の実施形態において、第1の検出部17は、さらに具体的には、素子アレイを含む。例えば、第1の検出部17は、イメージセンサまたはイメージングアレイなどの撮像素子を含み、検出面において結像した電磁波による像を撮像して、撮像した対象obに相当する画像情報を生成してよい。 に お い て In the first embodiment, the first detection unit 17 includes a passive sensor. In the first embodiment, the first detection unit 17 more specifically includes an element array. For example, the first detection unit 17 may include an image sensor such as an image sensor or an imaging array, capture an image of an electromagnetic wave formed on the detection surface, and generate image information corresponding to the captured object ob. .
 なお、第1の実施形態において、第1の検出部17は、さらに具体的には可視光の像を撮像してよい。第1の検出部17は、生成した画像情報を信号として制御部14に送信してよい。 In the first embodiment, the first detection unit 17 may more specifically capture a visible light image. The first detection unit 17 may transmit the generated image information to the control unit 14 as a signal.
 なお、第1の検出部17は、可視光以外の帯域の電磁波を検出してもよい。例えば、第1の検出部17は、赤外線の帯域の電磁波を検出する赤外線センサを含んでもよい。例えば、第1の検出部17は、紫外線および電波の少なくともいずれかを検出するセンサを含んでもよい。 The first detector 17 may detect electromagnetic waves in bands other than visible light. For example, the first detection unit 17 may include an infrared sensor that detects electromagnetic waves in an infrared band. For example, the first detection unit 17 may include a sensor that detects at least one of ultraviolet light and radio waves.
 また、第1の検出部17は、測距センサを含んでいてもよい。この構成において、電磁波検出装置10は、第1の検出部17により画像状の距離情報を取得し得る。また、第1の検出部17は、サーモセンサなどを含んでいてもよい。この構成において、電磁波検出装置10は、第1の検出部17により画像状の温度情報を取得し得る。 Moreover, the first detection unit 17 may include a distance measurement sensor. In this configuration, the electromagnetic wave detection device 10 can acquire image-like distance information using the first detection unit 17. Further, the first detection unit 17 may include a thermosensor or the like. In this configuration, the electromagnetic wave detection device 10 can acquire image-like temperature information by the first detection unit 17.
 第1の検出部17が赤外線以外の像を撮像する構成において、第1の面s1、第2の面s2、および第3の面s3のいずれか1つ以上にIR(infrared)カットコートが塗布されていてもよい。また、第1の検出部17が任意の電磁波の像を撮像する構成において、第3の面s3にAR(Anti Reflection)コートが塗布されていてもよい。 In a configuration in which the first detection unit 17 captures an image other than infrared light, an IR (infrared) cut coat is applied to at least one of the first surface s1, the second surface s2, and the third surface s3. It may be. Further, in a configuration in which the first detection unit 17 captures an image of an arbitrary electromagnetic wave, an AR (Anti-Reflection) coat may be applied to the third surface s3.
 第1の実施形態において、第1の検出部17は、放射部12から対象obに向けて放射された電磁波の当該対象obからの反射波を検出するアクティブセンサであってもよい。なお、第1の実施形態において、第1の検出部17は、放射部12から放射され且つ走査部13により反射されることにより対象obに向けて放射された電磁波の当該対象obからの反射波を検出してよい。後述するように、放射部12から放射される電磁波は赤外線、可視光線、紫外線、および電波の少なくともいずれかであり得る。 In the first embodiment, the first detection unit 17 may be an active sensor that detects a reflected wave of the electromagnetic wave emitted from the radiation unit 12 toward the target ob from the target ob. Note that, in the first embodiment, the first detection unit 17 is a reflected wave of the electromagnetic wave radiated toward the target ob by being radiated from the radiation unit 12 and reflected by the scanning unit 13. May be detected. As described later, the electromagnetic wave radiated from the radiating unit 12 may be at least one of infrared light, visible light, ultraviolet light, and radio wave.
 第1の実施形態において、第1の検出部17は、さらに具体的には、測距センサを構成する素子を含む。例えば、第1の検出部17は、APD(Avalanche PhotoDiode)、PD(PhotoDiode)、SPAD(Single Photon Avalanche Diode)、ミリ波センサ、サブミリ波センサ、および測距イメージセンサなどの単一の素子を含む。また、第1の検出部17は、APDアレイ、PDアレイ、MPPC(Multi Photon Pixel Counter)、測距イメージングアレイ、および測距イメージセンサなどの素子アレイを含むものであってもよい。 に お い て In the first embodiment, the first detection unit 17 more specifically includes an element constituting a distance measurement sensor. For example, the first detection unit 17 includes a single element such as an APD (Avalanche PhotoDiode), a PD (PhotoDiode), a SPAD (Single Photon Avalanche Diode), a millimeter wave sensor, a submillimeter wave sensor, and a ranging image sensor. . Further, the first detection unit 17 may include an element array such as an APD array, a PD array, an MPPC (Multi Photo Pixel Pixel), a ranging imaging array, and a ranging image sensor.
 第1の実施形態において、第1の検出部17は、被写体からの反射波を検出したことを示す検出情報を信号として制御部14に送信する。 In the first embodiment, the first detection unit 17 transmits detection information indicating that a reflected wave from a subject has been detected to the control unit 14 as a signal.
 なお、第1の検出部17は、上述した測距センサを構成する単一の素子である構成において、電磁波を検出できればよく、検出面において結像される必要はない。それゆえ、第1の検出部17は、結像部15による結像位置近傍に必ずしも設けられなくてもよい。すなわち、この構成において、第1の検出部17は、所定の画角範囲αの物点から結像部15に入射した電磁波が検出面上に入射可能な位置であれば、プリズム16の第3の面s3から射出された後に進行する電磁波の経路上のどこに配置されてもよい。 Note that the first detection unit 17 is only required to be able to detect an electromagnetic wave in the configuration that is a single element constituting the above-described distance measuring sensor, and does not need to be imaged on the detection surface. Therefore, the first detection unit 17 does not necessarily have to be provided in the vicinity of the imaging position of the imaging unit 15. In other words, in this configuration, the first detecting unit 17 can detect the third position of the prism 16 if the electromagnetic wave incident on the image forming unit 15 from an object point in the predetermined angle of view range α can be incident on the detecting surface. May be placed anywhere on the path of the electromagnetic wave that travels after exiting from the surface s3.
 図1において、放射部12は、例えば、赤外線、可視光線、紫外線、および電波の少なくともいずれかを放射してよい。第1の実施形態において、放射部12は、赤外線を放射する。放射部12は、放射する電磁波を、対象obに向けて、直接または走査部13を介して間接的に、放射してよい。第1の実施形態においては、放射部12は、放射する電磁波を、対象obに向けて、走査部13を介して間接的に放射してよい。 In FIG. 1, the radiating unit 12 may radiate, for example, at least one of infrared light, visible light, ultraviolet light, and radio waves. In the first embodiment, the radiating unit 12 radiates infrared rays. The radiating unit 12 may radiate the radiated electromagnetic wave directly or indirectly via the scanning unit 13 toward the target ob. In the first embodiment, the radiating unit 12 may radiate the radiated electromagnetic wave indirectly to the target ob via the scanning unit 13.
 第1の実施形態においては、放射部12は、幅の細い、例えば0.5°のビーム状の電磁波を放射してよい。また、第1の実施形態において、放射部12は電磁波をパルス状に放射してよい。例えば、放射部12は、例えば、LED(Light Emitting
 Diode)およびLD(Laser Diode)などを含む。放射部12は、後述する制御部14の制御に基づいて、電磁波の放射および停止を切替えてよい。
In the first embodiment, the radiating section 12 may radiate a beam-shaped electromagnetic wave having a small width, for example, 0.5 °. Further, in the first embodiment, the radiating unit 12 may radiate the electromagnetic wave in a pulse shape. For example, the radiating unit 12 includes, for example, an LED (Light Emitting).
Diode) and LD (Laser Diode). The radiating unit 12 may switch between radiating and stopping electromagnetic waves based on the control of the control unit 14 described below.
 走査部13は、例えば、電磁波を反射する反射面を有し、放射部12から放射された電磁波を、向きを変えながら反射することにより、対象obに照射される電磁波の放射位置を変更してよい。すなわち、走査部13は、放射部12から放射される電磁波を用いて、対象obを走査してよい。したがって、第1の実施形態において、第1の検出部17は、走査部13と協働して、走査型の測距センサを構成してよい。なお、走査部13は、一次元方向または二次元方向に対象obを走査してよい。第1の実施形態においては、走査部13は、二次元方向に対象obを走査する。 The scanning unit 13 has, for example, a reflecting surface that reflects the electromagnetic wave, and changes the radiation position of the electromagnetic wave applied to the target ob by reflecting the electromagnetic wave radiated from the radiation unit 12 while changing its direction. Good. That is, the scanning unit 13 may scan the target ob using the electromagnetic waves radiated from the radiation unit 12. Therefore, in the first embodiment, the first detection unit 17 may constitute a scanning distance measuring sensor in cooperation with the scanning unit 13. Note that the scanning unit 13 may scan the object ob in a one-dimensional direction or a two-dimensional direction. In the first embodiment, the scanning unit 13 scans the target ob in a two-dimensional direction.
 走査部13は、放射部12から放射されて反射した電磁波の照射領域の少なくとも一部が、電磁波検出装置10における電磁波の検出範囲に含まれるように、構成されていてよい。したがって、走査部13を介して対象obに照射される電磁波の少なくとも一部は、電磁波検出装置10において検出され得る。 The scanning unit 13 may be configured such that at least a part of the irradiation region of the electromagnetic wave radiated and reflected from the radiation unit 12 is included in the electromagnetic wave detection range of the electromagnetic wave detection device 10. Therefore, at least a part of the electromagnetic wave applied to the target ob via the scanning unit 13 can be detected by the electromagnetic wave detection device 10.
 走査部13は、例えば、MEMS(Micro Electro Mechanical Systems)ミラー、ポリゴンミラー、およびガルバノミラーなどを含む。第1の実施形態においては、走査部13は、MEMSミラーを含む。 The scanning unit 13 includes, for example, a MEMS (Micro Electro Mechanical Systems) mirror, a polygon mirror, a galvano mirror, and the like. In the first embodiment, the scanning unit 13 includes a MEMS mirror.
 走査部13は、後述する制御部14の制御に基づいて、電磁波を反射する向きを変えてよい。また、走査部13は、例えばエンコーダなどの角度センサを有してもよく、角度センサが検出する角度を、電磁波を反射する方向情報として、制御部14に通知してもよい。このような構成において、制御部14は、走査部13から取得する方向情報に基づいて、放射位置を算出し得る。また、制御部14は、走査部13に電磁波を反射する向きを変えさせるために入力する駆動信号に基づいて照射位置を算出し得る。 The scanning unit 13 may change the direction in which the electromagnetic wave is reflected based on the control of the control unit 14 described later. The scanning unit 13 may include an angle sensor such as an encoder, for example, and may notify the control unit 14 of the angle detected by the angle sensor as direction information for reflecting electromagnetic waves. In such a configuration, the control unit 14 can calculate the radiation position based on the direction information acquired from the scanning unit 13. In addition, the control unit 14 can calculate the irradiation position based on a drive signal input to cause the scanning unit 13 to change the direction in which the electromagnetic wave is reflected.
 なお、第1の実施形態において、走査部13は、放射部12から放射され且つ走査部13に反射した電磁波の照射領域の少なくとも一部が、第1の検出部17における検出範囲に含まれるように、構成されている。したがって、第1の実施形態において、走査部13を介して対象obに放射される電磁波の少なくとも一部は、第1の検出部17により検出され得る。 In the first embodiment, the scanning unit 13 is configured such that at least a part of the irradiation area of the electromagnetic wave radiated from the radiation unit 12 and reflected by the scanning unit 13 is included in the detection range of the first detection unit 17. It is configured. Therefore, in the first embodiment, at least a part of the electromagnetic wave radiated to the target ob via the scanning unit 13 can be detected by the first detection unit 17.
 制御部14は、1以上のプロセッサおよびメモリを含む。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサの少なくともいずれかを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。制御部14は、1つまたは複数のプロセッサが協働するSoC(System-on-a-Chip)、およびSiP(System In a Package)の少なくともいずれかを含んでよい。 The control unit 14 includes one or more processors and a memory. The processor may include at least one of a general-purpose processor that reads a specific program and executes a specific function, and a dedicated processor specialized for a specific process. The special purpose processor may include an application specific integrated circuit (ASIC; Application \ Specific \ Integrated \ Circuit). The processor may include a programmable logic device (PLD; Programmable Logic Device). The PLD may include an FPGA (Field-Programmable Gate Array). The control unit 14 may include at least one of an SoC (System-on-a-Chip) in which one or a plurality of processors cooperate, and a SiP (System \ In \ a \ Package).
 制御部14は、第1の検出部17が検出した電磁波の検出結果に基づいて、電磁波検出装置10の周囲に関する情報を取得してよい。周囲に関する情報は、例えば画像情報、距離情報、および温度情報などである。第1の実施形態において、制御部14は、前述のように、第1の検出部17が画像として検出した電磁波を画像情報として取得する。また、第1の実施形態において、制御部14は、第1の検出部17が検出する検出情報に基づいて、以下に説明するように、ToF(Time-of-Flight)方式により、放射部12に放射される放射位置の距離情報を取得してもよい。 The control unit 14 may acquire information about the periphery of the electromagnetic wave detection device 10 based on the detection result of the electromagnetic wave detected by the first detection unit 17. The information about the surroundings is, for example, image information, distance information, and temperature information. In the first embodiment, as described above, the control unit 14 acquires, as image information, the electromagnetic wave detected by the first detection unit 17 as an image. Further, in the first embodiment, the control unit 14 performs the ToF (Time-of-Flight) method based on the detection information detected by the first detection unit 17 in a ToF (Time-of-Flight) manner as described below. The distance information of the radiation position radiated to the camera may be acquired.
 図3に示すように、制御部14は、放射部12に電磁波放射信号を入力することにより、放射部12にパルス状の電磁波を放射する(“電磁波放射信号”欄参照)。放射部12は、入力された当該電磁波放射信号に基づいて電磁波を照射する(“放射部放射量”欄参照)。放射部12が放射し且つ走査部13が反射して任意の放射領域に照射された電磁波は、当該放射領域において反射する。第1の検出部17は、当該放射領域において反射されて、結像部15およびプリズム16を介して進行した電磁波を検出するとき(“電磁波検出量”欄参照)、前述のように、検出情報を制御部14に通知する。 (3) As shown in FIG. 3, the control unit 14 radiates a pulsed electromagnetic wave to the radiating unit 12 by inputting the electromagnetic wave radiating signal to the radiating unit 12 (see the “Electromagnetic radiation signal” column). The radiating unit 12 irradiates an electromagnetic wave based on the input electromagnetic wave radiation signal (see the “radiation unit radiation amount” column). An electromagnetic wave emitted from the radiation unit 12 and reflected by the scanning unit 13 and applied to an arbitrary radiation region is reflected in the radiation region. When detecting the electromagnetic wave reflected in the radiation area and traveling through the imaging unit 15 and the prism 16 (see the “electromagnetic wave detection amount” column), the first detection unit 17 detects the detection information as described above. Is notified to the control unit 14.
 制御部14は、例えば、時間計測LSI(Large Scale Integrated circuit)を有しており、放射部12に電磁波を放射させた時期T1から、検出情報を取得(“検出情報取得”欄参照)した時期T2までの時間ΔTを計測する。制
御部14は、当該時間ΔTに、光速を乗算し、且つ2で除算することにより、放射位置までの距離を算出する。なお、制御部14は、上述のように、走査部13から取得する方向情報、または自身が走査部13に出力する駆動信号に基づいて、放射位置を算出する。制御部14は、放射位置を変えながら、各放射位置までの距離を算出することにより、画像状の距離情報を作成する。
The control unit 14 has, for example, a time measurement LSI (Large Scale Integrated circuit), and obtains detection information from the time T1 at which the radiation unit 12 emits the electromagnetic wave (see the “detection information acquisition” column). The time ΔT until T2 is measured. The control unit 14 calculates the distance to the radiation position by multiplying the time ΔT by the speed of light and dividing by 2. In addition, the control unit 14 calculates the radiation position based on the direction information acquired from the scanning unit 13 or the drive signal output to the scanning unit 13 as described above. The control unit 14 creates image-like distance information by calculating the distance to each radiation position while changing the radiation position.
 なお、第1の実施形態において、情報取得システム11は、上述のように、電磁波を放射して、返ってくるまでの時間を直接測定するDirect ToFにより距離情報を作成する構成である。しかし、情報取得システム11は、このような構成に限られない。例えば、情報取得システム11は、電磁波を一定の周期で放射し、放射された電磁波と返ってきた電磁波との位相差から、返ってくるまでの時間を間接的に測定するFlash ToFにより距離情報を作成してもよい。また、情報取得システム11は、他のToF方式、例えば、Phased ToFにより距離情報を作成してもよい。 In the first embodiment, as described above, the information acquisition system 11 is configured to generate distance information by using Direct @ ToF which directly radiates an electromagnetic wave and directly measures a time required to return. However, the information acquisition system 11 is not limited to such a configuration. For example, the information acquisition system 11 emits an electromagnetic wave at a fixed cycle, and obtains distance information by Flash @ ToF which indirectly measures a time until the electromagnetic wave is returned from a phase difference between the emitted electromagnetic wave and the returned electromagnetic wave. May be created. The information acquisition system 11 may create the distance information by another ToF method, for example, Phased @ ToF.
 以上のような構成の第1の実施形態の電磁波検出装置10では、結像部15に入射して通過した第1の電磁波の束に含まれる第1の電磁波の進行方向と、結像部15に入射して通過した第2の電磁波の束に含まれる第2の電磁波の進行方向とのなす角度は、所定値以内である。このような構成により、第1の実施形態の電磁波検出装置10は、所定の画角範囲α内の複数の物点から放射し、且つ結像部15を透過した電磁波の広がりを小さくし、所望の反射面によって反射されない、あるいは所望の反射面以外の反射面で反射されることを低減し得る。このため、電磁波検出装置10は、当該電磁波の、所定の画角範囲α内で結像部15に入射し所望の反射面で反射された電磁波の進行経路への交差を低減し得る。この結果、所定の画角範囲αの範囲外の物点から結像部15に入射した電磁波の、所定の画角範囲内αの物点から結像部15に入射した電磁波が到達する位置と同じ位置への到達は低減され得る。したがって、電磁波検出装置10は、所定の画角範囲αの範囲外の物点から結像部15に入射した電磁波に起因したゴーストを低減させ、高い精度で電磁波を検出し得る。なお、このような構成および効果は、後述する、第2の実施形態から第5の実施形態の実施形態の電磁波検出装置についても同じである。 In the electromagnetic wave detection device 10 according to the first embodiment having the above-described configuration, the traveling direction of the first electromagnetic wave included in the bundle of first electromagnetic waves that has entered and passed the imaging unit 15 and the imaging unit 15 The angle between the second electromagnetic wave included in the bundle of the second electromagnetic waves that has entered and passed through and the traveling direction of the second electromagnetic wave is within a predetermined value. With such a configuration, the electromagnetic wave detection device 10 of the first embodiment reduces the spread of the electromagnetic waves radiated from a plurality of object points within the predetermined angle of view range α and transmitted through the imaging unit 15, and Is not reflected by the reflecting surface of the above, or is reflected by a reflecting surface other than the desired reflecting surface. For this reason, the electromagnetic wave detection device 10 can reduce the intersection of the electromagnetic wave with the traveling path of the electromagnetic wave that enters the imaging unit 15 within the predetermined angle of view range α and is reflected by the desired reflection surface. As a result, the position of the electromagnetic wave incident on the imaging unit 15 from the object point outside the predetermined angle of view range α and the position of the electromagnetic wave incident on the imaging unit 15 from the object point α within the predetermined angle of view range Reaching the same location can be reduced. Therefore, the electromagnetic wave detection device 10 can reduce ghost caused by the electromagnetic wave incident on the imaging unit 15 from an object point outside the predetermined angle of view range α, and can detect the electromagnetic wave with high accuracy. Note that such configurations and effects are the same for the electromagnetic wave detection devices according to the second to fifth embodiments to be described later.
 また、第1の実施形態の電磁波検出装置10は、検出部17の検出面で交差する電磁波の数を減少させるのに、遮光版を用いる必要が無い。それゆえ、所定の画角範囲α内の物点からの電磁波の検出面への到達量の減少を低減させ得る。なお、このような構成および効果は、後述する、第2の実施形態から第5の実施形態の実施形態の電磁波検出装置についても同じである。 The electromagnetic wave detection device 10 according to the first embodiment does not require the use of a light-shielding plate to reduce the number of electromagnetic waves intersecting on the detection surface of the detection unit 17. Therefore, a decrease in the amount of electromagnetic waves reaching the detection surface from the object point within the predetermined angle of view range α can be reduced. Note that such configurations and effects are the same for the electromagnetic wave detection devices according to the second to fifth embodiments to be described later.
 また、第1の実施形態電磁波検出装置10では、結像部15に入射して通過した電磁波の束に含まれる電磁波の進行方向と、結像部15の主軸とのなす角度は、所定値以内である。このような構成により、第1の実施形態の電磁波検出装置10は、上述したように、第1の実施形態の電磁波検出装置10は、所定の画角範囲αの物点から結像部15に入射した電磁波と、所定の画角範囲αの範囲外の物点から結像部15に入射した電磁波との、検出部17における同じ位置への到達を低減し得る。 In the first embodiment, the angle between the traveling direction of the electromagnetic wave included in the bundle of electromagnetic waves incident on and passing through the imaging unit 15 and the main axis of the imaging unit 15 is within a predetermined value. It is. With such a configuration, as described above, the electromagnetic wave detection device 10 according to the first embodiment allows the electromagnetic wave detection device 10 according to the first embodiment to move the object point within a predetermined angle of view range α to the image forming unit 15. The arrival of the incident electromagnetic wave and the electromagnetic wave incident on the imaging unit 15 from an object point outside the predetermined angle-of-view range α at the same position in the detection unit 17 can be reduced.
 また、第1の実施形態の電磁波検出装置10では、結像部15は、像側テレセントリック光学系を構成する。このような構成により、電磁波検出装置10は、上述したように、第1の実施形態の電磁波検出装置10は、所定の画角範囲αの物点から結像部15に入射した電磁波と、所定の画角範囲αの範囲外の物点から結像部15に入射した電磁波との、検出部17における同じ位置への到達を低減し得る。 In the electromagnetic wave detection device 10 of the first embodiment, the imaging unit 15 forms an image-side telecentric optical system. With such a configuration, as described above, the electromagnetic wave detection device 10 according to the first embodiment is configured such that the electromagnetic wave incident on the imaging unit 15 from the object point in the predetermined angle of view range α And the electromagnetic wave incident on the imaging unit 15 from an object point outside the range of the angle of view α can reach the same position in the detection unit 17.
 また、第1の実施形態の電磁波検出装置10は、第1の面s1と第2の面s2と第3の面s3とを含み、第1の面s1は結像部15から入射した電磁波を反射し、第2の面s2は、第1の面s1により反射された電磁波を反射し、第3の面s3は、第2の面s2により反射された電磁波を射出する。このため、結像部15の主軸と第1の面s1とのなす角度が90°に近い構成であっても、電磁波検出装置10は、第1の面s1により反射された電磁波を、第2の面s2により結像部15へ向かう方向とは異なる方向に進行させ得る。したがって、電磁波検出装置10は、第2の方向d2と第1の面s1とのなす角度を90°に近づけたとしても、結像部15および第1の検出部17の干渉を回避し得る。この結果、電磁波検出装置10は、第1の結像部15の設計上の制約が回避され、第1の結像部15の良好な結像特性を確保させ得る。なお、このような構成および効果は、後述する、第3の実施形態の電磁波検出装置についても同じである。 Further, the electromagnetic wave detection device 10 of the first embodiment includes a first surface s1, a second surface s2, and a third surface s3, and the first surface s1 detects electromagnetic waves incident from the imaging unit 15. Reflecting, the second surface s2 reflects the electromagnetic wave reflected by the first surface s1, and the third surface s3 emits the electromagnetic wave reflected by the second surface s2. For this reason, even if the angle between the main axis of the imaging unit 15 and the first surface s1 is close to 90 °, the electromagnetic wave detection device 10 can detect the electromagnetic wave reflected by the first surface s1 by the second surface s1. Can travel in a direction different from the direction toward the imaging unit 15 by the surface s2. Therefore, the electromagnetic wave detection device 10 can avoid the interference between the imaging unit 15 and the first detection unit 17 even when the angle between the second direction d2 and the first surface s1 approaches 90 °. As a result, the electromagnetic wave detection device 10 can avoid the restriction on the design of the first imaging unit 15 and can ensure good imaging characteristics of the first imaging unit 15. Note that such configurations and effects are the same for the electromagnetic wave detection device according to the third embodiment described later.
 次に、本開示の第2の実施形態に係る電磁波検出装置について説明する。第2の実施形態では、プリズムの構成が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第2の実施形態について説明する。なお、第1の実施形態と同じ構成を有する部位には同じ符号を付す。 Next, an electromagnetic wave detection device according to the second embodiment of the present disclosure will be described. In the second embodiment, the configuration of the prism is different from that of the first embodiment. Hereinafter, the second embodiment will be described focusing on the differences from the first embodiment. Parts having the same configuration as the first embodiment are denoted by the same reference numerals.
 図4に示すように、第2の実施形態に係る電磁波検出装置100は、結像部15、プリズム160、および第1の検出部17を有している。なお、第2の実施形態に係る情報取得システム11における、電磁波検出装置100以外の構成および機能は、第1の実施形態と同じである。第2の実施形態における電磁波検出装置100の結像部15および第1の検出部17の構成および機能は、第1の実施形態と同じである。 電磁 As shown in FIG. 4, the electromagnetic wave detection device 100 according to the second embodiment includes an imaging unit 15, a prism 160, and a first detection unit 17. The configuration and functions of the information acquisition system 11 according to the second embodiment other than the electromagnetic wave detection device 100 are the same as those of the first embodiment. The configurations and functions of the imaging unit 15 and the first detection unit 17 of the electromagnetic wave detection device 100 according to the second embodiment are the same as those of the first embodiment.
 第2の実施形態において、プリズム160は、第1の面s10、第2の面s20、および第3の面s30を少なくとも有する。プリズム160は、第1の面s10、第2の面s20、および第3の面s30を別々の異なる表面として有してよい。プリズム160は、矩形のプリズムを含み、第1の面s10、第2の面s2、および第3の面s30は、互いに交差してよい。 に お い て In the second embodiment, the prism 160 has at least a first surface s10, a second surface s20, and a third surface s30. The prism 160 may have the first surface s10, the second surface s20, and the third surface s30 as different different surfaces. The prism 160 includes a rectangular prism, and the first surface s10, the second surface s2, and the third surface s30 may intersect each other.
 第1の面s10は、第2の面s20から第2の方向d2に進行する電磁波を第5の方向d5に進行させる。例えば、第1の面s10は、第2の面s20から第2の方向d2に進行した電磁波を内部反射して第5の方向d5に進行させてよい。さらには、第1の面s10は、第2の面s20から第2の方向d2に進行した電磁波を内部全反射して第5の方向d5に進行させてもよい。第1の面s10は、第2の面s20から入射して第1の面s10で反射した電磁波が第2の面s20ではなく、第3の面s30に到達可能な距離、第2の面s20から離れている。 The first surface s10 causes the electromagnetic wave traveling from the second surface s20 in the second direction d2 to travel in the fifth direction d5. For example, the first surface s10 may internally reflect an electromagnetic wave that has traveled in the second direction d2 from the second surface s20 and travel in the fifth direction d5. Furthermore, the first surface s10 may cause the electromagnetic wave traveling from the second surface s20 in the second direction d2 to be totally internally reflected and travel in the fifth direction d5. The first surface s10 has a distance at which the electromagnetic wave incident from the second surface s20 and reflected by the first surface s10 can reach the third surface s30 instead of the second surface s20. Away from
 第2の面s20は、第1の方向d1からプリズム16に入射する電磁波を第2の方向d2に進行させる。第2の面s20は、第1の方向d1から第2の面s20に入射する電磁波の進行軸に対して垂直であってよい。前述のように、第1の方向d1は結像部15の主軸と平行なので、結像部15の主軸と第2の面s20とが垂直、言い換えると結像部15の主面と第2の面s20とが平行であってよい。第2の面s20は、第1の方向d1から入射する電磁波を透過、または屈折させて第2の方向d2に進行させてよい。 The second surface s20 allows the electromagnetic wave incident on the prism 16 from the first direction d1 to travel in the second direction d2. The second surface s20 may be perpendicular to the traveling axis of the electromagnetic wave incident on the second surface s20 from the first direction d1. As described above, since the first direction d1 is parallel to the main axis of the imaging unit 15, the main axis of the imaging unit 15 is perpendicular to the second surface s20, in other words, the main surface of the imaging unit 15 and the second surface s20. The plane s20 may be parallel. The second surface s20 may transmit or refract an electromagnetic wave incident from the first direction d1 to travel in the second direction d2.
 第3の面s30は、第1の面s1から第5の方向d5に進行した電磁波を、プリズム16から射出する。第3の面s30は、第2の面s20から第5の方向d5に進行した電磁波の進行軸に対して垂直、すなわち第5の方向d5に垂直であってよい。 電磁 The third surface s30 emits, from the prism 16, an electromagnetic wave traveling from the first surface s1 in the fifth direction d5. The third surface s30 may be perpendicular to the traveling axis of the electromagnetic wave traveling in the fifth direction d5 from the second surface s20, that is, perpendicular to the fifth direction d5.
 次に、本開示の第3の実施形態に係る電磁波検出装置について説明する。第3の実施形態では、プリズムの構成が第2の実施形態と異なっている。以下に、第2の実施形態と異なる点を中心に第3の実施形態について説明する。なお、第2の実施形態と同じ構成を有する部位には同じ符号を付す。 Next, an electromagnetic wave detection device according to a third embodiment of the present disclosure will be described. In the third embodiment, the configuration of the prism is different from that of the second embodiment. Hereinafter, the third embodiment will be described focusing on the differences from the second embodiment. Parts having the same configuration as the second embodiment are denoted by the same reference numerals.
 図5に示すように、第3の実施形態に係る電磁波検出装置101は、結像部15、プリズム161、および第1の検出部17を有している。なお、第3の実施形態に係る情報取得システム11における、電磁波検出装置101以外の構成および機能は、第1の実施形態と同じである。第3の実施形態におけるプリズム161以外の構成および機能は、第2の実施形態と同じである。 電磁 As shown in FIG. 5, the electromagnetic wave detection device 101 according to the third embodiment has an imaging unit 15, a prism 161, and a first detection unit 17. The configuration and functions of the information acquisition system 11 according to the third embodiment other than the electromagnetic wave detection device 101 are the same as those of the first embodiment. The configuration and functions of the third embodiment other than the prism 161 are the same as those of the second embodiment.
 第3の実施形態において、プリズム161は、第1の面s10、第2の面s20、第3の面s30、および反射抑制部22を少なくとも有する。第3の実施形態において、第1の面s10、第2の面s20、および第3の面s30の構成および機能は、第2の実施形態と同じである。 In the third embodiment, the prism 161 has at least a first surface s10, a second surface s20, a third surface s30, and the reflection suppressing unit 22. In the third embodiment, the configurations and functions of the first surface s10, the second surface s20, and the third surface s30 are the same as those in the second embodiment.
 第3の実施形態において、反射抑制部22は、所定の画角範囲αの物点から結像部15に入射する電磁波の進行経路を除く位置での電磁波の反射を抑制する。反射抑制部22は、例えば、電磁波を吸収することによって電磁波の反射を抑制してもよい。第3の実施形態では、反射抑制部22は、プリズムにおける黒色の塗料が塗布された部分である。反射抑制部22は、プリズムにおける電磁波の入射面に配置された黒色の板面状部材であってもよい。反射抑制部22は、電磁波の反射を抑制する砂摺り面、球面、非球面、又は凹凸面を有する部材であってもよい。 In the third embodiment, the reflection suppressing unit 22 suppresses the reflection of the electromagnetic wave at a position other than the traveling path of the electromagnetic wave incident on the imaging unit 15 from the object point in the predetermined angle of view range α. The reflection suppressing unit 22 may, for example, suppress the reflection of the electromagnetic wave by absorbing the electromagnetic wave. In the third embodiment, the reflection suppressing unit 22 is a portion of the prism on which black paint is applied. The reflection suppressing unit 22 may be a black plate-like member arranged on the incident surface of the prism on the electromagnetic wave. The reflection suppressing unit 22 may be a member having a sanding surface, a spherical surface, an aspheric surface, or an uneven surface that suppresses reflection of electromagnetic waves.
 反射抑制部22は、プリズム161における、電磁波が進行する進行経路のうち、所定の画角範囲αの物点から結像部15に入射した電磁波が進行する進行経路となる領域以外に配置される。例えば、反射抑制部22は、プリズム161の界面である第7の面s7に配置される。 The reflection suppressing unit 22 is arranged in a region other than a region of the traveling path of the prism 161 where the electromagnetic wave travels from the object point within the predetermined angle of view range α in the traveling path of the electromagnetic wave. . For example, the reflection suppressing unit 22 is disposed on a seventh surface s7 that is an interface of the prism 161.
 第3の実施形態では、第2の実施形態と同様に、第1の面s10、第2の面s20、および第3の面s30は結像部15に入射した電磁波を進行させる。これにより、電磁波は、第2の面s20で第1の方向d1からプリズム161に入射し、第2の方向d2に進行する。そして、第2の方向d2に進行した電磁波は、第1の面S10により第5の方向d5に進行する。さらに、第5の方向d5に進行した電磁波は、第3の面S30によってプリズム161から射出する。 In the third embodiment, as in the second embodiment, the first surface s10, the second surface s20, and the third surface s30 allow the electromagnetic waves incident on the imaging unit 15 to travel. Thereby, the electromagnetic wave enters the prism 161 from the first direction d1 on the second surface s20, and travels in the second direction d2. Then, the electromagnetic wave traveling in the second direction d2 travels in the fifth direction d5 by the first surface S10. Further, the electromagnetic wave traveling in the fifth direction d5 is emitted from the prism 161 through the third surface S30.
 以上のような構成の第3の実施形態の電磁波検出装置101は、所定の画角範囲αの物点から入射する電磁波の進行経路を除く位置での電磁波の反射を抑制する反射抑制部22を有するプリズムを備える。このため、反射抑制部22は、所定の画角範囲αの範囲外の物点から入射した電磁波の進行経路上の位置に配置され、電磁波検出装置101は、反射抑制部22により所定の画角範囲αの範囲外の物点から入射した電磁波の反射を抑制することができる。このため、電磁波検出装置102は、所定の画角範囲αの範囲外の物点から入射し界面に到達した電磁波が、所定の画角範囲αの物点から入射する電磁波が到達する第1の検出部17における位置と同じ位置に到達することを低減し得る。この結果、電磁波検出装置101は、所定の画角範囲αの範囲外の物点から結像部15に入射した電磁波に起因したゴーストおよびフレアを低減させ、高い精度で電磁波を検出し得る。 The electromagnetic wave detection device 101 according to the third embodiment having the above-described configuration includes the reflection suppression unit 22 that suppresses the reflection of the electromagnetic wave at a position other than the traveling path of the electromagnetic wave incident from the object point in the predetermined angle of view range α. And a prism having the same. For this reason, the reflection suppressing unit 22 is disposed at a position on the traveling path of the electromagnetic wave incident from an object point outside the predetermined angle of view range α, and the electromagnetic wave detecting device 101 It is possible to suppress the reflection of the electromagnetic wave incident from an object point outside the range α. For this reason, the electromagnetic wave detection device 102 is configured such that the electromagnetic wave that enters from an object point outside the predetermined angle of view range α and reaches the interface is the first electromagnetic wave that enters from the object point within the predetermined angle of view range α. Reaching the same position as the position in the detection unit 17 can be reduced. As a result, the electromagnetic wave detection device 101 can reduce ghosts and flares caused by electromagnetic waves incident on the imaging unit 15 from object points outside the predetermined angle-of-view range α, and can detect electromagnetic waves with high accuracy.
 次に、本開示の第4の実施形態に係る電磁波検出装置について説明する。第4の実施形態では、プリズムの構成が第2の実施形態と異なっている。以下に、第2の実施形態と異なる点を中心に第4実施形態について説明する。なお、第2の実施形態と同じ構成を有する部位には同じ符号を付す。 Next, an electromagnetic wave detection device according to a fourth embodiment of the present disclosure will be described. In the fourth embodiment, the configuration of the prism is different from that of the second embodiment. Hereinafter, the fourth embodiment will be described focusing on the differences from the second embodiment. Parts having the same configuration as the second embodiment are denoted by the same reference numerals.
 図6に示すように、第4の実施形態に係る電磁波検出装置102は、結像部15、プリズム162、および第1の検出部17を有している。なお、第4の実施形態に係る情報取得システム11における、電磁波検出装置102以外の構成および機能は、第1の実施形態と同じである。第4の実施形態におけるプリズム162以外の構成および機能は、第2の実施形態と同じである。 電磁 As shown in FIG. 6, the electromagnetic wave detection device 102 according to the fourth embodiment has an imaging unit 15, a prism 162, and a first detection unit 17. The configuration and functions of the information acquisition system 11 according to the fourth embodiment other than the electromagnetic wave detection device 102 are the same as those of the first embodiment. The configuration and functions of the fourth embodiment other than the prism 162 are the same as those of the second embodiment.
 第4の実施形態において、プリズム162は、第1の面s11、第2の面s21、および第3の面s30を少なくとも有する。第4の実施形態において、第3の面s30の構成および機能は、第2の実施形態と同じである。 に お い て In the fourth embodiment, the prism 162 has at least a first surface s11, a second surface s21, and a third surface s30. In the fourth embodiment, the configuration and function of the third surface s30 are the same as those in the second embodiment.
 プリズム162は、第1の面s11、第2の面s21、および第3の面s30を別々の異なる表面として有してよい。プリズム162は、矩形のプリズムを含み、第1の面s11、第2の面s21、および第3の面s30は、互いに交差してよい。 The prism 162 may have the first surface s11, the second surface s21, and the third surface s30 as different different surfaces. The prism 162 includes a rectangular prism, and the first surface s11, the second surface s21, and the third surface s30 may intersect each other.
 第4の実施形態において、プリズム162は反射抑制部220を有する。反射抑制部220は、電磁波の反射を抑制する。反射抑制部220は、プリズム162における、結像部15に入射した電磁波の進行経路から界面までの領域を含む。具体的には、反射抑制部220は、プリズム162において、結像部15に入射した電磁波が進行し得る領域の端部から界面までの領域である。さらに具体的には、反射抑制部220は、プリズム162において、結像部15に入射した電磁波が進行し得る領域の端部から界面までの領域である。言い換えれば、反射抑制部220は、最も広い画角で結像部15に入射する線状の電磁波が第2の面s21に入射した後、他の界面に到達することなく、第1の面s11に到達させ得るプリズム162の領域である。電磁波の進行経路からプリズム162の界面までの距離Lは、所定の距離以上である。 プ リ ズ ム In the fourth embodiment, the prism 162 has the reflection suppressing unit 220. The reflection suppressing unit 220 suppresses reflection of electromagnetic waves. The reflection suppressing unit 220 includes a region in the prism 162 from the traveling path of the electromagnetic wave incident on the imaging unit 15 to the interface. Specifically, the reflection suppressing unit 220 is a region of the prism 162 from the end of the region where the electromagnetic wave incident on the imaging unit 15 can travel to the interface. More specifically, the reflection suppressing unit 220 is a region in the prism 162 from the end of the region where the electromagnetic wave incident on the imaging unit 15 can travel to the interface. In other words, after the linear electromagnetic wave incident on the imaging unit 15 at the widest angle of view is incident on the second surface s21, the reflection suppressing unit 220 does not reach the other interface, but the first surface s11 Is the area of the prism 162 that can be reached. The distance L from the traveling path of the electromagnetic wave to the interface of the prism 162 is equal to or longer than a predetermined distance.
 第1の面s11は、所定の画角範囲αの物点から結像部15に入射し、第2の面s21でプリズム162に入射した電磁波を反射する領域と、該領域に連続する反射抑制部220を構成する領域とを含む。第1の面s11は、第2の面s21から第2の方向d2に進行する電磁波を第5の方向d5に進行させる。例えば、第1の面s11は、第2の面s21から第2の方向d2に進行した電磁波を内部反射して第5の方向d5に進行させてよい。さらに、第1の面s11は、第2の面s21から第2の方向d2に進行した電磁波を内部全反射して第5の方向d5に進行させてもよい。 The first surface s11 is a region where the electromagnetic wave incident on the image forming unit 15 from an object point within a predetermined angle of view range α and is incident on the prism 162 on the second surface s21 is reflected. And a region constituting the unit 220. The first surface s11 causes an electromagnetic wave traveling in the second direction d2 from the second surface s21 to travel in the fifth direction d5. For example, the first surface s11 may internally reflect an electromagnetic wave traveling in the second direction d2 from the second surface s21 and cause the electromagnetic wave to travel in the fifth direction d5. Further, the first surface s11 may cause the electromagnetic wave traveling in the second direction d2 from the second surface s21 to be totally internally reflected and travel in the fifth direction d5.
 第2の面s21は、所定の画角範囲αの物点から結像部15に入射した電磁波が透過する領域と、該領域に連続する反射抑制部220を構成する領域とを含む。第2の面s21は、第2の方向d2に進行する電磁波を反射して、第5の方向d5に進行させる。第2の面s20は、第1の方向d1からプリズム162に入射する電磁波を第2の方向d2に進行させる。第2の面s21は、第1の方向d1から第2の面s21に入射する電磁波の進行軸に対して垂直であってよい。前述のように、第1の方向d1は結像部15の主軸と平行なので、結像部15の主軸と第2の面s21とが垂直、言い換えると結像部15の主面と第2の面s21とが平行であってよい。第2の面s21は、第1の方向d1から入射する電磁波を透過、または屈折させて第2の方向d2に進行させてよい。 2The second surface s21 includes a region through which the electromagnetic wave incident on the imaging unit 15 from an object point in the predetermined angle of view range α is transmitted, and a region constituting the reflection suppressing unit 220 continuous with the region. The second surface s21 reflects an electromagnetic wave traveling in the second direction d2 and causes the electromagnetic wave to travel in the fifth direction d5. The second surface s20 causes the electromagnetic wave incident on the prism 162 from the first direction d1 to travel in the second direction d2. The second surface s21 may be perpendicular to the traveling axis of the electromagnetic wave incident on the second surface s21 from the first direction d1. As described above, since the first direction d1 is parallel to the main axis of the imaging unit 15, the main axis of the imaging unit 15 is perpendicular to the second surface s21, in other words, the main surface of the imaging unit 15 and the second surface s21. The plane s21 may be parallel. The second surface s21 may transmit or refract an electromagnetic wave incident from the first direction d1 to travel in the second direction d2.
 以上のような構成の第4の実施形態の電磁波検出装置102では、反射抑制部220は、プリズム162の、所定の画角範囲αの物点から入射する電磁波の進行経路から界面までの領域を含み、進行経路から界面までの距離は、所定の距離以上である。所定の画角範囲αの物点から入射する電磁波の進行経路から界面までの距離が所定の距離以上、離れているため、所望の反射面ではない界面で反射される電磁波を低減することができる。このため、電磁波検出装置102は、所定の画角範囲αの範囲外の物点からプリズム162に入射した界面で反射される電磁波を低減することができる。この結果、電磁波検出装置102は、所定の画角範囲αの範囲外の物点からの電磁波が、所定の画角範囲α内の物点からプリズム162に入射する電磁波が到達する第1の検出部17における位置と同じ位置に到達することを低減し得る。したがって、電磁波検出装置101は、所定の画角範囲αの範囲外の物点から結像部15に入射した電磁波に起因したゴーストを低減させ、高い精度で電磁波を検出し得る。 In the electromagnetic wave detection device 102 according to the fourth embodiment having the above-described configuration, the reflection suppressing unit 220 determines the area of the prism 162 from the traveling path of the electromagnetic wave incident from an object point within a predetermined angle of view range α to the interface. Including, the distance from the traveling path to the interface is equal to or longer than a predetermined distance. Since the distance from the traveling path of the electromagnetic wave incident from the object point in the predetermined angle of view range α to the interface is greater than or equal to the predetermined distance, the electromagnetic wave reflected at the interface other than the desired reflection surface can be reduced. . Therefore, the electromagnetic wave detection device 102 can reduce the electromagnetic waves reflected at the interface that has entered the prism 162 from an object point outside the predetermined angle-of-view range α. As a result, the electromagnetic wave detection device 102 performs the first detection in which the electromagnetic wave from an object point outside the predetermined angle of view range α reaches the electromagnetic wave incident on the prism 162 from the object point within the predetermined angle of view range α. Reaching the same position as the position in the part 17 can be reduced. Therefore, the electromagnetic wave detection device 101 can reduce ghost caused by the electromagnetic wave incident on the imaging unit 15 from an object point outside the predetermined angle of view range α, and can detect the electromagnetic wave with high accuracy.
 次に、本開示の第5の実施形態に係る電磁波検出装置について説明する。第5の実施形態では、電磁波検出装置が進行部および第2の検出部を備えることが第1の実施形態と異なっている。また、第5の実施形態では、プリズムの構成が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第5の実施形態について説明する。なお、第1の実施形態と同じ構成を有する部位には同じ符号を付す。 Next, an electromagnetic wave detection device according to a fifth embodiment of the present disclosure will be described. The fifth embodiment differs from the first embodiment in that the electromagnetic wave detection device includes a traveling unit and a second detection unit. In the fifth embodiment, the configuration of the prism is different from that of the first embodiment. Hereinafter, the fifth embodiment will be described focusing on the differences from the first embodiment. Parts having the same configuration as the first embodiment are denoted by the same reference numerals.
 図7に示すように、第5の実施形態に係る電磁波検出装置103は、結像部15、プリズム部163、第1の検出部17、進行部20、および第2の検出部21を有している。なお、第5の実施形態に係る情報取得システム11における、電磁波検出装置103以外の構成および機能は、第1の実施形態と同じである。第5の実施形態の電磁波検出装置103における結像部15、第1の検出部17の構成および機能は、第1の実施形態と同じである。 As shown in FIG. 7, the electromagnetic wave detection device 103 according to the fifth embodiment includes an imaging unit 15, a prism unit 163, a first detection unit 17, a traveling unit 20, and a second detection unit 21. ing. The configuration and functions of the information acquisition system 11 according to the fifth embodiment other than the electromagnetic wave detection device 103 are the same as those of the first embodiment. The configurations and functions of the imaging unit 15 and the first detection unit 17 in the electromagnetic wave detection device 103 of the fifth embodiment are the same as those of the first embodiment.
 進行部20は、プリズム部163の第2の面s2から入射して第4の面s4から射出する電磁波の経路上に設けられている。さらに、進行部20は、結像部15から所定の距離だけ離れた対象obの一次結像位置または当該一次結像位置近傍に、設けられていてよい。 The advancing unit 20 is provided on a path of an electromagnetic wave that enters from the second surface s2 of the prism unit 163 and exits from the fourth surface s4. Further, the advancing unit 20 may be provided at or near the primary imaging position of the target ob which is separated from the imaging unit 15 by a predetermined distance.
 第5の実施形態においては、進行部20は、当該一次結像位置に設けられている。進行部20は、結像部15およびプリズム部163を通過した電磁波が入射する基準面ssを有している。基準面ssは、2次元状に沿って配置される複数の画素pxによって構成されている。基準面ssは、後述する第1の状態および第2の状態の少なくともいずれかにおいて、電磁波に、例えば、反射および透過などの作用を生じさせる面である。進行部20は、結像部15による対象obの電磁波の像を基準面ssに結像させてよい。基準面ssは、第4の面s4から射出された電磁波の進行軸に垂直であってよい。 In the fifth embodiment, the advancing unit 20 is provided at the primary imaging position. The advancing unit 20 has a reference surface ss on which the electromagnetic wave passing through the imaging unit 15 and the prism unit 163 is incident. The reference plane ss is configured by a plurality of pixels px arranged along a two-dimensional shape. The reference surface ss is a surface that causes an electromagnetic wave to have an action such as reflection and transmission in at least one of a first state and a second state described later. The advancing unit 20 may form an image of the electromagnetic wave of the target ob by the imaging unit 15 on the reference plane ss. The reference plane ss may be perpendicular to the traveling axis of the electromagnetic wave emitted from the fourth plane s4.
 基準面ssは、所定の画角範囲αの物点から結像部15に入射した電磁波の進行経路上に配置される。また、複数の画素pxは、所定の画角範囲αの物点から結像部15に入射した電磁波の進行経路上に配置される。 The reference plane ss is arranged on the traveling path of the electromagnetic wave incident on the imaging unit 15 from an object point within a predetermined angle of view range α. The plurality of pixels px are arranged on the traveling path of the electromagnetic wave incident on the imaging unit 15 from an object point in a predetermined angle of view range α.
 進行部20は、第4の面s4から射出され、基準面ssに入射した電磁波を画素px毎に特定の方向へ進行させる。進行部20は、特定の方向として第1の選択方向ds1に進行させる第1の状態と、別の特定の方向として第2の選択方向ds2に進行させる第2の状態とに、画素px毎に切替可能である。第5の実施形態において、第1の状態は、基準面ssに入射する電磁波を、第1の方向d1に反射する第1の反射状態を含む。また、第2の状態は、基準面ssに入射する電磁波を、第2の方向d2に反射する第2の反射状態を含む。 The advancing unit 20 causes the electromagnetic wave emitted from the fourth surface s4 and incident on the reference surface ss to travel in a specific direction for each pixel px. The advancing unit 20 sets, for each pixel px, a first state of advancing in the first selection direction ds1 as a specific direction and a second state of advancing in the second selection direction ds2 as another specific direction. It can be switched. In the fifth embodiment, the first state includes a first reflection state in which an electromagnetic wave incident on the reference surface ss is reflected in a first direction d1. Further, the second state includes a second reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the second direction d2.
 第5の実施形態において、進行部20は、さらに具体的には、画素px毎に電磁波を反射する反射面を含んでよい。進行部20は、画素px毎の反射面の向きを変更することにより、第1の反射状態および第2の反射状態を画素px毎に切替えてよい。 In the fifth embodiment, more specifically, the advancing unit 20 may include a reflection surface that reflects an electromagnetic wave for each pixel px. The advancing unit 20 may switch the first reflection state and the second reflection state for each pixel px by changing the direction of the reflection surface for each pixel px.
 第5の実施形態において、進行部20は、例えばDMD(Digital Micro
 mirror Device:デジタルマイクロミラーデバイス)を含んでよい。DMDは、基準面ssを構成する微小な反射面を駆動することにより、画素px毎に当該反射面を基準面ssに対して+12°および-12°のいずれかの傾斜状態に切替可能である。なお、基準面ssは、DMDにおける微小な反射面を載置する基板の板面に平行であってよい。
In the fifth embodiment, the advancing unit 20 is, for example, a DMD (Digital Micro).
(mirror Device: digital micromirror device). The DMD can switch the reflection surface to any one of + 12 ° and −12 ° with respect to the reference surface ss for each pixel px by driving the minute reflection surface forming the reference surface ss. . Note that the reference surface ss may be parallel to the plate surface of the substrate on which the minute reflecting surface of the DMD is placed.
 進行部20は、後述する制御部14の制御に基づいて、第1の状態および第2の状態を、画素px毎に切替えてよい。例えば、進行部20は、同時に、一部の画素pxを第1の状態に切替えることにより当該画素pxに入射する電磁波を第1の選択方向ds1に進行させ得、別の一部の画素pxを第2の状態に切替えることにより当該画素pxに入射する電磁波を第2の選択方向ds2に進行させ得る。 The advancing unit 20 may switch the first state and the second state for each pixel px based on the control of the control unit 14 described later. For example, the traveling unit 20 can simultaneously advance an electromagnetic wave incident on the pixel px in the first selection direction ds1 by switching a part of the pixels px to the first state, and change another part of the pixels px. By switching to the second state, the electromagnetic wave incident on the pixel px can be advanced in the second selection direction ds2.
 プリズム部163は、結像部15および進行部20の間に設けられている。プリズム部163は、結像部15から進行した電磁波を分離して、第1の検出部17および進行部20に向けて射出する。プリズム部163は、進行部20に進行方向を変えられた電磁波を第2の検出部21に向けて射出する。プリズム部163の詳細な構造を以下に説明する。 The prism unit 163 is provided between the imaging unit 15 and the traveling unit 20. The prism unit 163 separates the electromagnetic wave traveling from the image forming unit 15 and emits the electromagnetic wave toward the first detection unit 17 and the traveling unit 20. The prism unit 163 emits the electromagnetic wave whose traveling direction has been changed by the traveling unit 20 toward the second detection unit 21. The detailed structure of the prism section 163 will be described below.
 第5の実施形態において、プリズム部163は、第1の面s12、第2の面s2、第3の面s3、第4の面s4、第5の面s5、および第6の面s6を少なくとも有する。第5の実施形態において、第1の面s1および第3の面s3の構成および機能は、第1の実施形態と同じである。 In the fifth embodiment, the prism unit 163 includes at least a first surface s12, a second surface s2, a third surface s3, a fourth surface s4, a fifth surface s5, and a sixth surface s6. Have. In the fifth embodiment, the configurations and functions of the first surface s1 and the third surface s3 are the same as those in the first embodiment.
 第5の実施形態において、プリズム部163は、第1のプリズム163a、第2のプリズム163b、第3のプリズム163cを有する。 プ リ ズ ム In the fifth embodiment, the prism section 163 has a first prism 163a, a second prism 163b, and a third prism 163c.
 第1のプリズム163aの機能および構成は、第1の実施形態のプリズム16と同じである。 機能 The function and configuration of the first prism 163a are the same as those of the prism 16 of the first embodiment.
 第2のプリズム163bは、少なくとも第4の面s4、第5の面s5、および第6の面s6を別々の異なる表面として有してよい。第2のプリズム163bでは、例えば、矩形のプリズムを含み、第4の面s4および第5の面s5と、第6の面s6とは、交差してよい。 2The second prism 163b may have at least the fourth surface s4, the fifth surface s5, and the sixth surface s6 as different different surfaces. The second prism 163b includes, for example, a rectangular prism, and the fourth surface s4 and the fifth surface s5 may intersect with the sixth surface s6.
 第2のプリズム163bは、第5の面s5が第1のプリズム163aの第1の面s12に対向するように、配置されていてよい。また、第2のプリズム163bは、第1のプリズム163aの第1の面s12を透過して第5の面s5を介して第2のプリズム163b内部を進行する電磁波の進行方向に第4の面s4が位置するように配置されていてよい。また、第2のプリズム163bは、第5の面s5における第7の方向d7からの電磁波の入射角に等しい反射角である第8の方向d8に第6の面s6が位置するように配置されていてよい。 The second prism 163b may be arranged such that the fifth surface s5 faces the first surface s12 of the first prism 163a. In addition, the second prism 163b is connected to the first surface s12 of the first prism 163a, and the fourth surface in the traveling direction of the electromagnetic wave traveling inside the second prism 163b via the fifth surface s5 via the fifth surface s5. It may be arranged so that s4 is located. The second prism 163b is arranged such that the sixth surface s6 is located in the eighth direction d8, which is a reflection angle equal to the incident angle of the electromagnetic wave from the seventh direction d7 on the fifth surface s5. May be.
 第5の面s51は、第2のプリズム163bの内部を第7の方向d7を進行軸として進行する電磁波を内部反射して第8の方向d8に進行させる。第7の方向d7からの電磁波の入射角が臨界角以上である構成においては、第5の面s5は、第7の方向d7に内部進行する電磁波を内部全反射して第8の方向d8に進行させる。 5The fifth surface s51 internally reflects the electromagnetic wave traveling inside the second prism 163b with the seventh direction d7 as the traveling axis and causes the electromagnetic wave to travel in the eighth direction d8. In the configuration in which the incident angle of the electromagnetic wave from the seventh direction d7 is equal to or larger than the critical angle, the fifth surface s5 totally internally reflects the electromagnetic wave traveling internally in the seventh direction d7 and moves in the eighth direction d8. Let go.
 第3のプリズム163cは、第1のプリズム163aおよび第2のプリズム163bの間に配置されていてよい。 3The third prism 163c may be arranged between the first prism 163a and the second prism 163b.
 例えば、第3のプリズム163cは、空気層を介して第2のプリズム163bに近接して配置される。さらに、第3のプリズム163cは、第2のプリズム163bとの間にスペーサを配置することによって、空気層を介して第1のプリズム163aと第2のプリズム163bとの間に配置されてもよい。このような構成において、上述した第2のプリズム163bは、電磁波が第5の面s5で内部反射するように、空気層の屈折率より大きい任意の屈折率を有してもよい。 For example, the third prism 163c is arranged close to the second prism 163b via the air layer. Further, the third prism 163c may be disposed between the first prism 163a and the second prism 163b via an air layer by disposing a spacer between the third prism 163c and the second prism 163b. . In such a configuration, the above-described second prism 163b may have an arbitrary refractive index larger than the refractive index of the air layer so that the electromagnetic wave is internally reflected by the fifth surface s5.
 また、第3のプリズム163cは、第2のプリズム163bに第5の面s5で面接触するように配置されてもよい。このような構成において、第2のプリズム163bは、電磁波が第5の面s5で内部反射するように第3のプリズム163cの屈折率より大きい屈折率を有する。 The third prism 163c may be arranged so as to be in surface contact with the second prism 163b at the fifth surface s5. In such a configuration, the second prism 163b has a refractive index larger than the refractive index of the third prism 163c so that the electromagnetic wave is internally reflected by the fifth surface s5.
 第5の実施形態において、第1の面s12は、第2の面s2から第2の方向d2に進行する電磁波を分離して第3の方向d3および第6の方向d6に進行させる。第1の面s12は、第2の方向d2へ進行した電磁波のうち特定の波長の電磁波を第3の方向d3に進行させ、特定の波長帯域以外の電磁波を第6の方向d6に進行させてよい。第1の面s12は、第2の方向d2へ進行した電磁波のうち特定の波長の電磁波を反射して第3の方向d3に進行させ、特定の波長帯域以外の電磁波を透過または屈折させ第6の方向d6に進行させてよい。第2の方向d2へ進行した電磁波の第1の面s12への入射角は臨界角未満であってよい。 In the fifth embodiment, the first surface s12 separates the electromagnetic wave traveling in the second direction d2 from the second surface s2 and causes the electromagnetic wave to travel in the third direction d3 and the sixth direction d6. The first surface s12 makes the electromagnetic wave of a specific wavelength among the electromagnetic waves that have traveled in the second direction d2 travel in the third direction d3, and makes the electromagnetic waves other than the specific wavelength band travel in the sixth direction d6. Good. The first surface s12 reflects an electromagnetic wave of a specific wavelength out of the electromagnetic waves that have traveled in the second direction d2 to travel in the third direction d3, and transmits or refracts electromagnetic waves outside the specific wavelength band to form a sixth surface. In the direction d6. The angle of incidence of the electromagnetic wave traveling in the second direction d2 on the first surface s12 may be less than the critical angle.
 第4の面s4は、第1の面s12から第6の方向d6に進行した電磁波を、進行部20の基準面ssに射出する。また、第4の面s4は、進行部20の基準面ssから特定の方向としての第1の選択方向ds1に進行して再入射した電磁波を第7の方向d7に進行させる。第4の面s4は、第1の面s12から第6の方向d6に進行した電磁波の進行軸に対して垂直、すなわち第6の方向d6に垂直であってよい。第4の面s4は、進行部20の基準面ssに対して平行であってよい。第4の面s4は、基準面ssから再入射する電磁波を透過または屈折させて第7の方向d7に進行させてよい。 (4) The fourth surface s4 emits the electromagnetic wave traveling in the sixth direction d6 from the first surface s12 to the reference surface ss of the traveling unit 20. In addition, the fourth surface s4 travels in the first selection direction ds1 as a specific direction from the reference surface ss of the advancing part 20, and re-enters the electromagnetic wave in the seventh direction d7. The fourth surface s4 may be perpendicular to the traveling axis of the electromagnetic wave traveling in the sixth direction d6 from the first surface s12, that is, perpendicular to the sixth direction d6. The fourth plane s4 may be parallel to the reference plane ss of the traveling section 20. The fourth surface s4 may transmit or refract an electromagnetic wave that is re-entered from the reference surface ss and travel in the seventh direction d7.
 第5の面s5は、第4の面s4から第7の方向d7に進行した電磁波を第8の方向d8に進行させる。例えば、第5の面s5は、第4の面s4から第7の方向d7に進行した電磁波を内部反射して第8の方向d8に進行させてよい。さらに、第5の面s5は、第4の面s4から第7の方向d7に進行した電磁波を内部全反射して第8の方向d8に進行させてもよい。第4の面s4から第7の方向d7に進行した電磁波の第5の面s5への入射角は臨界角以上であってよい。第4の面s4から第7の方向d7に進行した電磁波の第5の面s5への入射角は、第2の面s2から第2の方向d2に進行した電磁波の第1の面s12への入射角と異なっていてよい。 (5) The fifth surface s5 allows the electromagnetic wave traveling from the fourth surface s4 in the seventh direction d7 to travel in the eighth direction d8. For example, the fifth surface s5 may internally reflect an electromagnetic wave traveling in the seventh direction d7 from the fourth surface s4 and cause the electromagnetic wave to travel in the eighth direction d8. Furthermore, the fifth surface s5 may cause the electromagnetic wave traveling from the fourth surface s4 in the seventh direction d7 to be totally internally reflected and travel in the eighth direction d8. The incident angle of the electromagnetic wave traveling from the fourth surface s4 to the fifth surface s5 in the seventh direction d7 may be equal to or greater than the critical angle. The incident angle of the electromagnetic wave traveling in the seventh direction d7 from the fourth surface s4 to the fifth surface s5 is determined by the angle of incidence of the electromagnetic wave traveling in the second direction d2 from the second surface s2 to the first surface s12. It may be different from the angle of incidence.
 第6の面s6は、第5の面s5から第8の方向d8に進行した電磁波を射出する第2の射出面である。第6の面s6は、第5の面s5から第8の方向d8に進行した電磁波の進行軸に対して垂直、すなわち第8の方向d8に垂直であってよい。 6The sixth surface s6 is a second emission surface that emits an electromagnetic wave traveling in the eighth direction d8 from the fifth surface s5. The sixth surface s6 may be perpendicular to the traveling axis of the electromagnetic wave traveling in the eighth direction d8 from the fifth surface s5, that is, perpendicular to the eighth direction d8.
 第2の検出部21は、第1の面s12により射出された電磁波を検出する。第5の実施形態では、第2の検出部21は、第1の面s1により射出された後、進行部20を介して進行して第6の面s6から射出された電磁波を検出する。第6の面s6から射出された電磁波を検出するために、第2の検出部21は、プリズム部163から第8の方向d8に進行して第6の面s6から射出した後に進行する電磁波の経路上に配置されていてよい。第2の検出部2は、電磁波の検出可能領域が、所定の画角範囲αの物点から結像部15に入射した電磁波の進行経路上と重なるように配置される。第2の検出部21は、進行部20の基準面ssに形成される電磁波の像の、二次結像位置または二次結像位置近傍に配置されていてよい。 The second detection unit 21 detects the electromagnetic wave emitted from the first surface s12. In the fifth embodiment, the second detection unit 21 detects the electromagnetic wave emitted from the first surface s1 and then traveling through the traveling unit 20 and emitted from the sixth surface s6. In order to detect the electromagnetic wave emitted from the sixth surface s6, the second detector 21 detects the electromagnetic wave that travels from the prism portion 163 in the eighth direction d8 and then travels from the sixth surface s6. It may be located on the route. The second detection unit 2 is arranged such that the electromagnetic wave detectable area overlaps the traveling path of the electromagnetic wave incident on the imaging unit 15 from an object point within a predetermined angle of view range α. The second detection unit 21 may be arranged at the secondary imaging position or near the secondary imaging position of the electromagnetic wave image formed on the reference surface ss of the traveling unit 20.
 第2の検出部21は、検出面が第6の面s6と平行となるように配置されていてよい。前述のように、第6の面s6は、第8の方向d8に進行して射出する電磁波の進行軸に垂直であり得、第2の検出部21の検出面は、第6の面s6から射出される電磁波の進行軸と垂直であってよい。 The second detector 21 may be arranged so that the detection surface is parallel to the sixth surface s6. As described above, the sixth surface s6 can be perpendicular to the traveling axis of the electromagnetic wave that travels and exits in the eighth direction d8, and the detection surface of the second detection unit 21 is different from the sixth surface s6. It may be perpendicular to the traveling axis of the emitted electromagnetic wave.
 第5の実施形態において、第2の検出部21は、第1の検出部17とは異種または同種のセンサであり、異種または同種の電磁波を検出する。 In the fifth embodiment, the second detection unit 21 is a sensor of a different type or the same type as the first detection unit 17, and detects a different type or the same type of electromagnetic wave.
 なお、第2の検出部21は、測距センサを構成する単一の素子である構成において、電磁波を検出できればよく、検出面において結像される必要はない。それゆえ、第2の検出部21は、二次結像位置または二次結像位置近傍に必ずしも設けられなくてもよい。すなわち、この構成において、第2の検出部21は、所定の画角範囲αの物点から結像部15に入射した電磁波が検出面上に入射可能な位置であれば、プリズム部163の第6の面s6から射出された後に進行する電磁波の経路上のどこに配置されてもよい。 The second detection unit 21 is only required to be able to detect an electromagnetic wave in a single element constituting the distance measurement sensor, and does not need to form an image on the detection surface. Therefore, the second detection unit 21 does not necessarily need to be provided at the secondary imaging position or near the secondary imaging position. That is, in this configuration, if the electromagnetic wave incident on the imaging unit 15 from an object point in the predetermined angle of view range α can enter the detection surface, the second detection unit 21 6 may be arranged anywhere on the path of the electromagnetic wave that travels after being emitted from the surface s6.
 また、第2の検出部21は、被写体からの反射波を検出したことを示す検出情報を信号として制御部14に送信する。 {Circle around (2)} The second detection unit 21 transmits detection information indicating that the reflected wave from the subject has been detected to the control unit 14 as a signal.
 本発明を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。従って、これらの変形および修正は本発明の範囲に含まれることに留意されたい。 Although the present invention has been described with reference to the drawings and embodiments, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention.
 例えば、第1の実施形態から第5の実施形態において、放射部12、走査部13、および制御部14が、電磁波検出装置10、100、101、102、103とともに情報取得システム11を構成しているが、電磁波検出装置10、100、101、102、103は、これらの少なくとも1つを含んで構成されてよい。 For example, in the first to fifth embodiments, the radiation unit 12, the scanning unit 13, and the control unit 14 configure the information acquisition system 11 together with the electromagnetic wave detection devices 10, 100, 101, 102, and 103. However, the electromagnetic wave detection devices 10, 100, 101, 102, and 103 may be configured to include at least one of them.
 また、第5の実施形態において、進行部20は、基準面ssに入射する電磁波の進行方向を第1の選択方向ds1および第2の選択方向ds2の2方向に切替可能であるが、2方向のいずれかへの切替えでなく、3以上の方向に切替可能であってよい。 In the fifth embodiment, the traveling unit 20 can switch the traveling direction of the electromagnetic wave incident on the reference surface ss into two directions, a first selection direction ds1 and a second selection direction ds2. May be switchable in three or more directions.
 また、第5の実施形態において、第1の状態および第2の状態は、基準面ssに入射する電磁波を、それぞれ、第1の選択方向ds1に反射する第1の反射状態、および第2の選択方向ds2に反射する第2の反射状態であるが、他の態様であってもよい。 Further, in the fifth embodiment, the first state and the second state are a first reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the first selection direction ds1, and a second reflection state, respectively. Although this is the second reflection state in which the light is reflected in the selection direction ds2, another mode may be used.
 例えば、図8に示したように、第2の状態が、基準面ssに入射する電磁波を、透過させて第2の選択方向ds2に進行させる透過状態であってもよい。プリズム167は、さらに具体的には、画素px毎に電磁波を第1の選択方向ds1に反射する反射面を有するシャッタを含んでいてもよい。このような構成のプリズム167においては、画素px毎のシャッタを開閉することにより、第1の状態としての反射状態および第2の状態としての透過状態を画素px毎に切替え得る。 For example, as shown in FIG. 8, the second state may be a transmission state in which electromagnetic waves incident on the reference surface ss are transmitted and travel in the second selection direction ds2. More specifically, the prism 167 may include a shutter having a reflection surface that reflects an electromagnetic wave in the first selection direction ds1 for each pixel px. In the prism 167 having such a configuration, the reflection state as the first state and the transmission state as the second state can be switched for each pixel px by opening and closing the shutter for each pixel px.
 このような構成の進行部20として、例えば、開閉可能な複数のシャッタがアレイ状に配列されたMEMSシャッタを含む切替部が挙げられる。また、進行部20として、電磁波を反射する反射状態と電磁波を透過する透過状態とを液晶配向に応じて切替え可能な液晶シャッタを含む切替部が挙げられる。このような構成の進行部20においては、画素px毎の液晶配向を切替えることにより、第1の状態としての反射状態および第2の状態としての透過状態を画素px毎に切替え得る。 進行 As the traveling section 20 having such a configuration, for example, a switching section including a MEMS shutter in which a plurality of shutters that can be opened and closed is arranged in an array is exemplified. Further, as the advancing unit 20, a switching unit including a liquid crystal shutter capable of switching between a reflection state in which electromagnetic waves are reflected and a transmission state in which electromagnetic waves are transmitted in accordance with the liquid crystal orientation is exemplified. In the traveling section 20 having such a configuration, the reflection state as the first state and the transmission state as the second state can be switched for each pixel px by switching the liquid crystal alignment for each pixel px.
 また、第1の実施形態から第5の実施形態において、情報取得システム11は、放射部12から放射されるビーム状の電磁波を走査部13に走査させることにより、第2の検出部21を走査部13と協働させて走査型のアクティブセンサとして機能させる構成を有する。しかし、情報取得システム11は、このような構成に限られない。例えば、放射状の電磁波を放射可能な複数の放射源を有する放射部12において、放射時期をずらしながら各放射源から電磁波を放射させるフェイズドスキャン方式により、走査部13を備えることなく、走査型のアクティブセンサとして機能させる構成でも、第1の実施形態から第5の実施形態と類似の効果が得られる。また、例えば、情報取得システム11は、走査部13を備えず、放射部12から放射状の電磁波を放射させ、走査なしで情報を取得する構成でも、第1の実施形態から第5の実施形態と類似の効果が得られる。 In the first to fifth embodiments, the information acquisition system 11 scans the second detection unit 21 by causing the scanning unit 13 to scan the beam-shaped electromagnetic waves emitted from the emission unit 12. It has a configuration to function as a scanning type active sensor in cooperation with the unit 13. However, the information acquisition system 11 is not limited to such a configuration. For example, in a radiating unit 12 having a plurality of radiation sources capable of radiating a radial electromagnetic wave, a scanning type active without a scanning unit 13 is provided by a phased scanning method in which electromagnetic waves are radiated from each radiation source while shifting the radiation timing. With the configuration that functions as a sensor, effects similar to those of the first to fifth embodiments can be obtained. Further, for example, even in a configuration in which the information acquisition system 11 does not include the scanning unit 13 and emits a radial electromagnetic wave from the radiation unit 12 to acquire information without scanning, the information acquisition system 11 includes the first to fifth embodiments. A similar effect is obtained.
 また、第5の実施形態において、情報取得システム11は、第1の検出部17がパッシブセンサであり、第2の検出部21がアクティブセンサである構成を有する。しかし、情報取得システム11は、このような構成に限られない。例えば、情報取得システム11において、第1の検出部17および第2の検出部21が共にアクティブセンサである構成でも、パッシブセンサである構成でも第5の実施形態と類似の効果が得られる。第1の検出部17および第2の検出部21が共にアクティブセンサである構成において、対象obに電磁波を放射する放射部12は異なっていても、同一であってもよい。さらに、異なる放射部12は、それぞれ異種または同種の電磁波を放射してよい。 In addition, in the fifth embodiment, the information acquisition system 11 has a configuration in which the first detection unit 17 is a passive sensor and the second detection unit 21 is an active sensor. However, the information acquisition system 11 is not limited to such a configuration. For example, in the information acquisition system 11, an effect similar to that of the fifth embodiment can be obtained regardless of whether the first detection unit 17 and the second detection unit 21 are both active sensors or passive sensors. In a configuration in which the first detection unit 17 and the second detection unit 21 are both active sensors, the radiating units 12 that radiate the electromagnetic wave to the target ob may be different or the same. Further, different radiating parts 12 may radiate different or the same type of electromagnetic waves, respectively.
 10、100、101、102、103 電磁波検出装置
 11 情報取得システム
 12 放射部
 13 走査部
 14 制御部
 15 結像部
 16、160、161、162 プリズム
 163 プリズム部
 163a 第1のプリズム
 163b 第2のプリズム
 163c 第3のプリズム
 17 第1の検出部
 20 進行部
 21 第2の検出部
 22、220 反射抑制部
 d1、d2、d3、d4、d5、d6、d7、d8 第1の方向、第2の方向、第3の方向、第4の方向、第5の方向、第6の方向、第7の方向、第8の方向
 ds1、ds2 第1の選択方向、第2の選択方向
 ob 対象
 px 画素
 s1、s10、s11、s12 第1の面
 s2、s20、s21 第2の面
 s3、s30 第3の面
 s4、s5、s6、s7 第4の面、第5の面、第6の面、第7の面
 ss 基準面
10, 100, 101, 102, 103 Electromagnetic wave detection device 11 Information acquisition system 12 Emission unit 13 Scanning unit 14 Control unit 15 Imaging unit 16, 160, 161, 162 Prism 163 Prism unit 163a First prism 163b Second prism 163c Third prism 17 First detection unit 20 Progression unit 21 Second detection unit 22, 220 Reflection suppression unit d1, d2, d3, d4, d5, d6, d7, d8 First direction, second direction , Third direction, fourth direction, fifth direction, sixth direction, seventh direction, eighth direction ds1, ds2 first selection direction, second selection direction ob target px pixel s1, s10, s11, s12 First surface s2, s20, s21 Second surface s3, s30 Third surface s4, s5, s6, s7 Fourth surface, fifth surface, sixth surface, seventh surface Face ss reference plane

Claims (33)

  1.  入射する電磁波を結像する結像部と、
     前記結像部から入射した電磁波を反射する反射面と、前記反射面により反射された電磁波を射出する第1の射出面と、を含むプリズムと、
     前記第1の射出面により射出された電磁波を検出する第1の検出部と、
    を備え、
     前記結像部に入射して通過した第1の電磁波の束に含まれる第1の電磁波の進行方向と、前記結像部に入射して通過した第2の電磁波の束に含まれる第2の電磁波の進行方向とのなす角度は、所定値以内であり、
     前記第1の検出部による電磁波の検出可能領域は、所定の画角範囲から入射する電磁波の進行経路上にのみ配置されている、
    電磁波検出装置。
    An imaging unit for imaging an incident electromagnetic wave;
    A prism including a reflection surface that reflects the electromagnetic wave incident from the imaging unit, and a first emission surface that emits the electromagnetic wave reflected by the reflection surface;
    A first detection unit that detects an electromagnetic wave emitted from the first emission surface;
    With
    The traveling direction of the first electromagnetic wave included in the bundle of the first electromagnetic waves incident on and passing through the imaging unit, and the second direction included in the bundle of the second electromagnetic waves incident on and passing through the imaging unit. The angle between the electromagnetic wave and the traveling direction is within a predetermined value,
    The electromagnetic wave detectable region by the first detection unit is arranged only on a traveling path of the electromagnetic wave incident from a predetermined angle of view range,
    Electromagnetic wave detection device.
  2.  入射する電磁波を結像する結像部と、
     前記結像部から入射した電磁波を反射する反射面と、前記反射面により反射された電磁波を射出する第1の射出面と、を含むプリズムと、
     前記第1の射出面により射出された電磁波を検出する第1の検出部と、
    を備え、
     前記結像部に入射して通過した電磁波の束に含まれる電磁波の進行方向と、前記結像部の主軸とのなす角度は、所定値以内であり、
     前記第1の検出部による電磁波の検出可能領域は、所定の画角範囲から入射する電磁波の進行経路上にのみ配置されている、
    電磁波検出装置。
    An imaging unit for imaging an incident electromagnetic wave;
    A prism including a reflection surface that reflects the electromagnetic wave incident from the imaging unit, and a first emission surface that emits the electromagnetic wave reflected by the reflection surface;
    A first detection unit that detects an electromagnetic wave emitted from the first emission surface;
    With
    The angle between the traveling direction of the electromagnetic wave included in the bundle of electromagnetic waves incident on and passing through the imaging unit and the main axis of the imaging unit is within a predetermined value,
    The electromagnetic wave detectable region by the first detection unit is arranged only on a traveling path of the electromagnetic wave incident from a predetermined angle of view range,
    Electromagnetic wave detection device.
  3.  前記角度は、15°以内である、
    請求項1又は2に記載の電磁波検出装置。
    The angle is within 15 °;
    The electromagnetic wave detection device according to claim 1.
  4.  前記角度は、0°である、
    請求項1乃至3いずれか1項に記載の電磁波検出装置。
    The angle is 0 °;
    The electromagnetic wave detection device according to claim 1.
  5.  前記結像部は、像側テレセントリック光学系を構成する、
    請求項1乃至4いずれか1項に記載の電磁波検出装置。
    The imaging unit constitutes an image-side telecentric optical system,
    The electromagnetic wave detection device according to claim 1.
  6.  前記反射面は、第1の反射面と第2の反射面とを含み、
     前記第1の反射面は前記結像部から入射した電磁波を反射し、
     前記第2の反射面は、前記第1の反射面により反射された電磁波を反射し、
     前記第1の射出面は、前記第2の反射面により反射された電磁波を射出する、
    請求項1乃至5いずれか1項に記載の電磁波検出装置。
    The reflection surface includes a first reflection surface and a second reflection surface,
    The first reflection surface reflects an electromagnetic wave incident from the imaging unit,
    The second reflection surface reflects the electromagnetic wave reflected by the first reflection surface,
    The first emission surface emits the electromagnetic wave reflected by the second reflection surface,
    The electromagnetic wave detection device according to claim 1.
  7.  前記プリズムは、前記進行経路を除く位置に電磁波の反射を抑制する反射抑制部を備える、
    請求項1乃至6いずれか1項に記載の電磁波検出装置。
    The prism includes a reflection suppression unit that suppresses reflection of electromagnetic waves at positions other than the traveling path,
    The electromagnetic wave detection device according to claim 1.
  8.  前記反射抑制部は、前記位置にある界面に備えられる、
    請求項1乃至7いずれか1項に記載の電磁波検出装置。
    The reflection suppressing section is provided at an interface at the position.
    The electromagnetic wave detection device according to claim 1.
  9.  前記進行経路から前記界面までの距離は、所定の距離以上である、
    請求項8に記載の電磁波検出装置。
    The distance from the traveling path to the interface is equal to or longer than a predetermined distance.
    An electromagnetic wave detection device according to claim 8.
  10.  前記反射抑制部は、前記プリズムの前記進行経路から前記界面までの領域を含み、
     前記進行経路から前記界面までの距離は、所定の距離以上である、
    請求項7に記載の電磁波検出装置。
    The reflection suppressing unit includes a region from the traveling path of the prism to the interface,
    The distance from the traveling path to the interface is equal to or longer than a predetermined distance.
    The electromagnetic wave detection device according to claim 7.
  11.  前記反射面は、特定の波長帯域の電磁波を反射し、前記特定の波長帯域以外の電磁波を射出する、
    請求項1乃至10いずれか1項に記載の電磁波検出装置。
    The reflection surface reflects an electromagnetic wave of a specific wavelength band and emits an electromagnetic wave other than the specific wavelength band,
    The electromagnetic wave detection device according to claim 1.
  12.  前記反射面により射出された電磁波を検出する第2の検出部を備える、
    請求項11に記載の電磁波検出装置。
    A second detection unit that detects the electromagnetic wave emitted by the reflection surface,
    An electromagnetic wave detection device according to claim 11.
  13.  前記反射面により射出された電磁波を射出する第2の射出面を備え、
     前記第2の検出部は、前記第2の射出面から射出された電磁波を検出する、
    請求項12に記載の電磁波検出装置。
    A second emission surface that emits the electromagnetic wave emitted by the reflection surface,
    The second detection unit detects an electromagnetic wave emitted from the second emission surface,
    An electromagnetic wave detection device according to claim 12.
  14.  前記第2の検出部による電磁波の検出可能領域は、前記進行経路上にのみ配置されている、
    請求項12又は13に記載の電磁波検出装置。
    A region where the electromagnetic wave can be detected by the second detection unit is arranged only on the traveling path,
    An electromagnetic wave detection device according to claim 12.
  15.  前記第2の検出部は、前記第1の検出部と同種または異種のセンサを含む、
    請求項12乃至14いずれか1項に記載の電磁波検出装置。
    The second detection unit includes a sensor of the same type or a different type from the first detection unit,
    An electromagnetic wave detection device according to any one of claims 12 to 14.
  16.  前記第2の検出部は、前記第1の検出部と同種または異種の電磁波を検出する、
    請求項12乃至15いずれか1項に記載の電磁波検出装置。
    The second detection unit detects the same type or different types of electromagnetic waves as the first detection unit,
    An electromagnetic wave detection device according to any one of claims 12 to 15.
  17.  基準面に沿って複数の画素が配置され、前記第2の射出面から射出され前記基準面に入射した電磁波を前記画素毎に特定の方向へ進行させる進行部、
    を備え、
     前記第2の検出部は、前記特定の方向へ進行した電磁波を検出する、
    請求項12乃至16いずれか1項に記載の電磁波検出装置。
    A plurality of pixels are arranged along a reference plane, and a traveling unit that causes an electromagnetic wave emitted from the second emission plane and incident on the reference plane to travel in a specific direction for each pixel,
    With
    The second detection unit detects an electromagnetic wave that has traveled in the specific direction,
    An electromagnetic wave detection device according to any one of claims 12 to 16.
  18.  前記基準面は、前記進行経路上にのみ配置されている、
    請求項17に記載の電磁波検出装置。
    The reference plane is arranged only on the traveling path,
    The electromagnetic wave detection device according to claim 17.
  19.  前記複数の画素は、前記進行経路上にのみ配置されている、
    請求項17又は18に記載の電磁波検出装置。
    The plurality of pixels are arranged only on the traveling path,
    An electromagnetic wave detection device according to claim 17.
  20.  前記進行部は、前記基準面に入射した電磁波を前記特定の方向へ反射する第1の反射状態と、前記特定の方向とは異なる方向へ反射する第2の反射状態とに、前記画素毎に切り替える、
    請求項17乃至19いずれか1項に記載の電磁波検出装置。
    The advancing unit includes a first reflection state in which the electromagnetic wave incident on the reference surface is reflected in the specific direction, and a second reflection state in which the electromagnetic wave is reflected in a direction different from the specific direction. Switch,
    The electromagnetic wave detection device according to claim 17.
  21.  前記進行部は、電磁波を反射する反射面を前記画素毎に含み、前記反射面の向きを前記画素毎に変更することにより、前記第1の反射状態と前記第2の反射状態とを切り替える、
    請求項20に記載の電磁波検出装置。
    The advancing unit includes a reflection surface that reflects an electromagnetic wave for each of the pixels, and switches between the first reflection state and the second reflection state by changing an orientation of the reflection surface for each of the pixels.
    The electromagnetic wave detection device according to claim 20.
  22.  前記進行部は、デジタルマイクロミラーデバイスを含む、
    請求項17乃至21いずれか1項に記載の電磁波検出装置。
    The advancing unit includes a digital micromirror device,
    An electromagnetic wave detection device according to any one of claims 17 to 21.
  23.  前記進行部は、前記基準面に入射した電磁波を透過する透過状態と反射する反射状態とに切り替える、
    請求項17乃至19いずれか1項に記載の電磁波検出装置。
    The advancing unit switches between a transmission state where the electromagnetic wave incident on the reference surface is transmitted and a reflection state where the electromagnetic wave is reflected,
    The electromagnetic wave detection device according to claim 17.
  24.  前記進行部は、電磁波を反射する反射面を含むシャッタを前記画素毎に含み、前記シャッタを前記画素毎に開閉することにより前記反射状態と前記透過状態とに、切り替える、請求項23に記載の電磁波検出装置。 24. The advancing unit according to claim 23, wherein the advancing unit includes a shutter including a reflection surface that reflects an electromagnetic wave for each of the pixels, and switches between the reflection state and the transmission state by opening and closing the shutter for each of the pixels. Electromagnetic wave detection device.
  25.  前記進行部は、前記シャッタがアレイ状に配列されたMEMSシャッタを含む、
    請求項23又は24に記載の電磁波検出装置。
    The advancing unit includes a MEMS shutter in which the shutters are arranged in an array.
    The electromagnetic wave detection device according to claim 23 or 24.
  26.  前記進行部は、前記反射状態および前記透過状態を液晶配光に応じて前記画素毎に切替可能な液晶シャッタを含む、
    請求項25に記載の電磁波検出装置。
    The advancing unit includes a liquid crystal shutter capable of switching the reflection state and the transmission state for each pixel according to liquid crystal light distribution.
    The electromagnetic wave detection device according to claim 25.
  27.  前記第1の検出部は、測距センサ、イメージセンサ、およびサーモセンサの少なくともいずれかを含む、
    請求項1乃至26いずれか1項に記載の電磁波検出装置。
    The first detection unit includes at least one of a distance measurement sensor, an image sensor, and a thermo sensor,
    The electromagnetic wave detection device according to any one of claims 1 to 26.
  28.  前記電磁波は、赤外線、可視光線、紫外線、および電波の少なくともいずれかを含む、請求項1乃至27いずれか1項に記載の電磁波検出装置。 28. The electromagnetic wave detection device according to claim 1, wherein the electromagnetic wave includes at least one of infrared light, visible light, ultraviolet light, and radio wave.
  29.  前記第1の検出部による電磁波の検出結果に基づいて、周囲に関する情報を取得する制御部を備える、
    請求項1乃至28いずれか1項に記載の電磁波検出装置。
    A control unit that obtains information on surroundings based on a detection result of the electromagnetic wave by the first detection unit;
    An electromagnetic wave detection device according to any one of claims 1 to 28.
  30.  前記第2の検出部による電磁波の検出結果に基づいて、周囲に関する情報を取得する制御部を備える、
    請求項12乃至26いずれか1項に記載の電磁波検出装置。
    A control unit that obtains information on surroundings based on a detection result of the electromagnetic wave by the second detection unit;
    The electromagnetic wave detection device according to any one of claims 12 to 26.
  31.  前記制御部は、前記周囲に関する情報として、画像情報、距離情報、および温度情報の少なくともいずれかを取得する、
    請求項29又は30に記載の電磁波検出装置。
    The control unit acquires at least one of image information, distance information, and temperature information as the information about the surroundings,
    The electromagnetic wave detection device according to claim 29.
  32.  請求項1乃至28いずれか1項に記載の電磁波検出装置と、
     前記第1の検出部による電磁波の検出結果に基づいて、周囲に関する情報を取得する制御部と、
    を備える、
    情報取得システム。
    An electromagnetic wave detection device according to any one of claims 1 to 28,
    A control unit that obtains information about the surroundings based on a detection result of the electromagnetic wave by the first detection unit;
    Comprising,
    Information acquisition system.
  33.  請求項12乃至26いずれか1項に記載の電磁波検出装置と、
     前記第1の検出部および前記第2の検出部による電磁波の検出結果に基づいて、周囲に関する情報を取得する制御部と、
    を備える、
    情報取得システム。
    An electromagnetic wave detection device according to any one of claims 12 to 26,
    A control unit configured to acquire information on surroundings based on a detection result of the electromagnetic wave by the first detection unit and the second detection unit;
    Comprising,
    Information acquisition system.
PCT/JP2019/028119 2018-07-27 2019-07-17 Electromagnetic wave detection device and information acquisition system WO2020022149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018141782A JP2020016622A (en) 2018-07-27 2018-07-27 Electromagnetic wave detection device and information acquisition system
JP2018-141782 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022149A1 true WO2020022149A1 (en) 2020-01-30

Family

ID=69180918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028119 WO2020022149A1 (en) 2018-07-27 2019-07-17 Electromagnetic wave detection device and information acquisition system

Country Status (2)

Country Link
JP (1) JP2020016622A (en)
WO (1) WO2020022149A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179207A (en) * 1994-12-22 1996-07-12 Canon Inc Image pickup optical system
JP2005521276A (en) * 2001-11-27 2005-07-14 トムソン ライセンシング ソシエテ アノニム Special effects video camera
JP2005352080A (en) * 2004-06-09 2005-12-22 Fujinon Corp Total reflection prism for projector
JP2006024986A (en) * 2004-07-06 2006-01-26 Fujinon Corp Multiband imaging apparatus
JP2007183444A (en) * 2006-01-10 2007-07-19 Sony Corp Antireflective coating material for optical element, and optical element
JP2008046047A (en) * 2006-08-18 2008-02-28 Fujifilm Corp Distance image preparation method, distance image sensor, and imaging device
JP2011062378A (en) * 2009-09-18 2011-03-31 Fujifilm Corp Endoscope system
JP2014512525A (en) * 2011-03-17 2014-05-22 ウニベルジテート ポリテクニカ デ カタル−ニア System and method for receiving a light beam and computer program
US20140240721A1 (en) * 2011-10-14 2014-08-28 Iee International Electronics & Engineerings S.A. Spatially selective detection using a dynamic mask in an image plane
US20150378023A1 (en) * 2013-02-13 2015-12-31 Universitat Politecnica De Catalunya System and method for scanning a surface and computer program implementing the method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179207A (en) * 1994-12-22 1996-07-12 Canon Inc Image pickup optical system
JP2005521276A (en) * 2001-11-27 2005-07-14 トムソン ライセンシング ソシエテ アノニム Special effects video camera
JP2005352080A (en) * 2004-06-09 2005-12-22 Fujinon Corp Total reflection prism for projector
JP2006024986A (en) * 2004-07-06 2006-01-26 Fujinon Corp Multiband imaging apparatus
JP2007183444A (en) * 2006-01-10 2007-07-19 Sony Corp Antireflective coating material for optical element, and optical element
JP2008046047A (en) * 2006-08-18 2008-02-28 Fujifilm Corp Distance image preparation method, distance image sensor, and imaging device
JP2011062378A (en) * 2009-09-18 2011-03-31 Fujifilm Corp Endoscope system
JP2014512525A (en) * 2011-03-17 2014-05-22 ウニベルジテート ポリテクニカ デ カタル−ニア System and method for receiving a light beam and computer program
US20140240721A1 (en) * 2011-10-14 2014-08-28 Iee International Electronics & Engineerings S.A. Spatially selective detection using a dynamic mask in an image plane
US20150378023A1 (en) * 2013-02-13 2015-12-31 Universitat Politecnica De Catalunya System and method for scanning a surface and computer program implementing the method

Also Published As

Publication number Publication date
JP2020016622A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP7387803B2 (en) Electromagnetic wave detection device and information acquisition system
JP6974252B2 (en) Electromagnetic wave detection device and information acquisition system
CN111954842B (en) Electromagnetic wave detection device and information acquisition system
JP7025940B2 (en) Electromagnetic wave detection device and information acquisition system
WO2020022149A1 (en) Electromagnetic wave detection device and information acquisition system
JP7118865B2 (en) Electromagnetic wave detector and information acquisition system
WO2019159933A1 (en) Electromagnetic wave detection device and information acquisition system
JP6908556B2 (en) Electromagnetic wave detection device and information acquisition system
US11302731B2 (en) Electromagnetic wave detection apparatus and information acquisition system
JP6974251B2 (en) Electromagnetic wave detection device and information acquisition system
JP7260966B2 (en) Electromagnetic wave detector
WO2020032098A1 (en) Electromagnetic wave detection apparatus and information acquisition system
WO2020022147A1 (en) Electromagnetic wave detection device and information acquisition system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839924

Country of ref document: EP

Kind code of ref document: A1