WO2020021997A1 - Heat-shrink tube, heat-shrink tube production method, and connector - Google Patents

Heat-shrink tube, heat-shrink tube production method, and connector Download PDF

Info

Publication number
WO2020021997A1
WO2020021997A1 PCT/JP2019/026339 JP2019026339W WO2020021997A1 WO 2020021997 A1 WO2020021997 A1 WO 2020021997A1 JP 2019026339 W JP2019026339 W JP 2019026339W WO 2020021997 A1 WO2020021997 A1 WO 2020021997A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
tube
electric wires
base layer
shrinkable tube
Prior art date
Application number
PCT/JP2019/026339
Other languages
French (fr)
Japanese (ja)
Inventor
関口 守
Original Assignee
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社 filed Critical 住友電工ファインポリマー株式会社
Priority to JP2020532250A priority Critical patent/JP7276962B2/en
Publication of WO2020021997A1 publication Critical patent/WO2020021997A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/08Making preforms having internal stresses, e.g. plastic memory by stretching tubes

Definitions

  • the present disclosure relates to a heat-shrinkable tube, a method for manufacturing the heat-shrinkable tube, and a connector.
  • Heat shrink tubing is used to bind multiple wires.
  • This heat-shrinkable tube binds a plurality of electric wires by shrinking so as to be attached to the outer peripheral surfaces of a plurality of electric wires to be covered.
  • a heat-shrinkable tube for bundling a plurality of electric wires for example, a heat-shrinkable tube in which slits are formed on both ends in the axial direction of the tube so as to easily insert the plurality of electric wires on the inner peripheral surface side of the tube has been proposed. (See JP-A-2012-131132).
  • the heat-shrinkable tube includes a tubular base layer that covers the outer circumference of the plurality of electric wires, and the shape of the base layer after the heat-shrink is a square tubular shape.
  • a connector includes a conductor and a plurality of electric wires having an insulating layer stacked on an outer peripheral surface side of the conductor, and a tube covering the plurality of electric wires, wherein the tube is A rectangular tube-shaped base layer is formed from a heat-shrinkable tube, and the plurality of electric wires are disposed in a longitudinal direction of the tube.
  • a method for manufacturing a heat-shrinkable tube includes a step of extruding a resin composition containing a synthetic resin as a main component into a square tubular shape, and a step of extruding the square tubular body extruded in the extruding step. Irradiating with ionizing radiation, heating the square tubular body after the irradiating step to a temperature equal to or higher than the melting point or softening point of the resin composition, and heating the square tubular body after the heating step to the outside And a step of cooling the expanded cylindrical body by the expanding step.
  • FIG. 1 is a schematic perspective view showing a heat-shrinkable tube according to one embodiment.
  • FIG. 2 is a sectional view taken along line AA of the heat-shrinkable tube of FIG.
  • FIG. 3 is a schematic perspective view showing a square tubular body of the heat-shrinkable tube of FIG. 1 after heat-shrinkage.
  • FIG. 4 is a cross-sectional view taken along line BB of the rectangular cylindrical body of FIG.
  • FIG. 5 is a schematic perspective view showing a connection body according to one embodiment.
  • FIG. 6 is a cross-sectional view taken along line CC of the connector shown in FIG.
  • FIG. 7 is a schematic cross-sectional view illustrating a connection body according to another embodiment.
  • FIG. 8 is a schematic sectional view showing a connection body according to another embodiment.
  • FIG. 9 is a schematic sectional view showing a connection body according to another embodiment.
  • FIG. 10 is a flowchart illustrating a method for manufacturing a heat-shrinkable tube according to one embodiment.
  • FIG. 11 is a schematic perspective view showing the square tubular body after the extrusion step of the method for manufacturing the heat-shrinkable tube of FIG.
  • FIG. 12 is a schematic perspective view showing the cylindrical body after the expanding step of the method for manufacturing the heat-shrinkable tube of FIG. 10.
  • a conventional heat-shrinkable tube as described in the above-mentioned publication is such that a plurality of electric wires are collectively bundled in a columnar shape.
  • the height is reduced. There is a demand for space.
  • the present disclosure has been made based on such circumstances, and has as its object to provide a heat-shrinkable tube that can save space in an installation region of a plurality of electric wires.
  • the heat-shrinkable tube includes a tubular base layer that covers the outer circumference of the plurality of electric wires, and the shape of the base layer after the heat-shrink is a square tubular shape.
  • the base layer covering the outer periphery of the plurality of electric wires has a rectangular tube shape after the heat-shrinkage, so that the space for installing the plurality of electric wires can be saved.
  • the base layer is made of a resin composition containing a synthetic resin as a main component, and the heat shrink temperature is equal to or higher than the melting point or softening point of the resin composition.
  • the heat shrinkable tube can be easily shrunk into a square tube having the original shape.
  • the base layer is preferably cylindrical. As described above, since the base layer of the tube is cylindrical, a plurality of electric wires can be easily accommodated in the inner peripheral surface side of the base layer while being aligned.
  • a connector includes a conductor and a plurality of electric wires having an insulating layer stacked on an outer peripheral surface side of the conductor, and a tube covering the plurality of electric wires, wherein the tube is A rectangular tube-shaped base layer is formed from a heat-shrinkable tube, and the plurality of electric wires are disposed in a longitudinal direction of the tube.
  • the tube covering the plurality of electric wires has a square cylindrical base layer, the plurality of electric wires can be accommodated compactly.
  • the tube covering the plurality of electric wires when it is installed in a room such as a vehicle such as a car or an electric appliance, it can be arranged in a small area, and the space for installing a plurality of electric wires can be saved.
  • a method for manufacturing a heat-shrinkable tube includes a step of extruding a resin composition containing a synthetic resin as a main component into a square tubular shape, and a step of extruding the square tubular body extruded in the extruding step. Irradiating the radiation, heating the square tubular body after the irradiating step to a temperature equal to or higher than the melting point or softening point of the resin composition, and expanding the square tubular body heated by the heating step outward. And a step of cooling the expanded cylindrical body by the expanding step.
  • the irradiation step includes irradiating the square tubular body extruded in the extruding step with ionizing radiation, so that the shape of the base layer after the heat shrinkage is a square tubular shape.
  • Heat shrink tubing can be manufactured. Therefore, it is possible to obtain a heat-shrinkable tube capable of saving space in a region where a plurality of electric wires are installed.
  • the square tubular body in the expanding step, may be expanded into a cylindrical shape.
  • the heat-shrinkable tube can be easily manufactured, and a plurality of electric wires can be efficiently accommodated in the heat-shrinkable tube.
  • the “melting point” refers to a melting point peak temperature measured by a differential scanning calorimeter (DSC) in accordance with JIS-K7121: 2012 “Method of measuring transition temperature of plastic”.
  • the “softening point” refers to a Vicat softening temperature measured in accordance with JIS-K7206: 2016 “Plastic-thermoplastic-Vicat softening temperature”.
  • the “main component” refers to, for example, a component contained in an amount of 60% by mass or more based on the total mass.
  • the heat-shrinkable tube 10 includes a cylindrical base layer 1 that covers the outer periphery of a plurality of electric wires.
  • the shape of the heat-shrinkable tube 10 is not particularly limited, and includes various shapes such as a cylinder, an elliptic cylinder, a long cylinder, and a square cylinder.
  • the heat-shrinkable tube 10 is preferably cylindrical among these. Since the base layer of the heat-shrinkable tube is cylindrical, a plurality of electric wires can be easily accommodated in the inner peripheral surface side of the base layer 1 in a state of being aligned.
  • the heat-shrinkable tube 10 is a single-layer body composed of only the base layer 1.
  • the base layer 1 is composed of a resin composition containing a synthetic resin as a main component.
  • the base layer 1 may be transparent so that the plurality of electric wires can be easily recognized from the outside.
  • the synthetic resin include polyethylene, ethylene-vinyl acetate copolymer, polyester, polyamide, polyvinyl chloride, and fluororesin.
  • polyethylene is preferable among these from the viewpoint of moldability.
  • These synthetic resins can be used alone or in combination of two or more.
  • the base layer 1 may contain components other than the above synthetic resin as needed as long as the effects of the present disclosure are not impaired. For example, a flame retardant, an antioxidant, a copper antioxidant, a lubricant, It may contain a colorant, a heat stabilizer, an ultraviolet absorber and the like.
  • the flame retardant examples include chlorine-based flame retardants such as chlorinated paraffin, chlorinated polyethylene, chlorinated polyphenyl and perchlorpentacyclodecane, and 1,2-bis (2,3,4,5,6-pentabromo). Phenyl) ethane, ethylenebispentabromobenzene, ethylenebispentabromodiphenyl, tetrabromoethane, tetrabromobisphenol A, hexabromobenzene, decabromobiphenyl ether, tetrabromophthalic anhydride, polydibromophenylene oxide, hexabromocyclodecane, odor Brominated flame retardants such as ammonium bromide are preferred. The bromine flame retardant and the chlorine flame retardant may be used alone or in combination of two or more.
  • the antioxidant examples include a hindered amine compound, a hindered phenol compound, a salicylic acid derivative, a benzophenone compound, a benzotriazole compound, and the like. Particularly, a hindered amine compound having an excellent cross-linking inhibitory effect is preferably used. . By using these antioxidants, copper damage resistance can be further improved.
  • a sulfur compound, a phosphite compound, or the like can be used alone or in combination in addition to the above.
  • Examples of the copper damage inhibitor include 3- (N-salicyloyl) amino-1,2,4-triazole, decamethylenedicarboxylic acid disalicyloylhydrazide, 2,3-bis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide.
  • the resin composition for forming the base layer 1 is extruded into a square tube. Then, the extruded quadrangular cylindrical body is formed into a crosslinked structure by irradiation with ionizing radiation, and once fixed to form a tube 2 having a quadrangular cylindrical base layer 1a, and then the tube 2 is expanded outward.
  • the base layer 1 is obtained. That is, the heat-shrinkable tube 10 is obtained by expanding the rectangular cylindrical base layer 1a having the opening 12a shown in FIGS. 3 and 4 outward. When heated, the base layer 1 contracts so as to return to the rectangular cylindrical base layer 1a fixed by ionizing radiation.
  • the heat shrinkage temperature is preferably equal to or higher than the melting point or softening point of the resin composition.
  • the heat shrinkable tube can be easily shrunk to a square tube having the original shape.
  • the heating temperature is determined based on the melting point, and when the main component is an amorphous resin, the heating temperature is determined based on the softening point.
  • the target resin composition is a mixture of a crystalline resin and an amorphous resin
  • the heating temperature is based on the softening point of the amorphous resin.
  • the melting point or softening point may be determined, for example, by a weighted average of the melting points of the synthetic resin as the main component and the melting points of other components.
  • the heat-shrinkable tube 10 has a square tube shape after the heat-shrinkage of the base layer.
  • the heat-shrinkable tube 10 can be installed as a square-tube-shaped tube after arranging a plurality of electric wires, because the base layer 1 contracts into a square-tube-shaped base layer 1a having an opening 12a by heating. Therefore, it is possible to save space in the installation area of the plurality of electric wires.
  • the step of shrinking the tubular heat-shrinkable tube into a square tube it is preferable to uniformly heat and shrink the tube in all directions.
  • a conveyor-type shrinking machine or the like can be used.
  • the square of the cross-sectional shape of the square cylindrical base layer 1a can be widely interpreted.
  • Examples of the cross-sectional shape of the square cylindrical base layer 1a include a rectangle, a trapezoid, and a parallelogram having an acute angle and an obtuse angle.
  • the corners of the cross-sectional shape may be pointed or rounded, and may be oblong rectangles.
  • the short sides of the opening 12a facing each other may be curved, such as not only a straight line but also a bow shape or a bay shape.
  • the base layer 1 can be configured to have a uniform thickness.
  • the lower limit of the average thickness of the base layer 1 is, for example, preferably 0.1 mm, and more preferably 0.5 mm.
  • the upper limit of the average thickness of the base layer 1 is preferably 5.0 mm, more preferably 2.0 mm.
  • the “average thickness” refers to the average value of the thickness at any 10 points.
  • the heat-shrinkable tube 10 is used for binding a plurality of electric wires together.
  • the lower limit of the average inner diameter can be set according to the size and number of the electric wires to be bound. 0.0 mm is preferable, and 6.0 mm is more preferable.
  • the upper limit of the average inner diameter of the base layer 1 is, for example, preferably 30 mm, and more preferably 20 mm. If the average inner diameter is less than the lower limit, the work of inserting a plurality of electric wires may not be easy. Conversely, if the average inner diameter exceeds the upper limit, the heat-shrinkable tube may become unnecessarily large.
  • the “average inner diameter” refers to an inner diameter converted into a perfect circle of equal area.
  • the thickness T1 of the pair of long side walls 13 extending in the longitudinal direction of the opening 12a of the base layer 1a of the tube 2 after heat contraction extends in the short direction of the opening 12a. It may be larger than the thickness T2 of the pair of short side walls 14. According to this configuration, in the heat-shrinkable tube, the pair of short side walls 14 contracts before the pair of long side walls 13. According to this configuration, when a plurality of electric wires are arranged in a line, these electric wires are easily brought into close contact in a parallel direction.
  • the shape of the base layer covering the outer periphery of the plurality of electric wires after the heat-shrinkage is a quadrangular cylindrical shape, so that the space for installing the plurality of electric wires can be saved.
  • connection body 20 includes a plurality of electric wires 3 having a conductor 3a and an insulating layer 3b laminated on the outer peripheral surface side of the conductor 3a, and a tube 2 covering the plurality of electric wires 3.
  • the tube 2 is obtained by heat-shrinking the heat-shrinkable tube 10.
  • the tube 2 has a square cylindrical base layer 1a having an opening 12a.
  • the plurality of electric wires 3 are arranged in a line in the longitudinal direction of the opening 12a.
  • connection body 20 since the tube 2 has the square cylindrical base layer 1a having the opening 12a, a plurality of electric wires are compactly accommodated, and the installation area can be saved in space.
  • connection body 20 is obtained by inserting a plurality of electric wires 3 into the heat-shrinkable tube 10 and then heat-shrinking the heat-shrinkable tube 10 into a rectangular tube shape.
  • the plurality of electric wires 3 are arranged in the longitudinal direction of the tube 2 on the inner peripheral surface side of the tube 2.
  • the length of the opening 12a in the longitudinal direction is substantially equal to the total length of the plurality of wires 3.
  • the length of the opening 12a in the width direction is substantially equal to the average diameter of the plurality of electric wires 3.
  • the material of the conductor 3a of the plurality of electric wires 3 is not particularly limited as long as it has conductivity, and examples thereof include copper, copper alloy, aluminum, nickel, silver, soft iron, steel, and stainless steel.
  • a main component of the insulating layer 3b of the plurality of electric wires 3 for example, polyvinyl formal, polyurethane, acrylic resin, epoxy resin, phenoxy resin, polyester, polyester imide, polyester amide imide, polyamide imide, polyimide, polyether imide, polyether ether Synthetic resins such as ketone and polyethersulfone are exemplified.
  • each electric wire 3 and the number of electric wires 3 are not particularly limited.
  • the number of electric wires 3 can be generally, for example, 2 or more and 10 or less.
  • connection body in addition to the configuration in which a plurality of electric wires 3 are arranged in one step like the connection body 20 shown in FIG. 6, a plurality of electric wires 3 are randomly arranged in one tube in a plurality of steps. You can also.
  • the connecting body 32 shown in FIG. 7 includes the tube 22 in which nine electric wires 3 are arranged in parallel in three stages in the opening 22a.
  • the connection body 52 shown in FIG. 8 includes a tube 42 in which thirteen electric wires 3 are arranged in three stages in parallel in an opening 42a.
  • the tube covering the plurality of electric wires has a square cylindrical base layer, the plurality of electric wires can be stored compactly, and the space for installing the plurality of electric wires in a vehicle or the like can be reduced. Can be.
  • connection body 62 in which a plurality of electric wires are arranged in parallel in one stage may be stacked.
  • the connecting body 62 has a structure in which the tube 2 in which the plurality of electric wires 3 are arranged in parallel in the opening 12 a is stacked in three layers by the adhesive layer 18.
  • the adhesive layer can be mainly composed of a known adhesive resin such as a thermoplastic resin or an elastomer.
  • the thermoplastic resin include polyolefin, polyester, and polyamide.
  • the elastomer include butyl rubber, acrylic rubber, and natural rubber.
  • the tube covering the plurality of electric wires has a square cylindrical base layer, the plurality of electric wires can be housed in a compact manner, and a vehicle such as a vehicle is installed in an indoor space such as an electric appliance. In such a case, it is possible to dispose it in a narrow area, and to save the space for installing a plurality of electric wires.
  • the method for producing the heat-shrinkable tube includes a step of extruding a resin composition containing a synthetic resin as a main component into a rectangular tube, and a step of irradiating the rectangular tube extruded in the extrusion step with ionizing radiation. Heating the square tubular body after the irradiating step to a temperature equal to or higher than the melting point or softening point of the resin composition, expanding the square tubular body after heating by the heating step to the outside, Cooling the tubular body after the expansion by the step of performing.
  • the square tubular body extruded in the extrusion step is irradiated with ionizing radiation. Then, the shape is stored after being cross-linked by irradiation with the ionizing radiation, and then expanded, and then cooled and fixed in this expanded state. Therefore, the heat-shrinkable tube obtained by the method for manufacturing the heat-shrinkable tube shrinks to return to the rectangular cylindrical body when heated.
  • the resin composition is prepared by adding the above-mentioned synthetic resin which is a main component of the base layer 1 and additives contained as necessary, and mixing them by, for example, a melt mixer.
  • a melt mixer a known mixer, for example, an open roll, a Banbury mixer, a pressure kneader, a single-screw mixer, a multi-screw mixer, or the like can be used.
  • An extruded product is formed by extruding the above resin composition using a known melt extrusion molding machine. Specifically, a rectangular cylindrical body having a tube shape covering a plurality of electric wires, and more specifically, an extrusion die having a rectangular cylindrical slit to form the heat-shrinkable tube 10 after heat shrinkage. Is used to extrude the resin composition. In this way, the resin composition is extruded into a square tube in the extruding step. As a result, as shown in FIG. 11, a square tubular body 1b (extruded body) having a shape after the heat shrinkage of the heat shrinkable tube 10 is obtained. In the extruding step, the heat resistance may be improved by crosslinking the constituent material of the base material layer forming material.
  • the die temperature in the extruding step is not particularly limited, but may be, for example, a temperature higher than the melting point or softening point of the resin material forming the base material layer 10 by 100 ° C. or more.
  • the thickness of the pair of long side walls 13a extending in the longitudinal direction of the opening 11a of the square tubular body 1b and the width of the pair of long side walls 13a extending in the short direction of the opening 11a are adjusted.
  • the thickness of the pair of short side walls 14a may be adjusted.
  • the thickness of the pair of long side walls 13a extending in the longitudinal direction of the rectangular cylindrical body 1b may be larger than the thickness of the pair of short side walls 14a extending in the short direction.
  • the rectangular tubular body 1b extruded in the extruding step is irradiated with ionizing radiation.
  • the shape of the square tubular body 1b is fixed.
  • the heat-shrinkable tube obtained by the method for manufacturing a heat-shrinkable tube thermally contracts when heated and returns to the square tubular body 1b.
  • Examples of the ionizing radiation used in the irradiation step include an electron beam, a ⁇ -ray, an X-ray, an ⁇ -ray and the like, and among them, an electron beam is preferable.
  • the irradiation dose of the ionizing radiation is not particularly limited as long as the resin composition can be sufficiently crosslinked, but the lower limit of the irradiation dose is, for example, preferably 30 kGy, more preferably 180 kGy.
  • the upper limit of the irradiation dose is, for example, preferably 500 kGy, and more preferably 360 kGy.
  • Step of heating the square tubular body 1b after the irradiation step is heated to a temperature equal to or higher than the melting point or softening point of the resin composition.
  • the square tubular body 1b can be easily expanded in the next expanding step.
  • the rectangular tubular body 1b is heated to a temperature higher than the melting point or softening point of the resin composition while being transported in the axial direction.
  • the heating temperature in the heating step can be set in accordance with the melting point or softening point of the resin composition.
  • the lower limit of the heating temperature is, for example, preferably 70 ° C., and more preferably 150 ° C.
  • the upper limit of the heating temperature is, for example, preferably 230 ° C., and more preferably 200 ° C.
  • the heating time can be, for example, 30 seconds or more and 5 minutes or less.
  • the square tubular body 1b heated in the heating step and conveyed in the axial direction is expanded outward.
  • the expanding step can be performed, for example, using a sizing tube having an elliptical cylindrical internal space.
  • the internal space of the sizing tube is depressurized while supplying a gas into the square tubular body 1b from an end opening of the square tubular body 1b.
  • the rectangular cylindrical body 1b is expanded outward based on the pressure difference between the internal pressure of the rectangular cylindrical body 1b and the pressure in the internal space of the sizing tube.
  • the shape after expansion is not particularly limited, and may be expanded into various shapes such as a cylinder, an elliptic cylinder, a long cylinder, and a square cylinder. Among them, as shown in FIG. 12, it is preferable to expand to a cylindrical body 1c. In this way, by expanding the square tubular body into a cylindrical shape in the expanding step, the heat-shrinkable tube can be easily manufactured, and a plurality of electric wires can be efficiently accommodated in the heat-shrinkable tube.
  • the tubular body expanded in the expanding step is cooled below the melting point or softening point of the resin composition.
  • the upper limit of the cooling temperature in the cooling step is, for example, preferably 10 ° C., and more preferably 23 ° C.
  • the lower limit of the cooling temperature is, for example, preferably ⁇ 40 ° C., and more preferably 0 ° C.
  • a cooling method in the cooling step for example, a water cooling method can be used.
  • the method for manufacturing the heat-shrinkable tube may further include a step of winding the tubular body after the cooling step.
  • the method for manufacturing a heat-shrinkable tube may further include a step of cutting the tubular body after the cooling step or the winding step into a desired length.
  • the square tubular body extruded in the extruding step is irradiated with ionizing radiation, so that the shape of the base layer after the heat shrinkage is square tubular. Can be manufactured. Therefore, it is possible to obtain a heat-shrinkable tube capable of saving space in a region where a plurality of electric wires are installed.
  • the heat-shrinkable tube may have a layer other than the above-mentioned base layer as long as the effects of the present disclosure are not impaired.

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Insulating Bodies (AREA)

Abstract

A heat-shrink tube according to one aspect of the present invention is provided with a tubular base layer covering the outer circumferences of multiple electrical wires, and the base layer has a rectangular cylindrical shape after being heat-shrunk.

Description

熱収縮チューブ、熱収縮チューブの製造方法及び接続体Heat-shrinkable tube, method for manufacturing heat-shrinkable tube, and connector
 本開示は、熱収縮チューブ、熱収縮チューブの製造方法及び接続体に関する。 The present disclosure relates to a heat-shrinkable tube, a method for manufacturing the heat-shrinkable tube, and a connector.
 複数の電線を結束するために熱収縮チューブが用いられている。この熱収縮チューブは、被覆対象である複数の電線の外周面に被着するように収縮することで、複数の電線を結束するものである。 熱 Heat shrink tubing is used to bind multiple wires. This heat-shrinkable tube binds a plurality of electric wires by shrinking so as to be attached to the outer peripheral surfaces of a plurality of electric wires to be covered.
 複数の電線を結束するための熱収縮チューブとしては、例えばチューブの内周面側に複数の電線を挿入しやすいようチューブの軸方向の両端に亘ってスリットが形成されたものが発案されている(特開2012-131132号公報参照)。 As a heat-shrinkable tube for bundling a plurality of electric wires, for example, a heat-shrinkable tube in which slits are formed on both ends in the axial direction of the tube so as to easily insert the plurality of electric wires on the inner peripheral surface side of the tube has been proposed. (See JP-A-2012-131132).
特開2012-131132号公報JP 2012-131132 A
 本開示の一態様に係る熱収縮チューブは、複数の電線の外周を被覆する筒状のベース層を備え、上記ベース層の熱収縮後の形状が四角筒状である。 熱 The heat-shrinkable tube according to an aspect of the present disclosure includes a tubular base layer that covers the outer circumference of the plurality of electric wires, and the shape of the base layer after the heat-shrink is a square tubular shape.
 本開示の他の一態様に係る接続体は、導体及びこの導体の外周面側に積層される絶縁層を有する複数の電線と、上記複数の電線を被覆するチューブとを備え、上記チューブが、熱収縮チューブから形成され、四角筒状のベース層を有し、上記複数の電線が、上記チューブの長手方向に配設される。 A connector according to another embodiment of the present disclosure includes a conductor and a plurality of electric wires having an insulating layer stacked on an outer peripheral surface side of the conductor, and a tube covering the plurality of electric wires, wherein the tube is A rectangular tube-shaped base layer is formed from a heat-shrinkable tube, and the plurality of electric wires are disposed in a longitudinal direction of the tube.
 本開示の他の一態様に係る熱収縮チューブの製造方法は、合成樹脂を主成分とする樹脂組成物を四角筒状に押出す工程と、上記押出す工程で押し出された四角筒状体に電離性放射線を照射する工程と、上記照射する工程後の四角筒状体を上記樹脂組成物の融点又は軟化点以上に加熱する工程と、上記加熱する工程による加熱後の四角筒状体を外側に拡張する工程と、上記拡張する工程による拡張後の筒状体を冷却する工程とを備える。 A method for manufacturing a heat-shrinkable tube according to another embodiment of the present disclosure includes a step of extruding a resin composition containing a synthetic resin as a main component into a square tubular shape, and a step of extruding the square tubular body extruded in the extruding step. Irradiating with ionizing radiation, heating the square tubular body after the irradiating step to a temperature equal to or higher than the melting point or softening point of the resin composition, and heating the square tubular body after the heating step to the outside And a step of cooling the expanded cylindrical body by the expanding step.
図1は、一実施形態に係る熱収縮チューブを示す模式的斜視図である。FIG. 1 is a schematic perspective view showing a heat-shrinkable tube according to one embodiment. 図2は、図1の熱収縮チューブのA-A線断面図である。FIG. 2 is a sectional view taken along line AA of the heat-shrinkable tube of FIG. 図3は、図1の熱収縮チューブの熱収縮後の四角筒状体を示す模式的斜視図である。FIG. 3 is a schematic perspective view showing a square tubular body of the heat-shrinkable tube of FIG. 1 after heat-shrinkage. 図4は、図3の四角筒状体のB-B線断面図である。FIG. 4 is a cross-sectional view taken along line BB of the rectangular cylindrical body of FIG. 図5は、一実施形態に係る接続体を示す模式的斜視図である。FIG. 5 is a schematic perspective view showing a connection body according to one embodiment. 図6は、図5の接続体のC-C線断面図である。FIG. 6 is a cross-sectional view taken along line CC of the connector shown in FIG. 図7は、他の実施形態に係る接続体を示す模式的断面図である。FIG. 7 is a schematic cross-sectional view illustrating a connection body according to another embodiment. 図8は、他の実施形態に係る接続体を示す模式的断面図である。FIG. 8 is a schematic sectional view showing a connection body according to another embodiment. 図9は、他の実施形態に係る接続体を示す模式的断面図である。FIG. 9 is a schematic sectional view showing a connection body according to another embodiment. 図10は、一実施形態に係る熱収縮チューブの製造方法を示すフロー図である。FIG. 10 is a flowchart illustrating a method for manufacturing a heat-shrinkable tube according to one embodiment. 図11は、図10の熱収縮チューブの製造方法の押出す工程後の四角筒状体を示す模式的斜視図である。FIG. 11 is a schematic perspective view showing the square tubular body after the extrusion step of the method for manufacturing the heat-shrinkable tube of FIG. 図12は、図10の熱収縮チューブの製造方法の拡張する工程後の円筒状体を示す模式的斜視図である。FIG. 12 is a schematic perspective view showing the cylindrical body after the expanding step of the method for manufacturing the heat-shrinkable tube of FIG. 10.
[本開示が解決しようとする課題]
 上記公報に記載されているような従来の熱収縮チューブは、複数の電線を全体として円柱状にまとめて結束するものである。一方、近年においては、車、飛行機等の乗り物、電化製品などにおいては室内空間における容積の増大が図られていることに伴い、これらの室内で複数の電線を設置する場合に高さ方向の省スペース化が求められている。
[Problems to be solved by the present disclosure]
A conventional heat-shrinkable tube as described in the above-mentioned publication is such that a plurality of electric wires are collectively bundled in a columnar shape. On the other hand, in recent years, with the increase in the volume in the indoor space of vehicles, vehicles such as airplanes, and electrical appliances, when installing a plurality of electric wires in these rooms, the height is reduced. There is a demand for space.
 しかしながら、上記公報に記載されているような従来の円柱状の熱収縮チューブを設置する場合、上記室内空間においてスペースの無駄が多くなるおそれがある。そのため、上記室内空間において、特に高さ方向の有効スペースを増やすことは困難である。 However, when installing a conventional cylindrical heat-shrinkable tube as described in the above-mentioned publication, there is a possibility that wasteful space is increased in the indoor space. Therefore, it is difficult to increase the effective space, especially in the height direction, in the indoor space.
 本開示は、このような事情に基づいてなされたものであり、複数の電線の設置領域の省スペース化を図ることが可能な熱収縮チューブの提供を課題とする。 The present disclosure has been made based on such circumstances, and has as its object to provide a heat-shrinkable tube that can save space in an installation region of a plurality of electric wires.
[本開示の効果]
 本開示によれば、複数の電線の設置領域の省スペース化を図ることができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to save space in an installation region of a plurality of electric wires.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of Embodiment of the Present Disclosure]
First, embodiments of the present disclosure will be listed and described.
 本開示の一態様に係る熱収縮チューブは、複数の電線の外周を被覆する筒状のベース層を備え、上記ベース層の熱収縮後の形状が四角筒状である。 熱 The heat-shrinkable tube according to an aspect of the present disclosure includes a tubular base layer that covers the outer circumference of the plurality of electric wires, and the shape of the base layer after the heat-shrink is a square tubular shape.
 当該熱収縮チューブは、複数の電線の外周を被覆する上記ベース層の熱収縮後の形状が四角筒状であるので、複数の電線の設置領域の省スペース化を図ることができる。 (4) In the heat-shrinkable tube, the base layer covering the outer periphery of the plurality of electric wires has a rectangular tube shape after the heat-shrinkage, so that the space for installing the plurality of electric wires can be saved.
 上記ベース層が合成樹脂を主成分とする樹脂組成物から構成され、熱収縮温度が上記樹脂組成物の融点又は軟化点以上であることが好ましい。上記熱収縮温度が上記樹脂組成物の融点又は軟化点以上であることで、当該熱収縮チューブを容易に元の形状の四角筒状のチューブに収縮させることができる。 Preferably, the base layer is made of a resin composition containing a synthetic resin as a main component, and the heat shrink temperature is equal to or higher than the melting point or softening point of the resin composition. When the heat shrinkage temperature is equal to or higher than the melting point or the softening point of the resin composition, the heat shrinkable tube can be easily shrunk into a square tube having the original shape.
 上記ベース層が、円筒状であるとよい。このように、当該チューブのベース層が円筒状であることで、ベース層の内周面側に容易に複数の電線を整列させた状態で収容することができる。 The base layer is preferably cylindrical. As described above, since the base layer of the tube is cylindrical, a plurality of electric wires can be easily accommodated in the inner peripheral surface side of the base layer while being aligned.
 本開示の他の一態様に係る接続体は、導体及びこの導体の外周面側に積層される絶縁層を有する複数の電線と、上記複数の電線を被覆するチューブとを備え、上記チューブが、熱収縮チューブから形成され、四角筒状のベース層を有し、上記複数の電線が、上記チューブの長手方向に配設される。 A connector according to another embodiment of the present disclosure includes a conductor and a plurality of electric wires having an insulating layer stacked on an outer peripheral surface side of the conductor, and a tube covering the plurality of electric wires, wherein the tube is A rectangular tube-shaped base layer is formed from a heat-shrinkable tube, and the plurality of electric wires are disposed in a longitudinal direction of the tube.
 当該接続体は、上記複数の電線を被覆するチューブが四角筒状のベース層を有するので、複数の電線をコンパクトに収容できる。また、車等の乗り物、電化製品などの室内空間に設置される場合において、狭い領域にも配置可能であるとともに、複数の電線の設置領域の省スペース化を図ることができる。 In the connection body, since the tube covering the plurality of electric wires has a square cylindrical base layer, the plurality of electric wires can be accommodated compactly. In addition, when it is installed in a room such as a vehicle such as a car or an electric appliance, it can be arranged in a small area, and the space for installing a plurality of electric wires can be saved.
 本開示の一態様に係る熱収縮チューブの製造方法は、合成樹脂を主成分とする樹脂組成物を四角筒状に押出す工程と、上記押出す工程で押し出された四角筒状体に電離性放射線を照射する工程と、上記照射する工程後の四角筒状体を上記樹脂組成物の融点又は軟化点以上に加熱する工程と、上記加熱する工程による加熱後の四角筒状体を外側に拡張する工程と、上記拡張する工程による拡張後の筒状体を冷却する工程とを備える。 A method for manufacturing a heat-shrinkable tube according to an embodiment of the present disclosure includes a step of extruding a resin composition containing a synthetic resin as a main component into a square tubular shape, and a step of extruding the square tubular body extruded in the extruding step. Irradiating the radiation, heating the square tubular body after the irradiating step to a temperature equal to or higher than the melting point or softening point of the resin composition, and expanding the square tubular body heated by the heating step outward. And a step of cooling the expanded cylindrical body by the expanding step.
 当該熱収縮チューブの製造方法は、上記照射する工程で、上記押出す工程で押し出された四角筒状体に電離性放射線を照射するので、ベース層の熱収縮後の形状が四角筒状である熱収縮チューブを製造できる。従って、複数の電線の設置領域の省スペース化を図ることができる熱収縮チューブを得ることができる。 In the method for manufacturing the heat-shrinkable tube, the irradiation step includes irradiating the square tubular body extruded in the extruding step with ionizing radiation, so that the shape of the base layer after the heat shrinkage is a square tubular shape. Heat shrink tubing can be manufactured. Therefore, it is possible to obtain a heat-shrinkable tube capable of saving space in a region where a plurality of electric wires are installed.
 当該熱収縮チューブの製造方法は、上記拡張する工程で、上記四角筒状体を円筒状に拡張するとよい。このように、上記拡大する工程で、上記四角筒状体を円筒状に拡張することで、当該熱収縮チューブを容易に製造できるとともに、複数の電線を効率よく当該熱収縮チューブに収容できる。 (4) In the method for manufacturing a heat-shrinkable tube, in the expanding step, the square tubular body may be expanded into a cylindrical shape. In this way, by expanding the square tubular body into a cylindrical shape in the expanding step, the heat-shrinkable tube can be easily manufactured, and a plurality of electric wires can be efficiently accommodated in the heat-shrinkable tube.
 なお、本開示において、「融点」とは、JIS-K7121:2012「プラスチックの転移温度測定方法」に準拠して示差走査熱量計(DSC)により測定される融点ピーク温度をいう。「軟化点」とは、JIS-K7206:2016「プラスチック-熱可塑性プラスチック-ビカット軟化温度の求め方」に準拠して測定されるビカット軟化温度をいう。また、「主成分」とは、例えば総質量に対して60質量%以上含まれる成分をいう。 In the present disclosure, the “melting point” refers to a melting point peak temperature measured by a differential scanning calorimeter (DSC) in accordance with JIS-K7121: 2012 “Method of measuring transition temperature of plastic”. The "softening point" refers to a Vicat softening temperature measured in accordance with JIS-K7206: 2016 "Plastic-thermoplastic-Vicat softening temperature". The “main component” refers to, for example, a component contained in an amount of 60% by mass or more based on the total mass.
[本開示の実施形態の詳細]
 本開示の好適な実施形態について、以下に図面を参照しつつ説明する。
[Details of Embodiment of the Present Disclosure]
A preferred embodiment of the present disclosure will be described below with reference to the drawings.
<熱収縮チューブ>
 図1及び図2に示すように、当該熱収縮チューブ10は、複数の電線の外周を被覆する筒状のベース層1を備える。当該熱収縮チューブ10の形状としては、特に限定されず、円筒、楕円筒、長円筒、角筒等、種々の形状が含まれる。当該熱収縮チューブ10は、これらの中でも円筒状であることが好ましい。当該熱収縮チューブのベース層が円筒状であることで、ベース層1の内周面側に容易に複数の電線を整列させた状態で収容することができる。
<Heat shrink tube>
As shown in FIGS. 1 and 2, the heat-shrinkable tube 10 includes a cylindrical base layer 1 that covers the outer periphery of a plurality of electric wires. The shape of the heat-shrinkable tube 10 is not particularly limited, and includes various shapes such as a cylinder, an elliptic cylinder, a long cylinder, and a square cylinder. The heat-shrinkable tube 10 is preferably cylindrical among these. Since the base layer of the heat-shrinkable tube is cylindrical, a plurality of electric wires can be easily accommodated in the inner peripheral surface side of the base layer 1 in a state of being aligned.
 当該熱収縮チューブ10は、ベース層1のみからなる単層体である。ベース層1は、合成樹脂を主成分とする樹脂組成物から構成される。ベース層1は、複数の電線を外部から視認しやすいよう透明であってもよい。上記合成樹脂としては、例えばポリエチレン、エチレン酢酸ビニル共重合体、ポリエステル、ポリアミド、ポリ塩化ビニル、フッ素樹脂等が挙げられる。合成樹脂としては、これらの中でも成型性の観点から、ポリエチレンが好ましい。これらの合成樹脂は、単独で、又は2種以上を混合して用いることができる。ベース層1は、本開示の効果を損なわない範囲で必要に応じて上記合成樹脂以外の他の成分を含有していてもよく、例えば難燃剤、酸化防止剤、銅害防止剤、滑材、着色剤、熱安定剤、紫外線吸収剤等を含有していてもよい。 The heat-shrinkable tube 10 is a single-layer body composed of only the base layer 1. The base layer 1 is composed of a resin composition containing a synthetic resin as a main component. The base layer 1 may be transparent so that the plurality of electric wires can be easily recognized from the outside. Examples of the synthetic resin include polyethylene, ethylene-vinyl acetate copolymer, polyester, polyamide, polyvinyl chloride, and fluororesin. As the synthetic resin, polyethylene is preferable among these from the viewpoint of moldability. These synthetic resins can be used alone or in combination of two or more. The base layer 1 may contain components other than the above synthetic resin as needed as long as the effects of the present disclosure are not impaired. For example, a flame retardant, an antioxidant, a copper antioxidant, a lubricant, It may contain a colorant, a heat stabilizer, an ultraviolet absorber and the like.
 上記難燃剤としては、例えば塩素化パラフィン、塩素化ポリエチレン、塩素化ポリフェニル、パークロルペンタシクロデカン等の塩素系難燃剤、1,2-ビス(2,3,4,5,6-ペンタブロモフェニル)エタン、エチレンビスペンタブロモベンゼン、エチレンビスペンタブロモジフェニル、テトラブロモエタン、テトラブロモビスフェノールA、ヘキサブロモベンゼン、デカブロモビフェニルエーテル、テトラブロモ無水フタル酸、ポリジブロモフェニレンオキサイド、ヘキサブロモシクロデカン、臭化アンモニウム等の臭素系難燃剤が好ましい。臭素系難燃剤及び塩素系難燃剤は単独で使用しても2種以上を併用してもよい。 Examples of the flame retardant include chlorine-based flame retardants such as chlorinated paraffin, chlorinated polyethylene, chlorinated polyphenyl and perchlorpentacyclodecane, and 1,2-bis (2,3,4,5,6-pentabromo). Phenyl) ethane, ethylenebispentabromobenzene, ethylenebispentabromodiphenyl, tetrabromoethane, tetrabromobisphenol A, hexabromobenzene, decabromobiphenyl ether, tetrabromophthalic anhydride, polydibromophenylene oxide, hexabromocyclodecane, odor Brominated flame retardants such as ammonium bromide are preferred. The bromine flame retardant and the chlorine flame retardant may be used alone or in combination of two or more.
 上記酸化防止剤としては、例えばヒンダードアミン系化合物、ヒンダードフェノール系化合物、サリチル酸誘導体、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物等が挙げられ、特に架橋抑制効果に優れたヒンダードアミン系化合物が好適に使用される。これら酸化防止剤を用いることにより、耐銅害性をさらに向上できる。なお、酸化防止剤としては、上述した以外に硫黄系化合物及び亜リン酸エステル系化合物等を単独又は併用で用いることができる。 Examples of the antioxidant include a hindered amine compound, a hindered phenol compound, a salicylic acid derivative, a benzophenone compound, a benzotriazole compound, and the like. Particularly, a hindered amine compound having an excellent cross-linking inhibitory effect is preferably used. . By using these antioxidants, copper damage resistance can be further improved. In addition, as an antioxidant, a sulfur compound, a phosphite compound, or the like can be used alone or in combination in addition to the above.
 上記銅害防止剤としては、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、デカメチレンジカルボン酸ジサリチロイルヒドラジド、2,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド等を挙げることができる。 Examples of the copper damage inhibitor include 3- (N-salicyloyl) amino-1,2,4-triazole, decamethylenedicarboxylic acid disalicyloylhydrazide, 2,3-bis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide.
 ベース層1の製造においては、始めにベース層1を形成するための上記樹脂組成物を四角筒状に押し出す。そして、押し出された四角筒状体を電離性放射線の照射によって架橋構造を形成し、一旦固定して四角筒状のベース層1aを備えるチューブ2を形成した後、このチューブ2を外側に拡張することでベース層1が得られる。つまり、熱収縮チューブ10は、図3及び図4に示す開口部12aを有する四角筒状のベース層1aを外側に拡張することで得られたものである。ベース層1は、加熱されることで、電離性放射線によって固定された四角筒状のベース層1aに戻るよう収縮する。また、この熱収縮においては、熱収縮温度が上記樹脂組成物の融点又は軟化点以上であることが好ましい。熱収縮温度が上記樹脂組成物の融点又は軟化点以上であることで、当該熱収縮チューブを容易に元の形状の四角筒状のチューブに収縮させることができる。対象となる樹脂組成物の主成分が結晶性樹脂である場合には融点を基準とし、この主成分が非晶性樹脂である場合には軟化点を基準として加熱温度を決定する。また、対象となる樹脂組成物が結晶性樹脂と非晶性樹脂との混合物である場合には、加熱温度は、非晶性樹脂の軟化点を基準とする。上記融点又は軟化点は、例えば主成分となる合成樹脂の融点と他の構成成分の融点の加重平均で求めてもよい。 In the manufacture of the base layer 1, first, the resin composition for forming the base layer 1 is extruded into a square tube. Then, the extruded quadrangular cylindrical body is formed into a crosslinked structure by irradiation with ionizing radiation, and once fixed to form a tube 2 having a quadrangular cylindrical base layer 1a, and then the tube 2 is expanded outward. Thus, the base layer 1 is obtained. That is, the heat-shrinkable tube 10 is obtained by expanding the rectangular cylindrical base layer 1a having the opening 12a shown in FIGS. 3 and 4 outward. When heated, the base layer 1 contracts so as to return to the rectangular cylindrical base layer 1a fixed by ionizing radiation. In this heat shrinkage, the heat shrinkage temperature is preferably equal to or higher than the melting point or softening point of the resin composition. When the heat shrinkage temperature is equal to or higher than the melting point or softening point of the resin composition, the heat shrinkable tube can be easily shrunk to a square tube having the original shape. When the main component of the target resin composition is a crystalline resin, the heating temperature is determined based on the melting point, and when the main component is an amorphous resin, the heating temperature is determined based on the softening point. When the target resin composition is a mixture of a crystalline resin and an amorphous resin, the heating temperature is based on the softening point of the amorphous resin. The melting point or softening point may be determined, for example, by a weighted average of the melting points of the synthetic resin as the main component and the melting points of other components.
 当該熱収縮チューブ10は、上記ベース層の熱収縮後の形状が四角筒状である。当該熱収縮チューブ10は、ベース層1が加熱により開口部12aを有する四角筒状のベース層1aに収縮するので、複数の電線を配設させた後に四角筒状体のチューブとして設置できる。従って、複数の電線の設置領域の省スペース化を図ることができる。なお、筒状の熱収縮チューブを四角筒状に収縮させる工程においては、全方向にわたって均一に加熱して収縮させることが好ましい。上記熱収縮チューブを四角筒状に収縮させる工程では、例えばコンベア式収縮加工機などを用いることができる。 熱 The heat-shrinkable tube 10 has a square tube shape after the heat-shrinkage of the base layer. The heat-shrinkable tube 10 can be installed as a square-tube-shaped tube after arranging a plurality of electric wires, because the base layer 1 contracts into a square-tube-shaped base layer 1a having an opening 12a by heating. Therefore, it is possible to save space in the installation area of the plurality of electric wires. In the step of shrinking the tubular heat-shrinkable tube into a square tube, it is preferable to uniformly heat and shrink the tube in all directions. In the step of shrinking the heat-shrinkable tube into a rectangular tube, for example, a conveyor-type shrinking machine or the like can be used.
 上記四角筒状のベース層1aの断面形状の四角は広く解釈することができる。上記四角筒状のベース層1aの断面形状としては、例えば長方形、台形、鋭角及び鈍角を有する平行四辺形が挙げられる。断面形状の角はとがっていても丸くてもよく、長丸長方形であってもよい。また、開口部12aの向かい合う短辺は直線のみならず、弓形状、湾形状等のように湾曲していてもよい。 The square of the cross-sectional shape of the square cylindrical base layer 1a can be widely interpreted. Examples of the cross-sectional shape of the square cylindrical base layer 1a include a rectangle, a trapezoid, and a parallelogram having an acute angle and an obtuse angle. The corners of the cross-sectional shape may be pointed or rounded, and may be oblong rectangles. In addition, the short sides of the opening 12a facing each other may be curved, such as not only a straight line but also a bow shape or a bay shape.
 ベース層1は均一な厚さを有する構成とすることができる。ベース層1の平均厚さの下限としては、例えば0.1mmが好ましく、0.5mmがより好ましい。一方、ベース層1の平均厚さの上限としては、5.0mmが好ましく、2.0mmがより好ましい。なお、「平均厚さ」とは、任意の10点の厚さの平均値をいう。 The base layer 1 can be configured to have a uniform thickness. The lower limit of the average thickness of the base layer 1 is, for example, preferably 0.1 mm, and more preferably 0.5 mm. On the other hand, the upper limit of the average thickness of the base layer 1 is preferably 5.0 mm, more preferably 2.0 mm. The “average thickness” refers to the average value of the thickness at any 10 points.
 上述のように、当該熱収縮チューブ10は、複数の電線をまとめて結束するために用いられる。当該熱収縮チューブ10のベース層1が円筒状の場合、平均内径の下限としては、結束する電線のサイズや本数等によって設定可能であるが、ベース層1の平均内径の下限としては、例えば3.0mmが好ましく、6.0mmがより好ましい。一方、ベース層1の平均内径の上限としては、例えば30mmが好ましく、20mmがより好ましい。上記平均内径が上記下限に満たないと、複数の電線の挿入作業が容易でなくなるおそれがある。逆に、上記平均内径が上記上限を超えると、当該熱収縮チューブが不必要に大きくなるおそれがある。なお、「平均内径」とは等面積の真円に換算した内径をいう。 よ う As described above, the heat-shrinkable tube 10 is used for binding a plurality of electric wires together. When the base layer 1 of the heat-shrinkable tube 10 is cylindrical, the lower limit of the average inner diameter can be set according to the size and number of the electric wires to be bound. 0.0 mm is preferable, and 6.0 mm is more preferable. On the other hand, the upper limit of the average inner diameter of the base layer 1 is, for example, preferably 30 mm, and more preferably 20 mm. If the average inner diameter is less than the lower limit, the work of inserting a plurality of electric wires may not be easy. Conversely, if the average inner diameter exceeds the upper limit, the heat-shrinkable tube may become unnecessarily large. The “average inner diameter” refers to an inner diameter converted into a perfect circle of equal area.
 ベース層1は、熱収縮後のチューブ2のベース層1aの開口部12aの長手方向に延在する一対の長側壁13の厚さT1が、この上記開口部12aの短手方向に延在する一対の短側壁14の厚さT2より大きくてもよい。この構成によると、当該熱収縮チューブは、一対の短側壁14の方が一対の長側壁13よりも先に収縮する。この構成によると、複数の電線が一列に並べられる場合にこれらの電線を並列方向に密着させやすい。 In the base layer 1, the thickness T1 of the pair of long side walls 13 extending in the longitudinal direction of the opening 12a of the base layer 1a of the tube 2 after heat contraction extends in the short direction of the opening 12a. It may be larger than the thickness T2 of the pair of short side walls 14. According to this configuration, in the heat-shrinkable tube, the pair of short side walls 14 contracts before the pair of long side walls 13. According to this configuration, when a plurality of electric wires are arranged in a line, these electric wires are easily brought into close contact in a parallel direction.
 当該熱収縮チューブによれば、複数の電線の外周を被覆する上記ベース層の熱収縮後の形状が四角筒状であるので、複数の電線の設置領域の省スペース化を図ることができる。 According to the heat-shrinkable tube, the shape of the base layer covering the outer periphery of the plurality of electric wires after the heat-shrinkage is a quadrangular cylindrical shape, so that the space for installing the plurality of electric wires can be saved.
<接続体>
 図5及び図6を参照して、当該熱収縮チューブ10を用いた一実施形態に係る接続体20について説明する。当該接続体20は、導体3a及び導体3aの外周面側に積層される絶縁層3bを有する複数の電線3と、複数の電線3を被覆するチューブ2とを備える。チューブ2は、当該熱収縮チューブ10が熱収縮したものである。チューブ2は開口部12aを有する四角筒状のベース層1aを有する。本実施形態においては、複数の電線3が、開口部12aの長手方向に一列に配設される。
<Connected body>
With reference to FIGS. 5 and 6, a connection body 20 according to an embodiment using the heat-shrinkable tube 10 will be described. The connection body 20 includes a plurality of electric wires 3 having a conductor 3a and an insulating layer 3b laminated on the outer peripheral surface side of the conductor 3a, and a tube 2 covering the plurality of electric wires 3. The tube 2 is obtained by heat-shrinking the heat-shrinkable tube 10. The tube 2 has a square cylindrical base layer 1a having an opening 12a. In the present embodiment, the plurality of electric wires 3 are arranged in a line in the longitudinal direction of the opening 12a.
 当該接続体20は、チューブ2が開口部12aを有する四角筒状のベース層1aを有するので、複数の電線がコンパクトに収容され、設置領域の省スペース化を図ることができる。 接 続 In the connection body 20, since the tube 2 has the square cylindrical base layer 1a having the opening 12a, a plurality of electric wires are compactly accommodated, and the installation area can be saved in space.
 当該接続体20は、当該熱収縮チューブ10に複数の電線3が挿入された後に、四角筒状に熱収縮されることで得られる。複数の電線3は、チューブ2の内周面側でチューブ2の長手方向に配設されている。開口部12aの長手方向長さは、複数の電線3の径を合計した長さに略等しい。また、開口部12aの短手方向長さは、複数の電線3の平均径に略等しい。 The connection body 20 is obtained by inserting a plurality of electric wires 3 into the heat-shrinkable tube 10 and then heat-shrinking the heat-shrinkable tube 10 into a rectangular tube shape. The plurality of electric wires 3 are arranged in the longitudinal direction of the tube 2 on the inner peripheral surface side of the tube 2. The length of the opening 12a in the longitudinal direction is substantially equal to the total length of the plurality of wires 3. Further, the length of the opening 12a in the width direction is substantially equal to the average diameter of the plurality of electric wires 3.
 複数の電線3の導体3aの材質としては、導電性を有する限り特に限定されるものではなく、例えば銅、銅合金、アルミニウム、ニッケル、銀、軟鉄、鋼、ステンレス鋼等が挙げられる。複数の電線3の絶縁層3bの主成分としては、例えばポリビニルホルマール、ポリウレタン、アクリル樹脂、エポキシ樹脂、フェノキシ樹脂、ポリエステル、ポリエステルイミド、ポリエステルアミドイミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン等の合成樹脂が挙げられる。 The material of the conductor 3a of the plurality of electric wires 3 is not particularly limited as long as it has conductivity, and examples thereof include copper, copper alloy, aluminum, nickel, silver, soft iron, steel, and stainless steel. As a main component of the insulating layer 3b of the plurality of electric wires 3, for example, polyvinyl formal, polyurethane, acrylic resin, epoxy resin, phenoxy resin, polyester, polyester imide, polyester amide imide, polyamide imide, polyimide, polyether imide, polyether ether Synthetic resins such as ketone and polyethersulfone are exemplified.
 なお、個々の電線3のサイズや、電線3の本数等は特に限定されるものではない。電線3の本数としては、一般的には例えば2本以上10本以下とすることができる。 サ イ ズ The size of each electric wire 3 and the number of electric wires 3 are not particularly limited. The number of electric wires 3 can be generally, for example, 2 or more and 10 or less.
 当該接続体としては、図6に示す接続体20のような複数の電線3を1段で配設する形態以外に、1つのチューブ内に複数の電線3を複数の段でランダムに配設することもできる。図7に示す接続体32は、開口部22a内に9本の電線3が3段に並列に配設されたチューブ22を備える。また、図8に示す接続体52は、開口部42a内に13本の電線3が3段に並列に配設されたチューブ42を備える。当該接続体は、上記複数の電線を被覆するチューブが四角筒状のベース層を有するので、複数の電線をコンパクトに収容できるとともに、車内等における複数の電線の設置領域の省スペース化を図ることができる。 As the connection body, in addition to the configuration in which a plurality of electric wires 3 are arranged in one step like the connection body 20 shown in FIG. 6, a plurality of electric wires 3 are randomly arranged in one tube in a plurality of steps. You can also. The connecting body 32 shown in FIG. 7 includes the tube 22 in which nine electric wires 3 are arranged in parallel in three stages in the opening 22a. The connection body 52 shown in FIG. 8 includes a tube 42 in which thirteen electric wires 3 are arranged in three stages in parallel in an opening 42a. In the connection body, since the tube covering the plurality of electric wires has a square cylindrical base layer, the plurality of electric wires can be stored compactly, and the space for installing the plurality of electric wires in a vehicle or the like can be reduced. Can be.
 さらに、図9に示す接続体62のように、複数の電線が一段に並列に配設された接続体を積み上げられた構成にしてもよい。当該接続体62は、開口部12a内に複数の電線3が一段に並列に配設されたチューブ2を接着剤層18により、3段に積層させた構造を有する。この接着剤層は、例えば熱可塑性樹脂又はエラストマー等の公知の接着剤用の樹脂を主成分として用いることができる。上記熱可塑性樹脂としては、例えばポリオレフィン、ポリエステル、ポリアミド等が挙げられる。また、上記エラストマーとしては、例えばブチルゴム、アクリルゴム、天然ゴム等が挙げられる。このように、当該接続体62は、上記複数の電線を被覆するチューブが四角筒状のベース層を有するので、複数の接続体を設置する場合においても、四角筒状であることから、一か所にまとめて配置することが容易となる。 Furthermore, as in a connection body 62 shown in FIG. 9, a connection body in which a plurality of electric wires are arranged in parallel in one stage may be stacked. The connecting body 62 has a structure in which the tube 2 in which the plurality of electric wires 3 are arranged in parallel in the opening 12 a is stacked in three layers by the adhesive layer 18. The adhesive layer can be mainly composed of a known adhesive resin such as a thermoplastic resin or an elastomer. Examples of the thermoplastic resin include polyolefin, polyester, and polyamide. Examples of the elastomer include butyl rubber, acrylic rubber, and natural rubber. As described above, since the connecting body 62 has a rectangular cylindrical base layer in the tube covering the plurality of electric wires, even when a plurality of connecting bodies are installed, the connecting body 62 has a rectangular cylindrical shape. It is easy to arrange them all together.
 当該接続体によれば、上記複数の電線を被覆するチューブが四角筒状のベース層を有するので、複数の電線をコンパクトに収容できるとともに、車等の乗り物、電化製品などの室内空間に設置される場合において、狭い領域にも配置可能であるとともに、複数の電線の設置領域の省スペース化を図ることができる。 According to the connection body, since the tube covering the plurality of electric wires has a square cylindrical base layer, the plurality of electric wires can be housed in a compact manner, and a vehicle such as a vehicle is installed in an indoor space such as an electric appliance. In such a case, it is possible to dispose it in a narrow area, and to save the space for installing a plurality of electric wires.
<熱収縮チューブの製造方法>
 次に、図10を参照して当該熱収縮チューブの製造方法について説明する。当該熱収縮チューブの製造方法は、合成樹脂を主成分とする樹脂組成物を四角筒状に押出す工程と、上記押出す工程で押し出された四角筒状体に電離性放射線を照射する工程と、上記照射する工程後の四角筒状体を上記樹脂組成物の融点又は軟化点以上に加熱する工程と、上記加熱する工程による加熱後の四角筒状体を外側に拡張する工程と、上記拡張する工程による拡張後の筒状体を冷却する工程とを備える。
<Production method of heat shrink tube>
Next, a method for manufacturing the heat-shrinkable tube will be described with reference to FIG. The method for producing the heat-shrinkable tube includes a step of extruding a resin composition containing a synthetic resin as a main component into a rectangular tube, and a step of irradiating the rectangular tube extruded in the extrusion step with ionizing radiation. Heating the square tubular body after the irradiating step to a temperature equal to or higher than the melting point or softening point of the resin composition, expanding the square tubular body after heating by the heating step to the outside, Cooling the tubular body after the expansion by the step of performing.
 当該熱収縮チューブの製造方法は、上記照射する工程で、上記押出す工程で押し出された四角筒状体に電離性放射線を照射する。そして、上記電離性放射線の照射による架橋によって形状記憶された後に拡張され、この拡張状態で冷却固定されるものである。従って、当該熱収縮チューブの製造方法で得られる熱収縮チューブは加熱された場合にこの四角筒状体に戻るように収縮する。 (4) In the method for manufacturing the heat-shrinkable tube, in the irradiation step, the square tubular body extruded in the extrusion step is irradiated with ionizing radiation. Then, the shape is stored after being cross-linked by irradiation with the ionizing radiation, and then expanded, and then cooled and fixed in this expanded state. Therefore, the heat-shrinkable tube obtained by the method for manufacturing the heat-shrinkable tube shrinks to return to the rectangular cylindrical body when heated.
(押出す工程)
 上記押出す工程では、ベース層1を形成するための合成樹脂を主成分とする樹脂組成物を四角筒状に押し出す。
(Extruding process)
In the above-mentioned extruding step, a resin composition mainly composed of a synthetic resin for forming the base layer 1 is extruded into a rectangular tube shape.
 上記樹脂組成物は、ベース層1の主成分となる上述の合成樹脂及び必要に応じて含まれる添加剤を加えて、例えば溶融混合機により混合することで調製される。溶融混合機としては、公知のもの、例えばオープンロール、バンバリーミキサー、加圧ニーダー、単軸混合機、多軸混合機等を使用できる。 The resin composition is prepared by adding the above-mentioned synthetic resin which is a main component of the base layer 1 and additives contained as necessary, and mixing them by, for example, a melt mixer. As the melt mixer, a known mixer, for example, an open roll, a Banbury mixer, a pressure kneader, a single-screw mixer, a multi-screw mixer, or the like can be used.
 上記樹脂組成物を公知の溶融押出成形機を用いて押出成形することで、押出成形品が形成される。具体的には、複数の電線を被覆するチューブの形状である四角筒状体、より詳しくは、当該熱収縮チューブ10の熱収縮後の形状を成形するために四角筒状のスリットを有する押出ダイスを用いて上記樹脂組成物を押出成形する。このように、上記押出す工程で上記樹脂組成物を四角筒状に押し出す。これにより図11に示すように、当該熱収縮チューブ10の熱収縮後の形状である四角筒状体1b(押出体)が得られる。上記押出す工程において、基材層形成材料の構成材料を架橋することにより、耐熱性を向上させてもよい。 押出 An extruded product is formed by extruding the above resin composition using a known melt extrusion molding machine. Specifically, a rectangular cylindrical body having a tube shape covering a plurality of electric wires, and more specifically, an extrusion die having a rectangular cylindrical slit to form the heat-shrinkable tube 10 after heat shrinkage. Is used to extrude the resin composition. In this way, the resin composition is extruded into a square tube in the extruding step. As a result, as shown in FIG. 11, a square tubular body 1b (extruded body) having a shape after the heat shrinkage of the heat shrinkable tube 10 is obtained. In the extruding step, the heat resistance may be improved by crosslinking the constituent material of the base material layer forming material.
 上記押出す工程におけるダイス温度は、特に限定されないが、例えば基材層1を形成する樹脂材料の融点又は軟化点より10℃以上100℃以下高い温度とすることができる。 The die temperature in the extruding step is not particularly limited, but may be, for example, a temperature higher than the melting point or softening point of the resin material forming the base material layer 10 by 100 ° C. or more.
 上記押出す工程では、上記スリットの幅を調節することで、四角筒状体1bの開口部11aの長手方向に延在する一対の長側壁13aの厚さと開口部11aの短手方向に延在する一対の短側壁14aの厚さとを調節してもよい。例えば上記押出す工程では、四角筒状体1bの長手方向に延在する一対の長側壁13aの厚さを、短手方向に延在する一対の短側壁14aの厚さより大きくしてもよい。 In the extruding step, by adjusting the width of the slit, the thickness of the pair of long side walls 13a extending in the longitudinal direction of the opening 11a of the square tubular body 1b and the width of the pair of long side walls 13a extending in the short direction of the opening 11a are adjusted. The thickness of the pair of short side walls 14a may be adjusted. For example, in the extruding step, the thickness of the pair of long side walls 13a extending in the longitudinal direction of the rectangular cylindrical body 1b may be larger than the thickness of the pair of short side walls 14a extending in the short direction.
(照射する工程)
 上記照射する工程では、上記押出す工程で押し出された四角筒状体1bに電離性放射線を照射する。四角筒状体1bを構成する樹脂組成物を照射により架橋させることで、四角筒状体1bの形状が固定される。これにより、当該熱収縮チューブの製造方法で得られる熱収縮チューブは、加熱されると熱収縮して四角筒状体1bに戻ることになる。
(Irradiating step)
In the irradiating step, the rectangular tubular body 1b extruded in the extruding step is irradiated with ionizing radiation. By cross-linking the resin composition constituting the square tubular body 1b by irradiation, the shape of the square tubular body 1b is fixed. Thereby, the heat-shrinkable tube obtained by the method for manufacturing a heat-shrinkable tube thermally contracts when heated and returns to the square tubular body 1b.
 上記照射する工程で用いる電離性放射線としては、例えば電子線、γ線、X線、α線等が挙げられ、中でも電子線が好ましい。 電 Examples of the ionizing radiation used in the irradiation step include an electron beam, a γ-ray, an X-ray, an α-ray and the like, and among them, an electron beam is preferable.
 上記電離性放射線の照射線量は上記樹脂組成物を十分に架橋できる限り特に限定されないが、上記照射線量の下限としては、例えば30kGyが好ましく、180kGyがより好ましい。一方、上記照射線量の上限としては、例えば500kGyが好ましく、360kGyがより好ましい。 The irradiation dose of the ionizing radiation is not particularly limited as long as the resin composition can be sufficiently crosslinked, but the lower limit of the irradiation dose is, for example, preferably 30 kGy, more preferably 180 kGy. On the other hand, the upper limit of the irradiation dose is, for example, preferably 500 kGy, and more preferably 360 kGy.
(加熱する工程)
 上記加熱する工程では、上記照射する工程後の四角筒状体1bを上記樹脂組成物の融点又は軟化点以上に加熱する。上記加熱する工程により次工程の拡張する工程で四角筒状体1bを容易に拡張できる。上記加熱する工程では、四角筒状体1bを軸方向に搬送しつつ上記樹脂組成物の融点又は軟化点以上に加熱する。上記加熱する工程における加熱温度としては、上記樹脂組成物の融点又は軟化点に対応して設定可能であるが、上記加熱温度の下限としては、例えば70℃が好ましく、150℃がより好ましい。一方、上記加熱温度の上限としては、例えば230℃が好ましく、200℃がより好ましい。また、加熱時間としては、例えば30秒以上5分以下とできる。
(Step of heating)
In the heating step, the square tubular body 1b after the irradiation step is heated to a temperature equal to or higher than the melting point or softening point of the resin composition. By the heating step, the square tubular body 1b can be easily expanded in the next expanding step. In the heating step, the rectangular tubular body 1b is heated to a temperature higher than the melting point or softening point of the resin composition while being transported in the axial direction. The heating temperature in the heating step can be set in accordance with the melting point or softening point of the resin composition. The lower limit of the heating temperature is, for example, preferably 70 ° C., and more preferably 150 ° C. On the other hand, the upper limit of the heating temperature is, for example, preferably 230 ° C., and more preferably 200 ° C. The heating time can be, for example, 30 seconds or more and 5 minutes or less.
(拡張する工程)
 上記拡張する工程では、上記加熱する工程で加熱され、軸方向に搬送される四角筒状体1bを外側に拡張する。上記拡張する工程は、例えば楕円柱状の内部空間を有するサイジング管を用いて行うことができる。上記拡張する工程では、例えば四角筒状体1bの端部開口からこの四角筒状体1b内に気体を供給しつつ、上記サイジング管の内部空間を減圧する。これにより、上記拡張する工程では、四角筒状体1bの内圧と、上記サイジング管の内部空間の圧力との差圧に基づいて四角筒状体1bを外側に拡張する。
(Extending process)
In the expanding step, the square tubular body 1b heated in the heating step and conveyed in the axial direction is expanded outward. The expanding step can be performed, for example, using a sizing tube having an elliptical cylindrical internal space. In the expanding step, for example, the internal space of the sizing tube is depressurized while supplying a gas into the square tubular body 1b from an end opening of the square tubular body 1b. Thus, in the expanding step, the rectangular cylindrical body 1b is expanded outward based on the pressure difference between the internal pressure of the rectangular cylindrical body 1b and the pressure in the internal space of the sizing tube.
 上記拡張する工程では、上述したように、拡張後の形態は特に限定されず、例えば円筒、楕円筒、長円筒、角筒等、種々の形状に拡張してもよい。これらの中でも、図12に示すように、円筒状体1cに拡張することが好ましい。このように、上記拡大する工程で、上記四角筒状体を円筒状に拡張することで、当該熱収縮チューブを容易に製造できるとともに、複数の電線を効率よく当該熱収縮チューブに収容できる。 In the expanding step, as described above, the shape after expansion is not particularly limited, and may be expanded into various shapes such as a cylinder, an elliptic cylinder, a long cylinder, and a square cylinder. Among them, as shown in FIG. 12, it is preferable to expand to a cylindrical body 1c. In this way, by expanding the square tubular body into a cylindrical shape in the expanding step, the heat-shrinkable tube can be easily manufactured, and a plurality of electric wires can be efficiently accommodated in the heat-shrinkable tube.
(冷却する工程)
 上記冷却する工程では、上記拡張する工程で拡張された筒状体を上記樹脂組成物の融点又は軟化点以下に冷却する。拡張された筒状体を上記樹脂組成物の融点又は軟化点以下に冷却することで、拡張された筒状体の形状を固定できる。上記冷却する工程における冷却温度の上限としては、例えば10℃が好ましく、23℃がより好ましい。一方、上記冷却温度の下限としては、例えば-40℃が好ましく、0℃がより好ましい。上記冷却工程における冷却方法として、例えば水冷方式の方法を用いることができる。
(Cooling process)
In the cooling step, the tubular body expanded in the expanding step is cooled below the melting point or softening point of the resin composition. By cooling the expanded cylindrical body below the melting point or softening point of the resin composition, the shape of the expanded cylindrical body can be fixed. The upper limit of the cooling temperature in the cooling step is, for example, preferably 10 ° C., and more preferably 23 ° C. On the other hand, the lower limit of the cooling temperature is, for example, preferably −40 ° C., and more preferably 0 ° C. As a cooling method in the cooling step, for example, a water cooling method can be used.
 なお、当該熱収縮チューブの製造方法は、上記冷却する工程後の筒状体を巻き取る工程をさらに備えていてもよい。また、当該熱収縮チューブの製造方法は、上記冷却する工程後、又は巻き取る工程後の筒状体を所望の長さに切断する工程をさらに備えていてもよい。 The method for manufacturing the heat-shrinkable tube may further include a step of winding the tubular body after the cooling step. In addition, the method for manufacturing a heat-shrinkable tube may further include a step of cutting the tubular body after the cooling step or the winding step into a desired length.
 当該熱収縮チューブの製造方法によれば、上記照射する工程で、上記押出す工程で押し出された四角筒状体に電離性放射線を照射するので、ベース層の熱収縮後の形状が四角筒状である熱収縮チューブを製造できる。従って、複数の電線の設置領域の省スペース化を図ることができる熱収縮チューブを得ることができる。 According to the method for manufacturing a heat-shrinkable tube, in the irradiation step, the square tubular body extruded in the extruding step is irradiated with ionizing radiation, so that the shape of the base layer after the heat shrinkage is square tubular. Can be manufactured. Therefore, it is possible to obtain a heat-shrinkable tube capable of saving space in a region where a plurality of electric wires are installed.
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is not limited to the configuration of the above-described embodiment, but is indicated by the claims, and is intended to include all modifications within the scope and meaning equivalent to the claims.
 当該熱収縮チューブは、本開示の効果を損なわない範囲で、上記ベース層以外の他の層を有していてもよい。 The heat-shrinkable tube may have a layer other than the above-mentioned base layer as long as the effects of the present disclosure are not impaired.
1,1a ベース層
1b 四角筒状体
1c 円筒状体
2,22,42 チューブ
3 電線
3a 導体
3b 絶縁層
10 熱収縮チューブ
11a,12a,22a,42a 開口部
13,13a 長側壁
14,14a 短側壁
18 接着剤層
20、32、52、62 接続体
1, 1a Base layer 1b Square tubular body 1c Cylindrical body 2, 22, 42 Tube 3 Electric wire 3a Conductor 3b Insulating layer 10 Heat shrinkable tubes 11a, 12a, 22a, 42a Openings 13, 13a Long side walls 14, 14a Short side walls 18. Adhesive layer 20, 32, 52, 62 connector

Claims (6)

  1.  複数の電線の外周を被覆する筒状のベース層を備え、
     上記ベース層の熱収縮後の形状が四角筒状である熱収縮チューブ。
    With a cylindrical base layer covering the outer periphery of the plurality of electric wires,
    A heat-shrinkable tube in which the shape of the base layer after heat-shrinkage is a square tube.
  2.  上記ベース層が合成樹脂を主成分とする樹脂組成物から構成され、
     熱収縮温度が上記樹脂組成物の融点又は軟化点以上である請求項1に記載の熱収縮チューブ。
    The base layer is composed of a resin composition containing a synthetic resin as a main component,
    The heat-shrinkable tube according to claim 1, wherein the heat-shrinkage temperature is equal to or higher than the melting point or softening point of the resin composition.
  3.  上記ベース層が、円筒状である請求項1又は請求項2に記載の熱収縮チューブ。 The heat-shrinkable tube according to claim 1 or 2, wherein the base layer has a cylindrical shape.
  4.  導体及びこの導体の外周面側に積層される絶縁層を有する複数の電線と、
     上記複数の電線を被覆するチューブと
     を備え、
     上記チューブが、熱収縮チューブから形成され、四角筒状のベース層を有し、
     上記複数の電線が、上記チューブの長手方向に配設される接続体。
    A plurality of electric wires having a conductor and an insulating layer laminated on the outer peripheral surface side of the conductor,
    And a tube covering the plurality of electric wires,
    The tube is formed from a heat-shrinkable tube and has a square cylindrical base layer,
    A connection body in which the plurality of electric wires are arranged in a longitudinal direction of the tube.
  5.  合成樹脂を主成分とする樹脂組成物を四角筒状に押出す工程と、
     上記押出す工程で押し出された四角筒状体に電離性放射線を照射する工程と、
     上記照射する工程後の四角筒状体を上記樹脂組成物の融点又は軟化点以上に加熱する工程と、
     上記加熱する工程による加熱後の四角筒状体を外側に拡張する工程と、
     上記拡張する工程による拡張後の筒状体を冷却する工程と
     を備える熱収縮チューブの製造方法。
    A step of extruding a resin composition containing a synthetic resin as a main component into a rectangular cylinder,
    A step of irradiating the extruded square tubular body with ionizing radiation,
    Heating the square tubular body after the irradiation step above the melting point or softening point of the resin composition,
    A step of expanding the heated rectangular cylindrical body to the outside by the heating step,
    Cooling the tubular body after expansion by the expanding step.
  6.  上記拡張する工程で、上記四角筒状体を円筒状に拡張する請求項5に記載の熱収縮チューブの製造方法。

     
    The method for manufacturing a heat-shrinkable tube according to claim 5, wherein the expanding step expands the square tubular body into a cylindrical shape.

PCT/JP2019/026339 2018-07-27 2019-07-02 Heat-shrink tube, heat-shrink tube production method, and connector WO2020021997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532250A JP7276962B2 (en) 2018-07-27 2019-07-02 HEAT SHRINK TUBE, HEAT SHRINK TUBE MANUFACTURING METHOD, AND CONNECTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018140849 2018-07-27
JP2018-140849 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020021997A1 true WO2020021997A1 (en) 2020-01-30

Family

ID=69181561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026339 WO2020021997A1 (en) 2018-07-27 2019-07-02 Heat-shrink tube, heat-shrink tube production method, and connector

Country Status (2)

Country Link
JP (1) JP7276962B2 (en)
WO (1) WO2020021997A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746253A (en) * 1995-06-21 1998-05-05 Minnesota Mining And Manufacturing Company Crushable core and cover assembly having an expanded tubing and a crushable core
CN106363900A (en) * 2015-07-20 2017-02-01 威捷国际有限公司 Square tube molding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746253A (en) * 1995-06-21 1998-05-05 Minnesota Mining And Manufacturing Company Crushable core and cover assembly having an expanded tubing and a crushable core
CN106363900A (en) * 2015-07-20 2017-02-01 威捷国际有限公司 Square tube molding method

Also Published As

Publication number Publication date
JPWO2020021997A1 (en) 2021-08-02
JP7276962B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US3669824A (en) Recoverable article
AU2013400927B2 (en) Lightweight and flexible impact resistant power cable and process for producing it
CN110198840B (en) Heat-resistant double-layer heat-shrinkable tube and method for covering an object to be covered
US7540776B2 (en) Heat-shrink tube
JP7440010B2 (en) Heat-shrinkable tube, heat-shrinkable sheet, connection body, and method for manufacturing heat-shrinkable tube
KR20180037364A (en) Busbar and method for manufacturing the busbar
JP2014073637A (en) Heat-shrinkable tubing
JP2017085695A (en) Heat-shrinkable tube, wire splice and wiring harness
WO2020021997A1 (en) Heat-shrink tube, heat-shrink tube production method, and connector
WO2015045644A1 (en) Multilayer heat recovery article, wire splice and wire harness
NZ554965A (en) Cable manufacturing process
US20040219317A1 (en) Process for manufacturing a flexible tubular pipe having extruded layers made of crosslinked polyethylene
JPH03503618A (en) Wraparound Heat Recoverable Sealed Article
JP7468843B2 (en) Heat shrink sheets, heat shrink tubes and connectors
CN103183857A (en) Hot melt adhesive-containing polyolefin tubing recovery method
JP2021057953A (en) Heat shrinkable tube and electric wire bundle
US20170117071A1 (en) Wire harness
JP5909106B2 (en) Method for producing transparent resin material, method for producing transparent resin tube, method for producing transparent heat-shrinkable tube, and method for producing crimp terminal with heat-shrinkable tube
JP2022003644A (en) Wire with terminal and production method for wire with terminal
JP2011228043A (en) Flat cable
JP2016063584A (en) Heat shrinkable spiral tube, wiring module with binding member, manufacturing method of heat shrinkable spiral tube, and manufacturing method of wiring module with binding member
JP7463209B2 (en) Busbar wire and manufacturing method thereof
JPH05200863A (en) Heat recoverable article
WO2022181142A1 (en) Heat-shrinkable tubing, heat-shrinkable coupling component, production method for heat-shrinkable tubing, and production method for heat-shrinkable coupling component
JP6474053B2 (en) Manufacturing method of power transmission cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840076

Country of ref document: EP

Kind code of ref document: A1