WO2020021816A1 - Compressor and compression system - Google Patents
Compressor and compression system Download PDFInfo
- Publication number
- WO2020021816A1 WO2020021816A1 PCT/JP2019/018914 JP2019018914W WO2020021816A1 WO 2020021816 A1 WO2020021816 A1 WO 2020021816A1 JP 2019018914 W JP2019018914 W JP 2019018914W WO 2020021816 A1 WO2020021816 A1 WO 2020021816A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- blade
- leading edge
- blades
- flow path
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
Definitions
- the present disclosure relates to a compressor and a compression system.
- This application claims the benefit of priority based on Japanese Patent Application No. 2018-138714 filed on July 24, 2018, the contents of which are incorporated herein by reference.
- Patent Document 1 discloses a compressor in which a compressor impeller is housed in a housing.
- the housing has a main flow passage for accommodating the compressor impeller and a scroll flow passage located radially outside the compressor impeller.
- the compressor impeller has a plurality of blades provided on the outer periphery of the hub. The leading edge of the blade faces the opening of the main flow path.
- solids such as ice blocks may enter the main flow path.
- the solid that has entered the main flow path collides with the leading edge of the blade.
- the peripheral speed of the blade is higher as it goes radially outward. For this reason, when a solid material collides with the leading edge in the radial direction outside of the blade, the blade is likely to be damaged.
- An object of the present disclosure is to provide a compressor and a compression system capable of reducing blade damage.
- a compressor includes a compressor impeller having a plurality of blades provided on an outer periphery of a hub, a housing having a flow passage that houses the compressor impeller, and an inner wall surface of the housing facing the flow passage. And a protection surface protruding radially inward of the compressor impeller and facing a radially outer part of the blades in the direction of the rotation axis of the compressor impeller.
- the protective surface may face at least the radially outermost end of the leading edge of the blade in the rotational axis direction.
- the protective surface may be positioned in the rotation axis direction between the tip of the hub and the leading edge of the blade.
- a slope is provided extending in a direction away from the blade in the radially outer side, of the leading edge of the blade, the thickness at the intersection with the extension of the slope is Alternatively, the thickness may be 109% or more of the thickness at the outer end.
- At least one of the plurality of blades may include a notch extending from a radially outermost end of the leading edge in a direction radially outward and away from the protective surface. Good.
- a compressor includes a housing in which a flow path including an intake port is formed, a compressor impeller housed in the flow path of the housing, and provided with a plurality of blades on an outer periphery of a hub; Is provided on at least any one of the blades, and from the outer end portion having a thickness of 0.5 mm or more, which is located at the outermost position in the radial direction of the flow path among the leading edges facing the intake port, and is located radially outside, A notch extending in a direction away from the mouth.
- the radial length of the notch may be 2.5 mm or more and 5.0 mm or less.
- a compression system includes a pre-stage compression unit, an intercooler connected to the pre-stage compression unit, and a compressor connected to the intercooler.
- FIG. 1 is a schematic sectional view of the supercharger according to the first embodiment.
- FIG. 2 is an enlarged view of a broken line portion in FIG.
- FIG. 3 is a diagram illustrating a supercharger according to the second embodiment.
- FIG. 4 is an enlarged view of the blade.
- FIG. 5 is an enlarged view of a broken line portion in FIG.
- FIG. 6 is a diagram showing the relationship between the shape of the notch and the compressor performance.
- FIG. 7 is a diagram illustrating a supercharger according to the third embodiment.
- FIG. 8 is a diagram illustrating a compression system.
- FIG. 1 is a schematic sectional view of the supercharger TC of the first embodiment.
- the direction of arrow L shown in FIG. 1 will be described as the left side of the supercharger TC.
- the direction of arrow R shown in FIG. 1 will be described as the right side of the supercharger TC.
- the supercharger TC includes a supercharger main body 1.
- the supercharger main body 1 includes a bearing housing 2, a turbine housing 3, and a compressor housing 4 (housing).
- the turbine housing 3 is connected to the left side of the bearing housing 2 by a fastening bolt 5.
- the compressor housing 4 is connected to the right side of the bearing housing 2 by a fastening bolt 6.
- a bearing hole 2a is formed in the bearing housing 2.
- the bearing hole 2a penetrates the supercharger TC in the left-right direction.
- the bearing hole 2 a accommodates a part of the shaft 7.
- a pair of bearings 8 are housed in the bearing holes 2a.
- the bearing 8 is configured by, for example, a full floating bearing.
- the shaft 7 is rotatably supported by a pair of bearings 8.
- a turbine impeller 9 is provided at the left end of the shaft 7, a turbine impeller 9 is provided.
- the turbine impeller 9 is rotatably accommodated in the turbine housing 3.
- a compressor impeller 10 is provided at the right end of the shaft 7.
- a channel 11 is formed in the compressor housing 4.
- the compressor impeller 10 is rotatably accommodated in the flow path 11.
- the flow path 11 passes through the compressor housing 4 in the left-right direction.
- the flow path 11 includes an intake port 11a.
- the intake port 11a is an opening formed in the compressor housing 4.
- the intake port 11a opens to the right of the supercharger TC.
- the intake port 11 a is an upstream end in the flow direction of the air in the flow path 11.
- the intake port 11a is connected to an air cleaner (not shown).
- the diffuser channel 12 is formed by the facing surfaces of the bearing housing 2 and the compressor housing 4.
- the diffuser channel 12 pressurizes air.
- the diffuser channel 12 is formed in an annular shape.
- the diffuser flow path 12 communicates with the flow path 11 on the radially inner side.
- the diffuser channel 12 is continuous with the channel 11 radially outside.
- a compressor scroll flow path 13 is provided in the compressor housing 4.
- the compressor scroll channel 13 is annular.
- the compressor scroll passage 13 is located, for example, radially outside the shaft 7 from the diffuser passage 12.
- the compressor scroll passage 13 communicates with an intake port of an engine (not shown) and the diffuser passage 12.
- the supercharger TC includes the compressor C including the compressor housing 4 and the compressor impeller 10.
- a discharge port 14 is formed in the turbine housing 3.
- the discharge port 14 opens on the left side of the supercharger TC.
- the discharge port 14 is connected to an exhaust gas purification device (not shown).
- the turbine housing 3 is provided with a flow path 15 and a turbine scroll flow path 16.
- the turbine scroll flow path 16 is provided, for example, radially outside the flow path 15.
- the turbine scroll channel 16 is annular.
- the turbine scroll passage 16 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold (not shown) of the engine is guided to the gas inlet.
- the turbine scroll flow path 16 also communicates with the flow path 15. Therefore, the exhaust gas guided from the gas inlet to the turbine scroll flow path 16 is guided to the discharge port 14 via the flow path 15 and the turbine impeller 9.
- the exhaust gas guided to the discharge port 14 rotates the turbine impeller 9 during the circulation process.
- the compressor C In the compressor C, air is sucked into the flow passage 11 from the intake port 11a. Depending on the environment in which the compressor C is used, solids such as ice blocks may be contained in the air sucked into the flow path 11. When the solids enter the flow path 11, the compressor impeller 10 may be damaged by collision with the solids.
- the compressor C of the present embodiment includes a mechanism for reducing damage to the compressor impeller 10 due to collision with a solid matter.
- FIG. 2 is an enlarged view of a broken line portion in FIG.
- the compressor C includes a compressor housing 4 in which a flow path 11 is formed.
- the channel 11 includes an intake port 11a.
- the flow path 11 is open to the outside of the compressor housing 4 at the intake port 11a.
- the channel 11 accommodates the compressor impeller 10.
- the inside diameter of the flow path 11 on the intake port 11a side of the compressor impeller 10 is substantially constant. However, the inner diameter of the flow path 11 may gradually decrease as the flow path 11 approaches the compressor impeller 10 from the intake port 11a.
- the compressor impeller 10 includes a hub 10a.
- the diameter of the hub 10a gradually increases as the distance from the intake port 11a increases.
- Hub 10a has a distal end portion 10a 1 and the enlarged diameter portion 10a 2.
- Tip 10a 1 is an outer diameter is constant.
- the enlarged diameter portion 10a 2 to the distal end portion 10a 1, contiguous to the opposite side of the air inlet 11a.
- the enlarged diameter portion 10a 2 has a diameter gradually increasing as away from the distal end portion 10a 1.
- an insertion hole 10b penetrating in the left-right direction in FIG. 2 is formed.
- the shaft 7 is inserted into the insertion hole 10b.
- the tip of the shaft 7 protrudes toward the intake port 11a from the insertion hole 10b.
- a fastening member 7a is provided at the tip of the shaft 7.
- the fastening member 7a is formed of a bolt.
- the compressor impeller 10 is attached to the shaft 7 by the axial force of a fastening member 7 a provided at the tip of the shaft 7.
- the method of attaching the compressor impeller 10 to the shaft 7 is not limited to bolting.
- the shaft 7 and the compressor impeller 10 may be welded or attached by an adhesive.
- a plurality of short blades 10c and blades 10d are provided on the outer periphery of the hub 10a.
- the short blades 10c and the blades 10d are alternately arranged on the outer periphery of the hub 10a.
- the short blades 10c and the blades 10d are provided apart from each other in a rotation direction of the compressor impeller 10 (hereinafter, simply referred to as a rotation direction).
- the short blades 10c and the blades 10d adjacent to each other in the rotation direction maintain an equal interval in the rotation direction.
- the number of the blades 10d may be two or more on the outer periphery of the hub 10a, and the number is not limited. Further, the short blade 10c is not essential, and the compressor impeller 10 may be provided with a plurality of blades 10d on the outer periphery of the hub 10a.
- Short blade 10c are provided within the enlarged diameter portion 10a 2.
- Blade 10d is provided over the distal end 10a 1 of the hub 10a to the enlarged diameter portion 10a 2.
- the blade 10d is longer in the rotation axis direction than the short blade 10c.
- the blade 10d has a leading edge LE facing the air inlet 11a.
- the leading edge LE is a surface of the blade 10d that is located closest to the intake port 11a.
- Leading edge LE has a channel 11 (the compressor impeller 10) radially (hereinafter, simply referred to as radial direction) of the base end portion LE 1 located innermost.
- Proximal portion LE 1 is a section which is continuous with the outer peripheral surface of the hub 10a (distal end 10a 1).
- Leading edge LE has a outer end portion LE 2 positioned closest to the outer side in the radial direction.
- Outer end LE 2, of the leading edge LE is the site closest to the inner wall surface 4a of compressor housing 4 facing the flow path 11.
- the blade 10d has a shape curved in the rotation direction.
- the base end portion LE 1 and the outer end portion LE 2 are located offset in the rotational direction.
- the blade 10d may extend linearly in the radial direction.
- the thickness of the blade 10d decreases as the distance from the hub 10a increases.
- the leading edge LE of the blade 10d is the largest thickness of the base end portion LE 1, the thickness becomes smaller toward the outer edge portion LE 2.
- the thickness of the leading edge LE may be constant.
- the leading edge LE, the thickness of the base end portion LE 1 may be smaller than the thickness of the outer end portion LE 2.
- the thickness of the leading edge LE indicates a length in a width direction orthogonal to the extending direction of the leading edge LE and the rotation axis direction.
- the compressor impeller 10 (short blade 10c and blade 10d) rotates in the circumferential direction of the shaft 7.
- the peripheral speed of the leading edge LE is higher as it goes radially outward.
- Leading edge LE the higher circumferential speed is faster near the outer end LE 2.
- the thickness of the leading edge LE is smaller toward the outside in the radial direction. Assuming that the solids which has entered the flow path 11 collides with the leading edge LE, the more collisions position approaches the outer end LE 2, blade 10d is easily damaged.
- the compressor C is provided with a protective wall 20 that protects the outer end LE 2 side of the leading edge LE from the solids.
- the protection wall portion 20 is formed of an annular protrusion that protrudes radially inward of the compressor impeller 10 from the inner wall surface 4a of the compressor housing 4 facing the flow path 11.
- the protection wall portion 20 includes a protection surface 20a that projects substantially perpendicularly from the inner wall surface 4a. That is, the protection surface 20a is a surface parallel to the radial direction.
- the protection surface 20a protrudes radially inward from the inner wall surface 4a of the compressor housing 4 facing the flow path 11.
- the leading edge LE of the blade 10d is inclined with respect to the radial direction so that the leading edge LE of the blade 10d is further away from the intake port 11a in the radial direction.
- the separation distance between the leading edge LE and the protection surface 20a is smaller toward the inside in the radial direction.
- the protection surface 20a may be provided so as to be inclined in a direction closer to the leading edge LE toward the inside in the radial direction.
- the protection surface 20a may be provided so as to be inclined in a direction away from the leading edge LE toward the inside in the radial direction.
- the separation distance between the leading edge LE and the protection surface 20a may be larger toward the inside in the radial direction, or may be constant regardless of the position in the radial direction.
- the protrusion amount (radial length) of the protection surface 20a is equal to or larger than the radial gap between the compressor impeller 10 and the inner wall surface 4a.
- the protection surface 20a is opposed to a part of the blade 10d on the outside in the radial direction in the rotation axis direction of the compressor impeller 10.
- Protected surface 20a rather than the outer end portions LE 2 of the leading edge LE, extending to the inside in the radial direction.
- Protected surface 20a is at least, of the leading edge LE of the blade 10d, facing the rotation axis direction and an outer end portion LE 2 positioned closest to the outer side in the radial direction.
- the protrusion amount (radial length) of the protection surface 20a is not particularly limited.
- the protection surface 20a covers a part of the blade 10d on the radially outer side. Thereby, collision of the solid matter with a part of the blade 10d on the radially outer side is avoided. The risk of damage to the blade 10d is reduced.
- the distance between the protection surface 20a and the leading edge LE in the axial direction is small as long as it does not contact each other.
- the position of the protection wall portion 20 (protection surface 20a) in the rotation axis direction is between the tip of the hub 10a (tip portion 10a 1 ) and the leading edge LE of the blade 10d.
- the axial separation distance between the protection surface 20a and the leading edge LE is approximately equal to the radial gap between the blade 10d and the inner wall surface 4a.
- the axial separation distance between the protection surface 20a and the leading edge LE may be larger or smaller than the radial gap between the blade 10d and the inner wall surface 4a.
- the protection wall 20 includes an inclined surface 20b.
- the inclined surface 20b extends from the radially innermost side of the protective surface 20a to the radially outer side and the direction away from the blade 10d (toward the intake port 11a). By the inclined surface 20b, the solid matter that has collided with the protective wall portion 20 is easily guided to the center side of the flow path 11. Solids, easily collides with the proximal end portion LE 1 side of the leading edge LE.
- the thickness at the outer end LE 2 of the leading edge LE is assumed to be 0.33 mm.
- the leading edge LE has a greater thickness as it extends radially inward.
- the thickness at the intersection x of the leading edge LE of the blade 10d with the extension line of the inclined surface 20b is 1 mm.
- the intersection x can be said to be the radially outermost position in the range where the solids can collide in the leading edge LE when the inclined surface 20b is provided.
- the minimum thickness of the leading edge LE is 0.33 mm in a range where the solid matter can collide.
- the protruding height (the length in the radial direction) of the protection surface 20a is 1 mm
- the minimum thickness of the leading edge LE is 0.36 mm in a range where a solid object can collide.
- the thickness at the intersection x of the extension line of the inclined surface 20b is about 9% of the thickness at the outer end portion LE 2.
- the thickness of the leading edge LE is increased closer to the base end portion LE 1.
- the protruding height (the length in the radial direction) of the protection surface 20a is 2 mm
- the thickness at the intersection x is 0.39 mm.
- the protrusion height of the protected surface 20a (the length in the radial direction) is 2 mm
- the thickness at the intersection x of the extension line of the inclined surface 20b is the thickness at the outer end portion LE 2 It is about 121%.
- the thickness at the intersection x increases.
- the projection height of the protective surface 20a, and the thickness of the leading edge LE of the outer end portion LE 2 and an intersection x is not particularly limited. However, among the leading edge LE of the blade 10d, the thickness at the intersection x of the extension line of the inclined surface 20b may If it is more than 9% of the thickness at the outer end portion LE 2.
- the leading edge LE is slow enough base end portion LE 1 side peripheral speed. Also, the leading edge LE has a greater thickness as the base end portion LE 1 side. More collision parts of solids is in the proximal portion LE 1 side, possibly blade 10d is damaged becomes low.
- the inclined surface 20b further reduces damage to the blade 10d at the time of collision with a solid object.
- the inclined surface 20b is not essential.
- the protective wall portion 20 may have a constant inner diameter in the rotation axis direction.
- Figure 3 is a diagram for explaining the supercharger TC 2 of the second embodiment.
- the supercharger TC2 of the second embodiment is provided with a notch 30 instead of the protection wall 20 of the supercharger TC of the first embodiment.
- the configuration other than the protection wall portion 20 and the cutout portion 30 is the same in the first embodiment and the second embodiment.
- the same numerals are attached as the above and explanation is omitted.
- Supercharger TC 2 of the second embodiment comprises a compressor C 2 comprising the compressor housing 4 and the compressor impeller 10A.
- the flow path 11 including the intake port 11a is formed in the compressor housing 4.
- the compressor impeller 10 ⁇ / b> A is housed in the flow passage 11 of the compressor housing 4.
- the compressor impeller 10A includes a hub 10a.
- the diameter of the hub 10a gradually increases as the distance from the intake port 11a increases.
- Hub 10a includes a tip portion 10a 1 and the enlarged diameter portion 10a 2.
- Tip 10a 1 has an outer diameter approximately constant.
- the enlarged diameter portion 10a 2 to the distal end portion 10a 1, contiguous to the opposite side of the air inlet 11a.
- the enlarged diameter portion 10a 2 has a diameter gradually increasing as away from the distal end portion 10a 1.
- the outer periphery of the hub 10a, the short blades 10c and blade 10d 2 are more respectively provided.
- Short blade 10c and the vane 10d 2 are alternately disposed at the outer periphery of the hub 10a.
- Short blade 10c and the vane 10d 2 the rotation direction of the compressor impeller 10A (hereinafter, simply referred to as rotation direction) is provided spaced apart from one another in.
- Short blade 10c and the vane 10d adjacent in the rotation direction 2 is maintained at equal intervals in the rotational direction.
- Blade 10d 2 may as long provided two or more on the outer circumference of the hub 10a, the number is not limited.
- Short blade 10c is not essential, the compressor impeller 10A has only to the plurality of blades 10d 2 is provided on an outer periphery of the hub 10a.
- Short blade 10c are provided within the enlarged diameter portion 10a 2.
- Blade 10d 2 are provided across the front end portion 10a 1 of the hub 10a to the enlarged diameter portion 10a 2.
- Blade 10d 2 is longer in the axial direction than the short blades 10c.
- Blade 10d 2 is provided with a leading edge LE which faces the air inlet 11a.
- Leading edge LE of the blade 10d 2, a surface located on the most air inlet 11a side.
- Leading edge LE has a passage 11 radial (compressor impeller 10A) (hereinafter, simply referred to as radial direction) proximal end LE 1 located innermost.
- Proximal portion LE 1 is a section which is continuous with the outer peripheral surface of the hub 10a (distal end 10a 1).
- Leading edge LE has a outer end portion LE 2 positioned closest to the outer side in the radial direction.
- Outer end LE 2, of the leading edge LE is the site closest to the inner wall surface 4a of compressor housing 4 facing the flow
- FIG. 4 is an enlarged view of the blade 10d 2.
- FIG. 4 shows a one vane 10d 2, only a portion in the vicinity of the hub 10a.
- the blade 10d 2 is a curved shape in the direction of rotation.
- the base end portion LE 1 and the outer end portion LE 2 are located offset in the rotational direction.
- the blade 10d 2 may extend in a straight line in the radial direction.
- Blade 10d 2 the more away from the hub 10a, the plate thickness is reduced.
- the leading edge LE of the blade 10d 2 is the largest thickness of the base end portion LE 1, the thickness becomes smaller toward the outer edge portion LE 2.
- the thickness of the leading edge LE may be constant.
- Leading edge LE, the thickness of the base end portion LE 1 may be smaller than the thickness of the outer end portion LE 2.
- the blade 10d 2 is provided with an edge E that faces the inner wall surface 4a and radially.
- the outer diameter of the edge E increases as the distance from the inlet 11a increases.
- Blade 10d 2 is provided with a cutout portion 30. Cutout portion 30, the outer end portion LE 2 of the leading edge LE, which extends in a direction away from the inlet port 11a and an outer side in the radial direction. Notches 30 extends from the outer end portion LE 2 to the edge E.
- Blade 10d 2 relative to the blade 10d of the first embodiment, differs only in that the cutout portion 30 is provided, other shapes, it is assumed the dimensions are equal.
- Outer end LE 2 of the blade 10d 2 rather than the outer end portions LE 2 of the blade 10d of the first embodiment, by the amount notches 30 are provided, are located inward in the radial direction.
- the thickness W of the outer end portion LE 2 shown in FIG. 4 is 0.5 mm.
- Blade 10d 2 is not limited to the leading edge LE, the more outer side in the radial direction, the thickness is reduced.
- the thickness of the edge E is smaller than the thickness of the outer end portion LE 2.
- the minimum thickness of the leading edge LE is larger than the thickness of the edge E.
- FIG. 5 is an enlarged view of a broken line portion in FIG.
- the notch 30 has a 45-degree inclination angle with respect to the rotation axis direction and the radial direction.
- a front edge portion Ef of the most air inlet 11a side of the edge E, the separation distance L1 in the rotation axis direction of the outer end portion LE 2 is 2.5 mm.
- the radial length of the notch 30, that is, the radial distance L 2 between the front edge Ef of the edge E and the outer end LE 2 is also 2.5 mm.
- Blade 10d 2 is a curved shape in the direction of rotation.
- the separation distance L1 as shown in FIG. 5, the cross-section passing through the rotation axis center of the compressor wheel 10A, before when projected and edge Ef and an outer end LE 2, both the rotation axis direction of the Separation distance.
- the compressor impeller 10A by notches 30 are provided, the compressor impeller 10 of the first embodiment, the thickness of the outer end portion LE 2 is increased. If it is ensured a thickness of the outer end portion LE 2 is more than 0.5 mm, even as a solid to the outer end portion LE 2 collides, blade 10d 2 is hardly damaged. By notches 30 are provided, damage of the blades 10d 2 by collision with solids penetrate between the wing is reduced.
- the radial length of the cutout portion 30 (distance L2) is larger, the thickness of the outer end portion LE 2 is increased. Distance L2 is larger, thereby reducing the risk of blade 10d 2 can be damaged. However, the larger the distance L2, the area of the blade 10d 2 is reduced, operation efficiency of the compressor C 2 is decreased.
- FIG. 6 is a diagram illustrating the relationship between the shape of the notch 30 and the compressor performance.
- the horizontal axis in FIG. 6 indicates the rotation speed of the compressor impeller 10A.
- the vertical axis of FIG. 6 indicates the compressor performance of the compressor C2 of the second embodiment and the compressor of the comparative example.
- the comparative example differs from the compressor impeller 10A of the second embodiment only in that the notch 30 is not provided, and all other conditions are the same.
- the solid line in FIG. 6 indicates the compressor performance when the radial length (separation distance L2) of the notch 30 is 2.5 mm (hereinafter, referred to as C2.5).
- the dashed line in FIG. 6 indicates the compressor performance when the radial length (separation distance L2) of the cutout portion 30 is 5.0 mm (hereinafter, referred to as C5.0).
- the broken line in FIG. 6 is the compressor performance of the comparative example, and the plot on this broken line indicates that the compressor performance is equal to that of the comparative example. Therefore, in FIG. 6, the lower the distance from the broken line, the greater the decrease in compressor performance with respect to the comparative example.
- the two-dot chain line in FIG. 6 indicates an allowable line of the compressor performance. Therefore, in FIG. 6, the range between the broken line and the two-dot chain line indicates that the compressor performance is lower than that of the comparative example, but the compressor performance is within an allowable range.
- the amount of performance decrease with respect to the comparative example is within an allowable range.
- the radial length (separation distance L2) of the notch portion 30 exceeds 5.0 mm, the compressor performance falls below the allowable line depending on the number of rotations. Therefore, the radial length (separation distance L2) of the notch 30 is preferably 2.5 mm or more and 5.0 mm or less. In the case the radial length of the notch 30 (distance L2) is 5.0 mm, the thickness of the outer end portion LE 2 is, for example, 0.65 mm.
- the outer end portion LE 2 thickness 0.5 mm or more and may be less than 0.65 mm.
- the radial length (separation distance L2) of the notch 30 is not particularly limited.
- Figure 7 is a diagram for explaining supercharger TC 3 of the third embodiment.
- Turbocharger TC 3 of the third embodiment, the protective wall portion in the turbocharger TC of the first embodiment 20, and, notches 30 in the supercharger TC 2 of the second embodiment is provided.
- the supercharger TC3 of the third embodiment differs from the first embodiment only in the configuration of the notch 30.
- the supercharger TC3 of the third embodiment differs from the second embodiment only in the configuration of the protection wall 20.
- symbol as the above is attached
- Turbocharger TC 3 of the third embodiment includes a compressor C 3 including the compressor housing 4 and the compressor impeller 10A.
- a protective wall portion 20 is provided on the inner wall surface 4a of the compressor housing 4.
- the protection wall portion 20 includes a protection surface 20a protruding inward in the radial direction from the inner wall surface 4a, and an inclined surface 20b extending from the protection surface 20a to the intake port 11a side.
- Compressor impeller 10A is provided with a blade 10d 2.
- Blade 10d 2 is from the outer end portion LE 2 of the leading edge LE, includes a cutout portion 30 which extends in the direction away from the inlet port 11a and an outer side in the radial direction. Notches 30 extends from the outer end portion LE 2 to the edge E. Cutout portion 30, the outer end portion LE 2 of the leading edge LE, which extends in a direction away from the protective surface 20a and an outer radial.
- the protection surface 20a faces the notch 30 in the rotation axis direction.
- both the protected surface 20a and the cutout portion 30 is provided, as in the first embodiment and the second embodiment, is a possibility that the blades 10d 2 is damaged is reduced.
- By notches 30 are provided, damage of the blades 10d 2 by collision with solids penetrate between the wing is reduced.
- the protruding height of the protection surface 20a is not particularly limited.
- the portion that best located inward in the radial direction may be located outward in the radial direction from the outer end LE 2.
- the portion that best located inward in the radial direction may be opposite to the outer end portion LE 2 in the rotation axis direction.
- Protected surface 20a may protrude to the inside in the radial direction from the outer end portion LE 2.
- the inclined surface 20b is not essential. If the inclined surface 20b is provided, the intersection x of extension and (7 indicated by a dashed line) the blade 10d 2 of the inclined surface 20b may be located on the leading edge LE. Intersection x may be located on the cutout portion 30, it may coincide with the outer end LE 2.
- the thickness of the outer end portion LE 2 and an intersection x is not particularly limited.
- the thickness at the intersection x of the extension line of the inclined surface 20b is, even more than 9% of the thickness at the outer end portion LE 2 Good.
- compressors C, C 2 , and C 3 are provided in the supercharger.
- the compressors C, C 2 , and C 3 are applicable not only to the supercharger but also to any other devices.
- Compressor C, C 2, C 3 may be provided alone.
- an example of a compression system to which the above-described compressor C is applied will be described.
- FIG. 8 is a diagram illustrating the compression system 100.
- the compression system 100 includes a low-pressure stage compression unit 110 (pre-stage compression unit), a first intercooler 120 (intercooler), a compressor C (C 2 , C 3 ), and a second intercooler 130.
- the low-pressure stage compression section 110 increases the pressure of the intake air.
- the first intercooler 120 is connected to the low-pressure stage compression unit 110.
- the air pressurized by the low-pressure stage compression section 110 is guided to the first intercooler 120.
- the first intercooler 120 cools the air guided from the low-pressure stage compression section 110.
- the compressor C is connected to the first intercooler 120.
- the air cooled by the first intercooler 120 is drawn into the flow path 11 from the intake port 11a of the compressor C.
- the pressure of the air taken into the flow passage 11 is increased in the diffuser flow passage 12 and the compressor scroll flow passage 13 (see FIG. 1).
- a second intercooler 130 is connected to the compressor scroll passage 13. The second intercooler 130 cools the air pressurized by the compressor C and discharges the air to the outside.
- the compression system 100 is a multistage compression system that compresses (pressurizes) air in multiple stages.
- a first intercooler 120 is provided between the low-pressure stage compression section 110 and the compressor C.
- the first intercooler 120 may generate condensed water from the compressed air compressed by the low-pressure stage compression section 110. In a cold region or the like, condensed water is cooled between the first intercooler 120 and the compressor C, and may become ice blocks.
- the ice blocks may collide with the compressor impeller 10.
- a part of the leading edge LE of the blade 10d in the radial direction is partially covered with the protection surface 20a. Therefore, there is a low possibility that the blade 10d is damaged by the collision of the ice blocks.
- the compression system 100 includes the compressor C of the first embodiment.
- the compression system 100 may include the compressors C 2 and C 3 of the second and third embodiments.
- compressor C, and C 2, C 3 has been described when used in a multi-stage compression system.
- a compression system having only one compression stage there is a possibility that an ice block may collide with the leading edge LE.
- the solids that collide with the leading edge LE are not limited to ice blocks.
- Additional compressor C, C 2, C 3 is not limited to a multi-stage compression system, the compression stages may be applied to the compression system of only one stage. Compressor C, C 2, C 3 may be used alone.
- the protective wall portion 20 (protective surface 20a) is provided on the entire circumference of the inner wall surface 4a.
- the protective wall portion 20 (protective surface 20a) may be provided on a part of the inner wall surface 4a in the circumferential direction.
- a plurality of protective wall portions 20 (protective surfaces 20a) may be provided apart from each other in the circumferential direction of the inner wall surface 4a.
- the cutout portion 30 to all of the plurality of blades 10d 2 are provided. However, the cutout portion 30, only to be provided on at least one of the plurality of blades 10d 2.
- the present disclosure can be used for a compressor and a compression system.
- Compressor housing (housing) 4a Inner wall surface 10: Compressor impeller 10A: Compressor impeller 10a: Hub 10d: Blade 10d 2 : Blade 11: Flow path 11a: Inlet 20a: Protective surface 20b: Inclined surface 30: Notch 100: compression system 110: low-pressure stage compression part (front compression unit) 120: first intercooler (intercooler) C: compressor C 2: compressor C 3: compressor LE: leading edge LE 1: base end portion LE 2: Outer edge
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Supercharger (AREA)
Abstract
A compressor C comprises a compressor impeller 10 provided with a plurality of blades 10d on an outer periphery of a hub 10a, a compressor housing 4 in which a flow path 11 that houses the compressor impeller is formed, and a protective surface 20a that protrudes radially inward of the compressor impeller from an inner wall surface 4a of the housing facing the flow path, and faces radially outer part of the blades along a direction of a rotational axis of the compressor impeller.
Description
本開示は、圧縮機および圧縮システムに関する。本出願は2018年7月24日に提出された日本特許出願第2018-138714号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。
The present disclosure relates to a compressor and a compression system. This application claims the benefit of priority based on Japanese Patent Application No. 2018-138714 filed on July 24, 2018, the contents of which are incorporated herein by reference.
特許文献1には、ハウジングにコンプレッサインペラが収容された圧縮機が開示されている。ハウジングには、コンプレッサインペラが収容される主流路と、コンプレッサインペラの径方向外側に位置するスクロール流路とが形成されている。コンプレッサインペラは、ハブの外周に設けられる複数の羽根を備えている。羽根のリーディングエッジは、主流路の開口に臨んでいる。
Patent Document 1 discloses a compressor in which a compressor impeller is housed in a housing. The housing has a main flow passage for accommodating the compressor impeller and a scroll flow passage located radially outside the compressor impeller. The compressor impeller has a plurality of blades provided on the outer periphery of the hub. The leading edge of the blade faces the opening of the main flow path.
圧縮機においては、氷塊等の固形物が主流路に侵入するおそれがある。主流路に侵入した固形物は、羽根のリーディングエッジに衝突する。羽根の周速は、径方向の外側ほど速い。そのため、リーディングエッジのうち、羽根の径方向の外側に固形物が衝突すると、羽根が損傷するおそれが高い。
In the compressor, solids such as ice blocks may enter the main flow path. The solid that has entered the main flow path collides with the leading edge of the blade. The peripheral speed of the blade is higher as it goes radially outward. For this reason, when a solid material collides with the leading edge in the radial direction outside of the blade, the blade is likely to be damaged.
本開示の目的は、羽根の損傷を低減することが可能な圧縮機および圧縮システムを提供することである。
An object of the present disclosure is to provide a compressor and a compression system capable of reducing blade damage.
本開示の一態様に係る圧縮機は、ハブの外周に複数の羽根が設けられたコンプレッサインペラと、コンプレッサインペラが収容される流路が形成されたハウジングと、流路に面するハウジングの内壁面から、コンプレッサインペラの径方向内側に突出し、羽根のうち径方向の外側の一部に対して、コンプレッサインペラの回転軸方向に対向する保護面と、を備える。
A compressor according to an aspect of the present disclosure includes a compressor impeller having a plurality of blades provided on an outer periphery of a hub, a housing having a flow passage that houses the compressor impeller, and an inner wall surface of the housing facing the flow passage. And a protection surface protruding radially inward of the compressor impeller and facing a radially outer part of the blades in the direction of the rotation axis of the compressor impeller.
保護面は、少なくとも、羽根のリーディングエッジのうち径方向の最も外側に位置する外端部と、回転軸方向に対向してもよい。
The protective surface may face at least the radially outermost end of the leading edge of the blade in the rotational axis direction.
保護面は、回転軸方向の位置が、ハブの先端と、羽根のリーディングエッジとの間であってもよい。
The protective surface may be positioned in the rotation axis direction between the tip of the hub and the leading edge of the blade.
保護面のうち径方向の最も内側から、径方向の外側であって羽根と離隔する方向に延在する傾斜面を備え、羽根のリーディングエッジのうち、傾斜面の延長線との交点における厚みは、外端部における厚みの109%以上であってもよい。
From the innermost side in the radial direction of the protective surface, a slope is provided extending in a direction away from the blade in the radially outer side, of the leading edge of the blade, the thickness at the intersection with the extension of the slope is Alternatively, the thickness may be 109% or more of the thickness at the outer end.
複数の羽根の少なくともいずれかは、リーディングエッジのうち径方向の最も外側に位置する外端部から、径方向の外側であって保護面から離隔する方向に延在する切り欠き部を備えてもよい。
At least one of the plurality of blades may include a notch extending from a radially outermost end of the leading edge in a direction radially outward and away from the protective surface. Good.
本開示の他の態様に係る圧縮機は、吸気口を含む流路が形成されたハウジングと、ハウジングの流路内に収容され、ハブの外周に複数の羽根が設けられたコンプレッサインペラと、複数の羽根の少なくともいずれかに設けられ、吸気口に臨むリーディングエッジのうち流路の径方向の最も外側に位置する0.5mm以上の厚みを有する外端部から、径方向の外側であって吸気口から離隔する方向に延在する切り欠き部と、を備える。
A compressor according to another aspect of the present disclosure includes a housing in which a flow path including an intake port is formed, a compressor impeller housed in the flow path of the housing, and provided with a plurality of blades on an outer periphery of a hub; Is provided on at least any one of the blades, and from the outer end portion having a thickness of 0.5 mm or more, which is located at the outermost position in the radial direction of the flow path among the leading edges facing the intake port, and is located radially outside, A notch extending in a direction away from the mouth.
切り欠き部の径方向の長さは、2.5mm以上、かつ、5.0mm以下であってもよい。
径 The radial length of the notch may be 2.5 mm or more and 5.0 mm or less.
本開示の一態様に係る圧縮システムは、前段圧縮部と、前段圧縮部に接続されたインタクーラと、インタクーラに接続される圧縮機と、を備える。
圧 縮 A compression system according to an aspect of the present disclosure includes a pre-stage compression unit, an intercooler connected to the pre-stage compression unit, and a compressor connected to the intercooler.
本開示によれば、羽根の損傷が低減される。
According to the present disclosure, damage to the blade is reduced.
以下に添付図面を参照しながら、本開示の一実施形態について説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。
Hereinafter, an embodiment of the present disclosure will be described with reference to the accompanying drawings. The dimensions, materials, other specific numerical values, and the like shown in the embodiments are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the specification and the drawings, elements having substantially the same function and configuration will be denoted by the same reference numerals, without redundant description, and elements not directly related to the present disclosure will be omitted. I do.
図1は、第1実施形態の過給機TCの概略断面図である。以下では、図1に示す矢印L方向を過給機TCの左側として説明する。図1に示す矢印R方向を過給機TCの右側として説明する。図1に示すように、過給機TCは、過給機本体1を備える。過給機本体1は、ベアリングハウジング2、タービンハウジング3、および、コンプレッサハウジング4(ハウジング)で構成される。タービンハウジング3は、ベアリングハウジング2の左側に締結ボルト5によって連結される。コンプレッサハウジング4は、ベアリングハウジング2の右側に締結ボルト6によって連結される。
FIG. 1 is a schematic sectional view of the supercharger TC of the first embodiment. Hereinafter, the direction of arrow L shown in FIG. 1 will be described as the left side of the supercharger TC. The direction of arrow R shown in FIG. 1 will be described as the right side of the supercharger TC. As shown in FIG. 1, the supercharger TC includes a supercharger main body 1. The supercharger main body 1 includes a bearing housing 2, a turbine housing 3, and a compressor housing 4 (housing). The turbine housing 3 is connected to the left side of the bearing housing 2 by a fastening bolt 5. The compressor housing 4 is connected to the right side of the bearing housing 2 by a fastening bolt 6.
ベアリングハウジング2には、軸受孔2aが形成されている。軸受孔2aは、過給機TCの左右方向に貫通する。軸受孔2aは、シャフト7の一部を収容する。軸受孔2aには、一対の軸受8が収容される。ここでは、軸受8が、例えばフルフローティング軸受で構成されている。シャフト7は、一対の軸受8によって、回転自在に軸支されている。シャフト7の左端部には、タービンインペラ9が設けられている。タービンインペラ9は、タービンハウジング3に回転自在に収容されている。
軸 受 A bearing hole 2a is formed in the bearing housing 2. The bearing hole 2a penetrates the supercharger TC in the left-right direction. The bearing hole 2 a accommodates a part of the shaft 7. A pair of bearings 8 are housed in the bearing holes 2a. Here, the bearing 8 is configured by, for example, a full floating bearing. The shaft 7 is rotatably supported by a pair of bearings 8. At the left end of the shaft 7, a turbine impeller 9 is provided. The turbine impeller 9 is rotatably accommodated in the turbine housing 3.
シャフト7の右端部には、コンプレッサインペラ10が設けられている。コンプレッサハウジング4には、流路11が形成されている。コンプレッサインペラ10は、流路11に回転自在に収容されている。流路11は、コンプレッサハウジング4を左右方向に貫通している。流路11は、吸気口11aを含む。吸気口11aは、コンプレッサハウジング4に形成される開口である。吸気口11aは、過給機TCの右側に開口する。吸気口11aは、流路11における空気の流れ方向の上流端である。吸気口11aは、不図示のエアクリーナに接続される。
コ ン プ レ ッ サ A compressor impeller 10 is provided at the right end of the shaft 7. A channel 11 is formed in the compressor housing 4. The compressor impeller 10 is rotatably accommodated in the flow path 11. The flow path 11 passes through the compressor housing 4 in the left-right direction. The flow path 11 includes an intake port 11a. The intake port 11a is an opening formed in the compressor housing 4. The intake port 11a opens to the right of the supercharger TC. The intake port 11 a is an upstream end in the flow direction of the air in the flow path 11. The intake port 11a is connected to an air cleaner (not shown).
ベアリングハウジング2とコンプレッサハウジング4の対向面によって、ディフューザ流路12が形成される。ディフューザ流路12は、空気を昇圧する。ディフューザ流路12は、環状に形成される。ディフューザ流路12は、径方向内側において、流路11に連通している。流路11の径方向外側にディフューザ流路12が連続している。
(4) The diffuser channel 12 is formed by the facing surfaces of the bearing housing 2 and the compressor housing 4. The diffuser channel 12 pressurizes air. The diffuser channel 12 is formed in an annular shape. The diffuser flow path 12 communicates with the flow path 11 on the radially inner side. The diffuser channel 12 is continuous with the channel 11 radially outside.
コンプレッサハウジング4には、コンプレッサスクロール流路13が設けられている。コンプレッサスクロール流路13は環状である。コンプレッサスクロール流路13は、例えば、ディフューザ流路12よりもシャフト7の径方向外側に位置する。コンプレッサスクロール流路13は、不図示のエンジンの吸気口と、ディフューザ流路12とに連通している。
コ ン プ レ ッ サ A compressor scroll flow path 13 is provided in the compressor housing 4. The compressor scroll channel 13 is annular. The compressor scroll passage 13 is located, for example, radially outside the shaft 7 from the diffuser passage 12. The compressor scroll passage 13 communicates with an intake port of an engine (not shown) and the diffuser passage 12.
コンプレッサインペラ10が回転すると、吸気口11aからコンプレッサハウジング4内に空気が吸気される。吸気された空気は、コンプレッサインペラ10の翼間を流通する過程において加圧加速される。加圧加速された空気は、ディフューザ流路12およびコンプレッサスクロール流路13で昇圧される。昇圧された空気は、エンジンの吸気口に導かれる。すなわち、過給機TCは、コンプレッサハウジング4、および、コンプレッサインペラ10を含む圧縮機Cを備える。
(4) When the compressor impeller 10 rotates, air is drawn into the compressor housing 4 from the intake port 11a. The intake air is pressurized and accelerated in a process of flowing between the blades of the compressor impeller 10. The pressurized and accelerated air is pressurized in the diffuser channel 12 and the compressor scroll channel 13. The pressurized air is led to the intake port of the engine. That is, the supercharger TC includes the compressor C including the compressor housing 4 and the compressor impeller 10.
タービンハウジング3には、吐出口14が形成されている。吐出口14は、過給機TCの左側に開口する。吐出口14は、不図示の排気ガス浄化装置に接続される。また、タービンハウジング3には、流路15およびタービンスクロール流路16が設けられている。タービンスクロール流路16は、例えば、流路15の径方向の外側に設けられる。タービンスクロール流路16は環状である。タービンスクロール流路16は、不図示のガス流入口と連通する。ガス流入口には、不図示のエンジンの排気マニホールドから排出される排気ガスが導かれる。タービンスクロール流路16は、流路15にも連通している。したがって、ガス流入口からタービンスクロール流路16に導かれた排気ガスは、流路15およびタービンインペラ9を介して吐出口14に導かれる。吐出口14に導かれる排気ガスは、流通過程においてタービンインペラ9を回転させる。
吐出 A discharge port 14 is formed in the turbine housing 3. The discharge port 14 opens on the left side of the supercharger TC. The discharge port 14 is connected to an exhaust gas purification device (not shown). The turbine housing 3 is provided with a flow path 15 and a turbine scroll flow path 16. The turbine scroll flow path 16 is provided, for example, radially outside the flow path 15. The turbine scroll channel 16 is annular. The turbine scroll passage 16 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold (not shown) of the engine is guided to the gas inlet. The turbine scroll flow path 16 also communicates with the flow path 15. Therefore, the exhaust gas guided from the gas inlet to the turbine scroll flow path 16 is guided to the discharge port 14 via the flow path 15 and the turbine impeller 9. The exhaust gas guided to the discharge port 14 rotates the turbine impeller 9 during the circulation process.
タービンインペラ9の回転力は、シャフト7を介してコンプレッサインペラ10に伝達される。コンプレッサインペラ10が回転すると、上記のとおりに空気が昇圧される。圧縮機Cにより昇圧された空気が、エンジンの吸気口に導かれる。
回 転 The rotational force of the turbine impeller 9 is transmitted to the compressor impeller 10 via the shaft 7. When the compressor impeller 10 rotates, the air pressure is increased as described above. The air pressurized by the compressor C is guided to the intake port of the engine.
圧縮機Cにおいては、吸気口11aから流路11に空気が吸気される。圧縮機Cの使用環境によっては、流路11に吸気される空気中に氷塊等の固形物が含まれることがある。固形物が流路11に侵入すると、固形物との衝突により、コンプレッサインペラ10が損傷するおそれがある。本実施形態の圧縮機Cは、固形物との衝突に起因するコンプレッサインペラ10の損傷を低減する機構を備える。
に お い て In the compressor C, air is sucked into the flow passage 11 from the intake port 11a. Depending on the environment in which the compressor C is used, solids such as ice blocks may be contained in the air sucked into the flow path 11. When the solids enter the flow path 11, the compressor impeller 10 may be damaged by collision with the solids. The compressor C of the present embodiment includes a mechanism for reducing damage to the compressor impeller 10 due to collision with a solid matter.
図2は、図1の破線部分の拡大図である。圧縮機Cは、流路11が形成されたコンプレッサハウジング4を備える。流路11は吸気口11aを含む。流路11は、吸気口11aにおいてコンプレッサハウジング4の外部に開口している。流路11には、コンプレッサインペラ10が収容される。流路11のうち、コンプレッサインペラ10よりも吸気口11a側の内径は大凡一定である。しかし、流路11は、吸気口11aからコンプレッサインペラ10に近づくほど、内径が漸減してもよい。
FIG. 2 is an enlarged view of a broken line portion in FIG. The compressor C includes a compressor housing 4 in which a flow path 11 is formed. The channel 11 includes an intake port 11a. The flow path 11 is open to the outside of the compressor housing 4 at the intake port 11a. The channel 11 accommodates the compressor impeller 10. The inside diameter of the flow path 11 on the intake port 11a side of the compressor impeller 10 is substantially constant. However, the inner diameter of the flow path 11 may gradually decrease as the flow path 11 approaches the compressor impeller 10 from the intake port 11a.
コンプレッサインペラ10は、ハブ10aを備える。ハブ10aは、吸気口11aから離隔するほど径が漸増する。ハブ10aは、先端部10a1および拡径部10a2を備える。先端部10a1は、外径が一定である。拡径部10a2は、先端部10a1に対して、吸気口11aと反対側に連続する。拡径部10a2は、先端部10a1から離隔するほど径が漸増する。
The compressor impeller 10 includes a hub 10a. The diameter of the hub 10a gradually increases as the distance from the intake port 11a increases. Hub 10a has a distal end portion 10a 1 and the enlarged diameter portion 10a 2. Tip 10a 1 is an outer diameter is constant. The enlarged diameter portion 10a 2, to the distal end portion 10a 1, contiguous to the opposite side of the air inlet 11a. The enlarged diameter portion 10a 2 has a diameter gradually increasing as away from the distal end portion 10a 1.
ハブ10aには、図2中、左右方向に貫通する挿通孔10bが形成される。挿通孔10bには、シャフト7が挿通される。シャフト7の先端は、挿通孔10bよりも吸気口11a側に突出する。シャフト7の先端には、締結部材7aが設けられる。ここでは、締結部材7aがボルトで構成されている。シャフト7の先端に設けられる締結部材7aの軸力により、コンプレッサインペラ10がシャフト7に取り付けられる。ただし、シャフト7に対するコンプレッサインペラ10の取り付け方法はボルト締めに限られない。例えば、シャフト7およびコンプレッサインペラ10は、溶着されてもよいし、接着剤により取り付けられてもよい。
挿 In the hub 10a, an insertion hole 10b penetrating in the left-right direction in FIG. 2 is formed. The shaft 7 is inserted into the insertion hole 10b. The tip of the shaft 7 protrudes toward the intake port 11a from the insertion hole 10b. At the tip of the shaft 7, a fastening member 7a is provided. Here, the fastening member 7a is formed of a bolt. The compressor impeller 10 is attached to the shaft 7 by the axial force of a fastening member 7 a provided at the tip of the shaft 7. However, the method of attaching the compressor impeller 10 to the shaft 7 is not limited to bolting. For example, the shaft 7 and the compressor impeller 10 may be welded or attached by an adhesive.
ハブ10aの外周には、短羽根10cおよび羽根10dがそれぞれ複数設けられる。短羽根10cおよび羽根10dは、ハブ10aの外周に交互に配される。短羽根10cおよび羽根10dは、コンプレッサインペラ10の回転方向(以下、単に回転方向という)に互いに離隔して設けられる。回転方向に隣り合う短羽根10cおよび羽根10dは、回転方向に等間隔を維持している。なお、羽根10dは、ハブ10aの外周に2つ以上設けられればよく、その数は限定されるものではない。また、短羽根10cは必須ではなく、コンプレッサインペラ10は、ハブ10aの外周に複数の羽根10dが設けられればよい。
複数 A plurality of short blades 10c and blades 10d are provided on the outer periphery of the hub 10a. The short blades 10c and the blades 10d are alternately arranged on the outer periphery of the hub 10a. The short blades 10c and the blades 10d are provided apart from each other in a rotation direction of the compressor impeller 10 (hereinafter, simply referred to as a rotation direction). The short blades 10c and the blades 10d adjacent to each other in the rotation direction maintain an equal interval in the rotation direction. The number of the blades 10d may be two or more on the outer periphery of the hub 10a, and the number is not limited. Further, the short blade 10c is not essential, and the compressor impeller 10 may be provided with a plurality of blades 10d on the outer periphery of the hub 10a.
短羽根10cは、拡径部10a2の範囲内に設けられる。羽根10dは、ハブ10aの先端部10a1から拡径部10a2に跨って設けられる。羽根10dは、短羽根10cよりも回転軸方向に長い。羽根10dは、吸気口11aに臨むリーディングエッジLEを備える。リーディングエッジLEは、羽根10dのうち、最も吸気口11a側に位置する面である。リーディングエッジLEは、流路11(コンプレッサインペラ10)の径方向(以下、単に径方向という)の最も内側に位置する基端部LE1を備える。基端部LE1は、ハブ10a(先端部10a1)の外周面と連続する部位である。リーディングエッジLEは、径方向の最も外側に位置する外端部LE2を備える。外端部LE2は、リーディングエッジLEのうち、流路11に面するコンプレッサハウジング4の内壁面4aに最も近接する部位である。
Short blade 10c are provided within the enlarged diameter portion 10a 2. Blade 10d is provided over the distal end 10a 1 of the hub 10a to the enlarged diameter portion 10a 2. The blade 10d is longer in the rotation axis direction than the short blade 10c. The blade 10d has a leading edge LE facing the air inlet 11a. The leading edge LE is a surface of the blade 10d that is located closest to the intake port 11a. Leading edge LE has a channel 11 (the compressor impeller 10) radially (hereinafter, simply referred to as radial direction) of the base end portion LE 1 located innermost. Proximal portion LE 1 is a section which is continuous with the outer peripheral surface of the hub 10a (distal end 10a 1). Leading edge LE has a outer end portion LE 2 positioned closest to the outer side in the radial direction. Outer end LE 2, of the leading edge LE, is the site closest to the inner wall surface 4a of compressor housing 4 facing the flow path 11.
羽根10dは、回転方向に湾曲した形状である。基端部LE1と外端部LE2とは、互いに回転方向にずれて位置している。ただし、羽根10dは、径方向に直線状に延在してもよい。また、羽根10dは、ハブ10aから離隔するほど、板厚が小さくなる。羽根10dのリーディングエッジLEは、基端部LE1の厚みが最も大きく、外端部LE2に近づくにしたがって厚みが小さくなる。ただし、リーディングエッジLEの厚みは、一定であってもよい。また、リーディングエッジLEは、基端部LE1の厚みが、外端部LE2の厚みよりも小さくてもよい。なお、本明細書において、リーディングエッジLEの厚みとは、リーディングエッジLEの延在方向および回転軸方向に直交する幅方向の長さを示すものとする。
The blade 10d has a shape curved in the rotation direction. The base end portion LE 1 and the outer end portion LE 2, are located offset in the rotational direction. However, the blade 10d may extend linearly in the radial direction. In addition, the thickness of the blade 10d decreases as the distance from the hub 10a increases. The leading edge LE of the blade 10d is the largest thickness of the base end portion LE 1, the thickness becomes smaller toward the outer edge portion LE 2. However, the thickness of the leading edge LE may be constant. Also, the leading edge LE, the thickness of the base end portion LE 1 may be smaller than the thickness of the outer end portion LE 2. In the present specification, the thickness of the leading edge LE indicates a length in a width direction orthogonal to the extending direction of the leading edge LE and the rotation axis direction.
シャフト7が回転すると、シャフト7の周方向にコンプレッサインペラ10(短羽根10cおよび羽根10d)が回転する。リーディングエッジLEは、径方向の外側ほど周速が速い。リーディングエッジLEは、外端部LE2に近いほど周速が速い。リーディングエッジLEは、径方向の外側ほど厚みが小さい。仮に、流路11に侵入した固形物がリーディングエッジLEに衝突した場合、衝突箇所が外端部LE2に近づくほど、羽根10dが損傷しやすい。そこで、圧縮機Cは、リーディングエッジLEの外端部LE2側を固形物から保護する保護壁部20を備える。
When the shaft 7 rotates, the compressor impeller 10 (short blade 10c and blade 10d) rotates in the circumferential direction of the shaft 7. The peripheral speed of the leading edge LE is higher as it goes radially outward. Leading edge LE, the higher circumferential speed is faster near the outer end LE 2. The thickness of the leading edge LE is smaller toward the outside in the radial direction. Assuming that the solids which has entered the flow path 11 collides with the leading edge LE, the more collisions position approaches the outer end LE 2, blade 10d is easily damaged. Accordingly, the compressor C is provided with a protective wall 20 that protects the outer end LE 2 side of the leading edge LE from the solids.
保護壁部20は、流路11に面するコンプレッサハウジング4の内壁面4aから、コンプレッサインペラ10の径方向の内側に突出する環状の突起で構成される。保護壁部20は、内壁面4aから略垂直に突出する保護面20aを備える。つまり、保護面20aは、径方向に平行な面である。保護面20aは、流路11に面するコンプレッサハウジング4の内壁面4aから、径方向の内側に突出する。
The protection wall portion 20 is formed of an annular protrusion that protrudes radially inward of the compressor impeller 10 from the inner wall surface 4a of the compressor housing 4 facing the flow path 11. The protection wall portion 20 includes a protection surface 20a that projects substantially perpendicularly from the inner wall surface 4a. That is, the protection surface 20a is a surface parallel to the radial direction. The protection surface 20a protrudes radially inward from the inner wall surface 4a of the compressor housing 4 facing the flow path 11.
羽根10dのリーディングエッジLEは、径方向の外側ほど、吸気口11aから離隔するように、径方向に対して傾斜している。リーディングエッジLEと保護面20aとの離隔距離は、径方向の内側ほど小さくなっている。ただし、保護面20aは、径方向の内側ほど、リーディングエッジLEに近接する方向に傾いて設けられてもよい。保護面20aは、径方向の内側ほど、リーディングエッジLEから離隔する方向に傾いて設けられてもよい。リーディングエッジLEと保護面20aとの離隔距離は、径方向の内側ほど大きくてもよいし、径方向の位置に拘わらず一定でもよい。
リ ー The leading edge LE of the blade 10d is inclined with respect to the radial direction so that the leading edge LE of the blade 10d is further away from the intake port 11a in the radial direction. The separation distance between the leading edge LE and the protection surface 20a is smaller toward the inside in the radial direction. However, the protection surface 20a may be provided so as to be inclined in a direction closer to the leading edge LE toward the inside in the radial direction. The protection surface 20a may be provided so as to be inclined in a direction away from the leading edge LE toward the inside in the radial direction. The separation distance between the leading edge LE and the protection surface 20a may be larger toward the inside in the radial direction, or may be constant regardless of the position in the radial direction.
保護面20aの突出量(径方向の長さ)は、コンプレッサインペラ10と内壁面4aとの径方向の隙間以上である。保護面20aは、羽根10dのうち径方向の外側の一部に対して、コンプレッサインペラ10の回転軸方向に対向する。保護面20aは、リーディングエッジLEの外端部LE2よりも、径方向の内側まで延在する。保護面20aは、少なくとも、羽根10dのリーディングエッジLEのうち、径方向の最も外側に位置する外端部LE2と回転軸方向に対向する。ただし、保護面20aの突出量(径方向の長さ)は特に限定されない。
The protrusion amount (radial length) of the protection surface 20a is equal to or larger than the radial gap between the compressor impeller 10 and the inner wall surface 4a. The protection surface 20a is opposed to a part of the blade 10d on the outside in the radial direction in the rotation axis direction of the compressor impeller 10. Protected surface 20a, rather than the outer end portions LE 2 of the leading edge LE, extending to the inside in the radial direction. Protected surface 20a is at least, of the leading edge LE of the blade 10d, facing the rotation axis direction and an outer end portion LE 2 positioned closest to the outer side in the radial direction. However, the protrusion amount (radial length) of the protection surface 20a is not particularly limited.
保護面20aにより、羽根10dのうち径方向の外側の一部が被覆される。これにより、羽根10dのうち径方向の外側の一部に対する固形物の衝突が回避される。羽根10dが損傷するおそれが低減される。
(4) The protection surface 20a covers a part of the blade 10d on the radially outer side. Thereby, collision of the solid matter with a part of the blade 10d on the radially outer side is avoided. The risk of damage to the blade 10d is reduced.
保護面20aとリーディングエッジLEとの軸方向の離隔距離が大きくなるほど、外端部LE2に固形物が衝突する可能性が高くなる。したがって、保護面20aとリーディングエッジLEとは、互いに接触しない範囲内で、軸方向の離隔距離が小さいとよい。保護壁部20(保護面20a)の回転軸方向の位置は、ハブ10a(先端部10a1)の先端と、羽根10dのリーディングエッジLEとの間である。保護面20aとリーディングエッジLEとの軸方向の離隔距離が、羽根10dと内壁面4aとの径方向の隙間と大凡等しい。ただし、保護面20aとリーディングエッジLEとの軸方向の離隔距離は、羽根10dと内壁面4aとの径方向の隙間よりも大きくてもよいし、小さくてもよい。
Greater distance in the axial direction of the protective surface 20a and the leading edge LE has the possibility of solids collide with the outer end portion LE 2 is increased. Therefore, it is preferable that the distance between the protection surface 20a and the leading edge LE in the axial direction is small as long as it does not contact each other. The position of the protection wall portion 20 (protection surface 20a) in the rotation axis direction is between the tip of the hub 10a (tip portion 10a 1 ) and the leading edge LE of the blade 10d. The axial separation distance between the protection surface 20a and the leading edge LE is approximately equal to the radial gap between the blade 10d and the inner wall surface 4a. However, the axial separation distance between the protection surface 20a and the leading edge LE may be larger or smaller than the radial gap between the blade 10d and the inner wall surface 4a.
保護壁部20は、傾斜面20bを備える。傾斜面20bは、保護面20aのうち径方向の最も内側から、径方向の外側であって羽根10dと離隔する方向(吸気口11a側)に延在する。傾斜面20bにより、保護壁部20に衝突した固形物は、流路11の中心側に導かれやすくなる。固形物は、リーディングエッジLEの基端部LE1側に衝突しやすくなる。
The protection wall 20 includes an inclined surface 20b. The inclined surface 20b extends from the radially innermost side of the protective surface 20a to the radially outer side and the direction away from the blade 10d (toward the intake port 11a). By the inclined surface 20b, the solid matter that has collided with the protective wall portion 20 is easily guided to the center side of the flow path 11. Solids, easily collides with the proximal end portion LE 1 side of the leading edge LE.
一例として、リーディングエッジLEの外端部LE2における厚みが、0.33mmであるとする。リーディングエッジLEは、径方向の内側ほど厚みが大きい。保護面20aの突出高さ(径方向の長さ)が1mmである場合、羽根10dのリーディングエッジLEのうち、傾斜面20bの延長線(図2に一点鎖線で示す)との交点xにおける厚みは、0.36mmである。交点xは、傾斜面20bが設けられた場合に、リーディングエッジLEの中で固形物が衝突し得る範囲のうち、径方向の最も外側の位置と言える。保護面20aが設けられない場合に、固形物が衝突し得る範囲の中で、リーディングエッジLEの最小の厚みは0.33mmとなる。保護面20aの突出高さ(径方向の長さ)が1mmの場合、固形物が衝突し得る範囲の中で、リーディングエッジLEの最小の厚みは0.36mmとなる。羽根10dのリーディングエッジLEのうち、傾斜面20bの延長線との交点xにおける厚みは、外端部LE2における厚みの約109%となる。
As an example, the thickness at the outer end LE 2 of the leading edge LE is assumed to be 0.33 mm. The leading edge LE has a greater thickness as it extends radially inward. When the protruding height (radial length) of the protection surface 20a is 1 mm, the thickness at the intersection x of the leading edge LE of the blade 10d with the extension line of the inclined surface 20b (indicated by a dashed line in FIG. 2). Is 0.36 mm. The intersection x can be said to be the radially outermost position in the range where the solids can collide in the leading edge LE when the inclined surface 20b is provided. When the protection surface 20a is not provided, the minimum thickness of the leading edge LE is 0.33 mm in a range where the solid matter can collide. When the protruding height (the length in the radial direction) of the protection surface 20a is 1 mm, the minimum thickness of the leading edge LE is 0.36 mm in a range where a solid object can collide. Among the leading edge LE of the blade 10d, the thickness at the intersection x of the extension line of the inclined surface 20b is about 9% of the thickness at the outer end portion LE 2.
保護面20aの突出高さ(径方向の長さ)が大きくなるほど、交点xは基端部LE1に近づく。基端部LE1に近づくほどリーディングエッジLEの厚みが大きくなる。例えば、保護面20aの突出高さ(径方向の長さ)が2mmになると、交点xにおける厚みは、0.39mmとなる。保護面20aの突出高さ(径方向の長さ)が2mmの場合、羽根10dのリーディングエッジLEのうち、傾斜面20bの延長線との交点xにおける厚みは、外端部LE2における厚みの約121%となる。リーディングエッジLEの基端部LE1側に向かうにしたがって厚みが増す場合、保護面20aの突出高さ(径方向の長さ)が大きくなるほど、交点xにおける厚みが大きくなる。保護面20aの突出高さ、および、外端部LE2および交点xにおけるリーディングエッジLEの厚みは特に限定されない。ただし、羽根10dのリーディングエッジLEのうち、傾斜面20bの延長線との交点xにおける厚みは、外端部LE2における厚みの109%以上であるとよい。
The greater the projection height of the protected surface 20a (the length in the radial direction), the intersection point x is closer to the base end portion LE 1. The thickness of the leading edge LE is increased closer to the base end portion LE 1. For example, when the protruding height (the length in the radial direction) of the protection surface 20a is 2 mm, the thickness at the intersection x is 0.39 mm. When the protrusion height of the protected surface 20a (the length in the radial direction) is 2 mm, of the leading edge LE of the blade 10d, the thickness at the intersection x of the extension line of the inclined surface 20b is the thickness at the outer end portion LE 2 It is about 121%. If the thickness increases toward the proximal end portion LE 1 side of the leading edge LE, the greater the projection height of the protected surface 20a (the length in the radial direction), thickness at the intersection x increases. The projection height of the protective surface 20a, and the thickness of the leading edge LE of the outer end portion LE 2 and an intersection x is not particularly limited. However, among the leading edge LE of the blade 10d, the thickness at the intersection x of the extension line of the inclined surface 20b may If it is more than 9% of the thickness at the outer end portion LE 2.
上述のように、リーディングエッジLEは、基端部LE1側ほど周速が遅い。また、リーディングエッジLEは、基端部LE1側ほど厚みが大きい。固形物の衝突箇所が基端部LE1側になるほど、羽根10dが損傷するおそれが低くなる。傾斜面20bにより、固形物との衝突時における羽根10dの損傷がより一層低減される。ただし、傾斜面20bは必須ではない。例えば、保護壁部20は、回転軸方向に亘って一定の内径を有してもよい。
As described above, the leading edge LE is slow enough base end portion LE 1 side peripheral speed. Also, the leading edge LE has a greater thickness as the base end portion LE 1 side. More collision parts of solids is in the proximal portion LE 1 side, possibly blade 10d is damaged becomes low. The inclined surface 20b further reduces damage to the blade 10d at the time of collision with a solid object. However, the inclined surface 20b is not essential. For example, the protective wall portion 20 may have a constant inner diameter in the rotation axis direction.
図3は、第2実施形態の過給機TC2を説明する図である。第2実施形態の過給機TC2は、第1実施形態の過給機TCにおける保護壁部20に代えて、切り欠き部30が設けられている。保護壁部20および切り欠き部30以外の構成は、第1実施形態と第2実施形態とで同じである。第1実施形態と同じ構成については、上記と同一の符号を付して説明を省略する。
Figure 3 is a diagram for explaining the supercharger TC 2 of the second embodiment. The supercharger TC2 of the second embodiment is provided with a notch 30 instead of the protection wall 20 of the supercharger TC of the first embodiment. The configuration other than the protection wall portion 20 and the cutout portion 30 is the same in the first embodiment and the second embodiment. About the same composition as a 1st embodiment, the same numerals are attached as the above and explanation is omitted.
第2実施形態の過給機TC2は、コンプレッサハウジング4およびコンプレッサインペラ10Aを含む圧縮機C2を備える。コンプレッサハウジング4は、吸気口11aを含む流路11が形成されている。コンプレッサインペラ10Aは、コンプレッサハウジング4の流路11内に収容される。コンプレッサインペラ10Aは、ハブ10aを備える。ハブ10aは、吸気口11aから離隔するほど径が漸増する。ハブ10aは、先端部10a1および拡径部10a2を含む。先端部10a1は、外径が大凡一定である。拡径部10a2は、先端部10a1に対して、吸気口11aと反対側に連続する。拡径部10a2は、先端部10a1から離隔するほど径が漸増する。
Supercharger TC 2 of the second embodiment comprises a compressor C 2 comprising the compressor housing 4 and the compressor impeller 10A. The flow path 11 including the intake port 11a is formed in the compressor housing 4. The compressor impeller 10 </ b> A is housed in the flow passage 11 of the compressor housing 4. The compressor impeller 10A includes a hub 10a. The diameter of the hub 10a gradually increases as the distance from the intake port 11a increases. Hub 10a includes a tip portion 10a 1 and the enlarged diameter portion 10a 2. Tip 10a 1 has an outer diameter approximately constant. The enlarged diameter portion 10a 2, to the distal end portion 10a 1, contiguous to the opposite side of the air inlet 11a. The enlarged diameter portion 10a 2 has a diameter gradually increasing as away from the distal end portion 10a 1.
ハブ10aの外周には、短羽根10cおよび羽根10d2がそれぞれ複数設けられる。短羽根10cおよび羽根10d2は、ハブ10aの外周に交互に配される。短羽根10cおよび羽根10d2は、コンプレッサインペラ10Aの回転方向(以下、単に回転方向という)に互いに離隔して設けられる。回転方向に隣り合う短羽根10cおよび羽根10d2は、回転方向に等間隔を維持している。羽根10d2は、ハブ10aの外周に2つ以上設けられればよく、その数は限定されるものではない。短羽根10cは必須ではなく、コンプレッサインペラ10Aは、ハブ10aの外周に複数の羽根10d2が設けられていればよい。
The outer periphery of the hub 10a, the short blades 10c and blade 10d 2 are more respectively provided. Short blade 10c and the vane 10d 2 are alternately disposed at the outer periphery of the hub 10a. Short blade 10c and the vane 10d 2, the rotation direction of the compressor impeller 10A (hereinafter, simply referred to as rotation direction) is provided spaced apart from one another in. Short blade 10c and the vane 10d adjacent in the rotation direction 2 is maintained at equal intervals in the rotational direction. Blade 10d 2 may as long provided two or more on the outer circumference of the hub 10a, the number is not limited. Short blade 10c is not essential, the compressor impeller 10A has only to the plurality of blades 10d 2 is provided on an outer periphery of the hub 10a.
短羽根10cは、拡径部10a2の範囲内に設けられる。羽根10d2は、ハブ10aの先端部10a1から拡径部10a2に跨って設けられる。羽根10d2は、短羽根10cよりも回転軸方向に長い。羽根10d2は、吸気口11aに臨むリーディングエッジLEを備える。リーディングエッジLEは、羽根10d2のうち、最も吸気口11a側に位置する面である。リーディングエッジLEは、流路11(コンプレッサインペラ10A)の径方向(以下、単に径方向という)の最も内側に位置する基端部LE1を備える。基端部LE1は、ハブ10a(先端部10a1)の外周面と連続する部位である。リーディングエッジLEは、径方向の最も外側に位置する外端部LE2を備える。外端部LE2は、リーディングエッジLEのうち、流路11に面するコンプレッサハウジング4の内壁面4aに最も近接する部位である。
Short blade 10c are provided within the enlarged diameter portion 10a 2. Blade 10d 2 are provided across the front end portion 10a 1 of the hub 10a to the enlarged diameter portion 10a 2. Blade 10d 2 is longer in the axial direction than the short blades 10c. Blade 10d 2 is provided with a leading edge LE which faces the air inlet 11a. Leading edge LE, of the blade 10d 2, a surface located on the most air inlet 11a side. Leading edge LE has a passage 11 radial (compressor impeller 10A) (hereinafter, simply referred to as radial direction) proximal end LE 1 located innermost. Proximal portion LE 1 is a section which is continuous with the outer peripheral surface of the hub 10a (distal end 10a 1). Leading edge LE has a outer end portion LE 2 positioned closest to the outer side in the radial direction. Outer end LE 2, of the leading edge LE, is the site closest to the inner wall surface 4a of compressor housing 4 facing the flow path 11.
図4は、羽根10d2の拡大図である。図4では、1つの羽根10d2と、その近傍のハブ10aの一部のみを示している。図4に示すように、羽根10d2は、回転方向に湾曲した形状である。基端部LE1と外端部LE2とは、互いに回転方向にずれて位置している。ただし、羽根10d2は、径方向に直線状に延在してもよい。羽根10d2は、ハブ10aから離隔するほど、板厚が小さくなる。羽根10d2のリーディングエッジLEは、基端部LE1の厚みが最も大きく、外端部LE2に近づくにしたがって厚みが小さくなる。ただし、リーディングエッジLEの厚みは、一定であってもよい。リーディングエッジLEは、基端部LE1の厚みが、外端部LE2の厚みよりも小さくてもよい。
Figure 4 is an enlarged view of the blade 10d 2. FIG. 4 shows a one vane 10d 2, only a portion in the vicinity of the hub 10a. As shown in FIG. 4, the blade 10d 2 is a curved shape in the direction of rotation. The base end portion LE 1 and the outer end portion LE 2, are located offset in the rotational direction. However, the blade 10d 2 may extend in a straight line in the radial direction. Blade 10d 2, the more away from the hub 10a, the plate thickness is reduced. The leading edge LE of the blade 10d 2 is the largest thickness of the base end portion LE 1, the thickness becomes smaller toward the outer edge portion LE 2. However, the thickness of the leading edge LE may be constant. Leading edge LE, the thickness of the base end portion LE 1 may be smaller than the thickness of the outer end portion LE 2.
図3および図4に示すように、羽根10d2は、内壁面4aと径方向に対向するエッジEを備える。エッジEは、吸気口11aから離隔するほど外径が大きくなる。羽根10d2は、切り欠き部30を備える。切り欠き部30は、リーディングエッジLEの外端部LE2から、径方向の外側であって吸気口11aから離隔する方向に延在する。切り欠き部30は、外端部LE2からエッジEまで延在する。
As shown in FIGS. 3 and 4, the blade 10d 2 is provided with an edge E that faces the inner wall surface 4a and radially. The outer diameter of the edge E increases as the distance from the inlet 11a increases. Blade 10d 2 is provided with a cutout portion 30. Cutout portion 30, the outer end portion LE 2 of the leading edge LE, which extends in a direction away from the inlet port 11a and an outer side in the radial direction. Notches 30 extends from the outer end portion LE 2 to the edge E.
ここでは、切り欠き部30は、リーディングエッジLEに含まれないものとする。すなわち、切り欠き部30は、リーディングエッジLEよりも径方向の外側に設けられる。切り欠き部30は、リーディングエッジLEよりも、吸気口11aから離隔している。羽根10d2は、第1実施形態の羽根10dに対して、切り欠き部30が設けられている点のみが異なり、その他の形状、寸法は等しいものとする。羽根10d2の外端部LE2は、第1実施形態の羽根10dの外端部LE2よりも、切り欠き部30が設けられた分だけ、径方向の内側に位置している。
Here, it is assumed that the notch 30 is not included in the leading edge LE. That is, the cutout portion 30 is provided radially outside the leading edge LE. The notch 30 is further away from the intake port 11a than the leading edge LE. Blade 10d 2, relative to the blade 10d of the first embodiment, differs only in that the cutout portion 30 is provided, other shapes, it is assumed the dimensions are equal. Outer end LE 2 of the blade 10d 2, rather than the outer end portions LE 2 of the blade 10d of the first embodiment, by the amount notches 30 are provided, are located inward in the radial direction.
ここでは、図4に示す外端部LE2の厚みWは、0.5mmである。羽根10d2は、リーディングエッジLEに限らず、径方向の外側ほど、厚みが小さくなる。エッジEの厚みは、外端部LE2の厚みよりも小さい。切り欠き部30が設けられることで、リーディングエッジLEのうち最小の厚みが、エッジEの厚みよりも大きくなっている。
Here, the thickness W of the outer end portion LE 2 shown in FIG. 4 is 0.5 mm. Blade 10d 2 is not limited to the leading edge LE, the more outer side in the radial direction, the thickness is reduced. The thickness of the edge E is smaller than the thickness of the outer end portion LE 2. By providing the notch portion 30, the minimum thickness of the leading edge LE is larger than the thickness of the edge E.
図5は、図3の破線部分の拡大図である。図5に示すように、切り欠き部30は、回転軸方向および径方向に対して45度の傾斜角を有している。エッジEのうち最も吸気口11a側の前縁部Efと、外端部LE2との回転軸方向の離隔距離L1は、2.5mmである。切り欠き部30の径方向の長さ、すなわち、エッジEの前縁部Efと、外端部LE2との径方向の離隔距離L2も2.5mmである。
FIG. 5 is an enlarged view of a broken line portion in FIG. As shown in FIG. 5, the notch 30 has a 45-degree inclination angle with respect to the rotation axis direction and the radial direction. A front edge portion Ef of the most air inlet 11a side of the edge E, the separation distance L1 in the rotation axis direction of the outer end portion LE 2 is 2.5 mm. The radial length of the notch 30, that is, the radial distance L 2 between the front edge Ef of the edge E and the outer end LE 2 is also 2.5 mm.
羽根10d2は、回転方向に湾曲した形状である。外端部LE2と前縁部Efとは、回転方向にずれた位置にある。ここでは、離隔距離L1は、図5に示すように、コンプレッサインペラ10Aの回転軸中心を通る断面に、前縁部Efと外端部LE2とを投影した場合の、両者の回転軸方向の離隔距離とする。また、離隔距離L2は、コンプレッサインペラ10Aの回転軸中心を中心とする円のうち、前縁部Efを通る円の半径と、外端部LE2を通る円の半径との差分とする。
Blade 10d 2 is a curved shape in the direction of rotation. The outer end LE 2 and the front edge portion Ef, in displaced in the rotational direction position. Here, the separation distance L1, as shown in FIG. 5, the cross-section passing through the rotation axis center of the compressor wheel 10A, before when projected and edge Ef and an outer end LE 2, both the rotation axis direction of the Separation distance. The separation distance L2, of the circle centered on the rotation axis center of the compressor wheel 10A, to the radius of a circle passing through the leading edge Ef, the difference between the radius of a circle passing through the outer end LE 2.
上記のコンプレッサインペラ10Aによれば、切り欠き部30が設けられることにより、第1実施形態のコンプレッサインペラ10よりも、外端部LE2の厚みが大きくなる。外端部LE2の厚みが0.5mm以上確保されれば、外端部LE2に固形物が衝突したとしても、羽根10d2が損傷しにくい。切り欠き部30が設けられることにより、翼間に侵入した固形物との衝突による羽根10d2の損傷も低減される。
According to the compressor impeller 10A, by notches 30 are provided, the compressor impeller 10 of the first embodiment, the thickness of the outer end portion LE 2 is increased. If it is ensured a thickness of the outer end portion LE 2 is more than 0.5 mm, even as a solid to the outer end portion LE 2 collides, blade 10d 2 is hardly damaged. By notches 30 are provided, damage of the blades 10d 2 by collision with solids penetrate between the wing is reduced.
切り欠き部30の径方向の長さ(離隔距離L2)が大きくなるほど、外端部LE2の厚みが大きくなる。離隔距離L2が大きくなるほど、羽根10d2が損傷するおそれが低減される。しかしながら、離隔距離L2が大きくなるほど、羽根10d2の面積が小さくなり、圧縮機C2の作動効率が低下する。
The radial length of the cutout portion 30 (distance L2) is larger, the thickness of the outer end portion LE 2 is increased. Distance L2 is larger, thereby reducing the risk of blade 10d 2 can be damaged. However, the larger the distance L2, the area of the blade 10d 2 is reduced, operation efficiency of the compressor C 2 is decreased.
図6は、切り欠き部30の形状とコンプレッサ性能との関係を示す図である。図6の横軸は、コンプレッサインペラ10Aの回転数を示している。図6の縦軸は、第2実施形態の圧縮機C2および比較例のコンプレッサ性能を示している。ここで、比較例は、切り欠き部30が設けられていない点のみが、第2実施形態のコンプレッサインペラ10Aと異なり、その他の条件は全て同じものとする。図6中の実線は、切り欠き部30の径方向の長さ(離隔距離L2)が2.5mmの場合(以下、C2.5と言う)のコンプレッサ性能を示している。図6中の一点鎖線は、切り欠き部30の径方向の長さ(離隔距離L2)が5.0mmの場合(以下、C5.0と言う)のコンプレッサ性能を示している。
FIG. 6 is a diagram illustrating the relationship between the shape of the notch 30 and the compressor performance. The horizontal axis in FIG. 6 indicates the rotation speed of the compressor impeller 10A. The vertical axis of FIG. 6 indicates the compressor performance of the compressor C2 of the second embodiment and the compressor of the comparative example. Here, the comparative example differs from the compressor impeller 10A of the second embodiment only in that the notch 30 is not provided, and all other conditions are the same. The solid line in FIG. 6 indicates the compressor performance when the radial length (separation distance L2) of the notch 30 is 2.5 mm (hereinafter, referred to as C2.5). The dashed line in FIG. 6 indicates the compressor performance when the radial length (separation distance L2) of the cutout portion 30 is 5.0 mm (hereinafter, referred to as C5.0).
図6の破線は、比較例のコンプレッサ性能であり、この破線上のプロットは、比較例とコンプレッサ性能が等しいことを示している。したがって、図6では、破線から下方に離隔するほど、比較例に対するコンプレッサ性能の低下が大きくなることを意味する。また、図6の二点鎖線は、コンプレッサ性能の許容ラインを示している。したがって、図6において、破線と二点鎖線の間の範囲は、比較例よりもコンプレッサ性能は低下するものの、許容範囲内のコンプレッサ性能を有していることを示している。
6 The broken line in FIG. 6 is the compressor performance of the comparative example, and the plot on this broken line indicates that the compressor performance is equal to that of the comparative example. Therefore, in FIG. 6, the lower the distance from the broken line, the greater the decrease in compressor performance with respect to the comparative example. The two-dot chain line in FIG. 6 indicates an allowable line of the compressor performance. Therefore, in FIG. 6, the range between the broken line and the two-dot chain line indicates that the compressor performance is lower than that of the comparative example, but the compressor performance is within an allowable range.
図6からも明らかなように、C2.5およびC5.0の切り欠き部30が設けられた場合、比較例に対する性能の低下量は、許容範囲内に収まっている。図示を省略するが、切り欠き部30の径方向の長さ(離隔距離L2)が5.0mmを超えると、回転数によっては、コンプレッサ性能が許容ラインを下回る。したがって、切り欠き部30の径方向の長さ(離隔距離L2)は、2.5mm以上、かつ、5.0mm以下であるとよい。なお、切り欠き部30の径方向の長さ(離隔距離L2)が5.0mmの場合、外端部LE2の厚みは、例えば、0.65mmである。したがって、コンプレッサ性能を考慮した場合、外端部LE2の厚みは、0.5mm以上、かつ、0.65mm以下とするとよい。ただし、コンプレッサ性能を考慮しなければ、切り欠き部30の径方向の長さ(離隔距離L2)は特に限定されるものではない。
As is clear from FIG. 6, when the cutout portions 30 of C2.5 and C5.0 are provided, the amount of performance decrease with respect to the comparative example is within an allowable range. Although not shown, when the radial length (separation distance L2) of the notch portion 30 exceeds 5.0 mm, the compressor performance falls below the allowable line depending on the number of rotations. Therefore, the radial length (separation distance L2) of the notch 30 is preferably 2.5 mm or more and 5.0 mm or less. In the case the radial length of the notch 30 (distance L2) is 5.0 mm, the thickness of the outer end portion LE 2 is, for example, 0.65 mm. Therefore, when considering the compressor performance, the outer end portion LE 2 thickness, 0.5 mm or more and may be less than 0.65 mm. However, if the compressor performance is not taken into consideration, the radial length (separation distance L2) of the notch 30 is not particularly limited.
図7は、第3実施形態の過給機TC3を説明する図である。第3実施形態の過給機TC3は、第1実施形態の過給機TCにおける保護壁部20、および、第2実施形態の過給機TC2における切り欠き部30が設けられている。第3実施形態の過給機TC3は、切り欠き部30の構成のみが第1実施形態と異なる。第3実施形態の過給機TC3は、保護壁部20の構成のみが第2実施形態と異なる。第1実施形態および第2実施形態と同じ構成については、上記と同一の符号を付して説明を省略する。
Figure 7 is a diagram for explaining supercharger TC 3 of the third embodiment. Turbocharger TC 3 of the third embodiment, the protective wall portion in the turbocharger TC of the first embodiment 20, and, notches 30 in the supercharger TC 2 of the second embodiment is provided. The supercharger TC3 of the third embodiment differs from the first embodiment only in the configuration of the notch 30. The supercharger TC3 of the third embodiment differs from the second embodiment only in the configuration of the protection wall 20. About the same structure as 1st Embodiment and 2nd Embodiment, the same code | symbol as the above is attached | subjected and description is abbreviate | omitted.
第3実施形態の過給機TC3は、コンプレッサハウジング4およびコンプレッサインペラ10Aを含む圧縮機C3を備える。コンプレッサハウジング4の内壁面4aには、保護壁部20が設けられる。保護壁部20は、内壁面4aから径方向の内側に突出する保護面20aと、保護面20aから吸気口11a側に延在する傾斜面20bとを備える。
Turbocharger TC 3 of the third embodiment includes a compressor C 3 including the compressor housing 4 and the compressor impeller 10A. A protective wall portion 20 is provided on the inner wall surface 4a of the compressor housing 4. The protection wall portion 20 includes a protection surface 20a protruding inward in the radial direction from the inner wall surface 4a, and an inclined surface 20b extending from the protection surface 20a to the intake port 11a side.
コンプレッサインペラ10Aは、羽根10d2を備える。羽根10d2は、リーディングエッジLEの外端部LE2から、径方向の外側であって吸気口11aから離隔する方向に延在する切り欠き部30を備える。切り欠き部30は、外端部LE2からエッジEまで延在する。切り欠き部30は、リーディングエッジLEの外端部LE2から、径方向の外側であって保護面20aから離隔する方向に延在する。保護面20aは、切り欠き部30と回転軸方向に対向する。
Compressor impeller 10A is provided with a blade 10d 2. Blade 10d 2 is from the outer end portion LE 2 of the leading edge LE, includes a cutout portion 30 which extends in the direction away from the inlet port 11a and an outer side in the radial direction. Notches 30 extends from the outer end portion LE 2 to the edge E. Cutout portion 30, the outer end portion LE 2 of the leading edge LE, which extends in a direction away from the protective surface 20a and an outer radial. The protection surface 20a faces the notch 30 in the rotation axis direction.
保護面20aおよび切り欠き部30の双方が設けられる圧縮機C3によれば、上記第1実施形態および第2実施形態と同様に、羽根10d2が損傷するおそれが低減される。切り欠き部30が設けられることにより、翼間に侵入した固形物との衝突による羽根10d2の損傷も低減される。
In the compressor C 3 both the protected surface 20a and the cutout portion 30 is provided, as in the first embodiment and the second embodiment, is a possibility that the blades 10d 2 is damaged is reduced. By notches 30 are provided, damage of the blades 10d 2 by collision with solids penetrate between the wing is reduced.
なお、保護面20aの突出高さは特に限定されない。保護面20aのうち、径方向の最も内側に位置する部分は、外端部LE2よりも径方向の外側に位置してもよい。保護面20aのうち、径方向の最も内側に位置する部分は、外端部LE2と回転軸方向に対向してもよい。保護面20aは、外端部LE2よりも径方向の内側まで突出してもよい。
The protruding height of the protection surface 20a is not particularly limited. Of the protective surface 20a, the portion that best located inward in the radial direction, may be located outward in the radial direction from the outer end LE 2. Of the protective surface 20a, the portion that best located inward in the radial direction may be opposite to the outer end portion LE 2 in the rotation axis direction. Protected surface 20a may protrude to the inside in the radial direction from the outer end portion LE 2.
第3実施形態において、傾斜面20bは必須ではない。傾斜面20bが設けられる場合、傾斜面20bの延長線(図7に一点鎖線で示す)と羽根10d2との交点xは、リーディングエッジLE上に位置してもよい。交点xは、切り欠き部30上に位置してもよいし、外端部LE2と一致してもよい。
In the third embodiment, the inclined surface 20b is not essential. If the inclined surface 20b is provided, the intersection x of extension and (7 indicated by a dashed line) the blade 10d 2 of the inclined surface 20b may be located on the leading edge LE. Intersection x may be located on the cutout portion 30, it may coincide with the outer end LE 2.
第3実施形態において、外端部LE2および交点xの厚みは特に限定されない。なお、上記第1実施形態と同様に、羽根10d2のリーディングエッジLEのうち、傾斜面20bの延長線との交点xにおける厚みが、外端部LE2における厚みの109%以上であってもよい。
In a third embodiment, the thickness of the outer end portion LE 2 and an intersection x is not particularly limited. Incidentally, as in the first embodiment, of the leading edge LE of the blade 10d 2, the thickness at the intersection x of the extension line of the inclined surface 20b is, even more than 9% of the thickness at the outer end portion LE 2 Good.
上述の各実施形態では、圧縮機C、C2、C3が過給機に設けられる場合について説明した。しかしながら、圧縮機C、C2、C3は、過給機に限らず、他のあらゆる装置に適用可能である。圧縮機C、C2、C3は、単体で設けられてもよい。ここでは、上述の圧縮機Cが適用される圧縮システムの一例について説明する。
In each of the above embodiments, the case where the compressors C, C 2 , and C 3 are provided in the supercharger has been described. However, the compressors C, C 2 , and C 3 are applicable not only to the supercharger but also to any other devices. Compressor C, C 2, C 3 may be provided alone. Here, an example of a compression system to which the above-described compressor C is applied will be described.
図8は、圧縮システム100を説明する図である。圧縮システム100は、低圧段圧縮部110(前段圧縮部)、第1インタクーラ120(インタクーラ)、圧縮機C(C2、C3)、第2インタクーラ130を備える。低圧段圧縮部110は、吸気した空気を昇圧する。低圧段圧縮部110には、第1インタクーラ120が接続される。第1インタクーラ120には、低圧段圧縮部110で昇圧された空気が導かれる。第1インタクーラ120は、低圧段圧縮部110から導かれた空気を冷却する。
FIG. 8 is a diagram illustrating the compression system 100. The compression system 100 includes a low-pressure stage compression unit 110 (pre-stage compression unit), a first intercooler 120 (intercooler), a compressor C (C 2 , C 3 ), and a second intercooler 130. The low-pressure stage compression section 110 increases the pressure of the intake air. The first intercooler 120 is connected to the low-pressure stage compression unit 110. The air pressurized by the low-pressure stage compression section 110 is guided to the first intercooler 120. The first intercooler 120 cools the air guided from the low-pressure stage compression section 110.
第1インタクーラ120には、上記の圧縮機Cが接続される。第1インタクーラ120で冷却された空気は、圧縮機Cのうち、吸気口11aから流路11に吸気される。圧縮機Cにおいては、流路11に吸気された空気が、ディフューザ流路12およびコンプレッサスクロール流路13(図1参照)で昇圧する。コンプレッサスクロール流路13には、第2インタクーラ130が接続される。第2インタクーラ130は、圧縮機Cで昇圧された空気を冷却して外部に排出する。
圧 縮 The compressor C is connected to the first intercooler 120. The air cooled by the first intercooler 120 is drawn into the flow path 11 from the intake port 11a of the compressor C. In the compressor C, the pressure of the air taken into the flow passage 11 is increased in the diffuser flow passage 12 and the compressor scroll flow passage 13 (see FIG. 1). A second intercooler 130 is connected to the compressor scroll passage 13. The second intercooler 130 cools the air pressurized by the compressor C and discharges the air to the outside.
圧縮システム100は、空気を多段階で圧縮(昇圧)する多段圧縮システムである。圧縮システム100においては、低圧段圧縮部110と圧縮機Cとの間に第1インタクーラ120が設けられる。第1インタクーラ120により、低圧段圧縮部110で圧縮された圧縮空気から凝縮水が発生することがある。寒冷地等においては、第1インタクーラ120と圧縮機Cとの間で凝縮水が冷却され、氷塊となるおそれがある。氷塊が圧縮機Cに侵入すると、コンプレッサインペラ10に衝突するおそれがある。ただし、圧縮機Cは、保護面20aによって、羽根10dのリーディングエッジLEの径方向の外側の一部が被覆されている。したがって、氷塊の衝突による羽根10dが損傷するおそれが低い。
The compression system 100 is a multistage compression system that compresses (pressurizes) air in multiple stages. In the compression system 100, a first intercooler 120 is provided between the low-pressure stage compression section 110 and the compressor C. The first intercooler 120 may generate condensed water from the compressed air compressed by the low-pressure stage compression section 110. In a cold region or the like, condensed water is cooled between the first intercooler 120 and the compressor C, and may become ice blocks. When ice blocks enter the compressor C, the ice blocks may collide with the compressor impeller 10. However, in the compressor C, a part of the leading edge LE of the blade 10d in the radial direction is partially covered with the protection surface 20a. Therefore, there is a low possibility that the blade 10d is damaged by the collision of the ice blocks.
ここでは、圧縮システム100は、第1実施形態の圧縮機Cを備える場合について説明した。しかしながら、圧縮システム100は、第2実施形態および第3実施形態の圧縮機C2、C3を備えてもよい。
Here, the case where the compression system 100 includes the compressor C of the first embodiment has been described. However, the compression system 100 may include the compressors C 2 and C 3 of the second and third embodiments.
ここでは、圧縮機C、C2、C3が多段圧縮システムに用いられる場合について説明した。しかしながら、圧縮段が1段階のみの圧縮システムにおいても、リーディングエッジLEに氷塊が衝突するおそれがある。リーディングエッジLEに衝突する固形物は氷塊に限らない。上記の圧縮機C、C2、C3は、多段圧縮システムに限らず、圧縮段が1段階のみの圧縮システムに適用してもよい。圧縮機C、C2、C3は、単独で用いられてもよい。
Here, the compressor C, and C 2, C 3 has been described when used in a multi-stage compression system. However, even in a compression system having only one compression stage, there is a possibility that an ice block may collide with the leading edge LE. The solids that collide with the leading edge LE are not limited to ice blocks. Additional compressor C, C 2, C 3 is not limited to a multi-stage compression system, the compression stages may be applied to the compression system of only one stage. Compressor C, C 2, C 3 may be used alone.
以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
Although the embodiments of the present disclosure have been described with reference to the accompanying drawings, it is needless to say that the present disclosure is not limited to such embodiments. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the claims, and those modifications naturally belong to the technical scope of the present disclosure. You.
上記第1実施形態では、保護壁部20(保護面20a)が内壁面4aの全周に設けられている。しかしながら、保護壁部20(保護面20a)は、内壁面4aの周方向の一部に設けられてもよい。複数の保護壁部20(保護面20a)が、内壁面4aの周方向に互いに離隔して設けられてもよい。
In the first embodiment, the protective wall portion 20 (protective surface 20a) is provided on the entire circumference of the inner wall surface 4a. However, the protective wall portion 20 (protective surface 20a) may be provided on a part of the inner wall surface 4a in the circumferential direction. A plurality of protective wall portions 20 (protective surfaces 20a) may be provided apart from each other in the circumferential direction of the inner wall surface 4a.
上記第2実施形態および第3実施形態では、複数の羽根10d2の全てに切り欠き部30が設けられている。ただし、切り欠き部30は、複数の羽根10d2の少なくともいずれかに設けられればよい。
In the second and third embodiments, the cutout portion 30 to all of the plurality of blades 10d 2 are provided. However, the cutout portion 30, only to be provided on at least one of the plurality of blades 10d 2.
上記各実施形態における保護壁部20および切り欠き部30の形状、寸法は一例に過ぎず、適宜設計変更可能である。
形状 The shapes and dimensions of the protective wall portion 20 and the notch portion 30 in each of the above embodiments are merely examples, and the design can be changed as appropriate.
本開示は、圧縮機および圧縮システムに利用することができる。
The present disclosure can be used for a compressor and a compression system.
4:コンプレッサハウジング(ハウジング) 4a:内壁面 10:コンプレッサインペラ 10A:コンプレッサインペラ 10a:ハブ 10d:羽根 10d2:羽根 11:流路 11a:吸気口 20a:保護面 20b:傾斜面 30:切り欠き部 100:圧縮システム 110:低圧段圧縮部(前段圧縮部) 120:第1インタクーラ(インタクーラ) C:圧縮機 C2:圧縮機 C3:圧縮機 LE:リーディングエッジ LE1:基端部 LE2:外端部
4: Compressor housing (housing) 4a: Inner wall surface 10: Compressor impeller 10A: Compressor impeller 10a: Hub 10d: Blade 10d 2 : Blade 11: Flow path 11a: Inlet 20a: Protective surface 20b: Inclined surface 30: Notch 100: compression system 110: low-pressure stage compression part (front compression unit) 120: first intercooler (intercooler) C: compressor C 2: compressor C 3: compressor LE: leading edge LE 1: base end portion LE 2: Outer edge
Claims (8)
- ハブの外周に複数の羽根が設けられたコンプレッサインペラと、
前記コンプレッサインペラが収容される流路が形成されたハウジングと、
前記流路に面する前記ハウジングの内壁面から、前記コンプレッサインペラの径方向内側に突出し、前記羽根のうち前記径方向の外側の一部に対して、前記コンプレッサインペラの回転軸方向に対向する保護面と、
を備える圧縮機。 A compressor impeller provided with a plurality of blades on the outer periphery of the hub,
A housing in which a flow passage for housing the compressor impeller is formed,
A protection that protrudes radially inward of the compressor impeller from an inner wall surface of the housing facing the flow path, and opposes a part of the blades in the radial direction outside of the blade in the rotation axis direction of the compressor impeller. Face and
A compressor comprising: - 前記保護面は、少なくとも、前記羽根のリーディングエッジのうち前記径方向の最も外側に位置する外端部と、前記回転軸方向に対向する請求項1に記載の圧縮機。 2. The compressor according to claim 1, wherein the protection surface faces at least an outer end portion of the leading edge of the blade that is located on the outermost side in the radial direction in the rotation axis direction.
- 前記保護面は、前記回転軸方向の位置が、前記ハブの先端と、前記羽根のリーディングエッジとの間である請求項1または2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein the position of the protection surface in the rotation axis direction is between a tip of the hub and a leading edge of the blade.
- 前記保護面のうち前記径方向の最も内側から、前記径方向の外側であって前記羽根と離隔する方向に延在する傾斜面を備え、
前記羽根のリーディングエッジのうち、前記傾斜面の延長線との交点における厚みは、前記外端部における厚みの109%以上である請求項2または3に記載の圧縮機。 From the innermost part of the protection surface in the radial direction, an inclined surface extending in a direction away from the blades and outside the radial direction,
4. The compressor according to claim 2, wherein a thickness of the leading edge of the blade at an intersection with an extension of the inclined surface is 109% or more of a thickness at the outer end portion. 5. - 複数の前記羽根の少なくともいずれかは、リーディングエッジのうち前記径方向の最も外側に位置する外端部から、前記径方向の外側であって前記保護面から離隔する方向に延在する切り欠き部を備える請求項1から4のいずれか1項に記載の圧縮機。 At least one of the plurality of blades has a notch extending from a radially outermost end of the leading edge in a direction outside the radial direction and away from the protective surface. The compressor according to any one of claims 1 to 4, further comprising:
- 吸気口を含む流路が形成されたハウジングと、
前記ハウジングの流路内に収容され、ハブの外周に複数の羽根が設けられたコンプレッサインペラと、
複数の前記羽根の少なくともいずれかに設けられ、前記吸気口に臨むリーディングエッジのうち前記流路の径方向の最も外側に位置する0.5mm以上の厚みを有する外端部から、前記径方向の外側であって前記吸気口から離隔する方向に延在する切り欠き部と、
を備える圧縮機。 A housing in which a flow path including an intake port is formed,
A compressor impeller housed in the flow path of the housing and provided with a plurality of blades on the outer periphery of the hub;
Provided on at least one of the plurality of blades, from a radially outermost end of the leading edge facing the intake port and having a thickness of 0.5 mm or more located on the radially outermost side of the flow path, A cutout portion that is outside and extends in a direction away from the intake port,
A compressor comprising: - 前記切り欠き部の前記径方向の長さは、2.5mm以上、かつ、5.0mm以下である請求項5または6に記載の圧縮機。 The compressor according to claim 5 or 6, wherein the radial length of the notch is 2.5 mm or more and 5.0 mm or less.
- 前段圧縮部と、
前記前段圧縮部に接続されたインタクーラと、
前記インタクーラに接続される前記圧縮機と、
を備える請求項1から7のいずれか1項に記載の圧縮システム。 A first-stage compression unit;
An intercooler connected to the pre-compressor,
The compressor connected to the intercooler;
The compression system according to any one of claims 1 to 7, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-138714 | 2018-07-24 | ||
JP2018138714A JP2020016174A (en) | 2018-07-24 | 2018-07-24 | Compressor and compression system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020021816A1 true WO2020021816A1 (en) | 2020-01-30 |
Family
ID=69182208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018914 WO2020021816A1 (en) | 2018-07-24 | 2019-05-13 | Compressor and compression system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020016174A (en) |
WO (1) | WO2020021816A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0849696A (en) * | 1994-08-08 | 1996-02-20 | Ishikawajima Harima Heavy Ind Co Ltd | Impulse wave generation preventing structure of impeller blade of high pressure ratio centrifugal compressor |
US20110255952A1 (en) * | 2010-04-19 | 2011-10-20 | GM Global Technology Operations LLC | Compressor gas flow deflector and compressor incorporating the same |
WO2012157113A1 (en) * | 2011-05-19 | 2012-11-22 | トヨタ自動車株式会社 | Air intake structure for internal combustion engine |
WO2016132644A1 (en) * | 2015-02-18 | 2016-08-25 | 株式会社Ihi | Centrifugal compressor and supercharger |
JP2019007425A (en) * | 2017-06-26 | 2019-01-17 | 株式会社豊田中央研究所 | Centrifugal compressor and turbocharger |
-
2018
- 2018-07-24 JP JP2018138714A patent/JP2020016174A/en active Pending
-
2019
- 2019-05-13 WO PCT/JP2019/018914 patent/WO2020021816A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0849696A (en) * | 1994-08-08 | 1996-02-20 | Ishikawajima Harima Heavy Ind Co Ltd | Impulse wave generation preventing structure of impeller blade of high pressure ratio centrifugal compressor |
US20110255952A1 (en) * | 2010-04-19 | 2011-10-20 | GM Global Technology Operations LLC | Compressor gas flow deflector and compressor incorporating the same |
WO2012157113A1 (en) * | 2011-05-19 | 2012-11-22 | トヨタ自動車株式会社 | Air intake structure for internal combustion engine |
WO2016132644A1 (en) * | 2015-02-18 | 2016-08-25 | 株式会社Ihi | Centrifugal compressor and supercharger |
JP2019007425A (en) * | 2017-06-26 | 2019-01-17 | 株式会社豊田中央研究所 | Centrifugal compressor and turbocharger |
Also Published As
Publication number | Publication date |
---|---|
JP2020016174A (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6604906B2 (en) | Centrifugal multiblade blower | |
US9163642B2 (en) | Impeller and rotary machine | |
US7575412B2 (en) | Anti-stall casing treatment for turbo compressors | |
US9874224B2 (en) | Centrifugal compressor and turbocharger | |
KR101743376B1 (en) | Centrifugal compressor | |
US20100178163A1 (en) | Radial Compressor with a Diffuser for Use in a Turbocharger | |
US20150308453A1 (en) | Centrifugal rotation machine | |
US10443606B2 (en) | Side-channel blower for an internal combustion engine | |
EP3196477A1 (en) | Centrifugal impeller and centrifugal compressor | |
CN108019362B (en) | Two-stage compressor with asymmetric second-stage inlet pipe | |
CN109958633B (en) | Multi-blade centrifugal fan | |
EP3073091B1 (en) | Compressor | |
WO2018155546A1 (en) | Centrifugal compressor | |
KR20010014675A (en) | Vacuum pump | |
WO2020021816A1 (en) | Compressor and compression system | |
JP6065509B2 (en) | Centrifugal compressor | |
CN110234888B (en) | Scroll shape of compressor and supercharger | |
JP6133439B2 (en) | Compressor and turbocharger | |
CN112177949A (en) | Multistage centrifugal compressor | |
CN1683795A (en) | Multiblade blower fan | |
US11982292B2 (en) | Scroll casing and centrifugal compressor | |
US11199198B2 (en) | Centrifugal compressor | |
WO2022107519A1 (en) | Centrifugal compressor and supercharger | |
US11988227B2 (en) | Compressor housing and centrifugal compressor | |
JP3784250B2 (en) | Vacuum pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19840961 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19840961 Country of ref document: EP Kind code of ref document: A1 |