WO2020021665A1 - Vehicle brake control device and vehicle brake control method - Google Patents

Vehicle brake control device and vehicle brake control method Download PDF

Info

Publication number
WO2020021665A1
WO2020021665A1 PCT/JP2018/027981 JP2018027981W WO2020021665A1 WO 2020021665 A1 WO2020021665 A1 WO 2020021665A1 JP 2018027981 W JP2018027981 W JP 2018027981W WO 2020021665 A1 WO2020021665 A1 WO 2020021665A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
force
friction coefficient
pressing force
vehicle
Prior art date
Application number
PCT/JP2018/027981
Other languages
French (fr)
Japanese (ja)
Inventor
遼平 津越
俊平 小野寺
卓矢 岡原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/255,482 priority Critical patent/US20210146895A1/en
Priority to DE112018007848.5T priority patent/DE112018007848T5/en
Priority to JP2020531902A priority patent/JP6833119B2/en
Priority to PCT/JP2018/027981 priority patent/WO2020021665A1/en
Publication of WO2020021665A1 publication Critical patent/WO2020021665A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1705Braking or traction control means specially adapted for particular types of vehicles for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3235Systems specially adapted for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H13/00Actuating rail vehicle brakes
    • B61H13/20Transmitting mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/04Vehicle reference speed; Vehicle body speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/88Pressure measurement in brake systems

Definitions

  • the present invention relates to a vehicle brake control device and a vehicle brake control method.
  • the brake control device mounted on the railway vehicle compresses the fluid supplied from the fluid source and supplies the compressed fluid to the brake cylinder of the mechanical brake device in order to obtain the target deceleration indicated by the brake command.
  • An example of the main brake control device is disclosed in Patent Document 1.
  • the railway vehicle brake control device disclosed in Patent Document 1 calculates a required braking force from a brake command, compresses a fluid supplied from a fluid source to a pressure for obtaining a required braking force, and compresses the fluid. Is supplied to the brake cylinder of the mechanical brake device. When the compressed fluid is supplied to the brake cylinder, the brake shoe is pressed against the wheel, and a braking force is obtained.
  • ⁇ ⁇ ⁇ ⁇ Brake force is obtained by pressing the brake shoe against the wheel as described above.
  • the braking force is expressed as a product of a friction coefficient of a contact surface between the brake shoe and the wheel and a pressing force that is a force for pressing the brake shoe against the wheel. Even if the brake command is the same, if the friction coefficient changes depending on, for example, the speed of the vehicle at the start of braking, the magnitude of the pressing force, and the like, the braking force may differ. As a result, the stop position of the vehicle may vary and may deviate from the target position.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicular brake control device and a vehicular brake control method that suppress a variation in braking force with respect to the same brake command.
  • a vehicle brake control device includes a brake cylinder and a friction material that operates in accordance with the pressure of a fluid inside the brake cylinder.
  • This is a vehicle brake control device that controls a mechanical brake device that generates a braking force by pressing a friction material.
  • the vehicle brake control device includes a required brake force calculation unit, an initial speed acquisition unit, a target pressing force calculation unit, a target pressure calculation unit, and an output unit.
  • the required braking force calculation unit acquires a brake command indicating a target deceleration of the vehicle, and calculates a required braking force that is a braking force required to obtain the target deceleration.
  • the initial speed acquisition unit acquires the speed of the vehicle in response to the acquisition of the brake command by the necessary braking force calculation unit.
  • the target pressing force calculation unit as a friction coefficient of the contact surface between the friction material and the rotating body, an initial speed which is the speed of the vehicle acquired by the initial speed acquisition unit, and a pressing force which is a force pressing the friction material against the rotating body. Is used to calculate a target pressing force which is a force for pressing the friction material against the rotating body in order to obtain the necessary braking force from the average friction coefficient and the required braking force.
  • the target pressure calculating section calculates a target pressure indicating a pressure of a fluid inside the brake cylinder necessary for obtaining a target pressing force.
  • the output unit compresses the fluid supplied from the fluid source according to the target pressure, and supplies the compressed fluid to the mechanical brake device.
  • the friction material is rotated in order to obtain the required braking force from the average friction coefficient that changes depending on the initial speed and the pressing force that is the force pressing the friction material against the rotating body, and the required braking force.
  • the target pressing force which is the force pressing against the body, is calculated. Then, by supplying fluid compressed to the mechanical brake device in accordance with the target pressure indicating the pressure of the fluid inside the brake cylinder required to obtain the target pressing force, the braking force varies with the same brake command. It is possible to provide a vehicular brake control device and a vehicular brake control method for suppressing such a situation.
  • FIG. 1 is a block diagram illustrating a configuration of a vehicle brake system according to an embodiment of the present invention.
  • 1 is a block diagram illustrating a configuration of a vehicle brake control device according to an embodiment.
  • 5 is a flowchart illustrating an example of an operation of brake control performed by the vehicle brake control device according to the embodiment.
  • the figure which shows the example of the average friction coefficient table which specifies uniquely the average friction coefficient from the speed and the pressing force of the vehicle in embodiment.
  • the figure which shows the example of the calculation method of the average friction coefficient for every pressing force in the initial speed in embodiment.
  • FIG. 1 is a diagram illustrating a hardware configuration of a vehicle brake control device according to an embodiment.
  • FIG. 1 shows a vehicle brake system 1 mounted on a railway vehicle as an example of a vehicle.
  • the vehicle brake system 1 includes a brake setting device 2 that outputs a brake command according to an operation of a driver, a load detection device 3 that detects the weight of the vehicle, a speed sensor 4 that detects the speed of the vehicle, A source 5, a mechanical brake device 6 for generating a braking force of the vehicle, and a brake control device 10 for compressing a fluid supplied from the fluid source 5 in response to a brake command and supplying the compressed fluid to the mechanical brake device 6 And.
  • the electric signal is indicated by a solid line
  • the flow of the fluid is indicated by a dotted line.
  • the brake setting device 2 has a master controller provided in a driver's cab, and sends a brake command corresponding to an operation of the master controller by an operator to the brake control device 10.
  • the brake command includes a brake notch indicating a target deceleration of the vehicle.
  • the adaptive load detector 3 is attached to the vehicle, detects the weight of the vehicle including the passengers in the vehicle, the devices mounted on the vehicle, and the luggage, and sends the detected value to the brake control device 10.
  • the speed sensor 4 includes a PG (Pulse Generator) attached to the axle, and sends a signal indicating the number of revolutions of the axle obtained from a pulse signal output from the PG to the brake control device 10.
  • the fluid source 5 supplies air to the brake control device 10 as an example of a fluid.
  • the brake control device 10 compresses the fluid supplied from the fluid source 5 based on the brake command output from the brake setting device 2, the detection value of the adaptive load detector 3, and the detection value of the speed sensor 4, and performs mechanical braking. Supply to the device 6.
  • the mechanical brake device 6 has a brake cylinder and a friction material that operates according to the pressure of the fluid inside the brake cylinder. When the pressure in the brake cylinder is increased by the air supplied from the fluid source 5 and compressed by the brake control device 10 being supplied to the brake cylinder, the friction material is pressed against a rotating body that rotates during traveling of the vehicle, Braking force is generated.
  • the mechanical brake device 6 has a brake shoe as an example of a friction material.
  • the brake force is generated when the brake shoe is pressed against a wheel that is an example of a rotating body.
  • the braking force is expressed as a product of a pressing force, which is a force pressing the brake shoe against the wheel, and a friction coefficient of a contact surface between the brake shoe and the wheel.
  • the brake control device 10 determines the friction coefficient of the contact surface between the friction material and the rotating body depending on the initial speed which is the speed of the vehicle acquired in response to the acquisition of the brake command and the pressing force. Then, the pressing force for obtaining the target deceleration indicated by the brake command is calculated using the average friction coefficient that changes. Then, the brake control device 10 compresses the air supplied from the fluid source 5 according to the pressure of the fluid inside the brake cylinder required to obtain the calculated pressing force, and uses the compressed air as a mechanical brake device. 6 By supplying the mechanical brake device 6 with the air compressed by the brake control device 10 based on the pressing force calculated as described above, the variation of the brake force with respect to the same brake command is suppressed.
  • the brake control device 10 calculates the target pressure indicating the pressure of the brake cylinder required to obtain the target deceleration indicated by the brake command, the brake control unit 11 and the air supplied from the fluid source 5 according to the target pressure.
  • An output unit 12 that outputs compressed air to the mechanical brake device 6 and a pressure sensor 15 that detects the pressure of the air output by the output unit 12 and sends a feedback signal to the brake control unit 11 Prepare.
  • the brake control unit 11 includes a required brake force calculation unit 21 that calculates a required brake force that is a brake force generated by the mechanical brake device 6 to obtain a deceleration indicated by the brake command, and an initial speed.
  • a target pressing force calculating unit 23 for calculating a target pressing force that is a force pressing the brake shoe against the wheel to obtain a required braking force, and a brake required for obtaining the target pressing force.
  • a target pressure calculating unit that calculates a target pressure indicating the pressure of the fluid inside the cylinder and performs feedback control for adjusting the target pressure based on a feedback signal acquired from the pressure sensor.
  • the target pressing force calculation unit 23 includes an average friction coefficient calculation unit 24 that calculates an average friction coefficient of the contact surface between the brake shoe and the wheel for each pressing force at the initial speed, and an average friction coefficient calculated by the average friction coefficient calculation unit 24.
  • the brake control unit 11 having the above configuration calculates a target pressure from a brake command acquired from the brake setting device 2, a detection value of the adaptive load detector 3, and a signal indicating the number of revolutions of the axle acquired from the speed sensor 4. , An electric command indicating the target pressure is sent to the output unit 12.
  • the output unit 12 converts an electric command sent from the brake control unit 11 into an air command, and converts the electric command into an air command.
  • a relay valve 14 that compresses the compressed air and outputs the compressed air to the mechanical brake device 6.
  • the electropneumatic conversion valve 13 adjusts the pressure of the air supplied from the fluid source 5 according to the electric command sent from the brake control unit 11 and outputs the pressure to the relay valve 14.
  • the relay valve 14 compresses the air supplied from the fluid source 5 according to the pressure of the air output from the electropneumatic conversion valve 13, and supplies the compressed air to the mechanical brake device 6.
  • the necessary braking force calculation unit 21 repeats the processing of step S11 while not acquiring a brake command (step S11; N).
  • the necessary brake force calculation unit 21 calculates the required brake force from the target deceleration indicated by the brake command and the value detected by the adaptive load detector 3 (Step S12).
  • the initial speed acquisition unit 22 acquires a pulse signal from the speed sensor 4 in response to the acquisition of the brake command by the required braking force calculation unit 21, and calculates an initial speed from the pulse signal (Step S13).
  • the target pressing force calculation unit 23 uses the average friction coefficient that changes depending on the initial speed and the pressing force, and uses the average friction coefficient and the required braking force to apply the force that presses the brake shoe to the wheel to obtain the required braking force. Is calculated (step S14).
  • the target pressure calculator 26 calculates a target pressure indicating the pressure of the fluid inside the brake cylinder necessary to obtain the pressing force calculated by the target pressing force calculator 23, and responds to the feedback signal acquired from the pressure sensor 15. To adjust the target pressure (step S15).
  • the output unit 12 compresses the air until the pressure of the air supplied from the fluid source 5 reaches the target pressure, and supplies the compressed air to the mechanical brake device 6 (Step S16).
  • Step S17; Y If there is no change in the brake notch indicated by the brake command (Step S17; Y), the process returns to Step S15 and repeats the above processing.
  • the target pressure is calculated using the target pressing force calculated in step S14, and the target pressure is adjusted according to the feedback signal acquired from the pressure sensor 15, so that the pressure of the air supplied from the fluid source 5 is reduced. The air is compressed until the target pressure is reached, and the supply of the compressed air to the mechanical brake device 6 is repeated.
  • the parameter used for calculating the target pressure may be different from the parameter used for calculating the previous target pressure.
  • the necessary brake force calculation unit 21 calculates the following formula (1) based on the target deceleration ⁇ indicated by the brake command and the vehicle weight W1 detected by the adaptive load detector 3.
  • the required braking force F1 is calculated from the following.
  • the required braking force calculation unit 21 sends the required braking force F1 to the average friction coefficient calculation unit 24.
  • the following formula (1) represents the required brake for each mechanical brake device 6 when the vehicle is supported by two trolleys, each trolley has four wheels, and a mechanical brake device 6 is provided for each wheel. Show power. Further, the required braking force calculation unit 21 sends the target deceleration ⁇ to the initial speed acquisition unit 22.
  • F1 ⁇ ⁇ W1 / 8 (1)
  • the initial speed acquisition unit 22 acquires the speed of the vehicle in response to the acquisition of the brake command by the necessary braking force calculation unit 21. More specifically, the initial speed acquisition unit 22 detects a change in the target deceleration ⁇ acquired from the necessary brake force calculation unit 21, that is, a change in the brake command. When detecting a change in the brake command, the initial speed obtaining unit 22 calculates the speed of the vehicle from the pulse signal obtained from the speed sensor 4. The initial speed acquisition unit 22 sends the calculated vehicle speed to the average friction coefficient calculation unit 24. In the following description, the speed of the vehicle calculated by the initial speed acquisition unit 22 is referred to as an initial speed V int .
  • the change of the brake command includes a case where the brake command is input from a state where the brake command is not input, and a case where the number of notches of the brake notch included in the brake command changes, that is, a case where the target deceleration ⁇ changes. .
  • the average friction coefficient calculation unit 24 calculates, for each pressing force at an initial speed, the average friction coefficient of the contact surface between the friction material and the rotating body, which is predetermined for each pressing force at each of different predetermined vehicle speeds.
  • the average coefficient of friction is calculated and sent to the calculation unit 25. More specifically, the average friction coefficient calculation unit 24 holds an average friction coefficient table that uniquely specifies the average friction coefficient from the speed and the pressing force of the vehicle.
  • Figure average friction coefficient table shown in 4 the vehicle speed V 1, V 2, ⁇ ⁇ ⁇ , and V k, the pressing force N 1, N 2, ⁇ ⁇ ⁇ , the average friction coefficient uniquely in combination with N m It is for identification.
  • the average friction coefficient ⁇ for the vehicle speed V 1 and the pressing force N 1 is ⁇ 11 .
  • the value of the average friction coefficient table is determined based on the results of a test run, a simulation, or the like in which the vehicle travels with a brake applied with a constant pressing force. At the same speed, the friction coefficient decreases as the pressing force increases. If the pressing force is the same, the friction coefficient decreases as the speed increases.
  • the average friction coefficient calculation unit 24 holding the above average friction coefficient table calculates the average friction coefficient for each pressing force at the initial speed from the value of the average friction coefficient table or the value obtained by interpolating the value of the average friction coefficient table. Is calculated. For example, if the initial speed V int matches any of the vehicle speeds V 1 , V 2 ,..., V k defined in the average friction coefficient table, the initial speed V int is associated with the matched vehicle speed. The average friction coefficient for each pressing force is used as the average friction coefficient for each pressing force at the initial speed V int .
  • the pressing force N 1, N 2, ⁇ ⁇ ⁇ , average friction coefficient mu 21 corresponding to each of the N m, ⁇ 22, ⁇ , a mu 2m initial velocity V The average friction coefficient for each pressing force in int .
  • the initial velocity V int is, if it meets the V 1 ⁇ V int ⁇ V 2, the average friction coefficient mu 11 according to the speed V 1 of the vehicle, ⁇ 12, ⁇ , ⁇ 1m and the speed of the vehicle V the average friction coefficient mu 21 corresponding to 2, ⁇ 22, ⁇ , by interpolating from mu 2m, calculates the average friction coefficient for each pressing force at an initial velocity V int.
  • the average friction coefficient calculation unit 24 performs primary interpolation as an example of interpolation, and calculates an average friction coefficient for each pressing force at the initial speed V int .
  • Initial velocity V int, friction coefficient corresponding to the pushing force N 1 in the case of performing the linear interpolation is expressed by the following equation (2).
  • Initial velocity V int pressing force N 2 in, ..., the average friction coefficient corresponding to N m is also calculated in a similar manner, as shown by a white circle in FIG. 5, each pressing force at an initial velocity V int
  • the average coefficient of friction ⁇ int1 , ⁇ int2 ,..., ⁇ intm is obtained.
  • the calculation unit 25 that has obtained the average friction coefficient calculated by the average friction coefficient calculation unit 24 uses the average friction coefficient as a variable at the initial speed from the average friction coefficient for each pressing force at the initial speed V int.
  • a relational expression for calculating the pressing force is derived.
  • the calculation unit 25 calculates two adjacent points among the average friction coefficients ⁇ int1 , ⁇ int2 ,..., ⁇ intm for each pressing force at the initial speed V int. Is linearly interpolated to derive a relational expression.
  • the relational expression shown by a straight line in FIG. 6 is represented by the following expression (3).
  • the relational expression is a linear function that calculates the pressing force N ′ using the average friction coefficient ⁇ ′ as a variable.
  • A1 and B1 are coefficients, respectively, A1 is represented by the following equation (4), and B1 is represented by the following equation (5).
  • ⁇ ′ A1 ⁇ N ′ + B1 (3)
  • A1 ( ⁇ int2 ⁇ int1 ) / (N 2 ⁇ N 1 ) (4)
  • B1 ( ⁇ int1 ⁇ N 2 ⁇ int2 ⁇ N 1 ) / (N 2 ⁇ N 1 ) (5)
  • the calculation unit 25 derives an equation relating to the pressing force from the relational expression derived as described above.
  • the required braking force F1 can be regarded as being equal to the product of the average friction coefficient ⁇ ′ and the pressing force N ′ as represented by the following equation (6).
  • the following equation (7) is obtained.
  • the following equation (8) which is a quadratic equation related to the pressing force N ′, is derived from the above equation (3), which represents the relational equation indicated by a straight line in FIG. 6, and the following equation (7).
  • the calculation unit 25 obtains a solution of the quadratic equation based on the solution formula, calculates a positive solution as the target pressing force N tgt , and sends it to the target pressure calculation unit 26. Since the target pressing force can be obtained using the solution formula, the calculation process is simplified as compared with the case where the calculation process is repeated to obtain an optimal solution, an approximate solution, and the like. If the solution of the quadratic equation is not present, processor 25, initial velocity average friction coefficient for each pressing force at V int ⁇ int1, ⁇ int2, ⁇ , of the mu INTM, another adjacent two points Linear interpolation is performed to derive a relational expression, and the above processing is repeated.
  • F1 ⁇ ′ ⁇ N ′ (6)
  • ⁇ W1 / 8 ⁇ ' ⁇ N' (7)
  • ⁇ ⁇ W1 / 8 A1 ⁇ N ′ 2 + B1 ⁇ N ′ (8)
  • the target pressure calculator 26 calculates a target pressure P tgt from the pressing force N tgt . Specifically, the target pressure calculation unit 26 divides the pressing force N tgt by the area of a surface of the mechanical brake device 6 perpendicular to the sliding direction of the piston to obtain the target pressure P tgt . When the piston slides due to the pressure of the fluid inside the brake cylinder, the brake is moved, and when the brake is pressed against the wheel, a braking force is generated. Target pressure calculating unit 26, in response to a feedback signal obtained from the pressure sensor 15, so that the pressure of air output of the relay valve 14 approaches the target pressure P tgt 'calculated in the most recent, adjusts the target pressure P tgt . Target pressure calculating section 26 outputs the electric command indicating the target pressure P tgt to electropneumatic conversion valve 13.
  • the electropneumatic conversion valve 13 adjusts the pressure of the air supplied from the fluid source 5 according to the target pressure Ptgt indicated by the electric command sent from the brake control unit 11 and outputs the pressure to the relay valve 14.
  • the relay valve 14 compresses the air supplied from the fluid source 5 according to the command pressure, and supplies the compressed air to the mechanical brake device 6 using the pressure of the air output from the electropneumatic conversion valve 13 as the command pressure. .
  • the air compressed by the brake control device 10 is supplied to the brake cylinder as described above, the friction material is pressed against the rotating body that rotates during traveling of the vehicle, and a braking force is generated.
  • the brake control device 10 calculates the target pressing force from the average friction coefficient that changes depending on the initial speed and the pressing force, and the required braking force. Then, the brake control device 10 compresses the fluid to a pressure necessary to obtain the target pressing force, and supplies the compressed fluid to the mechanical brake device, so that the braking force varies with respect to the same brake command. It is possible to provide a vehicular brake control device and a vehicular brake control method that suppress the vehicle.
  • a conventional brake control device that uses a friction coefficient according to an initial speed and a brake command
  • the same friction coefficient is used even when the vehicle weight is different.
  • the pressing force is calculated.
  • the weight of the vehicle increases, the required braking force increases.
  • the target pressing force increases.
  • the same friction coefficient is used even when the weight of the vehicle is different.
  • the actual friction coefficient becomes smaller than the friction coefficient used for calculating the target pressing force. As a result, the actually generated braking force may be smaller than the required braking force.
  • the brake control device 10 uses the average friction coefficient that varies depending on the initial speed and the pressing force, and uses a different average friction coefficient when the vehicle weight is different. Since the pressing force is calculated, it is possible to suppress excessive or insufficient braking force.
  • FIG. 7 is a diagram illustrating a hardware configuration example of the brake control unit 11 according to the embodiment.
  • the brake control unit 11 includes a processor 31, a memory 32, and an interface 33 as a hardware configuration for controlling each unit. Each function of these devices is realized by the processor 31 executing a program stored in the memory 32.
  • the interface 33 is for connecting each device and establishing communication, and may be composed of a plurality of types of interfaces as needed.
  • FIG. 7 illustrates an example in which each of the processor 31 and the memory 32 is configured by one, but a plurality of processors 31 and a plurality of memories 32 may execute each function in cooperation with each other.
  • the main part that has the processor 31, the memory 32, and the interface 33 and performs the control processing can be realized by using an ordinary computer system without using a dedicated system.
  • storing and distributing a computer program for executing the above-described operation in a computer-readable recording medium such as a flexible disk, a CD-ROM, or a DVD-ROM
  • the brake control unit 11 that executes the above-described processing may be configured.
  • the computer program may be stored in a storage device of a server device on a communication network, and the brake control unit 11 may be configured to be downloaded by a normal computer system.
  • the function of the brake control unit 11 is realized by sharing an OS (operating system) with an application program or by cooperation between the OS and the application program, only the application program portion is stored in a recording medium or a storage device. May be.
  • the computer program may be posted on a bulletin board (BBS: Bulletin Board System) on a communication network, and the computer program may be distributed via the communication network. Then, the computer program may be activated and executed in the same manner as other application programs under the control of the OS, so that the above-described processing may be executed.
  • BSS Bulletin Board System
  • the mechanical brake device 6 has an arbitrary brake mechanism that mechanically applies a braking force to wheels.
  • the mechanical brake device 6 has a brake pad, and generates a braking force by pressing the brake pad against a brake rotor that rotates with wheels.
  • the mechanical brake device 6 has a brake shoe, and generates a braking force by pressing the brake shoe against a drum that is a cylindrical member that rotates with the axle.
  • the adaptive load detector 3 may be mounted on a trolley to detect a load applied to the trolley.
  • the required braking forces F1 and F2 need not be equal to each other.
  • the required braking force of the mechanical brake device 6 attached to the front wheel in the traveling direction may be smaller than the required braking force of the mechanical brake device 6 attached to the rear wheel in the traveling direction.
  • the initial speed acquisition unit 22 may acquire the wheel rotation speed from an ATC (Automatic Train Control) instead of the speed sensor 4 or a TIMS (Train Information Management System).
  • the speed of the vehicle may be obtained from.
  • the method of calculating the pressing force is not limited to the above example.
  • the target pressing force calculation unit 23 holds a function for uniquely specifying the average friction coefficient from the pressing force for each vehicle speed, and uniquely calculates the average friction coefficient from the pressing force at the initial speed from the function for each vehicle speed. May be derived.
  • the relational expression for uniquely calculating the average friction coefficient from the pressing force is not limited to a linear function, but may be a higher-order function such as a quadratic function or a cubic function. In this case, the target pressing force calculation unit 23 derives a higher-order equation relating to the pressing force, obtains an approximate solution, an optimal solution, and the like of the higher-order equation, and calculates the target solution as the target pressing force Ntgt .
  • the average friction coefficient calculation unit 24 may hold an average friction coefficient table for each wheel position in the traveling direction. In this case, the average friction coefficient calculation unit 24 calculates the average friction coefficient for each pressing force at the initial speed for each wheel position. Then, for each wheel position, the calculation unit 25 derives a relational expression for calculating the pressing force using the average friction coefficient as a variable at the initial speed, and further derives an equation relating to the pressing force for each wheel position. The calculation unit 25 calculates the solution of the equation for each wheel position and calculates the target pressing force N tgt for each wheel position.
  • the arithmetic unit 25 performs primary interpolation on two adjacent points among the average friction coefficients ⁇ int1 , ⁇ int2 ,..., ⁇ intm for each pressing force at the initial speed V int to derive a relational expression.
  • the pressing force may be estimated from the target deceleration, the initial speed, and the like, and the two adjacent points closest to the estimated pressing force may be linearly interpolated to derive a relational expression.
  • 1 vehicle brake system 2 brake setting device, 3 load response detector, 4 speed sensor, 5 fluid source, 6 mechanical brake device, 10 brake control device, 11 brake control unit, 12 output unit, 13 electropneumatic conversion valve, 14 relay valve, 15 pressure sensor, 21 required brake force calculation unit, 22 initial speed acquisition unit, 23 target pressing force calculation unit, 24 average friction coefficient calculation unit, 25 calculation unit, 26 target pressure calculation unit, 31 processor, 32 memory , 33 interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)

Abstract

A brake control unit (11) comprises: a required brake force calculation unit (21) that calculates a required brake force which is the brake force generated by a mechanical brake device in order to achieve the deceleration indicated by brake commands; an initial speed acquisition unit (22) that acquires an initial speed; a target pressing force calculation unit (23) that calculates a target pressing force which is the force for pressing a brake shoe against a wheel in order to achieve the required brake force; and a target pressure calculation unit (26) that calculates a target pressure indicating the pressure of fluid in a brake cylinder necessary for achieving the target pressing force, and performs feedback control to adjust the target pressure on the basis of the feedback signal acquired from a pressure sensor (15).

Description

車両用ブレーキ制御装置および車両用ブレーキ制御方法Vehicle brake control device and vehicle brake control method
 この発明は、車両用ブレーキ制御装置および車両用ブレーキ制御方法に関する。 The present invention relates to a vehicle brake control device and a vehicle brake control method.
 鉄道車両に搭載されるブレーキ制御装置は、ブレーキ指令が示す目標減速度を得るために、流体源から供給される流体を圧縮して、圧縮した流体を機械ブレーキ装置が有するブレーキシリンダに供給する。この主のブレーキ制御装置の一例が、特許文献1に開示されている。特許文献1に開示される鉄道車両のブレーキ制御装置は、ブレーキ指令から必要ブレーキ力を算出し、流体源から供給される流体を、必要ブレーキ力を得るための圧力まで圧縮して、圧縮した流体を機械ブレーキ装置が有するブレーキシリンダに供給する。圧縮された流体がブレーキシリンダに供給されることで、制輪子が車輪に押しつけられ、ブレーキ力が得られる。 ブ レ ー キ The brake control device mounted on the railway vehicle compresses the fluid supplied from the fluid source and supplies the compressed fluid to the brake cylinder of the mechanical brake device in order to obtain the target deceleration indicated by the brake command. An example of the main brake control device is disclosed in Patent Document 1. The railway vehicle brake control device disclosed in Patent Document 1 calculates a required braking force from a brake command, compresses a fluid supplied from a fluid source to a pressure for obtaining a required braking force, and compresses the fluid. Is supplied to the brake cylinder of the mechanical brake device. When the compressed fluid is supplied to the brake cylinder, the brake shoe is pressed against the wheel, and a braking force is obtained.
特開2003-291797号公報JP-A-2003-291797
 上述のように制輪子が車輪に押しつけられることで、ブレーキ力が得られる。ブレーキ力は、制輪子と車輪の接触面の摩擦係数と、制輪子を車輪に押し付ける力である押付力との積で表される。ブレーキ指令が同じであっても、摩擦係数が、例えば、ブレーキ開始時の車両の速度、押付力の大きさ等に依存して変化すると、ブレーキ力が異なることがある。その結果、車両の停止位置にばらつきが生じ、目標位置からずれてしまうことがある。 ブ レ ー キ Brake force is obtained by pressing the brake shoe against the wheel as described above. The braking force is expressed as a product of a friction coefficient of a contact surface between the brake shoe and the wheel and a pressing force that is a force for pressing the brake shoe against the wheel. Even if the brake command is the same, if the friction coefficient changes depending on, for example, the speed of the vehicle at the start of braking, the magnitude of the pressing force, and the like, the braking force may differ. As a result, the stop position of the vehicle may vary and may deviate from the target position.
 本発明は上述の事情に鑑みてなされたものであり、同じブレーキ指令に対してブレーキ力がばらつくことを抑制する車両用ブレーキ制御装置および車両用ブレーキ制御方法を提供することが目的である。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicular brake control device and a vehicular brake control method that suppress a variation in braking force with respect to the same brake command.
 上記目的を達成するために、本発明の車両用ブレーキ制御装置は、ブレーキシリンダとブレーキシリンダの内部の流体の圧力に応じて作動する摩擦材とを有し、車両の走行時に回転する回転体に摩擦材を押しつけることでブレーキ力を発生させる機械ブレーキ装置を制御する車両用ブレーキ制御装置である。車両用ブレーキ制御装置は、必要ブレーキ力算出部と、初期速度取得部と、目標押付力算出部と、目標圧算出部と、出力部と、を備える。必要ブレーキ力算出部は、車両の目標減速度を示すブレーキ指令を取得し、目標減速度を得るために必要なブレーキ力である必要ブレーキ力を算出する。初期速度取得部は、必要ブレーキ力算出部によるブレーキ指令の取得に応答して、車両の速度を取得する。目標押付力算出部は、摩擦材と回転体との接触面の摩擦係数として、初期速度取得部が取得した車両の速度である初期速度と、摩擦材を回転体に押しつける力である押付力とに依存して変化する平均摩擦係数を用い、平均摩擦係数と必要ブレーキ力とから、必要ブレーキ力を得るために摩擦材を回転体に押しつける力である目標押付力を算出する。目標圧算出部は、目標押付力を得るために必要なブレーキシリンダの内部の流体の圧力を示す目標圧を算出する。出力部は、目標圧に応じて、流体源から供給される流体を圧縮して、圧縮した流体を機械ブレーキ装置に供給する。 In order to achieve the above object, a vehicle brake control device according to the present invention includes a brake cylinder and a friction material that operates in accordance with the pressure of a fluid inside the brake cylinder. This is a vehicle brake control device that controls a mechanical brake device that generates a braking force by pressing a friction material. The vehicle brake control device includes a required brake force calculation unit, an initial speed acquisition unit, a target pressing force calculation unit, a target pressure calculation unit, and an output unit. The required braking force calculation unit acquires a brake command indicating a target deceleration of the vehicle, and calculates a required braking force that is a braking force required to obtain the target deceleration. The initial speed acquisition unit acquires the speed of the vehicle in response to the acquisition of the brake command by the necessary braking force calculation unit. The target pressing force calculation unit, as a friction coefficient of the contact surface between the friction material and the rotating body, an initial speed which is the speed of the vehicle acquired by the initial speed acquisition unit, and a pressing force which is a force pressing the friction material against the rotating body. Is used to calculate a target pressing force which is a force for pressing the friction material against the rotating body in order to obtain the necessary braking force from the average friction coefficient and the required braking force. The target pressure calculating section calculates a target pressure indicating a pressure of a fluid inside the brake cylinder necessary for obtaining a target pressing force. The output unit compresses the fluid supplied from the fluid source according to the target pressure, and supplies the compressed fluid to the mechanical brake device.
 本発明によれば、初期速度と摩擦材を回転体に押しつける力である押付力とに依存して変化する平均摩擦係数と、必要ブレーキ力とから、必要ブレーキ力を得るために摩擦材を回転体に押しつける力である目標押付力を算出する。そして、目標押付力を得るために必要なブレーキシリンダの内部の流体の圧力を示す目標圧に応じて圧縮された流体を機械ブレーキ装置に供給することで、同じブレーキ指令に対してブレーキ力がばらつくことを抑制する車両用ブレーキ制御装置および車両用ブレーキ制御方法を提供することが可能である。 According to the present invention, the friction material is rotated in order to obtain the required braking force from the average friction coefficient that changes depending on the initial speed and the pressing force that is the force pressing the friction material against the rotating body, and the required braking force. The target pressing force, which is the force pressing against the body, is calculated. Then, by supplying fluid compressed to the mechanical brake device in accordance with the target pressure indicating the pressure of the fluid inside the brake cylinder required to obtain the target pressing force, the braking force varies with the same brake command. It is possible to provide a vehicular brake control device and a vehicular brake control method for suppressing such a situation.
本発明の実施の形態に係る車両用ブレーキシステムの構成を示すブロック図1 is a block diagram illustrating a configuration of a vehicle brake system according to an embodiment of the present invention. 実施の形態における車両用ブレーキ制御装置の構成を示すブロック図1 is a block diagram illustrating a configuration of a vehicle brake control device according to an embodiment. 実施の形態に係る車両用ブレーキ制御装置が行うブレーキ制御の動作の一例を示すフローチャート5 is a flowchart illustrating an example of an operation of brake control performed by the vehicle brake control device according to the embodiment. 実施の形態における車両の速度と押付力から平均摩擦係数を一意に特定する平均摩擦係数テーブルの例を示す図The figure which shows the example of the average friction coefficient table which specifies uniquely the average friction coefficient from the speed and the pressing force of the vehicle in embodiment. 実施の形態における初期速度での押付力ごとの平均摩擦係数の算出方法の例を示す図The figure which shows the example of the calculation method of the average friction coefficient for every pressing force in the initial speed in embodiment. 実施の形態における平均摩擦係数を変数として押付力を特定する関係式の例を示す図The figure which shows the example of the relational expression which specifies the pressing force by making average friction coefficient into a variable in embodiment. 実施の形態に係る車両用ブレーキ制御装置のハードウェアの構成を示す図FIG. 1 is a diagram illustrating a hardware configuration of a vehicle brake control device according to an embodiment.
 以下、本発明の実施の形態に係る車両用ブレーキ制御装置および車両用ブレーキ制御方法について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, a vehicle brake control device and a vehicle brake control method according to an embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent parts are denoted by the same reference numerals.
 車両の一例として鉄道車両に搭載される車両用ブレーキシステム1を図1に示す。車両用ブレーキシステム1は、運転員の操作に応じたブレーキ指令を出力するブレーキ設定器2と、車両の重量を検出する応荷重検出器3と、車両の速度を検出する速度センサ4と、流体源5と、車両のブレーキ力を生じさせる機械ブレーキ装置6と、ブレーキ指令に応じて流体源5から供給される流体を圧縮して、圧縮した流体を機械ブレーキ装置6に供給するブレーキ制御装置10と、を備える。図1において、電気信号を実線で示し、流体の流れを点線で示す。 FIG. 1 shows a vehicle brake system 1 mounted on a railway vehicle as an example of a vehicle. The vehicle brake system 1 includes a brake setting device 2 that outputs a brake command according to an operation of a driver, a load detection device 3 that detects the weight of the vehicle, a speed sensor 4 that detects the speed of the vehicle, A source 5, a mechanical brake device 6 for generating a braking force of the vehicle, and a brake control device 10 for compressing a fluid supplied from the fluid source 5 in response to a brake command and supplying the compressed fluid to the mechanical brake device 6 And. In FIG. 1, the electric signal is indicated by a solid line, and the flow of the fluid is indicated by a dotted line.
 ブレーキ設定器2は、運転台に設けられたマスターコントローラを有し、運転員によるマスターコントローラの操作に応じたブレーキ指令をブレーキ制御装置10に送る。ブレーキ指令は、車両の目標減速度を示すブレーキノッチを含む。応荷重検出器3は、車両に取り付けられ、車両に乗車している乗客および車両に搭載された機器、荷物等を含む車両重量を検出し、検出値をブレーキ制御装置10に送る。速度センサ4は、車軸に取り付けられたPG(Pulse Generator:パルスジェネレーター)を備え、PGが出力するパルス信号から得られる車軸の回転数を示す信号をブレーキ制御装置10に送る。流体源5は、流体の一例として空気をブレーキ制御装置10に供給する。 The brake setting device 2 has a master controller provided in a driver's cab, and sends a brake command corresponding to an operation of the master controller by an operator to the brake control device 10. The brake command includes a brake notch indicating a target deceleration of the vehicle. The adaptive load detector 3 is attached to the vehicle, detects the weight of the vehicle including the passengers in the vehicle, the devices mounted on the vehicle, and the luggage, and sends the detected value to the brake control device 10. The speed sensor 4 includes a PG (Pulse Generator) attached to the axle, and sends a signal indicating the number of revolutions of the axle obtained from a pulse signal output from the PG to the brake control device 10. The fluid source 5 supplies air to the brake control device 10 as an example of a fluid.
 ブレーキ制御装置10は、ブレーキ設定器2が出力するブレーキ指令、応荷重検出器3の検出値、および速度センサ4の検出値に基づいて、流体源5から供給される流体を圧縮し、機械ブレーキ装置6に供給する。機械ブレーキ装置6は、ブレーキシリンダと、ブレーキシリンダの内部の流体の圧力に応じて作動する摩擦材とを有する。流体源5から供給され、ブレーキ制御装置10で圧縮された空気がブレーキシリンダに供給されることでブレーキシリンダ内の圧力が上昇すると、摩擦材が、車両の走行時に回転する回転体に押し付けられ、ブレーキ力が発生する。機械ブレーキ装置6は、摩擦材の一例として、制輪子を有する。制輪子が、回転体の一例である車輪に押し付けられることで、ブレーキ力が発生する。ブレーキ力は、制輪子を車輪に押しつける力である押付力と、制輪子と車輪との接触面の摩擦係数の積で表される。 The brake control device 10 compresses the fluid supplied from the fluid source 5 based on the brake command output from the brake setting device 2, the detection value of the adaptive load detector 3, and the detection value of the speed sensor 4, and performs mechanical braking. Supply to the device 6. The mechanical brake device 6 has a brake cylinder and a friction material that operates according to the pressure of the fluid inside the brake cylinder. When the pressure in the brake cylinder is increased by the air supplied from the fluid source 5 and compressed by the brake control device 10 being supplied to the brake cylinder, the friction material is pressed against a rotating body that rotates during traveling of the vehicle, Braking force is generated. The mechanical brake device 6 has a brake shoe as an example of a friction material. The brake force is generated when the brake shoe is pressed against a wheel that is an example of a rotating body. The braking force is expressed as a product of a pressing force, which is a force pressing the brake shoe against the wheel, and a friction coefficient of a contact surface between the brake shoe and the wheel.
 詳細については後述するが、ブレーキ制御装置10は、摩擦材と回転体との接触面の摩擦係数として、ブレーキ指令の取得に応答して取得した車両の速度である初期速度と押付力とに依存して変化する平均摩擦係数を用いて、ブレーキ指令が示す目標減速度を得るための押付力を算出する。そして、ブレーキ制御装置10は、算出した押付力を得るために必要なブレーキシリンダの内部の流体の圧力に応じて、流体源5から供給される空気を圧縮して、圧縮した空気を機械ブレーキ装置6に供給する。ブレーキ制御装置10が上述のように算出した押付力に基づいて圧縮した空気を、機械ブレーキ装置6に供給することで、同じブレーキ指令に対してブレーキ力がばらつくことが抑制される。 Although the details will be described later, the brake control device 10 determines the friction coefficient of the contact surface between the friction material and the rotating body depending on the initial speed which is the speed of the vehicle acquired in response to the acquisition of the brake command and the pressing force. Then, the pressing force for obtaining the target deceleration indicated by the brake command is calculated using the average friction coefficient that changes. Then, the brake control device 10 compresses the air supplied from the fluid source 5 according to the pressure of the fluid inside the brake cylinder required to obtain the calculated pressing force, and uses the compressed air as a mechanical brake device. 6 By supplying the mechanical brake device 6 with the air compressed by the brake control device 10 based on the pressing force calculated as described above, the variation of the brake force with respect to the same brake command is suppressed.
 ブレーキ制御装置10は、ブレーキ指令が示す目標減速度を得るために必要なブレーキシリンダの圧力を示す目標圧を算出するブレーキ制御部11と、目標圧に応じて流体源5から供給される空気を圧縮して、圧縮した空気を機械ブレーキ装置6に出力する出力部12と、出力部12が出力する空気の圧力を検出して、ブレーキ制御部11にフィードバック信号を送信する圧力センサ15と、を備える。 The brake control device 10 calculates the target pressure indicating the pressure of the brake cylinder required to obtain the target deceleration indicated by the brake command, the brake control unit 11 and the air supplied from the fluid source 5 according to the target pressure. An output unit 12 that outputs compressed air to the mechanical brake device 6 and a pressure sensor 15 that detects the pressure of the air output by the output unit 12 and sends a feedback signal to the brake control unit 11 Prepare.
 ブレーキ制御部11は、図2に示すように、ブレーキ指令が示す減速度を得るために機械ブレーキ装置6が生じさせるブレーキ力である必要ブレーキ力を算出する必要ブレーキ力算出部21と、初期速度を取得する初期速度取得部22と、必要ブレーキ力を得るために制輪子を車輪に押し付ける力である目標押付力を算出する目標押付力算出部23と、目標押付力を得るために必要なブレーキシリンダの内部の流体の圧力を示す目標圧を算出し、圧力センサ15から取得したフィードバック信号に基づいて目標圧を調節するフィードバック制御を行う目標圧算出部26と、を備える。目標押付力算出部23は、初期速度における押付力ごとの制輪子と車輪の接触面の平均摩擦係数を算出する平均摩擦係数算出部24と、平均摩擦係数算出部24で算出した平均摩擦係数および必要ブレーキ力から目標押付力を算出する演算部25と、を備える。
 上記構成を有するブレーキ制御部11は、ブレーキ設定器2から取得したブレーキ指令、応荷重検出器3の検出値、および速度センサ4から取得した車軸の回転数を示す信号から、目標圧を算出し、目標圧を示す電気指令を出力部12に送る。
As shown in FIG. 2, the brake control unit 11 includes a required brake force calculation unit 21 that calculates a required brake force that is a brake force generated by the mechanical brake device 6 to obtain a deceleration indicated by the brake command, and an initial speed. , A target pressing force calculating unit 23 for calculating a target pressing force that is a force pressing the brake shoe against the wheel to obtain a required braking force, and a brake required for obtaining the target pressing force. A target pressure calculating unit that calculates a target pressure indicating the pressure of the fluid inside the cylinder and performs feedback control for adjusting the target pressure based on a feedback signal acquired from the pressure sensor. The target pressing force calculation unit 23 includes an average friction coefficient calculation unit 24 that calculates an average friction coefficient of the contact surface between the brake shoe and the wheel for each pressing force at the initial speed, and an average friction coefficient calculated by the average friction coefficient calculation unit 24. A calculation unit 25 for calculating a target pressing force from the required braking force.
The brake control unit 11 having the above configuration calculates a target pressure from a brake command acquired from the brake setting device 2, a detection value of the adaptive load detector 3, and a signal indicating the number of revolutions of the axle acquired from the speed sensor 4. , An electric command indicating the target pressure is sent to the output unit 12.
 出力部12は、図1に示すように、ブレーキ制御部11から送られた電気指令を空気指令に変換する電空変換弁13と、電空変換弁13の出力に応じて流体源5から供給される空気を圧縮して、圧縮した空気を機械ブレーキ装置6に出力する中継弁14と、を備える。電空変換弁13は、ブレーキ制御部11から送られた電気指令に応じて、流体源5から供給される空気の圧力を調節し、中継弁14に出力する。中継弁14は、電空変換弁13が出力する空気の圧力に応じて、流体源5から供給される空気を圧縮して、圧縮した空気を機械ブレーキ装置6に供給する。 As shown in FIG. 1, the output unit 12 converts an electric command sent from the brake control unit 11 into an air command, and converts the electric command into an air command. And a relay valve 14 that compresses the compressed air and outputs the compressed air to the mechanical brake device 6. The electropneumatic conversion valve 13 adjusts the pressure of the air supplied from the fluid source 5 according to the electric command sent from the brake control unit 11 and outputs the pressure to the relay valve 14. The relay valve 14 compresses the air supplied from the fluid source 5 according to the pressure of the air output from the electropneumatic conversion valve 13, and supplies the compressed air to the mechanical brake device 6.
 上記構成を有するブレーキ制御装置10の動作の概略について図3を用いて説明する。必要ブレーキ力算出部21は、ブレーキ指令を取得しない間は(ステップS11;N)、ステップS11の処理を繰り返す。必要ブレーキ力算出部21は、ブレーキ指令を取得すると(ステップS11;Y)、ブレーキ指令が示す目標減速度および応荷重検出器3の検出値から、必要ブレーキ力を算出する(ステップS12)。初期速度取得部22は、必要ブレーキ力算出部21のブレーキ指令の取得に応答して、速度センサ4からパルス信号を取得し、パルス信号から初期速度を算出する(ステップS13)。目標押付力算出部23は、初期速度と押付力とに依存して変化する平均摩擦係数を用い、平均摩擦係数と必要ブレーキ力とから、必要ブレーキ力を得るために制輪子を車輪に押し付ける力である目標押付力を算出する(ステップS14)。目標圧算出部26は、目標押付力算出部23で算出した押付力を得るために必要なブレーキシリンダの内部の流体の圧力を示す目標圧を算出し、圧力センサ15から取得したフィードバック信号に応じて目標圧を調節する(ステップS15)。出力部12は、流体源5から供給される空気の圧力が目標圧に達するまで空気を圧縮して、圧縮した空気を機械ブレーキ装置6に供給する(ステップS16)。ブレーキ指令が示すブレーキノッチに変化がない場合(ステップS17;Y)、ステップS15に戻って、上述の処理を繰り返す。詳細には、ステップS14で算出した目標押付力を用いて、目標圧を算出し、圧力センサ15から取得したフィードバック信号に応じて目標圧を調節し、流体源5から供給される空気の圧力が目標圧に達するまで空気を圧縮して、圧縮した空気を機械ブレーキ装置6に供給することを繰り返す。目標圧の算出に際して用いるパラメータは、前回の目標圧の算出に際して用いたパラメータと異なってもよい。継続して同じブレーキ指令を取得しない場合、すなわち、ブレーキ指令が示すブレーキノッチが変化した場合(ステップS17;N)、ステップS11に戻って、上述の処理を繰り返す。 An outline of the operation of the brake control device 10 having the above configuration will be described with reference to FIG. The necessary braking force calculation unit 21 repeats the processing of step S11 while not acquiring a brake command (step S11; N). Upon acquiring the brake command (Step S11; Y), the necessary brake force calculation unit 21 calculates the required brake force from the target deceleration indicated by the brake command and the value detected by the adaptive load detector 3 (Step S12). The initial speed acquisition unit 22 acquires a pulse signal from the speed sensor 4 in response to the acquisition of the brake command by the required braking force calculation unit 21, and calculates an initial speed from the pulse signal (Step S13). The target pressing force calculation unit 23 uses the average friction coefficient that changes depending on the initial speed and the pressing force, and uses the average friction coefficient and the required braking force to apply the force that presses the brake shoe to the wheel to obtain the required braking force. Is calculated (step S14). The target pressure calculator 26 calculates a target pressure indicating the pressure of the fluid inside the brake cylinder necessary to obtain the pressing force calculated by the target pressing force calculator 23, and responds to the feedback signal acquired from the pressure sensor 15. To adjust the target pressure (step S15). The output unit 12 compresses the air until the pressure of the air supplied from the fluid source 5 reaches the target pressure, and supplies the compressed air to the mechanical brake device 6 (Step S16). If there is no change in the brake notch indicated by the brake command (Step S17; Y), the process returns to Step S15 and repeats the above processing. Specifically, the target pressure is calculated using the target pressing force calculated in step S14, and the target pressure is adjusted according to the feedback signal acquired from the pressure sensor 15, so that the pressure of the air supplied from the fluid source 5 is reduced. The air is compressed until the target pressure is reached, and the supply of the compressed air to the mechanical brake device 6 is repeated. The parameter used for calculating the target pressure may be different from the parameter used for calculating the previous target pressure. When the same brake command is not continuously obtained, that is, when the brake notch indicated by the brake command changes (Step S17; N), the process returns to Step S11 and repeats the above processing.
 上述の処理を行うブレーキ制御装置10の各部の動作の詳細について説明する。必要ブレーキ力算出部21は、ブレーキ設定器2からブレーキ指令を取得すると、ブレーキ指令が示す目標減速度α、および、応荷重検出器3が検出した車両重量W1に基づいて、下記(1)式から必要ブレーキ力F1を算出する。必要ブレーキ力算出部21は、必要ブレーキ力F1を平均摩擦係数算出部24に送る。なお下記(1)式は、車両が2つの台車で支持され、各台車が4つの車輪を有し、車輪ごとに機械ブレーキ装置6が設けられている場合の、機械ブレーキ装置6ごとの必要ブレーキ力を示す。さらに必要ブレーキ力算出部21は、目標減速度αを初期速度取得部22に送る。
  F1=α・W1/8   ・・・(1)
The operation of each part of the brake control device 10 that performs the above-described processing will be described in detail. When acquiring the brake command from the brake setting device 2, the necessary brake force calculation unit 21 calculates the following formula (1) based on the target deceleration α indicated by the brake command and the vehicle weight W1 detected by the adaptive load detector 3. The required braking force F1 is calculated from the following. The required braking force calculation unit 21 sends the required braking force F1 to the average friction coefficient calculation unit 24. The following formula (1) represents the required brake for each mechanical brake device 6 when the vehicle is supported by two trolleys, each trolley has four wheels, and a mechanical brake device 6 is provided for each wheel. Show power. Further, the required braking force calculation unit 21 sends the target deceleration α to the initial speed acquisition unit 22.
F1 = α · W1 / 8 (1)
 初期速度取得部22は、必要ブレーキ力算出部21によるブレーキ指令の取得に応答して、車両の速度を取得する。詳細には、初期速度取得部22は、必要ブレーキ力算出部21から取得した目標減速度αの変化、すなわち、ブレーキ指令の変化を検知する。初期速度取得部22は、ブレーキ指令の変化を検知すると、速度センサ4から取得したパルス信号から、車両の速度を算出する。初期速度取得部22は、算出した車両の速度を平均摩擦係数算出部24に送る。以下の説明において、初期速度取得部22が算出した車両の速度を、初期速度Vintとする。ブレーキ指令の変化とは、ブレーキ指令が入力されていない状態からブレーキ指令が入力された場合、および、ブレーキ指令が含むブレーキノッチのノッチ数が変化、すなわち、目標減速度αが変化した場合を含む。 The initial speed acquisition unit 22 acquires the speed of the vehicle in response to the acquisition of the brake command by the necessary braking force calculation unit 21. More specifically, the initial speed acquisition unit 22 detects a change in the target deceleration α acquired from the necessary brake force calculation unit 21, that is, a change in the brake command. When detecting a change in the brake command, the initial speed obtaining unit 22 calculates the speed of the vehicle from the pulse signal obtained from the speed sensor 4. The initial speed acquisition unit 22 sends the calculated vehicle speed to the average friction coefficient calculation unit 24. In the following description, the speed of the vehicle calculated by the initial speed acquisition unit 22 is referred to as an initial speed V int . The change of the brake command includes a case where the brake command is input from a state where the brake command is not input, and a case where the number of notches of the brake notch included in the brake command changes, that is, a case where the target deceleration α changes. .
 平均摩擦係数算出部24は、予め定められた車両の異なる速度のそれぞれにおいて押付力ごとに予め定められた、摩擦材と回転体との接触面の平均摩擦係数から、初期速度における押付力ごとの平均摩擦係数を算出し、演算部25に送る。詳細には、平均摩擦係数算出部24は、車両の速度と押付力から平均摩擦係数を一意に特定する平均摩擦係数テーブルを保持する。図4に示す平均摩擦係数テーブルは、車両速度V,V,・・・,Vと、押付力N,N,・・・,Nとの組み合わせで平均摩擦係数を一意に特定するためのものである。例えば、車両速度Vと押付力Nに対する平均摩擦係数μは、μ11である。なお以下の説明において、V<V<・・・<Vとし、N<N<・・・<Nとする。平均摩擦係数テーブルの値は、一定の押付力でブレーキをかけて車両を走行させる試験走行、シミュレーション等の結果に基づいて定められる。速度が同じであれば、押付力が大きくなるにつれて、摩擦係数は小さくなる。また押付力が同じであれば、速度が大きくなるにつれて、摩擦係数は小さくなる。 The average friction coefficient calculation unit 24 calculates, for each pressing force at an initial speed, the average friction coefficient of the contact surface between the friction material and the rotating body, which is predetermined for each pressing force at each of different predetermined vehicle speeds. The average coefficient of friction is calculated and sent to the calculation unit 25. More specifically, the average friction coefficient calculation unit 24 holds an average friction coefficient table that uniquely specifies the average friction coefficient from the speed and the pressing force of the vehicle. Figure average friction coefficient table shown in 4, the vehicle speed V 1, V 2, · · ·, and V k, the pressing force N 1, N 2, · · ·, the average friction coefficient uniquely in combination with N m It is for identification. For example, the average friction coefficient μ for the vehicle speed V 1 and the pressing force N 1 is μ 11 . In the following description, V 1 and <V 2 <··· <V k , and N 1 <N 2 <··· < N m. The value of the average friction coefficient table is determined based on the results of a test run, a simulation, or the like in which the vehicle travels with a brake applied with a constant pressing force. At the same speed, the friction coefficient decreases as the pressing force increases. If the pressing force is the same, the friction coefficient decreases as the speed increases.
 上述した平均摩擦係数テーブルを保持する平均摩擦係数算出部24は、平均摩擦係数テーブルの値または平均摩擦係数テーブルの値を補間して得た値から、初期速度での押付力ごとの平均摩擦係数を算出する。
 例えば、初期速度Vintが、平均摩擦係数テーブルに定められた車両の速度V,V,・・・,Vのいずれかに一致する場合には、一致した車両の速度に対応付けられた押付力ごとの平均摩擦係数を、初期速度Vintでの押付力ごとの平均摩擦係数として用いられる。例えば、Vint=Vである場合、押付力N,N,・・・,Nのそれぞれに応じた平均摩擦係数μ21,μ22,・・・,μ2mを、初期速度Vintでの押付力ごとの平均摩擦係数とする。
 また例えば、初期速度Vintが、V<Vint<Vを満たす場合、車両の速度Vに応じた平均摩擦係数μ11,μ12,・・・,μ1mと、車両の速度Vに応じた平均摩擦係数μ21,μ22,・・・,μ2mから補間して、初期速度Vintでの押付力ごとの平均摩擦係数を算出する。平均摩擦係数算出部24は、補間の一例として、一次補間を行い、初期速度Vintでの押付力ごとの平均摩擦係数を算出する。一次補間を行う場合の初期速度Vint、押付力Nに応じた摩擦係数は、下記(2)式で表される。初期速度Vintにおける押付力N,・・・,Nに応じた平均摩擦係数も、同様の方法で算出され、図5において白丸で示すように、初期速度Vintでの押付力ごとの平均摩擦係数μint1,μint2,・・・,μintmが得られる。
The average friction coefficient calculation unit 24 holding the above average friction coefficient table calculates the average friction coefficient for each pressing force at the initial speed from the value of the average friction coefficient table or the value obtained by interpolating the value of the average friction coefficient table. Is calculated.
For example, if the initial speed V int matches any of the vehicle speeds V 1 , V 2 ,..., V k defined in the average friction coefficient table, the initial speed V int is associated with the matched vehicle speed. The average friction coefficient for each pressing force is used as the average friction coefficient for each pressing force at the initial speed V int . For example, if a V int = V 2, the pressing force N 1, N 2, · · ·, average friction coefficient mu 21 corresponding to each of the N m, μ 22, ···, a mu 2m, initial velocity V The average friction coefficient for each pressing force in int .
Further, for example, the initial velocity V int is, if it meets the V 1 <V int <V 2, the average friction coefficient mu 11 according to the speed V 1 of the vehicle, μ 12, ···, μ 1m and the speed of the vehicle V the average friction coefficient mu 21 corresponding to 2, μ 22, ···, by interpolating from mu 2m, calculates the average friction coefficient for each pressing force at an initial velocity V int. The average friction coefficient calculation unit 24 performs primary interpolation as an example of interpolation, and calculates an average friction coefficient for each pressing force at the initial speed V int . Initial velocity V int, friction coefficient corresponding to the pushing force N 1 in the case of performing the linear interpolation is expressed by the following equation (2). Initial velocity V int pressing force N 2 in, ..., the average friction coefficient corresponding to N m is also calculated in a similar manner, as shown by a white circle in FIG. 5, each pressing force at an initial velocity V int The average coefficient of friction μ int1 , μ int2 ,..., Μ intm is obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上述のように平均摩擦係数算出部24で算出された平均摩擦係数を取得した演算部25は、初期速度Vintでの押付力ごとの平均摩擦係数から、初期速度において、平均摩擦係数を変数として押付力を算出する関係式を導出する。詳細には、演算部25は、図6において直線で示すように、初期速度Vintでの押付力ごとの平均摩擦係数μint1,μint2,・・・,μintmの内、隣接する二点を一次補間して、関係式を導出する。図6において直線で示される関係式は、下記(3)式で表される。関係式は、平均摩擦係数μ’を変数として押付力N’を算出する一次関数である。下記(3)式において、A1,B1はそれぞれ係数であり、A1は下記(4)式で表され、B1は下記(5)式で表される。
  μ’=A1・N’+B1   ・・・(3)
  A1=(μint2-μint1)/(N-N)   ・・・(4)
  B1=(μint1・N-μint2・N)/(N-N)   ・・・(5)
As described above, the calculation unit 25 that has obtained the average friction coefficient calculated by the average friction coefficient calculation unit 24 uses the average friction coefficient as a variable at the initial speed from the average friction coefficient for each pressing force at the initial speed V int. A relational expression for calculating the pressing force is derived. In detail, as shown by a straight line in FIG. 6, the calculation unit 25 calculates two adjacent points among the average friction coefficients μ int1 , μ int2 ,..., Μ intm for each pressing force at the initial speed V int. Is linearly interpolated to derive a relational expression. The relational expression shown by a straight line in FIG. 6 is represented by the following expression (3). The relational expression is a linear function that calculates the pressing force N ′ using the average friction coefficient μ ′ as a variable. In the following equation (3), A1 and B1 are coefficients, respectively, A1 is represented by the following equation (4), and B1 is represented by the following equation (5).
μ ′ = A1 · N ′ + B1 (3)
A1 = (μ int2 −μ int1 ) / (N 2 −N 1 ) (4)
B1 = (μ int1 · N 2 −μ int2 · N 1 ) / (N 2 −N 1 ) (5)
 そして、演算部25は、上述のように導出した関係式から押付力に関する方程式を導出する。必要ブレーキ力F1は、下記(6)式で表されるように、平均摩擦係数μ’と押付力N’の積に一致するとみなすことができる。下記(6)式を、上記(1)式に代入して、下記(7)式が得られる。図6において直線で示される関係式を表す上記(3)式と、下記(7)式から、押付力N’に関する二次方程式である下記(8)式が導出される。演算部25は、解の公式に基づいて、二次方程式の解を求め、正数の解を目標押付力Ntgtとして算出し、目標圧算出部26に送る。解の公式を用いて目標押付力を求めることができるため、最適解、近似解等を得るために計算処理を繰り返す場合と比べ、計算処理が簡易になる。二次方程式の解が存在しない場合、演算部25は、初期速度Vintでの押付力ごとの平均摩擦係数μint1,μint2,・・・,μintmの内、別の隣接する二点を一次補間して、関係式を導出し、上述の処理を繰り返し行う。
  F1=μ’・N’   ・・・(6)
  α・W1/8=μ’・N’   ・・・(7)
  α・W1/8=A1・N’+B1・N’   ・・・(8)
Then, the calculation unit 25 derives an equation relating to the pressing force from the relational expression derived as described above. The required braking force F1 can be regarded as being equal to the product of the average friction coefficient μ ′ and the pressing force N ′ as represented by the following equation (6). By substituting the following equation (6) into the above equation (1), the following equation (7) is obtained. The following equation (8), which is a quadratic equation related to the pressing force N ′, is derived from the above equation (3), which represents the relational equation indicated by a straight line in FIG. 6, and the following equation (7). The calculation unit 25 obtains a solution of the quadratic equation based on the solution formula, calculates a positive solution as the target pressing force N tgt , and sends it to the target pressure calculation unit 26. Since the target pressing force can be obtained using the solution formula, the calculation process is simplified as compared with the case where the calculation process is repeated to obtain an optimal solution, an approximate solution, and the like. If the solution of the quadratic equation is not present, processor 25, initial velocity average friction coefficient for each pressing force at V int μ int1, μ int2, ···, of the mu INTM, another adjacent two points Linear interpolation is performed to derive a relational expression, and the above processing is repeated.
F1 = μ ′ · N ′ (6)
α · W1 / 8 = μ '· N' (7)
α · W1 / 8 = A1 · N ′ 2 + B1 · N ′ (8)
 目標圧算出部26は、押付力Ntgtから、目標圧Ptgtを算出する。詳細には、目標圧算出部26は、押付力Ntgtを機械ブレーキ装置6が有するピストンの摺動方向に直交する面の面積で除算して、目標圧Ptgtを得る。ピストンがブレーキシリンダの内部の流体の圧力によって摺動することで、制輪子が動かされ、制輪子が車輪に押し付けられると、ブレーキ力が生じる。目標圧算出部26は、圧力センサ15から取得したフィードバック信号に応じて、中継弁14の出力する空気の圧力が直近で算出した目標圧Ptgt’に近づくように、目標圧Ptgtを調節する。目標圧算出部26は、目標圧Ptgtを示す電気指令を電空変換弁13に出力する。 The target pressure calculator 26 calculates a target pressure P tgt from the pressing force N tgt . Specifically, the target pressure calculation unit 26 divides the pressing force N tgt by the area of a surface of the mechanical brake device 6 perpendicular to the sliding direction of the piston to obtain the target pressure P tgt . When the piston slides due to the pressure of the fluid inside the brake cylinder, the brake is moved, and when the brake is pressed against the wheel, a braking force is generated. Target pressure calculating unit 26, in response to a feedback signal obtained from the pressure sensor 15, so that the pressure of air output of the relay valve 14 approaches the target pressure P tgt 'calculated in the most recent, adjusts the target pressure P tgt . Target pressure calculating section 26 outputs the electric command indicating the target pressure P tgt to electropneumatic conversion valve 13.
 電空変換弁13は、ブレーキ制御部11から送られた電気指令が示す目標圧Ptgtに応じて、流体源5から供給される空気の圧力を調節し、中継弁14に出力する。電空変換弁13が出力する空気の圧力を指令圧として、中継弁14は、指令圧に応じて流体源5から供給される空気を圧縮して、圧縮した空気を機械ブレーキ装置6に供給する。上述のようにブレーキ制御装置10で圧縮された空気がブレーキシリンダに供給されることで、摩擦材が、車両の走行時に回転する回転体に押し付けられ、ブレーキ力が発生する。 The electropneumatic conversion valve 13 adjusts the pressure of the air supplied from the fluid source 5 according to the target pressure Ptgt indicated by the electric command sent from the brake control unit 11 and outputs the pressure to the relay valve 14. The relay valve 14 compresses the air supplied from the fluid source 5 according to the command pressure, and supplies the compressed air to the mechanical brake device 6 using the pressure of the air output from the electropneumatic conversion valve 13 as the command pressure. . When the air compressed by the brake control device 10 is supplied to the brake cylinder as described above, the friction material is pressed against the rotating body that rotates during traveling of the vehicle, and a braking force is generated.
 以上説明したとおり、本実施の形態に係るブレーキ制御装置10は、初期速度と押付力とに依存して変化する平均摩擦係数と、必要ブレーキ力とから目標押付力を算出する。そして、ブレーキ制御装置10は、目標押付力を得るために必要な圧力まで流体を圧縮して、圧縮した流体を機械ブレーキ装置に供給することで、同じブレーキ指令に対してブレーキ力がばらつくことを抑制する車両用ブレーキ制御装置および車両用ブレーキ制御方法を提供することが可能である。 As described above, the brake control device 10 according to the present embodiment calculates the target pressing force from the average friction coefficient that changes depending on the initial speed and the pressing force, and the required braking force. Then, the brake control device 10 compresses the fluid to a pressure necessary to obtain the target pressing force, and supplies the compressed fluid to the mechanical brake device, so that the braking force varies with respect to the same brake command. It is possible to provide a vehicular brake control device and a vehicular brake control method that suppress the vehicle.
 初期速度とブレーキ指令とに応じた摩擦係数を用いる従来のブレーキ制御装置では、初期速度が同じで、かつ、ブレーキ指令が同じであれば、車両の重量が異なる場合でも同じ摩擦係数を用いて目標押付力が算出される。上記(1)式で表されるように、車両の重量が大きくなると、必要ブレーキ力が大きくなる。上記(6)式からわかるように、摩擦係数が同じであって、必要ブレーキ力が大きくなると、目標押付力は大きくなる。従来のブレーキ制御装置では、車両の重量が異なる場合でも同じ摩擦係数を用いているが、押付力が大きくなると、実際の摩擦係数は、目標押付力の算出に用いた摩擦係数より小さくなる。その結果、実際に生じたブレーキ力が必要ブレーキ力より小さいことがある。一方、本実施の形態に係るブレーキ制御装置10は、初期速度と押付力とに依存して変化する平均摩擦係数を用いることで、車両の重量が異なる場合は、異なる平均摩擦係数を用いて目標押付力を算出するため、ブレーキ力の過不足を抑制することが可能である。 In a conventional brake control device that uses a friction coefficient according to an initial speed and a brake command, if the initial speed is the same and the brake command is the same, the same friction coefficient is used even when the vehicle weight is different. The pressing force is calculated. As represented by the above equation (1), when the weight of the vehicle increases, the required braking force increases. As can be seen from the above equation (6), when the friction coefficient is the same and the required braking force increases, the target pressing force increases. In the conventional brake control device, the same friction coefficient is used even when the weight of the vehicle is different. However, when the pressing force increases, the actual friction coefficient becomes smaller than the friction coefficient used for calculating the target pressing force. As a result, the actually generated braking force may be smaller than the required braking force. On the other hand, the brake control device 10 according to the present embodiment uses the average friction coefficient that varies depending on the initial speed and the pressing force, and uses a different average friction coefficient when the vehicle weight is different. Since the pressing force is calculated, it is possible to suppress excessive or insufficient braking force.
 図7は、実施の形態に係るブレーキ制御部11のハードウェアの構成例を示す図である。ブレーキ制御部11は、各部を制御するハードウェア構成としてプロセッサ31、メモリ32、およびインターフェース33を備える。これらの装置の各機能は、プロセッサ31がメモリ32に記憶されたプログラムを実行することにより実現される。インターフェース33は各装置を接続し、通信を確立させるためのものであり、必要に応じて複数の種類のインターフェースから構成されてもよい。図7では、プロセッサ31およびメモリ32をそれぞれ1つで構成する例を示しているが、複数のプロセッサ31および複数のメモリ32が連携して各機能を実行してもよい。 FIG. 7 is a diagram illustrating a hardware configuration example of the brake control unit 11 according to the embodiment. The brake control unit 11 includes a processor 31, a memory 32, and an interface 33 as a hardware configuration for controlling each unit. Each function of these devices is realized by the processor 31 executing a program stored in the memory 32. The interface 33 is for connecting each device and establishing communication, and may be composed of a plurality of types of interfaces as needed. FIG. 7 illustrates an example in which each of the processor 31 and the memory 32 is configured by one, but a plurality of processors 31 and a plurality of memories 32 may execute each function in cooperation with each other.
 その他、上記のハードウェア構成やフローチャートは一例であり、任意に変更および修正が可能である。 In addition, the above hardware configurations and flowcharts are examples, and can be arbitrarily changed and modified.
 プロセッサ31、メモリ32、およびインターフェース33を有し、制御処理を行う中心となる部分は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。たとえば、上述の動作を実行するためのコンピュータプログラムを、コンピュータが読み取り可能な記録媒体(フレキシブルディスク、CD-ROM、DVD-ROMなど)に格納して配布し、上記コンピュータプログラムをコンピュータにインストールすることにより、上述の処理を実行するブレーキ制御部11を構成してもよい。また、通信ネットワーク上のサーバ装置が有する記憶装置に上記コンピュータプログラムを格納しておき、通常のコンピュータシステムがダウンロードすることでブレーキ制御部11を構成してもよい。 有 し The main part that has the processor 31, the memory 32, and the interface 33 and performs the control processing can be realized by using an ordinary computer system without using a dedicated system. For example, storing and distributing a computer program for executing the above-described operation in a computer-readable recording medium (such as a flexible disk, a CD-ROM, or a DVD-ROM), and installing the computer program in the computer Thus, the brake control unit 11 that executes the above-described processing may be configured. Alternatively, the computer program may be stored in a storage device of a server device on a communication network, and the brake control unit 11 may be configured to be downloaded by a normal computer system.
 また、ブレーキ制御部11の機能を、OS(オペレーティングシステム)とアプリケーションプログラムの分担、またはOSとアプリケーションプログラムとの協働により実現する場合などには、アプリケーションプログラム部分のみを記録媒体や記憶装置に格納してもよい。 When the function of the brake control unit 11 is realized by sharing an OS (operating system) with an application program or by cooperation between the OS and the application program, only the application program portion is stored in a recording medium or a storage device. May be.
 また、搬送波にコンピュータプログラムを重畳し、通信ネットワークを介して配信することも可能である。たとえば、通信ネットワーク上の掲示板(BBS:Bulletin Board System)に上記コンピュータプログラムを掲示し、通信ネットワークを介して上記コンピュータプログラムを配信してもよい。そして、このコンピュータプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行できるように構成してもよい。 It is also possible to superimpose a computer program on a carrier wave and distribute it via a communication network. For example, the computer program may be posted on a bulletin board (BBS: Bulletin Board System) on a communication network, and the computer program may be distributed via the communication network. Then, the computer program may be activated and executed in the same manner as other application programs under the control of the OS, so that the above-described processing may be executed.
 本発明の実施の形態は上述の実施の形態に限られない。機械ブレーキ装置6は、車輪に対して機械的に制動力を与える任意のブレーキ機構を有する。一例として、機械ブレーキ装置6は、ブレーキパッドを有し、車輪と共に回転するブレーキロータにブレーキパッドを押し付けることで、ブレーキ力を生じさせる。他の一例として、機械ブレーキ装置6は、ブレーキシューを有し、車軸と共に回転する円筒部材であるドラムに、ブレーキシューを押し付けることで、ブレーキ力を生じさせる。 実 施 Embodiments of the present invention are not limited to the above-described embodiments. The mechanical brake device 6 has an arbitrary brake mechanism that mechanically applies a braking force to wheels. As an example, the mechanical brake device 6 has a brake pad, and generates a braking force by pressing the brake pad against a brake rotor that rotates with wheels. As another example, the mechanical brake device 6 has a brake shoe, and generates a braking force by pressing the brake shoe against a drum that is a cylindrical member that rotates with the axle.
 応荷重検出器3は、台車に取り付けられ、台車にかかる荷重を検出してもよい。各台車が4つの車輪を有し、車輪ごとに機械ブレーキ装置6が設けられていて、応荷重検出器3が台車にかかる荷重W2を検出する場合、必要ブレーキ力F2は、下記(9)式で算出される。
  F2=α・W2/4   ・・・(9)
 必要ブレーキ力F1,F2は、互いに等しくなくてもよい。例えば、進行方向前方の車輪に取り付けられた機械ブレーキ装置6の必要ブレーキ力を、進行方向後方の車輪に取り付けられた機械ブレーキ装置6の必要ブレーキ力より小さくしてもよい。
The adaptive load detector 3 may be mounted on a trolley to detect a load applied to the trolley. When each truck has four wheels and a mechanical brake device 6 is provided for each wheel, and the adaptive load detector 3 detects the load W2 applied to the truck, the required braking force F2 is expressed by the following equation (9). Is calculated.
F2 = α · W2 / 4 (9)
The required braking forces F1 and F2 need not be equal to each other. For example, the required braking force of the mechanical brake device 6 attached to the front wheel in the traveling direction may be smaller than the required braking force of the mechanical brake device 6 attached to the rear wheel in the traveling direction.
 初期速度取得部22は、速度センサ4の代わりに、ATC(Automatic Train Control:自動列車制御装置)から車輪の回転速度を取得してもよいし、TIMS(Train Information Management System:列車情報管理システム)から車両の速度を取得してもよい。 The initial speed acquisition unit 22 may acquire the wheel rotation speed from an ATC (Automatic Train Control) instead of the speed sensor 4 or a TIMS (Train Information Management System). The speed of the vehicle may be obtained from.
 押付力の算出方法は、上述の例に限られない。目標押付力算出部23は、車両の速度ごとに、押付力から平均摩擦係数を一意に特定する関数を保持し、車両の速度ごとの関数から、初期速度において、押付力から平均摩擦係数を一意に算出する関係式を導出してもよい。押付力から平均摩擦係数を一意に算出する関係式は一次関数に限らず、二次関数、三次関数等の高次の関数でもよい。その場合、目標押付力算出部23は、押付力に関する高次方程式を導出し、高次方程式の近似解、最適解等を求め、目標押付力Ntgtとして算出する。 The method of calculating the pressing force is not limited to the above example. The target pressing force calculation unit 23 holds a function for uniquely specifying the average friction coefficient from the pressing force for each vehicle speed, and uniquely calculates the average friction coefficient from the pressing force at the initial speed from the function for each vehicle speed. May be derived. The relational expression for uniquely calculating the average friction coefficient from the pressing force is not limited to a linear function, but may be a higher-order function such as a quadratic function or a cubic function. In this case, the target pressing force calculation unit 23 derives a higher-order equation relating to the pressing force, obtains an approximate solution, an optimal solution, and the like of the higher-order equation, and calculates the target solution as the target pressing force Ntgt .
 平均摩擦係数算出部24は、進行方向における車輪の位置ごとに平均摩擦係数テーブルを保持してもよい。この場合、平均摩擦係数算出部24は車輪の位置ごとに、初期速度での押付力ごとの平均摩擦係数を算出する。そして、演算部25は、車輪の位置ごとに、初期速度において、平均摩擦係数を変数として押付力を算出する関係式を導出し、さらに、車輪の位置ごとに、押付力に関する方程式を導出する。演算部25は、車輪の位置ごとの方程式の解を求め、車輪の位置ごとの目標押付力Ntgtを算出する。 The average friction coefficient calculation unit 24 may hold an average friction coefficient table for each wheel position in the traveling direction. In this case, the average friction coefficient calculation unit 24 calculates the average friction coefficient for each pressing force at the initial speed for each wheel position. Then, for each wheel position, the calculation unit 25 derives a relational expression for calculating the pressing force using the average friction coefficient as a variable at the initial speed, and further derives an equation relating to the pressing force for each wheel position. The calculation unit 25 calculates the solution of the equation for each wheel position and calculates the target pressing force N tgt for each wheel position.
 演算部25は、初期速度Vintでの押付力ごとの平均摩擦係数μint1,μint2,・・・,μintmの内、隣接する二点を一次補間して、関係式を導出する際に、目標減速度、初期速度等から押付力を推定し、推定した押付力に最も近い、隣接する二点を一次補間して、関係式を導出してもよい。 The arithmetic unit 25 performs primary interpolation on two adjacent points among the average friction coefficients μ int1 , μ int2 ,..., Μ intm for each pressing force at the initial speed V int to derive a relational expression. , The pressing force may be estimated from the target deceleration, the initial speed, and the like, and the two adjacent points closest to the estimated pressing force may be linearly interpolated to derive a relational expression.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention allows various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for describing the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications made within the scope of the claims and the scope of the invention equivalent thereto are considered to be within the scope of the present invention.
 1 車両用ブレーキシステム、2 ブレーキ設定器、3 応荷重検出器、4 速度センサ、5 流体源、6 機械ブレーキ装置、10 ブレーキ制御装置、11 ブレーキ制御部、12 出力部、13 電空変換弁、14 中継弁、15 圧力センサ、21 必要ブレーキ力算出部、22 初期速度取得部、23 目標押付力算出部、24 平均摩擦係数算出部、25 演算部、26 目標圧算出部、31 プロセッサ、32 メモリ、33 インターフェース。 1 vehicle brake system, 2 brake setting device, 3 load response detector, 4 speed sensor, 5 fluid source, 6 mechanical brake device, 10 brake control device, 11 brake control unit, 12 output unit, 13 electropneumatic conversion valve, 14 relay valve, 15 pressure sensor, 21 required brake force calculation unit, 22 initial speed acquisition unit, 23 target pressing force calculation unit, 24 average friction coefficient calculation unit, 25 calculation unit, 26 target pressure calculation unit, 31 processor, 32 memory , 33 interface.

Claims (5)

  1.  ブレーキシリンダと前記ブレーキシリンダの内部の流体の圧力に応じて作動する摩擦材とを有し、車両の走行時に回転する回転体に前記摩擦材を押しつけることでブレーキ力を発生させる機械ブレーキ装置を制御する車両用ブレーキ制御装置であって、
     前記車両の目標減速度を示すブレーキ指令を取得し、前記目標減速度を得るために必要な前記ブレーキ力である必要ブレーキ力を算出する必要ブレーキ力算出部と、
     前記必要ブレーキ力算出部による前記ブレーキ指令の取得に応答して、前記車両の速度を取得する初期速度取得部と、
     前記摩擦材と前記回転体との接触面の摩擦係数として、前記初期速度取得部が取得した前記車両の速度である初期速度と、前記摩擦材を前記回転体に押しつける力である押付力とに依存して変化する平均摩擦係数を用い、前記平均摩擦係数と前記必要ブレーキ力とから、前記必要ブレーキ力を得るために前記摩擦材を前記回転体に押しつける力である目標押付力を算出する目標押付力算出部と、
     前記目標押付力を得るために必要な前記ブレーキシリンダの内部の前記流体の圧力を示す目標圧を算出する目標圧算出部と、
     前記目標圧に応じて、流体源から供給される流体を圧縮して、圧縮した前記流体を前記機械ブレーキ装置に供給する出力部と、
     を備える車両用ブレーキ制御装置。
    A mechanical brake device that has a brake cylinder and a friction material that operates according to the pressure of the fluid inside the brake cylinder, and that generates a braking force by pressing the friction material against a rotating body that rotates when the vehicle runs. A vehicle brake control device,
    A required braking force calculation unit that obtains a brake command indicating a target deceleration of the vehicle and calculates a required braking force that is the braking force required to obtain the target deceleration,
    In response to the acquisition of the brake command by the required braking force calculation unit, an initial speed acquisition unit that acquires the speed of the vehicle,
    As a friction coefficient of a contact surface between the friction material and the rotating body, an initial speed that is the speed of the vehicle acquired by the initial speed acquisition unit, and a pressing force that is a force pressing the friction material against the rotating body. A target pressing force that is a force pressing the friction material against the rotating body to obtain the required braking force from the average friction coefficient and the required braking force, using an average friction coefficient that varies depending on the target friction force. Pressing force calculation unit,
    A target pressure calculation unit that calculates a target pressure indicating the pressure of the fluid inside the brake cylinder necessary to obtain the target pressing force,
    An output unit that compresses a fluid supplied from a fluid source according to the target pressure and supplies the compressed fluid to the mechanical brake device.
    A vehicle brake control device comprising:
  2.  前記目標押付力算出部は、
     予め定められた前記車両の異なる速度のそれぞれにおいて前記押付力ごとに予め定められた前記平均摩擦係数から、前記初期速度での前記押付力ごとの前記平均摩擦係数を算出する平均摩擦係数算出部と、
     前記初期速度での前記押付力ごとの前記平均摩擦係数から、前記初期速度において、前記平均摩擦係数を変数として前記押付力を算出する関係式を導出し、前記必要ブレーキ力が前記平均摩擦係数と前記押付力の積に一致するとみなして、前記関係式から前記押付力に関する方程式を導出し、前記方程式の解を求めることで、前記目標押付力を算出する演算部と、
     を備える請求項1に記載の車両用ブレーキ制御装置。
    The target pressing force calculator,
    An average friction coefficient calculating unit that calculates the average friction coefficient for each pressing force at the initial speed from the average friction coefficient that is predetermined for each pressing force at each of different predetermined speeds of the vehicle; ,
    From the average friction coefficient for each pressing force at the initial speed, at the initial speed, derive a relational expression for calculating the pressing force using the average friction coefficient as a variable, and the necessary braking force is calculated as the average friction coefficient and An arithmetic unit that calculates the target pressing force by deriving an equation related to the pressing force from the relational expression and determining a solution to the equation, assuming that the product corresponds to the product of the pressing forces,
    The vehicle brake control device according to claim 1, further comprising:
  3.  前記平均摩擦係数算出部は、前記車両の速度と前記押付力から前記平均摩擦係数を一意に特定する平均摩擦係数テーブルを保持し、前記平均摩擦係数テーブルの値から、前記初期速度での前記押付力ごとの前記平均摩擦係数を算出する、
     請求項2に記載の車両用ブレーキ制御装置。
    The average friction coefficient calculation unit holds an average friction coefficient table that uniquely specifies the average friction coefficient from the speed of the vehicle and the pressing force, and performs the pressing at the initial speed based on the value of the average friction coefficient table. Calculating the average friction coefficient for each force;
    The vehicle brake control device according to claim 2.
  4.  前記演算部は、前記初期速度での前記押付力ごとの前記平均摩擦係数から一次関数である前記関係式を導出し、前記必要ブレーキ力が前記平均摩擦係数と前記押付力の積に一致するとみなして、前記関係式から前記押付力に関する二次方程式を導出し、前記二次方程式の解を求めることで、前記目標押付力を算出する、
     請求項2または3に記載の車両用ブレーキ制御装置。
    The arithmetic unit derives the relational expression that is a linear function from the average friction coefficient for each pressing force at the initial speed, and considers that the required braking force matches the product of the average friction coefficient and the pressing force. Calculating the target pressing force by deriving a quadratic equation related to the pressing force from the relational expression and finding a solution of the quadratic equation,
    The vehicle brake control device according to claim 2.
  5.  車両用ブレーキ制御装置が行う車両用ブレーキ制御方法であって、
     ブレーキシリンダと前記ブレーキシリンダの内部の流体の圧力に応じて作動する摩擦材とを有し、車両の走行時に回転する回転体に前記摩擦材を押しつけることでブレーキ力を発生させる機械ブレーキ装置が、ブレーキ指令が示す目標減速度を得るために生じさせる必要がある前記ブレーキ力である必要ブレーキ力を算出し、
     前記摩擦材と前記回転体との接触面の摩擦係数として、前記ブレーキ指令の開始に応答して取得した前記車両の速度である初期速度と、前記摩擦材を前記回転体に押しつける力である押付力とに依存して変化する平均摩擦係数を用い、前記平均摩擦係数と前記必要ブレーキ力とから、前記必要ブレーキ力を得るために前記摩擦材を前記回転体に押しつける力である目標押付力を算出し、
     前記目標押付力を得るために必要な前記ブレーキシリンダの内部の前記流体の圧力に応じて、流体源から供給される流体を圧縮して、圧縮した前記流体を前記機械ブレーキ装置に供給する、
     車両用ブレーキ制御方法。
    A vehicle brake control method performed by a vehicle brake control device,
    A mechanical brake device that has a brake cylinder and a friction material that operates in accordance with the pressure of the fluid inside the brake cylinder, and generates a braking force by pressing the friction material against a rotating body that rotates during running of the vehicle, Calculate the required braking force that is the braking force that needs to be generated to obtain the target deceleration indicated by the brake command,
    As the friction coefficient of the contact surface between the friction material and the rotating body, an initial speed which is the speed of the vehicle acquired in response to the start of the brake command, and a pressing force which is a force for pressing the friction material against the rotating body. Using the average friction coefficient that varies depending on the force, from the average friction coefficient and the required braking force, a target pressing force that is a force pressing the friction material against the rotating body to obtain the required braking force. Calculate,
    In accordance with the pressure of the fluid inside the brake cylinder required to obtain the target pressing force, the fluid supplied from a fluid source is compressed, and the compressed fluid is supplied to the mechanical brake device.
    Vehicle brake control method.
PCT/JP2018/027981 2018-07-25 2018-07-25 Vehicle brake control device and vehicle brake control method WO2020021665A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/255,482 US20210146895A1 (en) 2018-07-25 2018-07-25 Vehicle brake control device and vehicle brake control method
DE112018007848.5T DE112018007848T5 (en) 2018-07-25 2018-07-25 Vehicle brake control device and vehicle brake control method
JP2020531902A JP6833119B2 (en) 2018-07-25 2018-07-25 Vehicle brake control device and vehicle brake control method
PCT/JP2018/027981 WO2020021665A1 (en) 2018-07-25 2018-07-25 Vehicle brake control device and vehicle brake control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027981 WO2020021665A1 (en) 2018-07-25 2018-07-25 Vehicle brake control device and vehicle brake control method

Publications (1)

Publication Number Publication Date
WO2020021665A1 true WO2020021665A1 (en) 2020-01-30

Family

ID=69181408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027981 WO2020021665A1 (en) 2018-07-25 2018-07-25 Vehicle brake control device and vehicle brake control method

Country Status (4)

Country Link
US (1) US20210146895A1 (en)
JP (1) JP6833119B2 (en)
DE (1) DE112018007848T5 (en)
WO (1) WO2020021665A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112362358A (en) * 2020-11-06 2021-02-12 上海汽车集团股份有限公司 Method and device for determining physical value of vehicle signal
CN113011016A (en) * 2021-03-04 2021-06-22 同济大学 Master cylinder hydraulic pressure estimation method based on brake friction factor correction
WO2022122298A1 (en) * 2020-12-09 2022-06-16 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method for estimating a coefficient of friction, brake control method and brake control device for a rail vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771284B (en) * 2022-05-31 2023-01-03 深圳市好盈科技股份有限公司 Intelligent drag brake method and device, model climbing vehicle and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115533A (en) * 1997-06-16 1999-01-12 Railway Technical Res Inst Brake force control device and brake force control method
JP2016159795A (en) * 2015-03-03 2016-09-05 三菱電機株式会社 Brake control device for executing addition control by use of speed calculation
JP2017159742A (en) * 2016-03-08 2017-09-14 公益財団法人鉄道総合技術研究所 Brake control method for railroad vehicle, brake control device, and brake control program

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131154A (en) * 1979-04-02 1980-10-11 Uedasa Chuzosho:Kk Cast alloy brake-shoe for railway vehicle
JP3357949B2 (en) * 1989-07-14 2002-12-16 財団法人鉄道総合技術研究所 Brake disc material for high-speed railway vehicles
JP3905574B2 (en) * 1996-03-12 2007-04-18 日産自動車株式会社 Brake control device for vehicle
JP4415959B2 (en) * 2006-03-15 2010-02-17 トヨタ自動車株式会社 Brake control device
CN101687455B (en) * 2007-07-02 2012-04-25 爱考斯研究株式会社 Camber angle controlling device
JP5174902B2 (en) * 2008-06-20 2013-04-03 三菱電機株式会社 Train brake device and train brake method
US9514647B2 (en) * 2010-10-20 2016-12-06 GM Global Technology Operations LLC Optimal acceleration profile for enhanced collision avoidance
US20130030651A1 (en) * 2011-07-25 2013-01-31 GM Global Technology Operations LLC Collision avoidance maneuver through differential braking
DE112014001455B4 (en) * 2013-03-15 2018-09-06 Advics Co., Ltd. Electric braking system for a vehicle
DE102014200435A1 (en) * 2014-01-13 2015-07-16 Ford Global Technologies, Llc Method for operating a brake system of a motor vehicle and brake system for a motor vehicle
JP6605248B2 (en) * 2015-07-27 2019-11-13 Ntn株式会社 Friction brake system
JP6715680B2 (en) * 2016-05-20 2020-07-01 三菱電機株式会社 Brake control device for railway vehicle and brake control system for railway vehicle
JP6383036B1 (en) * 2017-03-16 2018-08-29 株式会社Subaru Vehicle control device
IT201700040680A1 (en) * 2017-04-12 2018-10-12 Faiveley Transport Italia Spa Electronic emergency and service braking control system for a railway vehicle.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115533A (en) * 1997-06-16 1999-01-12 Railway Technical Res Inst Brake force control device and brake force control method
JP2016159795A (en) * 2015-03-03 2016-09-05 三菱電機株式会社 Brake control device for executing addition control by use of speed calculation
JP2017159742A (en) * 2016-03-08 2017-09-14 公益財団法人鉄道総合技術研究所 Brake control method for railroad vehicle, brake control device, and brake control program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112362358A (en) * 2020-11-06 2021-02-12 上海汽车集团股份有限公司 Method and device for determining physical value of vehicle signal
CN112362358B (en) * 2020-11-06 2023-08-22 上海汽车集团股份有限公司 Method and device for determining physical value of whole vehicle signal
WO2022122298A1 (en) * 2020-12-09 2022-06-16 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method for estimating a coefficient of friction, brake control method and brake control device for a rail vehicle
CN113011016A (en) * 2021-03-04 2021-06-22 同济大学 Master cylinder hydraulic pressure estimation method based on brake friction factor correction

Also Published As

Publication number Publication date
JP6833119B2 (en) 2021-02-24
US20210146895A1 (en) 2021-05-20
JPWO2020021665A1 (en) 2020-12-17
DE112018007848T5 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2020021665A1 (en) Vehicle brake control device and vehicle brake control method
CN102007025B (en) Train braking apparatus and train braking method
JP5983871B2 (en) Brake device
JP7508563B2 (en) Vehicle dynamics management based on torque demand with speed limit
JP6762440B2 (en) Brake control device for railway vehicles and brake control method for railway vehicles
KR102006827B1 (en) Electric brake system amd method thereof
JP3665331B2 (en) Electronic braking system with improved braking
CN104773150B (en) For the operating method of automobile braking system and the braking system of motor vehicles
JP6754433B2 (en) Systems and methods for independently controlling wheel slip and vehicle acceleration
CN107278191A (en) For the method and brakes of the brakes for running motor vehicle
JP6797319B2 (en) Brake control device for railway vehicles and brake control method for railway vehicles
JP2015035933A (en) Train vehicle brake controller
CN108791247B (en) Brake control device, brake control method, and brake control system
JP7038930B2 (en) Brake control device, drive control system, and brake control method
JP2019534197A (en) Brake assist system for bicycle cyclists
JP2021075233A (en) Brake abnormality determination device, brake state storage device, abnormality determination method, abnormality determination program and brake control device
JP6297344B2 (en) Brake device
JP2007245766A (en) Tire friction state determination device, abs device, vehicle behavior control device, automobile and tire friction state determination method
JP5915840B2 (en) Brake control device for vehicle
JP2003517968A (en) Control device for brake device and braking system for heavy-duty vehicle provided with such brake device
JP2021115897A (en) Control device of railway vehicle brake device, control method of railway vehicle brake device and control program of railway vehicle brake device
US12097836B2 (en) Vehicle brake system and method for operating a vehicle brake system
JP2008506583A (en) Method for controlling vehicle brakes using power proportional to the load on the wheels
JP3640126B2 (en) Slip rate servo controller
JP6492679B2 (en) Vehicle mass estimation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531902

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18927358

Country of ref document: EP

Kind code of ref document: A1