WO2020021154A1 - Method for detection of marked structures - Google Patents

Method for detection of marked structures Download PDF

Info

Publication number
WO2020021154A1
WO2020021154A1 PCT/ES2019/070533 ES2019070533W WO2020021154A1 WO 2020021154 A1 WO2020021154 A1 WO 2020021154A1 ES 2019070533 W ES2019070533 W ES 2019070533W WO 2020021154 A1 WO2020021154 A1 WO 2020021154A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent
detection
excited
marked
emission
Prior art date
Application number
PCT/ES2019/070533
Other languages
Spanish (es)
French (fr)
Inventor
Beatriz HERNÁNDEZ JUÁREZ
José Ricardo ARIAS GONZÁLEZ DE LA ALEJA
Héctor RODRÍGUEZ RODRÍGUEZ
María ACEBRÓN RODICIO
Francisco José IBORRA RODRÍGUEZ
Original Assignee
Universidad Autónoma de Madrid
Fundación Imdea Nanociencia
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Autónoma de Madrid, Fundación Imdea Nanociencia, Consejo Superior De Investigaciones Científicas filed Critical Universidad Autónoma de Madrid
Publication of WO2020021154A1 publication Critical patent/WO2020021154A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a method for the detection of marked structures, their uses and an apparatus designed to carry out said method.
  • Fluorescence microscopy is a basic tool for the investigation of biological samples.
  • the objects are illuminated by electromagnetic radiation of a certain wavelength and the image observed is the result of the electromagnetic radiation emitted by fluorophores that have absorbed the primary excitation and re-emitted a light with a different wavelength.
  • the excitation takes place in the near infrared biological windows (700-950 nm and 1000-1350 nm) are especially relevant, in which case the depth of penetration into the tissue can reach some millimeters
  • multifotonic microscopy optical excitation by two or more photons
  • a resolution whose limit is the volume of laser focusing so it has become one of the most used fluorescence microscopy techniques.
  • one of the most significant problems of multifotonic microscopy is the accelerated whitening of fluorophores due to the high photon fluxes (10 27 -10 29 cnr 2 s 1 ) to which they are subjected [Fischer M., et al .
  • Quantum dots are luminescent nanoparticles (PL) that have differentiated optical and electronic properties. For example, when they are illuminated they emit light at a very specific wavelength that depends on the size and other characteristics of said quantum point. These properties cause quantum dots to be adopted as fluorescent probes in biology and medicine for microscopy, detection and diagnosis.
  • the document Liu et al. [H. Liu, H. Maruyama, Vibration-assisted optical injection of a single fluorescent sensor into a target cell, Sensors and Actuators B: Chemical, 2015, 220, pp 40-49] describes the injection of a micrometric probe (5 microns in diameter) in a cell under the vibration of the focal point of optical tweezers. It is a complex probe that includes quantum dots and, under UV illumination, changes its z potential allowing it to be fixed to the surface of the cell membrane. To follow the progress of said probe through the cell membrane that is labeled with fluorophores, the document by Liu et al.
  • FRET fluorescence Resonance energy transfer
  • the FRET mechanism contemplates a transfer of non-radiative energy between donors and acceptors (which can be fluorophores), mediated by interactions between molecules or in general between dipoles, limiting the distances in which they take place. Therefore, FRET-based techniques are limited by the distances between donor and acceptor.
  • donor and acceptors which can be fluorophores
  • FRET-based techniques are limited by the distances between donor and acceptor.
  • radiative transfers the propagation of radiation emitted by an emitter is affected by absorption, emission or dispersion, and therefore, the distances at which it occurs can be much greater, since they do not depend on inter-molecular interactions or inter-dipoles.
  • the present invention provides a new method of detecting marked structures that allows both selectivity and resolution of said detection to be increased. Also, it allows to extend the measurement times without damaging the sample (due to a reduction in the irradiance on the sample). In addition, this method allows the study of different areas of the marked sample along the same measure without significantly disturbing said sample since it is a non-invasive technique.
  • a first aspect of the invention relates to a method of detection of marked structures comprising the steps of:
  • At least one luminescent nanoparticle PL
  • said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i);
  • optical clamp comprises a focused laser; wherein said focused laser has an emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of step (i);
  • iii optionally displacing the at least one excited and confined PL of stage (ii) by means of the optical clamp of stage (i); Y iv) exciting the luminescent marker of stage (i) by the radiation emitted by said at least one excited and confined PL of stage (ii) or (iii), giving rise to an excited luminescent marker; where said excited luminescent marker emits a luminescent signal.
  • a second aspect of the invention would be directed to the use of a luminescent marker in the method of detecting labeled structures of the present invention in any of its particular embodiments.
  • a third aspect of the invention would be directed to the use of a luminescent particle (PL) in the method of detecting labeled structures of the present invention in any of its particular embodiments.
  • PL luminescent particle
  • a fourth aspect of the invention would be directed to the use of an optical clamp in the method of detection of marked structures of the present invention in any of its particular embodiments.
  • a further aspect of the present invention is directed to an apparatus designed to carry out the method of detection of marked structures of the present invention comprising:
  • step (i) means for trapping and rotating the marked structure of step (i); ii) the optical clip of step (i); Y
  • step (iii) a signal detector of step (iv) of the method of detection of marked structures of the present invention in any of its particular embodiments.
  • Figure 1 (a) Scheme of a possible chain excitation or radiative transfer system in which a PL is excited by a process of absorbing two photons in the near infrared, 2Y NIR , after which it emits a photon in the visible spectrum, Yvis , which in turn excites a fluorescent marker (a dye molecule) that in turn emits a photon in the visible spectrum at a different wavelength from the previous one, and VIS-, which will be detected as a light signal; (b) graph of emission intensity / absorption versus wavelength (nm) showing the overlap between the emission spectrum of PLs (colloidal quantum dots, continuous line PCs) and the absorption spectrum of a dye (dashed line) .
  • Figure 2 Experimental scheme in which an aggregate of PCs is optically trapped and moved by an optical clamp around a marked cell.
  • the laser beam of the optical clamp in the near infrared, simultaneously excites the PCs, whose remission allows to turn the marked structures of the cell in turn. This scheme is not to scale.
  • Figure 3 Transillumination images obtained by means of an optical microscope and emission spectra collected from an aggregate of optically trapped and excited PCs at different distances (a-d) from the surface of a marked cell.
  • Figure 4 (a) Experimental scheme in which an aggregate of PCs is optically trapped and excited within a solution of a dye and at a depth (distance L) relative to the inner surface that limits the bottom of a microfluidic chamber containing said dye (the scheme is not drawn to scale); and (b) emission spectra measured by trapping and exciting an aggregate of PCs at various distances L (depths) from the surface of said microfluidic chamber that serves as a container of the dye solution.
  • Figure 5 (a) Scheme of the overlap between the emission spectrum of two species of colloidal PCs, 1 and 2, which have a maximum emission at 530 and 580 nm respectively (continuous lines 1 and 2) and the absorption spectrum of a dye (dashed line), said overlap is represented as the shaded area below the curve. Emission spectrum measured for a solution of a dye into which an aggregate of type 1 PCs at different depths (distances L) and (c) an aggregate of type 2 PCs are trapped and excited (b).
  • Figure 6 Scheme of an experimental device that allows the detection of marked structures formed by two lasers (L1 and L2) that are combined by a beam splitter cube (PBS) and directed by means of mirrors (M1 and M2) inwards of a fluorescence microscope.
  • PBS beam splitter cube
  • the combined laser beam is reflected in a dichroic mirror (DM) and focused through a microscope objective (O) on the sample (SH).
  • a lamp (WL), a grid system (l & S) and a condenser (C) make up the lighting system of the experiment.
  • Fluorescence from the sample is collected through a filter (F) and selectively sent to a spectrometer (S) or to a camera (VC) by various optical elements (FL, focusing lens; M3, mirror; P, prism; RL1 and RL2, relay lenses.
  • the main object of the present invention is to provide a method of detection of marked structures comprising the steps of:
  • At least one luminescent nanoparticle where said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i);
  • optical clip where said optical clip comprises a focused laser; where said a focused laser has an emission in a range of wavelengths that do not overlap with the absorption spectrum of the luminescent marker of step (i);
  • Step (i) The method of detection of marked structures of the present invention comprises step (i) of providing:
  • At least one luminescent nanoparticle PL
  • said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i);
  • optical clamp comprises a focused laser; wherein said focused laser has an emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of step (i).
  • the term "marked structure” or “marked structures” refers to a structure comprising one or more luminescent markers; said structure may be present in biological and non-biological specimens. When said structure is present in biological specimens, it may be marked by any of the luminescent markers commonly used for biological marking and known to the person skilled in the art.
  • said marked structure may be a cell or part of a cell such as a cell membrane.
  • said labeled structure can be a waterproofed Jurkat-T cell whose proteins have been unspecifically labeled with a fluorescent dye such as Alexa Fluor® 546.
  • the term “luminescence” characterizes the property of an energy absorbing material (for example, in the form of an electromagnetic radiation, composed of photons) which then emits in the form of electromagnetic radiation.
  • the term "luminescent marker” refers to a material, for example a functional group, compound or chemical composition, which is capable of absorbing energy in the form of electromagnetic radiation in a given range of wavelengths. and to re-emit electromagnetic radiation in a different range of different wavelengths; therefore, it is characterized by having an absorption spectrum and a characteristic emission spectrum.
  • luminescent markers are fluorescent markers, phosphorescent markers or combinations thereof.
  • the luminescent marker of the present invention is selected from fluorophores, chromophores and combinations of the foregoing.
  • fluorescent marker is synonymous with fluorochrome, that is, a material, a functional group, compound or chemical composition, which is capable of absorbing energy in the form of electromagnetic radiation in a given range. of wavelengths and of emitting electromagnetic radiation in another range of wavelengths greater than the first (ie with less energy).
  • fluorochromes suitable for use in the present invention are any of the fluorochromes known to those skilled in the art, for example those appearing in the database of the website http: //www.fluorophores.tugraz.
  • fluorochromes selected from : fluorescein and its derivatives such as 5-carboxyfluorescein, 6-carboxyfluorescein, 6- (fluorescein) -5- (and 6) -carboxamide-hexanoic acid and fluorescein isothiocyanate; dyes AlexaFluor® and its derivatives such as AlexaFluor 488®, Alexa Fluor® 546 or AlexaFluor 594®; cyanine dyes such as Dy2, Cy3, Cy5, Cy7; optionally substituted coumarin; R-phycoerythrin, allophycoerythrin and its derivatives; rhodamine, tetramethyl rhodamine, rhodamine 6G and its derivatives;
  • the luminescent marker of step (i) is a fluorescent marker; preferably selected from the group consisting of AlexaFluor®, rhodamine and its derivatives; preferably it is a fluorescent marker selected from Alexa Fluor® 546, tetra-methyl-rhodamine and 6G rhodamine.
  • the luminescent marker of step (i) has an absorption spectrum; wherein said absorption spectrum of the luminescent marker of step (i) overlaps with the emission spectrum of said at least one PL; preferably it overlaps at least 10% of the range; preferably in 60% of the wavelength range of the emission spectrum of said at least one PL; more preferably it overlaps in a wavelength range of 80%.
  • the luminescent marker of the invention has an absorption spectrum and an emission spectrum; preferably it has an absorption spectrum and an emission spectrum, in particular said marker can be excited and, once excited, emit a luminescent signal.
  • the Alexa Fluor® 546 luminescent marker is a fluorescent marker whose maximum absorption of its absorption spectrum is around 546 nm and whose maximum emission of the emission spectrum is around 573 nm ( orange color seen through a conventional fluorescence microscope) and whose extinction coefficient is 104000 at the maximum emission in cnr 1 M 1 .
  • the excited Alexa Fluor® 546 marker results in a luminescent signal with a maximum centered around 573 nm
  • the term “absorption spectrum” refers to the intensity of incident electromagnetic radiation that a material absorbs in a given wavelength range.
  • emission spectrum refers to the intensity of electromagnetic radiation that a material emits in a given wavelength range.
  • the one structure marked with a luminescent marker of step (i) and the at least one luminescent nanoparticle (PL) are in a liquid medium; preferably in an aqueous or organic medium; more preferably in an aqueous medium; even more preferably in a phosphate buffered saline (PBS).
  • the liquid medium is a culture medium.
  • the one structure marked with the luminescent marker of step (i) and the at least one luminescent nanoparticle (PL) are located in a microfluidic chamber; preferably in a transparent microfluidic chamber in the visible and near infrared spectrum.
  • the one marked structure of step (i) is present in biological and non-biological specimens; preferably in biological specimens; more preferably in cells.
  • suitable cells for the present invention are T lymphocytes, HL60, Jurkat, macrophages, HeLa (in suspension), also adherent cells such as HeLa, fibroblasts, MFC7, etc.
  • the one labeled structure of step (i) is a labeled protein in a cell; preferably a nonspecifically or specifically labeled protein in a cell; more preferably a specifically labeled protein; even more preferably a protein specifically labeled with a luminescent marker.
  • the term “luminescent nanoparticle (PL)” refers to a particle that comprises at least one of its dimensions in a size range equal to or less than 100 nm; which is capable of absorbing energy in the form of electromagnetic radiation in a certain range of wavelengths and of re-emitting electromagnetic radiation in another range of different wavelengths and that has an emission spectrum.
  • the at least one luminescent particle of step (i) is at least one photoluminescent nanoparticle or at least one quantum dot (PC); preferably at least one quantum dot (PC); more preferably it is an aggregate of quantum dots (PCs).
  • photoluminescent nanoparticles refers to nanoparticles of organic or inorganic nature capable of absorbing energy in the form of electromagnetic radiation in a certain range of wavelengths and of emitting electromagnetic radiation again in another range of different wavelengths (greater or lesser wavelengths; preferably longer).
  • photoluminescent nanoparticles are inorganic nanoparticles such as sulfates, phosphates and fluorides doped with rare earth ions, sulfide particles or Ag selenides; quantum dots; nanodiamonds; carbon nanoparticles (quantum dots carbon); and nanoparticles of organic nature as polymer particles doped with dyes; preferably nanoparticles of inorganic nature.
  • Non-limiting examples of photoluminescent nanoparticles are nanoparticles of inorganic nature doped with luminescent metal ions, preferably as lanthanide ions.
  • the inorganic nanoparticles included in the photoluminescent nanoparticles can be selected from known sulfates, phosphates and fluorides depending on the dopant to be incorporated. Since most photoluminescent dopants are di- or trivalent metal ions, it is preferred to use sulfates, phosphates or fluorides of non-luminescent di- or trivalent metal atoms such as group 2 metals (alkaline earth metals, such as Mg, Ca, Sr, or Ba), or from group 3 (Se, Y or La) or from group 13 (for example, Al, Ga, In or TI) or Zn.
  • group 2 metals alkaline earth metals, such as Mg, Ca, Sr, or Ba
  • group 3 Se, Y or La
  • group 13 for example, Al, Ga, In or TI
  • photoluminescent metal ions to be incorporated as dopants included in the photoluminescent nanoparticles, there are no specific restrictions as long as they are capable of converting the absorbed photons into luminescent radiation.
  • lanthanide ions are used as dopant metal ions of inorganic salts doped with luminescent metal ions.
  • the dopant lanthanide ion (s) can be conveniently selected from Ce (item number 58), Pr (59), Nd (60), Sm (62), Eu (63), Gd (64), Tb (65) , Dy (66), Ho (67), Er (68), Tm (69), or Yb (70); preferably between Yb (70), Er (68), Tm (69) or Nd (60.
  • the preferred dopants are Er 3 ", Nd 3+ and Yb 3+ .
  • PC quantum dot
  • PCs quantum dot
  • the at least one luminescent particle (PL) of step (i) is at least one quantum point (PC), preferably at least one quantum point (PC) comprising elements belonging to the groups in the table periodic I-VI, II-V, or IV-VI; more preferably at least one quantum dot (PC) comprising compounds selected from indium arsenide (InAs), indium phosphide (InP), cadmium sulphide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe) , lead sulfide (PbS), lead selenide (PbSe), lead telluride (PbTe), zinc sulfide (ZnS), zinc selenide (ZnSe), CdSeZnS, CulnSe, Cd3As2, CdsP2, C, as well as mixtures of The these compounds.
  • PC quantum point
  • PC quantum point
  • PC quantum point
  • PC quantum point
  • PC quantum point
  • the at least one quantum dot (PC) of the present invention has a core-shell configuration, core-shell-shell, a configuration with alloyed elements, or a configuration in "giant quantum dots” form; preferably a core shell configuration (core-shell) or core-shell-shell (core-shell-shell).
  • the term "giant quantum dot” refers to core-cortex systems where the crust is thicker than 10 atomic layers of material.
  • the at least one luminescent particle of step (i) is a aggregate of quantum dots (PCs); particularly an aggregate of quantum dots (PCs) of CdSeZnS; preferably an aggregate of quantum dots (PCs) of coated CdSeZnS; more preferably an aggregate of quantum dots (PCs) of S1O2 coated CdSeZnS.
  • the addition of quantum dots comprises between 2 and 10,000 quantum dots; preferably between 2 and 1000 quantum dots.
  • the at least one luminescent particle of step (i) is functionalized; preferably it comprises ligands on its surface; more preferably it comprises functional groups on its surface.
  • the at least one luminescent particle of step (i) is encapsulated in a matrix; preferably an inorganic matrix; more preferably in an inorganic matrix formed by inorganic oxides; even more preferably selected from alumina, silicon oxide (S1O2), titanium oxide and combinations thereof; even more preferably silicon oxide (S1O2).
  • the at least one luminescent particle of step (i) is at least one quantum dot (PC) encapsulated in an inorganic matrix; preferably at least one quantum dot (PC) of CdSeZnS encapsulated in S1O2.
  • the authors of the present invention have observed that, without being linked to a particular theory, using the quantum dots encapsulated in a matrix reduces the bleaching effect of said quantum dots, increasing the emission stability. Furthermore, it has been observed that the encapsulation increases the biocompatibility of said quantum dots and makes them dispersible in polar media. Finally, the encapsulation or matrix that covers the quantum dots or their aggregates favors radiative energy transfers over non-radiative ones.
  • the at least one luminescent nanoparticle (PL) of the marked structure detection method of the present invention has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of the detection method of the present invention.
  • said spectra overlap in at least 10% of their wavelengths; preferably at least 20%; more preferably at least 30%; even more preferably at least 40%.
  • the maximum of the emission spectrum of said at least one PL overlaps the maximum of the absorption spectrum of the luminescent marker of the detection method of the present invention.
  • the optical clamp of the method of detection of marked structures of the present invention comprises a focused laser; where said a focused laser has an emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of step (i). That is, the optical clamp of the method of detection of marked structures of the present invention is not capable of causing the luminescence emission of the luminescent marker of the present invention. In a particular embodiment, the optical clamp of the detection method of the present invention is not capable of exciting the luminescent marker of step (i).
  • optical clamp is synonymous with the expression “optical trap” as known by the person skilled in the art and refers to a focused laser that generates an attractive force on dielectric objects, which it allows to catch, confine or hold a particle and move or move it physically [Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986). "Observation of a single-beam gradient force optical trap for dielectric particles”. Opt. Lett. 11 (5): 288-290]
  • said particle can be at least one luminescent nanoparticle (PL) or at least one quantum dot.
  • Said optical clamp may alternatively be formed by combining two laser beams traveling in opposite directions (counterpropagators) in a common focus as described, for example, in the article [Smith SB, Cui Y., Bustamante C. Optical-trap forced transducer that operates by direct measurement of light momentum. Methods Enzymol. 2003; 361: 134-162]
  • the focused laser of the optical clamp of step (i) of the present invention has a monochromatic emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of stage (i ).
  • the focused laser of the optical clamp of step (i) of the present invention is not capable of generating luminescence of the marker by any optical process.
  • the range of lengths of The emission wave of the focused laser of the optical clamp of the invention is not included in the absorption spectrum of the luminescent marker.
  • the optical clamp of step (i) comprises a monochromatic focused laser beam.
  • the optical clamp of step (i) comprises a monochromatic, single mode, continuous and focused laser beam; preferably a monochromatic diode laser beam, single mode, continuous and focused.
  • the optical clamp of step (i) comprises a femtosecond laser beam.
  • the optical clamp of step (i) comprises a continuous regime laser.
  • the optical clamp of step (i) comprises a highly focused laser; preferably highly focused by means of a high numerical aperture objective.
  • the optical clamp of step (i) has a power between 300 and 100 mW; preferably between 200 mW and 120 mW; more preferably 150 mW.
  • the optical clip of step (i) has a wavelength that is in a range between 650 nm and 950 nm; preferably between 700 and 900 nm; more preferably between 750 and 850 nm; more preferably 845 nm.
  • the optical clamp of step (i) has an emission in a range of wavelengths between 650-950 nm that excites said at least one PL.
  • the optical clip of step (i) comprises a photon flow of between 10 20 cnr 2 s _1 and 10 26 cnr 2 s -1 .
  • the authors of the present invention have observed that, without being linked to a
  • the fact that the optical clamp of the method of detection of marked structures of the present invention is not capable of exciting the luminescent marker of the present invention makes it possible to increase the selectivity of the method and prevent the degradation of said markers.
  • the method of detection of marked structures of the present invention comprises step (ii) of confining and simultaneously exciting said at least one luminescent nanoparticle (PL) of step (i) by means of the optical clamp of step (i) giving rise to at least one excited and confined luminescent nanoparticle (PL).
  • the term "confined” in relation to the luminescent nanoparticle of the present invention of steps (ii), (iii) and (iv) refers to the state in which the luminescent nanoparticle of the present The invention is "trapped” in the focused laser of the optical clip as it would be known by a person skilled in the art. Particularly, the confinement of the luminescent nanoparticle makes it possible to displace said particle by displacing said focused beam.
  • the term "excited” in relation to a luminescent particle of the present invention of steps (ii), (iii) and (iv), refers to an excited state due to its interaction with radiation Electromagnetic focusing laser of the optical clamp as would be known by a person skilled in the art.
  • the excitation of the at least one PL of stage (ii) is produced by absorption of the focused laser comprised in the optical clamp of stage (i) and the at least one PL of stage (i); preferably by a two photon absorption mechanism between the focused laser comprised in the optical clamp of stage (i) and the at least one PL of stage (i); more preferably by means of a two-photon absorption mechanism between the monochromatic, single-mode, continuous and focused laser comprised in the optical clamp of stage (i) and the at least one PL of stage (i).
  • the excitation of the at least one PL of step (ii) is produced by a photon or multifotonic excitation mechanism; preferably multifotonic; more preferably by a two photon absorption mechanism.
  • two photon absorption mechanism refers to a mechanism in which a luminescent particle, such as a quantum dot or an aggregate of quantum dots, is capable of absorbing energy in form of photons or electromagnetic radiation in a given range of wavelengths of a certain energy and of emitting electromagnetic radiation again in another range of wavelengths different from energy greater than that of individual photons as is known to an expert in the matter. That is, a luminescent particle is capable of absorbing two low energy photons resulting in the emission of a higher energy photon than any of the photons initially absorbed. For certain types of luminescent particles, a high flow of photons is typically required, such as that produced in laser radiation for this type of mechanism to occur.
  • the method of detection of marked structures of the present invention optionally comprises step (iii) of displacing the at least one excited and confined PL of stage (ii) by means of the optical clamp of stage (i).
  • the present invention is directed to a method of detection of marked structures comprising the steps of:
  • At least one luminescent nanoparticle PL
  • said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i);
  • an optical clamp wherein said optical clamp comprises a focused laser; where said a focused laser has an emission in a range of wavelengths that does not overlap with the spectrum of absorption of the luminescent marker of step (i); confine and simultaneously excite said at least one PL of stage (i) by means of the optical clamp of stage (i) giving rise to at least one excited and confined PL;
  • the expression "displace” in relation to the at least one excited and confined luminescent particle of step (ii) by the optical clamp of step (i) of the detection method of the present invention refers to moving said particle to a determined position by means of the optical clamp of step (i). This movement is not performed only once but could be repeated. That is, it would be possible to displace the at least one excited and confined luminescent particle (PL) from stage (ii) by means of the stage's optical clip (i) at different points relative to the marked structure. Such displacement could consist of an individual displacement or a series of successive displacements.
  • Figure 3 of the present invention shows an aggregate of quantum dots that is "confined” and excited by an optical clamp, and how it is possible to move said aggregate into a liquid medium inside a chamber of microfluidic
  • the displacement of stage (iii) occurs until the excited and confined PL is at a distance from the marked structure of stage (i) such that the radiation emitted by said at least one excited PL and confined excites the luminescent marker of said marked structure; preferably less than 10 microns; more preferably a distance between 10 microns and 1 nm; more preferably a distance between 1 microns and 1 nm.
  • Figure 3 of the present invention shows an aggregate of quantum dots that is "confined” and excited by an optical clamp. In said non-limiting example, it can be seen that, at a certain distance from said aggregate to the marked surface (a cell) luminescent signals of said marked structure are obtained ( Figures 3c and 3d).
  • the method of detection of marked structures of the present invention comprises step (iv) of exciting the luminescent marker of step (i) by the radiation emitted by said at least one excited and confined PL of step (ii) or (iii ), resulting in excited luminescent marker; where said excited luminescent marker emits a luminescent signal.
  • the at least one excited and confined PL of any of steps (ii), (iii) and (iv) emits electromagnetic radiation; preferably in a wavelength range that overlaps with the absorption spectrum of the luminescent marker of step (i); preferably in a wavelength range between 300 and 800 nm.
  • the at least one excited and confined PL of any of stages (ii), (iii) and (iv) emits photons with an energy capable of exciting the luminescent marker of stage (i).
  • the excitation of the luminescent marker of step (iv) is produced by a radiative transfer between the at least one excited and confined PL of any of stages (ii) or (iii) and (iv) and the marker luminescent stage (i).
  • the luminescent marker of stage (i) acts as an energy acceptor in the radiative transfer of stage (iv); in particular as a photon acceptor.
  • the at least one excited and confined PL of any of stages (ii) or (iii) and (iv) acts as an energy donor in the radiative transfer of stage (iv); in particular as a donor of photons.
  • the luminescent marker of step (i) and the at least one excited and confined PL of any of stages (ii) or (iii) and (iv) act as a donor-acceptor pair in the radiative transfer of stage (iv).
  • the term "radiative transfer” refers to processes of interaction between the at least one excited and confined PL of any of steps (ii), (iii) or (iv) and the luminescent marker of step (i) where part or all of the electromagnetic radiation emitted by the at least one excited and confined PL is absorbed by the luminescent marker of stage (i) so that said luminescent marker passes into an excited state.
  • a radiative process occurs between the at least one excited and confined PL of any of stages (ii), (iii) or (iv) and the luminescent marker of stage (i) through the emission and absorption of photons of a certain energy. Said process only occurs when the emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i).
  • step (iv) of the detection method of the present invention the luminescent marker of stage (i) by the radiation emitted by said at less an excited and confined PL of step (ii) or (iii) problems associated with the use of high irradiance such as accelerated whitening of luminescent markers, such as fluorophores, and their degradation would be avoided.
  • this method the degradation of the marked structure is reduced for relatively long measurement times, particularly when said structure is part of a biological specimen. Also in this way, the selectivity and resolution of said method is increased.
  • the authors of the present invention have found that when the at least one excited and confined PL of any of stages (ii), (iii) and (iv) and the luminescent marker are at distances greater than 10 nm a radiative transfer occurs between the at least one excited and confined PL of any of stages (ii), (iii) and (iv) and the luminescent marker allowing the luminescent marker to be excited.
  • the detection of the present invention is not limited to small distances possessing other techniques such as the fluorescence resonance energy transfer technique (FRET).
  • FRET fluorescence resonance energy transfer technique
  • the person skilled in the art would know how to select the distances optimal between the excited and confined PL and the luminescent marker or the structure marked to study said structure. This distance is not limitative of the method since the confined PL can be displaced.
  • steps (iii) and (iv) of the detection method of the present invention are repeated at least once; preferably between 2 and 100 times; more preferably between 2 and 50 times.
  • the excited luminescent marker of step (iv) emits luminescence; preferably radiation in a wavelength range between 400 and 650 nm.
  • the excited luminescent marker of step (iv) emits a luminescent signal; preferably a fluorescent signal; more preferably a fluorescent signal formed by an emission of electromagnetic radiation in a wavelength range between 300 and 800 nm; preferably between 400 and 700 nm.
  • the luminescent signal of step (iv) is detected by means of light detection; preferably by means of a spectrometer or a camera; more preferably by means of a camera.
  • spectrometer and “spectrophotometer” are equivalent.
  • the detection method of the present invention is applied in biological samples.
  • the detection method of the present invention is applied to map cell membranes, biosensar membrane proteins or monitor electrical signals.
  • biosensar refers to using a method in a living being to obtain information from a biological process or structure.
  • One skilled in the art would be able to adapt the method of the present invention to be able to biosensar.
  • a second aspect of the invention would be directed to the use of a luminescent marker in the method of detecting labeled structures of the present invention in any of its particular embodiments.
  • the luminescent marker may comprise any of the features described in any of the particular embodiments of the present invention.
  • a third aspect of the invention would be directed to the use of a luminescent particle (PL) in the method of detecting labeled structures of the present invention in any of its particular embodiments.
  • said luminescent particle can be used individually or in conjunction with other luminescent particles of the same type.
  • the luminescent particle may comprise any of the features described in any of the particular embodiments of the present invention.
  • a fourth aspect of the invention would be directed to the use of an optical clamp in the method of detection of marked structures of the present invention in any of its particular embodiments.
  • the optical clip may comprise any of the features described in any of the particular embodiments of the present invention. Means to carry out the method
  • a further aspect of the present invention is directed to an apparatus designed to carry out the method of detection of marked structures of the present invention comprising:
  • step (i) means for trapping and rotating the marked structure of step (i); ii) the optical clip of step (i) of the method of the present invention; and iii) light detection means of the luminescent signal of step (iv) of the method of detection of marked structures of the present invention; preferably a signal detector of step (iv) of the method of detection of marked structures.
  • the apparatus designed to carry out the method of detection of marked structures of the present invention further comprises
  • a container preferably a microfluidic chamber, and means for viewing said container, preferably an optical camera; more preferably a camera coupled to an optical microscope.
  • the light sensing means of the apparatus of the present invention comprise a spectrometer.
  • the light detection means of the apparatus of the present invention do not use spectral filters; preferably they do not use spectral filters to separate the signals from the different emitters.
  • the authors of the present invention have observed that the use of a spectrometer allows to reduce costs in the method of detection of marked structures in addition to allowing unequivocally observe the emission of PCs and fluorophores.
  • the apparatus designed for the detection method of the present invention comprises a simpler design since it does not need to use spectral filters to separate the emission signals.
  • the use of a luminescent marker, the use of a luminescent particle (PL), the use of an optical clamp in the method of the present invention and the apparatus designed to Carrying out the method of the present invention comprises all the features described for the luminescent marker, the luminescent particle (PL), the optical clamp and the apparatus described for the method of detection of marked structures of the present invention in any of its embodiments. private individuals
  • Example 1 Detection of structures marked in cells.
  • Alexa Fluor® 546 has an absorption spectrum with a maximum around 546 nm, and a emission spectrum with a maximum centered around 573 nm.
  • luminescent nanoparticles were synthesized, specifically quantum dots (PCs) formed by nanocrystals of a CdSeZnS alloy encapsulated in S1O2 (ad hoc PCs) with a maximum emission at 540 nm following the method described in Acebron M. et to the. [M. Acebrón, JF Galisteo-López, D. Granados, J. López-Ogalla, JM Gallego, R. Otero, C. López, and BH Juárez, “Protective Ligand Shells for Luminescent Si0 2 -Coated Alloyed Semiconductor Nanocrystals,” ACS Appl. Mater. Interfaces, p. 150319103751001, 2015.].
  • S1O2 encapsulation of quantum dots favors radiative processes over non-radiative processes (ie FRET) by creating a “barrier” between 10 and 100 nm.
  • said dye / quantum point pair was selected since the maximum emission of said quantum point at 540 nm overlaps with the spectrum of absorption of the fluorescent dye used as a marker, the Alexa Fluor® with a maximum absorption around 546 nm.
  • the Alexa Fluor® with a maximum absorption around 546 nm.
  • other dye / quantum dot pairs (or PL in general) that met the overlapping condition of absorption / emission spectra could also be used.
  • the cells with structures marked with said fluorescent dye were deposited in the bottom of a micro-fluidic chamber manufactured from two glass coverslips.
  • the PCs were dispersed in a calcium-free saline phosphate buffer (PBS) at pH 7.4 and injected into the micro-fluidic chamber.
  • PBS calcium-free saline phosphate buffer
  • Optical tweezers formed by a continuous and focused single mode 845 nm diode laser operated at a power such that 150 mW reach the optical trap to trap, excite and displace both individual and aggregate PCs were used.
  • Figure 1 presents a (a) scheme of a chain excitation or radiative transfer system in which a quantum dot is excited by a process of absorbing two photons in the near infrared, 2Y NIR , after which it emits a photon in the visible spectrum, yvis , which in turn excites a fluorescent marker (a dye molecule) that in turn emits a photon in the visible spectrum at a different wavelength from the previous one, yvis- , which will be detected as a signal light.
  • Figure 1b shows a graph of emission intensity / absorption versus wavelength (nm) showing the overlap between the emission spectrum of colloidal PCs (solid line) and the absorption spectrum of a dye (dashed line).
  • Figure 2 shows the experimental scheme of the method of detection of marked structures in which an aggregate of PCs is trapped by means of optical tweezers near the surface of a marked cell. The figure is not drawn to scale.
  • the experimental system used for the experimental embodiment illustrated in Example 1 modified the position of the microfluidic chamber with respect to the optical tweezers so that the aggregates of PCs could be placed in different relative positions with respect to the cell.
  • aggregates of trapped and excited PCs were used by means of the optical clamp to excite various marked regions of the cell.
  • Figure 3 shows transillumination images obtained by a camera (MTV-1802CB, DBS) coupled to an optical microscope (Zeiss Axiovert 135M) and emission spectra collected by a spectrometer.
  • An aggregate of optically trapped and excited PCs was located at different distances (ad) from the surface of a cell marked with Alexa Fluor® 546.
  • This experiment demonstrated the possibility of optically exciting fluorophores present in a cell, that is, marked structures, by issuing an aggregate of trapped and excited PCs by means of optical tweezers. It also demonstrated the ability to solve based on the location of the trapped PCs with respect to the marked structure (in this case, the cell). Finally, it was also demonstrated that the method of detection of marked structures is selective to the detection of said marked structures. Also note that the markers do not emit as a result of their interaction with the optical clamp used.
  • Example 2 Detection of scattered markers in an aqueous medium.
  • tetramethyl rhodamine TRUC
  • a fluorescent dye with an absorption spectrum with a maximum around 557 nm and an emission spectrum with a maximum around 576 nm.
  • Tetra-methyl rhodamine TRUC was dissolved in water to a concentration of 2.7 nM and said aqueous solution was injected into a micro-fluidic chamber.
  • PCs coated with silicon oxide (S1O2) described in Example 1 were injected into said micro-fluidic chamber giving rise to individual and aggregated PCs in the aqueous medium.
  • An aggregate of PCs was trapped and excited inside said medium by means of an optical clamp (see figure 4 (a)).
  • the position of the aggregate of trapped and excited PCs with respect to the surface of said microfluidic chamber was modified. That is, said aggregate of trapped and excited quantum dots was located at different depths (variable distance L) from the surface of the chamber and the emission spectrum from the trap region was studied. To do this, the luminescence or fluorescence from the sample was collected through the trapping target and sent to a spectrometer.
  • Figure 4 (b) shows several emission spectra measured by trapping and exciting said aggregate of PCs at various distances L (depths) from the surface of the microfluidic chamber that serves as a container for the TRUC solution.
  • Example 3 Effect of the overlap of the emission spectrum of the PCs and the absorption spectrum of the fluorescent marker.
  • rhodamine 6G (Ro-6G according to its acronym in English) was used, a fluorescent dye with an absorption spectrum with a maximum around 530 nm and an emission spectrum with a maximum around 566 nm Ro-6G was dissolved in ethanol to reach a concentration of 2 mM. Said solution was injected into a microfluidic chamber.
  • quantum dots of type 1 and type 2 Two types of quantum dots were used that were referred to as quantum dots of type 1 and type 2.
  • Type 1 quantum dots encapsulated in silica with a maximum emission at 527 nm similar to those described in the Example 1.
  • Type 2 quantum dots with a maximum emission at 580 nm were synthesized and encapsulated on silica following the method described in Acebrón M. et al. [M. Acebrón, JF Galisteo-López, D. Granados, J. López-Ogalla, JM Gallego, R. Otero, C. López, and BH Juárez, “Protective Ligand Shells for Luminescent Si0 2 -Coated Alloyed Semiconductor Nanocrystals,” ACS Appl. Mater. Interfaces, p. 150319103751001, 2015.].
  • Figure 5a shows a diagram of the overlap between the emission spectrum of two colloidal PCs of type 1 and type 2 (solid lines 1 and 2) and the absorption spectrum of a dye (broken line), said overlapping is represented as the shaded area below the curve.
  • Example 4 Devices used.
  • FIG. 6 shows a schematic of an experimental device.
  • the device used to make examples 1-3 of the present invention was formed by two lasers (L1 and L2) which are combined by a beam splitter cube (PBS) and directed by means of mirrors (M1 and M2) inwards of a fluorescence microscope.
  • the combined laser is reflected in a dichroic mirror (DM) and focused through a microscope objective (O) on the sample (SH).
  • a lamp (WL), a grid system (l & S) and a condenser (C) make up the lighting system of the experiment.
  • the sample under study was placed inside a microfluidic chamber manufactured from two glass coverslips that, in addition, could be moved three-dimensionally using micrometric screws.
  • the optical trap was implemented in the optical microscope by combining two continuous and focused single-mode infrared diode laser sources with a wavelength of 845 nm (L1 and L2) driven at a power such that 150 optical waves reach the optical trap. mW
  • NA 1.2
  • immersion in water and corrected to infinity.
  • the trap is formed at the focal point of the target, whose working distance is 0.7 mm.
  • the target also picked up the luminescent emission in the trap area.
  • the fluorescence from the sample after passing through the dichroic mirror, was filtered through a low-pass spectral filter at 750 nm (F) and selectively sent to a spectrometer (S, Ocean Optics USB2000 +) or to a video camera (MTV-1802CB , DBS) (VC) using various optical elements (FL, focusing lens; M3, mirror; P, prism; RL1 and RL2, retransmission lenses).
  • F low-pass spectral filter at 750 nm

Abstract

The present invention relates to a method for detecting marked structures, to its uses and to a device designed to carry out the method.

Description

DESCRIPCIÓN  DESCRIPTION
MÉTODO DE DETECCIÓN DE ESTRUCTURAS MARCADAS Campo de la invención METHOD OF DETECTION OF MARKED STRUCTURES Field of the invention
La presente invención se refiere a un método para la detección de estructuras marcadas, a sus usos y a un aparato diseñado para llevar a cabo dicho método. The present invention relates to a method for the detection of marked structures, their uses and an apparatus designed to carry out said method.
Antecedentes de la invención Background of the invention
La microscopía de fluorescencia es una herramienta básica para la investigación de muestras biológicas. En ella, los objetos son iluminados mediante radiación electromagnética de una determinada longitud de onda y la imagen observada es el resultado de la radiación electromagnética emitida por fluoróforos que han absorbido la excitación primaria y reemitido una luz con distinta longitud de onda. Dentro de las técnicas disponibles, son especialmente relevantes aquellas en las que la excitación tiene lugar en las ventanas biológicas del infrarrojo cercano (700-950 nm y 1000-1350 nm), en cuyo caso la profundidad de penetración en el tejido puede llegar a algunos milímetros. Fluorescence microscopy is a basic tool for the investigation of biological samples. In it, the objects are illuminated by electromagnetic radiation of a certain wavelength and the image observed is the result of the electromagnetic radiation emitted by fluorophores that have absorbed the primary excitation and re-emitted a light with a different wavelength. Among the available techniques, those in which the excitation takes place in the near infrared biological windows (700-950 nm and 1000-1350 nm) are especially relevant, in which case the depth of penetration into the tissue can reach some millimeters
En particular, la microscopía multifotónica (excitación óptica por dos o más fotones) combina dicha característica con una resolución cuyo límite es el volumen de focalización del láser por lo que se ha convertido en una de las técnicas de microscopía de fluorescencia más usadas. Sin embargo, uno de los problemas más significativos de la microscopía multifotónica es el blanqueamiento acelerado de los fluoróforos debido a los altos flujos de fotones (1027-1029 cnr2 s 1) a los que son sometidos [Fischer M., et al. “Fluorescence quantum yield of Rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry”, vol.2614, n° 260, pp 115-118] Este efecto, que además es irreversible, limita el uso de este tipo de microscopía a experimentos de unos minutos de duración. Asimismo, el sometimiento de especímenes biológicos a potencias ópticas elevadas puede conducir a la destrucción de las células irradiadas (foto- toxicidad) [Debarre, D. et al.“Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 pm wavelength range,” PLoS One, vol. 9, n° 8, p.e104250, 2014] Los puntos cuánticos (PCs) son nanopartículas luminiscentes (PL) que poseen propiedades ópticas y electrónicas diferenciadas. Por ejemplo, al ser iluminados emiten luz en una longitud de onda muy específica que depende del tamaño y de otras características de dicho punto cuántico. Estas propiedades hacen que los puntos cuánticos sean adoptados como sondas fluorescentes en biología y medicina para microscopía, detección y diagnóstico. In particular, multifotonic microscopy (optical excitation by two or more photons) combines this characteristic with a resolution whose limit is the volume of laser focusing so it has become one of the most used fluorescence microscopy techniques. However, one of the most significant problems of multifotonic microscopy is the accelerated whitening of fluorophores due to the high photon fluxes (10 27 -10 29 cnr 2 s 1 ) to which they are subjected [Fischer M., et al . “Fluorescence quantum yield of Rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry”, vol.2614, n ° 260, pp 115-118] This effect, which is also irreversible, limits the use of this type of microscopy to Experiments of a few minutes duration. Likewise, the submission of biological specimens to high optical powers can lead to the destruction of irradiated cells (photo-toxicity) [Debarre, D. et al. "Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 pm wavelength range, ”PLoS One, vol. 9, n ° 8, e.g. 104250, 2014] Quantum dots (PCs) are luminescent nanoparticles (PL) that have differentiated optical and electronic properties. For example, when they are illuminated they emit light at a very specific wavelength that depends on the size and other characteristics of said quantum point. These properties cause quantum dots to be adopted as fluorescent probes in biology and medicine for microscopy, detection and diagnosis.
El documento Liu et al. [H. Liu, H. Maruyama, Vibration-assisted optical injection of a single fluorescent sensor into a target cell, Sensors and Actuators B: Chemical, 2015, 220, pp 40-49] describe la inyección de una sonda micrométrica (5 mieras de diámetro) en una célula bajo la vibración del punto focal de unas pinzas ópticas. Se trata de una sonda compleja que comprende puntos cuánticos y que, bajo iluminación UV, cambia su potencial z permitiendo fijarse a la superficie de la membrana celular. Para seguir el avance de dicha sonda a través de la membrana celular que está marcada con fluoróforos, el documento de Liu et al. utiliza la transmisión de energía de resonancia de fluorescencia ( Fluorescence Resonance energy transfer o FRET) que se produce entre los puntos cuánticos de la sonda y los fluoróforos de membrana. Dichos puntos cuánticos se excitan mediante radiación UV. En el documento Liu et al., por tanto la observación de la membrana, tras aplicar radiación UV, esta limitada a una zona de tamaño micrométrico donde ha tenido lugar la adhesión de la sonda. Además, esta técnica puede ser invasiva puesto que el uso de esta radiación puede producir daños en las estructuras biológicas y puesto que la sonda penetra en la célula. The document Liu et al. [H. Liu, H. Maruyama, Vibration-assisted optical injection of a single fluorescent sensor into a target cell, Sensors and Actuators B: Chemical, 2015, 220, pp 40-49] describes the injection of a micrometric probe (5 microns in diameter) in a cell under the vibration of the focal point of optical tweezers. It is a complex probe that includes quantum dots and, under UV illumination, changes its z potential allowing it to be fixed to the surface of the cell membrane. To follow the progress of said probe through the cell membrane that is labeled with fluorophores, the document by Liu et al. uses the fluorescence resonance energy transmission (Fluorescence Resonance energy transfer or FRET) that occurs between the quantum dots of the probe and the membrane fluorophores. These quantum dots are excited by UV radiation. In the document Liu et al., Therefore the observation of the membrane, after applying UV radiation, is limited to an area of micrometric size where the adhesion of the probe has taken place. In addition, this technique can be invasive since the use of this radiation can cause damage to biological structures and since the probe penetrates the cell.
El mecanismo FRET contempla una transferencia de energía no radiativa entre donantes y aceptores (que pueden ser fluoróforos), mediada por interacciones entre moléculas o en general entre dipolos, limitando las distancias en las que tienen lugar. Por tanto, las técnicas basadas en FRET se encuentran limitadas por las distancias entre donante y aceptor. Por contra, en transferencias radiativas, la propagación de radiación emitida por un emisor se ve afectada por la absorción, emisión o dispersión, y por tanto, las distancias a las que ocurre pueden ser mucho mayores, ya que no dependen de interacciones ínter-moleculares o inter-dipolos. Consecuentemente, los métodos de detección de estructuras presentan problemas como baja resolución y selectividad, tiempos de medida limitados por la degradación de la vida útil de los marcadores y posible foto-toxicidad sobre la muestra, limitación en cuanto al área de estudio y modificación de las muestras. Son necesarios, por tanto, nuevos métodos de detección de estructuras marcadas que solventen alguna o todas las limitaciones anteriores. The FRET mechanism contemplates a transfer of non-radiative energy between donors and acceptors (which can be fluorophores), mediated by interactions between molecules or in general between dipoles, limiting the distances in which they take place. Therefore, FRET-based techniques are limited by the distances between donor and acceptor. On the other hand, in radiative transfers, the propagation of radiation emitted by an emitter is affected by absorption, emission or dispersion, and therefore, the distances at which it occurs can be much greater, since they do not depend on inter-molecular interactions or inter-dipoles. Consequently, the methods of detection of structures present problems such as low resolution and selectivity, limited measurement times due to degradation of the useful life of the markers and possible photo-toxicity on the sample, limitation in the area of study and modification of the samples. Therefore, new methods of detection of marked structures that solve some or all of the above limitations are necessary.
Breve descripción de la invención Brief Description of the Invention
La presente invención proporciona un nuevo método de detección de estructuras marcadas que permite el aumento tanto de selectividad y resolución de dicha detección. También, permite alargar los tiempos de medida sin dañar la muestra (debido a una reducción de la irradiancia sobre la muestra). Además, dicho método permite el estudio de distintas áreas de la muestra marcada a lo largo de una misma medida sin perturbar significativamente dicha muestra ya que se trata de una técnica no invasiva. The present invention provides a new method of detecting marked structures that allows both selectivity and resolution of said detection to be increased. Also, it allows to extend the measurement times without damaging the sample (due to a reduction in the irradiance on the sample). In addition, this method allows the study of different areas of the marked sample along the same measure without significantly disturbing said sample since it is a non-invasive technique.
Por tanto, un primer aspecto de la invención se refiere a un método de detección de estructuras marcadas que comprende las etapas de: Therefore, a first aspect of the invention relates to a method of detection of marked structures comprising the steps of:
i) proporcionar:  i) provide:
- una estructura marcada con un marcador luminiscente, donde dicho marcador luminiscente presenta un espectro de absorción;  - a structure marked with a luminescent marker, wherein said luminescent marker has an absorption spectrum;
- al menos una nanopartícula luminiscente (PL), donde dicha al menos una PL presenta un espectro de emisión; donde dicho espectro de emisión de dicha al menos una PL se solapa con el espectro de absorción del marcador luminiscente de la etapa (i);  - at least one luminescent nanoparticle (PL), where said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i);
- una pinza óptica, donde dicha pinza óptica comprende un láser focalizado; donde dicho láser focalizado presenta una emisión en un rango de longitudes de onda que no se solapa con el espectro de absorción del marcador luminiscente de la etapa (i);  - an optical clamp, wherein said optical clamp comprises a focused laser; wherein said focused laser has an emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of step (i);
ii) confinar y simultáneamente excitar dicha al menos una PL de la etapa (i) mediante la pinza óptica de la etapa (i) dando lugar a al menos una PL excitada y confinada;  ii) confine and simultaneously excite said at least one PL of stage (i) by means of the optical clamp of stage (i) giving rise to at least one excited and confined PL;
iii) opcionalmente desplazar la al menos una PL excitada y confinada de la etapa (ii) mediante la pinza óptica de la etapa (i); y iv) excitar el marcador luminiscente de la etapa (i) mediante la radiación emitida por dicha al menos una PL excitada y confinada de la etapa (ii) o (iii), dando lugar a un marcador luminiscente excitado; donde dicho marcador luminiscente excitado emite una señal luminiscente. iii) optionally displacing the at least one excited and confined PL of stage (ii) by means of the optical clamp of stage (i); Y iv) exciting the luminescent marker of stage (i) by the radiation emitted by said at least one excited and confined PL of stage (ii) or (iii), giving rise to an excited luminescent marker; where said excited luminescent marker emits a luminescent signal.
Un segundo aspecto de la invención estaría dirigido al uso de un marcador luminiscente en el método de detección de estructuras marcadas de la presente invención en cualquiera de sus realizaciones particulares.  A second aspect of the invention would be directed to the use of a luminescent marker in the method of detecting labeled structures of the present invention in any of its particular embodiments.
Un tercer aspecto de la invención estaría dirigido al uso de una partícula luminiscente (PL) en el método de detección de estructuras marcadas de la presente invención en cualquiera de sus realizaciones particulares. A third aspect of the invention would be directed to the use of a luminescent particle (PL) in the method of detecting labeled structures of the present invention in any of its particular embodiments.
Un cuarto aspecto de la invención estaría dirigido al uso de una pinza óptica en el método de detección de estructuras marcadas de la presente invención en cualquiera de sus realizaciones particulares. A fourth aspect of the invention would be directed to the use of an optical clamp in the method of detection of marked structures of the present invention in any of its particular embodiments.
Un aspecto adicional de la presente invención se encuentra dirigido a un aparato diseñado para llevar a cabo el método de detección de estructuras marcadas de la presente invención que comprende: A further aspect of the present invention is directed to an apparatus designed to carry out the method of detection of marked structures of the present invention comprising:
i) medios para atrapar y rotar la una estructura marcada de la etapa (i); ii) la pinza óptica de la etapa (i); y  i) means for trapping and rotating the marked structure of step (i); ii) the optical clip of step (i); Y
iii) un detector de la señal de la etapa (iv) del método de detección de estructuras marcadas de la presente invención en cualquiera de sus realizaciones particulares.  iii) a signal detector of step (iv) of the method of detection of marked structures of the present invention in any of its particular embodiments.
Figuras Figures
Estas y otras características y ventajas de la invención, se pondrán más claramente de manifiesto a partir de la descripción detallada que sigue de una forma preferida de realización, dada únicamente a título de ejemplo ilustrativo y no limitativo, con referencia a las figuras que se acompañan. These and other features and advantages of the invention will become more clearly apparent from the detailed description that follows in a preferred embodiment, given only by way of illustrative and non-limiting example, with reference to the accompanying figures. .
Figura 1 : (a) Esquema de un posible sistema de excitación en cadena o de transferencia radiativa en el que una PL es excitada mediante un proceso de absorción de dos fotones en el infrarrojo cercano, 2YNIR, tras el que emite un fotón en el espectro visible, Yvis, que a su vez excita a un marcador fluorescente (una molécula de colorante) que a su vez emite un fotón en el espectro visible a distinta longitud de onda del anterior, YVIS-, que se detectará como una señal lumínica; (b) gráfica de intensidad de emisión/absorción frente a longitud de onda (nm) que muestra el solapamiento entre el espectro de emisión de PLs (puntos cuánticos coloidales, PCs línea continua) y el espectro de absorción de un colorante (línea discontinua). Figure 1: (a) Scheme of a possible chain excitation or radiative transfer system in which a PL is excited by a process of absorbing two photons in the near infrared, 2Y NIR , after which it emits a photon in the visible spectrum, Yvis , which in turn excites a fluorescent marker (a dye molecule) that in turn emits a photon in the visible spectrum at a different wavelength from the previous one, and VIS-, which will be detected as a light signal; (b) graph of emission intensity / absorption versus wavelength (nm) showing the overlap between the emission spectrum of PLs (colloidal quantum dots, continuous line PCs) and the absorption spectrum of a dye (dashed line) .
Figura 2: Esquema experimental en el que un agregado de PCs es atrapado ópticamente y movido mediante una pinza óptica alrededor de una célula marcada. El haz láser de la pinza óptica, en el infrarrojo cercano, simultáneamente excita los PCs, cuya reemisión permite excitar a su vez las estructuras marcadas de la célula. Dicho esquema no está a escala. Figure 2: Experimental scheme in which an aggregate of PCs is optically trapped and moved by an optical clamp around a marked cell. The laser beam of the optical clamp, in the near infrared, simultaneously excites the PCs, whose remission allows to turn the marked structures of the cell in turn. This scheme is not to scale.
Figura 3: Imágenes en transiluminación obtenidas mediante un microscopio óptico y espectros de emisión recogidos a partir de un agregado de PCs atrapado ópticamente y excitado a distintas distancias (a-d) de la superficie de una célula marcada. Figure 3: Transillumination images obtained by means of an optical microscope and emission spectra collected from an aggregate of optically trapped and excited PCs at different distances (a-d) from the surface of a marked cell.
Figura 4: (a) Esquema experimental en el que un agregado de PCs se encuentra atrapado ópticamente y excitado dentro de una disolución de un colorante y a una profundidad (distancia L) respecto a la superficie interior que limita la parte inferior de una cámara de microfluídica que contiene dicho colorante (el esquema no está dibujado a escala); y (b) espectros de emisión medidos al atrapar y excitar un agregado de PCs a varias distancias L (profundidades) respecto a la superficie de dicha cámara de microfluídica que sirve como contenedor de la disolución de colorante. Figure 4: (a) Experimental scheme in which an aggregate of PCs is optically trapped and excited within a solution of a dye and at a depth (distance L) relative to the inner surface that limits the bottom of a microfluidic chamber containing said dye (the scheme is not drawn to scale); and (b) emission spectra measured by trapping and exciting an aggregate of PCs at various distances L (depths) from the surface of said microfluidic chamber that serves as a container of the dye solution.
Figura 5: (a) Esquema del solapamiento entre el espectro de emisión de dos especies de PCs coloidales, 1 y 2, que poseen un máximo de emisión a 530 y 580 nm respectivamente (líneas continuas 1 y 2) y el espectro de absorción de un colorante (línea discontinua), dicho solapamiento viene representado como el área sombreada debajo de la curva. Espectro de emisión medido para una disolución de un colorante dentro de la cual se atrapa y excita (b) un agregado de PCs tipo 1 a distintas profundidades (distancias L) y (c) un agregado de PCs tipo 2. Figura 6: Esquema de un dispositivo experimental que permite la detección de estructuras marcadas formado por dos láseres (L1 y L2) que son combinados mediante un cubo divisor de haz (PBS) y dirigidos por medio de espejos (M1 y M2) hacia el interior de un microscopio de fluorescencia. El haz láser combinado es reflejado en un espejo dicroico (DM) y focalizado a través de un objetivo de microscopio (O) sobre la muestra (SH). Una lámpara (WL), un sistema de retículas (l&S) y un condensador (C) conforman el sistema de iluminación del experimento. La fluorescencia procedente de la muestra es recogida a través de un filtro (F) y enviada selectivamente a un espectrómetro (S) o a una cámara (VC) mediante diversos elementos ópticos (FL, lente de focalización; M3, espejo; P, prisma; RL1 y RL2, lentes de retransmisión. Figure 5: (a) Scheme of the overlap between the emission spectrum of two species of colloidal PCs, 1 and 2, which have a maximum emission at 530 and 580 nm respectively (continuous lines 1 and 2) and the absorption spectrum of a dye (dashed line), said overlap is represented as the shaded area below the curve. Emission spectrum measured for a solution of a dye into which an aggregate of type 1 PCs at different depths (distances L) and (c) an aggregate of type 2 PCs are trapped and excited (b). Figure 6: Scheme of an experimental device that allows the detection of marked structures formed by two lasers (L1 and L2) that are combined by a beam splitter cube (PBS) and directed by means of mirrors (M1 and M2) inwards of a fluorescence microscope. The combined laser beam is reflected in a dichroic mirror (DM) and focused through a microscope objective (O) on the sample (SH). A lamp (WL), a grid system (l & S) and a condenser (C) make up the lighting system of the experiment. Fluorescence from the sample is collected through a filter (F) and selectively sent to a spectrometer (S) or to a camera (VC) by various optical elements (FL, focusing lens; M3, mirror; P, prism; RL1 and RL2, relay lenses.
Descripción detallada de la invención Detailed description of the invention
A no ser que sea dicho lo contrario, todos los términos científicos aquí utilizados tienen el significado que es comúnmente entendido por el experto en la materia al que va dirigida esta descripción. En la presente invención, las formas singulares incluyen las formas plurales a menos que se indique lo contrario. En particular, los pronombres determinados (el, la, lo) o indeterminados (un, uno, una) singulares no limitan a un número cardinal y pueden referirse a más de un elemento (por ejemplo, a uno, dos, tres o más). Esto es particularmente relevante en la presente invención al referirse por ejemplo a“una estructura marcada”,“un marcador luminiscente”,“una pinza óptica” y“un láser focalizado”. Unless stated otherwise, all the scientific terms used here have the meaning that is commonly understood by the person skilled in the art to which this description is directed. In the present invention, the singular forms include the plural forms unless otherwise indicated. In particular, the given pronouns (el, la, lo) or indeterminate (one, one, one) singular do not limit to a cardinal number and can refer to more than one element (for example, one, two, three or more) . This is particularly relevant in the present invention when referring, for example, to "a marked structure", "a luminescent marker", "an optical clamp" and "a focused laser".
El objeto principal de la presente invención es proporcionar un método de detección de estructuras marcadas que comprende las etapas de: The main object of the present invention is to provide a method of detection of marked structures comprising the steps of:
i) proporcionar:  i) provide:
una estructura marcada con un marcador luminiscente, donde dicho marcador luminiscente presenta un espectro de absorción;  a structure marked with a luminescent marker, wherein said luminescent marker has an absorption spectrum;
al menos una nanopartícula luminiscente (PL), donde dicha al menos una PL presenta un espectro de emisión; donde dicho espectro de emisión de dicha al menos una PL se solapa con el espectro de absorción del marcador luminiscente de la etapa (i);  at least one luminescent nanoparticle (PL), where said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i);
una pinza óptica, donde dicha pinza óptica comprende un láser focalizado; donde dicho un láser focalizado presenta una emisión en un rango de longitudes de onda que no se solapa con el espectro de absorción del marcador luminiscente de la etapa (i); an optical clip, where said optical clip comprises a focused laser; where said a focused laser has an emission in a range of wavelengths that do not overlap with the absorption spectrum of the luminescent marker of step (i);
ii) confinar y simultáneamente excitar dicha al menos una PL de la etapa (i) mediante la pinza óptica de la etapa (i) dando lugar a al menos una PL excitada y confinada;  ii) confine and simultaneously excite said at least one PL of stage (i) by means of the optical clamp of stage (i) giving rise to at least one excited and confined PL;
iii) opcionalmente desplazar la al menos una PL excitada y confinada de la etapa (ii) mediante la pinza óptica de la etapa (i); y  iii) optionally displacing the at least one excited and confined PL of stage (ii) by means of the optical clamp of stage (i); Y
iv) excitar el marcador luminiscente de la etapa (i) mediante la radiación emitida por dicha al menos una PL excitada y confinada de la etapa (ii) o (iii), dando lugar al marcador luminiscente de la etapa (i) excitado; donde dicho marcador luminiscente excitado emite una señal luminiscente.  iv) exciting the luminescent marker of stage (i) by the radiation emitted by said at least one excited and confined PL of stage (ii) or (iii), giving rise to the luminescent marker of stage (i) excited; where said excited luminescent marker emits a luminescent signal.
Etapa (i) El método de detección de estructuras marcadas de la presente invención comprende la etapa (i) de proporcionar: Step (i) The method of detection of marked structures of the present invention comprises step (i) of providing:
- una estructura marcada con un marcador luminiscente, donde dicho marcador luminiscente presenta un espectro de absorción;  - a structure marked with a luminescent marker, wherein said luminescent marker has an absorption spectrum;
- al menos una nanopartícula luminiscente (PL), donde dicha al menos una PL presenta un espectro de emisión; donde dicho espectro de emisión de dicha al menos una PL se solapa con el espectro de absorción del marcador luminiscente de la etapa (i); y  - at least one luminescent nanoparticle (PL), where said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i); Y
- una pinza óptica, donde dicha pinza óptica comprende un láser focalizado; donde dicho láser focalizado presenta una emisión en un rango de longitudes de onda que no se solapa con el espectro de absorción del marcador luminiscente de la etapa (i).  - an optical clamp, wherein said optical clamp comprises a focused laser; wherein said focused laser has an emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of step (i).
En el contexto de la presente invención, el término“estructura marcada” o“estructuras marcadas” se refiere a una estructura que comprende uno o varios marcadores luminiscentes; dicha estructura puede estar presente en especímenes biológicos y no biológicos. Cuando dicha estructura se encuentra presente en especímenes biológicos, puede estar marcada por cualquiera de los marcadores luminiscentes habitualmente utilizados para el marcado biológico y conocidos por el experto en la materia. En una realización particular, dicha estructura marcada puede ser una célula o parte de una célula como por ejemplo una membrana celular. Como ejemplo no limitiativo, dicha estructura marcada puede ser una célula Jurkat-T impermeabilizada cuyas proteínas han sido inespecíficamente marcadas con un colorante fluorescente como por ejemplo Alexa Fluor® 546. In the context of the present invention, the term "marked structure" or "marked structures" refers to a structure comprising one or more luminescent markers; said structure may be present in biological and non-biological specimens. When said structure is present in biological specimens, it may be marked by any of the luminescent markers commonly used for biological marking and known to the person skilled in the art. In a particular embodiment, said marked structure may be a cell or part of a cell such as a cell membrane. As a non-limiting example, said labeled structure can be a waterproofed Jurkat-T cell whose proteins have been unspecifically labeled with a fluorescent dye such as Alexa Fluor® 546.
En el contexto de la presente invención, el término "luminiscencia" caracteriza la propiedad de un material de absorber energía (por ejemplo, en forma de una radiación electromagnética, compuesta por fotones) que, a continuación, emite en forma de radiación electromagnética. In the context of the present invention, the term "luminescence" characterizes the property of an energy absorbing material (for example, in the form of an electromagnetic radiation, composed of photons) which then emits in the form of electromagnetic radiation.
En el contexto de la presente invención, el término“marcador luminiscente” se refiere a un material, por ejemplo un grupo funcional, compuesto o composición química, que es capaz de absorber energía en forma de radiación electromagnética en un determinado rango de longitudes de onda y de volver a emitir radiación electromagnética en otro rango de longitudes de onda diferente; por tanto, se caracteriza por poseer un espectro de absorción y un espectro de emisión característico. Ejemplos no limitativos de marcadores luminiscentes son marcadores fluorescentes, marcadores fosforescentes o combinaciones de los mismos. Preferiblemente, el marcador luminiscente de la presente invención se selecciona entre fluoróforos, cromóforos y combinaciones de los anteriores. In the context of the present invention, the term "luminescent marker" refers to a material, for example a functional group, compound or chemical composition, which is capable of absorbing energy in the form of electromagnetic radiation in a given range of wavelengths. and to re-emit electromagnetic radiation in a different range of different wavelengths; therefore, it is characterized by having an absorption spectrum and a characteristic emission spectrum. Non-limiting examples of luminescent markers are fluorescent markers, phosphorescent markers or combinations thereof. Preferably, the luminescent marker of the present invention is selected from fluorophores, chromophores and combinations of the foregoing.
En el contexto de la presente invención, el término“marcador fluorescente” es sinónimo de fluorocromo, es decir, de un material, un grupo funcional, compuesto o composición química, que es capaz de absorber energía en forma de radiación electromagnética en un determinado rango de longitudes de onda y de emitir radiación electromagnética en otro rango de longitudes de onda mayor que el primero (es decir con menor energía). Ejemplos no limitativos de fluorocromos adecuados para su uso en la presente invención son cualquiera de los fluorocromos conocidos por el experto en la materia, por ejemplo los que aparecen en la base de datos de la página web http://www.fluorophores.tugraz.at/substance/ a fecha 19 de Julio de 2018 [Fluorophores.org is a user-driven platform for fluorescent dye data initiated by the Applied Sensor Group of the Institute of Analytical Chemistry at the Graz University of Technology in Austria] Preferiblemente fluorocromos seleccionados de: fluoresceína y sus derivados como la 5-carboxifluoresceína, 6-carboxifluoresceína, ácido 6- (fluoresceína)-5-(y 6)-carboxamida-hexanoico e isotiocianato de fluoresceína; colorantes AlexaFluor® y sus derivados como AlexaFluor 488®, Alexa Fluor® 546 o AlexaFluor 594®; colorantes de cianina como Dy2, Cy3, Cy5, Cy7; cumarina opcionalmente sustituida; R-ficoeritrina, aloficoeritrina y sus derivados; rodamina, tetra-metil-rodamina, rodamina 6G y sus derivados; Princeston Red; conjugados de R-ficoeritrina; miembros de las ficoliproteínas y puntos cuánticos. In the context of the present invention, the term "fluorescent marker" is synonymous with fluorochrome, that is, a material, a functional group, compound or chemical composition, which is capable of absorbing energy in the form of electromagnetic radiation in a given range. of wavelengths and of emitting electromagnetic radiation in another range of wavelengths greater than the first (ie with less energy). Non-limiting examples of fluorochromes suitable for use in the present invention are any of the fluorochromes known to those skilled in the art, for example those appearing in the database of the website http: //www.fluorophores.tugraz. at / substance / a July 19, 2018 [Fluorophores.org is a user-driven platform for fluorescent dye data initiated by the Applied Sensor Group of the Institute of Analytical Chemistry at the Graz University of Technology in Austria] Preferably fluorochromes selected from : fluorescein and its derivatives such as 5-carboxyfluorescein, 6-carboxyfluorescein, 6- (fluorescein) -5- (and 6) -carboxamide-hexanoic acid and fluorescein isothiocyanate; dyes AlexaFluor® and its derivatives such as AlexaFluor 488®, Alexa Fluor® 546 or AlexaFluor 594®; cyanine dyes such as Dy2, Cy3, Cy5, Cy7; optionally substituted coumarin; R-phycoerythrin, allophycoerythrin and its derivatives; rhodamine, tetramethyl rhodamine, rhodamine 6G and its derivatives; Princeston Red; R-phycoerythrin conjugates; members of ficoliproteins and quantum dots.
En una realización más particular, el marcador luminiscente de la etapa (i) es un marcador fluorescente; preferiblemente seleccionado del grupo que consiste en AlexaFluor®, rodamina y sus derivados; preferiblemente es un marcador fluorescente seleccionado de Alexa Fluor® 546, tetra-metil-rodamina y rodamina 6G. In a more particular embodiment, the luminescent marker of step (i) is a fluorescent marker; preferably selected from the group consisting of AlexaFluor®, rhodamine and its derivatives; preferably it is a fluorescent marker selected from Alexa Fluor® 546, tetra-methyl-rhodamine and 6G rhodamine.
En una realización particular, el marcador luminiscente de la etapa (i) presenta un espectro de absorción; donde dicho espectro de absorción del marcador luminiscente de la etapa (i) se solapa con el espectro de emisión de dicha al menos una PL; preferiblemente se solapa al menos en un 10% del rango; preferiblemente en un 60% del rango de longitudes de onda del espectro de emisión de dicha al menos una PL; más preferiblemente se solapa en un rango de longitudes de onda del 80%. In a particular embodiment, the luminescent marker of step (i) has an absorption spectrum; wherein said absorption spectrum of the luminescent marker of step (i) overlaps with the emission spectrum of said at least one PL; preferably it overlaps at least 10% of the range; preferably in 60% of the wavelength range of the emission spectrum of said at least one PL; more preferably it overlaps in a wavelength range of 80%.
En una realización particular el marcador luminiscente de la invención, presenta un espectro de absorción y un espectro de emisión; preferiblemente presenta un espectro de absorción y un espectro de emisión, en particular dicho marcador se puede excitar y, una vez en estado excitado, emitir una señal luminiscente.  In a particular embodiment the luminescent marker of the invention has an absorption spectrum and an emission spectrum; preferably it has an absorption spectrum and an emission spectrum, in particular said marker can be excited and, once excited, emit a luminescent signal.
Como ejemplo no limitativo, el marcador luminiscente Alexa Fluor® 546 es un marcador fluorescente cuyo máximo de absorción de su espectro de absorción se encuentra en torno a los 546 nm y cuyo máximo de emisión del espectro de emisión se encuentra en torno a 573 nm (color naranja visto a través de un microscopio de fluorescencia convencional) y cuyo coeficiente de extinción es de 104000 al máximo de emisión en cnr1 M 1. Por ejemplo, el marcador Alexa Fluor® 546 excitado da lugar a una señal luminiscente con un máximo centrado en torno a los 573 nm As a non-limiting example, the Alexa Fluor® 546 luminescent marker is a fluorescent marker whose maximum absorption of its absorption spectrum is around 546 nm and whose maximum emission of the emission spectrum is around 573 nm ( orange color seen through a conventional fluorescence microscope) and whose extinction coefficient is 104000 at the maximum emission in cnr 1 M 1 . For example, the excited Alexa Fluor® 546 marker results in a luminescent signal with a maximum centered around 573 nm
En el contexto de la presente invención, la expresión“espectro de absorción” se refiere a la intensidad de radiación electromagnética incidente que un material absorbe en un rango de longitudes de onda determinado. En el contexto de la presente invención, la expresión“espectro de emisión” se refiere a la intensidad de radiación electromagnética que un material emite en un rango de longitudes de onda determinado. In the context of the present invention, the term "absorption spectrum" refers to the intensity of incident electromagnetic radiation that a material absorbs in a given wavelength range. In the context of the present invention, the term "emission spectrum" refers to the intensity of electromagnetic radiation that a material emits in a given wavelength range.
En una realización particular, la una estructura marcada con un marcador luminiscente de la etapa (i) y la al menos una nanopartícula luminiscente (PL) se encuentran en un medio líquido; preferiblemente en un medio acuoso u orgánico; más preferiblemente en un medio acuoso; aún más preferiblemente en un tampón fosfato salino (PBS). En una realización más particular, el medio líquido es un medio de cultivo. In a particular embodiment, the one structure marked with a luminescent marker of step (i) and the at least one luminescent nanoparticle (PL) are in a liquid medium; preferably in an aqueous or organic medium; more preferably in an aqueous medium; even more preferably in a phosphate buffered saline (PBS). In a more particular embodiment, the liquid medium is a culture medium.
En una realización particular, la una estructura marcada con el marcador luminiscente de la etapa (i) y la al menos una nanopartícula luminiscente (PL) se encuentran en una cámara de microfluídica; preferiblemente en una cámara de microfluídica transparente en el espectro visible e infrarrojo cercano. In a particular embodiment, the one structure marked with the luminescent marker of step (i) and the at least one luminescent nanoparticle (PL) are located in a microfluidic chamber; preferably in a transparent microfluidic chamber in the visible and near infrared spectrum.
En una realización particular, la una estructura marcada de la etapa (i) está presente en especímenes biológicos y no biológicos; preferiblemente en especímenes biológicos; más preferiblemente en células. Ejemplos no limitativos de células adecuadas para la presente invención son linfocitos T, HL60, Jurkat, macrófagos, HeLa (en suspensión), también células adherentes como HeLa, fibroblastos, MFC7, etc. In a particular embodiment, the one marked structure of step (i) is present in biological and non-biological specimens; preferably in biological specimens; more preferably in cells. Non-limiting examples of suitable cells for the present invention are T lymphocytes, HL60, Jurkat, macrophages, HeLa (in suspension), also adherent cells such as HeLa, fibroblasts, MFC7, etc.
En una realización aún más particular, la una estructura marcada de la etapa (i) es una proteína marcada en una célula; preferiblemente una proteína marcada inespecíficamente o específicamente en una célula; más preferiblemente una proteína marcada específicamente; aún más preferiblemente una proteína marcada específicamente con un marcador luminiscente. In an even more particular embodiment, the one labeled structure of step (i) is a labeled protein in a cell; preferably a nonspecifically or specifically labeled protein in a cell; more preferably a specifically labeled protein; even more preferably a protein specifically labeled with a luminescent marker.
En el contexto de la presente invención, la expresión“nanopartícula luminiscente (PL)” se refiere a una partícula que comprende por lo menos una de sus dimensiones en un rango de tamaños igual o inferior a 100 nm; que es capaz de absorber energía en forma de radiación electromagnética en un determinado rango de longitudes de onda y de volver emitir radiación electromagnética en otro rango de longitudes de onda diferente y que presenta un espectro de emisión. En el contexto de la presente invención se debe entender que el término “nanopartícula luminiscente (PL)” o “nanopartículas luminiscentes (PLs)” a lo largo de la descripción y las reivindicaciones también incluye los significados más específicos de “nanopartícula fotoluminiscente (PF)” o “nanopartículas fotoluminiscentes (PFs) y también de "punto cuántico (PC)" o“puntos cuánticos (PCs)”. In the context of the present invention, the term "luminescent nanoparticle (PL)" refers to a particle that comprises at least one of its dimensions in a size range equal to or less than 100 nm; which is capable of absorbing energy in the form of electromagnetic radiation in a certain range of wavelengths and of re-emitting electromagnetic radiation in another range of different wavelengths and that has an emission spectrum. In the context of the present invention it should be understood that the term "luminescent nanoparticle (PL)" or "nanoparticles Luminescent (PLs) "throughout the description and claims also includes the more specific meanings of" photoluminescent nanoparticle (PF) "or" photoluminescent nanoparticles (PFs) and also of "quantum dot (PC)" or "quantum dots ( PCs) ”
En una realización particular, la al menos una partícula luminiscente de la etapa (i) es al menos una nanopartícula fotoluminiscente o al menos un punto cuántico (PC); preferiblemente al menos un punto cuántico (PC); más preferiblemente es un agregado de puntos cuánticos (PCs). In a particular embodiment, the at least one luminescent particle of step (i) is at least one photoluminescent nanoparticle or at least one quantum dot (PC); preferably at least one quantum dot (PC); more preferably it is an aggregate of quantum dots (PCs).
En el contexto de la presente invención, la expresión“nanopartículas fotoluminiscentes” se refieren a nanopartículas de naturaleza orgánica o inorgánica capaces de absorber energía en forma de radiación electromagnética en un determinado rango de longitudes de onda y de volver emitir radiación electromagnética en otro rango de longitudes de onda diferente (mayores o menores longitudes de onda; preferiblemente mayores). Ejemplos no limitativos de nanopartículas fotoluminiscentes son nanopartículas de naturaleza inorgánicas como sulfatos, fosfatos y fluoruros dopados con iones de tierras raras, partículas de sulfuros o seleniuros de Ag; puntos cuánticos; nanodiamantes; nanopartículas de carbono (carbón quantum dots); y nanopartículas de naturaleza orgánica como partículas poliméricas dopadas con colorantes; preferiblemente nanopartículas de naturaleza inorgánica. In the context of the present invention, the term "photoluminescent nanoparticles" refers to nanoparticles of organic or inorganic nature capable of absorbing energy in the form of electromagnetic radiation in a certain range of wavelengths and of emitting electromagnetic radiation again in another range of different wavelengths (greater or lesser wavelengths; preferably longer). Non-limiting examples of photoluminescent nanoparticles are inorganic nanoparticles such as sulfates, phosphates and fluorides doped with rare earth ions, sulfide particles or Ag selenides; quantum dots; nanodiamonds; carbon nanoparticles (quantum dots carbon); and nanoparticles of organic nature as polymer particles doped with dyes; preferably nanoparticles of inorganic nature.
Ejemplos no limitativos de nanopartículas fotoluminiscentes son nanopartículas de naturaleza inorgánica dopadas con iones metálicos luminiscentes, preferiblemente como iones lantánidos. Non-limiting examples of photoluminescent nanoparticles are nanoparticles of inorganic nature doped with luminescent metal ions, preferably as lanthanide ions.
Las nanopartículas de naturaleza inorgánica comprendidas en las nanopartículas fotoluminiscentes se pueden seleccionar entre sulfatos, fosfatos y fluoruros conocidos dependiendo del dopante a incorporar. Puesto que la mayoría de dopantes fotoluminiscentes son iones metálicos di- o trivalentes, se prefiere usar sulfatos, fosfatos o fluoruros de átomos de metales di- o trivalentes no luminiscentes tales como los metales del grupo 2 (metales alcalinotérreos, tales como Mg, Ca, Sr, o Ba), o del grupo 3 (Se, Y o La) o del grupo 13 (por ejemplo, Al, Ga, In o TI) o Zn. Respecto al tipo de iones metálicos fotoluminiscentes a incorporar como dopantes comprendidos en las nanopartículas fotoluminiscentes, no hay restricciones específicas mientras éstos sean capaces de convertir los fotones absorbidos en radiación luminiscente. Preferiblemente como iones metálicos dopantes de las sales inorgánicas dopadas con iones metálicos luminiscentes se utilizan iones lantánidos. El ión(es) lantánido dopante se puede seleccionar de manera conveniente entre Ce (elemento número 58), Pr (59), Nd (60), Sm (62), Eu (63), Gd (64), Tb (65), Dy (66), Ho (67), Er (68), Tm (69), o Yb (70); preferiblemente entre Yb (70), Er (68), Tm (69) o Nd (60. En una realización particular, los dopantes preferidos son el Er3", Nd3+ y Yb3+. The inorganic nanoparticles included in the photoluminescent nanoparticles can be selected from known sulfates, phosphates and fluorides depending on the dopant to be incorporated. Since most photoluminescent dopants are di- or trivalent metal ions, it is preferred to use sulfates, phosphates or fluorides of non-luminescent di- or trivalent metal atoms such as group 2 metals (alkaline earth metals, such as Mg, Ca, Sr, or Ba), or from group 3 (Se, Y or La) or from group 13 (for example, Al, Ga, In or TI) or Zn. Regarding the type of photoluminescent metal ions to be incorporated as dopants included in the photoluminescent nanoparticles, there are no specific restrictions as long as they are capable of converting the absorbed photons into luminescent radiation. Preferably lanthanide ions are used as dopant metal ions of inorganic salts doped with luminescent metal ions. The dopant lanthanide ion (s) can be conveniently selected from Ce (item number 58), Pr (59), Nd (60), Sm (62), Eu (63), Gd (64), Tb (65) , Dy (66), Ho (67), Er (68), Tm (69), or Yb (70); preferably between Yb (70), Er (68), Tm (69) or Nd (60. In a particular embodiment, the preferred dopants are Er 3 ", Nd 3+ and Yb 3+ .
En el contexto de la presente invención, la expresión“punto cuántico (PC)” o“puntos cuánticos (PCs)” se refiere a partículas semiconductoras cristalinas que presentan propiedades ópticas sintonizables con el tamaño de la partícula. Comprenden elementos pertenecientes a los grupos I l-VI , lll-V, o IV-VI de la tabla periódica. In the context of the present invention, the term "quantum dot (PC)" or "quantum dot (PCs)" refers to crystalline semiconductor particles that have tunable optical properties with the particle size. They comprise elements belonging to groups I l-VI, lll-V, or IV-VI of the periodic table.
En una realización particular, la al menos una partícula luminiscente (PL) de la etapa (i) es al menos un punto cuántico (PC), preferiblemente un al menos un punto cuántico (PC) que comprende elementos pertenecientes a los grupos de la tabla periódica I l-VI, II- V, o IV-VI; más preferiblemente un al menos un punto cuántico (PC) que comprende compuestos seleccionados de arseniuro de indio (InAs), fosfuro de indio (InP), sulfuro de cadmio (CdS), seleniuro de cadmio (CdSe), teluro de cadmio (CdTe), sulfuro de plomo (PbS), seleniuro de plomo (PbSe), telururo de plomo (PbTe), sulfuro de zinc (ZnS), seleniuro de zinc (ZnSe), CdSeZnS, CulnSe, Cd3As2, CdsP2, C, así como mezclas de los estos compuestos. In a particular embodiment, the at least one luminescent particle (PL) of step (i) is at least one quantum point (PC), preferably at least one quantum point (PC) comprising elements belonging to the groups in the table periodic I-VI, II-V, or IV-VI; more preferably at least one quantum dot (PC) comprising compounds selected from indium arsenide (InAs), indium phosphide (InP), cadmium sulphide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe) , lead sulfide (PbS), lead selenide (PbSe), lead telluride (PbTe), zinc sulfide (ZnS), zinc selenide (ZnSe), CdSeZnS, CulnSe, Cd3As2, CdsP2, C, as well as mixtures of The these compounds.
En una realización particular el al menos un punto cuántico (PC) de la presente invención presenta una configuración núcleo corteza ( core-shell ), núcleo-corteza- corteza ( core-shell-shell ), una configuración con elementos aleados o una configuración en forma de“giant quantum dots”; preferiblemente una configuración núcleo corteza (core-shell) o núcleo-corteza-corteza ( core-shell-shell ). En el contexto de la presente invención el término“giant quantum dot’ se refiere a sistemas núcleo-corteza donde la corteza es de un espesor mayor a 10 capas atómicas de material. In a particular embodiment the at least one quantum dot (PC) of the present invention has a core-shell configuration, core-shell-shell, a configuration with alloyed elements, or a configuration in "giant quantum dots" form; preferably a core shell configuration (core-shell) or core-shell-shell (core-shell-shell). In the context of the present invention the term "giant quantum dot" refers to core-cortex systems where the crust is thicker than 10 atomic layers of material.
En una realización particular, la al menos una partícula luminiscente de la etapa (i) es un agregado de puntos cuánticos (PCs); particularmente un agregado de puntos cuánticos (PCs) de CdSeZnS; preferiblemente un agregado de puntos cuánticos (PCs) de CdSeZnS recubiertos; más preferiblemente un agregado de puntos cuánticos (PCs) de CdSeZnS recubierto de S1O2. En una realización aún más particular el agregado de puntos cuánticos comprende entre 2 y 10000 puntos cuánticos; preferiblemente entre 2 y 1000 puntos cuánticos. In a particular embodiment, the at least one luminescent particle of step (i) is a aggregate of quantum dots (PCs); particularly an aggregate of quantum dots (PCs) of CdSeZnS; preferably an aggregate of quantum dots (PCs) of coated CdSeZnS; more preferably an aggregate of quantum dots (PCs) of S1O2 coated CdSeZnS. In an even more particular embodiment, the addition of quantum dots comprises between 2 and 10,000 quantum dots; preferably between 2 and 1000 quantum dots.
En una realización particular, la al menos una partícula luminiscente de la etapa (i) está funcionalizada; preferiblemente comprende ligandos en su superficie; más preferiblemente comprende grupos funcionales en su superficie. In a particular embodiment, the at least one luminescent particle of step (i) is functionalized; preferably it comprises ligands on its surface; more preferably it comprises functional groups on its surface.
En una realización particular, la al menos una partícula luminiscente de la etapa (i) está encapsulada en una matriz; preferiblemente una matriz inorgánica; más preferiblemente en una matriz inorgánica formada por óxidos inorgánicos; aún más preferiblemente seleccionada de alúmina, óxido de silicio (S1O2), óxido de titanio y combinaciones de los mismos; aún más preferiblemente óxido de silicio (S1O2). In a particular embodiment, the at least one luminescent particle of step (i) is encapsulated in a matrix; preferably an inorganic matrix; more preferably in an inorganic matrix formed by inorganic oxides; even more preferably selected from alumina, silicon oxide (S1O2), titanium oxide and combinations thereof; even more preferably silicon oxide (S1O2).
En una realización particular, la al menos una partícula luminiscente de la etapa (i) es al menos un punto cuántico (PC) encapsulado en una matriz inorgánica; preferiblemente al menos un punto cuántico (PC) de CdSeZnS encapsulado en S1O2. In a particular embodiment, the at least one luminescent particle of step (i) is at least one quantum dot (PC) encapsulated in an inorganic matrix; preferably at least one quantum dot (PC) of CdSeZnS encapsulated in S1O2.
Los autores de la presente invención han observado que, sin estar vinculado a una teoría en particular, al utilizar puntos cuánticos encapsulados en una matriz se reduce el efecto de blanqueo de dichos puntos cuánticos, aumentando la estabilidad de emisión. Además, se ha observado que el encapsulado aumenta la biocompatibilidad de dichos puntos cuánticos y las hace dispersables en medios polares. Finalmente, el encapsulado o la matriz que recubre los puntos cuánticos o sus agregados favorecen las transferencias de energía radiativas frente a las no radiativas. The authors of the present invention have observed that, without being linked to a particular theory, using the quantum dots encapsulated in a matrix reduces the bleaching effect of said quantum dots, increasing the emission stability. Furthermore, it has been observed that the encapsulation increases the biocompatibility of said quantum dots and makes them dispersible in polar media. Finally, the encapsulation or matrix that covers the quantum dots or their aggregates favors radiative energy transfers over non-radiative ones.
La al menos una nanopartícula luminiscente (PL) del método de detección de estructuras marcadas de la presente invención presenta un espectro de emisión; donde dicho espectro de emisión de dicha al menos una PL se solapa con el espectro de absorción del marcador luminiscente del método de detección de la presente invención. En una realización particular dichos espectros se solapan en al menos un 10% de sus longitudes de onda; preferiblemente en al menos un 20%; más preferiblemente en al menos un 30%; aún más preferiblemente en al menos un 40%. En una realización particular el máximo del espectro de emisión de dicha al menos una PL se solapa con el máximo del espectro de absorción del marcador luminiscente del método de detección de la presente invención. The at least one luminescent nanoparticle (PL) of the marked structure detection method of the present invention has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of the detection method of the present invention. In a particular embodiment said spectra overlap in at least 10% of their wavelengths; preferably at least 20%; more preferably at least 30%; even more preferably at least 40%. In a particular embodiment, the maximum of the emission spectrum of said at least one PL overlaps the maximum of the absorption spectrum of the luminescent marker of the detection method of the present invention.
La pinza óptica del método de detección de estructuras marcadas de la presente invención comprende un láser focalizado; donde dicho un láser focalizado presenta una emisión en un rango de longitudes de onda que no se solapa con el espectro de absorción del marcador luminiscente de la etapa (i). Es decir, la pinza óptica del método de detección de estructuras marcadas de la presente invención no es capaz de provocar la emisión de luminiscencia del -marcador luminiscente de la presente invención. En una realización particular, la pinza óptica del método de detección de la presente invención no es capaz de excitar al marcador luminiscente de la etapa (i). The optical clamp of the method of detection of marked structures of the present invention comprises a focused laser; where said a focused laser has an emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of step (i). That is, the optical clamp of the method of detection of marked structures of the present invention is not capable of causing the luminescence emission of the luminescent marker of the present invention. In a particular embodiment, the optical clamp of the detection method of the present invention is not capable of exciting the luminescent marker of step (i).
En el contexto de la presente invención, la expresión“pinza óptica” es sinónima de la expresión“trampa óptica” tal y como conoce el experto en la materia y se refiere a un láser focalizado que genera una fuerza atractiva sobre objetos dieléctricos, lo cual permite atrapar, confinar o sostener una partícula y moverla o desplazarla físicamente [Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986). "Observation of a single-beam gradient forcé optical trap for dielectric particles". Opt. Lett. 11 (5): 288-290] En particular, dicha partícula puede ser al menos una nanopartícula luminiscente (PL) o al menos un punto cuántico. Dicha pinza óptica puede formarse, alternativamente, combinando dos haces láser que viajan en direcciones contrarias (contrapropagantes) en un foco común tal como se describe, por ejemplo, en el artículo [Smith S.B., Cui Y., Bustamante C. Optical-trap forcé transducer that operates by direct measurement of light momentum. Methods Enzymol. 2003;361 :134-162] In the context of the present invention, the expression "optical clamp" is synonymous with the expression "optical trap" as known by the person skilled in the art and refers to a focused laser that generates an attractive force on dielectric objects, which it allows to catch, confine or hold a particle and move or move it physically [Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986). "Observation of a single-beam gradient force optical trap for dielectric particles". Opt. Lett. 11 (5): 288-290] In particular, said particle can be at least one luminescent nanoparticle (PL) or at least one quantum dot. Said optical clamp may alternatively be formed by combining two laser beams traveling in opposite directions (counterpropagators) in a common focus as described, for example, in the article [Smith SB, Cui Y., Bustamante C. Optical-trap forced transducer that operates by direct measurement of light momentum. Methods Enzymol. 2003; 361: 134-162]
En una realización particular, el láser focalizado de la pinza óptica de la etapa (i) de la presente invención presenta una emisión monocromática en un rango de longitudes de onda que no se solapa con el espectro de absorción del marcador luminiscente de la etapa (i). En una realización más particular, el láser focalizado de la pinza óptica de la etapa (i) de la presente invención, no es capaz de generar luminiscencia del marcador mediante ningún proceso óptico. En una realización particular, el rango de longitudes de onda de la emisión del láser focalizado de la pinza óptica de la invención no se encuentra comprendido en el espectro de absorción del marcador luminiscente. In a particular embodiment, the focused laser of the optical clamp of step (i) of the present invention has a monochromatic emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of stage (i ). In a more particular embodiment, the focused laser of the optical clamp of step (i) of the present invention is not capable of generating luminescence of the marker by any optical process. In a particular embodiment, the range of lengths of The emission wave of the focused laser of the optical clamp of the invention is not included in the absorption spectrum of the luminescent marker.
En una realización particular, la pinza óptica de la etapa (i) comprende un haz láser focalizado monocromático. In a particular embodiment, the optical clamp of step (i) comprises a monochromatic focused laser beam.
En una realización particular, la pinza óptica de la etapa (i) comprende un haz láser monocromático, monomodo, continuo y focalizado; preferiblemente un haz láser de diodo monocromático, monomodo, continuo y focalizado. In a particular embodiment, the optical clamp of step (i) comprises a monochromatic, single mode, continuous and focused laser beam; preferably a monochromatic diode laser beam, single mode, continuous and focused.
En una realización particular, la pinza óptica de la etapa (i) comprende un haz láser de femtosegundo. In a particular embodiment, the optical clamp of step (i) comprises a femtosecond laser beam.
En una realización preferida, la pinza óptica de la etapa (i) comprende un láser de régimen continuo. In a preferred embodiment, the optical clamp of step (i) comprises a continuous regime laser.
En una realización preferida, la pinza óptica de la etapa (i) comprende un láser altamente focalizado; preferiblemente altamente focalizado mediante un objetivo de alta apertura numérica. In a preferred embodiment, the optical clamp of step (i) comprises a highly focused laser; preferably highly focused by means of a high numerical aperture objective.
En una realización particular, la pinza óptica de la etapa (i) tiene una potencia entre 300 y 100 mW; preferiblemente entre 200 mW y 120 mW; más preferiblemente de 150 mW. In a particular embodiment, the optical clamp of step (i) has a power between 300 and 100 mW; preferably between 200 mW and 120 mW; more preferably 150 mW.
En una realización particular, la pinza óptica de la etapa (i) presenta una longitud de onda que se encuentra en un rango entre 650 nm y 950 nm; preferiblemente entre 700 y 900 nm; más preferiblemente entre 750 y 850 nm; más preferiblemente de 845 nm. En una realización más particular, la pinza óptica de la etapa (i) presenta una emisión en un rango de longitudes de onda comprendidas entre 650-950 nm que excita a dicha al menos una PL. In a particular embodiment, the optical clip of step (i) has a wavelength that is in a range between 650 nm and 950 nm; preferably between 700 and 900 nm; more preferably between 750 and 850 nm; more preferably 845 nm. In a more particular embodiment, the optical clamp of step (i) has an emission in a range of wavelengths between 650-950 nm that excites said at least one PL.
En una realización particular, la pinza óptica de la etapa (i) comprende un flujo de fotones de entre 1020 cnr2 s_1 y 1026 cnr2 s-1. In a particular embodiment, the optical clip of step (i) comprises a photon flow of between 10 20 cnr 2 s _1 and 10 26 cnr 2 s -1 .
Los autores de la presente invención han observado que, sin estar vinculado a una teoría en particular, el hecho de que la pinza óptica del método de detección de estructuras marcadas de la presente invención no sea capaz de excitar al marcador luminiscente de la presente invención permite aumentar la selectividad del método y evitar la degradación de dichos marcadores. The authors of the present invention have observed that, without being linked to a In particular, the fact that the optical clamp of the method of detection of marked structures of the present invention is not capable of exciting the luminescent marker of the present invention makes it possible to increase the selectivity of the method and prevent the degradation of said markers.
Etapa (ii) Stage (ii)
El método de detección de estructuras marcadas de la presente invención comprende la etapa (ii) de confinar y simultáneamente excitar dicha al menos una nanopartícula luminiscente (PL) de la etapa (i) mediante la pinza óptica de la etapa (i) dando lugar a al menos una nanopartícula luminiscente (PL) excitada y confinada. The method of detection of marked structures of the present invention comprises step (ii) of confining and simultaneously exciting said at least one luminescent nanoparticle (PL) of step (i) by means of the optical clamp of step (i) giving rise to at least one excited and confined luminescent nanoparticle (PL).
En el contexto de la presente invención, la expresión “confinada” en relación a la nanopartícula luminiscente de la presente invención de las etapas (ii), (iii) y (iv) se refiere al estado en el que la nanopartícula luminiscente de la presente invención se encuentra “atrapada” en el láser focalizado de la pinza óptica tal y como sería conocido por un experto en la materia. Particularmente, el confinamiento de la nanopartícula luminiscente permite desplazar dicha partícula al desplazar dicho haz focalizado. In the context of the present invention, the term "confined" in relation to the luminescent nanoparticle of the present invention of steps (ii), (iii) and (iv) refers to the state in which the luminescent nanoparticle of the present The invention is "trapped" in the focused laser of the optical clip as it would be known by a person skilled in the art. Particularly, the confinement of the luminescent nanoparticle makes it possible to displace said particle by displacing said focused beam.
En el contexto de la presente invención, la expresión “excitada” en relación a una partícula luminiscente de la presente invención de las etapas (ii), (iii) y (iv), se refiere un estado excitado debido a su interacción con la radiación electromagnética del láser focalizado de la pinza óptica tal y como sería conocido por un experto en la materia. In the context of the present invention, the term "excited" in relation to a luminescent particle of the present invention of steps (ii), (iii) and (iv), refers to an excited state due to its interaction with radiation Electromagnetic focusing laser of the optical clamp as would be known by a person skilled in the art.
En una realización particular, la excitación de la al menos una PL de la etapa (ii) se produce mediante absorción del láser focalizado comprendido en la pinza óptica de la etapa (i) y la al menos una PL de la etapa (i); preferiblemente mediante un mecanismo de absorción de dos fotones entre el láser focalizado comprendido en la pinza óptica de la etapa (i) y la al menos una PL de la etapa (i); más preferiblemente mediante un mecanismo de absorción de dos fotones entre el láser monocromático, monomodo, continuo y focalizado comprendido en la pinza óptica de la etapa (i) y la al menos una PL de la etapa (i). In a particular embodiment, the excitation of the at least one PL of stage (ii) is produced by absorption of the focused laser comprised in the optical clamp of stage (i) and the at least one PL of stage (i); preferably by a two photon absorption mechanism between the focused laser comprised in the optical clamp of stage (i) and the at least one PL of stage (i); more preferably by means of a two-photon absorption mechanism between the monochromatic, single-mode, continuous and focused laser comprised in the optical clamp of stage (i) and the at least one PL of stage (i).
En una realización particular, la excitación de la al menos una PL de la etapa (ii) se produce por un mecanismo de excitación a un fotón o multifotónico; preferiblemente multifotónico; más preferiblemente por un mecanismo de absorción de dos fotones. In a particular embodiment, the excitation of the at least one PL of step (ii) is produced by a photon or multifotonic excitation mechanism; preferably multifotonic; more preferably by a two photon absorption mechanism.
En el contexto de la presente invención, la expresión“mecanismo de absorción de dos fotones” se refiere a un mecanismo en el que una partícula luminiscente, como por ejemplo, un punto cuántico o un agregado de puntos cuánticos, es capaz de absorber energía en forma de fotones o de radiación electromagnética en un determinado rango de longitudes de onda de una determinada energía y de volver emitir radiación electromagnética en otro rango de longitudes de onda diferente de energía superior a la de los fotones individuales tal y como es conocido para un experto en la materia. Es decir, una partícula luminiscente es capaz de absorber dos fotones de baja energía resultando en la emisión de un fotón de mayor energía que cualquiera de los fotones absorbidos inicialmente. Para determinados tipos de partículas luminiscentes es típicamente requerido un alto flujo de fotones como el que se produce en una radiación láser para que se produzcan este tipo de mecanismos. In the context of the present invention, the expression "two photon absorption mechanism" refers to a mechanism in which a luminescent particle, such as a quantum dot or an aggregate of quantum dots, is capable of absorbing energy in form of photons or electromagnetic radiation in a given range of wavelengths of a certain energy and of emitting electromagnetic radiation again in another range of wavelengths different from energy greater than that of individual photons as is known to an expert in the matter. That is, a luminescent particle is capable of absorbing two low energy photons resulting in the emission of a higher energy photon than any of the photons initially absorbed. For certain types of luminescent particles, a high flow of photons is typically required, such as that produced in laser radiation for this type of mechanism to occur.
Etapa (iii) Stage (iii)
El método de detección de estructuras marcadas de la presente invención comprende opcionalmente la etapa (iii) de desplazar la al menos una PL excitada y confinada de la etapa (ii) mediante la pinza óptica de la etapa (i). The method of detection of marked structures of the present invention optionally comprises step (iii) of displacing the at least one excited and confined PL of stage (ii) by means of the optical clamp of stage (i).
En una realización particular, la presente invención se encuentra dirigida a un método de detección de estructuras marcadas que comprende las etapas de: In a particular embodiment, the present invention is directed to a method of detection of marked structures comprising the steps of:
i) proporcionar:  i) provide:
- una estructura marcada con un marcador luminiscente, donde dicho marcador luminiscente presenta un espectro de absorción;  - a structure marked with a luminescent marker, wherein said luminescent marker has an absorption spectrum;
- al menos una nanopartícula luminiscente (PL), donde dicha al menos una PL presenta un espectro de emisión; donde dicho espectro de emisión de dicha al menos una PL se solapa con el espectro de absorción del marcador luminiscente de la etapa (i);  - at least one luminescent nanoparticle (PL), where said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i);
ii) una pinza óptica, donde dicha pinza óptica comprende un láser focalizado; donde dicho un láser focalizado presenta una emisión en un rango de longitudes de onda que no se solapa con el espectro de absorción del marcador luminiscente de la etapa (i); confinar y simultáneamente excitar dicha al menos una PL de la etapa (i) mediante la pinza óptica de la etapa (i) dando lugar a al menos una PL excitada y confinada; ii) an optical clamp, wherein said optical clamp comprises a focused laser; where said a focused laser has an emission in a range of wavelengths that does not overlap with the spectrum of absorption of the luminescent marker of step (i); confine and simultaneously excite said at least one PL of stage (i) by means of the optical clamp of stage (i) giving rise to at least one excited and confined PL;
iii) desplazar la al menos una PL excitada y confinada de la etapa (ii) mediante la pinza óptica de la etapa (i); y  iii) displace the at least one excited and confined PL of stage (ii) by means of the optical clamp of stage (i); Y
iv) excitar el marcador luminiscente de la etapa (i) mediante la radiación emitida por dicha al menos una PL excitada y confinada de la etapa (ii) o (iii), dando lugar a marcador luminiscente excitado; donde dicho marcador luminiscente excitado emite una señal luminiscente.  iv) exciting the luminescent marker of stage (i) by the radiation emitted by said at least one excited and confined PL of stage (ii) or (iii), giving rise to excited luminescent marker; where said excited luminescent marker emits a luminescent signal.
En el contexto de la presente invención, la expresión“desplazar” en relación a la al menos una partícula luminiscente excitada y confinada de la etapa (ii) mediante la pinza óptica de la etapa (i) del método de detección de la presente invención, se refiere a mover dicha partícula hasta una posición determinada mediante la pinza óptica de la etapa (i). Dicho movimiento no se realiza solamente una vez sino que podría ser repetido. Es decir, sería posible desplazar a la al menos una partícula luminiscente (PL) excitada y confinada de la etapa (ii) mediante la pinza óptica de la etapa (i) a distintos puntos respecto a la estructura marcada. Dicho desplazamiento podría consistir en un desplazamiento individual o en una serie de desplazamientos sucesivos. Como ejemplo no limitativo, la figura 3 de la presente invención muestra un agregado de puntos cuánticos que se encuentra“confinado” y excitado mediante una pinza óptica, y cómo es posible desplazar dicho agregado en el interior de un medio líquido dentro de una cámara de microfluídica. In the context of the present invention, the expression "displace" in relation to the at least one excited and confined luminescent particle of step (ii) by the optical clamp of step (i) of the detection method of the present invention, it refers to moving said particle to a determined position by means of the optical clamp of step (i). This movement is not performed only once but could be repeated. That is, it would be possible to displace the at least one excited and confined luminescent particle (PL) from stage (ii) by means of the stage's optical clip (i) at different points relative to the marked structure. Such displacement could consist of an individual displacement or a series of successive displacements. As a non-limiting example, Figure 3 of the present invention shows an aggregate of quantum dots that is "confined" and excited by an optical clamp, and how it is possible to move said aggregate into a liquid medium inside a chamber of microfluidic
En una realización particular, el desplazamiento de la etapa (iii) se produce hasta que la PL excitada y confinada se encuentra a una distancia respecto a la estructura marcada de la etapa (i) tal que la radiación emitida por dicha al menos una PL excitada y confinada excita al marcador luminiscente de dicha estructura marcada; preferiblemente inferior a 10 mieras; más preferiblemente una distancia entre 10 mieras y 1 nm; más preferiblemente una distancia entre 1 mieras y 1 nm. Como ejemplo no limitativo, la figura 3 de la presente invención muestra un agregado de puntos cuánticos que se encuentra “confinado” y excitado mediante una pinza óptica. En dicho ejemplo no limitativo, se puede observar que, a una distancia determinada de dicho agregado a la superficie marcada (una célula) se obtienen señales luminiscentes de dicha estructura marcada (Figuras 3c y 3d). In a particular embodiment, the displacement of stage (iii) occurs until the excited and confined PL is at a distance from the marked structure of stage (i) such that the radiation emitted by said at least one excited PL and confined excites the luminescent marker of said marked structure; preferably less than 10 microns; more preferably a distance between 10 microns and 1 nm; more preferably a distance between 1 microns and 1 nm. As a non-limiting example, Figure 3 of the present invention shows an aggregate of quantum dots that is "confined" and excited by an optical clamp. In said non-limiting example, it can be seen that, at a certain distance from said aggregate to the marked surface (a cell) luminescent signals of said marked structure are obtained (Figures 3c and 3d).
El método de detección de estructuras marcadas de la presente invención comprende la etapa (iv) de excitar el marcador luminiscente de la etapa (i) mediante la radiación emitida por dicha al menos una PL excitada y confinada de la etapa (ii) o (iii), dando lugar a marcador luminiscente excitado; donde dicho marcador luminiscente excitado emite una señal luminiscente. The method of detection of marked structures of the present invention comprises step (iv) of exciting the luminescent marker of step (i) by the radiation emitted by said at least one excited and confined PL of step (ii) or (iii ), resulting in excited luminescent marker; where said excited luminescent marker emits a luminescent signal.
En una realización particular, la al menos una PL excitada y confinada de cualquiera de las etapas (ii), (iii) y (iv) emite radiación electromagnética; preferiblemente en un rango de longitudes de onda que se solapa con el espectro de absorción del marcador luminiscente de la etapa (i); preferiblemente en un rango de longitudes de onda de entre 300 y 800 nm. In a particular embodiment, the at least one excited and confined PL of any of steps (ii), (iii) and (iv) emits electromagnetic radiation; preferably in a wavelength range that overlaps with the absorption spectrum of the luminescent marker of step (i); preferably in a wavelength range between 300 and 800 nm.
En una realización particular, la al menos una PL excitada y confinada de cualquiera de las etapas (ii), (iii) y (iv) emite fotones con una energía capaz de excitar el marcador luminiscente de la etapa (i). In a particular embodiment, the at least one excited and confined PL of any of stages (ii), (iii) and (iv) emits photons with an energy capable of exciting the luminescent marker of stage (i).
En una realización particular, la excitación del marcador luminiscente de la etapa (iv) se produce mediante una transferencia radiativa entre la al menos una PL excitada y confinada de cualquiera de las etapas (ii) o (iii) y (iv) y el marcador luminiscente de la etapa (i). In a particular embodiment, the excitation of the luminescent marker of step (iv) is produced by a radiative transfer between the at least one excited and confined PL of any of stages (ii) or (iii) and (iv) and the marker luminescent stage (i).
En una realización más particular, el marcador luminiscente de la etapa (i) actúa como aceptor de energía en la transferencia radiativa de la etapa (iv); en particular como aceptor de fotones. In a more particular embodiment, the luminescent marker of stage (i) acts as an energy acceptor in the radiative transfer of stage (iv); in particular as a photon acceptor.
En una realización más particular, la al menos una PL excitada y confinada de cualquiera de las etapas (ii) o (iii) y (iv) actúa como donante de energía en la transferencia radiativa de la etapa (iv); en particular como donante de fotones. In a more particular embodiment, the at least one excited and confined PL of any of stages (ii) or (iii) and (iv) acts as an energy donor in the radiative transfer of stage (iv); in particular as a donor of photons.
En una realización más particular, el marcador luminiscente de la etapa (i) y la al menos una PL excitada y confinada de cualquiera de las etapas (ii) o (iii) y (iv) actúan como un par donante-aceptor en el transferencia radiativa de la etapa (iv). In a more particular embodiment, the luminescent marker of step (i) and the at least one excited and confined PL of any of stages (ii) or (iii) and (iv) act as a donor-acceptor pair in the radiative transfer of stage (iv).
En el contexto de la presente invención, la expresión“transferencia radiativa” se refiere a procesos de interacción entre la al menos una PL excitada y confinada de cualquiera de las etapas (ii), (iii) o (iv) y el marcador luminiscente de la etapa (i) en donde parte o toda la radiación electromagnética emitida por la al menos una PL excitada y confinada es absorbida por el marcador luminiscente de la etapa (i) de forma que dicho marcador luminiscente pasa a un estado excitado. Es decir se produce un proceso radiativo entre la al menos una PL excitada y confinada de cualquiera de las etapas (ii), (iii) o (iv) y el marcador luminiscente de la etapa (i) a través de la emisión y absorción de fotones de una determinada energía. Dicho proceso sólo se produce cuando el espectro de emisión de dicha al menos una PL se solapa con el espectro de absorción del marcador luminiscente de la etapa (i). In the context of the present invention, the term "radiative transfer" refers to processes of interaction between the at least one excited and confined PL of any of steps (ii), (iii) or (iv) and the luminescent marker of step (i) where part or all of the electromagnetic radiation emitted by the at least one excited and confined PL is absorbed by the luminescent marker of stage (i) so that said luminescent marker passes into an excited state. In other words, a radiative process occurs between the at least one excited and confined PL of any of stages (ii), (iii) or (iv) and the luminescent marker of stage (i) through the emission and absorption of photons of a certain energy. Said process only occurs when the emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i).
Sin estar vinculado a una teoría en particular, los autores de la presente invención han encontrado que al excitar en la etapa (iv) del método de detección de la presente invención el marcador luminiscente de la etapa (i) mediante la radiación emitida por dicha al menos una PL excitada y confinada de la etapa (ii) o (iii) se evitarían problemas asociados al uso de una alta irradiancia como por ejemplo el blanqueamiento acelerado de los marcadores luminiscentes, tales como fluoróforos, y su degradación. Además también se ha observado que mediante este método se reduce la degradación de la estructura marcada para tiempos relativamente largos de medida, particularmente cuando dicha estructura forma parte de un espécimen biológico. También de esta forma, se aumenta la selectividad y la resolución de dicho método. Without being linked to a particular theory, the authors of the present invention have found that by exciting in step (iv) of the detection method of the present invention the luminescent marker of stage (i) by the radiation emitted by said at less an excited and confined PL of step (ii) or (iii) problems associated with the use of high irradiance such as accelerated whitening of luminescent markers, such as fluorophores, and their degradation would be avoided. Furthermore, it has also been observed that by this method the degradation of the marked structure is reduced for relatively long measurement times, particularly when said structure is part of a biological specimen. Also in this way, the selectivity and resolution of said method is increased.
Sin estar vinculado a una teoría en particular, los autores de la presente invención han encontrado que cuando la al menos una PL excitada y confinada de cualquiera de las etapas (ii), (iii) y (iv) y el marcador luminiscente se encuentran a distancias superiores a 10 nm se produce una transferencia radiativa entre la al menos una PL excitada y confinada de cualquiera de las etapas (ii), (iii) y (iv) y el marcador luminiscente permitiendo excitar la marcador luminiscente. Así, la detección de la presente invención no está limitada a distancias pequeñas que poseen otras técnicas como la técnica de transmisión de energía de resonancia de fluorescencia ( Fluorescence Resonance energy transfer o FRET). El experto en la materia sabría seleccionar las distancias óptimas entre al PL excitada y confinada y el marcador luminiscente o la estructura marcada para estudiar dicha estructura. Dicha distancia no es limitativa del método ya que la PL confinada se puede desplazar. Without being linked to a particular theory, the authors of the present invention have found that when the at least one excited and confined PL of any of stages (ii), (iii) and (iv) and the luminescent marker are at distances greater than 10 nm a radiative transfer occurs between the at least one excited and confined PL of any of stages (ii), (iii) and (iv) and the luminescent marker allowing the luminescent marker to be excited. Thus, the detection of the present invention is not limited to small distances possessing other techniques such as the fluorescence resonance energy transfer technique (FRET). The person skilled in the art would know how to select the distances optimal between the excited and confined PL and the luminescent marker or the structure marked to study said structure. This distance is not limitative of the method since the confined PL can be displaced.
En una realización particular, las etapas (iii) y (iv) del método de detección de la presente invención se repiten al menos una vez; preferiblemente entre 2 y 100 veces; más preferiblemente entre 2 y 50 veces. In a particular embodiment, steps (iii) and (iv) of the detection method of the present invention are repeated at least once; preferably between 2 and 100 times; more preferably between 2 and 50 times.
Sin estar vinculado a una teoría en particular, los autores de la presente invención han encontrado que al repetir las etapas (iii) y (iv) del método de detección de estructuras marcadas de la presente invención se pueden estudiar distintas zonas o distintas estructuras marcadas en un mismo experimento o medida. Además, es posible estudiar la muestra durante más tiempo sin observar que dicha muestra se degrade. Without being linked to a particular theory, the authors of the present invention have found that by repeating steps (iii) and (iv) of the method of detection of marked structures of the present invention, different zones or different structures marked in The same experiment or measure. In addition, it is possible to study the sample for a longer time without observing that the sample is degraded.
En una realización particular, el marcador luminiscente excitado de la etapa (iv) emite luminiscencia; preferiblemente radiación en un rango de longitudes de onda entre 400 y 650 nm. In a particular embodiment, the excited luminescent marker of step (iv) emits luminescence; preferably radiation in a wavelength range between 400 and 650 nm.
En una realización particular, el marcador luminiscente excitado de la etapa (iv) emite una señal luminiscente; preferiblemente una señal fluorescente; más preferiblemente una señal fluorescente formada por una emisión de radiación electromagnética en un rango de longitudes de onda de entre 300 y 800 nm; preferiblemente entre 400 y 700 nm. In a particular embodiment, the excited luminescent marker of step (iv) emits a luminescent signal; preferably a fluorescent signal; more preferably a fluorescent signal formed by an emission of electromagnetic radiation in a wavelength range between 300 and 800 nm; preferably between 400 and 700 nm.
En una realización particular, la señal luminiscente de la etapa (iv) se detecta mediante medios de detección lumínica; preferiblemente mediante un espectrómetro o una cámara; más preferiblemente mediante una cámara. In a particular embodiment, the luminescent signal of step (iv) is detected by means of light detection; preferably by means of a spectrometer or a camera; more preferably by means of a camera.
En el contexto de la presente invención los términos “espectrómetro” y “espectrofotómetro” son equivalentes. In the context of the present invention the terms "spectrometer" and "spectrophotometer" are equivalent.
En una realización particular, el método de detección de la presente invención se aplica en muestras biológicas. En una realización más particular, el método de detección de la presente invención se aplica para mapear membranas celulares, biosensar proteínas de membrana o monitorizar señales eléctricas. En el contexto de la presente invención, el término “biosensar” se refiere a utilizar un método en un ser vivo para obtener información de un proceso o de una estructura biológica. Un experto en la materia sería capaz de adaptar el método de la presente invención para poder biosensar. In a particular embodiment, the detection method of the present invention is applied in biological samples. In a more particular embodiment, the detection method of the present invention is applied to map cell membranes, biosensar membrane proteins or monitor electrical signals. In the context of the present invention, the term "biosensar" refers to using a method in a living being to obtain information from a biological process or structure. One skilled in the art would be able to adapt the method of the present invention to be able to biosensar.
Sin estar vinculado a una teoría en particular, los autores de la presente invención han encontrado que al excitar ópticamente la estructura marcada a detectar mediante el método de detección de estructuras marcadas de la presente invención se pueden detectar dichas estructuras sin contacto y sometidas solo a la baja irradiancia de los PCs, por tanto de manera no invasiva, y de forma remota. Without being linked to a particular theory, the authors of the present invention have found that by optically exciting the marked structure to be detected by the method of detection of marked structures of the present invention, such contactless structures can be detected and subjected only to the Low irradiance of PCs, therefore non-invasively, and remotely.
Usos Applications
Un segundo aspecto de la invención estaría dirigido al uso de un marcador luminiscente en el método de detección de estructuras marcadas de la presente invención en cualquiera de sus realizaciones particulares. El marcador luminiscente puede comprender cualquiera de las características descritas en cualquiera de las realizaciones particulares de la presente invención. A second aspect of the invention would be directed to the use of a luminescent marker in the method of detecting labeled structures of the present invention in any of its particular embodiments. The luminescent marker may comprise any of the features described in any of the particular embodiments of the present invention.
Un tercer aspecto de la invención estaría dirigido al uso de una partícula luminiscente (PL) en el método de detección de estructuras marcadas de la presente invención en cualquiera de sus realizaciones particulares. En una realización particular, dicha partícula luminiscente se puede utilizar de forma individual o en conjunto con otras partículas luminiscentes del mismo tipo. La partícula luminiscente puede comprender cualquiera de las características descritas en cualquiera de las realizaciones particulares de la presente invención. A third aspect of the invention would be directed to the use of a luminescent particle (PL) in the method of detecting labeled structures of the present invention in any of its particular embodiments. In a particular embodiment, said luminescent particle can be used individually or in conjunction with other luminescent particles of the same type. The luminescent particle may comprise any of the features described in any of the particular embodiments of the present invention.
Un cuarto aspecto de la invención estaría dirigido al uso de una pinza óptica en el método de detección de estructuras marcadas de la presente invención en cualquiera de sus realizaciones particulares. La pinza óptica puede comprender cualquiera de las características descritas en cualquiera de las realizaciones particulares de la presente invención. Medios para llevar a cabo el método A fourth aspect of the invention would be directed to the use of an optical clamp in the method of detection of marked structures of the present invention in any of its particular embodiments. The optical clip may comprise any of the features described in any of the particular embodiments of the present invention. Means to carry out the method
Un aspecto adicional de la presente invención se encuentra dirigido a un aparato diseñado para llevar a cabo el método de detección de estructuras marcadas de la presente invención que comprende: A further aspect of the present invention is directed to an apparatus designed to carry out the method of detection of marked structures of the present invention comprising:
i) medios para atrapar y rotar la una estructura marcada de la etapa (i); ii) la pinza óptica de la etapa (i) del método de la presente invención; y iii) medios de detección lumínica de la señal luminiscente de la etapa (iv) del método de detección de estructuras marcadas de la presente invención; preferiblemente un detector de la señal de la etapa (iv) del método de detección de estructuras marcadas.  i) means for trapping and rotating the marked structure of step (i); ii) the optical clip of step (i) of the method of the present invention; and iii) light detection means of the luminescent signal of step (iv) of the method of detection of marked structures of the present invention; preferably a signal detector of step (iv) of the method of detection of marked structures.
En una realización particular, el aparato diseñado para llevar a cabo el método de detección de estructuras marcadas de la presente invención comprende además In a particular embodiment, the apparatus designed to carry out the method of detection of marked structures of the present invention further comprises
(iv) un contenedor, preferiblemente una cámara de microfluídica, y medios para visualizar dicho contenedor, preferiblemente una cámara óptica; más preferiblemente una cámara acoplada a un microscopio óptico.  (iv) a container, preferably a microfluidic chamber, and means for viewing said container, preferably an optical camera; more preferably a camera coupled to an optical microscope.
En una realización particular, los medios de detección lumínica del aparato de la presente invención comprenden un espectrómetro. In a particular embodiment, the light sensing means of the apparatus of the present invention comprise a spectrometer.
En una realización particular, los medios de detección lumínica del aparato de la presente invención no usan filtros espectrales; preferiblemente no usan filtros espectrales para separar las señales de los distintos emisores. In a particular embodiment, the light detection means of the apparatus of the present invention do not use spectral filters; preferably they do not use spectral filters to separate the signals from the different emitters.
Los autores de la presente invención han observado que la utilización de un espectrómetro permite reducir costes en el método de detección de estructuras marcadas además de permitir observar, de forma inequívoca, la emisión de los PCs y de los fluoróforos. Además, el aparato diseñado para el método de detección de la presente invención comprende un diseño más sencillo ya que no necesita usar filtros espectrales para separar las señales de emisión. The authors of the present invention have observed that the use of a spectrometer allows to reduce costs in the method of detection of marked structures in addition to allowing unequivocally observe the emission of PCs and fluorophores. In addition, the apparatus designed for the detection method of the present invention comprises a simpler design since it does not need to use spectral filters to separate the emission signals.
El uso de un marcador luminiscente, el uso de una partícula luminiscente (PL), el uso de una pinza óptica en el método de la presente invención y el aparato diseñado para llevar a cabo el método de la presente invención comprenden todas la características descritas para el marcador luminiscente, la partícula luminiscente (PL), la pinza óptica y el aparato descritas para el método de detección de estructuras marcadas de la presente invención en cualquiera de sus realizaciones particulares. The use of a luminescent marker, the use of a luminescent particle (PL), the use of an optical clamp in the method of the present invention and the apparatus designed to Carrying out the method of the present invention comprises all the features described for the luminescent marker, the luminescent particle (PL), the optical clamp and the apparatus described for the method of detection of marked structures of the present invention in any of its embodiments. private individuals
Ejemplos Examples
La invención se describe a continuación mediante los siguientes ejemplos que deben ser considerados como meramente ilustrativos y en ningún caso limitativos del ámbito de la presente invención. The invention is described below by the following examples that should be considered as merely illustrative and in no case limiting the scope of the present invention.
Ejemplo 1 : Detección de estructuras marcadas en células. Example 1: Detection of structures marked in cells.
En el presente ejemplo se estudió la detección de estructuras marcadas en células. In the present example, the detection of labeled structures in cells was studied.
Como estructuras marcadas se emplearon células Jurkat-T impermeabilizadas cuyas proteínas fueron inespecíficamente marcadas con un colorante fluorescente que en este caso es Alexa Fluor® 546. Alexa Fluor® 546 presenta un espectro de absorción con un máximo en torno a los 546 nm, y un espectro de emisión con un máximo centrado en torno a los 573 nm. As marked structures, waterproofed Jurkat-T cells were used whose proteins were unspecifically labeled with a fluorescent dye which in this case is Alexa Fluor® 546. Alexa Fluor® 546 has an absorption spectrum with a maximum around 546 nm, and a emission spectrum with a maximum centered around 573 nm.
Por otro lado se sintetizaron nanopartículas luminiscentes (PL), concretamente puntos cuánticos (PCs) formados por nanocristales de una aleación de CdSeZnS encapsulados en S1O2 (PCs ad hoc) con un máximo de emisión en 540 nm siguiendo el método descrito en Acebrón M. et al. [M. Acebrón, J. F. Galisteo-López, D. Granados, J. López-Ogalla, J. M. Gallego, R. Otero, C. López, and B. H. Juárez, “Protective Ligand Shells for Luminescent Si02-Coated Alloyed Semiconductor Nanocrystals,” ACS Appl. Mater. Interfaces, p. 150319103751001 , 2015.]. El encapsulado de S1O2 de las puntos cuánticos favorece los procesos radiativos frente a los procesos no radiativos (i.e. FRET) al crear una“barrera” de entre 10 and 100 nm. On the other hand, luminescent nanoparticles (PL) were synthesized, specifically quantum dots (PCs) formed by nanocrystals of a CdSeZnS alloy encapsulated in S1O2 (ad hoc PCs) with a maximum emission at 540 nm following the method described in Acebron M. et to the. [M. Acebrón, JF Galisteo-López, D. Granados, J. López-Ogalla, JM Gallego, R. Otero, C. López, and BH Juárez, “Protective Ligand Shells for Luminescent Si0 2 -Coated Alloyed Semiconductor Nanocrystals,” ACS Appl. Mater. Interfaces, p. 150319103751001, 2015.]. S1O2 encapsulation of quantum dots favors radiative processes over non-radiative processes (ie FRET) by creating a “barrier” between 10 and 100 nm.
Cabe destacar que se seleccionó dicho par colorante/punto cuántico ya que el máximo de emisión de dicho punto cuántico en 540 nm se solapa con el espectro de absorción del colorante fluorescente utilizado como marcador, el Alexa Fluor® con un máximo de absorción en torno a los 546 nm. No obstante otros pares colorante/punto cuántico (o PL en general) que cumpliesen con la condición de solapamiento de espectros de absorción/emisión podrían utilizarse igualmente. It should be noted that said dye / quantum point pair was selected since the maximum emission of said quantum point at 540 nm overlaps with the spectrum of absorption of the fluorescent dye used as a marker, the Alexa Fluor® with a maximum absorption around 546 nm. However, other dye / quantum dot pairs (or PL in general) that met the overlapping condition of absorption / emission spectra could also be used.
Las células con estructuras marcadas con dicho colorante fluorescente fueron depositadas en el fondo de una cámara de micro-fluídica manufacturada a partir de dos cubreobjetos de vidrio. A continuación, los PCs se dispersaron en un tampón fosfato salino libre de calcio (PBS) a pH 7,4 y fueron inyectados en la cámara de micro-fluídica. Los PCs en la cámara de micro-fluídica estaban tanto dispersos como puntos cuánticos individuales como formando agregados. The cells with structures marked with said fluorescent dye were deposited in the bottom of a micro-fluidic chamber manufactured from two glass coverslips. Next, the PCs were dispersed in a calcium-free saline phosphate buffer (PBS) at pH 7.4 and injected into the micro-fluidic chamber. The PCs in the micro-fluidic chamber were both scattered as individual quantum dots and forming aggregates.
Se utilizaron unas pinzas ópticas (trampa óptica) formadas por un láser de diodo de 845 nm monomodo continuo y focalizado manejado a una potencia tal que a la trampa óptica llegan 150 mW para atrapar, excitar y desplazar tanto PCs individuales como agregados. Optical tweezers (optical trap) formed by a continuous and focused single mode 845 nm diode laser operated at a power such that 150 mW reach the optical trap to trap, excite and displace both individual and aggregate PCs were used.
Uno de dichos agregados de PCs fue atrapado, excitado y desplazado con las pinzas ópticas descritas por los alrededores de la célula marcada de forma que excitó a distintos marcadores luminiscentes que emitieron a su vez una señal luminiscente. Cada una de las transferencias radiativas de dicho proceso fue como sigue: la excitación de dicho agregado de puntos cuánticos se produjo mediante un proceso de absorción de dos fotones en el infrarrojo cercano, 2YNIR provenientes del láser monomodo continuo y focalizado de la pinza óptica descrita anteriormente (emisión a 845 nm). Este proceso de excitación de dos fotones consiste en que el punto cuántico o agregado de puntos cuánticos es capaz de absorber dos fotones de baja energía resultando en la emisión de un fotón de mayor energía que cualquiera de los fotones absorbidos inicialmente. Tras la absorción de dos fotones de 845 nm, el agregado de PCs emitió fotones más energéticos en el espectro visible, yvis, a unos 540 nm. Dichos fotones a su vez excitaron al marcador Alexa Fluor® 546 que, como ya hemos comentado, tiene un máximo en su espectro de absorción alrededor de los 546 nm. Dicho marcador excitado a su vez emitió espontáneamente un fotón en el espectro visible, de alrededor de 573 nm, yvis-, que se detectó como señal lumínica mediante un espectrómetro (Ocean Optics USB2000+). Al desplazar dichos puntos cuánticos atrapados y excitados a un nuevo punto, y repetirse la transferencia radiativa descrita, se recogió señal luminiscente proveniente de otras zonas marcadas de la membrana celular. One such aggregate of PCs was trapped, excited and displaced with the optical tweezers described by the surroundings of the marked cell so that it excited different luminescent markers that in turn emitted a luminescent signal. Each of the radiative transfers of said process was as follows: the excitation of said aggregate of quantum dots was produced by a process of absorption of two photons in the near infrared, 2Y NIR from the continuous and focused single-mode laser of the described optical clamp previously (emission at 845 nm). This two photon excitation process is that the quantum or aggregate of quantum dots is capable of absorbing two low energy photons resulting in the emission of a photon of greater energy than any of the photons initially absorbed. After the absorption of two 845 nm photons, the aggregate of PCs emitted more energetic photons in the visible spectrum, yvis , at about 540 nm. These photons in turn excited the Alexa Fluor® 546 marker which, as we have already mentioned, has a maximum in its absorption spectrum around 546 nm. Said excited marker in turn spontaneously emitted a photon in the visible spectrum, around 573 nm, and yvis-, which was detected as a light signal by means of a spectrometer (Ocean Optics USB2000 +). When moving these points quantum trapped and excited to a new point, and the described radiative transfer repeated, luminescent signal was collected from other marked areas of the cell membrane.
La Figura 1 presenta un (a) esquema de un sistema de excitación en cadena o de transferencia radiativa en el que un punto cuántico es excitado mediante un proceso de absorción de dos fotones en el infrarrojo cercano, 2YNIR, tras el que emite un fotón en el espectro visible, yvis, que a su vez excita a un marcador fluorescente (una molécula de colorante) que a su vez emite un fotón en el espectro visible a distinta longitud de onda del anterior, yvis-, que se detectará como una señal lumínica. La figura 1 b muestra una gráfica de intensidad de emisión/absorción frente a longitud de onda (nm) que muestra el solapamiento entre el espectro de emisión de PCs coloidales (línea continua) y el espectro de absorción de un colorante (línea discontinua). Figure 1 presents a (a) scheme of a chain excitation or radiative transfer system in which a quantum dot is excited by a process of absorbing two photons in the near infrared, 2Y NIR , after which it emits a photon in the visible spectrum, yvis , which in turn excites a fluorescent marker (a dye molecule) that in turn emits a photon in the visible spectrum at a different wavelength from the previous one, yvis- , which will be detected as a signal light. Figure 1b shows a graph of emission intensity / absorption versus wavelength (nm) showing the overlap between the emission spectrum of colloidal PCs (solid line) and the absorption spectrum of a dye (dashed line).
La Figura 2 muestra el esquema experimental del método de detección de estructuras marcadas en el que un agregado de PCs se encuentra atrapado mediante unas pinzas ópticas cerca de la superficie de una célula marcada. La figura no está dibujada a escala. Figure 2 shows the experimental scheme of the method of detection of marked structures in which an aggregate of PCs is trapped by means of optical tweezers near the surface of a marked cell. The figure is not drawn to scale.
El sistema experimental utilizado para la realización experimental ilustrada en el Ejemplo 1 se modificó la posición de la cámara de microfluídica respecto a las pinzas ópticas de manera que los agregados de PCs pudieron ser situados en distintas posiciones relativas respecto a la célula. De esta forma, se utilizaron los agregados de PCs atrapados y excitados mediante la pinza óptica para excitar diversas regiones marcadas de la célula. La Figura 3 muestra imágenes en transiluminación obtenidas mediante una cámara (MTV-1802CB, DBS) acoplada a un microscopio óptico (Zeiss Axiovert 135M) y los espectros de emisión recogidos mediante un espectrómetro. Un agregado de PCs atrapado ópticamente y excitado se situó a distintas distancias (a-d) de la superficie de una célula marcada con Alexa Fluor® 546. Como se puede observar en dicha figura, cuando el agregado de PCs atrapado y excitado mediante una pinza óptica se encontraba a aproximadamente 10 mieras de la membrana celular marcada, el espectro de emisión recogido correspondió al de dicho agregado cuyo máximo se encuentra centrado en 540 nm (Figura 3a). Se observó que, conforme el agregado de PCs se desplazó a posiciones más cercanas a la célula, la intensidad de su espectro de emisión fue disminuyendo. Cuando el agregado de PCs atrapado y excitado se situó a una distancia submicrométrica se obtuvo un espectro correspondiente a la emisión del agregado de PCs cuyo máximo se encuentra centrado en 540 nm junto con una emisión de los marcadores luminiscentes de membrana de Alexa Fluor® 546 con un máximo centrado en torno a los 573 nm (Figura 3c). Al situar dicho agregado de PCs atrapado y excitado sobre la célula (aunque no en contacto con dicha célula ya que se quedarían fijados), es decir, formando la trampa y recogiendo la luz a través de la célula, se obtuvo un espectro correspondiente a la emisión de los marcadores de la célula (Figura 3d). The experimental system used for the experimental embodiment illustrated in Example 1 modified the position of the microfluidic chamber with respect to the optical tweezers so that the aggregates of PCs could be placed in different relative positions with respect to the cell. In this way, aggregates of trapped and excited PCs were used by means of the optical clamp to excite various marked regions of the cell. Figure 3 shows transillumination images obtained by a camera (MTV-1802CB, DBS) coupled to an optical microscope (Zeiss Axiovert 135M) and emission spectra collected by a spectrometer. An aggregate of optically trapped and excited PCs was located at different distances (ad) from the surface of a cell marked with Alexa Fluor® 546. As can be seen in said figure, when the aggregate of PCs trapped and excited by an optical clamp is was approximately 10 microns from the labeled cell membrane, the emission spectrum collected corresponded to that of said aggregate whose maximum is centered at 540 nm (Figure 3a). It was observed that, as the aggregate of PCs moved to positions closer to the cell, the intensity of its emission spectrum was decreasing. When the aggregate of trapped and excited PCs was located at a submicron distance, a spectrum corresponding to the emission of the aggregate of PCs whose maximum is centered at 540 nm was obtained together with an emission of the luminescent membrane markers of Alexa Fluor® 546 with a maximum centered around 573 nm (Figure 3c). By placing said aggregate of PCs trapped and excited on the cell (although not in contact with said cell since they would remain fixed), that is, by forming the trap and collecting light through the cell, a spectrum corresponding to the emission of cell markers (Figure 3d).
Este experimento demostró la posibilidad de excitar ópticamente fluoróforos presentes en una célula, es decir estructuras marcadas, mediante la emisión de un agregado de PCs atrapado y excitado mediante pinzas ópticas. También demostró la capacidad para resolver en función de la localización de los PCs atrapados respecto a la estructura marcada (en este caso, la célula). Finalmente, se demostró también que el método de detección de estructuras marcadas es selectivo a la detección de dichas estructuras marcadas. Destacar también que los marcadores no emiten como consecuencia de su interacción con la pinza óptica utilizada. This experiment demonstrated the possibility of optically exciting fluorophores present in a cell, that is, marked structures, by issuing an aggregate of trapped and excited PCs by means of optical tweezers. It also demonstrated the ability to solve based on the location of the trapped PCs with respect to the marked structure (in this case, the cell). Finally, it was also demonstrated that the method of detection of marked structures is selective to the detection of said marked structures. Also note that the markers do not emit as a result of their interaction with the optical clamp used.
Ejemplo 2: Detección de marcadores dispersos en un medio acuoso. Example 2: Detection of scattered markers in an aqueous medium.
En el presente ejemplo se estudió la detección de marcadores luminiscentes dispersos en un medio acuoso. Como marcador luminiscente se utilizó la tetra-metil- rodamina (TRUC según sus siglas en inglés), un colorante fluorescente con un espectro de absorción con un máximo en torno a los 557 nm y un espectro de emisión con un máximo en torno a los 576 nm. Se disolvió tetra-metil-rodamina (TRUC) en agua hasta alcanzar una concentración de 2,7 nM y se inyectó dicha solución acuosa en una cámara de micro-fluídica. In the present example, the detection of luminescent markers dispersed in an aqueous medium was studied. As a luminescent marker, tetramethyl rhodamine (TRUC) was used, a fluorescent dye with an absorption spectrum with a maximum around 557 nm and an emission spectrum with a maximum around 576 nm. Tetra-methyl rhodamine (TRUC) was dissolved in water to a concentration of 2.7 nM and said aqueous solution was injected into a micro-fluidic chamber.
Más tarde, se inyectaron PCs (recubiertos con óxido de silicio (S1O2)) descritos en el ejemplo 1 en dicha cámara de micro-fluídica dando lugar a PCs individuales y agregados en el medio acuoso. Un agregado de PCs fue atrapado y excitado dentro de dicho medio mediante una pinza óptica (ver figura 4(a)). Mediante movimientos de la cámara de icrofluídica, se modificó la posición del agregado de PCs atrapado y excitado respecto de la superficie de dicha cámara de microfluídica. Es decir, dicho agregado de puntos cuánticos atrapado y excitado se situó a distintas profundidades (distancia variable L) de la superficie de la cámara y se estudió el espectro de emisión procedente de la región de la trampa. Para ello, la luminiscencia o fluorescencia procedente de la muestra fue recogida a través del objetivo de atrapamiento y enviada a un espectrómetro. En la figura 4(b) se muestran varios espectros de emisión medidos al atrapar y excitar dicho agregado de PCs a varias distancias L (profundidades) de la superficie de la cámara de microfluídica que sirve como contenedor de la disolución de TRUC. Later, PCs (coated with silicon oxide (S1O2)) described in Example 1 were injected into said micro-fluidic chamber giving rise to individual and aggregated PCs in the aqueous medium. An aggregate of PCs was trapped and excited inside said medium by means of an optical clamp (see figure 4 (a)). Through movements of the icrofluidic chamber, the position of the aggregate of trapped and excited PCs with respect to the surface of said microfluidic chamber was modified. That is, said aggregate of trapped and excited quantum dots was located at different depths (variable distance L) from the surface of the chamber and the emission spectrum from the trap region was studied. To do this, the luminescence or fluorescence from the sample was collected through the trapping target and sent to a spectrometer. Figure 4 (b) shows several emission spectra measured by trapping and exciting said aggregate of PCs at various distances L (depths) from the surface of the microfluidic chamber that serves as a container for the TRUC solution.
Se observó que la señal procedente de los PCs se pierde a medida que L aumenta (Figura 4(b)), es decir a medida que los PCs se excitan a mayor profundidad dentro de la disolución, mientras que la emisión correspondiente al TRUC aumenta. Esto es debido a que en el proceso de transferencia radiativa, al aumentar L, existe una mayor probabilidad de que los fotones emitidos por el agregado de PCs confinado y excitado sean absorbidos por una molécula de TRUC llegando por tanto menos fotones correspondientes a dicha emisión del agregado de PCs al detector. Cabe destacar que sólo produce emisión de TRUC cuando existen PCs excitados en el medio. Este experimento demostraría por tanto que la excitación del marcador de la presente invención transcurre a través de un proceso de transferencia radiativa. It was observed that the signal from the PCs is lost as L increases (Figure 4 (b)), that is, as the PCs are excited more deeply within the solution, while the emission corresponding to the TRUC increases. This is due to the fact that in the process of radiative transfer, when increasing L, there is a greater probability that the photons emitted by the aggregate of confined and excited PCs are absorbed by a TRUC molecule, thus reaching less photons corresponding to said emission of the PCs added to the detector. It should be noted that it only produces TRUC emission when there are excited PCs in the medium. This experiment would therefore demonstrate that the excitation of the marker of the present invention takes place through a radiative transfer process.
Ejemplo 3: Efecto del solapamiento del espectro de emisión del PCs y del espectro de absorción del marcador fluorescente. Example 3: Effect of the overlap of the emission spectrum of the PCs and the absorption spectrum of the fluorescent marker.
En el presente ejemplo se estudió el efecto del solapamiento del espectro de emisión de los PCs utilizados y del espectro de absorción del marcador fluorescente. In the present example, the effect of overlapping the emission spectrum of the PCs used and the absorption spectrum of the fluorescent marker was studied.
En el presente ejemplo como marcador luminiscente se utilizó rodamina 6G (Ro-6G según sus siglas en inglés), un colorante fluorescente con un espectro de absorción con un máximo en torno a los 530 nm y un espectro de emisión con un máximo en torno a los 566 nm. Se disolvió Ro-6G en etanol hasta alcanzar una concentración de 2 mM. Dicha solución se inyectó en una cámara de microfluídica. Por otro lado, se utilizaron dos tipos de puntos cuánticos que fueron denominados como puntos cuánticos de tipo 1 y de tipo 2. Tipo 1 : puntos cuánticos encapsulados en sílice con un máximo de emisión en 527 nm similares a los que fueron descritos en el Ejemplo 1. Tipo 2: se sintetizaron y encapsularon en sílice puntos cuánticos con un máximo de emisión en 580 nm siguiendo el método descrito en Acebrón M. et al. [M. Acebrón, J. F. Galisteo-López, D. Granados, J. López-Ogalla, J. M. Gallego, R. Otero, C. López, and B. H. Juárez,“Protective Ligand Shells for Luminescent Si02-Coated Alloyed Semiconductor Nanocrystals,” ACS Appl. Mater. Interfaces, p. 150319103751001 , 2015.]. In the present example, as a luminescent marker, rhodamine 6G (Ro-6G according to its acronym in English) was used, a fluorescent dye with an absorption spectrum with a maximum around 530 nm and an emission spectrum with a maximum around 566 nm Ro-6G was dissolved in ethanol to reach a concentration of 2 mM. Said solution was injected into a microfluidic chamber. On the other hand, two types of quantum dots were used that were referred to as quantum dots of type 1 and type 2. Type 1: quantum dots encapsulated in silica with a maximum emission at 527 nm similar to those described in the Example 1. Type 2: quantum dots with a maximum emission at 580 nm were synthesized and encapsulated on silica following the method described in Acebrón M. et al. [M. Acebrón, JF Galisteo-López, D. Granados, J. López-Ogalla, JM Gallego, R. Otero, C. López, and BH Juárez, “Protective Ligand Shells for Luminescent Si0 2 -Coated Alloyed Semiconductor Nanocrystals,” ACS Appl. Mater. Interfaces, p. 150319103751001, 2015.].
Por tanto, el espectro de emisión de los puntos cuánticos de tipo 1 se solapaba con el espectro de absorción del colorante Ro-6G y mientras que el de los de tipo 2 no. La Figura 5a muestra un esquema del solapamiento entre el espectro de emisión de dos PCs coloidales del tipo 1 y de tipo 2 (líneas continuas 1 y 2) y del espectro de absorción de un colorante (línea discontinua), dicho solapamiento está representado como el área sombreada debajo de la curva. Therefore, the emission spectrum of type 1 quantum dots overlapped with the absorption spectrum of the Ro-6G dye and while that of type 2 did not. Figure 5a shows a diagram of the overlap between the emission spectrum of two colloidal PCs of type 1 and type 2 (solid lines 1 and 2) and the absorption spectrum of a dye (broken line), said overlapping is represented as the shaded area below the curve.
Se midieron distintos espectros de emisión para una muestra que comprende una disolución de Ro-6G en la que se atrapa y excita (b) un agregado de PCs del tipo 1 a distintas profundidades de la superficie de la cámara de microfluídica (distancias L) tal y como se muestra en la Figura 5b. Se repitieron las mismas medidas para un agregado de PCs del tipo 2 que se muestra en la Figura 5c. Los espectros de emisión obtenidos mostraron que al desplazar un agregado de PCs de tipo 1 una distancia L en la dirección transversal de la cámara de microfluídica se observó un cambio en el espectro de emisión procedente de la misma (figura 5b), al aumentar la distancia L, disminuye la señal correspondiente al espectro de emisión del agregado de PCs de tipo 1 a favor de la intensidad de emisión de la Ro-6G (Figura 5b). No obstante, esto no se observó cuando se manipulan los PCs que emiten en 580 nm (Fig 5c) ya que, en este caso, la luz procedente de los PCs abandona la cámara de microfluídica sin ser absorbida por la Ro-6G, de forma que el espectro de emisión no cambia cuando se aumenta L. De esta forma, se demostró la importancia del solapamiento del espectro de emisión de los puntos cuánticos utilizados con el espectro de absorción del colorante o marcador luminiscente utilizado para detectar estructuras marcadas. Different emission spectra were measured for a sample comprising a Ro-6G solution in which an aggregate of type 1 PCs is trapped and excited (b) at different depths of the microfluidic chamber surface (distances L) such and as shown in Figure 5b. The same measurements were repeated for an aggregate of type 2 PCs shown in Figure 5c. The emission spectra obtained showed that when moving an aggregate of type 1 PCs a distance L in the transverse direction of the microfluidic chamber, a change in the emission spectrum from the same was observed (Figure 5b), as the distance increased L, decreases the signal corresponding to the emission spectrum of the aggregate of type 1 PCs in favor of the emission intensity of the Ro-6G (Figure 5b). However, this was not observed when handling the emitting PCs at 580 nm (Fig 5c) since, in this case, the light coming from the PCs leaves the microfluidic chamber without being absorbed by the Ro-6G, so that the emission spectrum does not change when L. is increased. In this way, the importance of overlapping the emission spectrum of the quantum dots used with the absorption spectrum of the dye or luminescent marker used to detect marked structures was demonstrated.
Ejemplo 4: Dispositivos utilizados. Example 4: Devices used.
La Figura 6 muestra un esquema de un dispositivo experimental. El dispositivo utilizado para realizar los ejemplos 1-3 de la presente invención estaba formado por dos láseres (L1 y L2) que son combinados mediante un cubo divisor de haz (PBS) y dirigidos por medio de espejos (M1 y M2) hacia el interior de un microscopio de fluorescencia. El láser combinado es reflejado en un espejo dicroico (DM) y focalizado a través de un objetivo de microscopio (O) sobre la muestra (SH). Una lámpara (WL), un sistema de retículos (l&S) y un condensador (C) conforman el sistema de iluminación del experimento. La muestra a estudio se colocó dentro de una cámara de microfluídica manufacturada a partir de dos cubreobjetos de vidrio que, además, se podía mover tridimensionalmente mediante tornillos micrométricos. Figure 6 shows a schematic of an experimental device. The device used to make examples 1-3 of the present invention was formed by two lasers (L1 and L2) which are combined by a beam splitter cube (PBS) and directed by means of mirrors (M1 and M2) inwards of a fluorescence microscope. The combined laser is reflected in a dichroic mirror (DM) and focused through a microscope objective (O) on the sample (SH). A lamp (WL), a grid system (l & S) and a condenser (C) make up the lighting system of the experiment. The sample under study was placed inside a microfluidic chamber manufactured from two glass coverslips that, in addition, could be moved three-dimensionally using micrometric screws.
La trampa óptica fue implementada en el microscopio óptico mediante la combinación de dos fuentes láser monomodo continuo y focalizado de diodo en el infrarrojo con una longitud de onda de 845 nm (L1 y L2) manejadas a una potencia tal que a la trampa óptica llegan 150 mW. El objetivo del microscopio con el que se focaliza el láser es de alta apertura numérica (NA=1.2), de inmersión en agua y está corregido al infinito. La trampa se forma en el punto focal del objetivo, cuya distancia de trabajo es 0.7 mm. El objetivo recogió, además, la emisión luminiscente en el área de la trampa. La fluorescencia procedente de la muestra, tras atravesar el espejo dicroico, fue filtrada mediante un filtro espectral paso-bajo a 750 nm (F) y enviada selectivamente a un espectrómetro (S, Ocean Optics USB2000+) o a una cámara de vídeo (MTV- 1802CB, DBS) (VC) mediante diversos elementos ópticos (FL, lente de focalización; M3, espejo; P, prisma; RL1 y RL2, lentes de retransmisión). Se empleó un tiempo de integración de 5 s para cada medida del espectrómetro. The optical trap was implemented in the optical microscope by combining two continuous and focused single-mode infrared diode laser sources with a wavelength of 845 nm (L1 and L2) driven at a power such that 150 optical waves reach the optical trap. mW The objective of the microscope with which the laser is focused is high numerical aperture (NA = 1.2), immersion in water and corrected to infinity. The trap is formed at the focal point of the target, whose working distance is 0.7 mm. The target also picked up the luminescent emission in the trap area. The fluorescence from the sample, after passing through the dichroic mirror, was filtered through a low-pass spectral filter at 750 nm (F) and selectively sent to a spectrometer (S, Ocean Optics USB2000 +) or to a video camera (MTV-1802CB , DBS) (VC) using various optical elements (FL, focusing lens; M3, mirror; P, prism; RL1 and RL2, retransmission lenses). An integration time of 5 s was used for each spectrometer measurement.
El experimento se visualizó a tiempo real y mediante imágenes obtenidas mediante trans-iluminación (Figura 3), para la que se cuenta con una lámpara halógena de 100 W y un condensador de baja apertura numérica (NA=0.3). La luz de la lámpara se bloquea durante la adquisición de espectros. The experiment was visualized in real time and through images obtained by trans-lighting (Figure 3), for which there is a 100 halogen lamp W and a low numerical aperture capacitor (NA = 0.3). Lamp light is blocked during spectrum acquisition.
Una vez descrita suficientemente la naturaleza de la presente invención, así como una forma de llevarla a la práctica, sólo queda añadir que en su conjunto y partes que la componen es posible introducir cambios de forma, materiales y de disposición siempre y cuando dichas alteraciones no varíen sustancialmente dicha invención. Once the nature of the present invention has been sufficiently described, as well as a way of putting it into practice, it only remains to be added that, as a whole and its component parts, it is possible to introduce changes in form, materials and arrangement as long as said alterations are not substantially vary said invention.

Claims

REIVINDICACIONES
1. Un método de detección de estructuras marcadas que comprende las etapas de: i) proporcionar: 1. A method of detection of marked structures comprising the steps of: i) providing:
- una estructura marcada con un marcador luminiscente, donde dicho marcador luminiscente presenta un espectro de absorción; - a structure marked with a luminescent marker, wherein said luminescent marker has an absorption spectrum;
- al menos una nanopartícula luminiscente (PL), donde dicha al menos una PL presenta un espectro de emisión; donde dicho espectro de emisión de dicha al menos una PL se solapa con el espectro de absorción del marcador luminiscente de la etapa (i); - at least one luminescent nanoparticle (PL), where said at least one PL has an emission spectrum; wherein said emission spectrum of said at least one PL overlaps with the absorption spectrum of the luminescent marker of step (i);
- una pinza óptica, donde dicha pinza óptica comprende un láser focalizado; donde dicho láser focalizado presenta una emisión en un rango de longitudes de onda que no se solapa con el espectro de absorción del marcador luminiscente de la etapa (i);  - an optical clamp, wherein said optical clamp comprises a focused laser; wherein said focused laser has an emission in a range of wavelengths that does not overlap with the absorption spectrum of the luminescent marker of step (i);
ii) confinar y simultáneamente excitar dicha al menos una PL de la etapa (i) mediante la pinza óptica de la etapa (i) dando lugar a al menos una PL excitada y confinada;  ii) confine and simultaneously excite said at least one PL of stage (i) by means of the optical clamp of stage (i) giving rise to at least one excited and confined PL;
iii) opcionalmente desplazar la al menos una PL excitada y confinada de la etapa (ii) mediante la pinza óptica de la etapa (i); y  iii) optionally displacing the at least one excited and confined PL of stage (ii) by means of the optical clamp of stage (i); Y
iv) excitar el marcador luminiscente de la etapa (i) mediante la radiación emitida por dicha al menos una PL excitada y confinada de la etapa (ii) o (iii), dando lugar al marcador luminiscente excitado; donde dicho marcador luminiscente excitado emite una señal luminiscente.  iv) exciting the luminescent marker of stage (i) by the radiation emitted by said at least one excited and confined PL of stage (ii) or (iii), giving rise to the excited luminescent marker; where said excited luminescent marker emits a luminescent signal.
2. El método de detección según la reivindicación 1 , donde dicho marcador luminiscente se selecciona entre fluoróforos, cromóforos y combinaciones de los anteriores. 2. The detection method according to claim 1, wherein said luminescent marker is selected from fluorophores, chromophores and combinations of the foregoing.
3. El método de detección según cualquiera de las reivindicaciones 1 o 2, donde dicha al menos una PL se encuentra encapsulada en una matriz. 3. The detection method according to any one of claims 1 or 2, wherein said at least one PL is encapsulated in a matrix.
4. El método de detección según cualquiera de las reivindicaciones 1-3, donde dicha al menos una PL esta funcionalizada. 4. The detection method according to any of claims 1-3, wherein said at least one PL is functionalized.
5. El método de detección según cualquiera de las reivindicaciones 1-4, donde dicha al menos una PL es al menos un punto cuántico (PC). 5. The detection method according to any of claims 1-4, wherein said at least one PL is at least one quantum dot (PC).
6. El método de detección según cualquiera de las reivindicaciones 1-5, donde el un láser focalizado de la etapa (i) presenta una emisión en un rango de longitudes de onda comprendidas entre 650-950 nm que excita a dicha al menos una PL. 6. The detection method according to any of claims 1-5, wherein the focused laser of step (i) has an emission in a range of wavelengths between 650-950 nm that excites said at least one PL .
7. El método de detección según cualquiera de las reivindicaciones 1-6, donde la excitación de la al menos una PL de la etapa (ii) se produce mediante un mecanismo de absorción de dos fotones. 7. The detection method according to any of claims 1-6, wherein the excitation of the at least one PL of step (ii) is produced by a two photon absorption mechanism.
8. El método de detección según cualquiera de las reivindicaciones 1-7, en donde las etapas (iii) y (iv) se repiten al menos una vez. 8. The detection method according to any of claims 1-7, wherein steps (iii) and (iv) are repeated at least once.
9. El método de detección según cualquiera de las reivindicaciones 1-8, donde dicha al menos una PL confinada y excitada de la etapa (ii) emite luminiscencia; preferiblemente radiación en un rango de longitudes de onda entre 400 y 650 nm. 9. The detection method according to any of claims 1-8, wherein said at least one confined and excited PL of step (ii) emits luminescence; preferably radiation in a wavelength range between 400 and 650 nm.
10. El método de detección según cualquiera de las reivindicaciones 1-9, donde la señal producida por el marcador luminiscente excitado de la etapa (iv) es una emisión luminiscente; preferiblemente fluorescente en el rango de entre 400 y 700 nm. 10. The detection method according to any of claims 1-9, wherein the signal produced by the excited luminescent marker of step (iv) is a luminescent emission; preferably fluorescent in the range between 400 and 700 nm.
11. El método de detección según cualquiera de las reivindicaciones 1-10, donde la señal luminiscente de la etapa (iv) se detecta mediante un espectrómetro. 11. The detection method according to any of claims 1-10, wherein the luminescent signal of step (iv) is detected by a spectrometer.
12. El método de detección según cualquiera de las reivindicaciones 1-11 , donde dicha estructura marcada de la etapa (i) está presente en especímenes biológicos y no biológicos. 12. The detection method according to any of claims 1-11, wherein said marked structure of step (i) is present in biological and non-biological specimens.
13. El método de detección según cualquiera de las reivindicaciones 1-12, donde dicho método se aplica en muestras biológicas. 13. The detection method according to any of claims 1-12, wherein said method is applied in biological samples.
14. El método de detección según la reivindicación 13, donde dicho método se aplica para mapear membranas celulares, biosensar proteínas de membrana o monitorizar señales eléctricas. 14. The detection method according to claim 13, wherein said method is applied to map cell membranes, biosensing membrane proteins or Monitor electrical signals.
15. Uso de un marcador luminiscente en el método de detección de estructuras marcadas según cualquiera de las reivindicaciones 1-14. 15. Use of a luminescent marker in the method of detection of marked structures according to any of claims 1-14.
16. Uso de una partícula luminiscente (PL) en el método de detección de estructuras marcadas según cualquiera de las reivindicaciones 1-14. 16. Use of a luminescent particle (PL) in the method of detection of marked structures according to any of claims 1-14.
17. Uso de una pinza óptica en el método de detección de estructuras marcadas según cualquiera de las reivindicaciones 1-14. 17. Use of an optical clamp in the method of detection of marked structures according to any of claims 1-14.
18. Aparato diseñado para llevar a cabo el método de detección de estructuras marcadas según cualquiera de las reivindicaciones 1-14 que comprende: 18. Apparatus designed to carry out the method of detection of marked structures according to any of claims 1-14 comprising:
i) medios para atrapar y rotar la estructura marcada de la etapa (i);  i) means for trapping and rotating the marked structure of step (i);
ii) la pinza óptica de la etapa (i) del método de detección de estructuras marcadas según cualquiera de las reivindicaciones 1-14; y  ii) the optical clip of step (i) of the method of detection of marked structures according to any of claims 1-14; Y
iii) un detector de la señal de la etapa (iv) del método de detección de estructuras marcadas según cualquiera de las reivindicaciones 1-14.  iii) a signal detector of step (iv) of the method of detection of marked structures according to any of claims 1-14.
PCT/ES2019/070533 2018-07-27 2019-07-26 Method for detection of marked structures WO2020021154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201830775A ES2745070B2 (en) 2018-07-27 2018-07-27 Detection method of marked structures
ESP201830775 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020021154A1 true WO2020021154A1 (en) 2020-01-30

Family

ID=69182179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070533 WO2020021154A1 (en) 2018-07-27 2019-07-26 Method for detection of marked structures

Country Status (2)

Country Link
ES (1) ES2745070B2 (en)
WO (1) WO2020021154A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822746A (en) * 1986-06-25 1989-04-18 Trustees Of Tufts College Radiative and non-radiative energy transfer and absorbance modulated fluorescence detection methods and sensors
WO2005114151A1 (en) * 2004-05-24 2005-12-01 National University Corporation NARA Institute of Science and Technology Measuring system
CN103439242A (en) * 2013-09-06 2013-12-11 华南师范大学 Microfluidic system and method for detecting and screening single beam biological cells
CN106932372A (en) * 2017-03-23 2017-07-07 同济大学 The detection architecture and structure being combined with surface-enhanced fluorescence technology based on optical tweezer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822746A (en) * 1986-06-25 1989-04-18 Trustees Of Tufts College Radiative and non-radiative energy transfer and absorbance modulated fluorescence detection methods and sensors
WO2005114151A1 (en) * 2004-05-24 2005-12-01 National University Corporation NARA Institute of Science and Technology Measuring system
CN103439242A (en) * 2013-09-06 2013-12-11 华南师范大学 Microfluidic system and method for detecting and screening single beam biological cells
CN106932372A (en) * 2017-03-23 2017-07-07 同济大学 The detection architecture and structure being combined with surface-enhanced fluorescence technology based on optical tweezer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, H. ET AL.: "Vibration-assisted optical injection of a single fluorescent sensor into a target cell", SENSORS AND ACTUATORS B: CHEMICAL, vol. 220, 22 May 2015 (2015-05-22), pages 40 - 49, XP029263560, DOI: 10.1016/j.snb.2015.04.135 *

Also Published As

Publication number Publication date
ES2745070B2 (en) 2021-07-06
ES2745070A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
Ishikawa-Ankerhold et al. Advanced fluorescence microscopy techniques—Frap, Flip, Flap, Fret and flim
Liu et al. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine
Marcu et al. Fluorescence lifetime spectroscopy and imaging: principles and applications in biomedical diagnostics
Hötzer et al. Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications
Suhling et al. Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments
Müller et al. STED microscopy and its applications: new insights into cellular processes on the nanoscale
Wientjes et al. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching
Wessels et al. Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo
Rodríguez-Sevilla et al. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy
Cho et al. Laser particle stimulated emission microscopy
KR20190015751A (en) Systems and methods for microlaser particles
Bouccara et al. Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection
Lyu et al. Highly polarized upconversion emissions from lanthanide-doped LiYF4 crystals as spatial orientation indicators
Jauffred et al. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot
ES2745070B2 (en) Detection method of marked structures
JP2003241101A (en) Microscope
Sorbello et al. Intrinsic optical sectioning with upconverting nanoparticles
Khaydukov et al. Deferred Registration of Nanophosphor Photoluminescence As a Platform for Optical Bioimaging
ES2956312T3 (en) Calibration standard for evanescence microscopy
Adams et al. Spectroscopic imaging
Botvinick et al. Laser‐based measurements in cell biology
Hada et al. Gold nanoclusters performing as contrast agents for non-invasive imaging of tissue-like phantoms via two-photon excited fluorescence lifetime imaging
US8581211B2 (en) Imaging method and system using substrate functionalization
Sekatskii et al. Single molecule fluorescence resonance energy transfer scanning near-field optical microscopy: Potentials and challenges
Mackowski Metallic nanoparticles coupled with photosynthetic complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839878

Country of ref document: EP

Kind code of ref document: A1