WO2020019660A1 - 一种透镜的固定装置及相应的光模块 - Google Patents

一种透镜的固定装置及相应的光模块 Download PDF

Info

Publication number
WO2020019660A1
WO2020019660A1 PCT/CN2018/123436 CN2018123436W WO2020019660A1 WO 2020019660 A1 WO2020019660 A1 WO 2020019660A1 CN 2018123436 W CN2018123436 W CN 2018123436W WO 2020019660 A1 WO2020019660 A1 WO 2020019660A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
adjustment mechanism
elastic member
support assembly
fixing device
Prior art date
Application number
PCT/CN2018/123436
Other languages
English (en)
French (fr)
Inventor
石川
宋琼辉
张伊
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2020019660A1 publication Critical patent/WO2020019660A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • the invention belongs to the field of optical communication, and more particularly, relates to a lens fixing device and a corresponding optical module.
  • IP Internet Protocol
  • P2P Peer-to-peer
  • the optical transceiver module is the most basic unit of the optical transmission network and data center, and plays the role of signal conversion from light to electricity and electricity to light.
  • the optical transceiver module includes a light emitting unit and a light receiving unit.
  • the light emitting unit and the light receiving unit may be integrated into one module, or may be made into independent modules separately.
  • a laser couples the emitted optical signal to a waveguide chip or an optical fiber after passing through the lens. Since the lens is generally directly bonded to the substrate, a certain gap will be generated between the lens and the substrate. The gap between the lens and the substrate is filled with glue.
  • the glue in the gap will cause a large expansion or contraction displacement and drive the lens displacement, which directly affects the coupling efficiency of the laser to the waveguide chip, and the coupling efficiency is too low and even causes the optical module to fail.
  • the glue that adheres to the lens is exposed to the air for a long time, it will absorb the moisture in the air, the volume of the glue will change, and the position of the lens will be changed, which will cause the coupling efficiency to change. Failure.
  • the present invention provides a lens fixing device and a corresponding optical module.
  • the purpose thereof is to adjust the position of the lens and the optical link through an adjustment mechanism to ensure the coupling efficiency. It solves the technical problem that causes the coupling efficiency to change when the position of the lens of the optical module changes.
  • a lens fixing device includes: a substrate 1, a support assembly 2, a first adjustment mechanism 31, and a second adjustment mechanism 32;
  • the supporting component 2 is provided with a receiving portion 20.
  • the opposite sides of the receiving portion 20 are provided with a first elastic member 21 and a second elastic member 22.
  • the receiving portion 20 is used for receiving a lens.
  • the supporting component 2 is provided at On the substrate 1, the first adjusting mechanism 31 is disposed adjacent to the first elastic member 21 after passing through the substrate 1, and the second adjusting mechanism 32 is adjacent to the second elastic member after passing through the substrate 1. 22 settings; wherein, by adjusting the first adjustment mechanism 31 and / or the second adjustment mechanism 32, the first elastic member 21 and the second elastic member 22 are driven to deform to adjust the lens. position.
  • the lens is a cylindrical lens or a spherical lens
  • the accommodating portion 20 is a V-shaped groove
  • the lens is tangent to a side wall of the V-shaped groove.
  • a lens fixing device includes: a substrate 1, a support assembly 2, a first adjustment mechanism 31, a second adjustment mechanism 32, and a first Three adjusting mechanisms 33; a receiving portion 20 is provided on the support assembly 2 for receiving lenses; a first elastic member 21 is provided on the left side of the receiving portion 20, and a right side of the receiving portion 20 is provided A second elastic member 22 is provided on the side; the first adjustment mechanism 31 is provided on the left side of the support assembly 2, the second adjustment mechanism 32 is provided on the right side of the support assembly 2; the support assembly 2
  • the third adjusting mechanism 33 is disposed on the substrate 1 and is disposed adjacent to the accommodating portion 20 after penetrating the substrate 1.
  • the first adjusting mechanism 31 and / or the second adjusting mechanism 32 drive the third adjusting mechanism 33.
  • the first elastic member 21 and the second elastic member 22 undergo deformation and displacement to adjust the position of the lens relative to the third adjustment mechanism 33; and the first elastic member 21 is driven by the third adjustment mechanism 33 Deformed with the second elastic member 22 To adjust the position of the lens relative to the substrate 1.
  • the lens fixing device further includes a fourth adjustment mechanism 34 and a fifth adjustment mechanism 35, the fourth adjustment mechanism 34 is disposed on the upper left side of the support assembly 2, and the fifth adjustment mechanism 35 is disposed on the The upper right side of the support assembly 2; the fourth adjustment mechanism 34 is disposed adjacent to the first elastic member 21, and the fifth adjustment assembly is disposed adjacent to the second elastic member 22; wherein, through the fourth adjustment mechanism 34 And the fifth adjustment mechanism 35 drives the first elastic member 21 and the second elastic member 22 to undergo deformation and displacement to adjust the position of the lens relative to the substrate 1.
  • the support assembly 2 further includes a first support member 341 and a second support member 351; one end of the first support member 341 is disposed on the left side of the support assembly 2, and the first support member 341 A through hole is provided at the other end, and the fourth adjustment mechanism 34 is disposed adjacent to the first elastic member 21 after passing through the through hole; one end of the second support member 351 is provided on the right side of the support assembly 2, The other end of the second support member 351 is provided with a through hole, and the fourth adjustment mechanism 34 is disposed adjacent to the second elastic member 22 after passing through the through hole.
  • the first adjustment mechanism 31, the second adjustment mechanism 32, the third adjustment mechanism 33, the fourth adjustment mechanism 34, and the fifth adjustment mechanism 35 are all adjustment screws.
  • the lens fixing device further includes a first fixing mechanism 41 and a second fixing mechanism 42; the first fixing mechanism 41 is provided on the left side of the support assembly 2, and the second fixing mechanism 42 is provided on the support assembly 2 is the right side; the first fixing mechanism 41 and the second fixing mechanism 42 are used for fixing the support assembly 2 on the substrate 1.
  • the lens is a cylindrical lens or a spherical lens
  • the accommodating portion 20 is a V-shaped groove
  • the lens is tangent to a side wall of the V-shaped groove.
  • an optical module includes the lens fixing device according to any one of the above aspects and a first lens 72.
  • the first lens 72 is housed in The accommodating portion 20 of the lens fixing device.
  • the optical module further includes a laser 71 and a waveguide chip 76; the laser 71 and the waveguide chip 76 are disposed on the substrate 1, and the first lens 72 is provided with the laser 71 and the waveguide chip Between 76.
  • the fixing device of the lens of the present invention includes an adjustment mechanism and an elastic member, and the elastic member is deformed and displaced by the adjustment mechanism, and further, Adjust the position of the lens stored in the storage section.
  • the position of the lens of the optical module is shifted, the position of the lens can be adaptively adjusted by the adjustment mechanism to adjust the optical link, so that the coupling efficiency of the optical module can be adjusted again, thereby ensuring the coupling efficiency.
  • FIG. 1 is a schematic structural diagram of a lens fixing device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional structure view taken along the AA ′ direction of FIG. 1;
  • FIG. 3 is a schematic cross-sectional structure diagram of another lens fixing device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another lens fixing device according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional structure view taken along the AA ′ direction of FIG. 4;
  • FIG. 6 is a schematic cross-sectional structure diagram of another lens fixing device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical module according to an embodiment of the present invention.
  • Fig. 8 is a schematic cross-sectional structure view taken along the BB 'direction of Fig. 7.
  • orientations or positional relationships indicated by the terms “inside”, “outside”, “longitudinal”, “horizontal”, “upper”, “lower”, “top”, “bottom” and the like are based on the drawings
  • the orientations or positional relationships shown are merely for the convenience of describing the present invention and do not require that the present invention must be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the present invention.
  • the invention provides a fixing device for a lens.
  • the fixing device for the lens is suitable for the field of optical communication.
  • an optical module is generally used to implement light-to-electricity and electric-to-light signal conversion.
  • the light emitting unit may adopt a two-lens coupling scheme, and collimate and collimate the light beams emitted by the laser through a collimating lens, and then converge and couple the parallel collimated beams into a waveguide chip or an optical fiber through a condenser lens.
  • the positions of the laser, lens, and waveguide chip will be set according to the actual situation to ensure that the optical module has a good coupling efficiency.
  • the present invention provides a lens fixing device, through which the position of the lens can be adjusted, thereby adjusting the coupling efficiency.
  • the structure of the lens device of the present invention and the process of adjusting the position of the lens are explained in detail below.
  • the lens fixing device includes a substrate 1, a support assembly 2, a first adjustment mechanism 31, and a second adjustment mechanism 32.
  • the supporting assembly 2 is provided with a receiving portion 20, and the first and second elastic members 21 and 22 are provided on opposite sides of the receiving portion 20.
  • the receiving portion 20 is used for receiving a lens.
  • the supporting component 2 needs to have a small expansion coefficient, so as to ensure that the coupling structure does not generate a large displacement at high and low temperatures.
  • the supporting component 2 is made of metal, such as Yin steel or Kovar.
  • the accommodating portion 20 is a V-shaped groove
  • the lens is a cylindrical lens or a spherical lens.
  • adhesive bonding means that the lens is bonded to the V-shaped groove by using a curing glue. Because the lens and the V-shaped groove are arranged tangentially, there is a certain pressure between the lens and the V-shaped groove, and the lens can be fixed in the V-shaped groove by using a small amount of glue, which can effectively reduce the lens and the V-shaped groove.
  • the thickness of the glue layer between the side walls of the groove can also ensure that the thickness of the glue layer is uniform. At the same time, because the thickness of the glue layer between the lens and the side wall of the V-groove is small, when the temperature changes cause the glue to change, the effect on the lens position is also relatively small.
  • the lens can also be fixed in the V-groove by eutectic welding.
  • gold is plated on the side wall of the lens, and a solder, such as gold solder, is grown on the inner wall of the V-groove.
  • the crystal welding method fixes the lens in the V-groove. Because the thickness of the gold plating on the side wall of the lens and the solder thickness on the inner wall of the V-groove are in the order of micrometers, after eutectic welding, the solder thickness between the lens and the V-groove can be guaranteed to be in the micrometer order, effectively ensuring the lens at high and low temperatures. No displacement occurs at any time, and the eutectic welding method has high reliability, thereby ensuring the coupling efficiency of the optical module.
  • positioning marks 6 are provided on opposite sides of the accommodating portion 20, and the positioning marks 6 are used to guide the mounting of the lens, ensure that the lens is set at a preset position, can realize passive mounting of the lens, and improve production Efficient and suitable for mass production.
  • the positioning mark 6 may be a cross shape, a circle, an arrow, or other shapes, which are not specifically limited herein.
  • the support assembly 2 is disposed on the substrate 1, the first adjustment mechanism 31 is disposed adjacent to the first elastic member 21 after passing through the substrate 1, and the second adjustment mechanism 32 is disposed adjacent to the second elastic member 22 after passing through the substrate 1.
  • the first adjusting mechanism 31 and / or the second adjusting mechanism 32 are driven to deform to adjust the position of the lens.
  • the lens fixing device further includes a first fixing mechanism 41 and a second fixing mechanism 42.
  • the first fixing mechanism 41 is provided on the left side of the support assembly 2, and the second fixing mechanism 42 is provided on the right side of the support assembly 2.
  • the first fixing mechanism 41 and the second fixing mechanism 42 are used to fix the support assembly 2 on the substrate 1.
  • first fixing mechanism 41 and the second fixing mechanism 42 are both bolts or screws.
  • first fixing mechanism 41 is a first fixing screw
  • second fixing mechanism 42 is a second fixing screw.
  • An example is used to explain the fixing method of the support assembly 2 and the substrate 1.
  • Two fixing screw holes are provided on the base plate 1, and the two fixing screw holes correspond to the positions of the first fixing screw and the second fixing screw, respectively.
  • Through holes are provided on the left and right sides of the support assembly 2.
  • a fixing screw penetrates the through hole on the left side of the supporting component 2 and is screwed with the corresponding fixing thread hole, and a second fixing screw passes through the through hole on the right side of the supporting component 2 and is threaded with the corresponding fixing thread hole, thereby supporting the supporting component 2 It is fixed on the substrate 1.
  • first adjustment mechanism 31 and the second adjustment mechanism 32 are both adjustment screws.
  • first adjustment mechanism 31 is the first adjustment screw
  • second adjustment mechanism 32 is the second adjustment screw.
  • the base plate 1 is further provided with two adjusting screw holes, wherein the two adjusting screw holes are provided between the two fixing screw holes, the first adjusting screw is screwed to the base plate 1 through one of the adjusting screw holes, and the second adjusting screw is It is screw-connected to the substrate 1 through another adjusting screw hole.
  • the first adjusting screw is disposed adjacent to the first elastic member 21 after passing through the substrate 1, and the second adjusting screw is disposed adjacent to the second elastic member 22 after passing through the substrate 1.
  • the lens fixing device further includes a spacer 5, which is disposed between the support assembly 2 and the substrate 1 so that there is a gap between the support assembly 2 and the substrate 1, so that the first adjustment mechanism 31 and the first The second adjustment mechanism 32 reserves space for activities.
  • first adjustment mechanism 31 and the second adjustment mechanism 32 are abutted with the support assembly 2 in advance, so that the first elastic member 21 and the second elastic member 22 apply upward deformation displacement to ensure that Adjust the position of the lens down.
  • Adjustment method 1 Adjust the movement of the first adjustment mechanism 31 and the second adjustment mechanism 32 up or down at the same time, and then drive the first elastic member 21 and the second elastic member 22 to deform and displace, so as to drive the lens accommodated in the accommodation portion 20 to approach Or away from the substrate 1 to adjust the position of the lens;
  • Adjustment method two adjust the first adjustment mechanism 31 to move up or down and keep the second adjustment mechanism 32 unchanged. At this time, most of the force is applied to the first elastic member 21, and a small part of the force is applied to the second elastic member 22. Up, then, the deformation displacement of the first elastic member 21 is large, and the deformation displacement of the second elastic member 22 is small, so that the lens can be shifted to the upper right or lower left;
  • Adjustment method three adjust the second adjustment mechanism 32 to move upward or downward to keep the first adjustment mechanism 31 unchanged. At this time, most of the force is applied to the second elastic member 22, and a small part of the force is applied to the first elastic member 21. Above, the deformation displacement of the second elastic member 22 is large, and the deformation displacement of the first elastic member 21 is small, so that the lens can be shifted to the upper left or lower right.
  • a suitable adjustment method is selected to adjust the position of the lens according to the needs, so that the coupling efficiency can be adjusted again after the packaging of the optical module is completed, thereby improving the yield.
  • the number of the first elastic members 21 is two
  • the number of the second elastic members 22 is two
  • the first adjustment mechanism 31 is provided at two first Between the elastic members 21, a second adjustment mechanism 32 is disposed between the two second elastic members 22.
  • the first elastic members 21 on both sides of the first adjustment mechanism 31 can disperse stress, so that each time the first adjustment mechanism 31 is adjusted, each first elastic member The displacement deformation of 21 is small; when the second adjustment mechanism 32 abuts the support assembly 2, the second elastic members 22 on both sides of the second adjustment mechanism 32 can disperse the stress, so that each time the second adjustment mechanism 32 is adjusted
  • the displacement deformation of each second elastic member 22 is smaller, so that the moving distance of each of the receiving portions 20 relative to the substrate 1 is smaller, thereby improving the accuracy of adjustment.
  • Example 1 when adjusting the lens position, the vertical position of the lens relative to the substrate 1 can be adjusted better, but only the slight adjustment of the horizontal position of the lens relative to the substrate 1 can be performed.
  • this embodiment provides a lens fixing device with another structure.
  • the lens fixing device includes a substrate 1, a support assembly 2, a first adjustment mechanism 31, a second adjustment mechanism 32, and a third adjustment mechanism 33.
  • the supporting component 2 is provided with a receiving portion 20 for receiving the lens; a left side of the receiving portion 20 is provided with a first elastic member 21, and a right side of the receiving portion 20 is provided with a second elastic member 22.
  • the first adjustment mechanism 31 is disposed on the left side of the support assembly 2, and the second adjustment mechanism 32 is disposed on the right side of the support assembly 2.
  • a through hole is provided on the left side of the support assembly 2, and the through hole passes through the first elastic member 21 and is disposed adjacent to the receiving portion 20.
  • a right hole is provided on the right side of the support assembly 2, and the through hole passes through the second elastic member. After 22, it is arranged adjacent to the containing section 20.
  • the support assembly 2 is disposed on the substrate 1, and the third adjusting mechanism 33 is disposed adjacent to the receiving portion 20 after passing through the substrate 1.
  • the first adjustment mechanism 31 and / or the second adjustment mechanism 32 drive the first elastic member 21 and the second elastic member 22 to undergo a deformation and displacement to adjust the position of the lens relative to the third adjustment mechanism 33.
  • the third adjustment mechanism 33 drives the first elastic member 21 and the second elastic member 22 to undergo deformation and displacement to adjust the position of the lens relative to the substrate 1.
  • the lens fixing device further includes a first fixing mechanism 41 and a second fixing mechanism 42.
  • the first fixing mechanism 41 is provided on the left side of the support assembly 2, and the second fixing mechanism 42 is provided on the right side of the support assembly 2.
  • the first fixing mechanism 41 and the second fixing mechanism 42 are used to fix the support assembly 2 on the substrate 1.
  • first fixing mechanism 41 and the second fixing mechanism 42 are both bolts or screws.
  • first fixing mechanism 41 is a first fixing screw
  • second fixing mechanism 42 is a second fixing screw.
  • An example is used to explain the fixing method of the support assembly 2 and the substrate 1.
  • Two fixing screw holes are provided on the base plate 1, and the two fixing screw holes correspond to the positions of the first fixing screw and the second fixing screw, respectively.
  • Through holes are provided on the left and right sides of the support assembly 2.
  • a fixing screw penetrates the through hole on the left side of the supporting component 2 and is screwed with the corresponding fixing thread hole, and a second fixing screw passes through the through hole on the right side of the supporting component 2 and is threaded with the corresponding fixing thread hole, thereby supporting the supporting component 2 It is fixed on the substrate 1.
  • the first adjustment mechanism 31, the second adjustment mechanism 32, and the third adjustment mechanism 33 are adjustment screws.
  • the first adjustment mechanism 31 is the first adjustment screw
  • the second adjustment mechanism 32 is the adjustment screw. It is the second adjustment screw
  • the third adjustment mechanism 33 is the third adjustment screw.
  • the left side of the support assembly 2 is provided with a threaded hole. After the first adjustment screw passes through the first elastic member 21 through the threaded hole, it is disposed adjacent to the receiving portion 20; the right side of the support assembly 2 is provided with a threaded hole, and the second adjustment screw passes through the After the threaded hole penetrates the second elastic member 22, it is disposed adjacent to the receiving portion 20.
  • the first adjusting screw is adjusted against the side wall of the receiving portion 20, the first elastic member 21 is deformed and displaced, and when the first adjusting screw is adjusted away from the side wall of the receiving portion 20, the second elastic member 22 is deformed and displaced. To adjust the position of the lens.
  • the second elastic member 22 When the second adjustment screw is adjusted against the side wall of the receiving portion 20, the second elastic member 22 is driven to undergo a deformation and displacement, and when the second adjustment screw is adjusted to be away from the side wall of the accommodation portion 20, the second elastic member 22 is caused to undergo a deformation and displacement. To adjust the position of the lens.
  • the base plate 1 is provided with an adjustment thread hole, which is between two fixed thread holes.
  • the third adjustment screw is screwed to the base plate 1 through the adjustment thread hole.
  • the third adjustment screw passes through the base plate 1 and is adjacent to the support assembly 2.
  • the accommodation section 20 is provided.
  • the lens fixing device further includes a spacer 5, which is disposed between the support assembly 2 and the substrate 1 so that there is a gap between the support assembly 2 and the substrate 1, so as to reserve for the third adjustment mechanism 33. Event space.
  • first adjustment mechanism 31 and the second adjustment mechanism 32 are abutted with the support assembly 2 in advance, so that the first elastic member 21 and the second elastic member 22 apply upward deformation displacement to ensure that Adjust the position of the lens down.
  • Adjustment method 1 adjust the first adjustment mechanism 31 to move toward or away from the first elastic member 21, and then drive the first elastic member 21 to deform and displace, so as to drive the lens accommodated in the accommodation portion 20 away from or close to the third adjustment mechanism 33 to adjust the position of the lens;
  • Adjustment method two adjust the second adjustment mechanism 32 to move toward or away from the second elastic member 22, thereby driving the second elastic member 22 to deform and displace, so as to drive the lens accommodated in the accommodation portion 20 away from or close to the third adjustment mechanism 33 to adjust the position of the lens;
  • Adjustment method three adjust the third adjustment mechanism 33 to move upward or downward to drive the first elastic member 21 and the second elastic member 22 to deform and displace, to drive the lens to move away from or close to the substrate 1, and then adjust the lens position.
  • the position of the lens can also be adjusted by any combination of the above three adjustment methods.
  • Embodiments 1 and 2 it is necessary to set in advance that the first elastic member 21 and the second elastic member 22 have upward displacement deformation to adjust the position of the downward adjustment lens, and then the maximum distance that the lens can be adjusted downward from the first Depending on the initial deformation of the elastic member 21 and the second elastic member 22, in an actual application scenario, the adjustment requirements may not be met.
  • this embodiment is further improved on the basis of Embodiment 2. Please refer to FIG. 6 for details.
  • the lens fixing device further includes a fourth adjustment mechanism 34 and a fifth adjustment mechanism 35.
  • the fourth adjustment mechanism 34 is disposed on the upper left side of the support assembly 2, and the fifth adjustment mechanism 35 is disposed on the upper right side of the support assembly 2.
  • the fourth adjustment mechanism 34 is disposed adjacent to the first elastic member 21, and the fifth adjustment component is disposed adjacent to the second elastic member 22.
  • the first adjustment member 34 and the fifth adjustment mechanism 35 are used to drive the first elastic member 21 and the second elastic member. A deformation shift occurs at 22 to adjust the position of the lens relative to the substrate 1.
  • the support assembly 2 further includes a first support member 341 and a second support member 351; one end of the first support member 341 is disposed on the left side of the support assembly 2, and one end of the second support member 351 is disposed on the support assembly 2.
  • one end of the first support member 341 is provided with a through hole, and the first fixing mechanism 41 passes through the through hole to be fixedly connected to the support assembly 2 and the substrate 1.
  • the second support member 351 is provided with a through hole at one end.
  • the two fixing mechanisms 42 are fixedly connected to the support assembly 2 and the substrate 1 after passing through the through hole.
  • first support member 341 and the second support member 351 are separate components, and are fixedly connected to the support assembly 2 through the first fixing mechanism 41 and the second fixing mechanism 42 respectively.
  • first support member 341 and the second support member 351 may be formed integrally with the support assembly 2.
  • the other end of the first support member 341 is provided with a through hole, and the fourth adjustment mechanism 34 is disposed adjacent to the first elastic member 21 after passing through the through hole; the other end of the second support member 351 is provided with a through hole, and the fifth adjustment mechanism is provided. 35 is disposed adjacent to the second elastic member 22 after passing through the through hole.
  • the fourth adjustment mechanism 34 and the fifth adjustment mechanism 35 are adjustment screws.
  • the other end of the first support member 341 is provided with a threaded hole, and the fourth adjustment mechanism 34 communicates with the first support through the threaded hole.
  • the other end of the second support member 351 is also provided with a threaded hole, and the fifth adjustment mechanism 35 is screwed to the second support member 351 through the threaded hole.
  • the third adjustment mechanism 33 may be adjusted downward first so that the end of the third adjustment mechanism 33 is spaced from the support assembly 2, and then the fourth adjustment mechanism 34 and the fifth adjustment mechanism 35 are adjusted downwards. It moves until the fourth adjustment mechanism 34 and the fifth adjustment mechanism 35 abut against the support assembly 2, which causes the first elastic member 21 and the second elastic member 22 to deform and displace, so as to drive the lens provided in the receiving portion 20 to move downward. To adjust the position of the lens.
  • the position of the lens may be adjusted in cooperation with the first adjustment mechanism 31, the second adjustment mechanism 32, the third adjustment mechanism 33, the fourth adjustment mechanism 34, and the fifth adjustment mechanism 35 to meet the coupling efficiency.
  • the lens fixing device of the present invention includes an adjustment mechanism and an elastic member.
  • the adjustment mechanism drives the elastic member to undergo deformation and displacement, thereby adjusting the position of the lens stored in the accommodating portion.
  • the position of the lens of the optical module can be adaptively adjusted by the adjustment mechanism, so as to adjust the optical link, so that the coupling efficiency of the optical module can be adjusted again.
  • the optical module includes a lens fixing device, a laser 71, a first lens 72, and a waveguide chip 76.
  • the first lens 72 is housed in a housing portion of a lens fixing device. Both the laser 71 and the waveguide chip 76 are disposed on the substrate 1, and the first lens 72 is disposed between the laser 71 and the waveguide chip 76.
  • the lens fixing device of any of the foregoing embodiments is applicable to the optical module of this embodiment.
  • the waveguide chip 76 may be a multiplexing chip, and is configured to synthesize a plurality of lasers with different wavelengths and output them to an optical module output port.
  • the waveguide chip 76 may be an optical fiber.
  • an optical module is used as an example to explain.
  • the optical module further includes a second lens 75, an optical isolator assembly 73, a spectroscopic prism 74, and a spectroscopic detector 77.
  • the first lens 72 is a collimating lens and the second lens 75 is a condenser lens.
  • the first lens 72 is disposed adjacent to the laser 71.
  • the first lens 72 is used for collimating the laser light of the laser 71.
  • the second lens 75 is adjacent to The waveguide chip 76 is provided, and the second lens 75 is used for converging and coupling the parallel light beams to the waveguide chip 76.
  • the first lens 72 and / or the second lens 75 may be respectively disposed on the lens fixing device, but in an actual application scenario, only the position of one of the lenses may be adjusted to adjust the optical coupling efficiency. Therefore, in order to save costs, generally only one of the lenses can be set on the lens fixing device.
  • the optical module of this embodiment will be explained by taking the first lens 72 provided on the lens fixing device as an example.
  • the laser 71, the first lens 72, the optical isolator assembly 73, the spectroscopic prism 74, the second lens 75, and the waveguide chip 76 are sequentially disposed on the substrate 1, and the first lens 72 is disposed in the housing of the lens fixing device.
  • the spectroscopic detector 77 is disposed adjacent to the spectroscopic prism 74.
  • the optical isolator assembly 73 is disposed between the first lens 72 and the beam splitting prism 74, and is used to prevent the reflected light generated by the back beam splitting prism 74 from entering the laser 71 and generating power fluctuation.
  • the beam splitting prism 74 can be formed by gluing two right-angle prisms, and the glued surface is plated with a 5% reflective beam splitting film to realize the function of beam splitting.
  • the dichroic prism 74 is used to reflect a part of the laser light on the glued surface after being turned 90 degrees to the spectroscopic detector 77, and is used to monitor the power of the laser 71 in real time to determine whether the laser 71 has failed.
  • the transmitted light passing through the cemented surface of the beam splitter prism 74 continues to transmit the coupled waveguide chip 76.
  • the second lens 75 is replaced with a C lens, and the C lens is directly bonded to the light receiving port of the waveguide chip 76. Since the C lens is directly bonded to the waveguide chip 76, at high or low temperatures, It can also ensure that the position between the C lens and the waveguide chip 76 is relatively fixed, and the coupling efficiency of the coupling structure is guaranteed.
  • a first heat sink 78 is provided between the laser 71 and the substrate 1
  • a second heat sink 79 is provided between the spectroscopic detector 77 and the substrate 1
  • a pad is provided between the waveguide chip 76 and the substrate 1.
  • the thickness of the sheet 80 is set to the thicknesses of the first heat sink 78, the second heat sink 79, and the spacer 80, so as to ensure that the light can be effectively received.
  • the first heat sink 78 is provided with a gold-plated pad and solder. The gold-plated pad is used for the wire power supply connection of the laser 71, and the solder is used for the eutectic welding of the laser 71 and the first heat sink 78.
  • the first heat sink 78 can play a role in dissipating heat from the laser 71.
  • the second lens 75 and the substrate 1 further include a receiving groove 81.
  • the receiving groove 81 is fixedly connected to the substrate 1, and the second lens 75 is received in the receiving groove 81.
  • the receiving groove 81 is a V-shaped groove
  • the second lens 75 is a cylindrical lens or a spherical lens.
  • the adhesive bonding means that the second lens 75 is bonded to the V-shaped groove by using a curing glue.
  • the second lens 75 Since the second lens 75 is tangent to the V-shaped groove, there is a certain pressure between the second lens 75 and the V-shaped groove, and the second lens 75 can be fixed in the V-shaped groove by using a small amount of glue.
  • the thickness of the adhesive layer between the second lens 75 and the side wall of the V-shaped groove can be effectively reduced, and the thickness of the adhesive layer can be ensured to be uniform.
  • the thickness of the glue layer between the second lens 75 and the side wall of the V-shaped groove is small, when the temperature changes cause the glue to change, the influence on the position of the second lens 75 is also relatively small.
  • positioning marks are provided on opposite sides of the receiving groove 81, and the positioning marks are used to guide the mounting of the second lens 75 to ensure that the second lens 75 is set at a preset position, and the second lens 75 can be realized without Source placement improves production efficiency and is suitable for mass production.
  • the positioning mark may be a cross shape, a circle, an arrow, or other shapes, which are not specifically limited herein.
  • the positions between the laser 71, the first lens 72, the second lens 75, and the waveguide chip 76 are set in advance to ensure better coupling efficiency.
  • the position of the second lens 75 can be adjusted by the lens fixing device to ensure the coupling efficiency .
  • the specific adjustment manner may be adjusted according to the adjustment structure of the lens fixing device, and is adjusted according to the adjustment manners of the foregoing embodiments 1 to 3, and details are not described herein again.
  • the light receiving module may also adopt the lens fixing device of any of the foregoing embodiments, so that the position of the lens can be adjusted again, so as to achieve the purpose that the coupling efficiency of the optical module can be adjusted again, thereby ensuring the coupling efficiency.
  • the lens fixing device of the present invention includes an adjustment mechanism and an elastic member.
  • the adjustment mechanism drives the elastic member to deform and displace, thereby adjusting the position of the lens stored in the accommodating portion.
  • the position of the lens of the optical module can be adaptively adjusted by the adjustment mechanism to adjust the optical link, so that the coupling efficiency of the optical module can be adjusted again, thereby improving the coupling efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种透镜的固定装置及相应的光模块,透镜的固定装置包括基板(1)、支撑组件(2)、第一调节机构(31)以及第二调节机构(32);支撑组件(2)上设置有收容部(20),收容部(20)相对的两侧设置有第一弹性件(21)和第二弹性件(22),收容部(20)用于收容透镜;支撑组件(2)设置在基板(1)上,第一调节机构(31)贯穿基板(1)后邻近第一弹性件(21)设置,第二调节机构(32)贯穿基板(1)后邻近第二弹性件(22)设置;其中,通过调节第一调节机构(31)和/或第二调节机构(32),带动第一弹性件(21)和第二弹性件(22)发生形变,以调整透镜的位置。通过调节机构调节透镜的位置,调节光链路,以保证耦合效率。

Description

一种透镜的固定装置及相应的光模块 技术领域
本发明属于光通信领域,更具体地,涉及一种透镜的固定装置及相应的光模块。
背景技术
目前,高清视频、云存储和交互式网络电视等一些高速率业务不断的发展导致网络协议(Internet Protocol,IP)流量持续快速的增加,目前IP流量已经占到骨干网总流量的99%,而以高清视频为代表的对等联网(Peer-To-Peer,P2P)业务流量已经超过50%,这些业务的快速发展给传输网带宽带来了巨大的压力。
同样,随着数据存储和计算资源进入云盘,数据中心对数据存储和数据传输能力的需求急剧增长。存储的数据需要不断地从数据中心以及数据中心内部进行访问和传输,由此使得数据中心内数据服务器从底板到背板的互连负载呈指数级增长,单个大型数据中心可能需要数十万个光互连。
光收发模块是光传输网和数据中心最基本组成单元,起到光到电和电到光的信号转换作用。一般而言,光收发模块包括光发射单元和光接收单元,光发射单元和光接收单元可以集成到一个模块,或者也可以单独做成独立的模块。在传统的光发射耦合结构中,将激光器将发射的光信号经过透镜后耦合至波导芯片或光纤中,由于透镜一般是直接粘接在基板上的,透镜与基板之间就会产生一定间隙,通过胶水填充透镜与基板之间的间隙。在高温或者低温时候,间隙中的胶水会产生较大的膨胀或者收缩位移,并带动透镜发生位移,直接影响激光器到波导芯片的耦合效率,耦合效率过低甚至导致光模块失效。另一方面,粘接透镜的胶水长期性暴露在空气中, 会吸收空气中水分,胶水体积发生变化,带动透镜位置发生变化,导致耦合效率发生变化,同样会导致耦合效率过低甚至导致光模块失效。
鉴于此,克服该现有技术产品所存在的不足是本技术领域亟待解决的问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种透镜的固定装置及相应的光模块,其目的在于通过调节机构调节透镜的位置,调节光链路,以保证耦合效率,由此解决光模块的透镜的位置发生变化时,导致耦合效率发生变化的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种透镜的固定装置,所述透镜的固定装置包括:基板1、支撑组件2、第一调节机构31以及第二调节机构32;所述支撑组件2上设置有收容部20,所述收容部20相对的两侧设置有第一弹性件21和第二弹性件22,所述收容部20用于收容透镜;所述支撑组件2设置在所述基板1的上,所述第一调节机构31贯穿所述基板1后邻近所述第一弹性件21设置,所述第二调节机构32贯穿所述基板1后邻近所述第二弹性件22设置;其中,通过调节所述第一调节机构31和/或所述第二调节机构32,带动所述第一弹性件21和所述第二弹性件22发生形变,以调整所述透镜的位置。
优选地,所述透镜为圆柱型透镜或球形透镜,所述收容部20为V型槽,所述透镜与所述V型槽的侧壁相切设置。
为实现上述目的,按照本发明的另一个方面,提供了一种透镜的固定装置,所述透镜的固定装置包括:基板1、支撑组件2、第一调节机构31、第二调节机构32以及第三调节机构33;所述支撑组件2上设置有收容部20,所述收容部20用于收容透镜;所述收容部20的左侧设置有第一弹性件21,所述收容部20的右侧设置有第二弹性件22;所述第一调节机构31 设置在所述支撑组件2的左侧,所述第二调节机构32设置在所述支撑组件2的右侧;所述支撑组件2设置在所述基板1上,第三调节机构33贯穿所述基板1后邻近所述收容部20设置;其中,通过所述第一调节机构31和/或所述第二调节机构32带动所述第一弹性件21和所述第二弹性件22发生形变位移,以调节所述透镜相对于所述第三调节机构33的位置;通过所述第三调节机构33带动所述第一弹性件21和所述第二弹性件22发生形变位移,以调整所述透镜相对于所述基板1的位置。
优选地,所述透镜的固定装置还包括第四调节机构34和第五调节机构35,所述第四调节机构34设置在所述支撑组件2左上侧,所述第五调节机构35设置在所述支撑组件2右上侧;所述第四调节机构34邻近所述第一弹性件21设置,所述第五调节组件邻近所述第二弹性件22设置;其中,通过所述第四调节机构34和所述第五调节机构35带动所述第一弹性件21和所述第二弹性件22发生形变位移,以调整所述透镜相对于所述基板1的位置。
优选地,所述支撑组件2还包括第一支撑件341和第二支撑件351;所述第一支撑件341的一端设置在所述支撑组件2的左侧,所述第一支撑件341的另一端设置有通孔,所述第四调节机构34贯穿所述通孔后邻近所述第一弹性件21设置;所述第二支撑件351的一端设置在所述支撑组件2的右侧,所述第二支撑件351的另一端设置有通孔,所述第四调节机构34贯穿所述通孔后邻近所述第二弹性件22设置。
优选地,所述第一调节机构31、所述第二调节机构32、所述第三调节机构33、所述第四调节机构34以及所述第五调节机构35均为调节螺钉。
优选地,所述透镜的固定装置还包括第一固定机构41和第二固定机构42;所述第一固定机构41设置在支撑组件2的左侧,所述第二固定机构42设置在支撑组件2的右侧;所述第一固定机构41和所述第二固定机构42用于将所述支撑组件2固定设置在所述基板1上。
优选地,所述透镜为圆柱型透镜或球形透镜,所述收容部20为V型槽,所述透镜与所述V型槽的侧壁相切设置。
为实现上述目的,按照本发明的又一个方面,提供了一种光模块,所述光模块包括上述任一方面所述的透镜的固定装置以及第一透镜72;所述第一透镜72收容于所述透镜的固定装置的收容部20。
优选地,所述光模块还包括激光器71和波导芯片76;所述激光器71和所述波导芯片76设置在所述基板1上,所述第一透镜72设置所述激光器71和所述波导芯片76之间。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有如下有益效果:本发明的透镜的固定装置包括调节机构以及弹性件,通过调节机构带动弹性件发生形变位移,进而调整收容于收容部的透镜的位置。在光模块的透镜的位置发生偏移时,可以通过调节机构适应性调节透镜的位置,以调节光链路,达到光模块的耦合效率可以再次被调节的目的,从而保证耦合效率。
附图说明
图1是本发明是实施例提供的一种透镜的固定装置的结构示意图;
图2是图1沿AA’方向的剖面结构示意图;
图3是本发明实施例提供的另一种透镜的固定装置的剖面结构示意图;
图4是本发明是实施例提供的又一种透镜的固定装置的结构示意图;
图5是图4沿AA’方向的剖面结构示意图;
图6是本发明实施例提供的再一种透镜的固定装置的剖面结构示意图;
图7是本发明实施例提供的一种光模块的结构示意图;
图8是图7沿BB’方向的剖面结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供一种透镜的固定装置,该透镜的固定装置适用于光通信领域,在光通信领域中通常使用光模块实现光到电和电到光的信号转换。在实际应用场景中,光发射单元可采用双透镜耦合方案,通过准直透镜将激光器发射的光束进行平行准直,再通过聚光透镜将平行准直光束汇聚耦合至波导芯片或光纤中。实际使用过程中,会根据实际情况设置激光器、透镜以及波导芯片的位置,以保证光模块具有较好的耦合效率,但是由于外界温度、外界水汽等影响会使得黏连透镜的胶水发生变化,使得透镜的位置发生改变,进而影响耦合效率。为解决前述问题,本发明提出了一种透镜的固定装置,通过该透镜的固定装置可以调节透镜的位置,从而调节耦合效率。下面具体解释说明本发明的透镜装置的结构以及调节透镜位置的过程。
实施例1:
请一并参阅图1~图2,本实施例提供一种透镜的固定装置,该透镜的固定装置包括:基板1、支撑组件2、第一调节机构31以及第二调节机构32。其中,支撑组件2上设置有收容部20,收容部20相对的两侧设置有第一弹性件21和第二弹性件22,收容部20用于收容透镜。
其中,支撑组件2需要具有较小的膨胀系数,保证耦合结构在高低温不产生较大的位移。在优选的实施例中,支撑组件2的材质为金属,例如,殷钢或者可伐。
在本实施例中,收容部20为V型槽,透镜为圆柱形透镜或球形透镜,透镜收容于V型槽时,透镜与V型槽的侧壁相切而设置,以实现透镜的初步固定,然后再使用胶粘接固定的方式将透镜固定在V型槽内。具体而言,胶粘接固定是指使用固化胶水将透镜与V型槽相黏连。由于透镜与V型槽相切设置,透镜与V型槽之间存在一定的压力,只需使用较少量的胶水即可将透镜固定在V型槽内,可以有效的减小透镜与V型槽侧壁之间胶层厚度,也可保证胶层厚度均匀一致。同时,由于透镜与V型槽侧壁之间胶层厚度较小,当温度变化引起胶水发生变化时,对透镜位置的影响也相应的较小。
在优选的实施例中,也可采用共晶焊接方式将透镜固定在V型槽内,具体而言,在透镜侧壁上镀金,并在V型槽内壁生长焊料,例如金焊焊料,通过共晶焊接方式把透镜固定在V型槽中。由于透镜侧壁的镀金层及V型槽内壁的焊料厚度都是微米量级,所以共晶焊接后,能够保证透镜与V型槽之间焊料厚度在微米量级,有效的保障透镜在高低温时候均不发生位移,而且共晶焊接的方式具有较高的可靠性,从而保证光模块的耦合效率。
进一步地,收容部20相对的两侧设置有定位标识6,该定位标识6用于引导透镜的贴装,保证透镜设置在预设的位置上,能够实现透镜的无源贴装,提高了生产效率且适用于批量生产。其中,定位标识6的可以为十字型、圆形、箭头或者其他形状,在此不做具体限定。
在本实施例中,支撑组件2设置在基板1的上,第一调节机构31贯穿基板1后邻近第一弹性件21设置,第二调节机构32贯穿基板1后邻近第二弹性件22设置。其中,通过调节第一调节机构31和/或第二调节机构32,带动第一弹性件21和第二弹性件22发生形变,以调整透镜的位置。
具体而言,透镜的固定装置还包括第一固定机构41和第二固定机构42,第一固定机构41设置在支撑组件2的左侧,第二固定机构42设置在支撑组件2的右侧。第一固定机构41和第二固定机构42用于将支撑组件2固定设置在基板1上。
在可选的实施例中,第一固定机构41和第二固定机构42均为螺栓或螺钉,在此,以第一固定机构41为第一固定螺钉,第二固定机构42为第二固定螺钉为例解释说明支撑组件2与基板1的固定方式。
在基板1上设置有两个固定螺纹孔,两个固定螺纹孔分别与第一固定螺钉和第二固定螺钉的位置相对应,在支撑组件2的左侧和右侧均设置有通孔,第一固定螺钉贯穿支撑组件2左侧的通孔后与对应的固定螺纹孔螺纹连接,第二固定螺钉贯穿支撑组件2右侧的通孔后与对应的固定螺纹孔螺纹连接,从而将支撑组件2固定在基板1上。
在可选的实施例中,第一调节机构31和第二调节机构32均为调节螺钉,在此,以第一调节机构31为第一调节螺钉,第二调节机构32为第二调节螺钉为例解释说明调节机构与基板1的连接关系。
在基板1上还设置有两个调节螺纹孔,其中,两个调节螺纹孔设置在两个固定螺纹孔之间,第一调节螺钉通过其中一个调节螺纹孔与基板1螺纹连接,第二调节螺钉通过另一个调节螺纹孔与基板1螺纹连接。第一调节螺钉贯穿基板1后邻近第一弹性件21设置,第二调节螺钉贯穿基板1后邻近第二弹性件22设置。
进一步地,透镜的固定装置还包括垫片5,垫片5设置在支撑组件2和基板1之间,以使得支撑组件2和基板1之间存在空隔,从而为第一调节机构31和第二调节机构32预留活动空间。
在优选的实施例中,预先将第一调节机构31和第二调节机构32与支撑组件2抵接,以使的第一弹性件21和第二弹性件22施加向上的形变位移,以保证能够向下调节透镜的位置。
下面具体说明本实施例的透镜固定装置调节透镜位置的方式。
在本实施例中,存在三种可选的调节方式调节透镜的位置,调节方式如下:
调节方式一:同时向上或向下调节第一调节机构31和第二调节机构32运动,进而带动第一弹性件21和第二弹性件22发生形变位移,以带动收容于收容部20的透镜靠近或远离基板1,以调整透镜的位置;
调节方式二:调节第一调节机构31向上或向下运动,保持第二调节机构32不变,此时,大部分力施加在第一弹性件21上,少部分力施加在第二弹性件22上,则,第一弹性件21发生的形变位移较大,第二弹性件22发生的形变位移较小,以使得透镜可以向右上方或左下方偏移;
调节方式三:调节第二调节机构32向上或向下运动,保持第一调节机构31不变,此时,大部分力施加在第二弹性件22上,少部分力施加在第一弹性件21上,则,第二弹性件22发生的形变位移较大,第一弹性件21发生的形变位移较小,以使得透镜可以向左上方或右下方偏移。
在实际使用过程中,根据需求选择合适的调节方式调节透镜的位置,实现光模块在封装完成后,耦合效率能够再次调整,从而提高成品率。
为了提高调节的精度,如图3所示,在优选的实施方式中,第一弹性件21的数目为二,第二弹性件22的数目为二,第一调节机构31设置在两个第一弹性件21之间,第二调节机构32设置在两个第二弹性件22之间。当第一调节机构31抵接支撑组件2时,位于第一调节机构31两侧的第一弹性件21均可分散应力,进而使得每次调节第一调节机构31时,每个第一弹性件21的位移形变较小;当第二调节机构32抵接支撑组件2时,位于第二调节机构32两侧的第二弹性件22均可分散应力,进而使得每次调节第二调节机构32时,每个第二弹性件22的位移形变较小,进而使得收容部20每一相对于基板1移动的距离较小,从而提高调节的精度。
实施例2:
在实施例1中,在调整透镜位置时,可以较好的调整透镜相对于基板1的上下位置,但对于透镜相对于基板1的左右位置只能进行微小的调整。为了能够可以更快速便捷的调整透镜相对于基板1的左右位置,本实施例提供了另一种结构的透镜的固定装置。
区别于实施例1的固定装置,本实施例的调节机构设置的位置有所改进,具体请参阅图4和图5。
在本实施例中,透镜的固定装置包括:基板1、支撑组件2、第一调节机构31、第二调节机构32以及第三调节机构33。支撑组件2上设置有收容部20,收容部20用于收容透镜;收容部20的左侧设置有第一弹性件21,收容部20的右侧设置有第二弹性件22。
其中,第一调节机构31设置在支撑组件2的左侧,第二调节机构32设置在支撑组件2的右侧。具体地,支撑组件2的左侧设置有通孔,该通孔贯穿第一弹性件21后,邻近收容部20设置,支撑组件2的右侧设置有通孔,该通孔贯穿第二弹性件22后,邻近收容部20设置。支撑组件2设置在基板1上,第三调节机构33贯穿基板1后邻近收容部20设置。
其中,通过第一调节机构31和/或第二调节机构32带动第一弹性件21和第二弹性件22发生形变位移,以调节透镜相对于第三调节机构33的位置;通过第三调节机构33带动第一弹性件21和第二弹性件22发生形变位移,以调整透镜相对于基板1的位置。
具体而言,透镜的固定装置还包括第一固定机构41和第二固定机构42,第一固定机构41设置在支撑组件2的左侧,第二固定机构42设置在支撑组件2的右侧。第一固定机构41和第二固定机构42用于将支撑组件2固定设置在基板1上。
在可选的实施例中,第一固定机构41和第二固定机构42均为螺栓或螺钉,在此,以第一固定机构41为第一固定螺钉,第二固定机构42为第二固定螺钉为例解释说明支撑组件2与基板1的固定方式。
在基板1上设置有两个固定螺纹孔,两个固定螺纹孔分别与第一固定螺钉和第二固定螺钉的位置相对应,在支撑组件2的左侧和右侧均设置有通孔,第一固定螺钉贯穿支撑组件2左侧的通孔后与对应的固定螺纹孔螺纹连接,第二固定螺钉贯穿支撑组件2右侧的通孔后与对应的固定螺纹孔螺纹连接,从而将支撑组件2固定在基板1上。
在可选的实施例中,第一调节机构31、第二调节机构32以及第三调节机构33均为调节螺钉,在此,以第一调节机构31为第一调节螺钉,第二调节机构32为第二调节螺钉,第三调节机构33为第三调节螺钉为例解释说明。
支撑组件2的左侧设置有螺纹孔,第一调节螺钉通过该螺纹孔贯穿第一弹性件21后,邻近收容部20设置;支撑组件2的右侧设置有螺纹孔,第二调节螺钉通过该螺纹孔贯穿第二弹性件22后,邻近收容部20设置。在调节第一调节螺钉抵接收容部20的侧壁时,带动第一弹性件21发生形变位移,在调节第一调节螺钉远离收容部20的侧壁时,带动第二弹性件22发生形变位移,从而实现调整透镜的位置。在调节第二调节螺钉抵接收容部20的侧壁时,带动第二弹性件22发生形变位移,在调节第二调节螺钉远离收容部20的侧壁时,带动第二弹性件22发生形变位移,从而实现调整透镜的位置。
基板1设置有一个调节螺纹孔,该调节螺纹孔在两个固定螺纹孔之间,第三调节螺钉通过该调节螺纹孔与基板1螺纹连接,第三调节螺钉贯穿基板1后邻近支撑组件2的收容部20设置。
进一步地,透镜的固定装置还包括垫片5,垫片5设置在支撑组件2和基板1之间,以使得支撑组件2和基板1之间存在空隔,从而为第三调节机构33预留活动空间。
在优选的实施例中,预先将第一调节机构31和第二调节机构32与支撑组件2抵接,以使的第一弹性件21和第二弹性件22施加向上的形变位 移,以保证能够向下调节透镜的位置。
下面具体说明本实施例的透镜固定装置调节透镜位置的方式。
在本实施例中,存在至少三种可选的调节方式调节透镜的位置,调节方式如下:
调节方式一:调节第一调节机构31向靠近或远离第一弹性件21的方向运动,进而带动第一弹性件21发生形变位移,以带动收容于收容部20的透镜远离或靠近第三调节机构33,以调整透镜的位置;
调节方式二:调节第二调节机构32向靠近或远离第二弹性件22的方向运动,进而带动第二弹性件22发生形变位移,以带动收容于收容部20的透镜远离或靠近第三调节机构33,以调整透镜的位置;
调节方式三:调节第三调节机构33向上或向下运动,以带动第一弹性件21和第二弹性件22发生形变位移,以带动透镜向远离或靠近基板1的方向移动,进而调整透镜的位置。
当然,也可以通过上述三种调节方式进行任意组合调整透镜的位置。
实施例3:
上述实施例1和实施例2,需要预先设置第一弹性件21和第二弹性件22具有向上的位移形变,以调节向下调节透镜的位置,则透镜能够向下调整的最大距离与第一弹性件21和第二弹性件22初始形变量而定,在实际应用场景中,可以能无法满足调整的需求。为了便于调节透镜向下的位置,本实施例在实施例2的基础上进行了进一步的改进,具体请参阅图6。
在本实施例中,透镜的固定装置还包括第四调节机构34和第五调节机构35,第四调节机构34设置在支撑组件2左上侧,第五调节机构35设置在支撑组件2右上侧。其中,第四调节机构34邻近第一弹性件21设置,第五调节组件邻近第二弹性件22设置,通过第四调节机构34和第五调节机构35带动第一弹性件21和第二弹性件22发生形变位移,以调整透镜相对于基板1的位置。
具体而言,支撑组件2还包括第一支撑件341和第二支撑件351;第一支撑件341的一端设置在支撑组件2的左侧,第二支撑件351的一端设置在支撑组件2的右侧。在本实施例中,第一支撑件341的一端设置有通孔,第一固定机构41贯穿该通孔后与支撑组件2、基板1固定连接;第二支撑件351一端设置有通孔,第二固定机构42贯穿该通孔后与支撑组件2、基板1固定连接。可以理解为,第一支撑件341和第二支撑件351是分离的部件,分别通过第一固定机构41和第二固定机构42与支撑组件2固定连接。在可选的实施例中,第一支撑件341和第二支撑件351可以与支撑组件2一体成型而成。
进一步地,第一支撑件341的另一端设置有通孔,第四调节机构34贯穿通孔后邻近第一弹性件21设置;第二支撑件351的另一端设置有通孔,第五调节机构35贯穿通孔后邻近第二弹性件22设置。
在可选的实施例中,第四调节机构34以及第五调节机构35均为调节螺钉,第一支撑件341的另一端设置有螺纹孔,第四调节机构34通过该螺纹孔与第一支撑件341螺纹连接;第二支撑件351的另一端同样设置有螺纹孔,第五调节机构35通过该螺纹孔与第二支撑件351螺纹连接。
在实际使用过程中,可先向下调节第三调节机构33,使得第三调节机构33的端部与支撑组件2存在间隔,然后再通过调节第四调节机构34以及第五调节机构35向下运动直至第四调节机构34以及第五调节机构35与支撑组件2抵接,进而引起第一弹性件21和第二弹性件22发生形变位移,以带动该设置在收容部20的透镜向下运动,进而调整透镜的位置。
在本实施例中,可以配合第一调节机构31、第二调节机构32、第三调节机构33、第四调节机构34以及第五调节机构35调整透镜的位置,以满足耦合效率。
区别于现有技术,本发明的透镜的固定装置包括调节机构以及弹性件,通过调节机构带动弹性件发生形变位移,进而调整收容于收容部的透镜的 位置。在光模块的透镜的位置发生偏移时,可以通过调节机构适应性调节透镜的位置,从而调节光链路,达到光模块的耦合效率可以再次被调节的目的。
实施例4:
参阅7和图8,本实施例提供一种光模块,该光模块包括透镜的固定装置、激光器71、第一透镜72和波导芯片76。第一透镜72收容于透镜的固定装置的收容部,激光器71和波导芯片76均设置在基板1上,第一透镜72设置在激光器71和波导芯片76之间。其中,上述任一实施例的透镜的固定装置均适用于本实施例的光模块。具体地,波导芯片76可以为合波芯片,用于将多路不同波长的激光合成一路输出至光模块输出端口。在其他实施方式中,波导芯片76也可以为光纤。
在本实施例中,以光模块为光发射模块为例解释说明。光模块还包括第二透镜75、光隔离器组件73、分光棱镜74以及分光探测器77。其中,第一透镜72为准直透镜、第二透镜75为聚光透镜,第一透镜72邻近激光器71设置,第一透镜72用于对激光器71的激光进行准直处理;第二透镜75邻近波导芯片76设置,第二透镜75用于将平行光束汇聚耦合波导芯片76。
在本实施例中,第一透镜72和/或第二透镜75均可对应设置在透镜的固定装置上,不过在实际应用场景中,只需调节其中一个透镜的位置即可调节光耦合效率,因此,为了节约成本,一般只将其中一个透镜设置在透镜的固定装置上即可。在此以第一透镜72设置在透镜的固定装置上为例解释说明本实施例的光模块。
具体而言,激光器71、第一透镜72、光隔离器组件73、分光棱镜74、第二透镜75以及波导芯片76依次设置在基板1上,第一透镜72设置在透镜的固定装置的收容部20内。其中,分光探测器77邻近分光棱镜74设置。光隔离器组件73设置在第一透镜72和分光棱镜74之间,用于防止回分光 棱镜74所产生的反光入射至激光器71中,产生功率波动。
其中,分光棱镜74可以由2块直角棱镜胶合而成,胶合面镀5%反射分光膜,以实现分光的功能。分光棱镜74用于将部分激光在胶合面进行90度转向后反射至分光探测器77中,用于实时监控激光器71的功率,判断激光器71是否失效。通过分光棱镜74胶合面的透射光继续传输耦合波导芯片76。
在可选的实施例中,第二透镜75更换成C透镜,直接把C透镜粘接到波导芯片76的收光口上,由于C透镜直接与波导芯片76粘接在一起,在高温或者低温时候,同样能够保证C透镜与波导芯片76之间位置相对固定,保证耦合结构的耦合效率。
为了保证各器件的高度匹配,在激光器71与基板1之间设置第一热沉78,分光探测器77与基板1之间设置第二热沉79,波导芯片76与基板1之间设置由垫片80,合理设置第一热沉78、第二热沉79以及垫片80的厚度,保证能够有效接收光线。具体地,第一热沉78上设置有镀金焊盘及焊料,镀金焊盘用于激光器71的打线供电连接,焊料用于激光器71与第一热沉78共晶焊接。同时,第一热沉78能够起到对激光器71散热的作用。
在本实施方式中,第二透镜75与基板1之间还包括收容槽81,收容槽81与基板1固定连接,第二透镜75收容于收容槽81内。在优选的实施例中,收容槽81为V型槽,第二透镜75为圆柱形透镜或球形透镜,第二透镜75收容于V型槽时,第二透镜75与V型槽的侧壁相切而设置,以实现第二透镜75的初步固定,然后再使用胶粘接固定的方式将第二透镜75固定在V型槽内。具体而言,胶粘接固定是指使用固化胶水将第二透镜75与V型槽相黏连。由于第二透镜75与V型槽相切设置,第二透镜75与V型槽之间存在一定的压力,只需使用较少量的胶水即可将第二透镜75固定在V型槽内,可以有效的减小第二透镜75与V型槽侧壁之间胶层厚度,也可保证胶层厚度均匀一致。同时,由于第二透镜75与V型槽侧壁之间胶层厚 度较小,当温度变化引起胶水发生变化时,对第二透镜75位置的影响也相应的较小。
进一步地,收容槽81相对的两侧设置有定位标识,该定位标识用于引导第二透镜75的贴装,保证第二透镜75设置在预设的位置上,能够实现第二透镜75的无源贴装,提高了生产效率且适用于批量生产。其中,定位标识的可以为十字型、圆形、箭头或者其他形状,在此不做具体限定。
在实际应用场景中,激光器71、第一透镜72、第二透镜75以及波导芯片76之间的位置时是预先设置好的,以保证较佳的耦合效率。当由于外界环境影响使得激光器71、第一透镜72、第二透镜75或波导芯片76发生位置偏移导致耦合效率降低时,可以通过透镜的固定装置调节第二透镜75的位置,以保证耦合效率。具体的调节方式可依据透镜的固定装置调节的结构,对照前述实施例1~实施例3的调节方式进行调节,在此不再赘述。
此外,在实际应用场景中光接收模块也可采用上述任意实施例的透镜固定装置,以使得透镜的位置可以再次被调节,达到光模块的耦合效率可以再次被调节的目的,从而保证耦合效率。
区别于现有技术,本发明的透镜的固定装置包括调节机构以及弹性件,通过调节机构带动弹性件发生形变位移,进而调整收容于收容部的透镜的位置。在光模块的透镜的位置发生偏移时,可以通过调节机构适应性调节透镜的位置,以调节光链路,达到光模块的耦合效率可以再次被调节的目的,从而提高耦合效率。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种透镜的固定装置,其特征在于,所述透镜的固定装置包括:基板(1)、支撑组件(2)、第一调节机构(31)以及第二调节机构(32);
    所述支撑组件(2)上设置有收容部(20),所述收容部(20)相对的两侧设置有第一弹性件(21)和第二弹性件(22),所述收容部(20)用于收容透镜;
    所述支撑组件(2)设置在所述基板(1)的上,所述第一调节机构(31)贯穿所述基板(1)后邻近所述第一弹性件(21)设置,所述第二调节机构(32)贯穿所述基板(1)后邻近所述第二弹性件(22)设置;
    其中,通过调节所述第一调节机构(31)和/或所述第二调节机构(32),带动所述第一弹性件(21)和所述第二弹性件(22)发生形变,以调整所述透镜的位置。
  2. 根据权利要求1所述的透镜的固定装置,其特征在于,所述透镜为圆柱型透镜或球形透镜,所述收容部(20)为V型槽,所述透镜与所述V型槽的侧壁相切设置。
  3. 一种透镜的固定装置,其特征在于,所述透镜的固定装置包括:基板(1)、支撑组件(2)、第一调节机构(31)、第二调节机构(32)以及第三调节机构(33);
    所述支撑组件(2)上设置有收容部(20),所述收容部(20)用于收容透镜;所述收容部(20)的左侧设置有第一弹性件(21),所述收容部(20)的右侧设置有第二弹性件(22);
    所述第一调节机构(31)设置在所述支撑组件(2)的左侧,所述第二调节机构(32)设置在所述支撑组件(2)的右侧;所述支撑组件(2)设 置在所述基板(1)上,第三调节机构(33)贯穿所述基板(1)后邻近所述收容部(20)设置;
    其中,通过所述第一调节机构(31)和/或所述第二调节机构(32)带动所述第一弹性件(21)和所述第二弹性件(22)发生形变位移,以调节所述透镜相对于所述第三调节机构(33)的位置;通过所述第三调节机构(33)带动所述第一弹性件(21)和所述第二弹性件(22)发生形变位移,以调整所述透镜相对于所述基板(1)的位置。
  4. 根据权利要求3所述的透镜的固定装置,其特征在于,所述透镜的固定装置还包括第四调节机构(34)和第五调节机构(35),所述第四调节机构(34)设置在所述支撑组件(2)左上侧,所述第五调节机构(35)设置在所述支撑组件(2)右上侧;
    所述第四调节机构(34)邻近所述第一弹性件(21)设置,所述第五调节组件邻近所述第二弹性件(22)设置;
    其中,通过所述第四调节机构(34)和所述第五调节机构(35)带动所述第一弹性件(21)和所述第二弹性件(22)发生形变位移,以调整所述透镜相对于所述基板(1)的位置。
  5. 根据权利要求4所述的透镜的固定装置,其特征在于,所述支撑组件(2)还包括第一支撑件341和第二支撑件(351);
    所述第一支撑件341的一端设置在所述支撑组件(2)的左侧,所述第一支撑件341的另一端设置有通孔,所述第四调节机构(34)贯穿所述通孔后邻近所述第一弹性件(21)设置;所述第二支撑件(351)的一端设置在所述支撑组件(2)的右侧,所述第二支撑件(351)的另一端设置有通孔,所述第四调节机构(34)贯穿所述通孔后邻近所述第二弹性件(22)设置。
  6. 根据权利要求4或5所述的透镜的固定装置,其特征在于,所述第一调节机构(31)、所述第二调节机构(32)、所述第三调节机构(33)、所述第四调节机构(34)以及所述第五调节机构(35)均为调节螺钉。
  7. 根据权利要求3所述的透镜的固定装置,其特征在于,所述透镜的固定装置还包括第一固定机构(41)和第二固定机构(42);
    所述第一固定机构(41)设置在支撑组件(2)的左侧,所述第二固定机构(42)设置在支撑组件(2)的右侧;所述第一固定机构(41)和所述第二固定机构(42)用于将所述支撑组件(2)固定设置在所述基板(1)上。
  8. 根据权利要求3所述的透镜的固定装置,其特征在于,所述透镜为圆柱型透镜或球形透镜,所述收容部(20)为V型槽,所述透镜与所述V型槽的侧壁相切设置。
  9. 一种光模块,其特征在于,所述光模块包括如权利要求1~8任一项所述的透镜的固定装置以及第一透镜(72);所述第一透镜(72)收容于所述透镜的固定装置的收容部(20)。
  10. 根据权利要求9所述的光模块,其特征在于,所述光模块还包括激光器(71)和波导芯片(76);所述激光器(71)和所述波导芯片(76)设置在所述基板(1)上,所述第一透镜(72)设置所述激光器(71)和所述波导芯片(76)之间。
PCT/CN2018/123436 2018-07-26 2018-12-25 一种透镜的固定装置及相应的光模块 WO2020019660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810833040.2A CN109031543A (zh) 2018-07-26 2018-07-26 一种透镜的固定装置及相应的光模块
CN201810833040.2 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020019660A1 true WO2020019660A1 (zh) 2020-01-30

Family

ID=64646538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123436 WO2020019660A1 (zh) 2018-07-26 2018-12-25 一种透镜的固定装置及相应的光模块

Country Status (2)

Country Link
CN (1) CN109031543A (zh)
WO (1) WO2020019660A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031543A (zh) * 2018-07-26 2018-12-18 武汉光迅科技股份有限公司 一种透镜的固定装置及相应的光模块
CN110224294A (zh) * 2019-06-28 2019-09-10 深圳市易飞扬通信技术有限公司 激光器组件的非气密封装方法及非气密激光器组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216754A1 (en) * 2006-03-15 2007-09-20 Ricoh Company, Limited Light source device, optical scanning device, and image forming apparatus
CN101829847A (zh) * 2010-05-28 2010-09-15 北京工业大学 一种准分子激光微加工系统的光路调节架
CN203444152U (zh) * 2013-08-30 2014-02-19 深圳市大族激光科技股份有限公司 一种镜片调节架及激光分光装置
CN104580805A (zh) * 2013-10-29 2015-04-29 三星电子株式会社 位置调节装置、成像单元以及图像读取装置
CN106772904A (zh) * 2017-02-07 2017-05-31 周仲达 一种激光镜头三维同步调节机构
CN206773235U (zh) * 2017-03-31 2017-12-19 武汉康达信光电设备有限公司 一种光学耦合架
CN109031543A (zh) * 2018-07-26 2018-12-18 武汉光迅科技股份有限公司 一种透镜的固定装置及相应的光模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8923135D0 (en) * 1989-10-13 1989-11-29 Bt & D Technologies Ltd Mounting optical components
GB9017015D0 (en) * 1990-08-02 1990-09-19 British Telecomm Optical component holder
US6665109B2 (en) * 2000-03-20 2003-12-16 Np Photonics, Inc. Compliant mechanism and method of forming same
CN202134793U (zh) * 2011-07-13 2012-02-01 维林光电(苏州)有限公司 半导体激光器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216754A1 (en) * 2006-03-15 2007-09-20 Ricoh Company, Limited Light source device, optical scanning device, and image forming apparatus
CN101829847A (zh) * 2010-05-28 2010-09-15 北京工业大学 一种准分子激光微加工系统的光路调节架
CN203444152U (zh) * 2013-08-30 2014-02-19 深圳市大族激光科技股份有限公司 一种镜片调节架及激光分光装置
CN104580805A (zh) * 2013-10-29 2015-04-29 三星电子株式会社 位置调节装置、成像单元以及图像读取装置
CN106772904A (zh) * 2017-02-07 2017-05-31 周仲达 一种激光镜头三维同步调节机构
CN206773235U (zh) * 2017-03-31 2017-12-19 武汉康达信光电设备有限公司 一种光学耦合架
CN109031543A (zh) * 2018-07-26 2018-12-18 武汉光迅科技股份有限公司 一种透镜的固定装置及相应的光模块

Also Published As

Publication number Publication date
CN109031543A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
JP2006284851A (ja) レンズホルダおよびそれを用いたレーザアレイユニット
US20040008744A1 (en) Multiplex laser-light source and exposure system
WO2020019660A1 (zh) 一种透镜的固定装置及相应的光模块
JP2003262766A (ja) 光結合装置
US20210157072A1 (en) Optical assembly
CA2863712C (en) Laser light source module and laser light source device
TW201333569A (zh) 透鏡陣列及具備它的光學模組
US11307376B2 (en) Optical module
CN109407234B (zh) 一种带背光监控的光组件
WO2016051836A1 (ja) 光部品、光モジュールおよび光部品の製造方法
WO2024066048A1 (zh) 光路耦合组件及带有光路耦合组件的光模块
WO2021051469A1 (zh) 半导体激光器
CN117406352A (zh) 硅光集成光模块及其制作方法
US9638875B2 (en) Optical communication apparatus and method of assembling the same
JP6824474B2 (ja) 集積光モジュールの製造方法
CN115144983A (zh) 用于光学互联的设备
JP2006267237A (ja) レーザー装置およびその組立方法並びにその取付構造
WO2022246917A1 (zh) 一种基于cob工艺的平面多通道单纤双向器件
US8457173B2 (en) Silicon-based lens support structure for diode laser
JP2017049613A (ja) レンズアレイおよびこれを備えた光モジュール
JPS62502290A (ja) 光結合構成に関する改良
CN201740890U (zh) 一种半导体激光器光纤耦合模块
CN217545225U (zh) 一种多芯片封装的半导体激光器
WO2022116630A1 (zh) 光源装置
JP2011043594A (ja) 光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927369

Country of ref document: EP

Kind code of ref document: A1