WO2020019624A1 - Oled模组、显示面板及显示器 - Google Patents

Oled模组、显示面板及显示器 Download PDF

Info

Publication number
WO2020019624A1
WO2020019624A1 PCT/CN2018/119747 CN2018119747W WO2020019624A1 WO 2020019624 A1 WO2020019624 A1 WO 2020019624A1 CN 2018119747 W CN2018119747 W CN 2018119747W WO 2020019624 A1 WO2020019624 A1 WO 2020019624A1
Authority
WO
WIPO (PCT)
Prior art keywords
led backlight
oled display
conductive glass
light
ito conductive
Prior art date
Application number
PCT/CN2018/119747
Other languages
English (en)
French (fr)
Inventor
胡珊珊
韩天鹏
熊圣锴
王博
王玉年
沈思宽
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Publication of WO2020019624A1 publication Critical patent/WO2020019624A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present application relates to the field of liquid crystal displays, and in particular, to an OLED module, a display panel, and a display.
  • HDR High-Dynamic Range (high dynamic range image) technology, with its advantages of high dynamic contrast, makes the display image blacker and darker, and the white is more eye-catching. It can show clear light and dark details, which can greatly improve the image quality level.
  • HDR technology is used in the field of liquid crystal display.
  • the current method is independent backlight control. When a bright picture is detected, the backlight current in this area increases the driving current instantly to reach the peak brightness. For example, the normal screen working current is 100mA. When a white screen is detected, the current can be increased by 180mA. At this time, the backlight brightness can reach about 20,000nits. However, because the transmittance of LCD glass is only 6% -7.5%, it currently contains HDR The maximum peak brightness of technology display devices is only 1200nits-1500nits.
  • Exemplary liquid crystal glass where light is emitted from the backlight, passes through the lower polarizer, the lower TFT conductive glass, the liquid crystal layer, the color filter, the upper glass, and the upper polarizer in this order.
  • color filters, liquid crystal pixel openings, and polarizers are the main reasons for loss of brightness. Therefore, even if the backlight instantly increases the driving current brightness up to 20000nits, after the light passes through the liquid crystal glass, the output energy is very small, and the brightness is only about 6% of the backlight. Therefore, the peak brightness of display devices uploaded with HDR technology in the market is generally only about 1000nits.
  • the main purpose of this application is to provide an OLED (Organic Light-Emitting Diode, Organic light emitting diode (LED) modules, display panels and displays are designed to solve the technical problems of low peak brightness caused by low transmittance of liquid crystal glass in display devices carrying HDR technology in the prior art.
  • OLED Organic Light-Emitting Diode
  • LED Organic light emitting diode
  • the present application provides an OLED module, which includes an LED (Light-Emitting Diode (light emitting diode) backlight and a transparent OLED display disposed above the LED backlight; the LED backlight is configured as a supplementary light source; the transparent OLED display is configured to emit light and receive and emit light from Light emitted by the LED backlight.
  • LED Light-Emitting Diode
  • transparent OLED display disposed above the LED backlight
  • the LED backlight is configured as a supplementary light source
  • the transparent OLED display is configured to emit light and receive and emit light from Light emitted by the LED backlight.
  • the transparent OLED display screen includes an ITO conductive glass cathode, a structure layer, and an ITO conductive glass anode which are sequentially disposed above the LED backlight.
  • the ITO conductive glass cathode is configured to receive the light emitted from the LED backlight. Light, and inject electrons into the structure layer when a current is passed, the ITO conductive glass anode is arranged to emit light from the LED backlight and the structure layer, and to the structure when a current is passed.
  • the structure layer injects holes, and the structure layer is configured to emit light after combining the electrons and the holes.
  • the ITO conductive glass cathode and the ITO conductive glass anode are made of ITO / Ag / ITO multilayer film material.
  • the structural layer includes an electron transporting layer, a light emitting layer, and a hole transporting layer which are sequentially disposed above the ITO conductive glass cathode.
  • the light-emitting layer is a three-color RGB (Red Green Blue, red green blue) organic light-emitting material.
  • the LED backlight source is a direct type LED backlight source.
  • the LED backlight is divided into at least one area.
  • the LED backlight source controls light output in the area according to a picture signal on the transparent OLED display screen.
  • the present application also proposes an OLED display panel, which includes the OLED module described above.
  • the present application also proposes an OLED display, which includes the OLED module as described above.
  • the OLED module in this application includes an LED backlight and a transparent OLED display disposed above the LED backlight.
  • the LED backlight is configured as a supplementary light source.
  • the transparent OLED display is configured to emit light and receive light. And emit light from the LED backlight.
  • FIG. 1 is a schematic structural diagram of an embodiment of an OLED module according to the present application.
  • FIG. 2 is a detailed structure diagram of 20 in FIG. 1.
  • the directivity indication is only set to be interpreted in a specific posture (as shown in the accompanying drawings). (Shown) the relative positional relationship and movement of each component, etc., if the specific posture changes, the directional indicator will change accordingly.
  • the OLED module includes an LED backlight source 10 and a transparent OLED display screen 20 disposed above the LED backlight source 10;
  • the LED backlight 10 is configured as a supplementary light source;
  • the transparent OLED display screen 20 is configured to emit light, and receives and emits light emitted from the LED backlight 10.
  • An exemplary liquid crystal screen consists of a backlight, a lower polarizer, a lower TFT conductive glass, a liquid crystal layer, a color filter, an upper glass, and an upper polarizer in this order.
  • the transmittance of each component is as follows: lower polarized light: 50% (because only one direction of polarized light is allowed to pass) glass: 95% (upper and lower glass need to calculate 2 pieces); liquid crystal: 95 %, Aperture ratio: 50%, color filter: 27%.
  • the color filters, liquid crystal pixel openings, and polarizers in the exemplary LCD screen are the main reasons for the loss of brightness, for the exemplary LCD screen, the color filter is set to the color of the display screen, The upper and lower polarizers with liquid crystal deflection realize the brightness and darkness control of the screen. These are necessary components. Therefore, in this embodiment, a transparent OLED display screen 20 made of a transparent material is used, and components such as polarizers and color filters that affect transmittance are removed, so that the screen transmittance is increased from 6% to 50%, thereby increasing peak brightness .
  • the exemplary OLED display screen is a display screen made of an organic electroluminescent diode, and is composed of a metal cathode, an electron transport layer, an organic light emitting layer, a hole transport layer, and an ITO (indium tin oxide) glass anode. Powered by power flow, no backlight required.
  • the exemplary OLED display has a brightness limitation, and generally has a peak brightness of only 1000 nits.
  • this embodiment uses a new type of matching, with the LED backlight 10 as a supplementary light source under the transparent OLED display screen 20.
  • the light of the supplementary light source can reach the top light through the transparent OLED display screen 20.
  • the LED backlight 10 and the transparent OLED display 20 can reduce the current correspondingly and extend the service life.
  • FIG. 2 is a schematic diagram illustrating the structure refinement of 20 in FIG. 1.
  • the transparent OLED display screen 20 includes an ITO conductive glass cathode 201, a structure layer 202, and an ITO conductive glass anode 203, which are sequentially disposed above the LED backlight 10.
  • the ITO conductive glass cathode 201 is configured to receive The light emitted from the LED backlight source injects electrons into the structure layer when a current is passed, and the ITO conductive glass anode 203 is arranged to emit light from the LED backlight source 10 and the structure layer 202, When a current passes, holes are injected into the structure layer 202, and the structure layer 202 is configured to emit light after combining the electrons and the holes.
  • the materials used for the ITO conductive glass cathode 201 and the ITO conductive glass cathode 203 are both transparent ITO / Ag / ITO multilayer film materials.
  • ITO conductive glass is a kind of glass that is both transparent and conductive. It uses magnetron sputtering deposition to form a film. Generally, ITO material is used as a sputtering target to generate a thin layer of ITO on a glass substrate. membrane. This layer of ITO film has both good electrical conductivity and light transmission, and is suitable for making transparent display electrodes.
  • the ITO / Ag / ITO multilayer film is a thin film with low square resistance and high visible light transmittance (greater than 90%). Compared with the ITO single-layer film, the luminous brightness and luminous efficiency are significantly improved.
  • the cathode part of an exemplary OLED display screen usually requires a low work function (Low work function) in order to increase the luminous efficiency of the element. function) metals such as Ag, Al, Ca, In, Li, and Mg, or composite metals with low work functions to make cathodes (for example: Mg-Ag magnesium silver).
  • metals such as Ag, Al, Ca, In, Li, and Mg, or composite metals with low work functions to make cathodes (for example: Mg-Ag magnesium silver).
  • a high work function High with 4.5eV-5.3eV (High work function)
  • stable and transparent ITO transparent conductive film In this embodiment, ITO conductive glass is used instead of the metal cathode, and the anode is also made of ITO conductive glass.
  • the OLED since the OLED is self-emitting, unlike the exemplary liquid crystal display screen, the upper and lower polarizers are required to be implemented with liquid crystal deflection. Therefore, in theory, no polarizer is needed.
  • the OLED display since the OLED display generally uses a metal cathode, it reflects external light. That is, when the external light source reflects on the metal cathode of the OLED display, it will cause reflected light and cause interference on the surface of the OLED display. Therefore, a layer of polarizer + 1 / 4 ⁇ glass is added to the glass surface of the exemplary OLED display. The principle is that half of the light cannot pass through when the external light first passes through the polarizer, and this half of the light passes through the 1 / 4 ⁇ wave plate.
  • the original light After reflection, the original light has been deflected by 90 degrees. The reflected light cannot pass through the polarizer, which solves the problem of reflection.
  • the transmittance of the polarizer is about 45% -50%, and the luminous flux is lost by half.
  • a transparent ITO conductive glass is used to replace the metal cathode, and the LED backlight 10 is below. Therefore, external ambient light will not be reflected on the metal cathode and penetrates the lower glass to the backlight, so no external ambient light interference will be formed.
  • transparent ITO conductive glass is used as the ITO conductive glass cathode 201 in structure, and the polarizing plate 1 / 4 ⁇ glass plate can be eliminated, and the transmittance can be increased by 50%.
  • the light emitted from the LED backlight 10 as a supplementary light source passes through the ITO conductive glass cathode 201 made of ITO conductive glass, the structure layer 202 directly reaches the ITO conductive glass and the ITO conductive glass anode 203, and emits light.
  • the structure layer 202 includes an electron transport layer 2021, a light emitting layer 2022, and a hole transport layer 2023, which are sequentially disposed above the ITO conductive glass cathode 201.
  • the principle of self-luminousness of the transparent OLED display screen 20 is that the first step: carrier injection, applying an appropriate forward bias to the OLED display screen 20, and after the electrons and holes overcome the interface energy barrier, Electrons are injected through the ITO conductive glass cathode 201 and the ITO conductive glass anode 202. Electrons are injected into the lowest end orbital level of the electron transport layer 2021 by the ITO conductive glass cathode 201, and holes are injected into the hole transport layer 2023 by the ITO conductive glass anode 203.
  • the second step carrier transport, driven by the electric field of the ITO conductive glass cathode 201 and 203 of the ITO conductive glass anode, the injected electrons and holes pass through the electrons and holes, respectively.
  • Layer migrates to the light-emitting layer;
  • the third step recombination, the electrons and holes recombine with each other in the organic substance with luminescent characteristics to form an exciton in an excited state;
  • the fourth step the exciton's migration, the exciton transfers energy to Organic light-emitting molecules, the electrons that excite the organic light-emitting molecules transition from the ground state to the excited state;
  • the fifth step electroluminescence, the excited state electrons are inactivated by radiation, generating photons, and releasing energy to return to a stable ground state.
  • the emitted light passes through the ITO conductive glass, which is observed by consumers.
  • the current flows from the ITO conductive glass cathode 201 to the ITO conductive glass anode 203 through the structural layer 202, and the ITO conductive glass cathode 201 will
  • the electron transport layer 2021 injects electrons
  • the ITO conductive glass anode 203 absorbs electrons, that is, holes are injected into the hole transport layer 2023.
  • the electrons and holes are combined in the light emitting layer 2022.
  • excess energy is released in the form of light emission, so that the transparent OLED display screen 20 emits light.
  • the brightness of light emission depends on the amount of current applied to the transparent OLED display screen 20, and the color of light emission depends on the type of organic material of the light emitting layer 2022.
  • the electron-transporting material of the electron-transporting layer 2021 behaves as an electron-deficient system in the molecular structure, and most of them have a strong ability to accept electrons, and can effectively transfer electrons under a forward bias. Film formation and stability.
  • the electron transporting material is generally an aromatic compound having a large conjugate plane, such as BND (oxazole derivative) or OXD (oxadiazole derivative), which is not limited in this embodiment.
  • the materials suitable for transferring electrons are not necessarily suitable for transferring holes, so the electron transport layer 2021 and the hole transport layer 2023 of the transparent OLED display screen 20 are usually selected from different organic materials.
  • the hole-transporting material of the hole-transporting layer 2023 is required to have high hole mobility, relatively small electron affinity, relatively low ionization energy, and high heat resistance stability.
  • the hole-transporting material is generally an aromatic polyamine-based material, such as TPD (N, N ' -Bis (3-methylphenyl) -N, N'-diphenyl-1,1'-diphenyl-4,4'-diamine) or NPB (N, N'-bis (1-naphthalene Base) -N, N ' -Diphenyl-1,1'-diphenyl-4,4'-diamine), which is not limited in this embodiment.
  • TPD N, N ' -Bis (3-methylphenyl) -N, N'-diphenyl-1,1'-diphenyl-4,4'-diamine
  • NPB N, N'-bis (1-naphthalene Base
  • the light-emitting layer 2022 is made of RGB three-color organic light-emitting materials.
  • one of the keys to OLED flat panel display technology is the light-emitting material of the light-emitting layer 2022, because a light-emitting material with superior electron transmission and light-emitting characteristics can be combined with various high-performance light-emitting bodies to obtain high-efficiency electricity. Photoluminescence and various light colors.
  • the organic materials of the light-emitting layer of the OLED on the market currently include white organic light-emitting materials and RGB three-color organic light-emitting materials. Among them, white organic light-emitting materials can only achieve light and dark control, and need to be matched with color filters to achieve color control to form a visual full-color display.
  • the advantage is that the production is simple, but the disadvantage is that after using color filters,
  • the color filter has a transmission rate of 27%, which greatly reduces the transmission brightness.
  • the RGB three-color organic light-emitting material used in this embodiment removes the color filter, and adopts three primary color (RGB) independent pixel light-emitting technologies, and each pixel has three light-emitting properties of red, green, and blue.
  • the LED backlight 10 is a direct type LED backlight.
  • LED backlights are divided into two types: direct-lit and edge-lit.
  • Direct-lit is the LED chip evenly arranged behind the LCD panel as a light source, so that the backlight can be evenly transmitted to the entire screen, the picture details are more delicate and realistic .
  • a direct-type LED backlight is preferred in this embodiment.
  • the LED backlight 10 is divided into at least one area.
  • the backlight needs to be partitioned, that is, the LED backlight is divided into multiple areas, and the main board analyzes the picture signals, and controls the power board to drive the LED backlight 10 and the transparent OLED display 20, according to the picture signals. Determines the magnitude of the drive current in this area.
  • the LED backlight source 10 controls the output of light in the area according to a picture signal on the transparent OLED display screen 20.
  • the contrast refers to the measurement of different brightness levels between the brightest white and the darkest black in the light and dark areas of an image, and the larger the difference range, the greater the contrast.
  • the transparent OLED display 20 does not emit any light when displaying pure black, so its contrast is almost infinite.
  • the LED backlight source 10 when the main board detects that the picture of a certain area on the transparent OLED display screen 20 is a white field, the LED backlight source 10 instantly increases the current in the corresponding area and then falls back to the next picture; when When a black screen area is detected, the LED backlight source 10 controls the corresponding area to reduce the current to zero. At this time, the area voltage of the transparent OLED display screen 20 is also zero, which achieves an integrated black effect. That is, the transparent OLED display 20 and the The LED backlight source 10 cooperates to increase and decrease the current synchronously according to the brightness of the screen to achieve brightness impact and dark processing.
  • the OLED module in this application includes an LED backlight and a transparent OLED display disposed above the LED backlight.
  • the LED backlight is configured as a supplementary light source.
  • the transparent OLED display is configured to emit light and receive light. And emit light from the LED backlight.
  • the display panel includes the OLED module described above.
  • OLED module structure of the OLED display panel reference may be made to the foregoing embodiment, and details are not described herein again. It can be understood that Since the OLED display panel of this embodiment adopts the technical solution of the OLED module described above, the OLED display panel can also improve the display penetration rate and achieve ultra-high brightness display with a peak of 10,000 nits.
  • This application also proposes an OLED display.
  • the display includes the OLED module as described above.
  • the OLED module of the OLED display reference may be made to the foregoing embodiments, and details are not described herein again. It is understandable that due to this implementation, The OLED display of the example adopts the technical solution of the above OLED module, so the OLED display can also improve the display screen penetration rate and achieve ultra-high brightness display with a peak of 10,000 nits.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED模组、显示面板及显示器。所述OLED模组包括LED背光源(10)和设置于所述LED背光源(10)上方的透明OLED显示屏(20),所述LED背光源(10)设置为补充光源;以及所述透明OLED显示屏(20),设置为自发光,以及接收并发射从所述LED背光源(10)发出的光线。通过透明OLED显示屏(20)+LED背光源(10)的搭配,提高显示屏穿透率,实现峰值10000nits的超高亮度显示,给用户带来更好的视觉体验。

Description

OLED模组、显示面板及显示器
技术领域
本申请涉及液晶显示领域,尤其涉及一种OLED模组、显示面板及显示器。
背景技术
HDR(High-Dynamic Range,高动态范围图像)技术以其高动态对比度优点,使得显示图像中黑色更加深邃,白色更加夺目,能展现出清晰的明暗细节,可以大幅提升画质水平。HDR技术在液晶显示领域,目前采用的方法为背光源独立分区控制,当检测到明画面时,该区域背光部分瞬间增大驱动电流,达到峰值亮度。例如,正常画面工作电流为100mA,当检测到白画面时,瞬间可增加180mA,此时背光亮度可以达到约20000nits,但由于液晶玻璃穿透率仅为6%-7.5%,故目前载有HDR技术的显示设备的最大峰值亮度也只为1200nits-1500nits。
示例性的液晶玻璃,光线从背光发射,会依次穿过下偏光片、下TFT导电玻璃、液晶层、彩色滤光片、上玻璃、上偏光片。其中,彩色滤光片、液晶像素点开口和偏光片是损失亮度的主要原因。因此,即使背光瞬间增大驱动电流亮度达20000nits,光线经过液晶玻璃后,出射能量很少,亮度仅为背光的6%左右。故市场上载有HDR技术的显示设备的峰值亮度一般仅为1000nits左右。
上述内容仅设置为辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的在于提供一种OLED(Organic Light-Emitting Diode, 有机发光二极管)模组、显示面板及显示器,旨在解决现有技术中载有HDR技术的显示设备因液晶玻璃穿透率低而导致峰值亮度低的技术问题。
为实现上述目的,本申请提供一种OLED模组,所述模组包括LED(Light-Emitting Diode,发光二极管)背光源和设置于所述LED背光源上方的透明OLED显示屏;所述LED背光源,设置为补充光源;所述透明OLED显示屏,设置为自发光,以及接收并发射从所述LED背光源发出的光线。
可选地,所述透明OLED显示屏包括依次设置于所述LED背光源上方的ITO导电玻璃阴极、结构层及ITO导电玻璃阳极,所述ITO导电玻璃阴极设置为接收所述LED背光源发出的光线,并在有电流通过时,向所述结构层注入电子,所述ITO导电玻璃阳极设置为发射来自所述LED背光源和所述结构层的光线,并在有电流通过时,向所述结构层注入空穴,所述结构层设置为结合所述电子和所述空穴后发光。
可选地,所述ITO导电玻璃阴极和所述ITO导电玻璃阳极采用的是ITO/Ag/ITO多层膜材料。
可选地,所述结构层包括依次设置于所述ITO导电玻璃阴极上方的电子传输层、发光层及空穴传输层。
可选地,所述发光层采用RGB(Red Green Blue,红绿蓝)三色有机发光材料。
可选地,所述LED背光源为直下式LED背光源。
可选地,所述 LED背光源划分成至少一个区域。
可选地,所述LED背光源根据所述透明OLED显示屏上的画面信号控制所述区域的光线的输出。
本申请还提出一种OLED显示面板,所述OLED显示面板包括如上所述的OLED模组。
本申请还提出一种OLED显示器,所述OLED显示器包括如上所述的OLED模组。
本申请所述OLED模组包括LED背光源和设置于所述LED背光源上方的透明OLED显示屏,所述LED背光源设置为补充光源;所述透明OLED显示屏,设置为自发光,以及接收并发射从所述LED背光源发出的光线。通过透明OLED显示屏+LED背光源这种新型搭配,提高显示屏穿透率,实现峰值10000nits的超高亮度显示,给用户带来更好的视觉体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本申请一种OLED模组一实施例的结构示意图;
图2是图1中20的结构细化示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅设置为解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
本申请提供一种OLED模组,参照图1,在一实施例中,所述OLED模组包括LED背光源10和设置于所述LED背光源10上方的透明OLED显示屏20;其中,所述LED背光源10,设置为补充光源;所述透明OLED显示屏20,设置为自发光,以及接收并发射从所述LED背光源10发出的光线。
示例性液晶屏依次由背光源、下偏光片、下TFT导电玻璃、液晶层、彩色滤光片、上玻璃、上偏光片组成。假设背光源亮度为100%,各个部件的穿透率如下:下偏光:50%(因为只允许单方向的极化光通过)玻璃:95%(上下玻璃需算计算2片);液晶:95%,开口率:50%,彩色滤光片:27%。故玻璃的穿透率 =100%(背光)*50%(下偏光片)*95%(下玻璃)*95%(液晶)*95%(上玻璃)*50%(开口率)*27%(彩色滤光片)=6% 。可见即使背光瞬间增大驱动电流亮度,光线经过液晶玻璃后,亮度也仅为背光的6%左右。
可理解的是,因为示例性液晶屏中彩色滤光片、液晶像素点开口和偏光片是损失亮度的主要原因,但对于示例性液晶屏而言,彩色滤光片设置为显示画面的彩色、上下偏光片搭配液晶偏转实现了画面亮暗控制,这些都是必备部件。因此本实施例采用由透明材料制成的透明OLED显示屏20,去除偏光片及彩色滤光片这样影响穿透率的部件,使得屏幕穿透率由6%提升到50%,从而提高峰值亮度。
需要说明的是,示例性OLED显示屏是利用有机电致发光二极管制成的显示屏,由金属阴极、电子传输层、有机发光层、空穴传输层、ITO(氧化铟锡)玻璃阳极组成,靠电源流驱动发光,不需要背光。而且由于示例性OLED显示屏材料的限制,只要亮度稍高,就容易出现坏点、烧屏等问题。因此示例性OLED显示屏有亮度限制,一般峰值亮度仅为1000nits。
为实现峰值10000nits,本实施例通过一种新型的搭配,在透明OLED显示屏20下方搭配LED背光源10做补充光源,补充光源的光经过透明OLED显示屏20可到达顶部出光,由于有后置LED背光源10,所述透明OLED显示屏20可相应减小电流,延长使用寿命。
本实施例中的所述透明OLED显示屏20相较于普通液晶显示器没有滤光片、偏光片,故当LED背光源10的峰值亮度达到20000nits时,从所述LED背光源10穿透出液晶屏能量Lv=20000*0.98*0.98(双层ITO玻璃)*0.5(开口率)≈10000nits,实现了峰值亮度10000nits,10倍优于目前HDR峰值亮度,大大提升了显示模组画质水平,在HDR技术方面实现重大突破。
参照图2,图2是图1中20的结构细化示意图。
本实施例中,所述透明OLED显示屏20包括依次设置于所述LED背光源10上方的ITO导电玻璃阴极201、结构层202及ITO导电玻璃阳极203,所述ITO导电玻璃阴极201设置为接收所述LED背光源发出的光线,并在有电流通过时,向所述结构层注入电子,所述ITO导电玻璃阳极203设置为发射来自所述LED背光源10和所述结构层202的光线,并在有电流通过时,向所述结构层202注入空穴,所述结构层202设置为结合所述电子和所述空穴后发光。
本实施例中,所述ITO导电玻璃阴极201与ITO导电玻璃阴极203采用的材料均为透明的ITO/Ag/ITO多层膜材料。
可以理解的是,ITO导电玻璃是一种既透明又导电的玻璃,它采用磁控溅射沉积成膜技术,通常以ITO材料作为溅射靶材,在玻璃基板上生成一层很薄的ITO膜。这层ITO膜同时具有良好的导电性和透光性,适于制作透明显示电极。而ITO/Ag/ITO多层膜是一种低方阻、高可见光透过率(大于90%)的薄膜,它与ITO单层膜相比,发光亮度和发光效率都有显著提高。
需要说明的是,示例性OLED显示屏的阴极部分通常为了增加元件的发光效率,通常需要用低功函数(Low work function)的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属来制作阴极(例如:Mg-Ag镁银)。在阳极材料的选择上,一般选择具有4.5eV-5.3eV的高功函数(High work function)、性质稳定且透光的ITO透明导电膜。本实施例使用ITO导电玻璃代替金属阴极,同时阳极也使用ITO导电玻璃。
可以理解的是,OLED由于是自发光,不像示例性液晶显示屏需要上下偏光片搭配液晶偏转实现。故理论上是不需要偏光片的。但由于OLED显示屏一般采用金属阴极,会反射外界光线。即当外界光源照射到OLED显示屏的金属阴极上反射回来时,就会造成反射光,在OLED显示屏的表面形成干扰。故示例性OLED显示屏上玻璃表面会加一层上偏光片+1/4λ玻片,原理是从当外界光先经过偏光片时已经有一半光无法通过,这一半光经过1/4λ波片和反射之后与原来的光已经偏90度,反射回来的光无法通过偏光片,解决了反射问题。而采用上偏光片后,偏光片的穿透率约为45%-50%,光通量损失一半。而本实施例中用透明ITO导电玻璃取代金属阴极,下方为LED背光源10,故而外界环境光不会在金属阴极上反射,穿透下玻璃到背光源,故不会形成外界环境光干扰。所以结构上用透明ITO导电玻璃做ITO导电玻璃阴极201,可以取消偏光片1/4λ玻片,提高50%穿透率。所述LED背光源10作为补充光源发出的光线经过ITO导电玻璃构成的所述ITO导电玻璃阴极201,所述结构层202,直接到达ITO导电玻璃所述ITO导电玻璃阳极203,出射光线。
本实施例中,所述结构层202包括依次设置于所述ITO导电玻璃阴极201上方的电子传输层2021、发光层2022及空穴传输层2023。
可理解的是,所述透明OLED显示屏20自发光的原理是,第一步:载流子注入,对OLED显示屏20施加适当的正向偏压,电子和空穴克服界面能垒后,经由ITO导电玻璃阴极201和ITO导电玻璃阳极202注入,电子由ITO导电玻璃阴极201注入到电子传输层2021的最低末轨道能级,空穴由ITO导电玻璃阳极203注入到空穴传输层2023的最高已占道能级;第二步:载流子传输,在ITO导电玻璃阴极201和ITO导电玻璃阳极203的ITO导电玻璃的电场驱动下,注入的电子和空穴分别经过电子和空穴传输层迁移到发光层;第三步:复合,电子和空穴在有发光特性的有机物质内互相复合,形成处于激发态的激子;第四步:激子的迁移,激子将能量传递给有机发光分子,激发有机发光分子的电子从基态跃迁到激发态;第五步:电致发光,激发态电子辐射失活,产生光子,释放能量回到稳定的基态。发出的光透过ITO导电玻璃,使消费者观察到。
具体地,当所述透明OLED显示屏20内有电流流通时,电流从所述ITO导电玻璃阴极201经所述结构层202流向所述ITO导电玻璃阳极203,所述ITO导电玻璃阴极201会向所述电子传输层2021注入电子,所述ITO导电玻璃阳极203会吸收电子,即向所述空穴传输层2023注入空穴,电子和空穴在所述发光层2022结合,当电子进入空穴时,会以发光的形式释放出多余的能量,使所述透明OLED显示屏20发光。发光的亮度取决于施加在所述透明OLED显示屏20上的电流的大小,发光的颜色取决于所述发光层2022的有机材料类型。
可以理解的是,所述电子传输层2021的电子传输材料在分子结构上表现为缺电子体系,大都具有较强的接受电子能力,可有效地在正向偏压下传递电子,也要有好的成膜性和稳定性。电子传输材料一般为具有大共扼平面的芳香族化合物,如BND(恶唑衍生物)或OXD(恶二唑类衍生物),本实施例对此不加限制。
另外,适合传递电子的材料不一定适合传递空穴,所以所述透明OLED显示屏20的电子传输层2021和空穴传输层2023通常选用不同的有机材料。所述空穴传输层2023的空穴传输材料要求具备高的空穴迁移率、相对较小的电子亲和能、相对较低的电离能、高的耐热稳定性。所述空穴传输材料一般为芳香多胺类材料,如TPD(N,N' -双(3-甲基苯基)-N,N' -二苯基-1,1' -二苯基-4,4' -二胺)或NPB(N,N' -双(1-萘基)-N,N' -二苯基-1,1'-二苯基-4,4'-二胺),本实施例对此不加限制。
本实施例中,所述发光层2022采用RGB三色有机发光材料。
需要说明的是,OLED平板显示技术的关键之一是所述发光层2022的发光材料,因为具有优越电子传输及发光特性的发光材料可以和各种高性能的发光体相结合而得到高效率电致发光及各种不同的光色。目前市场上OLED的发光层有机材料有白色有机发光材料和RGB三色有机发光材料。其中,白色有机发光材料只能实现亮暗控制,需要搭配彩色滤光片来实现颜色控制,形成视觉上的全彩色显示,其优点是制作简单,但缺点是由于使用了彩色滤光片后,彩色滤光片穿透率为27%,大大降低了穿透亮度。本实施例使用的RGB三色有机发光材料去除了彩色滤光片,采用三原色(RGB)独立像素发光技术,每个像素具有红绿蓝三个发光性。
本实施例中,所述LED背光源10为直下式LED背光源。
需要说明的是 ,LED的背光源分为直下式与侧光式两种,直下式是把LED晶粒均匀地配置在液晶面板的后方当作发光源,使背光可以均匀传达到整个屏幕,画面细节更细腻逼真。为了使画面质量更好,也为了实现画面的区域动态控制,本实施例优选直下式LED背光源。
本实施例中,所述 LED背光源10划分成至少一个区域。
在具体实现中,背光源需要做分区处理,即将LED背光源划分成多个区域,由主板分析画面信号,控制电源板驱动所述LED背光源10和所述透明OLED显示屏20,根据画面信号决定该区域的驱动电流大小。
为了实现所述OLED模组的高对比度,所述LED背光源10根据所述透明OLED显示屏20上的画面信号控制所述区域的光线的输出。
可以理解的是,对比度是指一幅图像中明暗区域最亮的白和最暗的黑之间不同亮度层级的测量,差异范围越大代表对比越大。透明OLED显示屏20在显示纯黑时是不会发出任何光线的,因此它的对比度几乎是无限大。
在具体实现中,当主板检测到所述透明OLED显示屏20上某个区域的画面为白场时,所述LED背光源10在相应区域瞬间增大电流,到下一个画面时再回落;当检测到黑画面区域时,所述LED背光源10控制该相应区域减小电流至零,此时所述透明OLED显示屏20的区域电压也为零,即实现了一体黑效果。即所述透明OLED显示屏20与所述 LED背光源10配合,根据画面的亮暗,同步增减电流实现亮度冲击和暗黑处理。
本申请所述OLED模组包括LED背光源和设置于所述LED背光源上方的透明OLED显示屏,所述LED背光源设置为补充光源;所述透明OLED显示屏,设置为自发光,以及接收并发射从所述LED背光源发出的光线。通过透明OLED显示屏+LED背光源这种新型搭配,提高显示屏穿透率,实现峰值10000nits的超高亮度显示,给用户带来更好的视觉体验。
本申请还提出一种OLED显示面板,所述显示面板包括如上所述的OLED模组,所述OLED显示面板的OLED模组结构可参照上述实施例,在此不再赘述;可以理解的是,由于本实施例的OLED显示面板采用了上述OLED模组的技术方案,因此所述OLED显示面板也可以提高显示屏穿透率,实现峰值10000nits的超高亮度显示。
本申请还提出一种OLED显示器,所述显示器包括如上所述的OLED模组,所述OLED显示器的OLED模组结构可参照上述实施例,在此不再赘述;可以理解的是,由于本实施例的OLED显示器采用了上述OLED模组的技术方案,因此所述OLED显示器也可以提高显示屏穿透率,实现峰值10000nits的超高亮度显示。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种OLED模组,其中,所述OLED模组包括LED背光源和设置于所述LED背光源上方的透明OLED显示屏;
    所述LED背光源,设置为补充光源;以及
    所述透明OLED显示屏,设置为自发光,以及接收并发射从所述LED背光源发出的光线。
  2. 如权利要求1所述的OLED模组,其中,所述透明OLED显示屏包括依次设置于所述LED背光源上方的ITO导电玻璃阴极、结构层及ITO导电玻璃阳极;所述ITO导电玻璃阴极设置为接收所述LED背光源发出的光线,并在有电流通过时,向所述结构层注入电子,所述ITO导电玻璃阳极设置为发射来自所述LED背光源和所述结构层的光线,并在有电流通过时,向所述结构层注入空穴,所述结构层设置为结合所述电子和所述空穴后发光。
  3. 如权利要求2所述的OLED模组,其中,所述ITO导电玻璃阴极和所述ITO导电玻璃阳极采用的是ITO/Ag/ITO多层膜材料。
  4. 如权利要求2所述的OLED模组,其中,所述结构层包括依次设置于所述ITO导电玻璃阴极上方的电子传输层、发光层及空穴传输层。
  5. 如权利要求4所述的OLED模组,其中,所述发光层采用RGB三色有机发光材料。
  6. 如权利要求1所述的OLED模组,其中,所述LED背光源为直下式LED背光源。
  7. 如权利要求6所述的OLED模组,其中,所述 LED背光源划分成至少一个区域。
  8. 如权利要求7所述的OLED模组,其中,所述LED背光源根据所述透明OLED显示屏上的画面信号控制所述区域的光线的输出。
  9. 一种OLED显示面板,其中,所述OLED显示面板包括OLED模组,所述OLED模组包括LED背光源和设置于所述LED背光源上方的透明OLED显示屏;
    所述LED背光源,设置为补充光源;以及
    所述透明OLED显示屏,设置为自发光,以及接收并发射从所述LED背光源发出的光线。
  10. 如权利要求9所述的OLED显示面板,其中,所述透明OLED显示屏包括依次设置于所述LED背光源上方的ITO导电玻璃阴极、结构层及ITO导电玻璃阳极;所述ITO导电玻璃阴极设置为接收所述LED背光源发出的光线,并在有电流通过时,向所述结构层注入电子,所述ITO导电玻璃阳极设置为发射来自所述LED背光源和所述结构层的光线,并在有电流通过时,向所述结构层注入空穴,所述结构层设置为结合所述电子和所述空穴后发光。
  11. 如权利要求10所述的OLED显示面板,其中,所述ITO导电玻璃阴极和所述ITO导电玻璃阳极采用的是ITO/Ag/ITO多层膜材料。
  12. 如权利要求10所述的OLED显示面板,其中,所述结构层包括依次设置于所述ITO导电玻璃阴极上方的电子传输层、发光层及空穴传输层。
  13. 如权利要求12所述的OLED显示面板,其中,所述发光层采用RGB三色有机发光材料。
  14. 一种OLED显示器,其中,所述OLED显示器包括OLED模组,所述OLED模组包括LED背光源和设置于所述LED背光源上方的透明OLED显示屏;
    所述LED背光源,设置为补充光源;以及
    所述透明OLED显示屏,设置为自发光,以及接收并发射从所述LED背光源发出的光线。
  15. 如权利要求14所述的OLED显示器,其中,所述透明OLED显示屏包括依次设置于所述LED背光源上方的ITO导电玻璃阴极、结构层及ITO导电玻璃阳极;所述ITO导电玻璃阴极设置为接收所述LED背光源发出的光线,并在有电流通过时,向所述结构层注入电子,所述ITO导电玻璃阳极设置为发射来自所述LED背光源和所述结构层的光线,并在有电流通过时,向所述结构层注入空穴,所述结构层设置为结合所述电子和所述空穴后发光。
PCT/CN2018/119747 2018-07-26 2018-12-07 Oled模组、显示面板及显示器 WO2020019624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810841415.X 2018-07-26
CN201810841415.XA CN108922910A (zh) 2018-07-26 2018-07-26 Oled模组、显示面板及显示器

Publications (1)

Publication Number Publication Date
WO2020019624A1 true WO2020019624A1 (zh) 2020-01-30

Family

ID=64417185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119747 WO2020019624A1 (zh) 2018-07-26 2018-12-07 Oled模组、显示面板及显示器

Country Status (2)

Country Link
CN (1) CN108922910A (zh)
WO (1) WO2020019624A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922910A (zh) * 2018-07-26 2018-11-30 深圳创维-Rgb电子有限公司 Oled模组、显示面板及显示器
CN112466256A (zh) * 2019-09-06 2021-03-09 联詠科技股份有限公司 双层液晶显示装置及其控制电路与控制方法
CN112394270B (zh) * 2020-11-27 2022-03-29 华南理工大学 一种oled器件在线质量检测方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163358A (zh) * 2007-11-14 2008-04-16 清华大学 一种显示装置
CN102682674A (zh) * 2012-05-28 2012-09-19 北京理工大学 一种基于oled-led的高亮度裸眼3d显示屏
US20140191217A1 (en) * 2013-01-08 2014-07-10 Wintek Corporation Organic electroluminescent display device
US20160118453A1 (en) * 2014-10-27 2016-04-28 Samsung Display Co., Ltd. Organic light-emitting display apparatus
CN108922910A (zh) * 2018-07-26 2018-11-30 深圳创维-Rgb电子有限公司 Oled模组、显示面板及显示器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359268B (zh) * 2017-06-15 2019-04-30 武汉华星光电半导体显示技术有限公司 透明oled显示面板及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163358A (zh) * 2007-11-14 2008-04-16 清华大学 一种显示装置
CN102682674A (zh) * 2012-05-28 2012-09-19 北京理工大学 一种基于oled-led的高亮度裸眼3d显示屏
US20140191217A1 (en) * 2013-01-08 2014-07-10 Wintek Corporation Organic electroluminescent display device
US20160118453A1 (en) * 2014-10-27 2016-04-28 Samsung Display Co., Ltd. Organic light-emitting display apparatus
CN108922910A (zh) * 2018-07-26 2018-11-30 深圳创维-Rgb电子有限公司 Oled模组、显示面板及显示器

Also Published As

Publication number Publication date
CN108922910A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN107579096B (zh) 一种oled显示面板及相应的驱动方法和驱动装置
US7294959B2 (en) OLED device having improved contrast
CN100517794C (zh) 有机发光显示装置
US11327361B2 (en) Display panel, and display device and drive method thereof
US10714030B2 (en) Display device and apparatus, display control method and storage medium
CN102354700B (zh) 显示装置
WO2012005540A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2020019624A1 (zh) Oled模组、显示面板及显示器
KR20080054626A (ko) 유기 전계발광표시소자 및 그 제조방법
US20070057881A1 (en) Transflective display having an OLED region and an LCD region
CN103579529B (zh) 有机发光二极管器件
CN111710306B (zh) 一种自发光lcd液晶屏幕、显示装置及电视机
CN102655219A (zh) 多色oled、多色oled单元及显示器件
CN106501998A (zh) 背光源、显示装置及其驱动方法
CN108878493A (zh) 显示面板和显示装置
JP3872964B2 (ja) ディスプレイ素子
CN110212104A (zh) 电致发光显示装置
US10217801B2 (en) Light-emitting structure, display device and light source device
CN100442568C (zh) 有机电致发光器件以及发光装置
KR20000073118A (ko) 유기 전계발광 표시소자
CN111628094B (zh) 有机发光显示装置及有机发光堆叠结构
WO2019218964A1 (zh) 发光器件及显示装置
US20030030371A1 (en) Organic light emitting backlight device for liquid crystal display
KR100722115B1 (ko) 유기 전계 발광 표시장치
CN104009187A (zh) 一种多色有机发光二极管照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927603

Country of ref document: EP

Kind code of ref document: A1